1/*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for         *
3 * Fibre Channel Host Bus Adapters.                                *
4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6 * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7 * EMULEX and SLI are trademarks of Emulex.                        *
8 * www.broadcom.com                                                *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10 *                                                                 *
11 * This program is free software; you can redistribute it and/or   *
12 * modify it under the terms of version 2 of the GNU General       *
13 * Public License as published by the Free Software Foundation.    *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20 * more details, a copy of which can be found in the file COPYING  *
21 * included with this package.                                     *
22 *******************************************************************/
23
24#include <linux/blkdev.h>
25#include <linux/pci.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/slab.h>
29#include <linux/lockdep.h>
30
31#include <scsi/scsi.h>
32#include <scsi/scsi_cmnd.h>
33#include <scsi/scsi_device.h>
34#include <scsi/scsi_host.h>
35#include <scsi/scsi_transport_fc.h>
36#include <scsi/fc/fc_fs.h>
37#include <linux/aer.h>
38#include <linux/crash_dump.h>
39#ifdef CONFIG_X86
40#include <asm/set_memory.h>
41#endif
42
43#include "lpfc_hw4.h"
44#include "lpfc_hw.h"
45#include "lpfc_sli.h"
46#include "lpfc_sli4.h"
47#include "lpfc_nl.h"
48#include "lpfc_disc.h"
49#include "lpfc.h"
50#include "lpfc_scsi.h"
51#include "lpfc_nvme.h"
52#include "lpfc_crtn.h"
53#include "lpfc_logmsg.h"
54#include "lpfc_compat.h"
55#include "lpfc_debugfs.h"
56#include "lpfc_vport.h"
57#include "lpfc_version.h"
58
59/* There are only four IOCB completion types. */
60typedef enum _lpfc_iocb_type {
61	LPFC_UNKNOWN_IOCB,
62	LPFC_UNSOL_IOCB,
63	LPFC_SOL_IOCB,
64	LPFC_ABORT_IOCB
65} lpfc_iocb_type;
66
67
68/* Provide function prototypes local to this module. */
69static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70				  uint32_t);
71static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72			      uint8_t *, uint32_t *);
73static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
74							 struct lpfc_iocbq *);
75static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76				      struct hbq_dmabuf *);
77static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78					  struct hbq_dmabuf *dmabuf);
79static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82				       int);
83static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84				     struct lpfc_queue *eq,
85				     struct lpfc_eqe *eqe);
86static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
87static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
88static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
89static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
90				    struct lpfc_queue *cq,
91				    struct lpfc_cqe *cqe);
92
93static IOCB_t *
94lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
95{
96	return &iocbq->iocb;
97}
98
99#if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
100/**
101 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
102 * @srcp: Source memory pointer.
103 * @destp: Destination memory pointer.
104 * @cnt: Number of words required to be copied.
105 *       Must be a multiple of sizeof(uint64_t)
106 *
107 * This function is used for copying data between driver memory
108 * and the SLI WQ. This function also changes the endianness
109 * of each word if native endianness is different from SLI
110 * endianness. This function can be called with or without
111 * lock.
112 **/
113static void
114lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
115{
116	uint64_t *src = srcp;
117	uint64_t *dest = destp;
118	int i;
119
120	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
121		*dest++ = *src++;
122}
123#else
124#define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
125#endif
126
127/**
128 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
129 * @q: The Work Queue to operate on.
130 * @wqe: The work Queue Entry to put on the Work queue.
131 *
132 * This routine will copy the contents of @wqe to the next available entry on
133 * the @q. This function will then ring the Work Queue Doorbell to signal the
134 * HBA to start processing the Work Queue Entry. This function returns 0 if
135 * successful. If no entries are available on @q then this function will return
136 * -ENOMEM.
137 * The caller is expected to hold the hbalock when calling this routine.
138 **/
139static int
140lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
141{
142	union lpfc_wqe *temp_wqe;
143	struct lpfc_register doorbell;
144	uint32_t host_index;
145	uint32_t idx;
146	uint32_t i = 0;
147	uint8_t *tmp;
148	u32 if_type;
149
150	/* sanity check on queue memory */
151	if (unlikely(!q))
152		return -ENOMEM;
153	temp_wqe = lpfc_sli4_qe(q, q->host_index);
154
155	/* If the host has not yet processed the next entry then we are done */
156	idx = ((q->host_index + 1) % q->entry_count);
157	if (idx == q->hba_index) {
158		q->WQ_overflow++;
159		return -EBUSY;
160	}
161	q->WQ_posted++;
162	/* set consumption flag every once in a while */
163	if (!((q->host_index + 1) % q->notify_interval))
164		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
165	else
166		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
167	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
168		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
169	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
170	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
171		/* write to DPP aperture taking advatage of Combined Writes */
172		tmp = (uint8_t *)temp_wqe;
173#ifdef __raw_writeq
174		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
175			__raw_writeq(*((uint64_t *)(tmp + i)),
176					q->dpp_regaddr + i);
177#else
178		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
179			__raw_writel(*((uint32_t *)(tmp + i)),
180					q->dpp_regaddr + i);
181#endif
182	}
183	/* ensure WQE bcopy and DPP flushed before doorbell write */
184	wmb();
185
186	/* Update the host index before invoking device */
187	host_index = q->host_index;
188
189	q->host_index = idx;
190
191	/* Ring Doorbell */
192	doorbell.word0 = 0;
193	if (q->db_format == LPFC_DB_LIST_FORMAT) {
194		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
195			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
196			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
197			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
198			    q->dpp_id);
199			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
200			    q->queue_id);
201		} else {
202			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
203			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
204
205			/* Leave bits <23:16> clear for if_type 6 dpp */
206			if_type = bf_get(lpfc_sli_intf_if_type,
207					 &q->phba->sli4_hba.sli_intf);
208			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
209				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
210				       host_index);
211		}
212	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
213		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
214		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
215	} else {
216		return -EINVAL;
217	}
218	writel(doorbell.word0, q->db_regaddr);
219
220	return 0;
221}
222
223/**
224 * lpfc_sli4_wq_release - Updates internal hba index for WQ
225 * @q: The Work Queue to operate on.
226 * @index: The index to advance the hba index to.
227 *
228 * This routine will update the HBA index of a queue to reflect consumption of
229 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
230 * an entry the host calls this function to update the queue's internal
231 * pointers.
232 **/
233static void
234lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
235{
236	/* sanity check on queue memory */
237	if (unlikely(!q))
238		return;
239
240	q->hba_index = index;
241}
242
243/**
244 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
245 * @q: The Mailbox Queue to operate on.
246 * @mqe: The Mailbox Queue Entry to put on the Work queue.
247 *
248 * This routine will copy the contents of @mqe to the next available entry on
249 * the @q. This function will then ring the Work Queue Doorbell to signal the
250 * HBA to start processing the Work Queue Entry. This function returns 0 if
251 * successful. If no entries are available on @q then this function will return
252 * -ENOMEM.
253 * The caller is expected to hold the hbalock when calling this routine.
254 **/
255static uint32_t
256lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
257{
258	struct lpfc_mqe *temp_mqe;
259	struct lpfc_register doorbell;
260
261	/* sanity check on queue memory */
262	if (unlikely(!q))
263		return -ENOMEM;
264	temp_mqe = lpfc_sli4_qe(q, q->host_index);
265
266	/* If the host has not yet processed the next entry then we are done */
267	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
268		return -ENOMEM;
269	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
270	/* Save off the mailbox pointer for completion */
271	q->phba->mbox = (MAILBOX_t *)temp_mqe;
272
273	/* Update the host index before invoking device */
274	q->host_index = ((q->host_index + 1) % q->entry_count);
275
276	/* Ring Doorbell */
277	doorbell.word0 = 0;
278	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
279	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
280	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
281	return 0;
282}
283
284/**
285 * lpfc_sli4_mq_release - Updates internal hba index for MQ
286 * @q: The Mailbox Queue to operate on.
287 *
288 * This routine will update the HBA index of a queue to reflect consumption of
289 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
290 * an entry the host calls this function to update the queue's internal
291 * pointers. This routine returns the number of entries that were consumed by
292 * the HBA.
293 **/
294static uint32_t
295lpfc_sli4_mq_release(struct lpfc_queue *q)
296{
297	/* sanity check on queue memory */
298	if (unlikely(!q))
299		return 0;
300
301	/* Clear the mailbox pointer for completion */
302	q->phba->mbox = NULL;
303	q->hba_index = ((q->hba_index + 1) % q->entry_count);
304	return 1;
305}
306
307/**
308 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
309 * @q: The Event Queue to get the first valid EQE from
310 *
311 * This routine will get the first valid Event Queue Entry from @q, update
312 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
313 * the Queue (no more work to do), or the Queue is full of EQEs that have been
314 * processed, but not popped back to the HBA then this routine will return NULL.
315 **/
316static struct lpfc_eqe *
317lpfc_sli4_eq_get(struct lpfc_queue *q)
318{
319	struct lpfc_eqe *eqe;
320
321	/* sanity check on queue memory */
322	if (unlikely(!q))
323		return NULL;
324	eqe = lpfc_sli4_qe(q, q->host_index);
325
326	/* If the next EQE is not valid then we are done */
327	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
328		return NULL;
329
330	/*
331	 * insert barrier for instruction interlock : data from the hardware
332	 * must have the valid bit checked before it can be copied and acted
333	 * upon. Speculative instructions were allowing a bcopy at the start
334	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
335	 * after our return, to copy data before the valid bit check above
336	 * was done. As such, some of the copied data was stale. The barrier
337	 * ensures the check is before any data is copied.
338	 */
339	mb();
340	return eqe;
341}
342
343/**
344 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
345 * @q: The Event Queue to disable interrupts
346 *
347 **/
348void
349lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
350{
351	struct lpfc_register doorbell;
352
353	doorbell.word0 = 0;
354	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
355	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
356	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
357		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
358	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
359	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
360}
361
362/**
363 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
364 * @q: The Event Queue to disable interrupts
365 *
366 **/
367void
368lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
369{
370	struct lpfc_register doorbell;
371
372	doorbell.word0 = 0;
373	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
374	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
375}
376
377/**
378 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
379 * @phba: adapter with EQ
380 * @q: The Event Queue that the host has completed processing for.
381 * @count: Number of elements that have been consumed
382 * @arm: Indicates whether the host wants to arms this CQ.
383 *
384 * This routine will notify the HBA, by ringing the doorbell, that count
385 * number of EQEs have been processed. The @arm parameter indicates whether
386 * the queue should be rearmed when ringing the doorbell.
387 **/
388void
389lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
390		     uint32_t count, bool arm)
391{
392	struct lpfc_register doorbell;
393
394	/* sanity check on queue memory */
395	if (unlikely(!q || (count == 0 && !arm)))
396		return;
397
398	/* ring doorbell for number popped */
399	doorbell.word0 = 0;
400	if (arm) {
401		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
402		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
403	}
404	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
405	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
406	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
407			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
408	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
409	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
410	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
411	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
412		readl(q->phba->sli4_hba.EQDBregaddr);
413}
414
415/**
416 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
417 * @phba: adapter with EQ
418 * @q: The Event Queue that the host has completed processing for.
419 * @count: Number of elements that have been consumed
420 * @arm: Indicates whether the host wants to arms this CQ.
421 *
422 * This routine will notify the HBA, by ringing the doorbell, that count
423 * number of EQEs have been processed. The @arm parameter indicates whether
424 * the queue should be rearmed when ringing the doorbell.
425 **/
426void
427lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
428			  uint32_t count, bool arm)
429{
430	struct lpfc_register doorbell;
431
432	/* sanity check on queue memory */
433	if (unlikely(!q || (count == 0 && !arm)))
434		return;
435
436	/* ring doorbell for number popped */
437	doorbell.word0 = 0;
438	if (arm)
439		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
440	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
441	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
442	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
443	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
444	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
445		readl(q->phba->sli4_hba.EQDBregaddr);
446}
447
448static void
449__lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
450			struct lpfc_eqe *eqe)
451{
452	if (!phba->sli4_hba.pc_sli4_params.eqav)
453		bf_set_le32(lpfc_eqe_valid, eqe, 0);
454
455	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
456
457	/* if the index wrapped around, toggle the valid bit */
458	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
459		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
460}
461
462static void
463lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
464{
465	struct lpfc_eqe *eqe = NULL;
466	u32 eq_count = 0, cq_count = 0;
467	struct lpfc_cqe *cqe = NULL;
468	struct lpfc_queue *cq = NULL, *childq = NULL;
469	int cqid = 0;
470
471	/* walk all the EQ entries and drop on the floor */
472	eqe = lpfc_sli4_eq_get(eq);
473	while (eqe) {
474		/* Get the reference to the corresponding CQ */
475		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
476		cq = NULL;
477
478		list_for_each_entry(childq, &eq->child_list, list) {
479			if (childq->queue_id == cqid) {
480				cq = childq;
481				break;
482			}
483		}
484		/* If CQ is valid, iterate through it and drop all the CQEs */
485		if (cq) {
486			cqe = lpfc_sli4_cq_get(cq);
487			while (cqe) {
488				__lpfc_sli4_consume_cqe(phba, cq, cqe);
489				cq_count++;
490				cqe = lpfc_sli4_cq_get(cq);
491			}
492			/* Clear and re-arm the CQ */
493			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
494			    LPFC_QUEUE_REARM);
495			cq_count = 0;
496		}
497		__lpfc_sli4_consume_eqe(phba, eq, eqe);
498		eq_count++;
499		eqe = lpfc_sli4_eq_get(eq);
500	}
501
502	/* Clear and re-arm the EQ */
503	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
504}
505
506static int
507lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
508		     uint8_t rearm)
509{
510	struct lpfc_eqe *eqe;
511	int count = 0, consumed = 0;
512
513	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
514		goto rearm_and_exit;
515
516	eqe = lpfc_sli4_eq_get(eq);
517	while (eqe) {
518		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
519		__lpfc_sli4_consume_eqe(phba, eq, eqe);
520
521		consumed++;
522		if (!(++count % eq->max_proc_limit))
523			break;
524
525		if (!(count % eq->notify_interval)) {
526			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
527							LPFC_QUEUE_NOARM);
528			consumed = 0;
529		}
530
531		eqe = lpfc_sli4_eq_get(eq);
532	}
533	eq->EQ_processed += count;
534
535	/* Track the max number of EQEs processed in 1 intr */
536	if (count > eq->EQ_max_eqe)
537		eq->EQ_max_eqe = count;
538
539	xchg(&eq->queue_claimed, 0);
540
541rearm_and_exit:
542	/* Always clear the EQ. */
543	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
544
545	return count;
546}
547
548/**
549 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
550 * @q: The Completion Queue to get the first valid CQE from
551 *
552 * This routine will get the first valid Completion Queue Entry from @q, update
553 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
554 * the Queue (no more work to do), or the Queue is full of CQEs that have been
555 * processed, but not popped back to the HBA then this routine will return NULL.
556 **/
557static struct lpfc_cqe *
558lpfc_sli4_cq_get(struct lpfc_queue *q)
559{
560	struct lpfc_cqe *cqe;
561
562	/* sanity check on queue memory */
563	if (unlikely(!q))
564		return NULL;
565	cqe = lpfc_sli4_qe(q, q->host_index);
566
567	/* If the next CQE is not valid then we are done */
568	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
569		return NULL;
570
571	/*
572	 * insert barrier for instruction interlock : data from the hardware
573	 * must have the valid bit checked before it can be copied and acted
574	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
575	 * instructions allowing action on content before valid bit checked,
576	 * add barrier here as well. May not be needed as "content" is a
577	 * single 32-bit entity here (vs multi word structure for cq's).
578	 */
579	mb();
580	return cqe;
581}
582
583static void
584__lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
585			struct lpfc_cqe *cqe)
586{
587	if (!phba->sli4_hba.pc_sli4_params.cqav)
588		bf_set_le32(lpfc_cqe_valid, cqe, 0);
589
590	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
591
592	/* if the index wrapped around, toggle the valid bit */
593	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
594		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
595}
596
597/**
598 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
599 * @phba: the adapter with the CQ
600 * @q: The Completion Queue that the host has completed processing for.
601 * @count: the number of elements that were consumed
602 * @arm: Indicates whether the host wants to arms this CQ.
603 *
604 * This routine will notify the HBA, by ringing the doorbell, that the
605 * CQEs have been processed. The @arm parameter specifies whether the
606 * queue should be rearmed when ringing the doorbell.
607 **/
608void
609lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
610		     uint32_t count, bool arm)
611{
612	struct lpfc_register doorbell;
613
614	/* sanity check on queue memory */
615	if (unlikely(!q || (count == 0 && !arm)))
616		return;
617
618	/* ring doorbell for number popped */
619	doorbell.word0 = 0;
620	if (arm)
621		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
622	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
623	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
624	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
625			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
626	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
627	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
628}
629
630/**
631 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
632 * @phba: the adapter with the CQ
633 * @q: The Completion Queue that the host has completed processing for.
634 * @count: the number of elements that were consumed
635 * @arm: Indicates whether the host wants to arms this CQ.
636 *
637 * This routine will notify the HBA, by ringing the doorbell, that the
638 * CQEs have been processed. The @arm parameter specifies whether the
639 * queue should be rearmed when ringing the doorbell.
640 **/
641void
642lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
643			 uint32_t count, bool arm)
644{
645	struct lpfc_register doorbell;
646
647	/* sanity check on queue memory */
648	if (unlikely(!q || (count == 0 && !arm)))
649		return;
650
651	/* ring doorbell for number popped */
652	doorbell.word0 = 0;
653	if (arm)
654		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
655	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
656	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
657	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
658}
659
660/*
661 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
662 *
663 * This routine will copy the contents of @wqe to the next available entry on
664 * the @q. This function will then ring the Receive Queue Doorbell to signal the
665 * HBA to start processing the Receive Queue Entry. This function returns the
666 * index that the rqe was copied to if successful. If no entries are available
667 * on @q then this function will return -ENOMEM.
668 * The caller is expected to hold the hbalock when calling this routine.
669 **/
670int
671lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
672		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
673{
674	struct lpfc_rqe *temp_hrqe;
675	struct lpfc_rqe *temp_drqe;
676	struct lpfc_register doorbell;
677	int hq_put_index;
678	int dq_put_index;
679
680	/* sanity check on queue memory */
681	if (unlikely(!hq) || unlikely(!dq))
682		return -ENOMEM;
683	hq_put_index = hq->host_index;
684	dq_put_index = dq->host_index;
685	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
686	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
687
688	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
689		return -EINVAL;
690	if (hq_put_index != dq_put_index)
691		return -EINVAL;
692	/* If the host has not yet processed the next entry then we are done */
693	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
694		return -EBUSY;
695	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
696	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
697
698	/* Update the host index to point to the next slot */
699	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
700	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
701	hq->RQ_buf_posted++;
702
703	/* Ring The Header Receive Queue Doorbell */
704	if (!(hq->host_index % hq->notify_interval)) {
705		doorbell.word0 = 0;
706		if (hq->db_format == LPFC_DB_RING_FORMAT) {
707			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
708			       hq->notify_interval);
709			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
710		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
711			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
712			       hq->notify_interval);
713			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
714			       hq->host_index);
715			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
716		} else {
717			return -EINVAL;
718		}
719		writel(doorbell.word0, hq->db_regaddr);
720	}
721	return hq_put_index;
722}
723
724/*
725 * lpfc_sli4_rq_release - Updates internal hba index for RQ
726 *
727 * This routine will update the HBA index of a queue to reflect consumption of
728 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
729 * consumed an entry the host calls this function to update the queue's
730 * internal pointers. This routine returns the number of entries that were
731 * consumed by the HBA.
