1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4 * Copyright 2016-2019 NXP
5 *
6 */
7
8#include <asm/cacheflush.h>
9#include <linux/io.h>
10#include <linux/slab.h>
11#include <linux/spinlock.h>
12#include <soc/fsl/dpaa2-global.h>
13
14#include "qbman-portal.h"
15
16/* All QBMan command and result structures use this "valid bit" encoding */
17#define QB_VALID_BIT ((u32)0x80)
18
19/* QBMan portal management command codes */
20#define QBMAN_MC_ACQUIRE       0x30
21#define QBMAN_WQCHAN_CONFIGURE 0x46
22
23/* CINH register offsets */
24#define QBMAN_CINH_SWP_EQCR_PI      0x800
25#define QBMAN_CINH_SWP_EQCR_CI	    0x840
26#define QBMAN_CINH_SWP_EQAR    0x8c0
27#define QBMAN_CINH_SWP_CR_RT        0x900
28#define QBMAN_CINH_SWP_VDQCR_RT     0x940
29#define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
30#define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
31#define QBMAN_CINH_SWP_DQPI    0xa00
32#define QBMAN_CINH_SWP_DCAP    0xac0
33#define QBMAN_CINH_SWP_SDQCR   0xb00
34#define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
35#define QBMAN_CINH_SWP_RCR_PI       0xc00
36#define QBMAN_CINH_SWP_RAR     0xcc0
37#define QBMAN_CINH_SWP_ISR     0xe00
38#define QBMAN_CINH_SWP_IER     0xe40
39#define QBMAN_CINH_SWP_ISDR    0xe80
40#define QBMAN_CINH_SWP_IIR     0xec0
41
42/* CENA register offsets */
43#define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
44#define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
45#define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
46#define QBMAN_CENA_SWP_CR      0x600
47#define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
48#define QBMAN_CENA_SWP_VDQCR   0x780
49#define QBMAN_CENA_SWP_EQCR_CI 0x840
50#define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
51
52/* CENA register offsets in memory-backed mode */
53#define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
54#define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
55#define QBMAN_CENA_SWP_CR_MEM       0x1600
56#define QBMAN_CENA_SWP_RR_MEM       0x1680
57#define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
58
59/* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
60#define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
61
62/* Define token used to determine if response written to memory is valid */
63#define QMAN_DQ_TOKEN_VALID 1
64
65/* SDQCR attribute codes */
66#define QB_SDQCR_FC_SHIFT   29
67#define QB_SDQCR_FC_MASK    0x1
68#define QB_SDQCR_DCT_SHIFT  24
69#define QB_SDQCR_DCT_MASK   0x3
70#define QB_SDQCR_TOK_SHIFT  16
71#define QB_SDQCR_TOK_MASK   0xff
72#define QB_SDQCR_SRC_SHIFT  0
73#define QB_SDQCR_SRC_MASK   0xffff
74
75/* opaque token for static dequeues */
76#define QMAN_SDQCR_TOKEN    0xbb
77
78#define QBMAN_EQCR_DCA_IDXMASK          0x0f
79#define QBMAN_ENQUEUE_FLAG_DCA          (1ULL << 31)
80
81#define EQ_DESC_SIZE_WITHOUT_FD 29
82#define EQ_DESC_SIZE_FD_START 32
83
84enum qbman_sdqcr_dct {
85	qbman_sdqcr_dct_null = 0,
86	qbman_sdqcr_dct_prio_ics,
87	qbman_sdqcr_dct_active_ics,
88	qbman_sdqcr_dct_active
89};
90
91enum qbman_sdqcr_fc {
92	qbman_sdqcr_fc_one = 0,
93	qbman_sdqcr_fc_up_to_3 = 1
94};
95
96/* Internal Function declaration */
97static int qbman_swp_enqueue_direct(struct qbman_swp *s,
98				    const struct qbman_eq_desc *d,
99				    const struct dpaa2_fd *fd);
100static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
101				      const struct qbman_eq_desc *d,
102				      const struct dpaa2_fd *fd);
103static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
104					     const struct qbman_eq_desc *d,
105					     const struct dpaa2_fd *fd,
106					     uint32_t *flags,
107					     int num_frames);
108static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
109					       const struct qbman_eq_desc *d,
110					       const struct dpaa2_fd *fd,
111					       uint32_t *flags,
112					       int num_frames);
113static int
114qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
115				       const struct qbman_eq_desc *d,
116				       const struct dpaa2_fd *fd,
117				       int num_frames);
118static
119int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
120					     const struct qbman_eq_desc *d,
121					     const struct dpaa2_fd *fd,
122					     int num_frames);
123static int qbman_swp_pull_direct(struct qbman_swp *s,
124				 struct qbman_pull_desc *d);
125static int qbman_swp_pull_mem_back(struct qbman_swp *s,
126				   struct qbman_pull_desc *d);
127
128const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
129const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
130
131static int qbman_swp_release_direct(struct qbman_swp *s,
132				    const struct qbman_release_desc *d,
133				    const u64 *buffers,
134				    unsigned int num_buffers);
135static int qbman_swp_release_mem_back(struct qbman_swp *s,
136				      const struct qbman_release_desc *d,
137				      const u64 *buffers,
138				      unsigned int num_buffers);
139
140/* Function pointers */
141int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
142			     const struct qbman_eq_desc *d,
143			     const struct dpaa2_fd *fd)
144	= qbman_swp_enqueue_direct;
145
146int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
147				      const struct qbman_eq_desc *d,
148				      const struct dpaa2_fd *fd,
149				      uint32_t *flags,
150					     int num_frames)
151	= qbman_swp_enqueue_multiple_direct;
152
153int
154(*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
155				       const struct qbman_eq_desc *d,
156				       const struct dpaa2_fd *fd,
157				       int num_frames)
158	= qbman_swp_enqueue_multiple_desc_direct;
159
160int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
161			= qbman_swp_pull_direct;
162
163const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
164			= qbman_swp_dqrr_next_direct;
165
166int (*qbman_swp_release_ptr)(struct qbman_swp *s,
167			     const struct qbman_release_desc *d,
168			     const u64 *buffers,
169			     unsigned int num_buffers)
170			= qbman_swp_release_direct;
171
172/* Portal Access */
173
174static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
175{
176	return readl_relaxed(p->addr_cinh + offset);
177}
178
179static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
180					u32 value)
181{
182	writel_relaxed(value, p->addr_cinh + offset);
183}
184
185static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
186{
187	return p->addr_cena + offset;
188}
189
190#define QBMAN_CINH_SWP_CFG   0xd00
191
192#define SWP_CFG_DQRR_MF_SHIFT 20
193#define SWP_CFG_EST_SHIFT     16
194#define SWP_CFG_CPBS_SHIFT    15
195#define SWP_CFG_WN_SHIFT      14
196#define SWP_CFG_RPM_SHIFT     12
197#define SWP_CFG_DCM_SHIFT     10
198#define SWP_CFG_EPM_SHIFT     8
199#define SWP_CFG_VPM_SHIFT     7
200#define SWP_CFG_CPM_SHIFT     6
201#define SWP_CFG_SD_SHIFT      5
202#define SWP_CFG_SP_SHIFT      4
203#define SWP_CFG_SE_SHIFT      3
204#define SWP_CFG_DP_SHIFT      2
205#define SWP_CFG_DE_SHIFT      1
206#define SWP_CFG_EP_SHIFT      0
207
208static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn,	u8 est, u8 rpm, u8 dcm,
209				    u8 epm, int sd, int sp, int se,
210				    int dp, int de, int ep)
211{
212	return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
213		est << SWP_CFG_EST_SHIFT |
214		wn << SWP_CFG_WN_SHIFT |
215		rpm << SWP_CFG_RPM_SHIFT |
216		dcm << SWP_CFG_DCM_SHIFT |
217		epm << SWP_CFG_EPM_SHIFT |
218		sd << SWP_CFG_SD_SHIFT |
219		sp << SWP_CFG_SP_SHIFT |
220		se << SWP_CFG_SE_SHIFT |
221		dp << SWP_CFG_DP_SHIFT |
222		de << SWP_CFG_DE_SHIFT |
223		ep << SWP_CFG_EP_SHIFT);
224}
225
226#define QMAN_RT_MODE	   0x00000100
227
228static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
229{
230	/* 'first' is included, 'last' is excluded */
231	if (first <= last)
232		return last - first;
233	else
234		return (2 * ringsize) - (first - last);
235}
236
237/**
238 * qbman_swp_init() - Create a functional object representing the given
239 *                    QBMan portal descriptor.
