1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
4 * of PCI-SCSI IO processors.
5 *
6 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
7 * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
8 *
9 * This driver is derived from the Linux sym53c8xx driver.
10 * Copyright (C) 1998-2000  Gerard Roudier
11 *
12 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
13 * a port of the FreeBSD ncr driver to Linux-1.2.13.
14 *
15 * The original ncr driver has been written for 386bsd and FreeBSD by
16 *         Wolfgang Stanglmeier        <wolf@cologne.de>
17 *         Stefan Esser                <se@mi.Uni-Koeln.de>
18 * Copyright (C) 1994  Wolfgang Stanglmeier
19 *
20 * Other major contributions:
21 *
22 * NVRAM detection and reading.
23 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24 *
25 *-----------------------------------------------------------------------------
26 */
27
28#include <linux/slab.h>
29#include <asm/param.h>		/* for timeouts in units of HZ */
30
31#include "sym_glue.h"
32#include "sym_nvram.h"
33
34#if 0
35#define SYM_DEBUG_GENERIC_SUPPORT
36#endif
37
38/*
39 *  Needed function prototypes.
40 */
41static void sym_int_ma (struct sym_hcb *np);
42static void sym_int_sir(struct sym_hcb *);
43static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
44static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
45static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
46static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
47static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
48static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
49
50/*
51 *  Print a buffer in hexadecimal format with a ".\n" at end.
52 */
53static void sym_printl_hex(u_char *p, int n)
54{
55	while (n-- > 0)
56		printf (" %x", *p++);
57	printf (".\n");
58}
59
60static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
61{
62	sym_print_addr(cp->cmd, "%s: ", label);
63
64	spi_print_msg(msg);
65	printf("\n");
66}
67
68static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
69{
70	struct sym_tcb *tp = &np->target[target];
71	dev_info(&tp->starget->dev, "%s: ", label);
72
73	spi_print_msg(msg);
74	printf("\n");
75}
76
77/*
78 *  Print something that tells about extended errors.
79 */
80void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
81{
82	if (x_status & XE_PARITY_ERR) {
83		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
84	}
85	if (x_status & XE_EXTRA_DATA) {
86		sym_print_addr(cmd, "extraneous data discarded.\n");
87	}
88	if (x_status & XE_BAD_PHASE) {
89		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
90	}
91	if (x_status & XE_SODL_UNRUN) {
92		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
93	}
94	if (x_status & XE_SWIDE_OVRUN) {
95		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
96	}
97}
98
99/*
100 *  Return a string for SCSI BUS mode.
101 */
102static char *sym_scsi_bus_mode(int mode)
103{
104	switch(mode) {
105	case SMODE_HVD:	return "HVD";
106	case SMODE_SE:	return "SE";
107	case SMODE_LVD: return "LVD";
108	}
109	return "??";
110}
111
112/*
113 *  Soft reset the chip.
114 *
115 *  Raising SRST when the chip is running may cause
116 *  problems on dual function chips (see below).
117 *  On the other hand, LVD devices need some delay
118 *  to settle and report actual BUS mode in STEST4.
119 */
120static void sym_chip_reset (struct sym_hcb *np)
121{
122	OUTB(np, nc_istat, SRST);
123	INB(np, nc_mbox1);
124	udelay(10);
125	OUTB(np, nc_istat, 0);
126	INB(np, nc_mbox1);
127	udelay(2000);	/* For BUS MODE to settle */
128}
129
130/*
131 *  Really soft reset the chip.:)
132 *
133 *  Some 896 and 876 chip revisions may hang-up if we set
134 *  the SRST (soft reset) bit at the wrong time when SCRIPTS
135 *  are running.
136 *  So, we need to abort the current operation prior to
137 *  soft resetting the chip.
138 */
139static void sym_soft_reset (struct sym_hcb *np)
140{
141	u_char istat = 0;
142	int i;
143
144	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
145		goto do_chip_reset;
146
147	OUTB(np, nc_istat, CABRT);
148	for (i = 100000 ; i ; --i) {
149		istat = INB(np, nc_istat);
150		if (istat & SIP) {
151			INW(np, nc_sist);
152		}
153		else if (istat & DIP) {
154			if (INB(np, nc_dstat) & ABRT)
155				break;
156		}
157		udelay(5);
158	}
159	OUTB(np, nc_istat, 0);
160	if (!i)
161		printf("%s: unable to abort current chip operation, "
162		       "ISTAT=0x%02x.\n", sym_name(np), istat);
163do_chip_reset:
164	sym_chip_reset(np);
165}
166
167/*
168 *  Start reset process.
169 *
170 *  The interrupt handler will reinitialize the chip.
171 */
172static void sym_start_reset(struct sym_hcb *np)
173{
174	sym_reset_scsi_bus(np, 1);
175}
176
177int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
178{
179	u32 term;
180	int retv = 0;
181
182	sym_soft_reset(np);	/* Soft reset the chip */
183	if (enab_int)
184		OUTW(np, nc_sien, RST);
185	/*
186	 *  Enable Tolerant, reset IRQD if present and
187	 *  properly set IRQ mode, prior to resetting the bus.
188	 */
189	OUTB(np, nc_stest3, TE);
190	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
191	OUTB(np, nc_scntl1, CRST);
192	INB(np, nc_mbox1);
193	udelay(200);
194
195	if (!SYM_SETUP_SCSI_BUS_CHECK)
196		goto out;
197	/*
198	 *  Check for no terminators or SCSI bus shorts to ground.
199	 *  Read SCSI data bus, data parity bits and control signals.
200	 *  We are expecting RESET to be TRUE and other signals to be
201	 *  FALSE.
202	 */
203	term =	INB(np, nc_sstat0);
204	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
205	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
206		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
207		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
208		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
209
210	if (!np->maxwide)
211		term &= 0x3ffff;
212
213	if (term != (2<<7)) {
214		printf("%s: suspicious SCSI data while resetting the BUS.\n",
215			sym_name(np));
216		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
217			"0x%lx, expecting 0x%lx\n",
218			sym_name(np),
219			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
220			(u_long)term, (u_long)(2<<7));
221		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
222			retv = 1;
223	}
224out:
225	OUTB(np, nc_scntl1, 0);
226	return retv;
227}
228
229/*
230 *  Select SCSI clock frequency
231 */
232static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
233{
234	/*
235	 *  If multiplier not present or not selected, leave here.
236	 */
237	if (np->multiplier <= 1) {
238		OUTB(np, nc_scntl3, scntl3);
239		return;
240	}
241
242	if (sym_verbose >= 2)
243		printf ("%s: enabling clock multiplier\n", sym_name(np));
244
245	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
246	/*
247	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
248	 *  Otherwise wait 50 micro-seconds (at least).
249	 */
250	if (np->features & FE_LCKFRQ) {
251		int i = 20;
252		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
253			udelay(20);
254		if (!i)
255			printf("%s: the chip cannot lock the frequency\n",
256				sym_name(np));
257	} else {
258		INB(np, nc_mbox1);
259		udelay(50+10);
260	}
261	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
262	OUTB(np, nc_scntl3, scntl3);
263	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
264	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
265}
266
267
268/*
269 *  Determine the chip's clock frequency.
270 *
271 *  This is essential for the negotiation of the synchronous
272 *  transfer rate.
273 *
274 *  Note: we have to return the correct value.
275 *  THERE IS NO SAFE DEFAULT VALUE.
276 *
277 *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
278 *  53C860 and 53C875 rev. 1 support fast20 transfers but
279 *  do not have a clock doubler and so are provided with a
280 *  80 MHz clock. All other fast20 boards incorporate a doubler
281 *  and so should be delivered with a 40 MHz clock.
282 *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
283 *  clock and provide a clock quadrupler (160 Mhz).
284 */
285
286/*
287 *  calculate SCSI clock frequency (in KHz)
288 */
289static unsigned getfreq (struct sym_hcb *np, int gen)
290{
291	unsigned int ms = 0;
292	unsigned int f;
293
294	/*
295	 * Measure GEN timer delay in order
296	 * to calculate SCSI clock frequency
297	 *
298	 * This code will never execute too
299	 * many loop iterations (if DELAY is
300	 * reasonably correct). It could get
301	 * too low a delay (too high a freq.)
302	 * if the CPU is slow executing the
303	 * loop for some reason (an NMI, for
304	 * example). For this reason we will
305	 * if multiple measurements are to be
306	 * performed trust the higher delay
307	 * (lower frequency returned).
308	 */
309	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
310	INW(np, nc_sist);	/* clear pending scsi interrupt */
311	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
312	INW(np, nc_sist);	/* another one, just to be sure :) */
313	/*
314	 * The C1010-33 core does not report GEN in SIST,
315	 * if this interrupt is masked in SIEN.
316	 * I don't know yet if the C1010-66 behaves the same way.
317	 */
318	if (np->features & FE_C10) {
319		OUTW(np, nc_sien, GEN);
320		OUTB(np, nc_istat1, SIRQD);
321	}
322	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
323	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
324	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
325	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
326		udelay(1000/4);    /* count in 1/4 of ms */
327	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
328	/*
329	 * Undo C1010-33 specific settings.
330	 */
331	if (np->features & FE_C10) {
332		OUTW(np, nc_sien, 0);
333		OUTB(np, nc_istat1, 0);
334	}
335 	/*
336 	 * set prescaler to divide by whatever 0 means
337 	 * 0 ought to choose divide by 2, but appears
338 	 * to set divide by 3.5 mode in my 53c810 ...
339 	 */
340 	OUTB(np, nc_scntl3, 0);
341
342  	/*
343 	 * adjust for prescaler, and convert into KHz
344  	 */
345	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
346
347	/*
348	 * The C1010-33 result is biased by a factor
349	 * of 2/3 compared to earlier chips.
350	 */
351	if (np->features & FE_C10)
352		f = (f * 2) / 3;
353
354	if (sym_verbose >= 2)
355		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
356			sym_name(np), gen, ms/4, f);
357
358	return f;
359}
360
361static unsigned sym_getfreq (struct sym_hcb *np)
362{
363	u_int f1, f2;
364	int gen = 8;
365
366	getfreq (np, gen);	/* throw away first result */
367	f1 = getfreq (np, gen);
368	f2 = getfreq (np, gen);
369	if (f1 > f2) f1 = f2;		/* trust lower result	*/
370	return f1;
371}
372
373/*
374 *  Get/probe chip SCSI clock frequency
375 */
376static void sym_getclock (struct sym_hcb *np, int mult)
377{
378	unsigned char scntl3 = np->sv_scntl3;
379	unsigned char stest1 = np->sv_stest1;
380	unsigned f1;
381
382	np->multiplier = 1;
383	f1 = 40000;
384	/*
385	 *  True with 875/895/896/895A with clock multiplier selected
386	 */
387	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
388		if (sym_verbose >= 2)
389			printf ("%s: clock multiplier found\n", sym_name(np));
390		np->multiplier = mult;
391	}
392
393	/*
394	 *  If multiplier not found or scntl3 not 7,5,3,
395	 *  reset chip and get frequency from general purpose timer.
396	 *  Otherwise trust scntl3 BIOS setting.
397	 */
398	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
399		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
400		f1 = sym_getfreq (np);
401
402		if (sym_verbose)
403			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
404
405		if	(f1 <	45000)		f1 =  40000;
406		else if (f1 <	55000)		f1 =  50000;
407		else				f1 =  80000;
408
409		if (f1 < 80000 && mult > 1) {
410			if (sym_verbose >= 2)
411				printf ("%s: clock multiplier assumed\n",
412					sym_name(np));
413			np->multiplier	= mult;
414		}
415	} else {
416		if	((scntl3 & 7) == 3)	f1 =  40000;
417		else if	((scntl3 & 7) == 5)	f1 =  80000;
418		else 				f1 = 160000;
419
420		f1 /= np->multiplier;
421	}
422
423	/*
424	 *  Compute controller synchronous parameters.
425	 */
426	f1		*= np->multiplier;
427	np->clock_khz	= f1;
428}
429
430/*
431 *  Get/probe PCI clock frequency
432 */
433static int sym_getpciclock (struct sym_hcb *np)
434{
435	int f = 0;
436
437	/*
438	 *  For now, we only need to know about the actual
439	 *  PCI BUS clock frequency for C1010-66 chips.
440	 */
441#if 1
442	if (np->features & FE_66MHZ) {
443#else
444	if (1) {
445#endif
446		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
447		f = sym_getfreq(np);
448		OUTB(np, nc_stest1, 0);
449	}
450	np->pciclk_khz = f;
451
452	return f;
453}
454
455/*
456 *  SYMBIOS chip clock divisor table.
457 *
458 *  Divisors are multiplied by 10,000,000 in order to make
459 *  calculations more simple.
460 */
461#define _5M 5000000
462static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
463
464/*
465 *  Get clock factor and sync divisor for a given
466 *  synchronous factor period.
467 */
468static int
469sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
470{
471	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
472	int	div = np->clock_divn;	/* Number of divisors supported	*/
473	u32	fak;			/* Sync factor in sxfer		*/
474	u32	per;			/* Period in tenths of ns	*/
475	u32	kpc;			/* (per * clk)			*/
476	int	ret;
477
478	/*
479	 *  Compute the synchronous period in tenths of nano-seconds
480	 */
481	if (dt && sfac <= 9)	per = 125;
482	else if	(sfac <= 10)	per = 250;
483	else if	(sfac == 11)	per = 303;
484	else if	(sfac == 12)	per = 500;
485	else			per = 40 * sfac;
486	ret = per;
487
488	kpc = per * clk;
489	if (dt)
490		kpc <<= 1;
491
492	/*
493	 *  For earliest C10 revision 0, we cannot use extra
494	 *  clocks for the setting of the SCSI clocking.
495	 *  Note that this limits the lowest sync data transfer
496	 *  to 5 Mega-transfers per second and may result in
497	 *  using higher clock divisors.
498	 */
499#if 1
500	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
501		/*
502		 *  Look for the lowest clock divisor that allows an
503		 *  output speed not faster than the period.
504		 */
505		while (div > 0) {
506			--div;
507			if (kpc > (div_10M[div] << 2)) {
508				++div;
509				break;
510			}
511		}
512		fak = 0;			/* No extra clocks */
513		if (div == np->clock_divn) {	/* Are we too fast ? */
514			ret = -1;
515		}
516		*divp = div;
517		*fakp = fak;
518		return ret;
519	}
520#endif
521
522	/*
523	 *  Look for the greatest clock divisor that allows an
524	 *  input speed faster than the period.
525	 */
526	while (--div > 0)
527		if (kpc >= (div_10M[div] << 2)) break;
528
529	/*
530	 *  Calculate the lowest clock factor that allows an output
531	 *  speed not faster than the period, and the max output speed.
532	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
533	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
534	 */
535	if (dt) {
536		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
537		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
538	} else {
539		fak = (kpc - 1) / div_10M[div] + 1 - 4;
540		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
541	}
542
543	/*
544	 *  Check against our hardware limits, or bugs :).
545	 */
546	if (fak > 2) {
547		fak = 2;
548		ret = -1;
549	}
550
551	/*
552	 *  Compute and return sync parameters.
553	 */
554	*divp = div;
555	*fakp = fak;
556
557	return ret;
558}
559
560/*
561 *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
562 *  128 transfers. All chips support at least 16 transfers
563 *  bursts. The 825A, 875 and 895 chips support bursts of up
564 *  to 128 transfers and the 895A and 896 support bursts of up
565 *  to 64 transfers. All other chips support up to 16
566 *  transfers bursts.
567 *
568 *  For PCI 32 bit data transfers each transfer is a DWORD.
569 *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
570 *
571 *  We use log base 2 (burst length) as internal code, with
572 *  value 0 meaning "burst disabled".
573 */
574
575/*
576 *  Burst length from burst code.
577 */
578#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
579
580/*
581 *  Burst code from io register bits.
582 */
583#define burst_code(dmode, ctest4, ctest5) \
584	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
585
586/*
587 *  Set initial io register bits from burst code.
588 */
589static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
590{
591	np->rv_ctest4	&= ~0x80;
592	np->rv_dmode	&= ~(0x3 << 6);
593	np->rv_ctest5	&= ~0x4;
594
595	if (!bc) {
596		np->rv_ctest4	|= 0x80;
597	}
598	else {
599		--bc;
600		np->rv_dmode	|= ((bc & 0x3) << 6);
601		np->rv_ctest5	|= (bc & 0x4);
602	}
603}
604
605/*
606 *  Save initial settings of some IO registers.
607 *  Assumed to have been set by BIOS.
608 *  We cannot reset the chip prior to reading the
609 *  IO registers, since informations will be lost.
610 *  Since the SCRIPTS processor may be running, this
611 *  is not safe on paper, but it seems to work quite
612 *  well. :)
613 */
614static void sym_save_initial_setting (struct sym_hcb *np)
615{
616	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
617	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
618	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
619	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
620	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
621	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
622	np->sv_gpcntl	= INB(np, nc_gpcntl);
623	np->sv_stest1	= INB(np, nc_stest1);
624	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
625	np->sv_stest4	= INB(np, nc_stest4);
626	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
627		np->sv_scntl4	= INB(np, nc_scntl4);
628		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
629	}
630	else
631		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
632}
633
634/*
635 *  Set SCSI BUS mode.
636 *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
637 *    through the STEST4 IO register.
638 *  - For previous generation chips (825/825A/875), the user has to tell us
639 *    how to check against HVD, since a 100% safe algorithm is not possible.
640 */
641static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
642{
643	if (np->scsi_mode)
644		return;
645
646	np->scsi_mode = SMODE_SE;
647	if (np->features & (FE_ULTRA2|FE_ULTRA3))
648		np->scsi_mode = (np->sv_stest4 & SMODE);
649	else if	(np->features & FE_DIFF) {
650		if (SYM_SETUP_SCSI_DIFF == 1) {
651			if (np->sv_scntl3) {
652				if (np->sv_stest2 & 0x20)
653					np->scsi_mode = SMODE_HVD;
654			} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
655				if (!(INB(np, nc_gpreg) & 0x08))
656					np->scsi_mode = SMODE_HVD;
657			}
658		} else if (SYM_SETUP_SCSI_DIFF == 2)
659			np->scsi_mode = SMODE_HVD;
660	}
661	if (np->scsi_mode == SMODE_HVD)
662		np->rv_stest2 |= 0x20;
663}
664
665/*
666 *  Prepare io register values used by sym_start_up()
667 *  according to selected and supported features.
668 */
669static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
670{
671	struct sym_data *sym_data = shost_priv(shost);
672	struct pci_dev *pdev = sym_data->pdev;
673	u_char	burst_max;
674	u32	period;
675	int i;
676
677	np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
678
679	/*
680	 *  Guess the frequency of the chip's clock.
681	 */
682	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
683		np->clock_khz = 160000;
684	else if	(np->features & FE_ULTRA)
685		np->clock_khz = 80000;
686	else
687		np->clock_khz = 40000;
688
689	/*
690	 *  Get the clock multiplier factor.
691 	 */
692	if	(np->features & FE_QUAD)
693		np->multiplier	= 4;
694	else if	(np->features & FE_DBLR)
695		np->multiplier	= 2;
696	else
697		np->multiplier	= 1;
698
699	/*
700	 *  Measure SCSI clock frequency for chips
701	 *  it may vary from assumed one.
702	 */
703	if (np->features & FE_VARCLK)
704		sym_getclock(np, np->multiplier);
705
706	/*
707	 * Divisor to be used for async (timer pre-scaler).
708	 */
709	i = np->clock_divn - 1;
710	while (--i >= 0) {
711		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
712			++i;
713			break;
714		}
715	}
716	np->rv_scntl3 = i+1;
717
718	/*
719	 * The C1010 uses hardwired divisors for async.
720	 * So, we just throw away, the async. divisor.:-)
721	 */
722	if (np->features & FE_C10)
723		np->rv_scntl3 = 0;
724
725	/*
726	 * Minimum synchronous period factor supported by the chip.
727	 * Btw, 'period' is in tenths of nanoseconds.
728	 */
729	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
730
731	if	(period <= 250)		np->minsync = 10;
732	else if	(period <= 303)		np->minsync = 11;
733	else if	(period <= 500)		np->minsync = 12;
734	else				np->minsync = (period + 40 - 1) / 40;
735
736	/*
737	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
738	 */
739	if	(np->minsync < 25 &&
740		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
741		np->minsync = 25;
742	else if	(np->minsync < 12 &&
743		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
744		np->minsync = 12;
745
746	/*
747	 * Maximum synchronous period factor supported by the chip.
748	 */
749	period = div64_ul(11 * div_10M[np->clock_divn - 1], 4 * np->clock_khz);
750	np->maxsync = period > 2540 ? 254 : period / 10;
751
752	/*
753	 * If chip is a C1010, guess the sync limits in DT mode.
754	 */
755	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
756		if (np->clock_khz == 160000) {
757			np->minsync_dt = 9;
758			np->maxsync_dt = 50;
759			np->maxoffs_dt = nvram->type ? 62 : 31;
760		}
761	}
762
763	/*
764	 *  64 bit addressing  (895A/896/1010) ?