732 **/
733static uint32_t
734lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
735{
736	/* sanity check on queue memory */
737	if (unlikely(!hq) || unlikely(!dq))
738		return 0;
739
740	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
741		return 0;
742	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
743	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
744	return 1;
745}
746
747/**
748 * lpfc_cmd_iocb - Get next command iocb entry in the ring
749 * @phba: Pointer to HBA context object.
750 * @pring: Pointer to driver SLI ring object.
751 *
752 * This function returns pointer to next command iocb entry
753 * in the command ring. The caller must hold hbalock to prevent
754 * other threads consume the next command iocb.
755 * SLI-2/SLI-3 provide different sized iocbs.
756 **/
757static inline IOCB_t *
758lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
759{
760	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
761			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
762}
763
764/**
765 * lpfc_resp_iocb - Get next response iocb entry in the ring
766 * @phba: Pointer to HBA context object.
767 * @pring: Pointer to driver SLI ring object.
768 *
769 * This function returns pointer to next response iocb entry
770 * in the response ring. The caller must hold hbalock to make sure
771 * that no other thread consume the next response iocb.
772 * SLI-2/SLI-3 provide different sized iocbs.
773 **/
774static inline IOCB_t *
775lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
776{
777	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
778			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
779}
780
781/**
782 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
783 * @phba: Pointer to HBA context object.
784 *
785 * This function is called with hbalock held. This function
786 * allocates a new driver iocb object from the iocb pool. If the
787 * allocation is successful, it returns pointer to the newly
788 * allocated iocb object else it returns NULL.
789 **/
790struct lpfc_iocbq *
791__lpfc_sli_get_iocbq(struct lpfc_hba *phba)
792{
793	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
794	struct lpfc_iocbq * iocbq = NULL;
795
796	lockdep_assert_held(&phba->hbalock);
797
798	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
799	if (iocbq)
800		phba->iocb_cnt++;
801	if (phba->iocb_cnt > phba->iocb_max)
802		phba->iocb_max = phba->iocb_cnt;
803	return iocbq;
804}
805
806/**
807 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
808 * @phba: Pointer to HBA context object.
809 * @xritag: XRI value.
810 *
811 * This function clears the sglq pointer from the array of acive
812 * sglq's. The xritag that is passed in is used to index into the
813 * array. Before the xritag can be used it needs to be adjusted
814 * by subtracting the xribase.
815 *
816 * Returns sglq ponter = success, NULL = Failure.
817 **/
818struct lpfc_sglq *
819__lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
820{
821	struct lpfc_sglq *sglq;
822
823	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
824	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
825	return sglq;
826}
827
828/**
829 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
830 * @phba: Pointer to HBA context object.
831 * @xritag: XRI value.
832 *
833 * This function returns the sglq pointer from the array of acive
834 * sglq's. The xritag that is passed in is used to index into the
835 * array. Before the xritag can be used it needs to be adjusted
836 * by subtracting the xribase.
837 *
838 * Returns sglq ponter = success, NULL = Failure.
839 **/
840struct lpfc_sglq *
841__lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
842{
843	struct lpfc_sglq *sglq;
844
845	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
846	return sglq;
847}
848
849/**
850 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
851 * @phba: Pointer to HBA context object.
852 * @xritag: xri used in this exchange.
853 * @rrq: The RRQ to be cleared.
854 *
855 **/
856void
857lpfc_clr_rrq_active(struct lpfc_hba *phba,
858		    uint16_t xritag,
859		    struct lpfc_node_rrq *rrq)
860{
861	struct lpfc_nodelist *ndlp = NULL;
862
863	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
864		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
865
866	/* The target DID could have been swapped (cable swap)
867	 * we should use the ndlp from the findnode if it is
868	 * available.
869	 */
870	if ((!ndlp) && rrq->ndlp)
871		ndlp = rrq->ndlp;
872
873	if (!ndlp)
874		goto out;
875
876	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
877		rrq->send_rrq = 0;
878		rrq->xritag = 0;
879		rrq->rrq_stop_time = 0;
880	}
881out:
882	mempool_free(rrq, phba->rrq_pool);
883}
884
885/**
886 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
887 * @phba: Pointer to HBA context object.
888 *
889 * This function is called with hbalock held. This function
890 * Checks if stop_time (ratov from setting rrq active) has
891 * been reached, if it has and the send_rrq flag is set then
892 * it will call lpfc_send_rrq. If the send_rrq flag is not set
893 * then it will just call the routine to clear the rrq and
894 * free the rrq resource.
895 * The timer is set to the next rrq that is going to expire before
896 * leaving the routine.
897 *
898 **/
899void
900lpfc_handle_rrq_active(struct lpfc_hba *phba)
901{
902	struct lpfc_node_rrq *rrq;
903	struct lpfc_node_rrq *nextrrq;
904	unsigned long next_time;
905	unsigned long iflags;
906	LIST_HEAD(send_rrq);
907
908	spin_lock_irqsave(&phba->hbalock, iflags);
909	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
910	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
911	list_for_each_entry_safe(rrq, nextrrq,
912				 &phba->active_rrq_list, list) {
913		if (time_after(jiffies, rrq->rrq_stop_time))
914			list_move(&rrq->list, &send_rrq);
915		else if (time_before(rrq->rrq_stop_time, next_time))
916			next_time = rrq->rrq_stop_time;
917	}
918	spin_unlock_irqrestore(&phba->hbalock, iflags);
919	if ((!list_empty(&phba->active_rrq_list)) &&
920	    (!(phba->pport->load_flag & FC_UNLOADING)))
921		mod_timer(&phba->rrq_tmr, next_time);
922	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
923		list_del(&rrq->list);
924		if (!rrq->send_rrq) {
925			/* this call will free the rrq */
926			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
927		} else if (lpfc_send_rrq(phba, rrq)) {
928			/* if we send the rrq then the completion handler
929			*  will clear the bit in the xribitmap.
930			*/
931			lpfc_clr_rrq_active(phba, rrq->xritag,
932					    rrq);
933		}
934	}
935}
936
937/**
938 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
939 * @vport: Pointer to vport context object.
940 * @xri: The xri used in the exchange.
941 * @did: The targets DID for this exchange.
942 *
943 * returns NULL = rrq not found in the phba->active_rrq_list.
944 *         rrq = rrq for this xri and target.
945 **/
946struct lpfc_node_rrq *
947lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
948{
949	struct lpfc_hba *phba = vport->phba;
950	struct lpfc_node_rrq *rrq;
951	struct lpfc_node_rrq *nextrrq;
952	unsigned long iflags;
953
954	if (phba->sli_rev != LPFC_SLI_REV4)
955		return NULL;
956	spin_lock_irqsave(&phba->hbalock, iflags);
957	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
958		if (rrq->vport == vport && rrq->xritag == xri &&
959				rrq->nlp_DID == did){
960			list_del(&rrq->list);
961			spin_unlock_irqrestore(&phba->hbalock, iflags);
962			return rrq;
963		}
964	}
965	spin_unlock_irqrestore(&phba->hbalock, iflags);
966	return NULL;
967}
968
969/**
970 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
971 * @vport: Pointer to vport context object.
972 * @ndlp: Pointer to the lpfc_node_list structure.
973 * If ndlp is NULL Remove all active RRQs for this vport from the
974 * phba->active_rrq_list and clear the rrq.
975 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
976 **/
977void
978lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
979
980{
981	struct lpfc_hba *phba = vport->phba;
982	struct lpfc_node_rrq *rrq;
983	struct lpfc_node_rrq *nextrrq;
984	unsigned long iflags;
985	LIST_HEAD(rrq_list);
986
987	if (phba->sli_rev != LPFC_SLI_REV4)
988		return;
989	if (!ndlp) {
990		lpfc_sli4_vport_delete_els_xri_aborted(vport);
991		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
992	}
993	spin_lock_irqsave(&phba->hbalock, iflags);
994	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
995		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
996			list_move(&rrq->list, &rrq_list);
997	spin_unlock_irqrestore(&phba->hbalock, iflags);
998
999	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1000		list_del(&rrq->list);
1001		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1002	}
1003}
1004
1005/**
1006 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1007 * @phba: Pointer to HBA context object.
1008 * @ndlp: Targets nodelist pointer for this exchange.
1009 * @xritag: the xri in the bitmap to test.
1010 *
1011 * This function returns:
1012 * 0 = rrq not active for this xri
1013 * 1 = rrq is valid for this xri.
1014 **/
1015int
1016lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1017			uint16_t  xritag)
1018{
1019	if (!ndlp)
1020		return 0;
1021	if (!ndlp->active_rrqs_xri_bitmap)
1022		return 0;
1023	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1024		return 1;
1025	else
1026		return 0;
1027}
1028
1029/**
1030 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1031 * @phba: Pointer to HBA context object.
1032 * @ndlp: nodelist pointer for this target.
1033 * @xritag: xri used in this exchange.
1034 * @rxid: Remote Exchange ID.
1035 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1036 *
1037 * This function takes the hbalock.
1038 * The active bit is always set in the active rrq xri_bitmap even
1039 * if there is no slot avaiable for the other rrq information.
1040 *
1041 * returns 0 rrq actived for this xri
1042 *         < 0 No memory or invalid ndlp.
1043 **/
1044int
1045lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1046		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1047{
1048	unsigned long iflags;
1049	struct lpfc_node_rrq *rrq;
1050	int empty;
1051
1052	if (!ndlp)
1053		return -EINVAL;
1054
1055	if (!phba->cfg_enable_rrq)
1056		return -EINVAL;
1057
1058	spin_lock_irqsave(&phba->hbalock, iflags);
1059	if (phba->pport->load_flag & FC_UNLOADING) {
1060		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1061		goto out;
1062	}
1063
1064	/*
1065	 * set the active bit even if there is no mem available.
1066	 */
1067	if (NLP_CHK_FREE_REQ(ndlp))
1068		goto out;
1069
1070	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1071		goto out;
1072
1073	if (!ndlp->active_rrqs_xri_bitmap)
1074		goto out;
1075
1076	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1077		goto out;
1078
1079	spin_unlock_irqrestore(&phba->hbalock, iflags);
1080	rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1081	if (!rrq) {
1082		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1083				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1084				" DID:0x%x Send:%d\n",
1085				xritag, rxid, ndlp->nlp_DID, send_rrq);
1086		return -EINVAL;
1087	}
1088	if (phba->cfg_enable_rrq == 1)
1089		rrq->send_rrq = send_rrq;
1090	else
1091		rrq->send_rrq = 0;
1092	rrq->xritag = xritag;
1093	rrq->rrq_stop_time = jiffies +
1094				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1095	rrq->ndlp = ndlp;
1096	rrq->nlp_DID = ndlp->nlp_DID;
1097	rrq->vport = ndlp->vport;
1098	rrq->rxid = rxid;
1099	spin_lock_irqsave(&phba->hbalock, iflags);
1100	empty = list_empty(&phba->active_rrq_list);
1101	list_add_tail(&rrq->list, &phba->active_rrq_list);
1102	phba->hba_flag |= HBA_RRQ_ACTIVE;
1103	if (empty)
1104		lpfc_worker_wake_up(phba);
1105	spin_unlock_irqrestore(&phba->hbalock, iflags);
1106	return 0;
1107out:
1108	spin_unlock_irqrestore(&phba->hbalock, iflags);
1109	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1110			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1111			" DID:0x%x Send:%d\n",
1112			xritag, rxid, ndlp->nlp_DID, send_rrq);
1113	return -EINVAL;
1114}
1115
1116/**
1117 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1118 * @phba: Pointer to HBA context object.
1119 * @piocbq: Pointer to the iocbq.
1120 *
1121 * The driver calls this function with either the nvme ls ring lock
1122 * or the fc els ring lock held depending on the iocb usage.  This function
1123 * gets a new driver sglq object from the sglq list. If the list is not empty
1124 * then it is successful, it returns pointer to the newly allocated sglq
1125 * object else it returns NULL.
1126 **/
1127static struct lpfc_sglq *
1128__lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1129{
1130	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1131	struct lpfc_sglq *sglq = NULL;
1132	struct lpfc_sglq *start_sglq = NULL;
1133	struct lpfc_io_buf *lpfc_cmd;
1134	struct lpfc_nodelist *ndlp;
1135	struct lpfc_sli_ring *pring = NULL;
1136	int found = 0;
1137
1138	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1139		pring =  phba->sli4_hba.nvmels_wq->pring;
1140	else
1141		pring = lpfc_phba_elsring(phba);
1142
1143	lockdep_assert_held(&pring->ring_lock);
1144
1145	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1146		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1147		ndlp = lpfc_cmd->rdata->pnode;
1148	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1149			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1150		ndlp = piocbq->context_un.ndlp;
1151	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1152		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1153			ndlp = NULL;
1154		else
1155			ndlp = piocbq->context_un.ndlp;
1156	} else {
1157		ndlp = piocbq->context1;
1158	}
1159
1160	spin_lock(&phba->sli4_hba.sgl_list_lock);
1161	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1162	start_sglq = sglq;
1163	while (!found) {
1164		if (!sglq)
1165			break;
1166		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1167		    test_bit(sglq->sli4_lxritag,
1168		    ndlp->active_rrqs_xri_bitmap)) {
1169			/* This xri has an rrq outstanding for this DID.
1170			 * put it back in the list and get another xri.
1171			 */
1172			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1173			sglq = NULL;
1174			list_remove_head(lpfc_els_sgl_list, sglq,
1175						struct lpfc_sglq, list);
1176			if (sglq == start_sglq) {
1177				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1178				sglq = NULL;
1179				break;
1180			} else
1181				continue;
1182		}
1183		sglq->ndlp = ndlp;
1184		found = 1;
1185		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1186		sglq->state = SGL_ALLOCATED;
1187	}
1188	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1189	return sglq;
1190}
1191
1192/**
1193 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1194 * @phba: Pointer to HBA context object.
1195 * @piocbq: Pointer to the iocbq.
1196 *
1197 * This function is called with the sgl_list lock held. This function
1198 * gets a new driver sglq object from the sglq list. If the
1199 * list is not empty then it is successful, it returns pointer to the newly
1200 * allocated sglq object else it returns NULL.
1201 **/
1202struct lpfc_sglq *
1203__lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1204{
1205	struct list_head *lpfc_nvmet_sgl_list;
1206	struct lpfc_sglq *sglq = NULL;
1207
1208	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1209
1210	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1211
1212	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1213	if (!sglq)
1214		return NULL;
1215	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1216	sglq->state = SGL_ALLOCATED;
1217	return sglq;
1218}
1219
1220/**
1221 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1222 * @phba: Pointer to HBA context object.
1223 *
1224 * This function is called with no lock held. This function
1225 * allocates a new driver iocb object from the iocb pool. If the
1226 * allocation is successful, it returns pointer to the newly
1227 * allocated iocb object else it returns NULL.
1228 **/
1229struct lpfc_iocbq *
1230lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1231{
1232	struct lpfc_iocbq * iocbq = NULL;
1233	unsigned long iflags;
1234
1235	spin_lock_irqsave(&phba->hbalock, iflags);
1236	iocbq = __lpfc_sli_get_iocbq(phba);
1237	spin_unlock_irqrestore(&phba->hbalock, iflags);
1238	return iocbq;
1239}
1240
1241/**
1242 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1243 * @phba: Pointer to HBA context object.
1244 * @iocbq: Pointer to driver iocb object.
1245 *
1246 * This function is called to release the driver iocb object
1247 * to the iocb pool. The iotag in the iocb object
1248 * does not change for each use of the iocb object. This function
1249 * clears all other fields of the iocb object when it is freed.
1250 * The sqlq structure that holds the xritag and phys and virtual
1251 * mappings for the scatter gather list is retrieved from the
1252 * active array of sglq. The get of the sglq pointer also clears
1253 * the entry in the array. If the status of the IO indiactes that
1254 * this IO was aborted then the sglq entry it put on the
1255 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1256 * IO has good status or fails for any other reason then the sglq
1257 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1258 *  asserted held in the code path calling this routine.
1259 **/
1260static void
1261__lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1262{
1263	struct lpfc_sglq *sglq;
1264	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1265	unsigned long iflag = 0;
1266	struct lpfc_sli_ring *pring;
1267
1268	if (iocbq->sli4_xritag == NO_XRI)
1269		sglq = NULL;
1270	else
1271		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1272
1273
1274	if (sglq)  {
1275		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1276			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1277					  iflag);
1278			sglq->state = SGL_FREED;
1279			sglq->ndlp = NULL;
1280			list_add_tail(&sglq->list,
1281				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1282			spin_unlock_irqrestore(
1283				&phba->sli4_hba.sgl_list_lock, iflag);
1284			goto out;
1285		}
1286
1287		pring = phba->sli4_hba.els_wq->pring;
1288		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1289			(sglq->state != SGL_XRI_ABORTED)) {
1290			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1291					  iflag);
1292			list_add(&sglq->list,
1293				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1294			spin_unlock_irqrestore(
1295				&phba->sli4_hba.sgl_list_lock, iflag);
1296		} else {
1297			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1298					  iflag);
1299			sglq->state = SGL_FREED;
1300			sglq->ndlp = NULL;
1301			list_add_tail(&sglq->list,
1302				      &phba->sli4_hba.lpfc_els_sgl_list);
1303			spin_unlock_irqrestore(
1304				&phba->sli4_hba.sgl_list_lock, iflag);
1305
1306			/* Check if TXQ queue needs to be serviced */
1307			if (!list_empty(&pring->txq))
1308				lpfc_worker_wake_up(phba);
1309		}
1310	}
1311
1312out:
1313	/*
1314	 * Clean all volatile data fields, preserve iotag and node struct.
1315	 */
1316	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1317	iocbq->sli4_lxritag = NO_XRI;
1318	iocbq->sli4_xritag = NO_XRI;
1319	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1320			      LPFC_IO_NVME_LS);
1321	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1322}
1323
1324
1325/**
1326 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1327 * @phba: Pointer to HBA context object.
1328 * @iocbq: Pointer to driver iocb object.
1329 *
1330 * This function is called to release the driver iocb object to the
1331 * iocb pool. The iotag in the iocb object does not change for each
1332 * use of the iocb object. This function clears all other fields of
1333 * the iocb object when it is freed. The hbalock is asserted held in
1334 * the code path calling this routine.
1335 **/
1336static void
1337__lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1338{
1339	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1340
1341	/*
1342	 * Clean all volatile data fields, preserve iotag and node struct.
1343	 */
1344	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1345	iocbq->sli4_xritag = NO_XRI;
1346	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1347}
1348
1349/**
1350 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1351 * @phba: Pointer to HBA context object.
1352 * @iocbq: Pointer to driver iocb object.
1353 *
1354 * This function is called with hbalock held to release driver
1355 * iocb object to the iocb pool. The iotag in the iocb object
1356 * does not change for each use of the iocb object. This function
1357 * clears all other fields of the iocb object when it is freed.