240 * @d: the given qbman swp descriptor
241 *
242 * Return qbman_swp portal for success, NULL if the object cannot
243 * be created.
244 */
245struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
246{
247	struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
248	u32 reg;
249	u32 mask_size;
250	u32 eqcr_pi;
251
252	if (!p)
253		return NULL;
254
255	spin_lock_init(&p->access_spinlock);
256
257	p->desc = d;
258	p->mc.valid_bit = QB_VALID_BIT;
259	p->sdq = 0;
260	p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
261	p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
262	p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
263	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
264		p->mr.valid_bit = QB_VALID_BIT;
265
266	atomic_set(&p->vdq.available, 1);
267	p->vdq.valid_bit = QB_VALID_BIT;
268	p->dqrr.next_idx = 0;
269	p->dqrr.valid_bit = QB_VALID_BIT;
270
271	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
272		p->dqrr.dqrr_size = 4;
273		p->dqrr.reset_bug = 1;
274	} else {
275		p->dqrr.dqrr_size = 8;
276		p->dqrr.reset_bug = 0;
277	}
278
279	p->addr_cena = d->cena_bar;
280	p->addr_cinh = d->cinh_bar;
281
282	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
283
284		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
285			1, /* Writes Non-cacheable */
286			0, /* EQCR_CI stashing threshold */
287			3, /* RPM: RCR in array mode */
288			2, /* DCM: Discrete consumption ack */
289			2, /* EPM: EQCR in ring mode */
290			1, /* mem stashing drop enable enable */
291			1, /* mem stashing priority enable */
292			1, /* mem stashing enable */
293			1, /* dequeue stashing priority enable */
294			0, /* dequeue stashing enable enable */
295			0); /* EQCR_CI stashing priority enable */
296	} else {
297		memset(p->addr_cena, 0, 64 * 1024);
298		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
299			1, /* Writes Non-cacheable */
300			1, /* EQCR_CI stashing threshold */
301			3, /* RPM: RCR in array mode */
302			2, /* DCM: Discrete consumption ack */
303			0, /* EPM: EQCR in ring mode */
304			1, /* mem stashing drop enable */
305			1, /* mem stashing priority enable */
306			1, /* mem stashing enable */
307			1, /* dequeue stashing priority enable */
308			0, /* dequeue stashing enable */
309			0); /* EQCR_CI stashing priority enable */
310		reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
311		       1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
312		       1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
313	}
314
315	qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
316	reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
317	if (!reg) {
318		pr_err("qbman: the portal is not enabled!\n");
319		kfree(p);
320		return NULL;
321	}
322
323	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
324		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
325		qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
326	}
327	/*
328	 * SDQCR needs to be initialized to 0 when no channels are
329	 * being dequeued from or else the QMan HW will indicate an
330	 * error.  The values that were calculated above will be
331	 * applied when dequeues from a specific channel are enabled.
332	 */
333	qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
334
335	p->eqcr.pi_ring_size = 8;
336	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
337		p->eqcr.pi_ring_size = 32;
338		qbman_swp_enqueue_ptr =
339			qbman_swp_enqueue_mem_back;
340		qbman_swp_enqueue_multiple_ptr =
341			qbman_swp_enqueue_multiple_mem_back;
342		qbman_swp_enqueue_multiple_desc_ptr =
343			qbman_swp_enqueue_multiple_desc_mem_back;
344		qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
345		qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
346		qbman_swp_release_ptr = qbman_swp_release_mem_back;
347	}
348
349	for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
350		p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
351	eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
352	p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
353	p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
354	p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
355			& p->eqcr.pi_ci_mask;
356	p->eqcr.available = p->eqcr.pi_ring_size;
357
358	return p;
359}
360
361/**
362 * qbman_swp_finish() - Create and destroy a functional object representing
363 *                      the given QBMan portal descriptor.
364 * @p: the qbman_swp object to be destroyed
365 */
366void qbman_swp_finish(struct qbman_swp *p)
367{
368	kfree(p);
369}
370
371/**
372 * qbman_swp_interrupt_read_status()
373 * @p: the given software portal
374 *
375 * Return the value in the SWP_ISR register.
376 */
377u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
378{
379	return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
380}
381
382/**
383 * qbman_swp_interrupt_clear_status()
384 * @p: the given software portal
385 * @mask: The mask to clear in SWP_ISR register
386 */
387void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
388{
389	qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
390}
391
392/**
393 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
394 * @p: the given software portal
395 *
396 * Return the value in the SWP_IER register.
397 */
398u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
399{
400	return qbman_read_register(p, QBMAN_CINH_SWP_IER);
401}
402
403/**
404 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
405 * @p: the given software portal
406 * @mask: The mask of bits to enable in SWP_IER
407 */
408void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
409{
410	qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
411}
412
413/**
414 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
415 * @p: the given software portal object
416 *
417 * Return the value in the SWP_IIR register.