765	 */
766	if (np->features & FE_DAC) {
767		if (!use_dac(np))
768			np->rv_ccntl1 |= (DDAC);
769		else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
770			np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
771		else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
772			np->rv_ccntl1 |= (0 | EXTIBMV);
773	}
774
775	/*
776	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
777  	 */
778	if (np->features & FE_NOPM)
779		np->rv_ccntl0	|= (ENPMJ);
780
781 	/*
782	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
783	 *  In dual channel mode, contention occurs if internal cycles
784	 *  are used. Disable internal cycles.
785	 */
786	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
787	    pdev->revision < 0x1)
788		np->rv_ccntl0	|=  DILS;
789
790	/*
791	 *  Select burst length (dwords)
792	 */
793	burst_max	= SYM_SETUP_BURST_ORDER;
794	if (burst_max == 255)
795		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
796				       np->sv_ctest5);
797	if (burst_max > 7)
798		burst_max = 7;
799	if (burst_max > np->maxburst)
800		burst_max = np->maxburst;
801
802	/*
803	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
804	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
805	 *  based transactions on LOAD/STORE instructions. So we have
806	 *  to prevent these chips from using such PCI transactions in
807	 *  this driver. The generic ncr driver that does not use
808	 *  LOAD/STORE instructions does not need this work-around.
809	 */
810	if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
811	     pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
812	    (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
813	     pdev->revision <= 0x1))
814		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
815
816	/*
817	 *  Select all supported special features.
818	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
819	 *  does not help, but burst op fetch (BOF) does.
820	 *  Disabling PFEN makes sure BOF will be used.
821	 */
822	if (np->features & FE_ERL)
823		np->rv_dmode	|= ERL;		/* Enable Read Line */
824	if (np->features & FE_BOF)
825		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
826	if (np->features & FE_ERMP)
827		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
828#if 1
829	if ((np->features & FE_PFEN) && !np->ram_ba)
830#else
831	if (np->features & FE_PFEN)
832#endif
833		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
834	if (np->features & FE_CLSE)
835		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
836	if (np->features & FE_WRIE)
837		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
838	if (np->features & FE_DFS)
839		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
840
841	/*
842	 *  Select some other
843	 */
844	np->rv_ctest4	|= MPEE; /* Master parity checking */
845	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
846
847	/*
848	 *  Get parity checking, host ID and verbose mode from NVRAM
849	 */
850	np->myaddr = 255;
851	np->scsi_mode = 0;
852	sym_nvram_setup_host(shost, np, nvram);
853
854	/*
855	 *  Get SCSI addr of host adapter (set by bios?).
856	 */
857	if (np->myaddr == 255) {
858		np->myaddr = INB(np, nc_scid) & 0x07;
859		if (!np->myaddr)
860			np->myaddr = SYM_SETUP_HOST_ID;
861	}
862
863	/*
864	 *  Prepare initial io register bits for burst length
865	 */
866	sym_init_burst(np, burst_max);
867
868	sym_set_bus_mode(np, nvram);
869
870	/*
871	 *  Set LED support from SCRIPTS.
872	 *  Ignore this feature for boards known to use a
873	 *  specific GPIO wiring and for the 895A, 896
874	 *  and 1010 that drive the LED directly.
875	 */
876	if ((SYM_SETUP_SCSI_LED ||
877	     (nvram->type == SYM_SYMBIOS_NVRAM ||
878	      (nvram->type == SYM_TEKRAM_NVRAM &&
879	       pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
880	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
881		np->features |= FE_LED0;
882
883	/*
884	 *  Set irq mode.
885	 */
886	switch(SYM_SETUP_IRQ_MODE & 3) {
887	case 2:
888		np->rv_dcntl	|= IRQM;
889		break;
890	case 1:
891		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
892		break;
893	default:
894		break;
895	}
896
897	/*
898	 *  Configure targets according to driver setup.
899	 *  If NVRAM present get targets setup from NVRAM.
900	 */
901	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
902		struct sym_tcb *tp = &np->target[i];
903
904		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
905		tp->usrtags = SYM_SETUP_MAX_TAG;
906		tp->usr_width = np->maxwide;
907		tp->usr_period = 9;
908
909		sym_nvram_setup_target(tp, i, nvram);
910
911		if (!tp->usrtags)
912			tp->usrflags &= ~SYM_TAGS_ENABLED;
913	}
914
915	/*
916	 *  Let user know about the settings.
917	 */
918	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
919		sym_nvram_type(nvram), np->myaddr,
920		(np->features & FE_ULTRA3) ? 80 :
921		(np->features & FE_ULTRA2) ? 40 :
922		(np->features & FE_ULTRA)  ? 20 : 10,
923		sym_scsi_bus_mode(np->scsi_mode),
924		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
925	/*
926	 *  Tell him more on demand.
927	 */
928	if (sym_verbose) {
929		printf("%s: %s IRQ line driver%s\n",
930			sym_name(np),
931			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
932			np->ram_ba ? ", using on-chip SRAM" : "");
933		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
934		if (np->features & FE_NOPM)
935			printf("%s: handling phase mismatch from SCRIPTS.\n",
936			       sym_name(np));
937	}
938	/*
939	 *  And still more.
940	 */
941	if (sym_verbose >= 2) {
942		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
943			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
944			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
945			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
946
947		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
948			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
949			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
950			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
951	}
952
953	return 0;
954}
955
956/*
957 *  Test the pci bus snoop logic :-(
958 *
959 *  Has to be called with interrupts disabled.
960 */
961#ifdef CONFIG_SCSI_SYM53C8XX_MMIO
962static int sym_regtest(struct sym_hcb *np)
963{
964	register volatile u32 data;
965	/*
966	 *  chip registers may NOT be cached.
967	 *  write 0xffffffff to a read only register area,
968	 *  and try to read it back.
969	 */
970	data = 0xffffffff;
971	OUTL(np, nc_dstat, data);
972	data = INL(np, nc_dstat);
973#if 1
974	if (data == 0xffffffff) {
975#else
976	if ((data & 0xe2f0fffd) != 0x02000080) {
977#endif
978		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
979			(unsigned) data);
980		return 0x10;
981	}
982	return 0;
983}
984#else
985static inline int sym_regtest(struct sym_hcb *np)
986{
987	return 0;
988}
989#endif
990
991static int sym_snooptest(struct sym_hcb *np)
992{
993	u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
994	int i, err;
995
996	err = sym_regtest(np);
997	if (err)
998		return err;
999restart_test:
1000	/*
1001	 *  Enable Master Parity Checking as we intend
1002	 *  to enable it for normal operations.
1003	 */
1004	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1005	/*
1006	 *  init
1007	 */
1008	pc  = SCRIPTZ_BA(np, snooptest);
1009	host_wr = 1;
1010	sym_wr  = 2;
1011	/*
1012	 *  Set memory and register.
1013	 */
1014	np->scratch = cpu_to_scr(host_wr);
1015	OUTL(np, nc_temp, sym_wr);
1016	/*
1017	 *  Start script (exchange values)
1018	 */
1019	OUTL(np, nc_dsa, np->hcb_ba);
1020	OUTL_DSP(np, pc);
1021	/*
1022	 *  Wait 'til done (with timeout)
1023	 */
1024	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1025		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1026			break;
1027	if (i>=SYM_SNOOP_TIMEOUT) {
1028		printf ("CACHE TEST FAILED: timeout.\n");
1029		return (0x20);
1030	}
1031	/*
1032	 *  Check for fatal DMA errors.
1033	 */
1034	dstat = INB(np, nc_dstat);
1035#if 1	/* Band aiding for broken hardwares that fail PCI parity */
1036	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1037		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1038			"DISABLING MASTER DATA PARITY CHECKING.\n",
1039			sym_name(np));
1040		np->rv_ctest4 &= ~MPEE;
1041		goto restart_test;
1042	}
1043#endif
1044	if (dstat & (MDPE|BF|IID)) {
1045		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1046		return (0x80);
1047	}
1048	/*
1049	 *  Save termination position.
1050	 */
1051	pc = INL(np, nc_dsp);
1052	/*
1053	 *  Read memory and register.
1054	 */
1055	host_rd = scr_to_cpu(np->scratch);
1056	sym_rd  = INL(np, nc_scratcha);
1057	sym_bk  = INL(np, nc_temp);
1058	/*
1059	 *  Check termination position.
1060	 */
1061	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1062		printf ("CACHE TEST FAILED: script execution failed.\n");
1063		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1064			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1065			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1066		return (0x40);
1067	}
1068	/*
1069	 *  Show results.
1070	 */
1071	if (host_wr != sym_rd) {
1072		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1073			(int) host_wr, (int) sym_rd);
1074		err |= 1;
1075	}
1076	if (host_rd != sym_wr) {
1077		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1078			(int) sym_wr, (int) host_rd);
1079		err |= 2;
1080	}
1081	if (sym_bk != sym_wr) {
1082		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1083			(int) sym_wr, (int) sym_bk);
1084		err |= 4;
1085	}
1086
1087	return err;
1088}
1089
1090/*
1091 *  log message for real hard errors
1092 *
1093 *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1094 *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1095 *
1096 *  exception register:
1097 *  	ds:	dstat
1098 *  	si:	sist
1099 *
1100 *  SCSI bus lines:
1101 *  	so:	control lines as driven by chip.
1102 *  	si:	control lines as seen by chip.
1103 *  	sd:	scsi data lines as seen by chip.
1104 *
1105 *  wide/fastmode:
1106 *  	sx:	sxfer  (see the manual)
1107 *  	s3:	scntl3 (see the manual)
1108 *  	s4:	scntl4 (see the manual)
1109 *
1110 *  current script command:
1111 *  	dsp:	script address (relative to start of script).
1112 *  	dbc:	first word of script command.
1113 *
1114 *  First 24 register of the chip:
1115 *  	r0..rf
1116 */
1117static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1118{
1119	struct sym_hcb *np = sym_get_hcb(shost);
1120	u32	dsp;
1121	int	script_ofs;
1122	int	script_size;
1123	char	*script_name;
1124	u_char	*script_base;
1125	int	i;
1126
1127	dsp	= INL(np, nc_dsp);
1128
1129	if	(dsp > np->scripta_ba &&
1130		 dsp <= np->scripta_ba + np->scripta_sz) {
1131		script_ofs	= dsp - np->scripta_ba;
1132		script_size	= np->scripta_sz;
1133		script_base	= (u_char *) np->scripta0;
1134		script_name	= "scripta";
1135	}
1136	else if (np->scriptb_ba < dsp &&
1137		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1138		script_ofs	= dsp - np->scriptb_ba;
1139		script_size	= np->scriptb_sz;
1140		script_base	= (u_char *) np->scriptb0;
1141		script_name	= "scriptb";
1142	} else {
1143		script_ofs	= dsp;
1144		script_size	= 0;
1145		script_base	= NULL;
1146		script_name	= "mem";
1147	}
1148
1149	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1150		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1151		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1152		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1153		(unsigned)INB(np, nc_scntl3),
1154		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1155		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1156
1157	if (((script_ofs & 3) == 0) &&
1158	    (unsigned)script_ofs < script_size) {
1159		printf ("%s: script cmd = %08x\n", sym_name(np),
1160			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1161	}
1162
1163	printf("%s: regdump:", sym_name(np));
1164	for (i = 0; i < 24; i++)
1165		printf(" %02x", (unsigned)INB_OFF(np, i));
1166	printf(".\n");
1167
1168	/*
1169	 *  PCI BUS error.
1170	 */
1171	if (dstat & (MDPE|BF))
1172		sym_log_bus_error(shost);
1173}
1174
1175void sym_dump_registers(struct Scsi_Host *shost)
1176{
1177	struct sym_hcb *np = sym_get_hcb(shost);
1178	u_short sist;
1179	u_char dstat;
1180
1181	sist = INW(np, nc_sist);
1182	dstat = INB(np, nc_dstat);
1183	sym_log_hard_error(shost, sist, dstat);
1184}
1185
1186static struct sym_chip sym_dev_table[] = {
1187 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1188 FE_ERL}
1189 ,
1190#ifdef SYM_DEBUG_GENERIC_SUPPORT
1191 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1192 FE_BOF}
1193 ,
1194#else
1195 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1196 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1197 ,
1198#endif
1199 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1200 FE_BOF|FE_ERL}
1201 ,
1202 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1203 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1204 ,
1205 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1206 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1207 ,
1208 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1209 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1210 ,
1211 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1212 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1213 FE_RAM|FE_DIFF|FE_VARCLK}
1214 ,
1215 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1216 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1217 FE_RAM|FE_DIFF|FE_VARCLK}
1218 ,
1219 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1220 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1221 FE_RAM|FE_DIFF|FE_VARCLK}
1222 ,
1223 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1224 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1225 FE_RAM|FE_DIFF|FE_VARCLK}
1226 ,
1227#ifdef SYM_DEBUG_GENERIC_SUPPORT
1228 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1229 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1230 FE_RAM|FE_LCKFRQ}
1231 ,
1232#else
1233 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1234 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1235 FE_RAM|FE_LCKFRQ}
1236 ,
1237#endif
1238 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1239 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1240 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1241 ,
1242 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1243 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1244 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1245 ,
1246 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1247 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1248 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1249 ,
1250 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1251 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1252 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1253 FE_C10}
1254 ,
1255 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1256 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1257 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1258 FE_C10|FE_U3EN}
1259 ,
1260 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1261 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1262 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1263 FE_C10|FE_U3EN}
1264 ,
1265 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1266 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1267 FE_RAM|FE_IO256|FE_LEDC}
1268};
1269
1270#define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1271
1272/*
1273 *  Look up the chip table.
1274 *
1275 *  Return a pointer to the chip entry if found,
1276 *  zero otherwise.
1277 */
1278struct sym_chip *
1279sym_lookup_chip_table (u_short device_id, u_char revision)
1280{
1281	struct	sym_chip *chip;
1282	int	i;
1283
1284	for (i = 0; i < sym_num_devs; i++) {
1285		chip = &sym_dev_table[i];
1286		if (device_id != chip->device_id)
1287			continue;
1288		if (revision > chip->revision_id)
1289			continue;
1290		return chip;
1291	}
1292
1293	return NULL;
1294}
1295
1296#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1297/*
1298 *  Lookup the 64 bit DMA segments map.
1299 *  This is only used if the direct mapping
1300 *  has been unsuccessful.
1301 */
1302int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1303{
1304	int i;
1305
1306	if (!use_dac(np))
1307		goto weird;
1308
1309	/* Look up existing mappings */
1310	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1311		if (h == np->dmap_bah[i])
1312			return i;
1313	}
1314	/* If direct mapping is free, get it */
1315	if (!np->dmap_bah[s])
1316		goto new;
1317	/* Collision -> lookup free mappings */
1318	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1319		if (!np->dmap_bah[s])
1320			goto new;
1321	}
1322weird:
1323	panic("sym: ran out of 64 bit DMA segment registers");
1324	return -1;
1325new:
1326	np->dmap_bah[s] = h;
1327	np->dmap_dirty = 1;
1328	return s;
1329}
1330
1331/*
1332 *  Update IO registers scratch C..R so they will be
1333 *  in sync. with queued CCB expectations.
1334 */
1335static void sym_update_dmap_regs(struct sym_hcb *np)
1336{
1337	int o, i;
1338
1339	if (!np->dmap_dirty)
1340		return;
1341	o = offsetof(struct sym_reg, nc_scrx[0]);
1342	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1343		OUTL_OFF(np, o, np->dmap_bah[i]);
1344		o += 4;
1345	}
1346	np->dmap_dirty = 0;
1347}
1348#endif
1349
1350/* Enforce all the fiddly SPI rules and the chip limitations */
1351static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1352		struct sym_trans *goal)
1353{
1354	if (!spi_support_wide(starget))
1355		goal->width = 0;
1356
1357	if (!spi_support_sync(starget)) {
1358		goal->iu = 0;
1359		goal->dt = 0;
1360		goal->qas = 0;
1361		goal->offset = 0;
1362		return;
1363	}
1364
1365	if (spi_support_dt(starget)) {
1366		if (spi_support_dt_only(starget))
1367			goal->dt = 1;
1368
1369		if (goal->offset == 0)
1370			goal->dt = 0;
1371	} else {
1372		goal->dt = 0;
1373	}
1374
1375	/* Some targets fail to properly negotiate DT in SE mode */
1376	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1377		goal->dt = 0;
1378
1379	if (goal->dt) {
1380		/* all DT transfers must be wide */
1381		goal->width = 1;
1382		if (goal->offset > np->maxoffs_dt)
1383			goal->offset = np->maxoffs_dt;
1384		if (goal->period < np->minsync_dt)
1385			goal->period = np->minsync_dt;
1386		if (goal->period > np->maxsync_dt)
1387			goal->period = np->maxsync_dt;
1388	} else {
1389		goal->iu = goal->qas = 0;
1390		if (goal->offset > np->maxoffs)
1391			goal->offset = np->maxoffs;
1392		if (goal->period < np->minsync)
1393			goal->period = np->minsync;
1394		if (goal->period > np->maxsync)
1395			goal->period = np->maxsync;
1396	}
1397}
1398
1399/*
1400 *  Prepare the next negotiation message if needed.
1401 *
1402 *  Fill in the part of message buffer that contains the
1403 *  negotiation and the nego_status field of the CCB.
1404 *  Returns the size of the message in bytes.
1405 */
1406static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1407{
1408	struct sym_tcb *tp = &np->target[cp->target];
1409	struct scsi_target *starget = tp->starget;
1410	struct sym_trans *goal = &tp->tgoal;
1411	int msglen = 0;
1412	int nego;
1413
1414	sym_check_goals(np, starget, goal);
1415
1416	/*
1417	 * Many devices implement PPR in a buggy way, so only use it if we
1418	 * really want to.
1419	 */
1420	if (goal->renego == NS_PPR || (goal->offset &&
1421	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1422		nego = NS_PPR;
1423	} else if (goal->renego == NS_WIDE || goal->width) {
1424		nego = NS_WIDE;
1425	} else if (goal->renego == NS_SYNC || goal->offset) {
1426		nego = NS_SYNC;
1427	} else {
1428		goal->check_nego = 0;
1429		nego = 0;
1430	}
1431
1432	switch (nego) {
1433	case NS_SYNC:
1434		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1435				goal->offset);
1436		break;
1437	case NS_WIDE:
1438		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1439		break;
1440	case NS_PPR:
1441		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1442				goal->offset, goal->width,
1443				(goal->iu ? PPR_OPT_IU : 0) |
1444					(goal->dt ? PPR_OPT_DT : 0) |
1445					(goal->qas ? PPR_OPT_QAS : 0));
1446		break;
1447	}
1448
1449	cp->nego_status = nego;
1450
1451	if (nego) {
1452		tp->nego_cp = cp; /* Keep track a nego will be performed */
1453		if (DEBUG_FLAGS & DEBUG_NEGO) {
1454			sym_print_nego_msg(np, cp->target,
1455					  nego == NS_SYNC ? "sync msgout" :
1456					  nego == NS_WIDE ? "wide msgout" :
1457					  "ppr msgout", msgptr);
1458		}
1459	}
1460
1461	return msglen;
1462}
1463
1464/*
1465 *  Insert a job into the start queue.
1466 */
1467void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1468{
1469	u_short	qidx;
1470
1471#ifdef SYM_CONF_IARB_SUPPORT
1472	/*
1473	 *  If the previously queued CCB is not yet done,
1474	 *  set the IARB hint. The SCRIPTS will go with IARB
1475	 *  for this job when starting the previous one.
1476	 *  We leave devices a chance to win arbitration by
1477	 *  not using more than 'iarb_max' consecutive
1478	 *  immediate arbitrations.
1479	 */
1480	if (np->last_cp && np->iarb_count < np->iarb_max) {
1481		np->last_cp->host_flags |= HF_HINT_IARB;
1482		++np->iarb_count;
1483	}
1484	else
1485		np->iarb_count = 0;
1486	np->last_cp = cp;
1487#endif
1488
1489#if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1490	/*
1491	 *  Make SCRIPTS aware of the 64 bit DMA
1492	 *  segment registers not being up-to-date.
1493	 */
1494	if (np->dmap_dirty)
1495		cp->host_xflags |= HX_DMAP_DIRTY;
1496#endif
1497
1498	/*
1499	 *  Insert first the idle task and then our job.
1500	 *  The MBs should ensure proper ordering.
1501	 */
1502	qidx = np->squeueput + 2;
1503	if (qidx >= MAX_QUEUE*2) qidx = 0;
1504
1505	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1506	MEMORY_WRITE_BARRIER();
1507	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1508
1509	np->squeueput = qidx;
1510
1511	if (DEBUG_FLAGS & DEBUG_QUEUE)
1512		scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1513							np->squeueput);
1514
1515	/*
1516	 *  Script processor may be waiting for reselect.
1517	 *  Wake it up.
1518	 */
1519	MEMORY_WRITE_BARRIER();
1520	OUTB(np, nc_istat, SIGP|np->istat_sem);
1521}
1522
1523#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1524/*
1525 *  Start next ready-to-start CCBs.
1526 */
1527void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1528{
1529	SYM_QUEHEAD *qp;
1530	struct sym_ccb *cp;
1531
1532	/*
1533	 *  Paranoia, as usual. :-)
1534	 */
1535	assert(!lp->started_tags || !lp->started_no_tag);
1536
1537	/*
1538	 *  Try to start as many commands as asked by caller.
1539	 *  Prevent from having both tagged and untagged
1540	 *  commands queued to the device at the same time.