1358 **/
1359static void
1360__lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1361{
1362	lockdep_assert_held(&phba->hbalock);
1363
1364	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1365	phba->iocb_cnt--;
1366}
1367
1368/**
1369 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1370 * @phba: Pointer to HBA context object.
1371 * @iocbq: Pointer to driver iocb object.
1372 *
1373 * This function is called with no lock held to release the iocb to
1374 * iocb pool.
1375 **/
1376void
1377lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1378{
1379	unsigned long iflags;
1380
1381	/*
1382	 * Clean all volatile data fields, preserve iotag and node struct.
1383	 */
1384	spin_lock_irqsave(&phba->hbalock, iflags);
1385	__lpfc_sli_release_iocbq(phba, iocbq);
1386	spin_unlock_irqrestore(&phba->hbalock, iflags);
1387}
1388
1389/**
1390 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1391 * @phba: Pointer to HBA context object.
1392 * @iocblist: List of IOCBs.
1393 * @ulpstatus: ULP status in IOCB command field.
1394 * @ulpWord4: ULP word-4 in IOCB command field.
1395 *
1396 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1397 * on the list by invoking the complete callback function associated with the
1398 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1399 * fields.
1400 **/
1401void
1402lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1403		      uint32_t ulpstatus, uint32_t ulpWord4)
1404{
1405	struct lpfc_iocbq *piocb;
1406
1407	while (!list_empty(iocblist)) {
1408		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1409		if (!piocb->iocb_cmpl) {
1410			if (piocb->iocb_flag & LPFC_IO_NVME)
1411				lpfc_nvme_cancel_iocb(phba, piocb);
1412			else
1413				lpfc_sli_release_iocbq(phba, piocb);
1414		} else {
1415			piocb->iocb.ulpStatus = ulpstatus;
1416			piocb->iocb.un.ulpWord[4] = ulpWord4;
1417			(piocb->iocb_cmpl) (phba, piocb, piocb);
1418		}
1419	}
1420	return;
1421}
1422
1423/**
1424 * lpfc_sli_iocb_cmd_type - Get the iocb type
1425 * @iocb_cmnd: iocb command code.
1426 *
1427 * This function is called by ring event handler function to get the iocb type.
1428 * This function translates the iocb command to an iocb command type used to
1429 * decide the final disposition of each completed IOCB.
1430 * The function returns
1431 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1432 * LPFC_SOL_IOCB     if it is a solicited iocb completion
1433 * LPFC_ABORT_IOCB   if it is an abort iocb
1434 * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1435 *
1436 * The caller is not required to hold any lock.
1437 **/
1438static lpfc_iocb_type
1439lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1440{
1441	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1442
1443	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1444		return 0;
1445
1446	switch (iocb_cmnd) {
1447	case CMD_XMIT_SEQUENCE_CR:
1448	case CMD_XMIT_SEQUENCE_CX:
1449	case CMD_XMIT_BCAST_CN:
1450	case CMD_XMIT_BCAST_CX:
1451	case CMD_ELS_REQUEST_CR:
1452	case CMD_ELS_REQUEST_CX:
1453	case CMD_CREATE_XRI_CR:
1454	case CMD_CREATE_XRI_CX:
1455	case CMD_GET_RPI_CN:
1456	case CMD_XMIT_ELS_RSP_CX:
1457	case CMD_GET_RPI_CR:
1458	case CMD_FCP_IWRITE_CR:
1459	case CMD_FCP_IWRITE_CX:
1460	case CMD_FCP_IREAD_CR:
1461	case CMD_FCP_IREAD_CX:
1462	case CMD_FCP_ICMND_CR:
1463	case CMD_FCP_ICMND_CX:
1464	case CMD_FCP_TSEND_CX:
1465	case CMD_FCP_TRSP_CX:
1466	case CMD_FCP_TRECEIVE_CX:
1467	case CMD_FCP_AUTO_TRSP_CX:
1468	case CMD_ADAPTER_MSG:
1469	case CMD_ADAPTER_DUMP:
1470	case CMD_XMIT_SEQUENCE64_CR:
1471	case CMD_XMIT_SEQUENCE64_CX:
1472	case CMD_XMIT_BCAST64_CN:
1473	case CMD_XMIT_BCAST64_CX:
1474	case CMD_ELS_REQUEST64_CR:
1475	case CMD_ELS_REQUEST64_CX:
1476	case CMD_FCP_IWRITE64_CR:
1477	case CMD_FCP_IWRITE64_CX:
1478	case CMD_FCP_IREAD64_CR:
1479	case CMD_FCP_IREAD64_CX:
1480	case CMD_FCP_ICMND64_CR:
1481	case CMD_FCP_ICMND64_CX:
1482	case CMD_FCP_TSEND64_CX:
1483	case CMD_FCP_TRSP64_CX:
1484	case CMD_FCP_TRECEIVE64_CX:
1485	case CMD_GEN_REQUEST64_CR:
1486	case CMD_GEN_REQUEST64_CX:
1487	case CMD_XMIT_ELS_RSP64_CX:
1488	case DSSCMD_IWRITE64_CR:
1489	case DSSCMD_IWRITE64_CX:
1490	case DSSCMD_IREAD64_CR:
1491	case DSSCMD_IREAD64_CX:
1492	case CMD_SEND_FRAME:
1493		type = LPFC_SOL_IOCB;
1494		break;
1495	case CMD_ABORT_XRI_CN:
1496	case CMD_ABORT_XRI_CX:
1497	case CMD_CLOSE_XRI_CN:
1498	case CMD_CLOSE_XRI_CX:
1499	case CMD_XRI_ABORTED_CX:
1500	case CMD_ABORT_MXRI64_CN:
1501	case CMD_XMIT_BLS_RSP64_CX:
1502		type = LPFC_ABORT_IOCB;
1503		break;
1504	case CMD_RCV_SEQUENCE_CX:
1505	case CMD_RCV_ELS_REQ_CX:
1506	case CMD_RCV_SEQUENCE64_CX:
1507	case CMD_RCV_ELS_REQ64_CX:
1508	case CMD_ASYNC_STATUS:
1509	case CMD_IOCB_RCV_SEQ64_CX:
1510	case CMD_IOCB_RCV_ELS64_CX:
1511	case CMD_IOCB_RCV_CONT64_CX:
1512	case CMD_IOCB_RET_XRI64_CX:
1513		type = LPFC_UNSOL_IOCB;
1514		break;
1515	case CMD_IOCB_XMIT_MSEQ64_CR:
1516	case CMD_IOCB_XMIT_MSEQ64_CX:
1517	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1518	case CMD_IOCB_RCV_ELS_LIST64_CX:
1519	case CMD_IOCB_CLOSE_EXTENDED_CN:
1520	case CMD_IOCB_ABORT_EXTENDED_CN:
1521	case CMD_IOCB_RET_HBQE64_CN:
1522	case CMD_IOCB_FCP_IBIDIR64_CR:
1523	case CMD_IOCB_FCP_IBIDIR64_CX:
1524	case CMD_IOCB_FCP_ITASKMGT64_CX:
1525	case CMD_IOCB_LOGENTRY_CN:
1526	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1527		printk("%s - Unhandled SLI-3 Command x%x\n",
1528				__func__, iocb_cmnd);
1529		type = LPFC_UNKNOWN_IOCB;
1530		break;
1531	default:
1532		type = LPFC_UNKNOWN_IOCB;
1533		break;
1534	}
1535
1536	return type;
1537}
1538
1539/**
1540 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1541 * @phba: Pointer to HBA context object.
1542 *
1543 * This function is called from SLI initialization code
1544 * to configure every ring of the HBA's SLI interface. The
1545 * caller is not required to hold any lock. This function issues
1546 * a config_ring mailbox command for each ring.
1547 * This function returns zero if successful else returns a negative
1548 * error code.
1549 **/
1550static int
1551lpfc_sli_ring_map(struct lpfc_hba *phba)
1552{
1553	struct lpfc_sli *psli = &phba->sli;
1554	LPFC_MBOXQ_t *pmb;
1555	MAILBOX_t *pmbox;
1556	int i, rc, ret = 0;
1557
1558	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1559	if (!pmb)
1560		return -ENOMEM;
1561	pmbox = &pmb->u.mb;
1562	phba->link_state = LPFC_INIT_MBX_CMDS;
1563	for (i = 0; i < psli->num_rings; i++) {
1564		lpfc_config_ring(phba, i, pmb);
1565		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1566		if (rc != MBX_SUCCESS) {
1567			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1568					"0446 Adapter failed to init (%d), "
1569					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1570					"ring %d\n",
1571					rc, pmbox->mbxCommand,
1572					pmbox->mbxStatus, i);
1573			phba->link_state = LPFC_HBA_ERROR;
1574			ret = -ENXIO;
1575			break;
1576		}
1577	}
1578	mempool_free(pmb, phba->mbox_mem_pool);
1579	return ret;
1580}
1581
1582/**
1583 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1584 * @phba: Pointer to HBA context object.
1585 * @pring: Pointer to driver SLI ring object.
1586 * @piocb: Pointer to the driver iocb object.
1587 *
1588 * The driver calls this function with the hbalock held for SLI3 ports or
1589 * the ring lock held for SLI4 ports. The function adds the
1590 * new iocb to txcmplq of the given ring. This function always returns
1591 * 0. If this function is called for ELS ring, this function checks if
1592 * there is a vport associated with the ELS command. This function also
1593 * starts els_tmofunc timer if this is an ELS command.
1594 **/
1595static int
1596lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1597			struct lpfc_iocbq *piocb)
1598{
1599	if (phba->sli_rev == LPFC_SLI_REV4)
1600		lockdep_assert_held(&pring->ring_lock);
1601	else
1602		lockdep_assert_held(&phba->hbalock);
1603
1604	BUG_ON(!piocb);
1605
1606	list_add_tail(&piocb->list, &pring->txcmplq);
1607	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1608	pring->txcmplq_cnt++;
1609
1610	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1611	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1612	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1613		BUG_ON(!piocb->vport);
1614		if (!(piocb->vport->load_flag & FC_UNLOADING))
1615			mod_timer(&piocb->vport->els_tmofunc,
1616				  jiffies +
1617				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1618	}
1619
1620	return 0;
1621}
1622
1623/**
1624 * lpfc_sli_ringtx_get - Get first element of the txq
1625 * @phba: Pointer to HBA context object.
1626 * @pring: Pointer to driver SLI ring object.
1627 *
1628 * This function is called with hbalock held to get next
1629 * iocb in txq of the given ring. If there is any iocb in
1630 * the txq, the function returns first iocb in the list after
1631 * removing the iocb from the list, else it returns NULL.
1632 **/
1633struct lpfc_iocbq *
1634lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1635{
1636	struct lpfc_iocbq *cmd_iocb;
1637
1638	lockdep_assert_held(&phba->hbalock);
1639
1640	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1641	return cmd_iocb;
1642}
1643
1644/**
1645 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1646 * @phba: Pointer to HBA context object.
1647 * @pring: Pointer to driver SLI ring object.
1648 *
1649 * This function is called with hbalock held and the caller must post the
1650 * iocb without releasing the lock. If the caller releases the lock,
1651 * iocb slot returned by the function is not guaranteed to be available.
1652 * The function returns pointer to the next available iocb slot if there
1653 * is available slot in the ring, else it returns NULL.
1654 * If the get index of the ring is ahead of the put index, the function
1655 * will post an error attention event to the worker thread to take the
1656 * HBA to offline state.
1657 **/
1658static IOCB_t *
1659lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1660{
1661	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1662	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1663
1664	lockdep_assert_held(&phba->hbalock);
1665
1666	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1667	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1668		pring->sli.sli3.next_cmdidx = 0;
1669
1670	if (unlikely(pring->sli.sli3.local_getidx ==
1671		pring->sli.sli3.next_cmdidx)) {
1672
1673		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1674
1675		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1676			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1677					"0315 Ring %d issue: portCmdGet %d "
1678					"is bigger than cmd ring %d\n",
1679					pring->ringno,
1680					pring->sli.sli3.local_getidx,
1681					max_cmd_idx);
1682
1683			phba->link_state = LPFC_HBA_ERROR;
1684			/*
1685			 * All error attention handlers are posted to
1686			 * worker thread
1687			 */
1688			phba->work_ha |= HA_ERATT;
1689			phba->work_hs = HS_FFER3;
1690
1691			lpfc_worker_wake_up(phba);
1692
1693			return NULL;
1694		}
1695
1696		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1697			return NULL;
1698	}
1699
1700	return lpfc_cmd_iocb(phba, pring);
1701}
1702
1703/**
1704 * lpfc_sli_next_iotag - Get an iotag for the iocb
1705 * @phba: Pointer to HBA context object.
1706 * @iocbq: Pointer to driver iocb object.
1707 *
1708 * This function gets an iotag for the iocb. If there is no unused iotag and
1709 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1710 * array and assigns a new iotag.
1711 * The function returns the allocated iotag if successful, else returns zero.
1712 * Zero is not a valid iotag.
1713 * The caller is not required to hold any lock.
1714 **/
1715uint16_t
1716lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1717{
1718	struct lpfc_iocbq **new_arr;
1719	struct lpfc_iocbq **old_arr;
1720	size_t new_len;
1721	struct lpfc_sli *psli = &phba->sli;
1722	uint16_t iotag;
1723
1724	spin_lock_irq(&phba->hbalock);
1725	iotag = psli->last_iotag;
1726	if(++iotag < psli->iocbq_lookup_len) {
1727		psli->last_iotag = iotag;
1728		psli->iocbq_lookup[iotag] = iocbq;
1729		spin_unlock_irq(&phba->hbalock);
1730		iocbq->iotag = iotag;
1731		return iotag;
1732	} else if (psli->iocbq_lookup_len < (0xffff
1733					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1734		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1735		spin_unlock_irq(&phba->hbalock);
1736		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1737				  GFP_KERNEL);
1738		if (new_arr) {
1739			spin_lock_irq(&phba->hbalock);
1740			old_arr = psli->iocbq_lookup;
1741			if (new_len <= psli->iocbq_lookup_len) {
1742				/* highly unprobable case */
1743				kfree(new_arr);
1744				iotag = psli->last_iotag;
1745				if(++iotag < psli->iocbq_lookup_len) {
1746					psli->last_iotag = iotag;
1747					psli->iocbq_lookup[iotag] = iocbq;
1748					spin_unlock_irq(&phba->hbalock);
1749					iocbq->iotag = iotag;
1750					return iotag;
1751				}
1752				spin_unlock_irq(&phba->hbalock);
1753				return 0;
1754			}
1755			if (psli->iocbq_lookup)
1756				memcpy(new_arr, old_arr,
1757				       ((psli->last_iotag  + 1) *
1758					sizeof (struct lpfc_iocbq *)));
1759			psli->iocbq_lookup = new_arr;
1760			psli->iocbq_lookup_len = new_len;
1761			psli->last_iotag = iotag;
1762			psli->iocbq_lookup[iotag] = iocbq;
1763			spin_unlock_irq(&phba->hbalock);
1764			iocbq->iotag = iotag;
1765			kfree(old_arr);
1766			return iotag;
1767		}
1768	} else
1769		spin_unlock_irq(&phba->hbalock);
1770
1771	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1772			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1773			psli->last_iotag);
1774
1775	return 0;
1776}
1777
1778/**
1779 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1780 * @phba: Pointer to HBA context object.
1781 * @pring: Pointer to driver SLI ring object.
1782 * @iocb: Pointer to iocb slot in the ring.
1783 * @nextiocb: Pointer to driver iocb object which need to be
1784 *            posted to firmware.
1785 *
1786 * This function is called to post a new iocb to the firmware. This
1787 * function copies the new iocb to ring iocb slot and updates the
1788 * ring pointers. It adds the new iocb to txcmplq if there is
1789 * a completion call back for this iocb else the function will free the
1790 * iocb object.  The hbalock is asserted held in the code path calling
1791 * this routine.
1792 **/
1793static void
1794lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1795		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1796{
1797	/*
1798	 * Set up an iotag
1799	 */
1800	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1801
1802
1803	if (pring->ringno == LPFC_ELS_RING) {
1804		lpfc_debugfs_slow_ring_trc(phba,
1805			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1806			*(((uint32_t *) &nextiocb->iocb) + 4),
1807			*(((uint32_t *) &nextiocb->iocb) + 6),
1808			*(((uint32_t *) &nextiocb->iocb) + 7));
1809	}
1810
1811	/*
1812	 * Issue iocb command to adapter
1813	 */
1814	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1815	wmb();
1816	pring->stats.iocb_cmd++;
1817
1818	/*
1819	 * If there is no completion routine to call, we can release the
1820	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1821	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1822	 */
1823	if (nextiocb->iocb_cmpl)
1824		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1825	else
1826		__lpfc_sli_release_iocbq(phba, nextiocb);
1827
1828	/*
1829	 * Let the HBA know what IOCB slot will be the next one the
1830	 * driver will put a command into.
1831	 */
1832	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1833	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1834}
1835
1836/**
1837 * lpfc_sli_update_full_ring - Update the chip attention register
1838 * @phba: Pointer to HBA context object.
1839 * @pring: Pointer to driver SLI ring object.
1840 *
1841 * The caller is not required to hold any lock for calling this function.
1842 * This function updates the chip attention bits for the ring to inform firmware
1843 * that there are pending work to be done for this ring and requests an
1844 * interrupt when there is space available in the ring. This function is
1845 * called when the driver is unable to post more iocbs to the ring due
1846 * to unavailability of space in the ring.
1847 **/
1848static void
1849lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1850{
1851	int ringno = pring->ringno;
1852
1853	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1854
1855	wmb();
1856
1857	/*
1858	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1859	 * The HBA will tell us when an IOCB entry is available.
1860	 */
1861	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1862	readl(phba->CAregaddr); /* flush */
1863
1864	pring->stats.iocb_cmd_full++;
1865}
1866
1867/**
1868 * lpfc_sli_update_ring - Update chip attention register
1869 * @phba: Pointer to HBA context object.
1870 * @pring: Pointer to driver SLI ring object.
1871 *
1872 * This function updates the chip attention register bit for the
1873 * given ring to inform HBA that there is more work to be done
1874 * in this ring. The caller is not required to hold any lock.
1875 **/
1876static void
1877lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1878{
1879	int ringno = pring->ringno;
1880
1881	/*
1882	 * Tell the HBA that there is work to do in this ring.
1883	 */
1884	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1885		wmb();
1886		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1887		readl(phba->CAregaddr); /* flush */
1888	}
1889}
1890
1891/**
1892 * lpfc_sli_resume_iocb - Process iocbs in the txq
1893 * @phba: Pointer to HBA context object.
1894 * @pring: Pointer to driver SLI ring object.
1895 *
1896 * This function is called with hbalock held to post pending iocbs
1897 * in the txq to the firmware. This function is called when driver
1898 * detects space available in the ring.