418 */
419int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
420{
421	return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
422}
423
424/**
425 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
426 * @p: the given software portal object
427 * @mask: The mask to set in SWP_IIR register
428 */
429void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
430{
431	qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
432}
433
434/*
435 * Different management commands all use this common base layer of code to issue
436 * commands and poll for results.
437 */
438
439/*
440 * Returns a pointer to where the caller should fill in their management command
441 * (caller should ignore the verb byte)
442 */
443void *qbman_swp_mc_start(struct qbman_swp *p)
444{
445	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
446		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
447	else
448		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
449}
450
451/*
452 * Commits merges in the caller-supplied command verb (which should not include
453 * the valid-bit) and submits the command to hardware
454 */
455void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
456{
457	u8 *v = cmd;
458
459	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
460		dma_wmb();
461		*v = cmd_verb | p->mc.valid_bit;
462	} else {
463		*v = cmd_verb | p->mc.valid_bit;
464		dma_wmb();
465		qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
466	}
467}
468
469/*
470 * Checks for a completed response (returns non-NULL if only if the response
471 * is complete).
472 */
473void *qbman_swp_mc_result(struct qbman_swp *p)
474{
475	u32 *ret, verb;
476
477	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
478		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
479		/* Remove the valid-bit - command completed if the rest
480		 * is non-zero.
481		 */
482		verb = ret[0] & ~QB_VALID_BIT;
483		if (!verb)
484			return NULL;
485		p->mc.valid_bit ^= QB_VALID_BIT;
486	} else {
487		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
488		/* Command completed if the valid bit is toggled */
489		if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
490			return NULL;
491		/* Command completed if the rest is non-zero */
492		verb = ret[0] & ~QB_VALID_BIT;
493		if (!verb)
494			return NULL;
495		p->mr.valid_bit ^= QB_VALID_BIT;
496	}
497
498	return ret;
499}
500
501#define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
502enum qb_enqueue_commands {
503	enqueue_empty = 0,
504	enqueue_response_always = 1,
505	enqueue_rejects_to_fq = 2
506};
507
508#define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
509#define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
510#define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
511#define QB_ENQUEUE_CMD_DCA_EN_SHIFT          7
512
513/**
514 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
515 *                         default/starting state.
516 */
517void qbman_eq_desc_clear(struct qbman_eq_desc *d)
518{
519	memset(d, 0, sizeof(*d));
520}
521
522/**
523 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
524 * @d:                the enqueue descriptor.
525 * @response_success: 1 = enqueue with response always; 0 = enqueue with
526 *                    rejections returned on a FQ.
527 */
528void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
529{
530	d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
531	if (respond_success)
532		d->verb |= enqueue_response_always;
533	else
534		d->verb |= enqueue_rejects_to_fq;
535}
536
537/*
538 * Exactly one of the following descriptor "targets" should be set. (Calling any
539 * one of these will replace the effect of any prior call to one of these.)
540 *   -enqueue to a frame queue
541 *   -enqueue to a queuing destination
542 */
543
544/**
545 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
546 * @d:    the enqueue descriptor
547 * @fqid: the id of the frame queue to be enqueued
548 */
549void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
550{
551	d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
552	d->tgtid = cpu_to_le32(fqid);
553}
554
555/**
556 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
557 * @d:       the enqueue descriptor
558 * @qdid:    the id of the queuing destination to be enqueued
559 * @qd_bin:  the queuing destination bin
560 * @qd_prio: the queuing destination priority
561 */
562void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
563			  u32 qd_bin, u32 qd_prio)
564{
565	d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
566	d->tgtid = cpu_to_le32(qdid);
567	d->qdbin = cpu_to_le16(qd_bin);
568	d->qpri = qd_prio;
569}
570
571#define EQAR_IDX(eqar)     ((eqar) & 0x7)
572#define EQAR_VB(eqar)      ((eqar) & 0x80)
573#define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
574
575#define QB_RT_BIT ((u32)0x100)
576/**
577 * qbman_swp_enqueue_direct() - Issue an enqueue command
578 * @s:  the software portal used for enqueue
579 * @d:  the enqueue descriptor
580 * @fd: the frame descriptor to be enqueued
581 *
582 * Please note that 'fd' should only be NULL if the "action" of the
583 * descriptor is "orp_hole" or "orp_nesn".
584 *
585 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
586 */
587static
588int qbman_swp_enqueue_direct(struct qbman_swp *s,
589			     const struct qbman_eq_desc *d,
590			     const struct dpaa2_fd *fd)
591{
592	int flags = 0;
593	int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
594
595	if (ret >= 0)
596		ret = 0;
597	else
598		ret = -EBUSY;
599	return  ret;
600}
601
602/**
603 * qbman_swp_enqueue_mem_back() - Issue an enqueue command
604 * @s:  the software portal used for enqueue
605 * @d:  the enqueue descriptor
606 * @fd: the frame descriptor to be enqueued
607 *
608 * Please note that 'fd' should only be NULL if the "action" of the
609 * descriptor is "orp_hole" or "orp_nesn".
610 *
611 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
612 */
613static
614int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
615			       const struct qbman_eq_desc *d,
616			       const struct dpaa2_fd *fd)
617{
618	int flags = 0;
619	int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
620
621	if (ret >= 0)
622		ret = 0;
623	else
624		ret = -EBUSY;
625	return  ret;
626}
627
628/**
629 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
630 * using one enqueue descriptor
631 * @s:  the software portal used for enqueue
632 * @d:  the enqueue descriptor
633 * @fd: table pointer of frame descriptor table to be enqueued
634 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
635 * @num_frames: number of fd to be enqueued
636 *
637 * Return the number of fd enqueued, or a negative error number.
638 */
639static
640int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
641				      const struct qbman_eq_desc *d,
642				      const struct dpaa2_fd *fd,
643				      uint32_t *flags,
644				      int num_frames)
645{
646	uint32_t *p = NULL;
647	const uint32_t *cl = (uint32_t *)d;
648	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
649	int i, num_enqueued = 0;
650
651	spin_lock(&s->access_spinlock);
652	half_mask = (s->eqcr.pi_ci_mask>>1);
653	full_mask = s->eqcr.pi_ci_mask;
654
655	if (!s->eqcr.available) {
656		eqcr_ci = s->eqcr.ci;
657		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
658		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
659		s->eqcr.ci &= full_mask;
660
661		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
662					eqcr_ci, s->eqcr.ci);
663		if (!s->eqcr.available) {
664			spin_unlock(&s->access_spinlock);
665			return 0;
666		}
667	}
668
669	eqcr_pi = s->eqcr.pi;
670	num_enqueued = (s->eqcr.available < num_frames) ?