1541	 */
1542	while (maxn--) {
1543		qp = sym_remque_head(&lp->waiting_ccbq);
1544		if (!qp)
1545			break;
1546		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1547		if (cp->tag != NO_TAG) {
1548			if (lp->started_no_tag ||
1549			    lp->started_tags >= lp->started_max) {
1550				sym_insque_head(qp, &lp->waiting_ccbq);
1551				break;
1552			}
1553			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1554			lp->head.resel_sa =
1555				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1556			++lp->started_tags;
1557		} else {
1558			if (lp->started_no_tag || lp->started_tags) {
1559				sym_insque_head(qp, &lp->waiting_ccbq);
1560				break;
1561			}
1562			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1563			lp->head.resel_sa =
1564			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1565			++lp->started_no_tag;
1566		}
1567		cp->started = 1;
1568		sym_insque_tail(qp, &lp->started_ccbq);
1569		sym_put_start_queue(np, cp);
1570	}
1571}
1572#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1573
1574/*
1575 *  The chip may have completed jobs. Look at the DONE QUEUE.
1576 *
1577 *  On paper, memory read barriers may be needed here to
1578 *  prevent out of order LOADs by the CPU from having
1579 *  prefetched stale data prior to DMA having occurred.
1580 */
1581static int sym_wakeup_done (struct sym_hcb *np)
1582{
1583	struct sym_ccb *cp;
1584	int i, n;
1585	u32 dsa;
1586
1587	n = 0;
1588	i = np->dqueueget;
1589
1590	/* MEMORY_READ_BARRIER(); */
1591	while (1) {
1592		dsa = scr_to_cpu(np->dqueue[i]);
1593		if (!dsa)
1594			break;
1595		np->dqueue[i] = 0;
1596		if ((i = i+2) >= MAX_QUEUE*2)
1597			i = 0;
1598
1599		cp = sym_ccb_from_dsa(np, dsa);
1600		if (cp) {
1601			MEMORY_READ_BARRIER();
1602			sym_complete_ok (np, cp);
1603			++n;
1604		}
1605		else
1606			printf ("%s: bad DSA (%x) in done queue.\n",
1607				sym_name(np), (u_int) dsa);
1608	}
1609	np->dqueueget = i;
1610
1611	return n;
1612}
1613
1614/*
1615 *  Complete all CCBs queued to the COMP queue.
1616 *
1617 *  These CCBs are assumed:
1618 *  - Not to be referenced either by devices or
1619 *    SCRIPTS-related queues and datas.
1620 *  - To have to be completed with an error condition
1621 *    or requeued.
1622 *
1623 *  The device queue freeze count is incremented
1624 *  for each CCB that does not prevent this.
1625 *  This function is called when all CCBs involved
1626 *  in error handling/recovery have been reaped.
1627 */
1628static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1629{
1630	SYM_QUEHEAD *qp;
1631	struct sym_ccb *cp;
1632
1633	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1634		struct scsi_cmnd *cmd;
1635		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1636		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1637		/* Leave quiet CCBs waiting for resources */
1638		if (cp->host_status == HS_WAIT)
1639			continue;
1640		cmd = cp->cmd;
1641		if (cam_status)
1642			sym_set_cam_status(cmd, cam_status);
1643#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1644		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1645			struct sym_tcb *tp = &np->target[cp->target];
1646			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1647			if (lp) {
1648				sym_remque(&cp->link2_ccbq);
1649				sym_insque_tail(&cp->link2_ccbq,
1650				                &lp->waiting_ccbq);
1651				if (cp->started) {
1652					if (cp->tag != NO_TAG)
1653						--lp->started_tags;
1654					else
1655						--lp->started_no_tag;
1656				}
1657			}
1658			cp->started = 0;
1659			continue;
1660		}
1661#endif
1662		sym_free_ccb(np, cp);
1663		sym_xpt_done(np, cmd);
1664	}
1665}
1666
1667/*
1668 *  Complete all active CCBs with error.
1669 *  Used on CHIP/SCSI RESET.
1670 */
1671static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1672{
1673	/*
1674	 *  Move all active CCBs to the COMP queue
1675	 *  and flush this queue.
1676	 */
1677	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1678	sym_que_init(&np->busy_ccbq);
1679	sym_flush_comp_queue(np, cam_status);
1680}
1681
1682/*
1683 *  Start chip.
1684 *
1685 *  'reason' means:
1686 *     0: initialisation.
1687 *     1: SCSI BUS RESET delivered or received.
1688 *     2: SCSI BUS MODE changed.
1689 */
1690void sym_start_up(struct Scsi_Host *shost, int reason)
1691{
1692	struct sym_data *sym_data = shost_priv(shost);
1693	struct pci_dev *pdev = sym_data->pdev;
1694	struct sym_hcb *np = sym_data->ncb;
1695 	int	i;
1696	u32	phys;
1697
1698 	/*
1699	 *  Reset chip if asked, otherwise just clear fifos.
1700 	 */
1701	if (reason == 1)
1702		sym_soft_reset(np);
1703	else {
1704		OUTB(np, nc_stest3, TE|CSF);
1705		OUTONB(np, nc_ctest3, CLF);
1706	}
1707
1708	/*
1709	 *  Clear Start Queue
1710	 */
1711	phys = np->squeue_ba;
1712	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1713		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1714		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1715	}
1716	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1717
1718	/*
1719	 *  Start at first entry.
1720	 */
1721	np->squeueput = 0;
1722
1723	/*
1724	 *  Clear Done Queue
1725	 */
1726	phys = np->dqueue_ba;
1727	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1728		np->dqueue[i]   = 0;
1729		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1730	}
1731	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1732
1733	/*
1734	 *  Start at first entry.
1735	 */
1736	np->dqueueget = 0;
1737
1738	/*
1739	 *  Install patches in scripts.
1740	 *  This also let point to first position the start
1741	 *  and done queue pointers used from SCRIPTS.
1742	 */
1743	np->fw_patch(shost);
1744
1745	/*
1746	 *  Wakeup all pending jobs.
1747	 */
1748	sym_flush_busy_queue(np, DID_RESET);
1749
1750	/*
1751	 *  Init chip.
1752	 */
1753	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1754	INB(np, nc_mbox1);
1755	udelay(2000); /* The 895 needs time for the bus mode to settle */
1756
1757	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1758					/*  full arb., ena parity, par->ATN  */
1759	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1760
1761	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1762
1763	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1764	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1765	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1766	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1767	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1768
1769	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1770	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1771	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1772
1773	/* Extended Sreq/Sack filtering not supported on the C10 */
1774	if (np->features & FE_C10)
1775		OUTB(np, nc_stest2, np->rv_stest2);
1776	else
1777		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1778
1779	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1780	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1781
1782	/*
1783	 *  For now, disable AIP generation on C1010-66.
1784	 */
1785	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1786		OUTB(np, nc_aipcntl1, DISAIP);
1787
1788	/*
1789	 *  C10101 rev. 0 errata.
1790	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1791	 *  STEST1 register to disable SGE. We probably should do
1792	 *  that from SCRIPTS for each selection/reselection, but
1793	 *  I just don't want. :)
1794	 */
1795	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1796	    pdev->revision < 1)
1797		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1798
1799	/*
1800	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1801	 *  Disable overlapped arbitration for some dual function devices,
1802	 *  regardless revision id (kind of post-chip-design feature. ;-))
1803	 */
1804	if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1805		OUTB(np, nc_ctest0, (1<<5));
1806	else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1807		np->rv_ccntl0 |= DPR;
1808
1809	/*
1810	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1811	 *  and/or hardware phase mismatch, since only such chips
1812	 *  seem to support those IO registers.
1813	 */
1814	if (np->features & (FE_DAC|FE_NOPM)) {
1815		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1816		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1817	}
1818
1819#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1820	/*
1821	 *  Set up scratch C and DRS IO registers to map the 32 bit
1822	 *  DMA address range our data structures are located in.
1823	 */
1824	if (use_dac(np)) {
1825		np->dmap_bah[0] = 0;	/* ??? */
1826		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1827		OUTL(np, nc_drs, np->dmap_bah[0]);
1828	}
1829#endif
1830
1831	/*
1832	 *  If phase mismatch handled by scripts (895A/896/1010),
1833	 *  set PM jump addresses.
1834	 */
1835	if (np->features & FE_NOPM) {
1836		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1837		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1838	}
1839
1840	/*
1841	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1842	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1843	 */
1844	if (np->features & FE_LED0)
1845		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1846	else if (np->features & FE_LEDC)
1847		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1848
1849	/*
1850	 *      enable ints
1851	 */
1852	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1853	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1854
1855	/*
1856	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1857	 *  Try to eat the spurious SBMC interrupt that may occur when
1858	 *  we reset the chip but not the SCSI BUS (at initialization).
1859	 */
1860	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1861		OUTONW(np, nc_sien, SBMC);
1862		if (reason == 0) {
1863			INB(np, nc_mbox1);
1864			mdelay(100);
1865			INW(np, nc_sist);
1866		}
1867		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1868	}
1869
1870	/*
1871	 *  Fill in target structure.
1872	 *  Reinitialize usrsync.
1873	 *  Reinitialize usrwide.
1874	 *  Prepare sync negotiation according to actual SCSI bus mode.
1875	 */
1876	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1877		struct sym_tcb *tp = &np->target[i];
1878
1879		tp->to_reset  = 0;
1880		tp->head.sval = 0;
1881		tp->head.wval = np->rv_scntl3;
1882		tp->head.uval = 0;
1883		if (tp->lun0p)
1884			tp->lun0p->to_clear = 0;
1885		if (tp->lunmp) {
1886			int ln;
1887
1888			for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1889				if (tp->lunmp[ln])
1890					tp->lunmp[ln]->to_clear = 0;
1891		}
1892	}
1893
1894	/*
1895	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1896	 *  and start script processor.
1897	 *  We do the download preferently from the CPU.
1898	 *  For platforms that may not support PCI memory mapping,
1899	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1900	 */
1901	phys = SCRIPTA_BA(np, init);
1902	if (np->ram_ba) {
1903		if (sym_verbose >= 2)
1904			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1905		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1906		if (np->features & FE_RAM8K) {
1907			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1908			phys = scr_to_cpu(np->scr_ram_seg);
1909			OUTL(np, nc_mmws, phys);
1910			OUTL(np, nc_mmrs, phys);
1911			OUTL(np, nc_sfs,  phys);
1912			phys = SCRIPTB_BA(np, start64);
1913		}
1914	}
1915
1916	np->istat_sem = 0;
1917
1918	OUTL(np, nc_dsa, np->hcb_ba);
1919	OUTL_DSP(np, phys);
1920
1921	/*
1922	 *  Notify the XPT about the RESET condition.
1923	 */
1924	if (reason != 0)
1925		sym_xpt_async_bus_reset(np);
1926}
1927
1928/*
1929 *  Switch trans mode for current job and its target.
1930 */
1931static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1932			 u_char per, u_char wide, u_char div, u_char fak)
1933{
1934	SYM_QUEHEAD *qp;
1935	u_char sval, wval, uval;
1936	struct sym_tcb *tp = &np->target[target];
1937
1938	assert(target == (INB(np, nc_sdid) & 0x0f));
1939
1940	sval = tp->head.sval;
1941	wval = tp->head.wval;
1942	uval = tp->head.uval;
1943
1944#if 0
1945	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1946		sval, wval, uval, np->rv_scntl3);
1947#endif
1948	/*
1949	 *  Set the offset.
1950	 */
1951	if (!(np->features & FE_C10))
1952		sval = (sval & ~0x1f) | ofs;
1953	else
1954		sval = (sval & ~0x3f) | ofs;
1955
1956	/*
1957	 *  Set the sync divisor and extra clock factor.
1958	 */
1959	if (ofs != 0) {
1960		wval = (wval & ~0x70) | ((div+1) << 4);
1961		if (!(np->features & FE_C10))
1962			sval = (sval & ~0xe0) | (fak << 5);
1963		else {
1964			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1965			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1966			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1967		}
1968	}
1969
1970	/*
1971	 *  Set the bus width.
1972	 */
1973	wval = wval & ~EWS;
1974	if (wide != 0)
1975		wval |= EWS;
1976
1977	/*
1978	 *  Set misc. ultra enable bits.
1979	 */
1980	if (np->features & FE_C10) {
1981		uval = uval & ~(U3EN|AIPCKEN);
1982		if (opts)	{
1983			assert(np->features & FE_U3EN);
1984			uval |= U3EN;
1985		}
1986	} else {
1987		wval = wval & ~ULTRA;
1988		if (per <= 12)	wval |= ULTRA;
1989	}
1990
1991	/*
1992	 *   Stop there if sync parameters are unchanged.
1993	 */
1994	if (tp->head.sval == sval &&
1995	    tp->head.wval == wval &&
1996	    tp->head.uval == uval)
1997		return;
1998	tp->head.sval = sval;
1999	tp->head.wval = wval;
2000	tp->head.uval = uval;
2001
2002	/*
2003	 *  Disable extended Sreq/Sack filtering if per < 50.
2004	 *  Not supported on the C1010.
2005	 */
2006	if (per < 50 && !(np->features & FE_C10))
2007		OUTOFFB(np, nc_stest2, EXT);
2008
2009	/*
2010	 *  set actual value and sync_status
2011	 */
2012	OUTB(np, nc_sxfer,  tp->head.sval);
2013	OUTB(np, nc_scntl3, tp->head.wval);
2014
2015	if (np->features & FE_C10) {
2016		OUTB(np, nc_scntl4, tp->head.uval);
2017	}
2018
2019	/*
2020	 *  patch ALL busy ccbs of this target.
2021	 */
2022	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2023		struct sym_ccb *cp;
2024		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2025		if (cp->target != target)
2026			continue;
2027		cp->phys.select.sel_scntl3 = tp->head.wval;
2028		cp->phys.select.sel_sxfer  = tp->head.sval;
2029		if (np->features & FE_C10) {
2030			cp->phys.select.sel_scntl4 = tp->head.uval;
2031		}
2032	}
2033}
2034
2035static void sym_announce_transfer_rate(struct sym_tcb *tp)
2036{
2037	struct scsi_target *starget = tp->starget;
2038
2039	if (tp->tprint.period != spi_period(starget) ||
2040	    tp->tprint.offset != spi_offset(starget) ||
2041	    tp->tprint.width != spi_width(starget) ||
2042	    tp->tprint.iu != spi_iu(starget) ||
2043	    tp->tprint.dt != spi_dt(starget) ||
2044	    tp->tprint.qas != spi_qas(starget) ||
2045	    !tp->tprint.check_nego) {
2046		tp->tprint.period = spi_period(starget);
2047		tp->tprint.offset = spi_offset(starget);
2048		tp->tprint.width = spi_width(starget);
2049		tp->tprint.iu = spi_iu(starget);
2050		tp->tprint.dt = spi_dt(starget);
2051		tp->tprint.qas = spi_qas(starget);
2052		tp->tprint.check_nego = 1;
2053
2054		spi_display_xfer_agreement(starget);
2055	}
2056}
2057
2058/*
2059 *  We received a WDTR.
2060 *  Let everything be aware of the changes.
2061 */
2062static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2063{
2064	struct sym_tcb *tp = &np->target[target];
2065	struct scsi_target *starget = tp->starget;
2066
2067	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2068
2069	if (wide)
2070		tp->tgoal.renego = NS_WIDE;
2071	else
2072		tp->tgoal.renego = 0;
2073	tp->tgoal.check_nego = 0;
2074	tp->tgoal.width = wide;
2075	spi_offset(starget) = 0;
2076	spi_period(starget) = 0;
2077	spi_width(starget) = wide;
2078	spi_iu(starget) = 0;
2079	spi_dt(starget) = 0;
2080	spi_qas(starget) = 0;
2081
2082	if (sym_verbose >= 3)
2083		sym_announce_transfer_rate(tp);
2084}
2085
2086/*
2087 *  We received a SDTR.
2088 *  Let everything be aware of the changes.
2089 */
2090static void
2091sym_setsync(struct sym_hcb *np, int target,
2092            u_char ofs, u_char per, u_char div, u_char fak)
2093{
2094	struct sym_tcb *tp = &np->target[target];
2095	struct scsi_target *starget = tp->starget;
2096	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2097
2098	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2099
2100	if (wide)
2101		tp->tgoal.renego = NS_WIDE;
2102	else if (ofs)
2103		tp->tgoal.renego = NS_SYNC;
2104	else
2105		tp->tgoal.renego = 0;
2106	spi_period(starget) = per;
2107	spi_offset(starget) = ofs;
2108	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2109
2110	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2111		tp->tgoal.period = per;
2112		tp->tgoal.offset = ofs;
2113		tp->tgoal.check_nego = 0;
2114	}
2115
2116	sym_announce_transfer_rate(tp);
2117}
2118
2119/*
2120 *  We received a PPR.
2121 *  Let everything be aware of the changes.
2122 */
2123static void
2124sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2125             u_char per, u_char wide, u_char div, u_char fak)
2126{
2127	struct sym_tcb *tp = &np->target[target];
2128	struct scsi_target *starget = tp->starget;
2129
2130	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2131
2132	if (wide || ofs)
2133		tp->tgoal.renego = NS_PPR;
2134	else
2135		tp->tgoal.renego = 0;
2136	spi_width(starget) = tp->tgoal.width = wide;
2137	spi_period(starget) = tp->tgoal.period = per;
2138	spi_offset(starget) = tp->tgoal.offset = ofs;
2139	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2140	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2141	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2142	tp->tgoal.check_nego = 0;
2143
2144	sym_announce_transfer_rate(tp);
2145}
2146
2147/*
2148 *  generic recovery from scsi interrupt
2149 *
2150 *  The doc says that when the chip gets an SCSI interrupt,
2151 *  it tries to stop in an orderly fashion, by completing
2152 *  an instruction fetch that had started or by flushing
2153 *  the DMA fifo for a write to memory that was executing.
2154 *  Such a fashion is not enough to know if the instruction
2155 *  that was just before the current DSP value has been
2156 *  executed or not.
2157 *
2158 *  There are some small SCRIPTS sections that deal with
2159 *  the start queue and the done queue that may break any
2160 *  assomption from the C code if we are interrupted
2161 *  inside, so we reset if this happens. Btw, since these
2162 *  SCRIPTS sections are executed while the SCRIPTS hasn't
2163 *  started SCSI operations, it is very unlikely to happen.
2164 *
2165 *  All the driver data structures are supposed to be
2166 *  allocated from the same 4 GB memory window, so there
2167 *  is a 1 to 1 relationship between DSA and driver data
2168 *  structures. Since we are careful :) to invalidate the
2169 *  DSA when we complete a command or when the SCRIPTS
2170 *  pushes a DSA into a queue, we can trust it when it
2171 *  points to a CCB.
2172 */
2173static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2174{
2175	u32	dsp	= INL(np, nc_dsp);
2176	u32	dsa	= INL(np, nc_dsa);
2177	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2178
2179	/*
2180	 *  If we haven't been interrupted inside the SCRIPTS
2181	 *  critical pathes, we can safely restart the SCRIPTS
2182	 *  and trust the DSA value if it matches a CCB.
2183	 */
2184	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2185	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2186	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2187	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2188	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2189	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2190	    (!(dsp > SCRIPTA_BA(np, done) &&
2191	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2192		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2193		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2194		/*
2195		 *  If we have a CCB, let the SCRIPTS call us back for
2196		 *  the handling of the error with SCRATCHA filled with
2197		 *  STARTPOS. This way, we will be able to freeze the
2198		 *  device queue and requeue awaiting IOs.
2199		 */
2200		if (cp) {
2201			cp->host_status = hsts;
2202			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2203		}
2204		/*
2205		 *  Otherwise just restart the SCRIPTS.
2206		 */
2207		else {
2208			OUTL(np, nc_dsa, 0xffffff);
2209			OUTL_DSP(np, SCRIPTA_BA(np, start));
2210		}
2211	}
2212	else
2213		goto reset_all;
2214
2215	return;
2216
2217reset_all:
2218	sym_start_reset(np);
2219}
2220
2221/*
2222 *  chip exception handler for selection timeout
2223 */
2224static void sym_int_sto (struct sym_hcb *np)
2225{
2226	u32 dsp	= INL(np, nc_dsp);
2227
2228	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2229
2230	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2231		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2232	else
2233		sym_start_reset(np);
2234}
2235
2236/*
2237 *  chip exception handler for unexpected disconnect
2238 */
2239static void sym_int_udc (struct sym_hcb *np)
2240{
2241	printf ("%s: unexpected disconnect\n", sym_name(np));
2242	sym_recover_scsi_int(np, HS_UNEXPECTED);
2243}
2244
2245/*
2246 *  chip exception handler for SCSI bus mode change
2247 *
2248 *  spi2-r12 11.2.3 says a transceiver mode change must
2249 *  generate a reset event and a device that detects a reset
2250 *  event shall initiate a hard reset. It says also that a
2251 *  device that detects a mode change shall set data transfer
2252 *  mode to eight bit asynchronous, etc...
2253 *  So, just reinitializing all except chip should be enough.
2254 */
2255static void sym_int_sbmc(struct Scsi_Host *shost)
2256{
2257	struct sym_hcb *np = sym_get_hcb(shost);
2258	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2259
2260	/*
2261	 *  Notify user.