1899 **/
1900static void
1901lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1902{
1903	IOCB_t *iocb;
1904	struct lpfc_iocbq *nextiocb;
1905
1906	lockdep_assert_held(&phba->hbalock);
1907
1908	/*
1909	 * Check to see if:
1910	 *  (a) there is anything on the txq to send
1911	 *  (b) link is up
1912	 *  (c) link attention events can be processed (fcp ring only)
1913	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1914	 */
1915
1916	if (lpfc_is_link_up(phba) &&
1917	    (!list_empty(&pring->txq)) &&
1918	    (pring->ringno != LPFC_FCP_RING ||
1919	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1920
1921		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1922		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1923			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1924
1925		if (iocb)
1926			lpfc_sli_update_ring(phba, pring);
1927		else
1928			lpfc_sli_update_full_ring(phba, pring);
1929	}
1930
1931	return;
1932}
1933
1934/**
1935 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1936 * @phba: Pointer to HBA context object.
1937 * @hbqno: HBQ number.
1938 *
1939 * This function is called with hbalock held to get the next
1940 * available slot for the given HBQ. If there is free slot
1941 * available for the HBQ it will return pointer to the next available
1942 * HBQ entry else it will return NULL.
1943 **/
1944static struct lpfc_hbq_entry *
1945lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1946{
1947	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1948
1949	lockdep_assert_held(&phba->hbalock);
1950
1951	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1952	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1953		hbqp->next_hbqPutIdx = 0;
1954
1955	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1956		uint32_t raw_index = phba->hbq_get[hbqno];
1957		uint32_t getidx = le32_to_cpu(raw_index);
1958
1959		hbqp->local_hbqGetIdx = getidx;
1960
1961		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1962			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1963					"1802 HBQ %d: local_hbqGetIdx "
1964					"%u is > than hbqp->entry_count %u\n",
1965					hbqno, hbqp->local_hbqGetIdx,
1966					hbqp->entry_count);
1967
1968			phba->link_state = LPFC_HBA_ERROR;
1969			return NULL;
1970		}
1971
1972		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1973			return NULL;
1974	}
1975
1976	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1977			hbqp->hbqPutIdx;
1978}
1979
1980/**
1981 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1982 * @phba: Pointer to HBA context object.
1983 *
1984 * This function is called with no lock held to free all the
1985 * hbq buffers while uninitializing the SLI interface. It also
1986 * frees the HBQ buffers returned by the firmware but not yet
1987 * processed by the upper layers.
1988 **/
1989void
1990lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1991{
1992	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1993	struct hbq_dmabuf *hbq_buf;
1994	unsigned long flags;
1995	int i, hbq_count;
1996
1997	hbq_count = lpfc_sli_hbq_count();
1998	/* Return all memory used by all HBQs */
1999	spin_lock_irqsave(&phba->hbalock, flags);
2000	for (i = 0; i < hbq_count; ++i) {
2001		list_for_each_entry_safe(dmabuf, next_dmabuf,
2002				&phba->hbqs[i].hbq_buffer_list, list) {
2003			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2004			list_del(&hbq_buf->dbuf.list);
2005			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2006		}
2007		phba->hbqs[i].buffer_count = 0;
2008	}
2009
2010	/* Mark the HBQs not in use */
2011	phba->hbq_in_use = 0;
2012	spin_unlock_irqrestore(&phba->hbalock, flags);
2013}
2014
2015/**
2016 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2017 * @phba: Pointer to HBA context object.
2018 * @hbqno: HBQ number.
2019 * @hbq_buf: Pointer to HBQ buffer.
2020 *
2021 * This function is called with the hbalock held to post a
2022 * hbq buffer to the firmware. If the function finds an empty
2023 * slot in the HBQ, it will post the buffer. The function will return
2024 * pointer to the hbq entry if it successfully post the buffer
2025 * else it will return NULL.
2026 **/
2027static int
2028lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2029			 struct hbq_dmabuf *hbq_buf)
2030{
2031	lockdep_assert_held(&phba->hbalock);
2032	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2033}
2034
2035/**
2036 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2037 * @phba: Pointer to HBA context object.
2038 * @hbqno: HBQ number.
2039 * @hbq_buf: Pointer to HBQ buffer.
2040 *
2041 * This function is called with the hbalock held to post a hbq buffer to the
2042 * firmware. If the function finds an empty slot in the HBQ, it will post the
2043 * buffer and place it on the hbq_buffer_list. The function will return zero if
2044 * it successfully post the buffer else it will return an error.
2045 **/
2046static int
2047lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2048			    struct hbq_dmabuf *hbq_buf)
2049{
2050	struct lpfc_hbq_entry *hbqe;
2051	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2052
2053	lockdep_assert_held(&phba->hbalock);
2054	/* Get next HBQ entry slot to use */
2055	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2056	if (hbqe) {
2057		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2058
2059		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2060		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2061		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2062		hbqe->bde.tus.f.bdeFlags = 0;
2063		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2064		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2065				/* Sync SLIM */
2066		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2067		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2068				/* flush */
2069		readl(phba->hbq_put + hbqno);
2070		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2071		return 0;
2072	} else
2073		return -ENOMEM;
2074}
2075
2076/**
2077 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2078 * @phba: Pointer to HBA context object.
2079 * @hbqno: HBQ number.
2080 * @hbq_buf: Pointer to HBQ buffer.
2081 *
2082 * This function is called with the hbalock held to post an RQE to the SLI4
2083 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2084 * the hbq_buffer_list and return zero, otherwise it will return an error.
2085 **/
2086static int
2087lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2088			    struct hbq_dmabuf *hbq_buf)
2089{
2090	int rc;
2091	struct lpfc_rqe hrqe;
2092	struct lpfc_rqe drqe;
2093	struct lpfc_queue *hrq;
2094	struct lpfc_queue *drq;
2095
2096	if (hbqno != LPFC_ELS_HBQ)
2097		return 1;
2098	hrq = phba->sli4_hba.hdr_rq;
2099	drq = phba->sli4_hba.dat_rq;
2100
2101	lockdep_assert_held(&phba->hbalock);
2102	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2103	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2104	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2105	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2106	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2107	if (rc < 0)
2108		return rc;
2109	hbq_buf->tag = (rc | (hbqno << 16));
2110	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2111	return 0;
2112}
2113
2114/* HBQ for ELS and CT traffic. */
2115static struct lpfc_hbq_init lpfc_els_hbq = {
2116	.rn = 1,
2117	.entry_count = 256,
2118	.mask_count = 0,
2119	.profile = 0,
2120	.ring_mask = (1 << LPFC_ELS_RING),
2121	.buffer_count = 0,
2122	.init_count = 40,
2123	.add_count = 40,
2124};
2125
2126/* Array of HBQs */
2127struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2128	&lpfc_els_hbq,
2129};
2130
2131/**
2132 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2133 * @phba: Pointer to HBA context object.
2134 * @hbqno: HBQ number.
2135 * @count: Number of HBQ buffers to be posted.
2136 *
2137 * This function is called with no lock held to post more hbq buffers to the
2138 * given HBQ. The function returns the number of HBQ buffers successfully
2139 * posted.
2140 **/
2141static int
2142lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2143{
2144	uint32_t i, posted = 0;
2145	unsigned long flags;
2146	struct hbq_dmabuf *hbq_buffer;
2147	LIST_HEAD(hbq_buf_list);
2148	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2149		return 0;
2150
2151	if ((phba->hbqs[hbqno].buffer_count + count) >
2152	    lpfc_hbq_defs[hbqno]->entry_count)
2153		count = lpfc_hbq_defs[hbqno]->entry_count -
2154					phba->hbqs[hbqno].buffer_count;
2155	if (!count)
2156		return 0;
2157	/* Allocate HBQ entries */
2158	for (i = 0; i < count; i++) {
2159		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2160		if (!hbq_buffer)
2161			break;
2162		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2163	}
2164	/* Check whether HBQ is still in use */
2165	spin_lock_irqsave(&phba->hbalock, flags);
2166	if (!phba->hbq_in_use)
2167		goto err;
2168	while (!list_empty(&hbq_buf_list)) {
2169		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2170				 dbuf.list);
2171		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2172				      (hbqno << 16));
2173		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2174			phba->hbqs[hbqno].buffer_count++;
2175			posted++;
2176		} else
2177			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2178	}
2179	spin_unlock_irqrestore(&phba->hbalock, flags);
2180	return posted;
2181err:
2182	spin_unlock_irqrestore(&phba->hbalock, flags);
2183	while (!list_empty(&hbq_buf_list)) {
2184		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2185				 dbuf.list);
2186		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2187	}
2188	return 0;
2189}
2190
2191/**
2192 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2193 * @phba: Pointer to HBA context object.
2194 * @qno: HBQ number.
2195 *
2196 * This function posts more buffers to the HBQ. This function
2197 * is called with no lock held. The function returns the number of HBQ entries
2198 * successfully allocated.
2199 **/
2200int
2201lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2202{
2203	if (phba->sli_rev == LPFC_SLI_REV4)
2204		return 0;
2205	else
2206		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2207					 lpfc_hbq_defs[qno]->add_count);
2208}
2209
2210/**
2211 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2212 * @phba: Pointer to HBA context object.
2213 * @qno:  HBQ queue number.
2214 *
2215 * This function is called from SLI initialization code path with
2216 * no lock held to post initial HBQ buffers to firmware. The
2217 * function returns the number of HBQ entries successfully allocated.
2218 **/
2219static int
2220lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2221{
2222	if (phba->sli_rev == LPFC_SLI_REV4)
2223		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2224					lpfc_hbq_defs[qno]->entry_count);
2225	else
2226		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2227					 lpfc_hbq_defs[qno]->init_count);
2228}
2229
2230/*
2231 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2232 *
2233 * This function removes the first hbq buffer on an hbq list and returns a
2234 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2235 **/
2236static struct hbq_dmabuf *
2237lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2238{
2239	struct lpfc_dmabuf *d_buf;
2240
2241	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2242	if (!d_buf)
2243		return NULL;
2244	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2245}
2246
2247/**
2248 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2249 * @phba: Pointer to HBA context object.
2250 * @hrq: HBQ number.
2251 *
2252 * This function removes the first RQ buffer on an RQ buffer list and returns a
2253 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2254 **/
2255static struct rqb_dmabuf *
2256lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2257{
2258	struct lpfc_dmabuf *h_buf;
2259	struct lpfc_rqb *rqbp;
2260
2261	rqbp = hrq->rqbp;
2262	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2263			 struct lpfc_dmabuf, list);
2264	if (!h_buf)
2265		return NULL;
2266	rqbp->buffer_count--;
2267	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2268}
2269
2270/**
2271 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2272 * @phba: Pointer to HBA context object.
2273 * @tag: Tag of the hbq buffer.
2274 *
2275 * This function searches for the hbq buffer associated with the given tag in
2276 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2277 * otherwise it returns NULL.
2278 **/
2279static struct hbq_dmabuf *
2280lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2281{
2282	struct lpfc_dmabuf *d_buf;
2283	struct hbq_dmabuf *hbq_buf;
2284	uint32_t hbqno;
2285
2286	hbqno = tag >> 16;
2287	if (hbqno >= LPFC_MAX_HBQS)
2288		return NULL;
2289
2290	spin_lock_irq(&phba->hbalock);
2291	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2292		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2293		if (hbq_buf->tag == tag) {
2294			spin_unlock_irq(&phba->hbalock);
2295			return hbq_buf;
2296		}
2297	}
2298	spin_unlock_irq(&phba->hbalock);
2299	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2300			"1803 Bad hbq tag. Data: x%x x%x\n",
2301			tag, phba->hbqs[tag >> 16].buffer_count);
2302	return NULL;
2303}
2304
2305/**
2306 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2307 * @phba: Pointer to HBA context object.
2308 * @hbq_buffer: Pointer to HBQ buffer.
2309 *
2310 * This function is called with hbalock. This function gives back
2311 * the hbq buffer to firmware. If the HBQ does not have space to
2312 * post the buffer, it will free the buffer.
2313 **/
2314void
2315lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2316{
2317	uint32_t hbqno;
2318
2319	if (hbq_buffer) {
2320		hbqno = hbq_buffer->tag >> 16;
2321		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2322			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2323	}
2324}
2325
2326/**
2327 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2328 * @mbxCommand: mailbox command code.
2329 *
2330 * This function is called by the mailbox event handler function to verify
2331 * that the completed mailbox command is a legitimate mailbox command. If the
2332 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2333 * and the mailbox event handler will take the HBA offline.
2334 **/
2335static int
2336lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2337{
2338	uint8_t ret;
2339
2340	switch (mbxCommand) {
2341	case MBX_LOAD_SM:
2342	case MBX_READ_NV:
2343	case MBX_WRITE_NV:
2344	case MBX_WRITE_VPARMS:
2345	case MBX_RUN_BIU_DIAG:
2346	case MBX_INIT_LINK:
2347	case MBX_DOWN_LINK:
2348	case MBX_CONFIG_LINK:
2349	case MBX_CONFIG_RING:
2350	case MBX_RESET_RING:
2351	case MBX_READ_CONFIG:
2352	case MBX_READ_RCONFIG:
2353	case MBX_READ_SPARM:
2354	case MBX_READ_STATUS:
2355	case MBX_READ_RPI:
2356	case MBX_READ_XRI:
2357	case MBX_READ_REV:
2358	case MBX_READ_LNK_STAT:
2359	case MBX_REG_LOGIN:
2360	case MBX_UNREG_LOGIN:
2361	case MBX_CLEAR_LA:
2362	case MBX_DUMP_MEMORY:
2363	case MBX_DUMP_CONTEXT:
2364	case MBX_RUN_DIAGS:
2365	case MBX_RESTART:
2366	case MBX_UPDATE_CFG:
2367	case MBX_DOWN_LOAD:
2368	case MBX_DEL_LD_ENTRY:
2369	case MBX_RUN_PROGRAM:
2370	case MBX_SET_MASK:
2371	case MBX_SET_VARIABLE:
2372	case MBX_UNREG_D_ID:
2373	case MBX_KILL_BOARD:
2374	case MBX_CONFIG_FARP:
2375	case MBX_BEACON:
2376	case MBX_LOAD_AREA:
2377	case MBX_RUN_BIU_DIAG64:
2378	case MBX_CONFIG_PORT:
2379	case MBX_READ_SPARM64:
2380	case MBX_READ_RPI64:
2381	case MBX_REG_LOGIN64:
2382	case MBX_READ_TOPOLOGY:
2383	case MBX_WRITE_WWN:
2384	case MBX_SET_DEBUG:
2385	case MBX_LOAD_EXP_ROM:
2386	case MBX_ASYNCEVT_ENABLE:
2387	case MBX_REG_VPI:
2388	case MBX_UNREG_VPI:
2389	case MBX_HEARTBEAT:
2390	case MBX_PORT_CAPABILITIES:
2391	case MBX_PORT_IOV_CONTROL:
2392	case MBX_SLI4_CONFIG:
2393	case MBX_SLI4_REQ_FTRS:
2394	case MBX_REG_FCFI:
2395	case MBX_UNREG_FCFI:
2396	case MBX_REG_VFI:
2397	case MBX_UNREG_VFI:
2398	case MBX_INIT_VPI:
2399	case MBX_INIT_VFI:
2400	case MBX_RESUME_RPI:
2401	case MBX_READ_EVENT_LOG_STATUS:
2402	case MBX_READ_EVENT_LOG:
2403	case MBX_SECURITY_MGMT:
2404	case MBX_AUTH_PORT:
2405	case MBX_ACCESS_VDATA:
2406		ret = mbxCommand;
2407		break;
2408	default:
2409		ret = MBX_SHUTDOWN;
2410		break;
2411	}
2412	return ret;
2413}
2414
2415/**
2416 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2417 * @phba: Pointer to HBA context object.
2418 * @pmboxq: Pointer to mailbox command.
2419 *
2420 * This is completion handler function for mailbox commands issued from
2421 * lpfc_sli_issue_mbox_wait function. This function is called by the
2422 * mailbox event handler function with no lock held. This function
2423 * will wake up thread waiting on the wait queue pointed by context1
2424 * of the mailbox.
2425 **/
2426void
2427lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2428{
2429	unsigned long drvr_flag;
2430	struct completion *pmbox_done;
2431
2432	/*
2433	 * If pmbox_done is empty, the driver thread gave up waiting and
2434	 * continued running.
2435	 */
2436	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2437	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2438	pmbox_done = (struct completion *)pmboxq->context3;
2439	if (pmbox_done)
2440		complete(pmbox_done);
2441	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2442	return;
2443}
2444
2445static void
2446__lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2447{
2448	unsigned long iflags;
2449
2450	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2451		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2452		spin_lock_irqsave(&vport->phba->ndlp_lock, iflags);
2453		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2454		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2455		spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags);
2456	}
2457	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2458}
2459
2460/**
2461 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2462 * @phba: Pointer to HBA context object.
2463 * @pmb: Pointer to mailbox object.
2464 *
2465 * This function is the default mailbox completion handler. It
2466 * frees the memory resources associated with the completed mailbox
2467 * command. If the completed command is a REG_LOGIN mailbox command,
2468 * this function will issue a UREG_LOGIN to re-claim the RPI.
2469 **/
2470void
2471lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2472{
2473	struct lpfc_vport  *vport = pmb->vport;
2474	struct lpfc_dmabuf *mp;
2475	struct lpfc_nodelist *ndlp;
2476	struct Scsi_Host *shost;
2477	uint16_t rpi, vpi;
2478	int rc;
2479
2480	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2481
2482	if (mp) {
2483		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2484		kfree(mp);
2485	}
2486
2487	/*
2488	 * If a REG_LOGIN succeeded  after node is destroyed or node
2489	 * is in re-discovery driver need to cleanup the RPI.
2490	 */
2491	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2492	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2493	    !pmb->u.mb.mbxStatus) {
2494		rpi = pmb->u.mb.un.varWords[0];
2495		vpi = pmb->u.mb.un.varRegLogin.vpi;
2496		if (phba->sli_rev == LPFC_SLI_REV4)
2497			vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2498		lpfc_unreg_login(phba, vpi, rpi, pmb);
2499		pmb->vport = vport;
2500		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2501		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2502		if (rc != MBX_NOT_FINISHED)
2503			return;
2504	}
2505
2506	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2507		!(phba->pport->load_flag & FC_UNLOADING) &&
2508		!pmb->u.mb.mbxStatus) {
2509		shost = lpfc_shost_from_vport(vport);
2510		spin_lock_irq(shost->host_lock);
2511		vport->vpi_state |= LPFC_VPI_REGISTERED;
2512		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2513		spin_unlock_irq(shost->host_lock);
2514	}
2515
2516	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2517		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2518		lpfc_nlp_put(ndlp);
2519		pmb->ctx_buf = NULL;
2520		pmb->ctx_ndlp = NULL;
2521	}
2522
2523	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2524		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2525
2526		/* Check to see if there are any deferred events to process */
2527		if (ndlp) {
2528			lpfc_printf_vlog(
2529				vport,
2530				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2531				"1438 UNREG cmpl deferred mbox x%x "
2532				"on NPort x%x Data: x%x x%x %px\n",
2533				ndlp->nlp_rpi, ndlp->nlp_DID,
2534				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2535
2536			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2537			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2538				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2539				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2540				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2541			} else {
2542				__lpfc_sli_rpi_release(vport, ndlp);
2543			}
2544			if (vport->load_flag & FC_UNLOADING)
2545				lpfc_nlp_put(ndlp);
2546			pmb->ctx_ndlp = NULL;
2547		}
2548	}
2549
2550	/* Check security permission status on INIT_LINK mailbox command */
2551	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2552	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2553		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2554				"2860 SLI authentication is required "
2555				"for INIT_LINK but has not done yet\n");
2556
2557	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2558		lpfc_sli4_mbox_cmd_free(phba, pmb);
2559	else
2560		mempool_free(pmb, phba->mbox_mem_pool);
2561}
2562 /**
2563 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2564 * @phba: Pointer to HBA context object.