671			s->eqcr.available : num_frames;
672	s->eqcr.available -= num_enqueued;
673	/* Fill in the EQCR ring */
674	for (i = 0; i < num_enqueued; i++) {
675		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
676		/* Skip copying the verb */
677		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
678		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
679		       &fd[i], sizeof(*fd));
680		eqcr_pi++;
681	}
682
683	dma_wmb();
684
685	/* Set the verb byte, have to substitute in the valid-bit */
686	eqcr_pi = s->eqcr.pi;
687	for (i = 0; i < num_enqueued; i++) {
688		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
689		p[0] = cl[0] | s->eqcr.pi_vb;
690		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
691			struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
692
693			d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
694				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
695		}
696		eqcr_pi++;
697		if (!(eqcr_pi & half_mask))
698			s->eqcr.pi_vb ^= QB_VALID_BIT;
699	}
700
701	/* Flush all the cacheline without load/store in between */
702	eqcr_pi = s->eqcr.pi;
703	for (i = 0; i < num_enqueued; i++)
704		eqcr_pi++;
705	s->eqcr.pi = eqcr_pi & full_mask;
706	spin_unlock(&s->access_spinlock);
707
708	return num_enqueued;
709}
710
711/**
712 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
713 * using one enqueue descriptor
714 * @s:  the software portal used for enqueue
715 * @d:  the enqueue descriptor
716 * @fd: table pointer of frame descriptor table to be enqueued
717 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
718 * @num_frames: number of fd to be enqueued
719 *
720 * Return the number of fd enqueued, or a negative error number.
721 */
722static
723int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
724					const struct qbman_eq_desc *d,
725					const struct dpaa2_fd *fd,
726					uint32_t *flags,
727					int num_frames)
728{
729	uint32_t *p = NULL;
730	const uint32_t *cl = (uint32_t *)(d);
731	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
732	int i, num_enqueued = 0;
733	unsigned long irq_flags;
734
735	spin_lock_irqsave(&s->access_spinlock, irq_flags);
736
737	half_mask = (s->eqcr.pi_ci_mask>>1);
738	full_mask = s->eqcr.pi_ci_mask;
739	if (!s->eqcr.available) {
740		eqcr_ci = s->eqcr.ci;
741		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
742		s->eqcr.ci = *p & full_mask;
743		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
744					eqcr_ci, s->eqcr.ci);
745		if (!s->eqcr.available) {
746			spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
747			return 0;
748		}
749	}
750
751	eqcr_pi = s->eqcr.pi;
752	num_enqueued = (s->eqcr.available < num_frames) ?
753			s->eqcr.available : num_frames;
754	s->eqcr.available -= num_enqueued;
755	/* Fill in the EQCR ring */
756	for (i = 0; i < num_enqueued; i++) {
757		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
758		/* Skip copying the verb */
759		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
760		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
761		       &fd[i], sizeof(*fd));
762		eqcr_pi++;
763	}
764
765	/* Set the verb byte, have to substitute in the valid-bit */
766	eqcr_pi = s->eqcr.pi;
767	for (i = 0; i < num_enqueued; i++) {
768		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
769		p[0] = cl[0] | s->eqcr.pi_vb;
770		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
771			struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
772
773			d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
774				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
775		}
776		eqcr_pi++;
777		if (!(eqcr_pi & half_mask))
778			s->eqcr.pi_vb ^= QB_VALID_BIT;
779	}
780	s->eqcr.pi = eqcr_pi & full_mask;
781
782	dma_wmb();
783	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
784				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
785	spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
786
787	return num_enqueued;
788}
789
790/**
791 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
792 * using multiple enqueue descriptor
793 * @s:  the software portal used for enqueue
794 * @d:  table of minimal enqueue descriptor
795 * @fd: table pointer of frame descriptor table to be enqueued
796 * @num_frames: number of fd to be enqueued
797 *
798 * Return the number of fd enqueued, or a negative error number.
799 */
800static
801int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
802					   const struct qbman_eq_desc *d,
803					   const struct dpaa2_fd *fd,
804					   int num_frames)
805{
806	uint32_t *p;
807	const uint32_t *cl;
808	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
809	int i, num_enqueued = 0;
810
811	half_mask = (s->eqcr.pi_ci_mask>>1);
812	full_mask = s->eqcr.pi_ci_mask;
813	if (!s->eqcr.available) {
814		eqcr_ci = s->eqcr.ci;
815		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
816		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
817		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
818					eqcr_ci, s->eqcr.ci);
819		if (!s->eqcr.available)
820			return 0;
821	}
822
823	eqcr_pi = s->eqcr.pi;
824	num_enqueued = (s->eqcr.available < num_frames) ?
825			s->eqcr.available : num_frames;
826	s->eqcr.available -= num_enqueued;
827	/* Fill in the EQCR ring */
828	for (i = 0; i < num_enqueued; i++) {
829		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
830		cl = (uint32_t *)(&d[i]);
831		/* Skip copying the verb */
832		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
833		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
834		       &fd[i], sizeof(*fd));
835		eqcr_pi++;
836	}
837
838	dma_wmb();
839
840	/* Set the verb byte, have to substitute in the valid-bit */
841	eqcr_pi = s->eqcr.pi;
842	for (i = 0; i < num_enqueued; i++) {
843		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
844		cl = (uint32_t *)(&d[i]);
845		p[0] = cl[0] | s->eqcr.pi_vb;
846		eqcr_pi++;
847		if (!(eqcr_pi & half_mask))
848			s->eqcr.pi_vb ^= QB_VALID_BIT;
849	}
850
851	/* Flush all the cacheline without load/store in between */
852	eqcr_pi = s->eqcr.pi;
853	for (i = 0; i < num_enqueued; i++)
854		eqcr_pi++;
855	s->eqcr.pi = eqcr_pi & full_mask;
856
857	return num_enqueued;
858}
859
860/**
861 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
862 * using multiple enqueue descriptor
863 * @s:  the software portal used for enqueue
864 * @d:  table of minimal enqueue descriptor
865 * @fd: table pointer of frame descriptor table to be enqueued
866 * @num_frames: number of fd to be enqueued
867 *
868 * Return the number of fd enqueued, or a negative error number.
869 */
870static
871int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
872					   const struct qbman_eq_desc *d,
873					   const struct dpaa2_fd *fd,
874					   int num_frames)
875{
876	uint32_t *p;
877	const uint32_t *cl;
878	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
879	int i, num_enqueued = 0;
880
881	half_mask = (s->eqcr.pi_ci_mask>>1);
882	full_mask = s->eqcr.pi_ci_mask;
883	if (!s->eqcr.available) {
884		eqcr_ci = s->eqcr.ci;
885		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
886		s->eqcr.ci = *p & full_mask;
887		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
888					eqcr_ci, s->eqcr.ci);
889		if (!s->eqcr.available)
890			return 0;
891	}
892
893	eqcr_pi = s->eqcr.pi;
894	num_enqueued = (s->eqcr.available < num_frames) ?