2262	 */
2263	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2264		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2265
2266	/*
2267	 *  Should suspend command processing for a few seconds and
2268	 *  reinitialize all except the chip.
2269	 */
2270	sym_start_up(shost, 2);
2271}
2272
2273/*
2274 *  chip exception handler for SCSI parity error.
2275 *
2276 *  When the chip detects a SCSI parity error and is
2277 *  currently executing a (CH)MOV instruction, it does
2278 *  not interrupt immediately, but tries to finish the
2279 *  transfer of the current scatter entry before
2280 *  interrupting. The following situations may occur:
2281 *
2282 *  - The complete scatter entry has been transferred
2283 *    without the device having changed phase.
2284 *    The chip will then interrupt with the DSP pointing
2285 *    to the instruction that follows the MOV.
2286 *
2287 *  - A phase mismatch occurs before the MOV finished
2288 *    and phase errors are to be handled by the C code.
2289 *    The chip will then interrupt with both PAR and MA
2290 *    conditions set.
2291 *
2292 *  - A phase mismatch occurs before the MOV finished and
2293 *    phase errors are to be handled by SCRIPTS.
2294 *    The chip will load the DSP with the phase mismatch
2295 *    JUMP address and interrupt the host processor.
2296 */
2297static void sym_int_par (struct sym_hcb *np, u_short sist)
2298{
2299	u_char	hsts	= INB(np, HS_PRT);
2300	u32	dsp	= INL(np, nc_dsp);
2301	u32	dbc	= INL(np, nc_dbc);
2302	u32	dsa	= INL(np, nc_dsa);
2303	u_char	sbcl	= INB(np, nc_sbcl);
2304	u_char	cmd	= dbc >> 24;
2305	int phase	= cmd & 7;
2306	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2307
2308	if (printk_ratelimit())
2309		printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2310			sym_name(np), hsts, dbc, sbcl);
2311
2312	/*
2313	 *  Check that the chip is connected to the SCSI BUS.
2314	 */
2315	if (!(INB(np, nc_scntl1) & ISCON)) {
2316		sym_recover_scsi_int(np, HS_UNEXPECTED);
2317		return;
2318	}
2319
2320	/*
2321	 *  If the nexus is not clearly identified, reset the bus.
2322	 *  We will try to do better later.
2323	 */
2324	if (!cp)
2325		goto reset_all;
2326
2327	/*
2328	 *  Check instruction was a MOV, direction was INPUT and
2329	 *  ATN is asserted.
2330	 */
2331	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2332		goto reset_all;
2333
2334	/*
2335	 *  Keep track of the parity error.
2336	 */
2337	OUTONB(np, HF_PRT, HF_EXT_ERR);
2338	cp->xerr_status |= XE_PARITY_ERR;
2339
2340	/*
2341	 *  Prepare the message to send to the device.
2342	 */
2343	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2344
2345	/*
2346	 *  If the old phase was DATA IN phase, we have to deal with
2347	 *  the 3 situations described above.
2348	 *  For other input phases (MSG IN and STATUS), the device
2349	 *  must resend the whole thing that failed parity checking
2350	 *  or signal error. So, jumping to dispatcher should be OK.
2351	 */
2352	if (phase == 1 || phase == 5) {
2353		/* Phase mismatch handled by SCRIPTS */
2354		if (dsp == SCRIPTB_BA(np, pm_handle))
2355			OUTL_DSP(np, dsp);
2356		/* Phase mismatch handled by the C code */
2357		else if (sist & MA)
2358			sym_int_ma (np);
2359		/* No phase mismatch occurred */
2360		else {
2361			sym_set_script_dp (np, cp, dsp);
2362			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2363		}
2364	}
2365	else if (phase == 7)	/* We definitely cannot handle parity errors */
2366#if 1				/* in message-in phase due to the relection  */
2367		goto reset_all; /* path and various message anticipations.   */
2368#else
2369		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2370#endif
2371	else
2372		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2373	return;
2374
2375reset_all:
2376	sym_start_reset(np);
2377	return;
2378}
2379
2380/*
2381 *  chip exception handler for phase errors.
2382 *
2383 *  We have to construct a new transfer descriptor,
2384 *  to transfer the rest of the current block.
2385 */
2386static void sym_int_ma (struct sym_hcb *np)
2387{
2388	u32	dbc;
2389	u32	rest;
2390	u32	dsp;
2391	u32	dsa;
2392	u32	nxtdsp;
2393	u32	*vdsp;
2394	u32	oadr, olen;
2395	u32	*tblp;
2396        u32	newcmd;
2397	u_int	delta;
2398	u_char	cmd;
2399	u_char	hflags, hflags0;
2400	struct	sym_pmc *pm;
2401	struct sym_ccb *cp;
2402
2403	dsp	= INL(np, nc_dsp);
2404	dbc	= INL(np, nc_dbc);
2405	dsa	= INL(np, nc_dsa);
2406
2407	cmd	= dbc >> 24;
2408	rest	= dbc & 0xffffff;
2409	delta	= 0;
2410
2411	/*
2412	 *  locate matching cp if any.
2413	 */
2414	cp = sym_ccb_from_dsa(np, dsa);
2415
2416	/*
2417	 *  Donnot take into account dma fifo and various buffers in
2418	 *  INPUT phase since the chip flushes everything before
2419	 *  raising the MA interrupt for interrupted INPUT phases.
2420	 *  For DATA IN phase, we will check for the SWIDE later.
2421	 */
2422	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2423		u_char ss0, ss2;
2424
2425		if (np->features & FE_DFBC)
2426			delta = INW(np, nc_dfbc);
2427		else {
2428			u32 dfifo;
2429
2430			/*
2431			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2432			 */
2433			dfifo = INL(np, nc_dfifo);
2434
2435			/*
2436			 *  Calculate remaining bytes in DMA fifo.
2437			 *  (CTEST5 = dfifo >> 16)
2438			 */
2439			if (dfifo & (DFS << 16))
2440				delta = ((((dfifo >> 8) & 0x300) |
2441				          (dfifo & 0xff)) - rest) & 0x3ff;
2442			else
2443				delta = ((dfifo & 0xff) - rest) & 0x7f;
2444		}
2445
2446		/*
2447		 *  The data in the dma fifo has not been transferred to
2448		 *  the target -> add the amount to the rest
2449		 *  and clear the data.
2450		 *  Check the sstat2 register in case of wide transfer.
2451		 */
2452		rest += delta;
2453		ss0  = INB(np, nc_sstat0);
2454		if (ss0 & OLF) rest++;
2455		if (!(np->features & FE_C10))
2456			if (ss0 & ORF) rest++;
2457		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2458			ss2 = INB(np, nc_sstat2);
2459			if (ss2 & OLF1) rest++;
2460			if (!(np->features & FE_C10))
2461				if (ss2 & ORF1) rest++;
2462		}
2463
2464		/*
2465		 *  Clear fifos.
2466		 */
2467		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2468		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2469	}
2470
2471	/*
2472	 *  log the information
2473	 */
2474	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2475		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2476			(unsigned) rest, (unsigned) delta);
2477
2478	/*
2479	 *  try to find the interrupted script command,
2480	 *  and the address at which to continue.
2481	 */
2482	vdsp	= NULL;
2483	nxtdsp	= 0;
2484	if	(dsp >  np->scripta_ba &&
2485		 dsp <= np->scripta_ba + np->scripta_sz) {
2486		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2487		nxtdsp = dsp;
2488	}
2489	else if	(dsp >  np->scriptb_ba &&
2490		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2491		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2492		nxtdsp = dsp;
2493	}
2494
2495	/*
2496	 *  log the information
2497	 */
2498	if (DEBUG_FLAGS & DEBUG_PHASE) {
2499		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2500			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2501	}
2502
2503	if (!vdsp) {
2504		printf ("%s: interrupted SCRIPT address not found.\n",
2505			sym_name (np));
2506		goto reset_all;
2507	}
2508
2509	if (!cp) {
2510		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2511			sym_name (np));
2512		goto reset_all;
2513	}
2514
2515	/*
2516	 *  get old startaddress and old length.
2517	 */
2518	oadr = scr_to_cpu(vdsp[1]);
2519
2520	if (cmd & 0x10) {	/* Table indirect */
2521		tblp = (u32 *) ((char*) &cp->phys + oadr);
2522		olen = scr_to_cpu(tblp[0]);
2523		oadr = scr_to_cpu(tblp[1]);
2524	} else {
2525		tblp = (u32 *) 0;
2526		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2527	}
2528
2529	if (DEBUG_FLAGS & DEBUG_PHASE) {
2530		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2531			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2532			tblp,
2533			(unsigned) olen,
2534			(unsigned) oadr);
2535	}
2536
2537	/*
2538	 *  check cmd against assumed interrupted script command.
2539	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2540	 *  the phase.
2541	 */
2542	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2543		sym_print_addr(cp->cmd,
2544			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2545			cmd, scr_to_cpu(vdsp[0]) >> 24);
2546
2547		goto reset_all;
2548	}
2549
2550	/*
2551	 *  if old phase not dataphase, leave here.
2552	 */
2553	if (cmd & 2) {
2554		sym_print_addr(cp->cmd,
2555			"phase change %x-%x %d@%08x resid=%d.\n",
2556			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2557			(unsigned)oadr, (unsigned)rest);
2558		goto unexpected_phase;
2559	}
2560
2561	/*
2562	 *  Choose the correct PM save area.
2563	 *
2564	 *  Look at the PM_SAVE SCRIPT if you want to understand
2565	 *  this stuff. The equivalent code is implemented in
2566	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2567	 *  handle PM from the SCRIPTS processor.
2568	 */
2569	hflags0 = INB(np, HF_PRT);
2570	hflags = hflags0;
2571
2572	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2573		if (hflags & HF_IN_PM0)
2574			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2575		else if	(hflags & HF_IN_PM1)
2576			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2577
2578		if (hflags & HF_DP_SAVED)
2579			hflags ^= HF_ACT_PM;
2580	}
2581
2582	if (!(hflags & HF_ACT_PM)) {
2583		pm = &cp->phys.pm0;
2584		newcmd = SCRIPTA_BA(np, pm0_data);
2585	}
2586	else {
2587		pm = &cp->phys.pm1;
2588		newcmd = SCRIPTA_BA(np, pm1_data);
2589	}
2590
2591	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2592	if (hflags != hflags0)
2593		OUTB(np, HF_PRT, hflags);
2594
2595	/*
2596	 *  fillin the phase mismatch context
2597	 */
2598	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2599	pm->sg.size = cpu_to_scr(rest);
2600	pm->ret     = cpu_to_scr(nxtdsp);
2601
2602	/*
2603	 *  If we have a SWIDE,
2604	 *  - prepare the address to write the SWIDE from SCRIPTS,
2605	 *  - compute the SCRIPTS address to restart from,
2606	 *  - move current data pointer context by one byte.
2607	 */
2608	nxtdsp = SCRIPTA_BA(np, dispatch);
2609	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2610	    (INB(np, nc_scntl2) & WSR)) {
2611		u32 tmp;
2612
2613		/*
2614		 *  Set up the table indirect for the MOVE
2615		 *  of the residual byte and adjust the data
2616		 *  pointer context.
2617		 */
2618		tmp = scr_to_cpu(pm->sg.addr);
2619		cp->phys.wresid.addr = cpu_to_scr(tmp);
2620		pm->sg.addr = cpu_to_scr(tmp + 1);
2621		tmp = scr_to_cpu(pm->sg.size);
2622		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2623		pm->sg.size = cpu_to_scr(tmp - 1);
2624
2625		/*
2626		 *  If only the residual byte is to be moved,
2627		 *  no PM context is needed.
2628		 */
2629		if ((tmp&0xffffff) == 1)
2630			newcmd = pm->ret;
2631
2632		/*
2633		 *  Prepare the address of SCRIPTS that will
2634		 *  move the residual byte to memory.
2635		 */
2636		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2637	}
2638
2639	if (DEBUG_FLAGS & DEBUG_PHASE) {
2640		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2641			hflags0, hflags, newcmd,
2642			(unsigned)scr_to_cpu(pm->sg.addr),
2643			(unsigned)scr_to_cpu(pm->sg.size),
2644			(unsigned)scr_to_cpu(pm->ret));
2645	}
2646
2647	/*
2648	 *  Restart the SCRIPTS processor.
2649	 */
2650	sym_set_script_dp (np, cp, newcmd);
2651	OUTL_DSP(np, nxtdsp);
2652	return;
2653
2654	/*
2655	 *  Unexpected phase changes that occurs when the current phase
2656	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2657	 *  Such event may only happen when the SCRIPTS is using a
2658	 *  multibyte SCSI MOVE.
2659	 *
2660	 *  Phase change		Some possible cause
2661	 *
2662	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2663	 *  COMMAND  --> STATUS	Bad command or refused by target.
2664	 *  MSG OUT  --> MSG IN     Message rejected by target.
2665	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2666	 *  			negotiation messages.
2667	 *
2668	 *  The code below does not care of the new phase and so
2669	 *  trusts the target. Why to annoy it ?
2670	 *  If the interrupted phase is COMMAND phase, we restart at
2671	 *  dispatcher.
2672	 *  If a target does not get all the messages after selection,
2673	 *  the code assumes blindly that the target discards extended
2674	 *  messages and clears the negotiation status.
2675	 *  If the target does not want all our response to negotiation,
2676	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2677	 *  bloat for such a should_not_happen situation).
2678	 *  In all other situation, we reset the BUS.
2679	 *  Are these assumptions reasonable ? (Wait and see ...)
2680	 */
2681unexpected_phase:
2682	dsp -= 8;
2683	nxtdsp = 0;
2684
2685	switch (cmd & 7) {
2686	case 2:	/* COMMAND phase */
2687		nxtdsp = SCRIPTA_BA(np, dispatch);
2688		break;
2689#if 0
2690	case 3:	/* STATUS  phase */
2691		nxtdsp = SCRIPTA_BA(np, dispatch);
2692		break;
2693#endif
2694	case 6:	/* MSG OUT phase */
2695		/*
2696		 *  If the device may want to use untagged when we want
2697		 *  tagged, we prepare an IDENTIFY without disc. granted,
2698		 *  since we will not be able to handle reselect.
2699		 *  Otherwise, we just don't care.
2700		 */
2701		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2702			if (cp->tag != NO_TAG && olen - rest <= 3) {
2703				cp->host_status = HS_BUSY;
2704				np->msgout[0] = IDENTIFY(0, cp->lun);
2705				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2706			}
2707			else
2708				nxtdsp = SCRIPTB_BA(np, ident_break);
2709		}
2710		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2711			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2712			 dsp == SCRIPTB_BA(np, send_ppr)) {
2713			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2714			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2715				struct scsi_device *dev = cp->cmd->device;
2716				dev->ppr = 0;
2717			}
2718		}
2719		break;
2720#if 0
2721	case 7:	/* MSG IN  phase */
2722		nxtdsp = SCRIPTA_BA(np, clrack);
2723		break;
2724#endif
2725	}
2726
2727	if (nxtdsp) {
2728		OUTL_DSP(np, nxtdsp);
2729		return;
2730	}
2731
2732reset_all:
2733	sym_start_reset(np);
2734}
2735
2736/*
2737 *  chip interrupt handler
2738 *
2739 *  In normal situations, interrupt conditions occur one at
2740 *  a time. But when something bad happens on the SCSI BUS,
2741 *  the chip may raise several interrupt flags before
2742 *  stopping and interrupting the CPU. The additionnal
2743 *  interrupt flags are stacked in some extra registers
2744 *  after the SIP and/or DIP flag has been raised in the
2745 *  ISTAT. After the CPU has read the interrupt condition
2746 *  flag from SIST or DSTAT, the chip unstacks the other
2747 *  interrupt flags and sets the corresponding bits in
2748 *  SIST or DSTAT. Since the chip starts stacking once the
2749 *  SIP or DIP flag is set, there is a small window of time
2750 *  where the stacking does not occur.
2751 *
2752 *  Typically, multiple interrupt conditions may happen in
2753 *  the following situations:
2754 *
2755 *  - SCSI parity error + Phase mismatch  (PAR|MA)
2756 *    When an parity error is detected in input phase
2757 *    and the device switches to msg-in phase inside a
2758 *    block MOV.
2759 *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2760 *    When a stupid device does not want to handle the
2761 *    recovery of an SCSI parity error.
2762 *  - Some combinations of STO, PAR, UDC, ...
2763 *    When using non compliant SCSI stuff, when user is
2764 *    doing non compliant hot tampering on the BUS, when
2765 *    something really bad happens to a device, etc ...
2766 *
2767 *  The heuristic suggested by SYMBIOS to handle
2768 *  multiple interrupts is to try unstacking all
2769 *  interrupts conditions and to handle them on some
2770 *  priority based on error severity.
2771 *  This will work when the unstacking has been
2772 *  successful, but we cannot be 100 % sure of that,
2773 *  since the CPU may have been faster to unstack than
2774 *  the chip is able to stack. Hmmm ... But it seems that
2775 *  such a situation is very unlikely to happen.
2776 *
2777 *  If this happen, for example STO caught by the CPU
2778 *  then UDC happenning before the CPU have restarted
2779 *  the SCRIPTS, the driver may wrongly complete the
2780 *  same command on UDC, since the SCRIPTS didn't restart
2781 *  and the DSA still points to the same command.
2782 *  We avoid this situation by setting the DSA to an
2783 *  invalid value when the CCB is completed and before
2784 *  restarting the SCRIPTS.
2785 *
2786 *  Another issue is that we need some section of our
2787 *  recovery procedures to be somehow uninterruptible but
2788 *  the SCRIPTS processor does not provides such a
2789 *  feature. For this reason, we handle recovery preferently
2790 *  from the C code and check against some SCRIPTS critical
2791 *  sections from the C code.
2792 *
2793 *  Hopefully, the interrupt handling of the driver is now
2794 *  able to resist to weird BUS error conditions, but donnot
2795 *  ask me for any guarantee that it will never fail. :-)
2796 *  Use at your own decision and risk.
2797 */
2798
2799irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2800{
2801	struct sym_data *sym_data = shost_priv(shost);
2802	struct sym_hcb *np = sym_data->ncb;
2803	struct pci_dev *pdev = sym_data->pdev;
2804	u_char	istat, istatc;
2805	u_char	dstat;
2806	u_short	sist;
2807
2808	/*
2809	 *  interrupt on the fly ?
2810	 *  (SCRIPTS may still be running)
2811	 *
2812	 *  A `dummy read' is needed to ensure that the
2813	 *  clear of the INTF flag reaches the device
2814	 *  and that posted writes are flushed to memory
2815	 *  before the scanning of the DONE queue.
2816	 *  Note that SCRIPTS also (dummy) read to memory
2817	 *  prior to deliver the INTF interrupt condition.
2818	 */
2819	istat = INB(np, nc_istat);
2820	if (istat & INTF) {
2821		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2822		istat |= INB(np, nc_istat);		/* DUMMY READ */
2823		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2824		sym_wakeup_done(np);
2825	}
2826
2827	if (!(istat & (SIP|DIP)))
2828		return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2829
2830#if 0	/* We should never get this one */
2831	if (istat & CABRT)
2832		OUTB(np, nc_istat, CABRT);
2833#endif
2834
2835	/*
2836	 *  PAR and MA interrupts may occur at the same time,
2837	 *  and we need to know of both in order to handle
2838	 *  this situation properly. We try to unstack SCSI
2839	 *  interrupts for that reason. BTW, I dislike a LOT
2840	 *  such a loop inside the interrupt routine.
2841	 *  Even if DMA interrupt stacking is very unlikely to
2842	 *  happen, we also try unstacking these ones, since
2843	 *  this has no performance impact.
2844	 */
2845	sist	= 0;
2846	dstat	= 0;
2847	istatc	= istat;
2848	do {
2849		if (istatc & SIP)
2850			sist  |= INW(np, nc_sist);
2851		if (istatc & DIP)
2852			dstat |= INB(np, nc_dstat);
2853		istatc = INB(np, nc_istat);
2854		istat |= istatc;
2855
2856		/* Prevent deadlock waiting on a condition that may
2857		 * never clear. */
2858		if (unlikely(sist == 0xffff && dstat == 0xff)) {
2859			if (pci_channel_offline(pdev))
2860				return IRQ_NONE;
2861		}
2862	} while (istatc & (SIP|DIP));
2863
2864	if (DEBUG_FLAGS & DEBUG_TINY)
2865		printf ("<%d|%x:%x|%x:%x>",
2866			(int)INB(np, nc_scr0),
2867			dstat,sist,
2868			(unsigned)INL(np, nc_dsp),
2869			(unsigned)INL(np, nc_dbc));
2870	/*
2871	 *  On paper, a memory read barrier may be needed here to
2872	 *  prevent out of order LOADs by the CPU from having
2873	 *  prefetched stale data prior to DMA having occurred.
2874	 *  And since we are paranoid ... :)
2875	 */
2876	MEMORY_READ_BARRIER();
2877
2878	/*
2879	 *  First, interrupts we want to service cleanly.
2880	 *
2881	 *  Phase mismatch (MA) is the most frequent interrupt
2882	 *  for chip earlier than the 896 and so we have to service
2883	 *  it as quickly as possible.
2884	 *  A SCSI parity error (PAR) may be combined with a phase
2885	 *  mismatch condition (MA).