2565 * @pmb: Pointer to mailbox object.
2566 *
2567 * This function is the unreg rpi mailbox completion handler. It
2568 * frees the memory resources associated with the completed mailbox
2569 * command. An additional refrenece is put on the ndlp to prevent
2570 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2571 * the unreg mailbox command completes, this routine puts the
2572 * reference back.
2573 *
2574 **/
2575void
2576lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2577{
2578	struct lpfc_vport  *vport = pmb->vport;
2579	struct lpfc_nodelist *ndlp;
2580
2581	ndlp = pmb->ctx_ndlp;
2582	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2583		if (phba->sli_rev == LPFC_SLI_REV4 &&
2584		    (bf_get(lpfc_sli_intf_if_type,
2585		     &phba->sli4_hba.sli_intf) >=
2586		     LPFC_SLI_INTF_IF_TYPE_2)) {
2587			if (ndlp) {
2588				lpfc_printf_vlog(
2589					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2590					 "0010 UNREG_LOGIN vpi:%x "
2591					 "rpi:%x DID:%x defer x%x flg x%x "
2592					 "map:%x %px\n",
2593					 vport->vpi, ndlp->nlp_rpi,
2594					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2595					 ndlp->nlp_flag,
2596					 ndlp->nlp_usg_map, ndlp);
2597				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2598				lpfc_nlp_put(ndlp);
2599
2600				/* Check to see if there are any deferred
2601				 * events to process
2602				 */
2603				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2604				    (ndlp->nlp_defer_did !=
2605				    NLP_EVT_NOTHING_PENDING)) {
2606					lpfc_printf_vlog(
2607						vport, KERN_INFO, LOG_DISCOVERY,
2608						"4111 UNREG cmpl deferred "
2609						"clr x%x on "
2610						"NPort x%x Data: x%x x%px\n",
2611						ndlp->nlp_rpi, ndlp->nlp_DID,
2612						ndlp->nlp_defer_did, ndlp);
2613					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2614					ndlp->nlp_defer_did =
2615						NLP_EVT_NOTHING_PENDING;
2616					lpfc_issue_els_plogi(
2617						vport, ndlp->nlp_DID, 0);
2618				} else {
2619					__lpfc_sli_rpi_release(vport, ndlp);
2620				}
2621			}
2622		}
2623	}
2624
2625	mempool_free(pmb, phba->mbox_mem_pool);
2626}
2627
2628/**
2629 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2630 * @phba: Pointer to HBA context object.
2631 *
2632 * This function is called with no lock held. This function processes all
2633 * the completed mailbox commands and gives it to upper layers. The interrupt
2634 * service routine processes mailbox completion interrupt and adds completed
2635 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2636 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2637 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2638 * function returns the mailbox commands to the upper layer by calling the
2639 * completion handler function of each mailbox.
2640 **/
2641int
2642lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2643{
2644	MAILBOX_t *pmbox;
2645	LPFC_MBOXQ_t *pmb;
2646	int rc;
2647	LIST_HEAD(cmplq);
2648
2649	phba->sli.slistat.mbox_event++;
2650
2651	/* Get all completed mailboxe buffers into the cmplq */
2652	spin_lock_irq(&phba->hbalock);
2653	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2654	spin_unlock_irq(&phba->hbalock);
2655
2656	/* Get a Mailbox buffer to setup mailbox commands for callback */
2657	do {
2658		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2659		if (pmb == NULL)
2660			break;
2661
2662		pmbox = &pmb->u.mb;
2663
2664		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2665			if (pmb->vport) {
2666				lpfc_debugfs_disc_trc(pmb->vport,
2667					LPFC_DISC_TRC_MBOX_VPORT,
2668					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2669					(uint32_t)pmbox->mbxCommand,
2670					pmbox->un.varWords[0],
2671					pmbox->un.varWords[1]);
2672			}
2673			else {
2674				lpfc_debugfs_disc_trc(phba->pport,
2675					LPFC_DISC_TRC_MBOX,
2676					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2677					(uint32_t)pmbox->mbxCommand,
2678					pmbox->un.varWords[0],
2679					pmbox->un.varWords[1]);
2680			}
2681		}
2682
2683		/*
2684		 * It is a fatal error if unknown mbox command completion.
2685		 */
2686		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2687		    MBX_SHUTDOWN) {
2688			/* Unknown mailbox command compl */
2689			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2690					"(%d):0323 Unknown Mailbox command "
2691					"x%x (x%x/x%x) Cmpl\n",
2692					pmb->vport ? pmb->vport->vpi :
2693					LPFC_VPORT_UNKNOWN,
2694					pmbox->mbxCommand,
2695					lpfc_sli_config_mbox_subsys_get(phba,
2696									pmb),
2697					lpfc_sli_config_mbox_opcode_get(phba,
2698									pmb));
2699			phba->link_state = LPFC_HBA_ERROR;
2700			phba->work_hs = HS_FFER3;
2701			lpfc_handle_eratt(phba);
2702			continue;
2703		}
2704
2705		if (pmbox->mbxStatus) {
2706			phba->sli.slistat.mbox_stat_err++;
2707			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2708				/* Mbox cmd cmpl error - RETRYing */
2709				lpfc_printf_log(phba, KERN_INFO,
2710					LOG_MBOX | LOG_SLI,
2711					"(%d):0305 Mbox cmd cmpl "
2712					"error - RETRYing Data: x%x "
2713					"(x%x/x%x) x%x x%x x%x\n",
2714					pmb->vport ? pmb->vport->vpi :
2715					LPFC_VPORT_UNKNOWN,
2716					pmbox->mbxCommand,
2717					lpfc_sli_config_mbox_subsys_get(phba,
2718									pmb),
2719					lpfc_sli_config_mbox_opcode_get(phba,
2720									pmb),
2721					pmbox->mbxStatus,
2722					pmbox->un.varWords[0],
2723					pmb->vport ? pmb->vport->port_state :
2724					LPFC_VPORT_UNKNOWN);
2725				pmbox->mbxStatus = 0;
2726				pmbox->mbxOwner = OWN_HOST;
2727				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2728				if (rc != MBX_NOT_FINISHED)
2729					continue;
2730			}
2731		}
2732
2733		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2734		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2735				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2736				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2737				"x%x x%x x%x\n",
2738				pmb->vport ? pmb->vport->vpi : 0,
2739				pmbox->mbxCommand,
2740				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2741				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2742				pmb->mbox_cmpl,
2743				*((uint32_t *) pmbox),
2744				pmbox->un.varWords[0],
2745				pmbox->un.varWords[1],
2746				pmbox->un.varWords[2],
2747				pmbox->un.varWords[3],
2748				pmbox->un.varWords[4],
2749				pmbox->un.varWords[5],
2750				pmbox->un.varWords[6],
2751				pmbox->un.varWords[7],
2752				pmbox->un.varWords[8],
2753				pmbox->un.varWords[9],
2754				pmbox->un.varWords[10]);
2755
2756		if (pmb->mbox_cmpl)
2757			pmb->mbox_cmpl(phba,pmb);
2758	} while (1);
2759	return 0;
2760}
2761
2762/**
2763 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2764 * @phba: Pointer to HBA context object.
2765 * @pring: Pointer to driver SLI ring object.
2766 * @tag: buffer tag.
2767 *
2768 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2769 * is set in the tag the buffer is posted for a particular exchange,
2770 * the function will return the buffer without replacing the buffer.
2771 * If the buffer is for unsolicited ELS or CT traffic, this function
2772 * returns the buffer and also posts another buffer to the firmware.
2773 **/
2774static struct lpfc_dmabuf *
2775lpfc_sli_get_buff(struct lpfc_hba *phba,
2776		  struct lpfc_sli_ring *pring,
2777		  uint32_t tag)
2778{
2779	struct hbq_dmabuf *hbq_entry;
2780
2781	if (tag & QUE_BUFTAG_BIT)
2782		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2783	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2784	if (!hbq_entry)
2785		return NULL;
2786	return &hbq_entry->dbuf;
2787}
2788
2789/**
2790 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
2791 *                              containing a NVME LS request.
2792 * @phba: pointer to lpfc hba data structure.
2793 * @piocb: pointer to the iocbq struct representing the sequence starting
2794 *        frame.
2795 *
2796 * This routine initially validates the NVME LS, validates there is a login
2797 * with the port that sent the LS, and then calls the appropriate nvme host
2798 * or target LS request handler.
2799 **/
2800static void
2801lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
2802{
2803	struct lpfc_nodelist *ndlp;
2804	struct lpfc_dmabuf *d_buf;
2805	struct hbq_dmabuf *nvmebuf;
2806	struct fc_frame_header *fc_hdr;
2807	struct lpfc_async_xchg_ctx *axchg = NULL;
2808	char *failwhy = NULL;
2809	uint32_t oxid, sid, did, fctl, size;
2810	int ret = 1;
2811
2812	d_buf = piocb->context2;
2813
2814	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2815	fc_hdr = nvmebuf->hbuf.virt;
2816	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2817	sid = sli4_sid_from_fc_hdr(fc_hdr);
2818	did = sli4_did_from_fc_hdr(fc_hdr);
2819	fctl = (fc_hdr->fh_f_ctl[0] << 16 |
2820		fc_hdr->fh_f_ctl[1] << 8 |
2821		fc_hdr->fh_f_ctl[2]);
2822	size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
2823
2824	lpfc_nvmeio_data(phba, "NVME LS    RCV: xri x%x sz %d from %06x\n",
2825			 oxid, size, sid);
2826
2827	if (phba->pport->load_flag & FC_UNLOADING) {
2828		failwhy = "Driver Unloading";
2829	} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
2830		failwhy = "NVME FC4 Disabled";
2831	} else if (!phba->nvmet_support && !phba->pport->localport) {
2832		failwhy = "No Localport";
2833	} else if (phba->nvmet_support && !phba->targetport) {
2834		failwhy = "No Targetport";
2835	} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
2836		failwhy = "Bad NVME LS R_CTL";
2837	} else if (unlikely((fctl & 0x00FF0000) !=
2838			(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
2839		failwhy = "Bad NVME LS F_CTL";
2840	} else {
2841		axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
2842		if (!axchg)
2843			failwhy = "No CTX memory";
2844	}
2845
2846	if (unlikely(failwhy)) {
2847		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2848				"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
2849				sid, oxid, failwhy);
2850		goto out_fail;
2851	}
2852
2853	/* validate the source of the LS is logged in */
2854	ndlp = lpfc_findnode_did(phba->pport, sid);
2855	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2856	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2857	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2858		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2859				"6216 NVME Unsol rcv: No ndlp: "
2860				"NPort_ID x%x oxid x%x\n",
2861				sid, oxid);
2862		goto out_fail;
2863	}
2864
2865	axchg->phba = phba;
2866	axchg->ndlp = ndlp;
2867	axchg->size = size;
2868	axchg->oxid = oxid;
2869	axchg->sid = sid;
2870	axchg->wqeq = NULL;
2871	axchg->state = LPFC_NVME_STE_LS_RCV;
2872	axchg->entry_cnt = 1;
2873	axchg->rqb_buffer = (void *)nvmebuf;
2874	axchg->hdwq = &phba->sli4_hba.hdwq[0];
2875	axchg->payload = nvmebuf->dbuf.virt;
2876	INIT_LIST_HEAD(&axchg->list);
2877
2878	if (phba->nvmet_support)
2879		ret = lpfc_nvmet_handle_lsreq(phba, axchg);
2880	else
2881		ret = lpfc_nvme_handle_lsreq(phba, axchg);
2882
2883	/* if zero, LS was successfully handled. If non-zero, LS not handled */
2884	if (!ret)
2885		return;
2886
2887	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2888			"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
2889			"NVMe%s handler failed %d\n",
2890			did, sid, oxid,
2891			(phba->nvmet_support) ? "T" : "I", ret);
2892
2893out_fail:
2894
2895	/* recycle receive buffer */
2896	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
2897
2898	/* If start of new exchange, abort it */
2899	if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
2900		ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
2901
2902	if (ret)
2903		kfree(axchg);
2904}
2905
2906/**
2907 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2908 * @phba: Pointer to HBA context object.
2909 * @pring: Pointer to driver SLI ring object.
2910 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2911 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2912 * @fch_type: the type for the first frame of the sequence.
2913 *
2914 * This function is called with no lock held. This function uses the r_ctl and
2915 * type of the received sequence to find the correct callback function to call
2916 * to process the sequence.
2917 **/
2918static int
2919lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2920			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2921			 uint32_t fch_type)
2922{
2923	int i;
2924
2925	switch (fch_type) {
2926	case FC_TYPE_NVME:
2927		lpfc_nvme_unsol_ls_handler(phba, saveq);
2928		return 1;
2929	default:
2930		break;
2931	}
2932
2933	/* unSolicited Responses */
2934	if (pring->prt[0].profile) {
2935		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2936			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2937									saveq);
2938		return 1;
2939	}
2940	/* We must search, based on rctl / type
2941	   for the right routine */
2942	for (i = 0; i < pring->num_mask; i++) {
2943		if ((pring->prt[i].rctl == fch_r_ctl) &&
2944		    (pring->prt[i].type == fch_type)) {
2945			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2946				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2947						(phba, pring, saveq);
2948			return 1;
2949		}
2950	}
2951	return 0;
2952}
2953
2954/**
2955 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2956 * @phba: Pointer to HBA context object.
2957 * @pring: Pointer to driver SLI ring object.
2958 * @saveq: Pointer to the unsolicited iocb.
2959 *
2960 * This function is called with no lock held by the ring event handler
2961 * when there is an unsolicited iocb posted to the response ring by the
2962 * firmware. This function gets the buffer associated with the iocbs
2963 * and calls the event handler for the ring. This function handles both
2964 * qring buffers and hbq buffers.
2965 * When the function returns 1 the caller can free the iocb object otherwise
2966 * upper layer functions will free the iocb objects.
2967 **/
2968static int
2969lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2970			    struct lpfc_iocbq *saveq)
2971{
2972	IOCB_t           * irsp;
2973	WORD5            * w5p;
2974	uint32_t           Rctl, Type;
2975	struct lpfc_iocbq *iocbq;
2976	struct lpfc_dmabuf *dmzbuf;
2977
2978	irsp = &(saveq->iocb);
2979
2980	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2981		if (pring->lpfc_sli_rcv_async_status)
2982			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2983		else
2984			lpfc_printf_log(phba,
2985					KERN_WARNING,
2986					LOG_SLI,
2987					"0316 Ring %d handler: unexpected "
2988					"ASYNC_STATUS iocb received evt_code "
2989					"0x%x\n",
2990					pring->ringno,
2991					irsp->un.asyncstat.evt_code);
2992		return 1;
2993	}
2994
2995	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2996		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2997		if (irsp->ulpBdeCount > 0) {
2998			dmzbuf = lpfc_sli_get_buff(phba, pring,
2999					irsp->un.ulpWord[3]);
3000			lpfc_in_buf_free(phba, dmzbuf);
3001		}
3002
3003		if (irsp->ulpBdeCount > 1) {
3004			dmzbuf = lpfc_sli_get_buff(phba, pring,
3005					irsp->unsli3.sli3Words[3]);
3006			lpfc_in_buf_free(phba, dmzbuf);
3007		}
3008
3009		if (irsp->ulpBdeCount > 2) {
3010			dmzbuf = lpfc_sli_get_buff(phba, pring,
3011				irsp->unsli3.sli3Words[7]);
3012			lpfc_in_buf_free(phba, dmzbuf);
3013		}
3014
3015		return 1;
3016	}
3017
3018	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3019		if (irsp->ulpBdeCount != 0) {
3020			saveq->context2 = lpfc_sli_get_buff(phba, pring,
3021						irsp->un.ulpWord[3]);
3022			if (!saveq->context2)
3023				lpfc_printf_log(phba,
3024					KERN_ERR,
3025					LOG_SLI,
3026					"0341 Ring %d Cannot find buffer for "
3027					"an unsolicited iocb. tag 0x%x\n",
3028					pring->ringno,
3029					irsp->un.ulpWord[3]);
3030		}
3031		if (irsp->ulpBdeCount == 2) {
3032			saveq->context3 = lpfc_sli_get_buff(phba, pring,
3033						irsp->unsli3.sli3Words[7]);
3034			if (!saveq->context3)
3035				lpfc_printf_log(phba,
3036					KERN_ERR,
3037					LOG_SLI,
3038					"0342 Ring %d Cannot find buffer for an"
3039					" unsolicited iocb. tag 0x%x\n",
3040					pring->ringno,
3041					irsp->unsli3.sli3Words[7]);
3042		}
3043		list_for_each_entry(iocbq, &saveq->list, list) {
3044			irsp = &(iocbq->iocb);
3045			if (irsp->ulpBdeCount != 0) {
3046				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
3047							irsp->un.ulpWord[3]);
3048				if (!iocbq->context2)
3049					lpfc_printf_log(phba,
3050						KERN_ERR,
3051						LOG_SLI,
3052						"0343 Ring %d Cannot find "
3053						"buffer for an unsolicited iocb"
3054						". tag 0x%x\n", pring->ringno,
3055						irsp->un.ulpWord[3]);
3056			}
3057			if (irsp->ulpBdeCount == 2) {
3058				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
3059						irsp->unsli3.sli3Words[7]);
3060				if (!iocbq->context3)
3061					lpfc_printf_log(phba,
3062						KERN_ERR,
3063						LOG_SLI,
3064						"0344 Ring %d Cannot find "
3065						"buffer for an unsolicited "
3066						"iocb. tag 0x%x\n",
3067						pring->ringno,
3068						irsp->unsli3.sli3Words[7]);
3069			}
3070		}
3071	}
3072	if (irsp->ulpBdeCount != 0 &&
3073	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3074	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3075		int found = 0;
3076
3077		/* search continue save q for same XRI */
3078		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3079			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3080				saveq->iocb.unsli3.rcvsli3.ox_id) {
3081				list_add_tail(&saveq->list, &iocbq->list);
3082				found = 1;
3083				break;
3084			}
3085		}
3086		if (!found)
3087			list_add_tail(&saveq->clist,
3088				      &pring->iocb_continue_saveq);
3089		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3090			list_del_init(&iocbq->clist);
3091			saveq = iocbq;
3092			irsp = &(saveq->iocb);
3093		} else
3094			return 0;
3095	}
3096	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3097	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3098	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3099		Rctl = FC_RCTL_ELS_REQ;
3100		Type = FC_TYPE_ELS;
3101	} else {
3102		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3103		Rctl = w5p->hcsw.Rctl;
3104		Type = w5p->hcsw.Type;
3105
3106		/* Firmware Workaround */
3107		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3108			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3109			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3110			Rctl = FC_RCTL_ELS_REQ;
3111			Type = FC_TYPE_ELS;
3112			w5p->hcsw.Rctl = Rctl;
3113			w5p->hcsw.Type = Type;
3114		}
3115	}
3116
3117	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3118		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3119				"0313 Ring %d handler: unexpected Rctl x%x "
3120				"Type x%x received\n",
3121				pring->ringno, Rctl, Type);
3122
3123	return 1;
3124}
3125
3126/**
3127 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3128 * @phba: Pointer to HBA context object.