895			s->eqcr.available : num_frames;
896	s->eqcr.available -= num_enqueued;
897	/* Fill in the EQCR ring */
898	for (i = 0; i < num_enqueued; i++) {
899		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
900		cl = (uint32_t *)(&d[i]);
901		/* Skip copying the verb */
902		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
903		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
904		       &fd[i], sizeof(*fd));
905		eqcr_pi++;
906	}
907
908	/* Set the verb byte, have to substitute in the valid-bit */
909	eqcr_pi = s->eqcr.pi;
910	for (i = 0; i < num_enqueued; i++) {
911		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
912		cl = (uint32_t *)(&d[i]);
913		p[0] = cl[0] | s->eqcr.pi_vb;
914		eqcr_pi++;
915		if (!(eqcr_pi & half_mask))
916			s->eqcr.pi_vb ^= QB_VALID_BIT;
917	}
918
919	s->eqcr.pi = eqcr_pi & full_mask;
920
921	dma_wmb();
922	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
923				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
924
925	return num_enqueued;
926}
927
928/* Static (push) dequeue */
929
930/**
931 * qbman_swp_push_get() - Get the push dequeue setup
932 * @p:           the software portal object
933 * @channel_idx: the channel index to query
934 * @enabled:     returned boolean to show whether the push dequeue is enabled
935 *               for the given channel
936 */
937void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
938{
939	u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
940
941	WARN_ON(channel_idx > 15);
942	*enabled = src | (1 << channel_idx);
943}
944
945/**
946 * qbman_swp_push_set() - Enable or disable push dequeue
947 * @p:           the software portal object
948 * @channel_idx: the channel index (0 to 15)
949 * @enable:      enable or disable push dequeue
950 */
951void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
952{
953	u16 dqsrc;
954
955	WARN_ON(channel_idx > 15);
956	if (enable)
957		s->sdq |= 1 << channel_idx;
958	else
959		s->sdq &= ~(1 << channel_idx);
960
961	/* Read make the complete src map.  If no channels are enabled
962	 * the SDQCR must be 0 or else QMan will assert errors
963	 */
964	dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
965	if (dqsrc != 0)
966		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
967	else
968		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
969}
970
971#define QB_VDQCR_VERB_DCT_SHIFT    0
972#define QB_VDQCR_VERB_DT_SHIFT     2
973#define QB_VDQCR_VERB_RLS_SHIFT    4
974#define QB_VDQCR_VERB_WAE_SHIFT    5
975
976enum qb_pull_dt_e {
977	qb_pull_dt_channel,
978	qb_pull_dt_workqueue,
979	qb_pull_dt_framequeue
980};
981
982/**
983 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
984 *                           default/starting state
985 * @d: the pull dequeue descriptor to be cleared
986 */
987void qbman_pull_desc_clear(struct qbman_pull_desc *d)
988{
989	memset(d, 0, sizeof(*d));
990}
991
992/**
993 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
994 * @d:            the pull dequeue descriptor to be set
995 * @storage:      the pointer of the memory to store the dequeue result
996 * @storage_phys: the physical address of the storage memory
997 * @stash:        to indicate whether write allocate is enabled
998 *
999 * If not called, or if called with 'storage' as NULL, the result pull dequeues
1000 * will produce results to DQRR. If 'storage' is non-NULL, then results are
1001 * produced to the given memory location (using the DMA address which
1002 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1003 * those writes to main-memory express a cache-warming attribute.
1004 */
1005void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1006				 struct dpaa2_dq *storage,
1007				 dma_addr_t storage_phys,
1008				 int stash)
1009{
1010	/* save the virtual address */
1011	d->rsp_addr_virt = (u64)(uintptr_t)storage;
1012
1013	if (!storage) {
1014		d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1015		return;
1016	}
1017	d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1018	if (stash)
1019		d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1020	else
1021		d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1022
1023	d->rsp_addr = cpu_to_le64(storage_phys);
1024}
1025
1026/**
1027 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1028 * @d:         the pull dequeue descriptor to be set
1029 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1030 */
1031void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1032{
1033	d->numf = numframes - 1;
1034}
1035
1036/*
1037 * Exactly one of the following descriptor "actions" should be set. (Calling any
1038 * one of these will replace the effect of any prior call to one of these.)
1039 * - pull dequeue from the given frame queue (FQ)
1040 * - pull dequeue from any FQ in the given work queue (WQ)
1041 * - pull dequeue from any FQ in any WQ in the given channel
1042 */
1043
1044/**
1045 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1046 * @fqid: the frame queue index of the given FQ
1047 */
1048void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1049{
1050	d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1051	d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1052	d->dq_src = cpu_to_le32(fqid);
1053}
1054
1055/**
1056 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1057 * @wqid: composed of channel id and wqid within the channel
1058 * @dct:  the dequeue command type
1059 */
1060void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1061			    enum qbman_pull_type_e dct)
1062{
1063	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1064	d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1065	d->dq_src = cpu_to_le32(wqid);
1066}
1067
1068/**
1069 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1070 *                                 dequeues
1071 * @chid: the channel id to be dequeued
1072 * @dct:  the dequeue command type
1073 */
1074void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1075				 enum qbman_pull_type_e dct)
1076{
1077	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1078	d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1079	d->dq_src = cpu_to_le32(chid);
1080}
1081
1082/**
1083 * qbman_swp_pull_direct() - Issue the pull dequeue command
1084 * @s: the software portal object
1085 * @d: the software portal descriptor which has been configured with
1086 *     the set of qbman_pull_desc_set_*() calls
1087 *
1088 * Return 0 for success, and -EBUSY if the software portal is not ready
1089 * to do pull dequeue.
1090 */
1091static
1092int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1093{
1094	struct qbman_pull_desc *p;
1095
1096	if (!atomic_dec_and_test(&s->vdq.available)) {
1097		atomic_inc(&s->vdq.available);
1098		return -EBUSY;
1099	}
1100	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1101	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1102		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1103	else
1104		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1105	p->numf = d->numf;
1106	p->tok = QMAN_DQ_TOKEN_VALID;
1107	p->dq_src = d->dq_src;
1108	p->rsp_addr = d->rsp_addr;
1109	p->rsp_addr_virt = d->rsp_addr_virt;
1110	dma_wmb();
1111	/* Set the verb byte, have to substitute in the valid-bit */
1112	p->verb = d->verb | s->vdq.valid_bit;
1113	s->vdq.valid_bit ^= QB_VALID_BIT;
1114
1115	return 0;
1116}
1117
1118/**
1119 * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1120 * @s: the software portal object
1121 * @d: the software portal descriptor which has been configured with
1122 *     the set of qbman_pull_desc_set_*() calls
1123 *
1124 * Return 0 for success, and -EBUSY if the software portal is not ready
1125 * to do pull dequeue.