2886	 *  Programmed interrupts (SIR) are used to call the C code
2887	 *  from SCRIPTS.
2888	 *  The single step interrupt (SSI) is not used in this
2889	 *  driver.
2890	 */
2891	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2892	    !(dstat & (MDPE|BF|ABRT|IID))) {
2893		if	(sist & PAR)	sym_int_par (np, sist);
2894		else if (sist & MA)	sym_int_ma (np);
2895		else if (dstat & SIR)	sym_int_sir(np);
2896		else if (dstat & SSI)	OUTONB_STD();
2897		else			goto unknown_int;
2898		return IRQ_HANDLED;
2899	}
2900
2901	/*
2902	 *  Now, interrupts that donnot happen in normal
2903	 *  situations and that we may need to recover from.
2904	 *
2905	 *  On SCSI RESET (RST), we reset everything.
2906	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2907	 *  active CCBs with RESET status, prepare all devices
2908	 *  for negotiating again and restart the SCRIPTS.
2909	 *  On STO and UDC, we complete the CCB with the corres-
2910	 *  ponding status and restart the SCRIPTS.
2911	 */
2912	if (sist & RST) {
2913		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2914		sym_start_up(shost, 1);
2915		return IRQ_HANDLED;
2916	}
2917
2918	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2919	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2920
2921	if (!(sist  & (GEN|HTH|SGE)) &&
2922	    !(dstat & (MDPE|BF|ABRT|IID))) {
2923		if	(sist & SBMC)	sym_int_sbmc(shost);
2924		else if (sist & STO)	sym_int_sto (np);
2925		else if (sist & UDC)	sym_int_udc (np);
2926		else			goto unknown_int;
2927		return IRQ_HANDLED;
2928	}
2929
2930	/*
2931	 *  Now, interrupts we are not able to recover cleanly.
2932	 *
2933	 *  Log message for hard errors.
2934	 *  Reset everything.
2935	 */
2936
2937	sym_log_hard_error(shost, sist, dstat);
2938
2939	if ((sist & (GEN|HTH|SGE)) ||
2940		(dstat & (MDPE|BF|ABRT|IID))) {
2941		sym_start_reset(np);
2942		return IRQ_HANDLED;
2943	}
2944
2945unknown_int:
2946	/*
2947	 *  We just miss the cause of the interrupt. :(
2948	 *  Print a message. The timeout will do the real work.
2949	 */
2950	printf(	"%s: unknown interrupt(s) ignored, "
2951		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2952		sym_name(np), istat, dstat, sist);
2953	return IRQ_NONE;
2954}
2955
2956/*
2957 *  Dequeue from the START queue all CCBs that match
2958 *  a given target/lun/task condition (-1 means all),
2959 *  and move them from the BUSY queue to the COMP queue
2960 *  with DID_SOFT_ERROR status condition.
2961 *  This function is used during error handling/recovery.
2962 *  It is called with SCRIPTS not running.
2963 */
2964static int
2965sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2966{
2967	int j;
2968	struct sym_ccb *cp;
2969
2970	/*
2971	 *  Make sure the starting index is within range.
2972	 */
2973	assert((i >= 0) && (i < 2*MAX_QUEUE));
2974
2975	/*
2976	 *  Walk until end of START queue and dequeue every job
2977	 *  that matches the target/lun/task condition.
2978	 */
2979	j = i;
2980	while (i != np->squeueput) {
2981		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2982		assert(cp);
2983#ifdef SYM_CONF_IARB_SUPPORT
2984		/* Forget hints for IARB, they may be no longer relevant */
2985		cp->host_flags &= ~HF_HINT_IARB;
2986#endif
2987		if ((target == -1 || cp->target == target) &&
2988		    (lun    == -1 || cp->lun    == lun)    &&
2989		    (task   == -1 || cp->tag    == task)) {
2990#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
2991			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2992#else
2993			sym_set_cam_status(cp->cmd, DID_REQUEUE);
2994#endif
2995			sym_remque(&cp->link_ccbq);
2996			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2997		}
2998		else {
2999			if (i != j)
3000				np->squeue[j] = np->squeue[i];
3001			if ((j += 2) >= MAX_QUEUE*2) j = 0;
3002		}
3003		if ((i += 2) >= MAX_QUEUE*2) i = 0;
3004	}
3005	if (i != j)		/* Copy back the idle task if needed */
3006		np->squeue[j] = np->squeue[i];
3007	np->squeueput = j;	/* Update our current start queue pointer */
3008
3009	return (i - j) / 2;
3010}
3011
3012/*
3013 *  chip handler for bad SCSI status condition
3014 *
3015 *  In case of bad SCSI status, we unqueue all the tasks
3016 *  currently queued to the controller but not yet started
3017 *  and then restart the SCRIPTS processor immediately.
3018 *
3019 *  QUEUE FULL and BUSY conditions are handled the same way.
3020 *  Basically all the not yet started tasks are requeued in
3021 *  device queue and the queue is frozen until a completion.
3022 *
3023 *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3024 *  the CCB of the failed command to prepare a REQUEST SENSE
3025 *  SCSI command and queue it to the controller queue.
3026 *
3027 *  SCRATCHA is assumed to have been loaded with STARTPOS
3028 *  before the SCRIPTS called the C code.
3029 */
3030static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3031{
3032	u32		startp;
3033	u_char		s_status = cp->ssss_status;
3034	u_char		h_flags  = cp->host_flags;
3035	int		msglen;
3036	int		i;
3037
3038	/*
3039	 *  Compute the index of the next job to start from SCRIPTS.
3040	 */
3041	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3042
3043	/*
3044	 *  The last CCB queued used for IARB hint may be
3045	 *  no longer relevant. Forget it.
3046	 */
3047#ifdef SYM_CONF_IARB_SUPPORT
3048	if (np->last_cp)
3049		np->last_cp = 0;
3050#endif
3051
3052	/*
3053	 *  Now deal with the SCSI status.
3054	 */
3055	switch(s_status) {
3056	case S_BUSY:
3057	case S_QUEUE_FULL:
3058		if (sym_verbose >= 2) {
3059			sym_print_addr(cp->cmd, "%s\n",
3060			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3061		}
3062		fallthrough;
3063	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3064		sym_complete_error (np, cp);
3065		break;
3066	case S_TERMINATED:
3067	case S_CHECK_COND:
3068		/*
3069		 *  If we get an SCSI error when requesting sense, give up.
3070		 */
3071		if (h_flags & HF_SENSE) {
3072			sym_complete_error (np, cp);
3073			break;
3074		}
3075
3076		/*
3077		 *  Dequeue all queued CCBs for that device not yet started,
3078		 *  and restart the SCRIPTS processor immediately.
3079		 */
3080		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3081		OUTL_DSP(np, SCRIPTA_BA(np, start));
3082
3083 		/*
3084		 *  Save some info of the actual IO.
3085		 *  Compute the data residual.
3086		 */
3087		cp->sv_scsi_status = cp->ssss_status;
3088		cp->sv_xerr_status = cp->xerr_status;
3089		cp->sv_resid = sym_compute_residual(np, cp);
3090
3091		/*
3092		 *  Prepare all needed data structures for
3093		 *  requesting sense data.
3094		 */
3095
3096		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3097		msglen = 1;
3098
3099		/*
3100		 *  If we are currently using anything different from
3101		 *  async. 8 bit data transfers with that target,
3102		 *  start a negotiation, since the device may want
3103		 *  to report us a UNIT ATTENTION condition due to
3104		 *  a cause we currently ignore, and we donnot want
3105		 *  to be stuck with WIDE and/or SYNC data transfer.
3106		 *
3107		 *  cp->nego_status is filled by sym_prepare_nego().
3108		 */
3109		cp->nego_status = 0;
3110		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3111		/*
3112		 *  Message table indirect structure.
3113		 */
3114		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3115		cp->phys.smsg.size	= cpu_to_scr(msglen);
3116
3117		/*
3118		 *  sense command
3119		 */
3120		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3121		cp->phys.cmd.size	= cpu_to_scr(6);
3122
3123		/*
3124		 *  patch requested size into sense command
3125		 */
3126		cp->sensecmd[0]		= REQUEST_SENSE;
3127		cp->sensecmd[1]		= 0;
3128		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3129			cp->sensecmd[1]	= cp->lun << 5;
3130		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3131		cp->data_len		= SYM_SNS_BBUF_LEN;
3132
3133		/*
3134		 *  sense data
3135		 */
3136		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3137		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3138		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3139
3140		/*
3141		 *  requeue the command.
3142		 */
3143		startp = SCRIPTB_BA(np, sdata_in);
3144
3145		cp->phys.head.savep	= cpu_to_scr(startp);
3146		cp->phys.head.lastp	= cpu_to_scr(startp);
3147		cp->startp		= cpu_to_scr(startp);
3148		cp->goalp		= cpu_to_scr(startp + 16);
3149
3150		cp->host_xflags = 0;
3151		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3152		cp->ssss_status = S_ILLEGAL;
3153		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3154		cp->xerr_status = 0;
3155		cp->extra_bytes = 0;
3156
3157		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3158
3159		/*
3160		 *  Requeue the command.
3161		 */
3162		sym_put_start_queue(np, cp);
3163
3164		/*
3165		 *  Give back to upper layer everything we have dequeued.
3166		 */
3167		sym_flush_comp_queue(np, 0);
3168		break;
3169	}
3170}
3171
3172/*
3173 *  After a device has accepted some management message
3174 *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3175 *  a device signals a UNIT ATTENTION condition, some
3176 *  tasks are thrown away by the device. We are required
3177 *  to reflect that on our tasks list since the device
3178 *  will never complete these tasks.
3179 *
3180 *  This function move from the BUSY queue to the COMP
3181 *  queue all disconnected CCBs for a given target that
3182 *  match the following criteria:
3183 *  - lun=-1  means any logical UNIT otherwise a given one.
3184 *  - task=-1 means any task, otherwise a given one.
3185 */
3186int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3187{
3188	SYM_QUEHEAD qtmp, *qp;
3189	int i = 0;
3190	struct sym_ccb *cp;
3191
3192	/*
3193	 *  Move the entire BUSY queue to our temporary queue.
3194	 */
3195	sym_que_init(&qtmp);
3196	sym_que_splice(&np->busy_ccbq, &qtmp);
3197	sym_que_init(&np->busy_ccbq);
3198
3199	/*
3200	 *  Put all CCBs that matches our criteria into
3201	 *  the COMP queue and put back other ones into
3202	 *  the BUSY queue.
3203	 */
3204	while ((qp = sym_remque_head(&qtmp)) != NULL) {
3205		struct scsi_cmnd *cmd;
3206		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3207		cmd = cp->cmd;
3208		if (cp->host_status != HS_DISCONNECT ||
3209		    cp->target != target	     ||
3210		    (lun  != -1 && cp->lun != lun)   ||
3211		    (task != -1 &&
3212			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3213			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3214			continue;
3215		}
3216		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3217
3218		/* Preserve the software timeout condition */
3219		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3220			sym_set_cam_status(cmd, cam_status);
3221		++i;
3222#if 0
3223printf("XXXX TASK @%p CLEARED\n", cp);
3224#endif
3225	}
3226	return i;
3227}
3228
3229/*
3230 *  chip handler for TASKS recovery
3231 *
3232 *  We cannot safely abort a command, while the SCRIPTS
3233 *  processor is running, since we just would be in race
3234 *  with it.
3235 *
3236 *  As long as we have tasks to abort, we keep the SEM
3237 *  bit set in the ISTAT. When this bit is set, the
3238 *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3239 *  each time it enters the scheduler.
3240 *
3241 *  If we have to reset a target, clear tasks of a unit,
3242 *  or to perform the abort of a disconnected job, we
3243 *  restart the SCRIPTS for selecting the target. Once
3244 *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3245 *  If it loses arbitration, the SCRIPTS will interrupt again
3246 *  the next time it will enter its scheduler, and so on ...
3247 *
3248 *  On SIR_TARGET_SELECTED, we scan for the more
3249 *  appropriate thing to do:
3250 *
3251 *  - If nothing, we just sent a M_ABORT message to the
3252 *    target to get rid of the useless SCSI bus ownership.
3253 *    According to the specs, no tasks shall be affected.
3254 *  - If the target is to be reset, we send it a M_RESET
3255 *    message.
3256 *  - If a logical UNIT is to be cleared , we send the
3257 *    IDENTIFY(lun) + M_ABORT.
3258 *  - If an untagged task is to be aborted, we send the
3259 *    IDENTIFY(lun) + M_ABORT.
3260 *  - If a tagged task is to be aborted, we send the
3261 *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3262 *
3263 *  Once our 'kiss of death' :) message has been accepted
3264 *  by the target, the SCRIPTS interrupts again
3265 *  (SIR_ABORT_SENT). On this interrupt, we complete
3266 *  all the CCBs that should have been aborted by the
3267 *  target according to our message.
3268 */
3269static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3270{
3271	SYM_QUEHEAD *qp;
3272	struct sym_ccb *cp;
3273	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3274	struct scsi_target *starget;
3275	int target=-1, lun=-1, task;
3276	int i, k;
3277
3278	switch(num) {
3279	/*
3280	 *  The SCRIPTS processor stopped before starting
3281	 *  the next command in order to allow us to perform
3282	 *  some task recovery.
3283	 */
3284	case SIR_SCRIPT_STOPPED:
3285		/*
3286		 *  Do we have any target to reset or unit to clear ?
3287		 */
3288		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3289			tp = &np->target[i];
3290			if (tp->to_reset ||
3291			    (tp->lun0p && tp->lun0p->to_clear)) {
3292				target = i;
3293				break;
3294			}
3295			if (!tp->lunmp)
3296				continue;
3297			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3298				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3299					target	= i;
3300					break;
3301				}
3302			}
3303			if (target != -1)
3304				break;
3305		}
3306
3307		/*
3308		 *  If not, walk the busy queue for any
3309		 *  disconnected CCB to be aborted.
3310		 */
3311		if (target == -1) {
3312			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3313				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3314				if (cp->host_status != HS_DISCONNECT)
3315					continue;
3316				if (cp->to_abort) {
3317					target = cp->target;
3318					break;
3319				}
3320			}
3321		}
3322
3323		/*
3324		 *  If some target is to be selected,
3325		 *  prepare and start the selection.
3326		 */
3327		if (target != -1) {
3328			tp = &np->target[target];
3329			np->abrt_sel.sel_id	= target;
3330			np->abrt_sel.sel_scntl3 = tp->head.wval;
3331			np->abrt_sel.sel_sxfer  = tp->head.sval;
3332			OUTL(np, nc_dsa, np->hcb_ba);
3333			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3334			return;
3335		}
3336
3337		/*
3338		 *  Now look for a CCB to abort that haven't started yet.
3339		 *  Btw, the SCRIPTS processor is still stopped, so
3340		 *  we are not in race.
3341		 */
3342		i = 0;
3343		cp = NULL;
3344		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3345			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3346			if (cp->host_status != HS_BUSY &&
3347			    cp->host_status != HS_NEGOTIATE)
3348				continue;
3349			if (!cp->to_abort)
3350				continue;
3351#ifdef SYM_CONF_IARB_SUPPORT
3352			/*
3353			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3354			 *    want to cancel the last queued CCB, since the
3355			 *    SCRIPTS may have anticipated the selection.
3356			 */
3357			if (cp == np->last_cp) {
3358				cp->to_abort = 0;
3359				continue;
3360			}
3361#endif
3362			i = 1;	/* Means we have found some */
3363			break;
3364		}
3365		if (!i) {
3366			/*
3367			 *  We are done, so we donnot need
3368			 *  to synchronize with the SCRIPTS anylonger.
3369			 *  Remove the SEM flag from the ISTAT.
3370			 */
3371			np->istat_sem = 0;
3372			OUTB(np, nc_istat, SIGP);
3373			break;
3374		}
3375		/*
3376		 *  Compute index of next position in the start
3377		 *  queue the SCRIPTS intends to start and dequeue
3378		 *  all CCBs for that device that haven't been started.
3379		 */
3380		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3381		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3382
3383		/*
3384		 *  Make sure at least our IO to abort has been dequeued.
3385		 */
3386#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3387		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3388#else
3389		sym_remque(&cp->link_ccbq);
3390		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3391#endif
3392		/*
3393		 *  Keep track in cam status of the reason of the abort.
3394		 */
3395		if (cp->to_abort == 2)
3396			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3397		else
3398			sym_set_cam_status(cp->cmd, DID_ABORT);
3399
3400		/*
3401		 *  Complete with error everything that we have dequeued.
3402	 	 */
3403		sym_flush_comp_queue(np, 0);
3404		break;
3405	/*
3406	 *  The SCRIPTS processor has selected a target
3407	 *  we may have some manual recovery to perform for.
3408	 */
3409	case SIR_TARGET_SELECTED:
3410		target = INB(np, nc_sdid) & 0xf;
3411		tp = &np->target[target];
3412
3413		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3414
3415		/*
3416		 *  If the target is to be reset, prepare a
3417		 *  M_RESET message and clear the to_reset flag
3418		 *  since we donnot expect this operation to fail.
3419		 */
3420		if (tp->to_reset) {
3421			np->abrt_msg[0] = M_RESET;
3422			np->abrt_tbl.size = 1;
3423			tp->to_reset = 0;
3424			break;
3425		}
3426
3427		/*
3428		 *  Otherwise, look for some logical unit to be cleared.
3429		 */
3430		if (tp->lun0p && tp->lun0p->to_clear)
3431			lun = 0;
3432		else if (tp->lunmp) {
3433			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3434				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3435					lun = k;
3436					break;
3437				}
3438			}
3439		}
3440
3441		/*
3442		 *  If a logical unit is to be cleared, prepare
3443		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3444		 */
3445		if (lun != -1) {
3446			struct sym_lcb *lp = sym_lp(tp, lun);
3447			lp->to_clear = 0; /* We don't expect to fail here */
3448			np->abrt_msg[0] = IDENTIFY(0, lun);
3449			np->abrt_msg[1] = M_ABORT;
3450			np->abrt_tbl.size = 2;
3451			break;
3452		}
3453
3454		/*
3455		 *  Otherwise, look for some disconnected job to
3456		 *  abort for this target.
3457		 */
3458		i = 0;
3459		cp = NULL;
3460		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3461			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3462			if (cp->host_status != HS_DISCONNECT)
3463				continue;
3464			if (cp->target != target)
3465				continue;
3466			if (!cp->to_abort)
3467				continue;
3468			i = 1;	/* Means we have some */
3469			break;
3470		}
3471
3472		/*
3473		 *  If we have none, probably since the device has
3474		 *  completed the command before we won abitration,
3475		 *  send a M_ABORT message without IDENTIFY.
3476		 *  According to the specs, the device must just
3477		 *  disconnect the BUS and not abort any task.
3478		 */
3479		if (!i) {
3480			np->abrt_msg[0] = M_ABORT;
3481			np->abrt_tbl.size = 1;
3482			break;
3483		}
3484
3485		/*
3486		 *  We have some task to abort.
3487		 *  Set the IDENTIFY(lun)
3488		 */
3489		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3490
3491		/*
3492		 *  If we want to abort an untagged command, we
3493		 *  will send a IDENTIFY + M_ABORT.
3494		 *  Otherwise (tagged command), we will send
3495		 *  a IDENTITFY + task attributes + ABORT TAG.
3496		 */
3497		if (cp->tag == NO_TAG) {
3498			np->abrt_msg[1] = M_ABORT;
3499			np->abrt_tbl.size = 2;
3500		} else {
3501			np->abrt_msg[1] = cp->scsi_smsg[1];
3502			np->abrt_msg[2] = cp->scsi_smsg[2];
3503			np->abrt_msg[3] = M_ABORT_TAG;
3504			np->abrt_tbl.size = 4;
3505		}
3506		/*
3507		 *  Keep track of software timeout condition, since the
3508		 *  peripheral driver may not count retries on abort
3509		 *  conditions not due to timeout.
3510		 */
3511		if (cp->to_abort == 2)
3512			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3513		cp->to_abort = 0; /* We donnot expect to fail here */
3514		break;
3515
3516	/*
3517	 *  The target has accepted our message and switched
3518	 *  to BUS FREE phase as we expected.
3519	 */
3520	case SIR_ABORT_SENT:
3521		target = INB(np, nc_sdid) & 0xf;
3522		tp = &np->target[target];
3523		starget = tp->starget;
3524
3525		/*
3526		**  If we didn't abort anything, leave here.
3527		*/
3528		if (np->abrt_msg[0] == M_ABORT)
3529			break;
3530
3531		/*
3532		 *  If we sent a M_RESET, then a hardware reset has
3533		 *  been performed by the target.
3534		 *  - Reset everything to async 8 bit
3535		 *  - Tell ourself to negotiate next time :-)
3536		 *  - Prepare to clear all disconnected CCBs for
3537		 *    this target from our task list (lun=task=-1)
3538		 */
3539		lun = -1;
3540		task = -1;
3541		if (np->abrt_msg[0] == M_RESET) {
3542			tp->head.sval = 0;
3543			tp->head.wval = np->rv_scntl3;
3544			tp->head.uval = 0;
3545			spi_period(starget) = 0;
3546			spi_offset(starget) = 0;
3547			spi_width(starget) = 0;
3548			spi_iu(starget) = 0;
3549			spi_dt(starget) = 0;
3550			spi_qas(starget) = 0;
3551			tp->tgoal.check_nego = 1;
3552			tp->tgoal.renego = 0;
3553		}
3554
3555		/*
3556		 *  Otherwise, check for the LUN and TASK(s)
3557		 *  concerned by the cancelation.