3129 * @pring: Pointer to driver SLI ring object.
3130 * @prspiocb: Pointer to response iocb object.
3131 *
3132 * This function looks up the iocb_lookup table to get the command iocb
3133 * corresponding to the given response iocb using the iotag of the
3134 * response iocb. The driver calls this function with the hbalock held
3135 * for SLI3 ports or the ring lock held for SLI4 ports.
3136 * This function returns the command iocb object if it finds the command
3137 * iocb else returns NULL.
3138 **/
3139static struct lpfc_iocbq *
3140lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3141		      struct lpfc_sli_ring *pring,
3142		      struct lpfc_iocbq *prspiocb)
3143{
3144	struct lpfc_iocbq *cmd_iocb = NULL;
3145	uint16_t iotag;
3146	spinlock_t *temp_lock = NULL;
3147	unsigned long iflag = 0;
3148
3149	if (phba->sli_rev == LPFC_SLI_REV4)
3150		temp_lock = &pring->ring_lock;
3151	else
3152		temp_lock = &phba->hbalock;
3153
3154	spin_lock_irqsave(temp_lock, iflag);
3155	iotag = prspiocb->iocb.ulpIoTag;
3156
3157	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3158		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3159		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3160			/* remove from txcmpl queue list */
3161			list_del_init(&cmd_iocb->list);
3162			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3163			pring->txcmplq_cnt--;
3164			spin_unlock_irqrestore(temp_lock, iflag);
3165			return cmd_iocb;
3166		}
3167	}
3168
3169	spin_unlock_irqrestore(temp_lock, iflag);
3170	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3171			"0317 iotag x%x is out of "
3172			"range: max iotag x%x wd0 x%x\n",
3173			iotag, phba->sli.last_iotag,
3174			*(((uint32_t *) &prspiocb->iocb) + 7));
3175	return NULL;
3176}
3177
3178/**
3179 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3180 * @phba: Pointer to HBA context object.
3181 * @pring: Pointer to driver SLI ring object.
3182 * @iotag: IOCB tag.
3183 *
3184 * This function looks up the iocb_lookup table to get the command iocb
3185 * corresponding to the given iotag. The driver calls this function with
3186 * the ring lock held because this function is an SLI4 port only helper.
3187 * This function returns the command iocb object if it finds the command
3188 * iocb else returns NULL.
3189 **/
3190static struct lpfc_iocbq *
3191lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3192			     struct lpfc_sli_ring *pring, uint16_t iotag)
3193{
3194	struct lpfc_iocbq *cmd_iocb = NULL;
3195	spinlock_t *temp_lock = NULL;
3196	unsigned long iflag = 0;
3197
3198	if (phba->sli_rev == LPFC_SLI_REV4)
3199		temp_lock = &pring->ring_lock;
3200	else
3201		temp_lock = &phba->hbalock;
3202
3203	spin_lock_irqsave(temp_lock, iflag);
3204	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3205		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3206		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3207			/* remove from txcmpl queue list */
3208			list_del_init(&cmd_iocb->list);
3209			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3210			pring->txcmplq_cnt--;
3211			spin_unlock_irqrestore(temp_lock, iflag);
3212			return cmd_iocb;
3213		}
3214	}
3215
3216	spin_unlock_irqrestore(temp_lock, iflag);
3217	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3218			"0372 iotag x%x lookup error: max iotag (x%x) "
3219			"iocb_flag x%x\n",
3220			iotag, phba->sli.last_iotag,
3221			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3222	return NULL;
3223}
3224
3225/**
3226 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3227 * @phba: Pointer to HBA context object.
3228 * @pring: Pointer to driver SLI ring object.
3229 * @saveq: Pointer to the response iocb to be processed.
3230 *
3231 * This function is called by the ring event handler for non-fcp
3232 * rings when there is a new response iocb in the response ring.
3233 * The caller is not required to hold any locks. This function
3234 * gets the command iocb associated with the response iocb and
3235 * calls the completion handler for the command iocb. If there
3236 * is no completion handler, the function will free the resources
3237 * associated with command iocb. If the response iocb is for
3238 * an already aborted command iocb, the status of the completion
3239 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3240 * This function always returns 1.
3241 **/
3242static int
3243lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3244			  struct lpfc_iocbq *saveq)
3245{
3246	struct lpfc_iocbq *cmdiocbp;
3247	int rc = 1;
3248	unsigned long iflag;
3249
3250	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3251	if (cmdiocbp) {
3252		if (cmdiocbp->iocb_cmpl) {
3253			/*
3254			 * If an ELS command failed send an event to mgmt
3255			 * application.
3256			 */
3257			if (saveq->iocb.ulpStatus &&
3258			     (pring->ringno == LPFC_ELS_RING) &&
3259			     (cmdiocbp->iocb.ulpCommand ==
3260				CMD_ELS_REQUEST64_CR))
3261				lpfc_send_els_failure_event(phba,
3262					cmdiocbp, saveq);
3263
3264			/*
3265			 * Post all ELS completions to the worker thread.
3266			 * All other are passed to the completion callback.
3267			 */
3268			if (pring->ringno == LPFC_ELS_RING) {
3269				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3270				    (cmdiocbp->iocb_flag &
3271							LPFC_DRIVER_ABORTED)) {
3272					spin_lock_irqsave(&phba->hbalock,
3273							  iflag);
3274					cmdiocbp->iocb_flag &=
3275						~LPFC_DRIVER_ABORTED;
3276					spin_unlock_irqrestore(&phba->hbalock,
3277							       iflag);
3278					saveq->iocb.ulpStatus =
3279						IOSTAT_LOCAL_REJECT;
3280					saveq->iocb.un.ulpWord[4] =
3281						IOERR_SLI_ABORTED;
3282
3283					/* Firmware could still be in progress
3284					 * of DMAing payload, so don't free data
3285					 * buffer till after a hbeat.
3286					 */
3287					spin_lock_irqsave(&phba->hbalock,
3288							  iflag);
3289					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3290					spin_unlock_irqrestore(&phba->hbalock,
3291							       iflag);
3292				}
3293				if (phba->sli_rev == LPFC_SLI_REV4) {
3294					if (saveq->iocb_flag &
3295					    LPFC_EXCHANGE_BUSY) {
3296						/* Set cmdiocb flag for the
3297						 * exchange busy so sgl (xri)
3298						 * will not be released until
3299						 * the abort xri is received
3300						 * from hba.
3301						 */
3302						spin_lock_irqsave(
3303							&phba->hbalock, iflag);
3304						cmdiocbp->iocb_flag |=
3305							LPFC_EXCHANGE_BUSY;
3306						spin_unlock_irqrestore(
3307							&phba->hbalock, iflag);
3308					}
3309					if (cmdiocbp->iocb_flag &
3310					    LPFC_DRIVER_ABORTED) {
3311						/*
3312						 * Clear LPFC_DRIVER_ABORTED
3313						 * bit in case it was driver
3314						 * initiated abort.
3315						 */
3316						spin_lock_irqsave(
3317							&phba->hbalock, iflag);
3318						cmdiocbp->iocb_flag &=
3319							~LPFC_DRIVER_ABORTED;
3320						spin_unlock_irqrestore(
3321							&phba->hbalock, iflag);
3322						cmdiocbp->iocb.ulpStatus =
3323							IOSTAT_LOCAL_REJECT;
3324						cmdiocbp->iocb.un.ulpWord[4] =
3325							IOERR_ABORT_REQUESTED;
3326						/*
3327						 * For SLI4, irsiocb contains
3328						 * NO_XRI in sli_xritag, it
3329						 * shall not affect releasing
3330						 * sgl (xri) process.
3331						 */
3332						saveq->iocb.ulpStatus =
3333							IOSTAT_LOCAL_REJECT;
3334						saveq->iocb.un.ulpWord[4] =
3335							IOERR_SLI_ABORTED;
3336						spin_lock_irqsave(
3337							&phba->hbalock, iflag);
3338						saveq->iocb_flag |=
3339							LPFC_DELAY_MEM_FREE;
3340						spin_unlock_irqrestore(
3341							&phba->hbalock, iflag);
3342					}
3343				}
3344			}
3345			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3346		} else
3347			lpfc_sli_release_iocbq(phba, cmdiocbp);
3348	} else {
3349		/*
3350		 * Unknown initiating command based on the response iotag.
3351		 * This could be the case on the ELS ring because of
3352		 * lpfc_els_abort().
3353		 */
3354		if (pring->ringno != LPFC_ELS_RING) {
3355			/*
3356			 * Ring <ringno> handler: unexpected completion IoTag
3357			 * <IoTag>
3358			 */
3359			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3360					 "0322 Ring %d handler: "
3361					 "unexpected completion IoTag x%x "
3362					 "Data: x%x x%x x%x x%x\n",
3363					 pring->ringno,
3364					 saveq->iocb.ulpIoTag,
3365					 saveq->iocb.ulpStatus,
3366					 saveq->iocb.un.ulpWord[4],
3367					 saveq->iocb.ulpCommand,
3368					 saveq->iocb.ulpContext);
3369		}
3370	}
3371
3372	return rc;
3373}
3374
3375/**
3376 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3377 * @phba: Pointer to HBA context object.
3378 * @pring: Pointer to driver SLI ring object.
3379 *
3380 * This function is called from the iocb ring event handlers when
3381 * put pointer is ahead of the get pointer for a ring. This function signal
3382 * an error attention condition to the worker thread and the worker
3383 * thread will transition the HBA to offline state.
3384 **/
3385static void
3386lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3387{
3388	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3389	/*
3390	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3391	 * rsp ring <portRspMax>
3392	 */
3393	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3394			"0312 Ring %d handler: portRspPut %d "
3395			"is bigger than rsp ring %d\n",
3396			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3397			pring->sli.sli3.numRiocb);
3398
3399	phba->link_state = LPFC_HBA_ERROR;
3400
3401	/*
3402	 * All error attention handlers are posted to
3403	 * worker thread
3404	 */
3405	phba->work_ha |= HA_ERATT;
3406	phba->work_hs = HS_FFER3;
3407
3408	lpfc_worker_wake_up(phba);
3409
3410	return;
3411}
3412
3413/**
3414 * lpfc_poll_eratt - Error attention polling timer timeout handler
3415 * @t: Context to fetch pointer to address of HBA context object from.
3416 *
3417 * This function is invoked by the Error Attention polling timer when the
3418 * timer times out. It will check the SLI Error Attention register for
3419 * possible attention events. If so, it will post an Error Attention event
3420 * and wake up worker thread to process it. Otherwise, it will set up the
3421 * Error Attention polling timer for the next poll.
3422 **/
3423void lpfc_poll_eratt(struct timer_list *t)
3424{
3425	struct lpfc_hba *phba;
3426	uint32_t eratt = 0;
3427	uint64_t sli_intr, cnt;
3428
3429	phba = from_timer(phba, t, eratt_poll);
3430
3431	/* Here we will also keep track of interrupts per sec of the hba */
3432	sli_intr = phba->sli.slistat.sli_intr;
3433
3434	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3435		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3436			sli_intr);
3437	else
3438		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3439
3440	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3441	do_div(cnt, phba->eratt_poll_interval);
3442	phba->sli.slistat.sli_ips = cnt;
3443
3444	phba->sli.slistat.sli_prev_intr = sli_intr;
3445
3446	/* Check chip HA register for error event */
3447	eratt = lpfc_sli_check_eratt(phba);
3448
3449	if (eratt)
3450		/* Tell the worker thread there is work to do */
3451		lpfc_worker_wake_up(phba);
3452	else
3453		/* Restart the timer for next eratt poll */
3454		mod_timer(&phba->eratt_poll,
3455			  jiffies +
3456			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3457	return;
3458}
3459
3460
3461/**
3462 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3463 * @phba: Pointer to HBA context object.
3464 * @pring: Pointer to driver SLI ring object.
3465 * @mask: Host attention register mask for this ring.
3466 *
3467 * This function is called from the interrupt context when there is a ring
3468 * event for the fcp ring. The caller does not hold any lock.
3469 * The function processes each response iocb in the response ring until it
3470 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3471 * LE bit set. The function will call the completion handler of the command iocb
3472 * if the response iocb indicates a completion for a command iocb or it is
3473 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3474 * function if this is an unsolicited iocb.
3475 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3476 * to check it explicitly.
3477 */
3478int
3479lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3480				struct lpfc_sli_ring *pring, uint32_t mask)
3481{
3482	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3483	IOCB_t *irsp = NULL;
3484	IOCB_t *entry = NULL;
3485	struct lpfc_iocbq *cmdiocbq = NULL;
3486	struct lpfc_iocbq rspiocbq;
3487	uint32_t status;
3488	uint32_t portRspPut, portRspMax;
3489	int rc = 1;
3490	lpfc_iocb_type type;
3491	unsigned long iflag;
3492	uint32_t rsp_cmpl = 0;
3493
3494	spin_lock_irqsave(&phba->hbalock, iflag);
3495	pring->stats.iocb_event++;
3496
3497	/*
3498	 * The next available response entry should never exceed the maximum
3499	 * entries.  If it does, treat it as an adapter hardware error.
3500	 */
3501	portRspMax = pring->sli.sli3.numRiocb;
3502	portRspPut = le32_to_cpu(pgp->rspPutInx);
3503	if (unlikely(portRspPut >= portRspMax)) {
3504		lpfc_sli_rsp_pointers_error(phba, pring);
3505		spin_unlock_irqrestore(&phba->hbalock, iflag);
3506		return 1;
3507	}
3508	if (phba->fcp_ring_in_use) {
3509		spin_unlock_irqrestore(&phba->hbalock, iflag);
3510		return 1;
3511	} else
3512		phba->fcp_ring_in_use = 1;
3513
3514	rmb();
3515	while (pring->sli.sli3.rspidx != portRspPut) {
3516		/*
3517		 * Fetch an entry off the ring and copy it into a local data
3518		 * structure.  The copy involves a byte-swap since the
3519		 * network byte order and pci byte orders are different.
3520		 */
3521		entry = lpfc_resp_iocb(phba, pring);
3522		phba->last_completion_time = jiffies;
3523
3524		if (++pring->sli.sli3.rspidx >= portRspMax)
3525			pring->sli.sli3.rspidx = 0;
3526
3527		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3528				      (uint32_t *) &rspiocbq.iocb,
3529				      phba->iocb_rsp_size);
3530		INIT_LIST_HEAD(&(rspiocbq.list));
3531		irsp = &rspiocbq.iocb;
3532
3533		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3534		pring->stats.iocb_rsp++;
3535		rsp_cmpl++;
3536
3537		if (unlikely(irsp->ulpStatus)) {
3538			/*
3539			 * If resource errors reported from HBA, reduce
3540			 * queuedepths of the SCSI device.
3541			 */
3542			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3543			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3544			     IOERR_NO_RESOURCES)) {
3545				spin_unlock_irqrestore(&phba->hbalock, iflag);
3546				phba->lpfc_rampdown_queue_depth(phba);
3547				spin_lock_irqsave(&phba->hbalock, iflag);
3548			}
3549
3550			/* Rsp ring <ringno> error: IOCB */
3551			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3552					"0336 Rsp Ring %d error: IOCB Data: "
3553					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3554					pring->ringno,
3555					irsp->un.ulpWord[0],
3556					irsp->un.ulpWord[1],
3557					irsp->un.ulpWord[2],
3558					irsp->un.ulpWord[3],
3559					irsp->un.ulpWord[4],
3560					irsp->un.ulpWord[5],
3561					*(uint32_t *)&irsp->un1,
3562					*((uint32_t *)&irsp->un1 + 1));
3563		}
3564
3565		switch (type) {
3566		case LPFC_ABORT_IOCB:
3567		case LPFC_SOL_IOCB:
3568			/*
3569			 * Idle exchange closed via ABTS from port.  No iocb
3570			 * resources need to be recovered.
3571			 */
3572			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3573				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3574						"0333 IOCB cmd 0x%x"
3575						" processed. Skipping"
3576						" completion\n",
3577						irsp->ulpCommand);
3578				break;
3579			}
3580
3581			spin_unlock_irqrestore(&phba->hbalock, iflag);
3582			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3583							 &rspiocbq);
3584			spin_lock_irqsave(&phba->hbalock, iflag);
3585			if (unlikely(!cmdiocbq))
3586				break;
3587			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3588				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3589			if (cmdiocbq->iocb_cmpl) {
3590				spin_unlock_irqrestore(&phba->hbalock, iflag);
3591				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3592						      &rspiocbq);
3593				spin_lock_irqsave(&phba->hbalock, iflag);
3594			}
3595			break;
3596		case LPFC_UNSOL_IOCB:
3597			spin_unlock_irqrestore(&phba->hbalock, iflag);
3598			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3599			spin_lock_irqsave(&phba->hbalock, iflag);
3600			break;
3601		default:
3602			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3603				char adaptermsg[LPFC_MAX_ADPTMSG];
3604				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3605				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3606				       MAX_MSG_DATA);
3607				dev_warn(&((phba->pcidev)->dev),
3608					 "lpfc%d: %s\n",
3609					 phba->brd_no, adaptermsg);
3610			} else {
3611				/* Unknown IOCB command */
3612				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3613						"0334 Unknown IOCB command "
3614						"Data: x%x, x%x x%x x%x x%x\n",
3615						type, irsp->ulpCommand,
3616						irsp->ulpStatus,
3617						irsp->ulpIoTag,
3618						irsp->ulpContext);
3619			}
3620			break;
3621		}
3622
3623		/*
3624		 * The response IOCB has been processed.  Update the ring
3625		 * pointer in SLIM.  If the port response put pointer has not
3626		 * been updated, sync the pgp->rspPutInx and fetch the new port
3627		 * response put pointer.
3628		 */
3629		writel(pring->sli.sli3.rspidx,
3630			&phba->host_gp[pring->ringno].rspGetInx);
3631
3632		if (pring->sli.sli3.rspidx == portRspPut)
3633			portRspPut = le32_to_cpu(pgp->rspPutInx);
3634	}
3635
3636	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3637		pring->stats.iocb_rsp_full++;
3638		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3639		writel(status, phba->CAregaddr);
3640		readl(phba->CAregaddr);
3641	}
3642	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3643		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3644		pring->stats.iocb_cmd_empty++;
3645
3646		/* Force update of the local copy of cmdGetInx */
3647		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3648		lpfc_sli_resume_iocb(phba, pring);
3649
3650		if ((pring->lpfc_sli_cmd_available))
3651			(pring->lpfc_sli_cmd_available) (phba, pring);
3652
3653	}
3654
3655	phba->fcp_ring_in_use = 0;
3656	spin_unlock_irqrestore(&phba->hbalock, iflag);
3657	return rc;
3658}
3659
3660/**
3661 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3662 * @phba: Pointer to HBA context object.
3663 * @pring: Pointer to driver SLI ring object.
3664 * @rspiocbp: Pointer to driver response IOCB object.