1126 */
1127static
1128int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1129{
1130	struct qbman_pull_desc *p;
1131
1132	if (!atomic_dec_and_test(&s->vdq.available)) {
1133		atomic_inc(&s->vdq.available);
1134		return -EBUSY;
1135	}
1136	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1137	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1138		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1139	else
1140		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1141	p->numf = d->numf;
1142	p->tok = QMAN_DQ_TOKEN_VALID;
1143	p->dq_src = d->dq_src;
1144	p->rsp_addr = d->rsp_addr;
1145	p->rsp_addr_virt = d->rsp_addr_virt;
1146
1147	/* Set the verb byte, have to substitute in the valid-bit */
1148	p->verb = d->verb | s->vdq.valid_bit;
1149	s->vdq.valid_bit ^= QB_VALID_BIT;
1150	dma_wmb();
1151	qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1152
1153	return 0;
1154}
1155
1156#define QMAN_DQRR_PI_MASK   0xf
1157
1158/**
1159 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1160 * @s: the software portal object
1161 *
1162 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1163 * only once, so repeated calls can return a sequence of DQRR entries, without
1164 * requiring they be consumed immediately or in any particular order.
1165 */
1166const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1167{
1168	u32 verb;
1169	u32 response_verb;
1170	u32 flags;
1171	struct dpaa2_dq *p;
1172
1173	/* Before using valid-bit to detect if something is there, we have to
1174	 * handle the case of the DQRR reset bug...
1175	 */
1176	if (unlikely(s->dqrr.reset_bug)) {
1177		/*
1178		 * We pick up new entries by cache-inhibited producer index,
1179		 * which means that a non-coherent mapping would require us to
1180		 * invalidate and read *only* once that PI has indicated that
1181		 * there's an entry here. The first trip around the DQRR ring
1182		 * will be much less efficient than all subsequent trips around
1183		 * it...
1184		 */
1185		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1186			QMAN_DQRR_PI_MASK;
1187
1188		/* there are new entries if pi != next_idx */
1189		if (pi == s->dqrr.next_idx)
1190			return NULL;
1191
1192		/*
1193		 * if next_idx is/was the last ring index, and 'pi' is
1194		 * different, we can disable the workaround as all the ring
1195		 * entries have now been DMA'd to so valid-bit checking is
1196		 * repaired. Note: this logic needs to be based on next_idx
1197		 * (which increments one at a time), rather than on pi (which
1198		 * can burst and wrap-around between our snapshots of it).
1199		 */
1200		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1201			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1202				 s->dqrr.next_idx, pi);
1203			s->dqrr.reset_bug = 0;
1204		}
1205		prefetch(qbman_get_cmd(s,
1206				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1207	}
1208
1209	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1210	verb = p->dq.verb;
1211
1212	/*
1213	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1214	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1215	 * check, because we've already determined that a new entry is available
1216	 * and we've invalidated the cacheline before reading it, so the
1217	 * valid-bit behaviour is repaired and should tell us what we already
1218	 * knew from reading PI.
1219	 */
1220	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1221		prefetch(qbman_get_cmd(s,
1222				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1223		return NULL;
1224	}
1225	/*
1226	 * There's something there. Move "next_idx" attention to the next ring
1227	 * entry (and prefetch it) before returning what we found.
1228	 */
1229	s->dqrr.next_idx++;
1230	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1231	if (!s->dqrr.next_idx)
1232		s->dqrr.valid_bit ^= QB_VALID_BIT;
1233
1234	/*
1235	 * If this is the final response to a volatile dequeue command
1236	 * indicate that the vdq is available
1237	 */
1238	flags = p->dq.stat;
1239	response_verb = verb & QBMAN_RESULT_MASK;
1240	if ((response_verb == QBMAN_RESULT_DQ) &&
1241	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1242	    (flags & DPAA2_DQ_STAT_EXPIRED))
1243		atomic_inc(&s->vdq.available);
1244
1245	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1246
1247	return p;
1248}
1249
1250/**
1251 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1252 * @s: the software portal object
1253 *
1254 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1255 * only once, so repeated calls can return a sequence of DQRR entries, without
1256 * requiring they be consumed immediately or in any particular order.
1257 */
1258const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1259{
1260	u32 verb;
1261	u32 response_verb;
1262	u32 flags;
1263	struct dpaa2_dq *p;
1264
1265	/* Before using valid-bit to detect if something is there, we have to
1266	 * handle the case of the DQRR reset bug...
1267	 */
1268	if (unlikely(s->dqrr.reset_bug)) {
1269		/*
1270		 * We pick up new entries by cache-inhibited producer index,
1271		 * which means that a non-coherent mapping would require us to
1272		 * invalidate and read *only* once that PI has indicated that
1273		 * there's an entry here. The first trip around the DQRR ring
1274		 * will be much less efficient than all subsequent trips around
1275		 * it...
1276		 */
1277		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1278			QMAN_DQRR_PI_MASK;
1279
1280		/* there are new entries if pi != next_idx */
1281		if (pi == s->dqrr.next_idx)
1282			return NULL;
1283
1284		/*
1285		 * if next_idx is/was the last ring index, and 'pi' is
1286		 * different, we can disable the workaround as all the ring
1287		 * entries have now been DMA'd to so valid-bit checking is
1288		 * repaired. Note: this logic needs to be based on next_idx
1289		 * (which increments one at a time), rather than on pi (which
1290		 * can burst and wrap-around between our snapshots of it).
1291		 */
1292		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1293			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1294				 s->dqrr.next_idx, pi);
1295			s->dqrr.reset_bug = 0;
1296		}
1297		prefetch(qbman_get_cmd(s,
1298				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1299	}
1300
1301	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1302	verb = p->dq.verb;
1303
1304	/*
1305	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1306	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1307	 * check, because we've already determined that a new entry is available
1308	 * and we've invalidated the cacheline before reading it, so the
1309	 * valid-bit behaviour is repaired and should tell us what we already
1310	 * knew from reading PI.
1311	 */
1312	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1313		prefetch(qbman_get_cmd(s,
1314				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1315		return NULL;
1316	}
1317	/*
1318	 * There's something there. Move "next_idx" attention to the next ring
1319	 * entry (and prefetch it) before returning what we found.