3558		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3559		 *  or an ABORT message :-)
3560		 */
3561		else {
3562			lun = np->abrt_msg[0] & 0x3f;
3563			if (np->abrt_msg[1] == M_ABORT_TAG)
3564				task = np->abrt_msg[2];
3565		}
3566
3567		/*
3568		 *  Complete all the CCBs the device should have
3569		 *  aborted due to our 'kiss of death' message.
3570		 */
3571		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3572		sym_dequeue_from_squeue(np, i, target, lun, -1);
3573		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3574		sym_flush_comp_queue(np, 0);
3575
3576 		/*
3577		 *  If we sent a BDR, make upper layer aware of that.
3578 		 */
3579		if (np->abrt_msg[0] == M_RESET)
3580			starget_printk(KERN_NOTICE, starget,
3581							"has been reset\n");
3582		break;
3583	}
3584
3585	/*
3586	 *  Print to the log the message we intend to send.
3587	 */
3588	if (num == SIR_TARGET_SELECTED) {
3589		dev_info(&tp->starget->dev, "control msgout:");
3590		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3591		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3592	}
3593
3594	/*
3595	 *  Let the SCRIPTS processor continue.
3596	 */
3597	OUTONB_STD();
3598}
3599
3600/*
3601 *  Gerard's alchemy:) that deals with with the data
3602 *  pointer for both MDP and the residual calculation.
3603 *
3604 *  I didn't want to bloat the code by more than 200
3605 *  lines for the handling of both MDP and the residual.
3606 *  This has been achieved by using a data pointer
3607 *  representation consisting in an index in the data
3608 *  array (dp_sg) and a negative offset (dp_ofs) that
3609 *  have the following meaning:
3610 *
3611 *  - dp_sg = SYM_CONF_MAX_SG
3612 *    we are at the end of the data script.
3613 *  - dp_sg < SYM_CONF_MAX_SG
3614 *    dp_sg points to the next entry of the scatter array
3615 *    we want to transfer.
3616 *  - dp_ofs < 0
3617 *    dp_ofs represents the residual of bytes of the
3618 *    previous entry scatter entry we will send first.
3619 *  - dp_ofs = 0
3620 *    no residual to send first.
3621 *
3622 *  The function sym_evaluate_dp() accepts an arbitray
3623 *  offset (basically from the MDP message) and returns
3624 *  the corresponding values of dp_sg and dp_ofs.
3625 */
3626
3627static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3628{
3629	u32	dp_scr;
3630	int	dp_ofs, dp_sg, dp_sgmin;
3631	int	tmp;
3632	struct sym_pmc *pm;
3633
3634	/*
3635	 *  Compute the resulted data pointer in term of a script
3636	 *  address within some DATA script and a signed byte offset.
3637	 */
3638	dp_scr = scr;
3639	dp_ofs = *ofs;
3640	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3641		pm = &cp->phys.pm0;
3642	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3643		pm = &cp->phys.pm1;
3644	else
3645		pm = NULL;
3646
3647	if (pm) {
3648		dp_scr  = scr_to_cpu(pm->ret);
3649		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3650	}
3651
3652	/*
3653	 *  If we are auto-sensing, then we are done.
3654	 */
3655	if (cp->host_flags & HF_SENSE) {
3656		*ofs = dp_ofs;
3657		return 0;
3658	}
3659
3660	/*
3661	 *  Deduce the index of the sg entry.
3662	 *  Keep track of the index of the first valid entry.
3663	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3664	 *  end of the data.
3665	 */
3666	tmp = scr_to_cpu(cp->goalp);
3667	dp_sg = SYM_CONF_MAX_SG;
3668	if (dp_scr != tmp)
3669		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3670	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3671
3672	/*
3673	 *  Move to the sg entry the data pointer belongs to.
3674	 *
3675	 *  If we are inside the data area, we expect result to be:
3676	 *
3677	 *  Either,
3678	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3679	 *      the data pointer belongs to (or the end of the data)
3680	 *  Or,
3681	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3682	 *      the data pointer belongs to + 1.
3683	 */
3684	if (dp_ofs < 0) {
3685		int n;
3686		while (dp_sg > dp_sgmin) {
3687			--dp_sg;
3688			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3689			n = dp_ofs + (tmp & 0xffffff);
3690			if (n > 0) {
3691				++dp_sg;
3692				break;
3693			}
3694			dp_ofs = n;
3695		}
3696	}
3697	else if (dp_ofs > 0) {
3698		while (dp_sg < SYM_CONF_MAX_SG) {
3699			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3700			dp_ofs -= (tmp & 0xffffff);
3701			++dp_sg;
3702			if (dp_ofs <= 0)
3703				break;
3704		}
3705	}
3706
3707	/*
3708	 *  Make sure the data pointer is inside the data area.
3709	 *  If not, return some error.
3710	 */
3711	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3712		goto out_err;
3713	else if	(dp_sg > SYM_CONF_MAX_SG ||
3714		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3715		goto out_err;
3716
3717	/*
3718	 *  Save the extreme pointer if needed.
3719	 */
3720	if (dp_sg > cp->ext_sg ||
3721            (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3722		cp->ext_sg  = dp_sg;
3723		cp->ext_ofs = dp_ofs;
3724	}
3725
3726	/*
3727	 *  Return data.
3728	 */
3729	*ofs = dp_ofs;
3730	return dp_sg;
3731
3732out_err:
3733	return -1;
3734}
3735
3736/*
3737 *  chip handler for MODIFY DATA POINTER MESSAGE
3738 *
3739 *  We also call this function on IGNORE WIDE RESIDUE
3740 *  messages that do not match a SWIDE full condition.
3741 *  Btw, we assume in that situation that such a message
3742 *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3743 */
3744
3745static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3746{
3747	int dp_ofs	= ofs;
3748	u32	dp_scr	= sym_get_script_dp (np, cp);
3749	u32	dp_ret;
3750	u32	tmp;
3751	u_char	hflags;
3752	int	dp_sg;
3753	struct	sym_pmc *pm;
3754
3755	/*
3756	 *  Not supported for auto-sense.
3757	 */
3758	if (cp->host_flags & HF_SENSE)
3759		goto out_reject;
3760
3761	/*
3762	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3763	 *  to the resulted data pointer.
3764	 */
3765	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3766	if (dp_sg < 0)
3767		goto out_reject;
3768
3769	/*
3770	 *  And our alchemy:) allows to easily calculate the data
3771	 *  script address we want to return for the next data phase.
3772	 */
3773	dp_ret = cpu_to_scr(cp->goalp);
3774	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3775
3776	/*
3777	 *  If offset / scatter entry is zero we donnot need
3778	 *  a context for the new current data pointer.
3779	 */
3780	if (dp_ofs == 0) {
3781		dp_scr = dp_ret;
3782		goto out_ok;
3783	}
3784
3785	/*
3786	 *  Get a context for the new current data pointer.
3787	 */
3788	hflags = INB(np, HF_PRT);
3789
3790	if (hflags & HF_DP_SAVED)
3791		hflags ^= HF_ACT_PM;
3792
3793	if (!(hflags & HF_ACT_PM)) {
3794		pm  = &cp->phys.pm0;
3795		dp_scr = SCRIPTA_BA(np, pm0_data);
3796	}
3797	else {
3798		pm = &cp->phys.pm1;
3799		dp_scr = SCRIPTA_BA(np, pm1_data);
3800	}
3801
3802	hflags &= ~(HF_DP_SAVED);
3803
3804	OUTB(np, HF_PRT, hflags);
3805
3806	/*
3807	 *  Set up the new current data pointer.
3808	 *  ofs < 0 there, and for the next data phase, we
3809	 *  want to transfer part of the data of the sg entry
3810	 *  corresponding to index dp_sg-1 prior to returning
3811	 *  to the main data script.
3812	 */
3813	pm->ret = cpu_to_scr(dp_ret);
3814	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3815	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3816	pm->sg.addr = cpu_to_scr(tmp);
3817	pm->sg.size = cpu_to_scr(-dp_ofs);
3818
3819out_ok:
3820	sym_set_script_dp (np, cp, dp_scr);
3821	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3822	return;
3823
3824out_reject:
3825	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3826}
3827
3828
3829/*
3830 *  chip calculation of the data residual.
3831 *
3832 *  As I used to say, the requirement of data residual
3833 *  in SCSI is broken, useless and cannot be achieved
3834 *  without huge complexity.
3835 *  But most OSes and even the official CAM require it.
3836 *  When stupidity happens to be so widely spread inside
3837 *  a community, it gets hard to convince.
3838 *
3839 *  Anyway, I don't care, since I am not going to use
3840 *  any software that considers this data residual as
3841 *  a relevant information. :)
3842 */
3843
3844int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3845{
3846	int dp_sg, resid = 0;
3847	int dp_ofs = 0;
3848
3849	/*
3850	 *  Check for some data lost or just thrown away.
3851	 *  We are not required to be quite accurate in this
3852	 *  situation. Btw, if we are odd for output and the
3853	 *  device claims some more data, it may well happen
3854	 *  than our residual be zero. :-)
3855	 */
3856	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3857		if (cp->xerr_status & XE_EXTRA_DATA)
3858			resid -= cp->extra_bytes;
3859		if (cp->xerr_status & XE_SODL_UNRUN)
3860			++resid;
3861		if (cp->xerr_status & XE_SWIDE_OVRUN)
3862			--resid;
3863	}
3864
3865	/*
3866	 *  If all data has been transferred,
3867	 *  there is no residual.
3868	 */
3869	if (cp->phys.head.lastp == cp->goalp)
3870		return resid;
3871
3872	/*
3873	 *  If no data transfer occurs, or if the data
3874	 *  pointer is weird, return full residual.
3875	 */
3876	if (cp->startp == cp->phys.head.lastp ||
3877	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3878			    &dp_ofs) < 0) {
3879		return cp->data_len - cp->odd_byte_adjustment;
3880	}
3881
3882	/*
3883	 *  If we were auto-sensing, then we are done.
3884	 */
3885	if (cp->host_flags & HF_SENSE) {
3886		return -dp_ofs;
3887	}
3888
3889	/*
3890	 *  We are now full comfortable in the computation
3891	 *  of the data residual (2's complement).
3892	 */
3893	resid = -cp->ext_ofs;
3894	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3895		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3896		resid += (tmp & 0xffffff);
3897	}
3898
3899	resid -= cp->odd_byte_adjustment;
3900
3901	/*
3902	 *  Hopefully, the result is not too wrong.
3903	 */
3904	return resid;
3905}
3906
3907/*
3908 *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3909 *
3910 *  When we try to negotiate, we append the negotiation message
3911 *  to the identify and (maybe) simple tag message.
3912 *  The host status field is set to HS_NEGOTIATE to mark this
3913 *  situation.
3914 *
3915 *  If the target doesn't answer this message immediately
3916 *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3917 *  will be raised eventually.
3918 *  The handler removes the HS_NEGOTIATE status, and sets the
3919 *  negotiated value to the default (async / nowide).
3920 *
3921 *  If we receive a matching answer immediately, we check it
3922 *  for validity, and set the values.
3923 *
3924 *  If we receive a Reject message immediately, we assume the
3925 *  negotiation has failed, and fall back to standard values.
3926 *
3927 *  If we receive a negotiation message while not in HS_NEGOTIATE
3928 *  state, it's a target initiated negotiation. We prepare a
3929 *  (hopefully) valid answer, set our parameters, and send back
3930 *  this answer to the target.
3931 *
3932 *  If the target doesn't fetch the answer (no message out phase),
3933 *  we assume the negotiation has failed, and fall back to default
3934 *  settings (SIR_NEGO_PROTO interrupt).
3935 *
3936 *  When we set the values, we adjust them in all ccbs belonging
3937 *  to this target, in the controller's register, and in the "phys"
3938 *  field of the controller's struct sym_hcb.
3939 */
3940
3941/*
3942 *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3943 */
3944static int
3945sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3946{
3947	int target = cp->target;
3948	u_char	chg, ofs, per, fak, div;
3949
3950	if (DEBUG_FLAGS & DEBUG_NEGO) {
3951		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3952	}
3953
3954	/*
3955	 *  Get requested values.
3956	 */
3957	chg = 0;
3958	per = np->msgin[3];
3959	ofs = np->msgin[4];
3960
3961	/*
3962	 *  Check values against our limits.
3963	 */
3964	if (ofs) {
3965		if (ofs > np->maxoffs)
3966			{chg = 1; ofs = np->maxoffs;}
3967	}
3968
3969	if (ofs) {
3970		if (per < np->minsync)
3971			{chg = 1; per = np->minsync;}
3972	}
3973
3974	/*
3975	 *  Get new chip synchronous parameters value.
3976	 */
3977	div = fak = 0;
3978	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3979		goto reject_it;
3980
3981	if (DEBUG_FLAGS & DEBUG_NEGO) {
3982		sym_print_addr(cp->cmd,
3983				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3984				ofs, per, div, fak, chg);
3985	}
3986
3987	/*
3988	 *  If it was an answer we want to change,
3989	 *  then it isn't acceptable. Reject it.
3990	 */
3991	if (!req && chg)
3992		goto reject_it;
3993
3994	/*
3995	 *  Apply new values.
3996	 */
3997	sym_setsync (np, target, ofs, per, div, fak);
3998
3999	/*
4000	 *  It was an answer. We are done.
4001	 */
4002	if (!req)
4003		return 0;
4004
4005	/*
4006	 *  It was a request. Prepare an answer message.
4007	 */
4008	spi_populate_sync_msg(np->msgout, per, ofs);
4009
4010	if (DEBUG_FLAGS & DEBUG_NEGO) {
4011		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4012	}
4013
4014	np->msgin [0] = M_NOOP;
4015
4016	return 0;
4017
4018reject_it:
4019	sym_setsync (np, target, 0, 0, 0, 0);
4020	return -1;
4021}
4022
4023static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4024{
4025	int req = 1;
4026	int result;
4027
4028	/*
4029	 *  Request or answer ?
4030	 */
4031	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4032		OUTB(np, HS_PRT, HS_BUSY);
4033		if (cp->nego_status && cp->nego_status != NS_SYNC)
4034			goto reject_it;
4035		req = 0;
4036	}
4037
4038	/*
4039	 *  Check and apply new values.
4040	 */
4041	result = sym_sync_nego_check(np, req, cp);
4042	if (result)	/* Not acceptable, reject it */
4043		goto reject_it;
4044	if (req) {	/* Was a request, send response. */
4045		cp->nego_status = NS_SYNC;
4046		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4047	}
4048	else		/* Was a response, we are done. */
4049		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4050	return;
4051
4052reject_it:
4053	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4054}
4055
4056/*
4057 *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4058 */
4059static int
4060sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4061{
4062	struct sym_tcb *tp = &np->target[target];
4063	unsigned char fak, div;
4064	int dt, chg = 0;
4065
4066	unsigned char per = np->msgin[3];
4067	unsigned char ofs = np->msgin[5];
4068	unsigned char wide = np->msgin[6];
4069	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4070
4071	if (DEBUG_FLAGS & DEBUG_NEGO) {
4072		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4073	}
4074
4075	/*
4076	 *  Check values against our limits.
4077	 */
4078	if (wide > np->maxwide) {
4079		chg = 1;
4080		wide = np->maxwide;
4081	}
4082	if (!wide || !(np->features & FE_U3EN))
4083		opts = 0;
4084
4085	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4086		chg = 1;
4087
4088	dt = opts & PPR_OPT_DT;
4089
4090	if (ofs) {
4091		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4092		if (ofs > maxoffs) {
4093			chg = 1;
4094			ofs = maxoffs;
4095		}
4096	}
4097
4098	if (ofs) {
4099		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4100		if (per < minsync) {
4101			chg = 1;
4102			per = minsync;
4103		}
4104	}
4105
4106	/*
4107	 *  Get new chip synchronous parameters value.
4108	 */
4109	div = fak = 0;
4110	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4111		goto reject_it;
4112
4113	/*
4114	 *  If it was an answer we want to change,
4115	 *  then it isn't acceptable. Reject it.
4116	 */
4117	if (!req && chg)
4118		goto reject_it;
4119
4120	/*
4121	 *  Apply new values.
4122	 */
4123	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4124
4125	/*
4126	 *  It was an answer. We are done.
4127	 */
4128	if (!req)
4129		return 0;
4130
4131	/*
4132	 *  It was a request. Prepare an answer message.
4133	 */
4134	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4135
4136	if (DEBUG_FLAGS & DEBUG_NEGO) {
4137		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4138	}
4139
4140	np->msgin [0] = M_NOOP;
4141
4142	return 0;
4143
4144reject_it:
4145	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4146	/*
4147	 *  If it is a device response that should result in
4148	 *  ST, we may want to try a legacy negotiation later.
4149	 */
4150	if (!req && !opts) {
4151		tp->tgoal.period = per;
4152		tp->tgoal.offset = ofs;
4153		tp->tgoal.width = wide;
4154		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4155		tp->tgoal.check_nego = 1;
4156	}
4157	return -1;
4158}
4159
4160static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4161{
4162	int req = 1;
4163	int result;
4164
4165	/*
4166	 *  Request or answer ?
4167	 */
4168	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4169		OUTB(np, HS_PRT, HS_BUSY);
4170		if (cp->nego_status && cp->nego_status != NS_PPR)
4171			goto reject_it;
4172		req = 0;
4173	}
4174
4175	/*
4176	 *  Check and apply new values.
4177	 */
4178	result = sym_ppr_nego_check(np, req, cp->target);
4179	if (result)	/* Not acceptable, reject it */
4180		goto reject_it;
4181	if (req) {	/* Was a request, send response. */
4182		cp->nego_status = NS_PPR;
4183		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4184	}
4185	else		/* Was a response, we are done. */
4186		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4187	return;
4188
4189reject_it:
4190	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4191}
4192
4193/*
4194 *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4195 */
4196static int
4197sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4198{
4199	int target = cp->target;
4200	u_char	chg, wide;
4201
4202	if (DEBUG_FLAGS & DEBUG_NEGO) {
4203		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4204	}
4205
4206	/*
4207	 *  Get requested values.
4208	 */
4209	chg  = 0;
4210	wide = np->msgin[3];
4211
4212	/*
4213	 *  Check values against our limits.
4214	 */
4215	if (wide > np->maxwide) {
4216		chg = 1;
4217		wide = np->maxwide;
4218	}
4219
4220	if (DEBUG_FLAGS & DEBUG_NEGO) {
4221		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4222				wide, chg);
4223	}
4224
4225	/*
4226	 *  If it was an answer we want to change,
4227	 *  then it isn't acceptable. Reject it.
4228	 */
4229	if (!req && chg)
4230		goto reject_it;
4231
4232	/*
4233	 *  Apply new values.
4234	 */
4235	sym_setwide (np, target, wide);
4236
4237	/*
4238	 *  It was an answer. We are done.
4239	 */
4240	if (!req)
4241		return 0;
4242
4243	/*
4244	 *  It was a request. Prepare an answer message.
4245	 */
4246	spi_populate_width_msg(np->msgout, wide);
4247
4248	np->msgin [0] = M_NOOP;
4249
4250	if (DEBUG_FLAGS & DEBUG_NEGO) {
4251		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4252	}
4253
4254	return 0;
4255
4256reject_it:
4257	return -1;
4258}
4259
4260static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4261{
4262	int req = 1;
4263	int result;
4264
4265	/*
4266	 *  Request or answer ?
4267	 */
4268	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4269		OUTB(np, HS_PRT, HS_BUSY);
4270		if (cp->nego_status && cp->nego_status != NS_WIDE)
4271			goto reject_it;
4272		req = 0;
4273	}
4274
4275	/*
4276	 *  Check and apply new values.
4277	 */
4278	result = sym_wide_nego_check(np, req, cp);
4279	if (result)	/* Not acceptable, reject it */
4280		goto reject_it;
4281	if (req) {	/* Was a request, send response. */
4282		cp->nego_status = NS_WIDE;
4283		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4284	} else {		/* Was a response. */
4285		/*
4286		 * Negotiate for SYNC immediately after WIDE response.
4287		 * This allows to negotiate for both WIDE and SYNC on
4288		 * a single SCSI command (Suggested by Justin Gibbs).
4289		 */
4290		if (tp->tgoal.offset) {
4291			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4292					tp->tgoal.offset);
4293
4294			if (DEBUG_FLAGS & DEBUG_NEGO) {
4295				sym_print_nego_msg(np, cp->target,
4296				                   "sync msgout", np->msgout);
4297			}
4298
4299			cp->nego_status = NS_SYNC;
4300			OUTB(np, HS_PRT, HS_NEGOTIATE);
4301			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4302			return;
4303		} else
4304			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4305	}
4306
4307	return;
4308
4309reject_it:
4310	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4311}
4312
4313/*
4314 *  Reset DT, SYNC or WIDE to default settings.
4315 *
4316 *  Called when a negotiation does not succeed either
4317 *  on rejection or on protocol error.