3665 *
3666 * This function is called from the worker thread when there is a slow-path
3667 * response IOCB to process. This function chains all the response iocbs until
3668 * seeing the iocb with the LE bit set. The function will call
3669 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3670 * completion of a command iocb. The function will call the
3671 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3672 * The function frees the resources or calls the completion handler if this
3673 * iocb is an abort completion. The function returns NULL when the response
3674 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3675 * this function shall chain the iocb on to the iocb_continueq and return the
3676 * response iocb passed in.
3677 **/
3678static struct lpfc_iocbq *
3679lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3680			struct lpfc_iocbq *rspiocbp)
3681{
3682	struct lpfc_iocbq *saveq;
3683	struct lpfc_iocbq *cmdiocbp;
3684	struct lpfc_iocbq *next_iocb;
3685	IOCB_t *irsp = NULL;
3686	uint32_t free_saveq;
3687	uint8_t iocb_cmd_type;
3688	lpfc_iocb_type type;
3689	unsigned long iflag;
3690	int rc;
3691
3692	spin_lock_irqsave(&phba->hbalock, iflag);
3693	/* First add the response iocb to the countinueq list */
3694	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3695	pring->iocb_continueq_cnt++;
3696
3697	/* Now, determine whether the list is completed for processing */
3698	irsp = &rspiocbp->iocb;
3699	if (irsp->ulpLe) {
3700		/*
3701		 * By default, the driver expects to free all resources
3702		 * associated with this iocb completion.
3703		 */
3704		free_saveq = 1;
3705		saveq = list_get_first(&pring->iocb_continueq,
3706				       struct lpfc_iocbq, list);
3707		irsp = &(saveq->iocb);
3708		list_del_init(&pring->iocb_continueq);
3709		pring->iocb_continueq_cnt = 0;
3710
3711		pring->stats.iocb_rsp++;
3712
3713		/*
3714		 * If resource errors reported from HBA, reduce
3715		 * queuedepths of the SCSI device.
3716		 */
3717		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3718		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3719		     IOERR_NO_RESOURCES)) {
3720			spin_unlock_irqrestore(&phba->hbalock, iflag);
3721			phba->lpfc_rampdown_queue_depth(phba);
3722			spin_lock_irqsave(&phba->hbalock, iflag);
3723		}
3724
3725		if (irsp->ulpStatus) {
3726			/* Rsp ring <ringno> error: IOCB */
3727			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3728					"0328 Rsp Ring %d error: "
3729					"IOCB Data: "
3730					"x%x x%x x%x x%x "
3731					"x%x x%x x%x x%x "
3732					"x%x x%x x%x x%x "
3733					"x%x x%x x%x x%x\n",
3734					pring->ringno,
3735					irsp->un.ulpWord[0],
3736					irsp->un.ulpWord[1],
3737					irsp->un.ulpWord[2],
3738					irsp->un.ulpWord[3],
3739					irsp->un.ulpWord[4],
3740					irsp->un.ulpWord[5],
3741					*(((uint32_t *) irsp) + 6),
3742					*(((uint32_t *) irsp) + 7),
3743					*(((uint32_t *) irsp) + 8),
3744					*(((uint32_t *) irsp) + 9),
3745					*(((uint32_t *) irsp) + 10),
3746					*(((uint32_t *) irsp) + 11),
3747					*(((uint32_t *) irsp) + 12),
3748					*(((uint32_t *) irsp) + 13),
3749					*(((uint32_t *) irsp) + 14),
3750					*(((uint32_t *) irsp) + 15));
3751		}
3752
3753		/*
3754		 * Fetch the IOCB command type and call the correct completion
3755		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3756		 * get freed back to the lpfc_iocb_list by the discovery
3757		 * kernel thread.
3758		 */
3759		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3760		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3761		switch (type) {
3762		case LPFC_SOL_IOCB:
3763			spin_unlock_irqrestore(&phba->hbalock, iflag);
3764			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3765			spin_lock_irqsave(&phba->hbalock, iflag);
3766			break;
3767
3768		case LPFC_UNSOL_IOCB:
3769			spin_unlock_irqrestore(&phba->hbalock, iflag);
3770			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3771			spin_lock_irqsave(&phba->hbalock, iflag);
3772			if (!rc)
3773				free_saveq = 0;
3774			break;
3775
3776		case LPFC_ABORT_IOCB:
3777			cmdiocbp = NULL;
3778			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3779				spin_unlock_irqrestore(&phba->hbalock, iflag);
3780				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3781								 saveq);
3782				spin_lock_irqsave(&phba->hbalock, iflag);
3783			}
3784			if (cmdiocbp) {
3785				/* Call the specified completion routine */
3786				if (cmdiocbp->iocb_cmpl) {
3787					spin_unlock_irqrestore(&phba->hbalock,
3788							       iflag);
3789					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3790							      saveq);
3791					spin_lock_irqsave(&phba->hbalock,
3792							  iflag);
3793				} else
3794					__lpfc_sli_release_iocbq(phba,
3795								 cmdiocbp);
3796			}
3797			break;
3798
3799		case LPFC_UNKNOWN_IOCB:
3800			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3801				char adaptermsg[LPFC_MAX_ADPTMSG];
3802				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3803				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3804				       MAX_MSG_DATA);
3805				dev_warn(&((phba->pcidev)->dev),
3806					 "lpfc%d: %s\n",
3807					 phba->brd_no, adaptermsg);
3808			} else {
3809				/* Unknown IOCB command */
3810				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3811						"0335 Unknown IOCB "
3812						"command Data: x%x "
3813						"x%x x%x x%x\n",
3814						irsp->ulpCommand,
3815						irsp->ulpStatus,
3816						irsp->ulpIoTag,
3817						irsp->ulpContext);
3818			}
3819			break;
3820		}
3821
3822		if (free_saveq) {
3823			list_for_each_entry_safe(rspiocbp, next_iocb,
3824						 &saveq->list, list) {
3825				list_del_init(&rspiocbp->list);
3826				__lpfc_sli_release_iocbq(phba, rspiocbp);
3827			}
3828			__lpfc_sli_release_iocbq(phba, saveq);
3829		}
3830		rspiocbp = NULL;
3831	}
3832	spin_unlock_irqrestore(&phba->hbalock, iflag);
3833	return rspiocbp;
3834}
3835
3836/**
3837 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3838 * @phba: Pointer to HBA context object.
3839 * @pring: Pointer to driver SLI ring object.
3840 * @mask: Host attention register mask for this ring.
3841 *
3842 * This routine wraps the actual slow_ring event process routine from the
3843 * API jump table function pointer from the lpfc_hba struct.
3844 **/
3845void
3846lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3847				struct lpfc_sli_ring *pring, uint32_t mask)
3848{
3849	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3850}
3851
3852/**
3853 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3854 * @phba: Pointer to HBA context object.
3855 * @pring: Pointer to driver SLI ring object.
3856 * @mask: Host attention register mask for this ring.
3857 *
3858 * This function is called from the worker thread when there is a ring event
3859 * for non-fcp rings. The caller does not hold any lock. The function will
3860 * remove each response iocb in the response ring and calls the handle
3861 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3862 **/
3863static void
3864lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3865				   struct lpfc_sli_ring *pring, uint32_t mask)
3866{
3867	struct lpfc_pgp *pgp;
3868	IOCB_t *entry;
3869	IOCB_t *irsp = NULL;
3870	struct lpfc_iocbq *rspiocbp = NULL;
3871	uint32_t portRspPut, portRspMax;
3872	unsigned long iflag;
3873	uint32_t status;
3874
3875	pgp = &phba->port_gp[pring->ringno];
3876	spin_lock_irqsave(&phba->hbalock, iflag);
3877	pring->stats.iocb_event++;
3878
3879	/*
3880	 * The next available response entry should never exceed the maximum
3881	 * entries.  If it does, treat it as an adapter hardware error.
3882	 */
3883	portRspMax = pring->sli.sli3.numRiocb;
3884	portRspPut = le32_to_cpu(pgp->rspPutInx);
3885	if (portRspPut >= portRspMax) {
3886		/*
3887		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3888		 * rsp ring <portRspMax>
3889		 */
3890		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3891				"0303 Ring %d handler: portRspPut %d "
3892				"is bigger than rsp ring %d\n",
3893				pring->ringno, portRspPut, portRspMax);
3894
3895		phba->link_state = LPFC_HBA_ERROR;
3896		spin_unlock_irqrestore(&phba->hbalock, iflag);
3897
3898		phba->work_hs = HS_FFER3;
3899		lpfc_handle_eratt(phba);
3900
3901		return;
3902	}
3903
3904	rmb();
3905	while (pring->sli.sli3.rspidx != portRspPut) {
3906		/*
3907		 * Build a completion list and call the appropriate handler.
3908		 * The process is to get the next available response iocb, get
3909		 * a free iocb from the list, copy the response data into the
3910		 * free iocb, insert to the continuation list, and update the
3911		 * next response index to slim.  This process makes response
3912		 * iocb's in the ring available to DMA as fast as possible but
3913		 * pays a penalty for a copy operation.  Since the iocb is
3914		 * only 32 bytes, this penalty is considered small relative to
3915		 * the PCI reads for register values and a slim write.  When
3916		 * the ulpLe field is set, the entire Command has been
3917		 * received.
3918		 */
3919		entry = lpfc_resp_iocb(phba, pring);
3920
3921		phba->last_completion_time = jiffies;
3922		rspiocbp = __lpfc_sli_get_iocbq(phba);
3923		if (rspiocbp == NULL) {
3924			printk(KERN_ERR "%s: out of buffers! Failing "
3925			       "completion.\n", __func__);
3926			break;
3927		}
3928
3929		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3930				      phba->iocb_rsp_size);
3931		irsp = &rspiocbp->iocb;
3932
3933		if (++pring->sli.sli3.rspidx >= portRspMax)
3934			pring->sli.sli3.rspidx = 0;
3935
3936		if (pring->ringno == LPFC_ELS_RING) {
3937			lpfc_debugfs_slow_ring_trc(phba,
3938			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3939				*(((uint32_t *) irsp) + 4),
3940				*(((uint32_t *) irsp) + 6),
3941				*(((uint32_t *) irsp) + 7));
3942		}
3943
3944		writel(pring->sli.sli3.rspidx,
3945			&phba->host_gp[pring->ringno].rspGetInx);
3946
3947		spin_unlock_irqrestore(&phba->hbalock, iflag);
3948		/* Handle the response IOCB */
3949		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3950		spin_lock_irqsave(&phba->hbalock, iflag);
3951
3952		/*
3953		 * If the port response put pointer has not been updated, sync
3954		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3955		 * response put pointer.
3956		 */
3957		if (pring->sli.sli3.rspidx == portRspPut) {
3958			portRspPut = le32_to_cpu(pgp->rspPutInx);
3959		}
3960	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3961
3962	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3963		/* At least one response entry has been freed */
3964		pring->stats.iocb_rsp_full++;
3965		/* SET RxRE_RSP in Chip Att register */
3966		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3967		writel(status, phba->CAregaddr);
3968		readl(phba->CAregaddr); /* flush */
3969	}
3970	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3971		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3972		pring->stats.iocb_cmd_empty++;
3973
3974		/* Force update of the local copy of cmdGetInx */
3975		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3976		lpfc_sli_resume_iocb(phba, pring);
3977
3978		if ((pring->lpfc_sli_cmd_available))
3979			(pring->lpfc_sli_cmd_available) (phba, pring);
3980
3981	}
3982
3983	spin_unlock_irqrestore(&phba->hbalock, iflag);
3984	return;
3985}
3986
3987/**
3988 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3989 * @phba: Pointer to HBA context object.
3990 * @pring: Pointer to driver SLI ring object.
3991 * @mask: Host attention register mask for this ring.
3992 *
3993 * This function is called from the worker thread when there is a pending
3994 * ELS response iocb on the driver internal slow-path response iocb worker
3995 * queue. The caller does not hold any lock. The function will remove each
3996 * response iocb from the response worker queue and calls the handle
3997 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3998 **/
3999static void
4000lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4001				   struct lpfc_sli_ring *pring, uint32_t mask)
4002{
4003	struct lpfc_iocbq *irspiocbq;
4004	struct hbq_dmabuf *dmabuf;
4005	struct lpfc_cq_event *cq_event;
4006	unsigned long iflag;
4007	int count = 0;
4008
4009	spin_lock_irqsave(&phba->hbalock, iflag);
4010	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4011	spin_unlock_irqrestore(&phba->hbalock, iflag);
4012	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4013		/* Get the response iocb from the head of work queue */
4014		spin_lock_irqsave(&phba->hbalock, iflag);
4015		list_remove_head(&phba->sli4_hba.sp_queue_event,
4016				 cq_event, struct lpfc_cq_event, list);
4017		spin_unlock_irqrestore(&phba->hbalock, iflag);
4018
4019		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4020		case CQE_CODE_COMPL_WQE:
4021			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4022						 cq_event);
4023			/* Translate ELS WCQE to response IOCBQ */
4024			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
4025								   irspiocbq);
4026			if (irspiocbq)
4027				lpfc_sli_sp_handle_rspiocb(phba, pring,
4028							   irspiocbq);
4029			count++;
4030			break;
4031		case CQE_CODE_RECEIVE:
4032		case CQE_CODE_RECEIVE_V1:
4033			dmabuf = container_of(cq_event, struct hbq_dmabuf,
4034					      cq_event);
4035			lpfc_sli4_handle_received_buffer(phba, dmabuf);
4036			count++;
4037			break;
4038		default:
4039			break;
4040		}
4041
4042		/* Limit the number of events to 64 to avoid soft lockups */
4043		if (count == 64)
4044			break;
4045	}
4046}
4047
4048/**
4049 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4050 * @phba: Pointer to HBA context object.
4051 * @pring: Pointer to driver SLI ring object.
4052 *
4053 * This function aborts all iocbs in the given ring and frees all the iocb
4054 * objects in txq. This function issues an abort iocb for all the iocb commands
4055 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4056 * the return of this function. The caller is not required to hold any locks.
4057 **/
4058void
4059lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4060{
4061	LIST_HEAD(completions);
4062	struct lpfc_iocbq *iocb, *next_iocb;
4063
4064	if (pring->ringno == LPFC_ELS_RING) {
4065		lpfc_fabric_abort_hba(phba);
4066	}
4067
4068	/* Error everything on txq and txcmplq
4069	 * First do the txq.
4070	 */
4071	if (phba->sli_rev >= LPFC_SLI_REV4) {
4072		spin_lock_irq(&pring->ring_lock);
4073		list_splice_init(&pring->txq, &completions);
4074		pring->txq_cnt = 0;
4075		spin_unlock_irq(&pring->ring_lock);
4076
4077		spin_lock_irq(&phba->hbalock);
4078		/* Next issue ABTS for everything on the txcmplq */
4079		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4080			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
4081		spin_unlock_irq(&phba->hbalock);
4082	} else {
4083		spin_lock_irq(&phba->hbalock);
4084		list_splice_init(&pring->txq, &completions);
4085		pring->txq_cnt = 0;
4086
4087		/* Next issue ABTS for everything on the txcmplq */
4088		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4089			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
4090		spin_unlock_irq(&phba->hbalock);
4091	}
4092
4093	/* Cancel all the IOCBs from the completions list */
4094	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
4095			      IOERR_SLI_ABORTED);
4096}
4097
4098/**
4099 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4100 * @phba: Pointer to HBA context object.
4101 *
4102 * This function aborts all iocbs in FCP rings and frees all the iocb
4103 * objects in txq. This function issues an abort iocb for all the iocb commands
4104 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4105 * the return of this function. The caller is not required to hold any locks.
4106 **/
4107void
4108lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4109{
4110	struct lpfc_sli *psli = &phba->sli;
4111	struct lpfc_sli_ring  *pring;
4112	uint32_t i;
4113
4114	/* Look on all the FCP Rings for the iotag */
4115	if (phba->sli_rev >= LPFC_SLI_REV4) {
4116		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4117			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4118			lpfc_sli_abort_iocb_ring(phba, pring);
4119		}
4120	} else {
4121		pring = &psli->sli3_ring[LPFC_FCP_RING];
4122		lpfc_sli_abort_iocb_ring(phba, pring);
4123	}
4124}
4125
4126/**
4127 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4128 * @phba: Pointer to HBA context object.
4129 *
4130 * This function flushes all iocbs in the IO ring and frees all the iocb
4131 * objects in txq and txcmplq. This function will not issue abort iocbs
4132 * for all the iocb commands in txcmplq, they will just be returned with
4133 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4134 * slot has been permanently disabled.
4135 **/
4136void
4137lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4138{
4139	LIST_HEAD(txq);
4140	LIST_HEAD(txcmplq);
4141	struct lpfc_sli *psli = &phba->sli;
4142	struct lpfc_sli_ring  *pring;
4143	uint32_t i;
4144	struct lpfc_iocbq *piocb, *next_iocb;
4145
4146	spin_lock_irq(&phba->hbalock);
4147	if (phba->hba_flag & HBA_IOQ_FLUSH ||
4148	    !phba->sli4_hba.hdwq) {
4149		spin_unlock_irq(&phba->hbalock);
4150		return;
4151	}
4152	/* Indicate the I/O queues are flushed */
4153	phba->hba_flag |= HBA_IOQ_FLUSH;
4154	spin_unlock_irq(&phba->hbalock);
4155
4156	/* Look on all the FCP Rings for the iotag */
4157	if (phba->sli_rev >= LPFC_SLI_REV4) {
4158		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4159			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4160
4161			spin_lock_irq(&pring->ring_lock);
4162			/* Retrieve everything on txq */
4163			list_splice_init(&pring->txq, &txq);
4164			list_for_each_entry_safe(piocb, next_iocb,
4165						 &pring->txcmplq, list)
4166				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4167			/* Retrieve everything on the txcmplq */
4168			list_splice_init(&pring->txcmplq, &txcmplq);
4169			pring->txq_cnt = 0;
4170			pring->txcmplq_cnt = 0;
4171			spin_unlock_irq(&pring->ring_lock);
4172
4173			/* Flush the txq */
4174			lpfc_sli_cancel_iocbs(phba, &txq,
4175					      IOSTAT_LOCAL_REJECT,
4176					      IOERR_SLI_DOWN);
4177			/* Flush the txcmpq */
4178			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4179					      IOSTAT_LOCAL_REJECT,
4180					      IOERR_SLI_DOWN);
4181		}
4182	} else {
4183		pring = &psli->sli3_ring[LPFC_FCP_RING];
4184
4185		spin_lock_irq(&phba->hbalock);
4186		/* Retrieve everything on txq */
4187		list_splice_init(&pring->txq, &txq);
4188		list_for_each_entry_safe(piocb, next_iocb,
4189					 &pring->txcmplq, list)
4190			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4191		/* Retrieve everything on the txcmplq */
4192		list_splice_init(&pring->txcmplq, &txcmplq);
4193		pring->txq_cnt = 0;
4194		pring->txcmplq_cnt = 0;
4195		spin_unlock_irq(&phba->hbalock);
4196
4197		/* Flush the txq */
4198		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4199				      IOERR_SLI_DOWN);
4200		/* Flush the txcmpq */
4201		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4202				      IOERR_SLI_DOWN);
4203	}
4204}
4205
4206/**
4207 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4208 * @phba: Pointer to HBA context object.
4209 * @mask: Bit mask to be checked.