1320	 */
1321	s->dqrr.next_idx++;
1322	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1323	if (!s->dqrr.next_idx)
1324		s->dqrr.valid_bit ^= QB_VALID_BIT;
1325
1326	/*
1327	 * If this is the final response to a volatile dequeue command
1328	 * indicate that the vdq is available
1329	 */
1330	flags = p->dq.stat;
1331	response_verb = verb & QBMAN_RESULT_MASK;
1332	if ((response_verb == QBMAN_RESULT_DQ) &&
1333	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1334	    (flags & DPAA2_DQ_STAT_EXPIRED))
1335		atomic_inc(&s->vdq.available);
1336
1337	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1338
1339	return p;
1340}
1341
1342/**
1343 * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
1344 *                             qbman_swp_dqrr_next().
1345 * @s: the software portal object
1346 * @dq: the DQRR entry to be consumed
1347 */
1348void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1349{
1350	qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1351}
1352
1353/**
1354 * qbman_result_has_new_result() - Check and get the dequeue response from the
1355 *                                 dq storage memory set in pull dequeue command
1356 * @s: the software portal object
1357 * @dq: the dequeue result read from the memory
1358 *
1359 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1360 * dequeue result.
1361 *
1362 * Only used for user-provided storage of dequeue results, not DQRR. For
1363 * efficiency purposes, the driver will perform any required endianness
1364 * conversion to ensure that the user's dequeue result storage is in host-endian
1365 * format. As such, once the user has called qbman_result_has_new_result() and
1366 * been returned a valid dequeue result, they should not call it again on
1367 * the same memory location (except of course if another dequeue command has
1368 * been executed to produce a new result to that location).
1369 */
1370int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1371{
1372	if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1373		return 0;
1374
1375	/*
1376	 * Set token to be 0 so we will detect change back to 1
1377	 * next time the looping is traversed. Const is cast away here
1378	 * as we want users to treat the dequeue responses as read only.
1379	 */
1380	((struct dpaa2_dq *)dq)->dq.tok = 0;
1381
1382	/*
1383	 * Determine whether VDQCR is available based on whether the
1384	 * current result is sitting in the first storage location of
1385	 * the busy command.
1386	 */
1387	if (s->vdq.storage == dq) {
1388		s->vdq.storage = NULL;
1389		atomic_inc(&s->vdq.available);
1390	}
1391
1392	return 1;
1393}
1394
1395/**
1396 * qbman_release_desc_clear() - Clear the contents of a descriptor to
1397 *                              default/starting state.
1398 */
1399void qbman_release_desc_clear(struct qbman_release_desc *d)
1400{
1401	memset(d, 0, sizeof(*d));
1402	d->verb = 1 << 5; /* Release Command Valid */
1403}
1404
1405/**
1406 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1407 */
1408void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1409{
1410	d->bpid = cpu_to_le16(bpid);
1411}
1412
1413/**
1414 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1415 * interrupt source should be asserted after the release command is completed.
1416 */
1417void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1418{
1419	if (enable)
1420		d->verb |= 1 << 6;
1421	else
1422		d->verb &= ~(1 << 6);
1423}
1424
1425#define RAR_IDX(rar)     ((rar) & 0x7)
1426#define RAR_VB(rar)      ((rar) & 0x80)
1427#define RAR_SUCCESS(rar) ((rar) & 0x100)
1428
1429/**
1430 * qbman_swp_release_direct() - Issue a buffer release command
1431 * @s:           the software portal object
1432 * @d:           the release descriptor
1433 * @buffers:     a pointer pointing to the buffer address to be released
1434 * @num_buffers: number of buffers to be released,  must be less than 8
1435 *
1436 * Return 0 for success, -EBUSY if the release command ring is not ready.
1437 */
1438int qbman_swp_release_direct(struct qbman_swp *s,
1439			     const struct qbman_release_desc *d,
1440			     const u64 *buffers, unsigned int num_buffers)
1441{
1442	int i;
1443	struct qbman_release_desc *p;
1444	u32 rar;
1445
1446	if (!num_buffers || (num_buffers > 7))
1447		return -EINVAL;
1448
1449	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1450	if (!RAR_SUCCESS(rar))
1451		return -EBUSY;
1452
1453	/* Start the release command */
1454	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1455
1456	/* Copy the caller's buffer pointers to the command */
1457	for (i = 0; i < num_buffers; i++)
1458		p->buf[i] = cpu_to_le64(buffers[i]);
1459	p->bpid = d->bpid;
1460
1461	/*
1462	 * Set the verb byte, have to substitute in the valid-bit
1463	 * and the number of buffers.
1464	 */
1465	dma_wmb();
1466	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1467
1468	return 0;
1469}
1470
1471/**
1472 * qbman_swp_release_mem_back() - Issue a buffer release command
1473 * @s:           the software portal object
1474 * @d:           the release descriptor
1475 * @buffers:     a pointer pointing to the buffer address to be released
1476 * @num_buffers: number of buffers to be released,  must be less than 8
1477 *
1478 * Return 0 for success, -EBUSY if the release command ring is not ready.
1479 */
1480int qbman_swp_release_mem_back(struct qbman_swp *s,
1481			       const struct qbman_release_desc *d,
1482			       const u64 *buffers, unsigned int num_buffers)
1483{
1484	int i;
1485	struct qbman_release_desc *p;
1486	u32 rar;
1487
1488	if (!num_buffers || (num_buffers > 7))
1489		return -EINVAL;
1490
1491	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1492	if (!RAR_SUCCESS(rar))
1493		return -EBUSY;
1494
1495	/* Start the release command */
1496	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1497
1498	/* Copy the caller's buffer pointers to the command */
1499	for (i = 0; i < num_buffers; i++)
1500		p->buf[i] = cpu_to_le64(buffers[i]);
1501	p->bpid = d->bpid;
1502
1503	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1504	dma_wmb();
1505	qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1506			     RAR_IDX(rar)  * 4, QMAN_RT_MODE);
1507
1508	return 0;
1509}
1510
1511struct qbman_acquire_desc {
1512	u8 verb;
1513	u8 reserved;
1514	__le16 bpid;
1515	u8 num;
1516	u8 reserved2[59];
1517};
1518
1519struct qbman_acquire_rslt {
1520	u8 verb;
1521	u8 rslt;
1522	__le16 reserved;
1523	u8 num;
1524	u8 reserved2[3];
1525	__le64 buf[7];
1526};
1527
1528/**
1529 * qbman_swp_acquire() - Issue a buffer acquire command
1530 * @s:           the software portal object
1531 * @bpid:        the buffer pool index
1532 * @buffers:     a pointer pointing to the acquired buffer addresses
1533 * @num_buffers: number of buffers to be acquired, must be less than 8
1534 *
1535 * Return 0 for success, or negative error code if the acquire command
1536 * fails.