4318 *
4319 *  A target that understands a PPR message should never
4320 *  reject it, and messing with it is very unlikely.
4321 *  So, if a PPR makes problems, we may just want to
4322 *  try a legacy negotiation later.
4323 */
4324static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4325{
4326	switch (cp->nego_status) {
4327	case NS_PPR:
4328#if 0
4329		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4330#else
4331		if (tp->tgoal.period < np->minsync)
4332			tp->tgoal.period = np->minsync;
4333		if (tp->tgoal.offset > np->maxoffs)
4334			tp->tgoal.offset = np->maxoffs;
4335		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4336		tp->tgoal.check_nego = 1;
4337#endif
4338		break;
4339	case NS_SYNC:
4340		sym_setsync (np, cp->target, 0, 0, 0, 0);
4341		break;
4342	case NS_WIDE:
4343		sym_setwide (np, cp->target, 0);
4344		break;
4345	}
4346	np->msgin [0] = M_NOOP;
4347	np->msgout[0] = M_NOOP;
4348	cp->nego_status = 0;
4349}
4350
4351/*
4352 *  chip handler for MESSAGE REJECT received in response to
4353 *  PPR, WIDE or SYNCHRONOUS negotiation.
4354 */
4355static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4356{
4357	sym_nego_default(np, tp, cp);
4358	OUTB(np, HS_PRT, HS_BUSY);
4359}
4360
4361#define sym_printk(lvl, tp, cp, fmt, v...) do { \
4362	if (cp)							\
4363		scmd_printk(lvl, cp->cmd, fmt, ##v);		\
4364	else							\
4365		starget_printk(lvl, tp->starget, fmt, ##v);	\
4366} while (0)
4367
4368/*
4369 *  chip exception handler for programmed interrupts.
4370 */
4371static void sym_int_sir(struct sym_hcb *np)
4372{
4373	u_char	num	= INB(np, nc_dsps);
4374	u32	dsa	= INL(np, nc_dsa);
4375	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4376	u_char	target	= INB(np, nc_sdid) & 0x0f;
4377	struct sym_tcb *tp	= &np->target[target];
4378	int	tmp;
4379
4380	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4381
4382	switch (num) {
4383#if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4384	/*
4385	 *  SCRIPTS tell us that we may have to update
4386	 *  64 bit DMA segment registers.
4387	 */
4388	case SIR_DMAP_DIRTY:
4389		sym_update_dmap_regs(np);
4390		goto out;
4391#endif
4392	/*
4393	 *  Command has been completed with error condition
4394	 *  or has been auto-sensed.
4395	 */
4396	case SIR_COMPLETE_ERROR:
4397		sym_complete_error(np, cp);
4398		return;
4399	/*
4400	 *  The C code is currently trying to recover from something.
4401	 *  Typically, user want to abort some command.
4402	 */
4403	case SIR_SCRIPT_STOPPED:
4404	case SIR_TARGET_SELECTED:
4405	case SIR_ABORT_SENT:
4406		sym_sir_task_recovery(np, num);
4407		return;
4408	/*
4409	 *  The device didn't go to MSG OUT phase after having
4410	 *  been selected with ATN.  We do not want to handle that.
4411	 */
4412	case SIR_SEL_ATN_NO_MSG_OUT:
4413		sym_printk(KERN_WARNING, tp, cp,
4414				"No MSG OUT phase after selection with ATN\n");
4415		goto out_stuck;
4416	/*
4417	 *  The device didn't switch to MSG IN phase after
4418	 *  having reselected the initiator.
4419	 */
4420	case SIR_RESEL_NO_MSG_IN:
4421		sym_printk(KERN_WARNING, tp, cp,
4422				"No MSG IN phase after reselection\n");
4423		goto out_stuck;
4424	/*
4425	 *  After reselection, the device sent a message that wasn't
4426	 *  an IDENTIFY.
4427	 */
4428	case SIR_RESEL_NO_IDENTIFY:
4429		sym_printk(KERN_WARNING, tp, cp,
4430				"No IDENTIFY after reselection\n");
4431		goto out_stuck;
4432	/*
4433	 *  The device reselected a LUN we do not know about.
4434	 */
4435	case SIR_RESEL_BAD_LUN:
4436		np->msgout[0] = M_RESET;
4437		goto out;
4438	/*
4439	 *  The device reselected for an untagged nexus and we
4440	 *  haven't any.
4441	 */
4442	case SIR_RESEL_BAD_I_T_L:
4443		np->msgout[0] = M_ABORT;
4444		goto out;
4445	/*
4446	 * The device reselected for a tagged nexus that we do not have.
4447	 */
4448	case SIR_RESEL_BAD_I_T_L_Q:
4449		np->msgout[0] = M_ABORT_TAG;
4450		goto out;
4451	/*
4452	 *  The SCRIPTS let us know that the device has grabbed
4453	 *  our message and will abort the job.
4454	 */
4455	case SIR_RESEL_ABORTED:
4456		np->lastmsg = np->msgout[0];
4457		np->msgout[0] = M_NOOP;
4458		sym_printk(KERN_WARNING, tp, cp,
4459			"message %x sent on bad reselection\n", np->lastmsg);
4460		goto out;
4461	/*
4462	 *  The SCRIPTS let us know that a message has been
4463	 *  successfully sent to the device.
4464	 */
4465	case SIR_MSG_OUT_DONE:
4466		np->lastmsg = np->msgout[0];
4467		np->msgout[0] = M_NOOP;
4468		/* Should we really care of that */
4469		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4470			if (cp) {
4471				cp->xerr_status &= ~XE_PARITY_ERR;
4472				if (!cp->xerr_status)
4473					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4474			}
4475		}
4476		goto out;
4477	/*
4478	 *  The device didn't send a GOOD SCSI status.
4479	 *  We may have some work to do prior to allow
4480	 *  the SCRIPTS processor to continue.
4481	 */
4482	case SIR_BAD_SCSI_STATUS:
4483		if (!cp)
4484			goto out;
4485		sym_sir_bad_scsi_status(np, num, cp);
4486		return;
4487	/*
4488	 *  We are asked by the SCRIPTS to prepare a
4489	 *  REJECT message.
4490	 */
4491	case SIR_REJECT_TO_SEND:
4492		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4493		np->msgout[0] = M_REJECT;
4494		goto out;
4495	/*
4496	 *  We have been ODD at the end of a DATA IN
4497	 *  transfer and the device didn't send a
4498	 *  IGNORE WIDE RESIDUE message.
4499	 *  It is a data overrun condition.
4500	 */
4501	case SIR_SWIDE_OVERRUN:
4502		if (cp) {
4503			OUTONB(np, HF_PRT, HF_EXT_ERR);
4504			cp->xerr_status |= XE_SWIDE_OVRUN;
4505		}
4506		goto out;
4507	/*
4508	 *  We have been ODD at the end of a DATA OUT
4509	 *  transfer.
4510	 *  It is a data underrun condition.
4511	 */
4512	case SIR_SODL_UNDERRUN:
4513		if (cp) {
4514			OUTONB(np, HF_PRT, HF_EXT_ERR);
4515			cp->xerr_status |= XE_SODL_UNRUN;
4516		}
4517		goto out;
4518	/*
4519	 *  The device wants us to tranfer more data than
4520	 *  expected or in the wrong direction.
4521	 *  The number of extra bytes is in scratcha.
4522	 *  It is a data overrun condition.
4523	 */
4524	case SIR_DATA_OVERRUN:
4525		if (cp) {
4526			OUTONB(np, HF_PRT, HF_EXT_ERR);
4527			cp->xerr_status |= XE_EXTRA_DATA;
4528			cp->extra_bytes += INL(np, nc_scratcha);
4529		}
4530		goto out;
4531	/*
4532	 *  The device switched to an illegal phase (4/5).
4533	 */
4534	case SIR_BAD_PHASE:
4535		if (cp) {
4536			OUTONB(np, HF_PRT, HF_EXT_ERR);
4537			cp->xerr_status |= XE_BAD_PHASE;
4538		}
4539		goto out;
4540	/*
4541	 *  We received a message.
4542	 */
4543	case SIR_MSG_RECEIVED:
4544		if (!cp)
4545			goto out_stuck;
4546		switch (np->msgin [0]) {
4547		/*
4548		 *  We received an extended message.
4549		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4550		 *  and reject all other extended messages.
4551		 */
4552		case M_EXTENDED:
4553			switch (np->msgin [2]) {
4554			case M_X_MODIFY_DP:
4555				if (DEBUG_FLAGS & DEBUG_POINTER)
4556					sym_print_msg(cp, "extended msg ",
4557						      np->msgin);
4558				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4559				      (np->msgin[5]<<8)  + (np->msgin[6]);
4560				sym_modify_dp(np, tp, cp, tmp);
4561				return;
4562			case M_X_SYNC_REQ:
4563				sym_sync_nego(np, tp, cp);
4564				return;
4565			case M_X_PPR_REQ:
4566				sym_ppr_nego(np, tp, cp);
4567				return;
4568			case M_X_WIDE_REQ:
4569				sym_wide_nego(np, tp, cp);
4570				return;
4571			default:
4572				goto out_reject;
4573			}
4574			break;
4575		/*
4576		 *  We received a 1/2 byte message not handled from SCRIPTS.
4577		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4578		 *  RESIDUE messages that haven't been anticipated by
4579		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4580		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4581		 */
4582		case M_IGN_RESIDUE:
4583			if (DEBUG_FLAGS & DEBUG_POINTER)
4584				sym_print_msg(cp, "1 or 2 byte ", np->msgin);
4585			if (cp->host_flags & HF_SENSE)
4586				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4587			else
4588				sym_modify_dp(np, tp, cp, -1);
4589			return;
4590		case M_REJECT:
4591			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4592				sym_nego_rejected(np, tp, cp);
4593			else {
4594				sym_print_addr(cp->cmd,
4595					"M_REJECT received (%x:%x).\n",
4596					scr_to_cpu(np->lastmsg), np->msgout[0]);
4597			}
4598			goto out_clrack;
4599			break;
4600		default:
4601			goto out_reject;
4602		}
4603		break;
4604	/*
4605	 *  We received an unknown message.
4606	 *  Ignore all MSG IN phases and reject it.
4607	 */
4608	case SIR_MSG_WEIRD:
4609		sym_print_msg(cp, "WEIRD message received", np->msgin);
4610		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4611		return;
4612	/*
4613	 *  Negotiation failed.
4614	 *  Target does not send us the reply.
4615	 *  Remove the HS_NEGOTIATE status.
4616	 */
4617	case SIR_NEGO_FAILED:
4618		OUTB(np, HS_PRT, HS_BUSY);
4619	/*
4620	 *  Negotiation failed.
4621	 *  Target does not want answer message.
4622	 */
4623		fallthrough;
4624	case SIR_NEGO_PROTO:
4625		sym_nego_default(np, tp, cp);
4626		goto out;
4627	}
4628
4629out:
4630	OUTONB_STD();
4631	return;
4632out_reject:
4633	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4634	return;
4635out_clrack:
4636	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4637	return;
4638out_stuck:
4639	return;
4640}
4641
4642/*
4643 *  Acquire a control block
4644 */
4645struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4646{
4647	u_char tn = cmd->device->id;
4648	u_char ln = cmd->device->lun;
4649	struct sym_tcb *tp = &np->target[tn];
4650	struct sym_lcb *lp = sym_lp(tp, ln);
4651	u_short tag = NO_TAG;
4652	SYM_QUEHEAD *qp;
4653	struct sym_ccb *cp = NULL;
4654
4655	/*
4656	 *  Look for a free CCB
4657	 */
4658	if (sym_que_empty(&np->free_ccbq))
4659		sym_alloc_ccb(np);
4660	qp = sym_remque_head(&np->free_ccbq);
4661	if (!qp)
4662		goto out;
4663	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4664
4665	{
4666		/*
4667		 *  If we have been asked for a tagged command.
4668		 */
4669		if (tag_order) {
4670			/*
4671			 *  Debugging purpose.
4672			 */
4673#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4674			if (lp->busy_itl != 0)
4675				goto out_free;
4676#endif
4677			/*
4678			 *  Allocate resources for tags if not yet.
4679			 */
4680			if (!lp->cb_tags) {
4681				sym_alloc_lcb_tags(np, tn, ln);
4682				if (!lp->cb_tags)
4683					goto out_free;
4684			}
4685			/*
4686			 *  Get a tag for this SCSI IO and set up
4687			 *  the CCB bus address for reselection,
4688			 *  and count it for this LUN.
4689			 *  Toggle reselect path to tagged.
4690			 */
4691			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4692				tag = lp->cb_tags[lp->ia_tag];
4693				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4694					lp->ia_tag = 0;
4695				++lp->busy_itlq;
4696#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4697				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4698				lp->head.resel_sa =
4699					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4700#endif
4701#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4702				cp->tags_si = lp->tags_si;
4703				++lp->tags_sum[cp->tags_si];
4704				++lp->tags_since;
4705#endif
4706			}
4707			else
4708				goto out_free;
4709		}
4710		/*
4711		 *  This command will not be tagged.
4712		 *  If we already have either a tagged or untagged
4713		 *  one, refuse to overlap this untagged one.
4714		 */
4715		else {
4716			/*
4717			 *  Debugging purpose.
4718			 */
4719#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4720			if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4721				goto out_free;
4722#endif
4723			/*
4724			 *  Count this nexus for this LUN.
4725			 *  Set up the CCB bus address for reselection.
4726			 *  Toggle reselect path to untagged.
4727			 */
4728			++lp->busy_itl;
4729#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4730			if (lp->busy_itl == 1) {
4731				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4732				lp->head.resel_sa =
4733				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4734			}
4735			else
4736				goto out_free;
4737#endif
4738		}
4739	}
4740	/*
4741	 *  Put the CCB into the busy queue.
4742	 */
4743	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4744#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4745	if (lp) {
4746		sym_remque(&cp->link2_ccbq);
4747		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4748	}
4749
4750#endif
4751	cp->to_abort = 0;
4752	cp->odd_byte_adjustment = 0;
4753	cp->tag	   = tag;
4754	cp->order  = tag_order;
4755	cp->target = tn;
4756	cp->lun    = ln;
4757
4758	if (DEBUG_FLAGS & DEBUG_TAGS) {
4759		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4760	}
4761
4762out:
4763	return cp;
4764out_free:
4765	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4766	return NULL;
4767}
4768
4769/*
4770 *  Release one control block
4771 */
4772void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4773{
4774	struct sym_tcb *tp = &np->target[cp->target];
4775	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4776
4777	if (DEBUG_FLAGS & DEBUG_TAGS) {
4778		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4779				cp, cp->tag);
4780	}
4781
4782	/*
4783	 *  If LCB available,
4784	 */
4785	if (lp) {
4786		/*
4787		 *  If tagged, release the tag, set the relect path
4788		 */
4789		if (cp->tag != NO_TAG) {
4790#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4791			--lp->tags_sum[cp->tags_si];
4792#endif
4793			/*
4794			 *  Free the tag value.
4795			 */
4796			lp->cb_tags[lp->if_tag] = cp->tag;
4797			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4798				lp->if_tag = 0;
4799			/*
4800			 *  Make the reselect path invalid,
4801			 *  and uncount this CCB.
4802			 */
4803			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4804			--lp->busy_itlq;
4805		} else {	/* Untagged */
4806			/*
4807			 *  Make the reselect path invalid,
4808			 *  and uncount this CCB.
4809			 */
4810			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4811			--lp->busy_itl;
4812		}
4813		/*
4814		 *  If no JOB active, make the LUN reselect path invalid.
4815		 */
4816		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4817			lp->head.resel_sa =
4818				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4819	}
4820
4821	/*
4822	 *  We donnot queue more than 1 ccb per target
4823	 *  with negotiation at any time. If this ccb was
4824	 *  used for negotiation, clear this info in the tcb.
4825	 */
4826	if (cp == tp->nego_cp)
4827		tp->nego_cp = NULL;
4828
4829#ifdef SYM_CONF_IARB_SUPPORT
4830	/*
4831	 *  If we just complete the last queued CCB,
4832	 *  clear this info that is no longer relevant.
4833	 */
4834	if (cp == np->last_cp)
4835		np->last_cp = 0;
4836#endif
4837
4838	/*
4839	 *  Make this CCB available.
4840	 */
4841	cp->cmd = NULL;
4842	cp->host_status = HS_IDLE;
4843	sym_remque(&cp->link_ccbq);
4844	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4845
4846#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4847	if (lp) {
4848		sym_remque(&cp->link2_ccbq);
4849		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4850		if (cp->started) {
4851			if (cp->tag != NO_TAG)
4852				--lp->started_tags;
4853			else
4854				--lp->started_no_tag;
4855		}
4856	}
4857	cp->started = 0;
4858#endif
4859}
4860
4861/*
4862 *  Allocate a CCB from memory and initialize its fixed part.
4863 */
4864static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4865{
4866	struct sym_ccb *cp = NULL;
4867	int hcode;
4868
4869	/*
4870	 *  Prevent from allocating more CCBs than we can
4871	 *  queue to the controller.
4872	 */
4873	if (np->actccbs >= SYM_CONF_MAX_START)
4874		return NULL;
4875
4876	/*
4877	 *  Allocate memory for this CCB.
4878	 */
4879	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4880	if (!cp)
4881		goto out_free;
4882
4883	/*
4884	 *  Count it.
4885	 */
4886	np->actccbs++;
4887
4888	/*
4889	 *  Compute the bus address of this ccb.
4890	 */
4891	cp->ccb_ba = vtobus(cp);
4892
4893	/*
4894	 *  Insert this ccb into the hashed list.
4895	 */
4896	hcode = CCB_HASH_CODE(cp->ccb_ba);
4897	cp->link_ccbh = np->ccbh[hcode];
4898	np->ccbh[hcode] = cp;
4899
4900	/*
4901	 *  Initialyze the start and restart actions.
4902	 */
4903	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4904	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4905
4906 	/*
4907	 *  Initilialyze some other fields.
4908	 */
4909	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4910
4911	/*
4912	 *  Chain into free ccb queue.
4913	 */
4914	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4915
4916	/*
4917	 *  Chain into optionnal lists.
4918	 */
4919#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4920	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4921#endif
4922	return cp;
4923out_free:
4924	if (cp)
4925		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4926	return NULL;
4927}
4928
4929/*
4930 *  Look up a CCB from a DSA value.
4931 */
4932static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4933{
4934	int hcode;
4935	struct sym_ccb *cp;
4936
4937	hcode = CCB_HASH_CODE(dsa);
4938	cp = np->ccbh[hcode];
4939	while (cp) {
4940		if (cp->ccb_ba == dsa)
4941			break;
4942		cp = cp->link_ccbh;
4943	}
4944
4945	return cp;
4946}
4947
4948/*
4949 *  Target control block initialisation.
4950 *  Nothing important to do at the moment.
4951 */
4952static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4953{
4954#if 0	/*  Hmmm... this checking looks paranoid. */
4955	/*
4956	 *  Check some alignments required by the chip.
4957	 */
4958	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4959		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4960	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4961		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4962#endif
4963}
4964
4965/*
4966 *  Lun control block allocation and initialization.
4967 */
4968struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4969{
4970	struct sym_tcb *tp = &np->target[tn];
4971	struct sym_lcb *lp = NULL;
4972
4973	/*
4974	 *  Initialize the target control block if not yet.
4975	 */
4976	sym_init_tcb (np, tn);
4977
4978	/*
4979	 *  Allocate the LCB bus address array.
4980	 *  Compute the bus address of this table.
4981	 */
4982	if (ln && !tp->luntbl) {
4983		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4984		if (!tp->luntbl)
4985			goto fail;
4986		memset32(tp->luntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64);
4987		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4988	}
4989
4990	/*
4991	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
4992	 */
4993	if (ln && !tp->lunmp) {
4994		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4995				GFP_ATOMIC);
4996		if (!tp->lunmp)
4997			goto fail;
4998	}
4999
5000	/*
5001	 *  Allocate the lcb.
5002	 *  Make it available to the chip.
5003	 */
5004	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5005	if (!lp)
5006		goto fail;
5007	if (ln) {
5008		tp->lunmp[ln] = lp;
5009		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5010	}
5011	else {
5012		tp->lun0p = lp;
5013		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5014	}
5015	tp->nlcb++;
5016
5017	/*
5018	 *  Let the itl task point to error handling.
5019	 */
5020	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5021
5022	/*
5023	 *  Set the reselect pattern to our default. :)
5024	 */
5025	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5026
5027	/*
5028	 *  Set user capabilities.
5029	 */
5030	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5031
5032#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5033	/*
5034	 *  Initialize device queueing.
5035	 */
5036	sym_que_init(&lp->waiting_ccbq);
5037	sym_que_init(&lp->started_ccbq);
5038	lp->started_max   = SYM_CONF_MAX_TASK;
5039	lp->started_limit = SYM_CONF_MAX_TASK;
5040#endif
5041
5042fail:
5043	return lp;
5044}
5045
5046/*
5047 *  Allocate LCB resources for tagged command queuing.
5048 */
5049static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5050{
5051	struct sym_tcb *tp = &np->target[tn];
5052	struct sym_lcb *lp = sym_lp(tp, ln);
5053	int i;
5054
5055	/*
5056	 *  Allocate the task table and and the tag allocation
5057	 *  circular buffer. We want both or none.