1537 */
1538int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1539		      unsigned int num_buffers)
1540{
1541	struct qbman_acquire_desc *p;
1542	struct qbman_acquire_rslt *r;
1543	int i;
1544
1545	if (!num_buffers || (num_buffers > 7))
1546		return -EINVAL;
1547
1548	/* Start the management command */
1549	p = qbman_swp_mc_start(s);
1550
1551	if (!p)
1552		return -EBUSY;
1553
1554	/* Encode the caller-provided attributes */
1555	p->bpid = cpu_to_le16(bpid);
1556	p->num = num_buffers;
1557
1558	/* Complete the management command */
1559	r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1560	if (unlikely(!r)) {
1561		pr_err("qbman: acquire from BPID %d failed, no response\n",
1562		       bpid);
1563		return -EIO;
1564	}
1565
1566	/* Decode the outcome */
1567	WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1568
1569	/* Determine success or failure */
1570	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1571		pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1572		       bpid, r->rslt);
1573		return -EIO;
1574	}
1575
1576	WARN_ON(r->num > num_buffers);
1577
1578	/* Copy the acquired buffers to the caller's array */
1579	for (i = 0; i < r->num; i++)
1580		buffers[i] = le64_to_cpu(r->buf[i]);
1581
1582	return (int)r->num;
1583}
1584
1585struct qbman_alt_fq_state_desc {
1586	u8 verb;
1587	u8 reserved[3];
1588	__le32 fqid;
1589	u8 reserved2[56];
1590};
1591
1592struct qbman_alt_fq_state_rslt {
1593	u8 verb;
1594	u8 rslt;
1595	u8 reserved[62];
1596};
1597
1598#define ALT_FQ_FQID_MASK 0x00FFFFFF
1599
1600int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1601			   u8 alt_fq_verb)
1602{
1603	struct qbman_alt_fq_state_desc *p;
1604	struct qbman_alt_fq_state_rslt *r;
1605
1606	/* Start the management command */
1607	p = qbman_swp_mc_start(s);
1608	if (!p)
1609		return -EBUSY;
1610
1611	p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1612
1613	/* Complete the management command */
1614	r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1615	if (unlikely(!r)) {
1616		pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1617		       alt_fq_verb);
1618		return -EIO;
1619	}
1620
1621	/* Decode the outcome */
1622	WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1623
1624	/* Determine success or failure */
1625	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1626		pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1627		       fqid, r->verb, r->rslt);
1628		return -EIO;
1629	}
1630
1631	return 0;
1632}
1633
1634struct qbman_cdan_ctrl_desc {
1635	u8 verb;
1636	u8 reserved;
1637	__le16 ch;
1638	u8 we;
1639	u8 ctrl;
1640	__le16 reserved2;
1641	__le64 cdan_ctx;
1642	u8 reserved3[48];
1643
1644};
1645
1646struct qbman_cdan_ctrl_rslt {
1647	u8 verb;
1648	u8 rslt;
1649	__le16 ch;
1650	u8 reserved[60];
1651};
1652
1653int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1654		       u8 we_mask, u8 cdan_en,
1655		       u64 ctx)
1656{
1657	struct qbman_cdan_ctrl_desc *p = NULL;
1658	struct qbman_cdan_ctrl_rslt *r = NULL;
1659
1660	/* Start the management command */
1661	p = qbman_swp_mc_start(s);
1662	if (!p)
1663		return -EBUSY;
1664
1665	/* Encode the caller-provided attributes */
1666	p->ch = cpu_to_le16(channelid);
1667	p->we = we_mask;
1668	if (cdan_en)
1669		p->ctrl = 1;
1670	else
1671		p->ctrl = 0;
1672	p->cdan_ctx = cpu_to_le64(ctx);
1673
1674	/* Complete the management command */
1675	r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1676	if (unlikely(!r)) {
1677		pr_err("qbman: wqchan config failed, no response\n");
1678		return -EIO;
1679	}
1680
1681	WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1682
1683	/* Determine success or failure */
1684	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1685		pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1686		       channelid, r->rslt);
1687		return -EIO;
1688	}
1689
1690	return 0;
1691}
1692
1693#define QBMAN_RESPONSE_VERB_MASK	0x7f
1694#define QBMAN_FQ_QUERY_NP		0x45
1695#define QBMAN_BP_QUERY			0x32
1696
1697struct qbman_fq_query_desc {
1698	u8 verb;
1699	u8 reserved[3];
1700	__le32 fqid;
1701	u8 reserved2[56];
1702};
1703
1704int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1705			 struct qbman_fq_query_np_rslt *r)
1706{
1707	struct qbman_fq_query_desc *p;
1708	void *resp;
1709
1710	p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1711	if (!p)
1712		return -EBUSY;
1713
1714	/* FQID is a 24 bit value */
1715	p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1716	resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1717	if (!resp) {
1718		pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1719		       fqid);
1720		return -EIO;
1721	}
1722	*r = *(struct qbman_fq_query_np_rslt *)resp;
1723	/* Decode the outcome */
1724	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1725
1726	/* Determine success or failure */
1727	if (r->rslt != QBMAN_MC_RSLT_OK) {
1728		pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1729		       p->fqid, r->rslt);
1730		return -EIO;
1731	}
1732
1733	return 0;
1734}
1735
1736u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1737{
1738	return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1739}
1740
1741u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1742{
1743	return le32_to_cpu(r->byte_cnt);
1744}
1745
1746struct qbman_bp_query_desc {
1747	u8 verb;
1748	u8 reserved;
1749	__le16 bpid;
1750	u8 reserved2[60];
1751};
1752
1753int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1754		   struct qbman_bp_query_rslt *r)
1755{
1756	struct qbman_bp_query_desc *p;
1757	void *resp;
1758
1759	p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1760	if (!p)
1761		return -EBUSY;
1762
1763	p->bpid = cpu_to_le16(bpid);
1764	resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1765	if (!resp) {
1766		pr_err("qbman: Query BPID %d fields failed, no response\n",
1767		       bpid);
1768		return -EIO;
1769	}
1770	*r = *(struct qbman_bp_query_rslt *)resp;
1771	/* Decode the outcome */
1772	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1773
1774	/* Determine success or failure */
1775	if (r->rslt != QBMAN_MC_RSLT_OK) {
1776		pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1777		       bpid, r->rslt);
1778		return -EIO;
1779	}
1780
1781	return 0;
1782}
1783
1784u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1785{
1786	return le32_to_cpu(a->fill);
1787}
1788