5058	 */
5059	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5060	if (!lp->itlq_tbl)
5061		goto fail;
5062	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5063	if (!lp->cb_tags) {
5064		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5065		lp->itlq_tbl = NULL;
5066		goto fail;
5067	}
5068
5069	/*
5070	 *  Initialize the task table with invalid entries.
5071	 */
5072	memset32(lp->itlq_tbl, cpu_to_scr(np->notask_ba), SYM_CONF_MAX_TASK);
5073
5074	/*
5075	 *  Fill up the tag buffer with tag numbers.
5076	 */
5077	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5078		lp->cb_tags[i] = i;
5079
5080	/*
5081	 *  Make the task table available to SCRIPTS,
5082	 *  And accept tagged commands now.
5083	 */
5084	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5085
5086	return;
5087fail:
5088	return;
5089}
5090
5091/*
5092 *  Lun control block deallocation. Returns the number of valid remaining LCBs
5093 *  for the target.
5094 */
5095int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5096{
5097	struct sym_tcb *tp = &np->target[tn];
5098	struct sym_lcb *lp = sym_lp(tp, ln);
5099
5100	tp->nlcb--;
5101
5102	if (ln) {
5103		if (!tp->nlcb) {
5104			kfree(tp->lunmp);
5105			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5106			tp->lunmp = NULL;
5107			tp->luntbl = NULL;
5108			tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5109		} else {
5110			tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5111			tp->lunmp[ln] = NULL;
5112		}
5113	} else {
5114		tp->lun0p = NULL;
5115		tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5116	}
5117
5118	if (lp->itlq_tbl) {
5119		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5120		kfree(lp->cb_tags);
5121	}
5122
5123	sym_mfree_dma(lp, sizeof(*lp), "LCB");
5124
5125	return tp->nlcb;
5126}
5127
5128/*
5129 *  Queue a SCSI IO to the controller.
5130 */
5131int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5132{
5133	struct scsi_device *sdev = cmd->device;
5134	struct sym_tcb *tp;
5135	struct sym_lcb *lp;
5136	u_char	*msgptr;
5137	u_int   msglen;
5138	int can_disconnect;
5139
5140	/*
5141	 *  Keep track of the IO in our CCB.
5142	 */
5143	cp->cmd = cmd;
5144
5145	/*
5146	 *  Retrieve the target descriptor.
5147	 */
5148	tp = &np->target[cp->target];
5149
5150	/*
5151	 *  Retrieve the lun descriptor.
5152	 */
5153	lp = sym_lp(tp, sdev->lun);
5154
5155	can_disconnect = (cp->tag != NO_TAG) ||
5156		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5157
5158	msgptr = cp->scsi_smsg;
5159	msglen = 0;
5160	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5161
5162	/*
5163	 *  Build the tag message if present.
5164	 */
5165	if (cp->tag != NO_TAG) {
5166		u_char order = cp->order;
5167
5168		switch(order) {
5169		case M_ORDERED_TAG:
5170			break;
5171		case M_HEAD_TAG:
5172			break;
5173		default:
5174			order = M_SIMPLE_TAG;
5175		}
5176#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5177		/*
5178		 *  Avoid too much reordering of SCSI commands.
5179		 *  The algorithm tries to prevent completion of any
5180		 *  tagged command from being delayed against more
5181		 *  than 3 times the max number of queued commands.
5182		 */
5183		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5184			lp->tags_si = !(lp->tags_si);
5185			if (lp->tags_sum[lp->tags_si]) {
5186				order = M_ORDERED_TAG;
5187				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5188					sym_print_addr(cmd,
5189						"ordered tag forced.\n");
5190				}
5191			}
5192			lp->tags_since = 0;
5193		}
5194#endif
5195		msgptr[msglen++] = order;
5196
5197		/*
5198		 *  For less than 128 tags, actual tags are numbered
5199		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5200		 *  with devices that have problems with #TAG 0 or too
5201		 *  great #TAG numbers. For more tags (up to 256),
5202		 *  we use directly our tag number.
5203		 */
5204#if SYM_CONF_MAX_TASK > (512/4)
5205		msgptr[msglen++] = cp->tag;
5206#else
5207		msgptr[msglen++] = (cp->tag << 1) + 1;
5208#endif
5209	}
5210
5211	/*
5212	 *  Build a negotiation message if needed.
5213	 *  (nego_status is filled by sym_prepare_nego())
5214	 *
5215	 *  Always negotiate on INQUIRY and REQUEST SENSE.
5216	 *
5217	 */
5218	cp->nego_status = 0;
5219	if ((tp->tgoal.check_nego ||
5220	     cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5221	    !tp->nego_cp && lp) {
5222		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5223	}
5224
5225	/*
5226	 *  Startqueue
5227	 */
5228	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5229	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5230
5231	/*
5232	 *  select
5233	 */
5234	cp->phys.select.sel_id		= cp->target;
5235	cp->phys.select.sel_scntl3	= tp->head.wval;
5236	cp->phys.select.sel_sxfer	= tp->head.sval;
5237	cp->phys.select.sel_scntl4	= tp->head.uval;
5238
5239	/*
5240	 *  message
5241	 */
5242	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5243	cp->phys.smsg.size	= cpu_to_scr(msglen);
5244
5245	/*
5246	 *  status
5247	 */
5248	cp->host_xflags		= 0;
5249	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5250	cp->ssss_status		= S_ILLEGAL;
5251	cp->xerr_status		= 0;
5252	cp->host_flags		= 0;
5253	cp->extra_bytes		= 0;
5254
5255	/*
5256	 *  extreme data pointer.
5257	 *  shall be positive, so -1 is lower than lowest.:)
5258	 */
5259	cp->ext_sg  = -1;
5260	cp->ext_ofs = 0;
5261
5262	/*
5263	 *  Build the CDB and DATA descriptor block
5264	 *  and start the IO.
5265	 */
5266	return sym_setup_data_and_start(np, cmd, cp);
5267}
5268
5269/*
5270 *  Reset a SCSI target (all LUNs of this target).
5271 */
5272int sym_reset_scsi_target(struct sym_hcb *np, int target)
5273{
5274	struct sym_tcb *tp;
5275
5276	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5277		return -1;
5278
5279	tp = &np->target[target];
5280	tp->to_reset = 1;
5281
5282	np->istat_sem = SEM;
5283	OUTB(np, nc_istat, SIGP|SEM);
5284
5285	return 0;
5286}
5287
5288/*
5289 *  Abort a SCSI IO.
5290 */
5291static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5292{
5293	/*
5294	 *  Check that the IO is active.
5295	 */
5296	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5297		return -1;
5298
5299	/*
5300	 *  If a previous abort didn't succeed in time,
5301	 *  perform a BUS reset.
5302	 */
5303	if (cp->to_abort) {
5304		sym_reset_scsi_bus(np, 1);
5305		return 0;
5306	}
5307
5308	/*
5309	 *  Mark the CCB for abort and allow time for.
5310	 */
5311	cp->to_abort = timed_out ? 2 : 1;
5312
5313	/*
5314	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5315	 */
5316	np->istat_sem = SEM;
5317	OUTB(np, nc_istat, SIGP|SEM);
5318	return 0;
5319}
5320
5321int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5322{
5323	struct sym_ccb *cp;
5324	SYM_QUEHEAD *qp;
5325
5326	/*
5327	 *  Look up our CCB control block.
5328	 */
5329	cp = NULL;
5330	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5331		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5332		if (cp2->cmd == cmd) {
5333			cp = cp2;
5334			break;
5335		}
5336	}
5337
5338	return sym_abort_ccb(np, cp, timed_out);
5339}
5340
5341/*
5342 *  Complete execution of a SCSI command with extended
5343 *  error, SCSI status error, or having been auto-sensed.
5344 *
5345 *  The SCRIPTS processor is not running there, so we
5346 *  can safely access IO registers and remove JOBs from
5347 *  the START queue.
5348 *  SCRATCHA is assumed to have been loaded with STARTPOS
5349 *  before the SCRIPTS called the C code.
5350 */
5351void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5352{
5353	struct scsi_device *sdev;
5354	struct scsi_cmnd *cmd;
5355#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5356	struct sym_tcb *tp;
5357	struct sym_lcb *lp;
5358#endif
5359	int resid;
5360	int i;
5361
5362	/*
5363	 *  Paranoid check. :)
5364	 */
5365	if (!cp || !cp->cmd)
5366		return;
5367
5368	cmd = cp->cmd;
5369	sdev = cmd->device;
5370	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5371		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5372			cp->host_status, cp->ssss_status, cp->host_flags);
5373	}
5374
5375#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5376	/*
5377	 *  Get target and lun pointers.
5378	 */
5379	tp = &np->target[cp->target];
5380	lp = sym_lp(tp, sdev->lun);
5381#endif
5382
5383	/*
5384	 *  Check for extended errors.
5385	 */
5386	if (cp->xerr_status) {
5387		if (sym_verbose)
5388			sym_print_xerr(cmd, cp->xerr_status);
5389		if (cp->host_status == HS_COMPLETE)
5390			cp->host_status = HS_COMP_ERR;
5391	}
5392
5393	/*
5394	 *  Calculate the residual.
5395	 */
5396	resid = sym_compute_residual(np, cp);
5397
5398	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5399		resid  = 0;		 /* throw them away. :)		    */
5400		cp->sv_resid = 0;
5401	}
5402#ifdef DEBUG_2_0_X
5403if (resid)
5404	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5405#endif
5406
5407	/*
5408	 *  Dequeue all queued CCBs for that device
5409	 *  not yet started by SCRIPTS.
5410	 */
5411	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5412	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5413
5414	/*
5415	 *  Restart the SCRIPTS processor.
5416	 */
5417	OUTL_DSP(np, SCRIPTA_BA(np, start));
5418
5419#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5420	if (cp->host_status == HS_COMPLETE &&
5421	    cp->ssss_status == S_QUEUE_FULL) {
5422		if (!lp || lp->started_tags - i < 2)
5423			goto weirdness;
5424		/*
5425		 *  Decrease queue depth as needed.
5426		 */
5427		lp->started_max = lp->started_tags - i - 1;
5428		lp->num_sgood = 0;
5429
5430		if (sym_verbose >= 2) {
5431			sym_print_addr(cmd, " queue depth is now %d\n",
5432					lp->started_max);
5433		}
5434
5435		/*
5436		 *  Repair the CCB.
5437		 */
5438		cp->host_status = HS_BUSY;
5439		cp->ssss_status = S_ILLEGAL;
5440
5441		/*
5442		 *  Let's requeue it to device.
5443		 */
5444		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5445		goto finish;
5446	}
5447weirdness:
5448#endif
5449	/*
5450	 *  Build result in CAM ccb.
5451	 */
5452	sym_set_cam_result_error(np, cp, resid);
5453
5454#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5455finish:
5456#endif
5457	/*
5458	 *  Add this one to the COMP queue.
5459	 */
5460	sym_remque(&cp->link_ccbq);
5461	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5462
5463	/*
5464	 *  Complete all those commands with either error
5465	 *  or requeue condition.
5466	 */
5467	sym_flush_comp_queue(np, 0);
5468
5469#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5470	/*
5471	 *  Donnot start more than 1 command after an error.
5472	 */
5473	sym_start_next_ccbs(np, lp, 1);
5474#endif
5475}
5476
5477/*
5478 *  Complete execution of a successful SCSI command.
5479 *
5480 *  Only successful commands go to the DONE queue,
5481 *  since we need to have the SCRIPTS processor
5482 *  stopped on any error condition.
5483 *  The SCRIPTS processor is running while we are
5484 *  completing successful commands.
5485 */
5486void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5487{
5488#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5489	struct sym_tcb *tp;
5490	struct sym_lcb *lp;
5491#endif
5492	struct scsi_cmnd *cmd;
5493	int resid;
5494
5495	/*
5496	 *  Paranoid check. :)
5497	 */
5498	if (!cp || !cp->cmd)
5499		return;
5500	assert (cp->host_status == HS_COMPLETE);
5501
5502	/*
5503	 *  Get user command.
5504	 */
5505	cmd = cp->cmd;
5506
5507#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5508	/*
5509	 *  Get target and lun pointers.
5510	 */
5511	tp = &np->target[cp->target];
5512	lp = sym_lp(tp, cp->lun);
5513#endif
5514
5515	/*
5516	 *  If all data have been transferred, given than no
5517	 *  extended error did occur, there is no residual.
5518	 */
5519	resid = 0;
5520	if (cp->phys.head.lastp != cp->goalp)
5521		resid = sym_compute_residual(np, cp);
5522
5523	/*
5524	 *  Wrong transfer residuals may be worse than just always
5525	 *  returning zero. User can disable this feature in
5526	 *  sym53c8xx.h. Residual support is enabled by default.
5527	 */
5528	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5529		resid  = 0;
5530#ifdef DEBUG_2_0_X
5531if (resid)
5532	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5533#endif
5534
5535	/*
5536	 *  Build result in CAM ccb.
5537	 */
5538	sym_set_cam_result_ok(cp, cmd, resid);
5539
5540#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5541	/*
5542	 *  If max number of started ccbs had been reduced,
5543	 *  increase it if 200 good status received.
5544	 */
5545	if (lp && lp->started_max < lp->started_limit) {
5546		++lp->num_sgood;
5547		if (lp->num_sgood >= 200) {
5548			lp->num_sgood = 0;
5549			++lp->started_max;
5550			if (sym_verbose >= 2) {
5551				sym_print_addr(cmd, " queue depth is now %d\n",
5552				       lp->started_max);
5553			}
5554		}
5555	}
5556#endif
5557
5558	/*
5559	 *  Free our CCB.
5560	 */
5561	sym_free_ccb (np, cp);
5562
5563#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564	/*
5565	 *  Requeue a couple of awaiting scsi commands.
5566	 */
5567	if (!sym_que_empty(&lp->waiting_ccbq))
5568		sym_start_next_ccbs(np, lp, 2);
5569#endif
5570	/*
5571	 *  Complete the command.
5572	 */
5573	sym_xpt_done(np, cmd);
5574}
5575
5576/*
5577 *  Soft-attach the controller.
5578 */
5579int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5580{
5581	struct sym_hcb *np = sym_get_hcb(shost);
5582	int i;
5583
5584	/*
5585	 *  Get some info about the firmware.
5586	 */
5587	np->scripta_sz	 = fw->a_size;
5588	np->scriptb_sz	 = fw->b_size;
5589	np->scriptz_sz	 = fw->z_size;
5590	np->fw_setup	 = fw->setup;
5591	np->fw_patch	 = fw->patch;
5592	np->fw_name	 = fw->name;
5593
5594	/*
5595	 *  Save setting of some IO registers, so we will
5596	 *  be able to probe specific implementations.
5597	 */
5598	sym_save_initial_setting (np);
5599
5600	/*
5601	 *  Reset the chip now, since it has been reported
5602	 *  that SCSI clock calibration may not work properly
5603	 *  if the chip is currently active.
5604	 */
5605	sym_chip_reset(np);
5606
5607	/*
5608	 *  Prepare controller and devices settings, according
5609	 *  to chip features, user set-up and driver set-up.
5610	 */
5611	sym_prepare_setting(shost, np, nvram);
5612
5613	/*
5614	 *  Check the PCI clock frequency.
5615	 *  Must be performed after prepare_setting since it destroys
5616	 *  STEST1 that is used to probe for the clock doubler.
5617	 */
5618	i = sym_getpciclock(np);
5619	if (i > 37000 && !(np->features & FE_66MHZ))
5620		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5621			sym_name(np), i);
5622
5623	/*
5624	 *  Allocate the start queue.
5625	 */
5626	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5627	if (!np->squeue)
5628		goto attach_failed;
5629	np->squeue_ba = vtobus(np->squeue);
5630
5631	/*
5632	 *  Allocate the done queue.
5633	 */
5634	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5635	if (!np->dqueue)
5636		goto attach_failed;
5637	np->dqueue_ba = vtobus(np->dqueue);
5638
5639	/*
5640	 *  Allocate the target bus address array.
5641	 */
5642	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5643	if (!np->targtbl)
5644		goto attach_failed;
5645	np->targtbl_ba = vtobus(np->targtbl);
5646
5647	/*
5648	 *  Allocate SCRIPTS areas.
5649	 */
5650	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5651	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5652	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5653	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5654		goto attach_failed;
5655
5656	/*
5657	 *  Allocate the array of lists of CCBs hashed by DSA.
5658	 */
5659	np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(*np->ccbh), GFP_KERNEL);
5660	if (!np->ccbh)
5661		goto attach_failed;
5662
5663	/*
5664	 *  Initialyze the CCB free and busy queues.
5665	 */
5666	sym_que_init(&np->free_ccbq);
5667	sym_que_init(&np->busy_ccbq);
5668	sym_que_init(&np->comp_ccbq);
5669
5670	/*
5671	 *  Initialization for optional handling
5672	 *  of device queueing.
5673	 */
5674#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5675	sym_que_init(&np->dummy_ccbq);
5676#endif
5677	/*
5678	 *  Allocate some CCB. We need at least ONE.
5679	 */
5680	if (!sym_alloc_ccb(np))
5681		goto attach_failed;
5682
5683	/*
5684	 *  Calculate BUS addresses where we are going
5685	 *  to load the SCRIPTS.
5686	 */
5687	np->scripta_ba	= vtobus(np->scripta0);
5688	np->scriptb_ba	= vtobus(np->scriptb0);
5689	np->scriptz_ba	= vtobus(np->scriptz0);
5690
5691	if (np->ram_ba) {
5692		np->scripta_ba = np->ram_ba;
5693		if (np->features & FE_RAM8K) {
5694			np->scriptb_ba = np->scripta_ba + 4096;
5695#if 0	/* May get useful for 64 BIT PCI addressing */
5696			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5697#endif
5698		}
5699	}
5700
5701	/*
5702	 *  Copy scripts to controller instance.
5703	 */
5704	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5705	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5706	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5707
5708	/*
5709	 *  Setup variable parts in scripts and compute
5710	 *  scripts bus addresses used from the C code.
5711	 */
5712	np->fw_setup(np, fw);
5713
5714	/*
5715	 *  Bind SCRIPTS with physical addresses usable by the
5716	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5717	 */
5718	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5719	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5720	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5721
5722#ifdef SYM_CONF_IARB_SUPPORT
5723	/*
5724	 *    If user wants IARB to be set when we win arbitration
5725	 *    and have other jobs, compute the max number of consecutive
5726	 *    settings of IARB hints before we leave devices a chance to
5727	 *    arbitrate for reselection.
5728	 */
5729#ifdef	SYM_SETUP_IARB_MAX
5730	np->iarb_max = SYM_SETUP_IARB_MAX;
5731#else
5732	np->iarb_max = 4;
5733#endif
5734#endif
5735
5736	/*
5737	 *  Prepare the idle and invalid task actions.
5738	 */
5739	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5740	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5741	np->idletask_ba		= vtobus(&np->idletask);
5742
5743	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5744	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5745	np->notask_ba		= vtobus(&np->notask);
5746
5747	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5748	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5749	np->bad_itl_ba		= vtobus(&np->bad_itl);
5750
5751	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5752	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5753	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5754
5755	/*
5756	 *  Allocate and prepare the lun JUMP table that is used
5757	 *  for a target prior the probing of devices (bad lun table).
5758	 *  A private table will be allocated for the target on the
5759	 *  first INQUIRY response received.
5760	 */
5761	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5762	if (!np->badluntbl)
5763		goto attach_failed;
5764
5765	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5766	memset32(np->badluntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64);
5767
5768	/*
5769	 *  Prepare the bus address array that contains the bus
5770	 *  address of each target control block.
5771	 *  For now, assume all logical units are wrong. :)
5772	 */
5773	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5774		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5775		np->target[i].head.luntbl_sa =
5776				cpu_to_scr(vtobus(np->badluntbl));
5777		np->target[i].head.lun0_sa =
5778				cpu_to_scr(vtobus(&np->badlun_sa));
5779	}
5780
5781	/*
5782	 *  Now check the cache handling of the pci chipset.
5783	 */
5784	if (sym_snooptest (np)) {
5785		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5786		goto attach_failed;
5787	}
5788
5789	/*
5790	 *  Sigh! we are done.
5791	 */
5792	return 0;
5793
5794attach_failed:
5795	return -ENXIO;
5796}
5797
5798/*
5799 *  Free everything that has been allocated for this device.
5800 */
5801void sym_hcb_free(struct sym_hcb *np)
5802{
5803	SYM_QUEHEAD *qp;
5804	struct sym_ccb *cp;
5805	struct sym_tcb *tp;
5806	int target;
5807
5808	if (np->scriptz0)
5809		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5810	if (np->scriptb0)
5811		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5812	if (np->scripta0)
5813		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5814	if (np->squeue)
5815		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5816	if (np->dqueue)
5817		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5818
5819	if (np->actccbs) {
5820		while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5821			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5822			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5823		}
5824	}
5825	kfree(np->ccbh);
5826
5827	if (np->badluntbl)
5828		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5829
5830	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5831		tp = &np->target[target];
5832		if (tp->luntbl)
5833			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5834#if SYM_CONF_MAX_LUN > 1
5835		kfree(tp->lunmp);
5836#endif
5837	}
5838	if (np->targtbl)
5839		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5840}
5841