4210 *
4211 * This function reads the host status register and compares
4212 * with the provided bit mask to check if HBA completed
4213 * the restart. This function will wait in a loop for the
4214 * HBA to complete restart. If the HBA does not restart within
4215 * 15 iterations, the function will reset the HBA again. The
4216 * function returns 1 when HBA fail to restart otherwise returns
4217 * zero.
4218 **/
4219static int
4220lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4221{
4222	uint32_t status;
4223	int i = 0;
4224	int retval = 0;
4225
4226	/* Read the HBA Host Status Register */
4227	if (lpfc_readl(phba->HSregaddr, &status))
4228		return 1;
4229
4230	/*
4231	 * Check status register every 100ms for 5 retries, then every
4232	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4233	 * every 2.5 sec for 4.
4234	 * Break our of the loop if errors occurred during init.
4235	 */
4236	while (((status & mask) != mask) &&
4237	       !(status & HS_FFERM) &&
4238	       i++ < 20) {
4239
4240		if (i <= 5)
4241			msleep(10);
4242		else if (i <= 10)
4243			msleep(500);
4244		else
4245			msleep(2500);
4246
4247		if (i == 15) {
4248				/* Do post */
4249			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4250			lpfc_sli_brdrestart(phba);
4251		}
4252		/* Read the HBA Host Status Register */
4253		if (lpfc_readl(phba->HSregaddr, &status)) {
4254			retval = 1;
4255			break;
4256		}
4257	}
4258
4259	/* Check to see if any errors occurred during init */
4260	if ((status & HS_FFERM) || (i >= 20)) {
4261		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4262				"2751 Adapter failed to restart, "
4263				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4264				status,
4265				readl(phba->MBslimaddr + 0xa8),
4266				readl(phba->MBslimaddr + 0xac));
4267		phba->link_state = LPFC_HBA_ERROR;
4268		retval = 1;
4269	}
4270
4271	return retval;
4272}
4273
4274/**
4275 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4276 * @phba: Pointer to HBA context object.
4277 * @mask: Bit mask to be checked.
4278 *
4279 * This function checks the host status register to check if HBA is
4280 * ready. This function will wait in a loop for the HBA to be ready
4281 * If the HBA is not ready , the function will will reset the HBA PCI
4282 * function again. The function returns 1 when HBA fail to be ready
4283 * otherwise returns zero.
4284 **/
4285static int
4286lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4287{
4288	uint32_t status;
4289	int retval = 0;
4290
4291	/* Read the HBA Host Status Register */
4292	status = lpfc_sli4_post_status_check(phba);
4293
4294	if (status) {
4295		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4296		lpfc_sli_brdrestart(phba);
4297		status = lpfc_sli4_post_status_check(phba);
4298	}
4299
4300	/* Check to see if any errors occurred during init */
4301	if (status) {
4302		phba->link_state = LPFC_HBA_ERROR;
4303		retval = 1;
4304	} else
4305		phba->sli4_hba.intr_enable = 0;
4306
4307	return retval;
4308}
4309
4310/**
4311 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4312 * @phba: Pointer to HBA context object.
4313 * @mask: Bit mask to be checked.
4314 *
4315 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4316 * from the API jump table function pointer from the lpfc_hba struct.
4317 **/
4318int
4319lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4320{
4321	return phba->lpfc_sli_brdready(phba, mask);
4322}
4323
4324#define BARRIER_TEST_PATTERN (0xdeadbeef)
4325
4326/**
4327 * lpfc_reset_barrier - Make HBA ready for HBA reset
4328 * @phba: Pointer to HBA context object.
4329 *
4330 * This function is called before resetting an HBA. This function is called
4331 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4332 **/
4333void lpfc_reset_barrier(struct lpfc_hba *phba)
4334{
4335	uint32_t __iomem *resp_buf;
4336	uint32_t __iomem *mbox_buf;
4337	volatile uint32_t mbox;
4338	uint32_t hc_copy, ha_copy, resp_data;
4339	int  i;
4340	uint8_t hdrtype;
4341
4342	lockdep_assert_held(&phba->hbalock);
4343
4344	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4345	if (hdrtype != 0x80 ||
4346	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4347	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4348		return;
4349
4350	/*
4351	 * Tell the other part of the chip to suspend temporarily all
4352	 * its DMA activity.
4353	 */
4354	resp_buf = phba->MBslimaddr;
4355
4356	/* Disable the error attention */
4357	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4358		return;
4359	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4360	readl(phba->HCregaddr); /* flush */
4361	phba->link_flag |= LS_IGNORE_ERATT;
4362
4363	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4364		return;
4365	if (ha_copy & HA_ERATT) {
4366		/* Clear Chip error bit */
4367		writel(HA_ERATT, phba->HAregaddr);
4368		phba->pport->stopped = 1;
4369	}
4370
4371	mbox = 0;
4372	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4373	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4374
4375	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4376	mbox_buf = phba->MBslimaddr;
4377	writel(mbox, mbox_buf);
4378
4379	for (i = 0; i < 50; i++) {
4380		if (lpfc_readl((resp_buf + 1), &resp_data))
4381			return;
4382		if (resp_data != ~(BARRIER_TEST_PATTERN))
4383			mdelay(1);
4384		else
4385			break;
4386	}
4387	resp_data = 0;
4388	if (lpfc_readl((resp_buf + 1), &resp_data))
4389		return;
4390	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4391		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4392		    phba->pport->stopped)
4393			goto restore_hc;
4394		else
4395			goto clear_errat;
4396	}
4397
4398	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4399	resp_data = 0;
4400	for (i = 0; i < 500; i++) {
4401		if (lpfc_readl(resp_buf, &resp_data))
4402			return;
4403		if (resp_data != mbox)
4404			mdelay(1);
4405		else
4406			break;
4407	}
4408
4409clear_errat:
4410
4411	while (++i < 500) {
4412		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4413			return;
4414		if (!(ha_copy & HA_ERATT))
4415			mdelay(1);
4416		else
4417			break;
4418	}
4419
4420	if (readl(phba->HAregaddr) & HA_ERATT) {
4421		writel(HA_ERATT, phba->HAregaddr);
4422		phba->pport->stopped = 1;
4423	}
4424
4425restore_hc:
4426	phba->link_flag &= ~LS_IGNORE_ERATT;
4427	writel(hc_copy, phba->HCregaddr);
4428	readl(phba->HCregaddr); /* flush */
4429}
4430
4431/**
4432 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4433 * @phba: Pointer to HBA context object.
4434 *
4435 * This function issues a kill_board mailbox command and waits for
4436 * the error attention interrupt. This function is called for stopping
4437 * the firmware processing. The caller is not required to hold any
4438 * locks. This function calls lpfc_hba_down_post function to free
4439 * any pending commands after the kill. The function will return 1 when it
4440 * fails to kill the board else will return 0.
4441 **/
4442int
4443lpfc_sli_brdkill(struct lpfc_hba *phba)
4444{
4445	struct lpfc_sli *psli;
4446	LPFC_MBOXQ_t *pmb;
4447	uint32_t status;
4448	uint32_t ha_copy;
4449	int retval;
4450	int i = 0;
4451
4452	psli = &phba->sli;
4453
4454	/* Kill HBA */
4455	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4456			"0329 Kill HBA Data: x%x x%x\n",
4457			phba->pport->port_state, psli->sli_flag);
4458
4459	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4460	if (!pmb)
4461		return 1;
4462
4463	/* Disable the error attention */
4464	spin_lock_irq(&phba->hbalock);
4465	if (lpfc_readl(phba->HCregaddr, &status)) {
4466		spin_unlock_irq(&phba->hbalock);
4467		mempool_free(pmb, phba->mbox_mem_pool);
4468		return 1;
4469	}
4470	status &= ~HC_ERINT_ENA;
4471	writel(status, phba->HCregaddr);
4472	readl(phba->HCregaddr); /* flush */
4473	phba->link_flag |= LS_IGNORE_ERATT;
4474	spin_unlock_irq(&phba->hbalock);
4475
4476	lpfc_kill_board(phba, pmb);
4477	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4478	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4479
4480	if (retval != MBX_SUCCESS) {
4481		if (retval != MBX_BUSY)
4482			mempool_free(pmb, phba->mbox_mem_pool);
4483		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4484				"2752 KILL_BOARD command failed retval %d\n",
4485				retval);
4486		spin_lock_irq(&phba->hbalock);
4487		phba->link_flag &= ~LS_IGNORE_ERATT;
4488		spin_unlock_irq(&phba->hbalock);
4489		return 1;
4490	}
4491
4492	spin_lock_irq(&phba->hbalock);
4493	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4494	spin_unlock_irq(&phba->hbalock);
4495
4496	mempool_free(pmb, phba->mbox_mem_pool);
4497
4498	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4499	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4500	 * 3 seconds we still set HBA_ERROR state because the status of the
4501	 * board is now undefined.
4502	 */
4503	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4504		return 1;
4505	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4506		mdelay(100);
4507		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4508			return 1;
4509	}
4510
4511	del_timer_sync(&psli->mbox_tmo);
4512	if (ha_copy & HA_ERATT) {
4513		writel(HA_ERATT, phba->HAregaddr);
4514		phba->pport->stopped = 1;
4515	}
4516	spin_lock_irq(&phba->hbalock);
4517	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4518	psli->mbox_active = NULL;
4519	phba->link_flag &= ~LS_IGNORE_ERATT;
4520	spin_unlock_irq(&phba->hbalock);
4521
4522	lpfc_hba_down_post(phba);
4523	phba->link_state = LPFC_HBA_ERROR;
4524
4525	return ha_copy & HA_ERATT ? 0 : 1;
4526}
4527
4528/**
4529 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4530 * @phba: Pointer to HBA context object.
4531 *
4532 * This function resets the HBA by writing HC_INITFF to the control
4533 * register. After the HBA resets, this function resets all the iocb ring
4534 * indices. This function disables PCI layer parity checking during
4535 * the reset.
4536 * This function returns 0 always.
4537 * The caller is not required to hold any locks.
4538 **/
4539int
4540lpfc_sli_brdreset(struct lpfc_hba *phba)
4541{
4542	struct lpfc_sli *psli;
4543	struct lpfc_sli_ring *pring;
4544	uint16_t cfg_value;
4545	int i;
4546
4547	psli = &phba->sli;
4548
4549	/* Reset HBA */
4550	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4551			"0325 Reset HBA Data: x%x x%x\n",
4552			(phba->pport) ? phba->pport->port_state : 0,
4553			psli->sli_flag);
4554
4555	/* perform board reset */
4556	phba->fc_eventTag = 0;
4557	phba->link_events = 0;
4558	if (phba->pport) {
4559		phba->pport->fc_myDID = 0;
4560		phba->pport->fc_prevDID = 0;
4561	}
4562
4563	/* Turn off parity checking and serr during the physical reset */
4564	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4565		return -EIO;
4566
4567	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4568			      (cfg_value &
4569			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4570
4571	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4572
4573	/* Now toggle INITFF bit in the Host Control Register */
4574	writel(HC_INITFF, phba->HCregaddr);
4575	mdelay(1);
4576	readl(phba->HCregaddr); /* flush */
4577	writel(0, phba->HCregaddr);
4578	readl(phba->HCregaddr); /* flush */
4579
4580	/* Restore PCI cmd register */
4581	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4582
4583	/* Initialize relevant SLI info */
4584	for (i = 0; i < psli->num_rings; i++) {
4585		pring = &psli->sli3_ring[i];
4586		pring->flag = 0;
4587		pring->sli.sli3.rspidx = 0;
4588		pring->sli.sli3.next_cmdidx  = 0;
4589		pring->sli.sli3.local_getidx = 0;
4590		pring->sli.sli3.cmdidx = 0;
4591		pring->missbufcnt = 0;
4592	}
4593
4594	phba->link_state = LPFC_WARM_START;
4595	return 0;
4596}
4597
4598/**
4599 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4600 * @phba: Pointer to HBA context object.
4601 *
4602 * This function resets a SLI4 HBA. This function disables PCI layer parity
4603 * checking during resets the device. The caller is not required to hold
4604 * any locks.
4605 *
4606 * This function returns 0 on success else returns negative error code.
4607 **/
4608int
4609lpfc_sli4_brdreset(struct lpfc_hba *phba)
4610{
4611	struct lpfc_sli *psli = &phba->sli;
4612	uint16_t cfg_value;
4613	int rc = 0;
4614
4615	/* Reset HBA */
4616	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4617			"0295 Reset HBA Data: x%x x%x x%x\n",
4618			phba->pport->port_state, psli->sli_flag,
4619			phba->hba_flag);
4620
4621	/* perform board reset */
4622	phba->fc_eventTag = 0;
4623	phba->link_events = 0;
4624	phba->pport->fc_myDID = 0;
4625	phba->pport->fc_prevDID = 0;
4626
4627	spin_lock_irq(&phba->hbalock);
4628	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4629	phba->fcf.fcf_flag = 0;
4630	spin_unlock_irq(&phba->hbalock);
4631
4632	/* Now physically reset the device */
4633	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4634			"0389 Performing PCI function reset!\n");
4635
4636	/* Turn off parity checking and serr during the physical reset */
4637	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4638		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4639				"3205 PCI read Config failed\n");
4640		return -EIO;
4641	}
4642
4643	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4644			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4645
4646	/* Perform FCoE PCI function reset before freeing queue memory */
4647	rc = lpfc_pci_function_reset(phba);
4648
4649	/* Restore PCI cmd register */
4650	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4651
4652	return rc;
4653}
4654
4655/**
4656 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4657 * @phba: Pointer to HBA context object.
4658 *
4659 * This function is called in the SLI initialization code path to
4660 * restart the HBA. The caller is not required to hold any lock.
4661 * This function writes MBX_RESTART mailbox command to the SLIM and
4662 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4663 * function to free any pending commands. The function enables
4664 * POST only during the first initialization. The function returns zero.
4665 * The function does not guarantee completion of MBX_RESTART mailbox
4666 * command before the return of this function.
4667 **/
4668static int
4669lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4670{
4671	MAILBOX_t *mb;
4672	struct lpfc_sli *psli;
4673	volatile uint32_t word0;
4674	void __iomem *to_slim;
4675	uint32_t hba_aer_enabled;
4676
4677	spin_lock_irq(&phba->hbalock);
4678
4679	/* Take PCIe device Advanced Error Reporting (AER) state */
4680	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4681
4682	psli = &phba->sli;
4683
4684	/* Restart HBA */
4685	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4686			"0337 Restart HBA Data: x%x x%x\n",
4687			(phba->pport) ? phba->pport->port_state : 0,
4688			psli->sli_flag);
4689
4690	word0 = 0;
4691	mb = (MAILBOX_t *) &word0;
4692	mb->mbxCommand = MBX_RESTART;
4693	mb->mbxHc = 1;
4694
4695	lpfc_reset_barrier(phba);
4696
4697	to_slim = phba->MBslimaddr;
4698	writel(*(uint32_t *) mb, to_slim);
4699	readl(to_slim); /* flush */
4700
4701	/* Only skip post after fc_ffinit is completed */
4702	if (phba->pport && phba->pport->port_state)
4703		word0 = 1;	/* This is really setting up word1 */
4704	else
4705		word0 = 0;	/* This is really setting up word1 */
4706	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4707	writel(*(uint32_t *) mb, to_slim);
4708	readl(to_slim); /* flush */
4709
4710	lpfc_sli_brdreset(phba);
4711	if (phba->pport)
4712		phba->pport->stopped = 0;
4713	phba->link_state = LPFC_INIT_START;
4714	phba->hba_flag = 0;
4715	spin_unlock_irq(&phba->hbalock);
4716
4717	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4718	psli->stats_start = ktime_get_seconds();
4719
4720	/* Give the INITFF and Post time to settle. */
4721	mdelay(100);
4722
4723	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4724	if (hba_aer_enabled)
4725		pci_disable_pcie_error_reporting(phba->pcidev);
4726
4727	lpfc_hba_down_post(phba);
4728
4729	return 0;
4730}
4731
4732/**
4733 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4734 * @phba: Pointer to HBA context object.
4735 *
4736 * This function is called in the SLI initialization code path to restart
4737 * a SLI4 HBA. The caller is not required to hold any lock.
4738 * At the end of the function, it calls lpfc_hba_down_post function to
4739 * free any pending commands.
4740 **/
4741static int
4742lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4743{
4744	struct lpfc_sli *psli = &phba->sli;
4745	uint32_t hba_aer_enabled;
4746	int rc;
4747
4748	/* Restart HBA */
4749	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4750			"0296 Restart HBA Data: x%x x%x\n",
4751			phba->pport->port_state, psli->sli_flag);
4752
4753	/* Take PCIe device Advanced Error Reporting (AER) state */
4754	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4755
4756	rc = lpfc_sli4_brdreset(phba);
4757	if (rc) {
4758		phba->link_state = LPFC_HBA_ERROR;
4759		goto hba_down_queue;
4760	}
4761
4762	spin_lock_irq(&phba->hbalock);
4763	phba->pport->stopped = 0;
4764	phba->link_state = LPFC_INIT_START;
4765	phba->hba_flag = 0;
4766	spin_unlock_irq(&phba->hbalock);
4767
4768	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4769	psli->stats_start = ktime_get_seconds();
4770
4771	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4772	if (hba_aer_enabled)
4773		pci_disable_pcie_error_reporting(phba->pcidev);
4774
4775hba_down_queue:
4776	lpfc_hba_down_post(phba);
4777	lpfc_sli4_queue_destroy(phba);
4778
4779	return rc;
4780}
4781
4782/**
4783 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4784 * @phba: Pointer to HBA context object.
4785 *
4786 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4787 * API jump table function pointer from the lpfc_hba struct.
4788**/
4789int
4790lpfc_sli_brdrestart(struct lpfc_hba *phba)
4791{
4792	return phba->lpfc_sli_brdrestart(phba);
4793}
4794
4795/**
4796 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4797 * @phba: Pointer to HBA context object.
4798 *
4799 * This function is called after a HBA restart to wait for successful
4800 * restart of the HBA. Successful restart of the HBA is indicated by
4801 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4802 * iteration, the function will restart the HBA again. The function returns
4803 * zero if HBA successfully restarted else returns negative error code.
4804 **/
4805int
4806lpfc_sli_chipset_init(struct lpfc_hba *phba)
4807{
4808	uint32_t status, i = 0;
4809
4810	/* Read the HBA Host Status Register */
4811	if (lpfc_readl(phba->HSregaddr, &status))
4812		return -EIO;
4813
4814	/* Check status register to see what current state is */
4815	i = 0;
4816	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4817
4818		/* Check every 10ms for 10 retries, then every 100ms for 90
4819		 * retries, then every 1 sec for 50 retires for a total of
4820		 * ~60 seconds before reset the board again and check every
4821		 * 1 sec for 50 retries. The up to 60 seconds before the
4822		 * board ready is required by the Falcon FIPS zeroization
4823		 * complete, and any reset the board in between shall cause
4824		 * restart of zeroization, further delay the board ready.
4825		 */
4826		if (i++ >= 200) {
4827			/* Adapter failed to init, timeout, status reg
4828			   <status> */
4829			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4830					"0436 Adapter failed to init, "
4831					"timeout, status reg x%x, "
4832					"FW Data: A8 x%x AC x%x\n", status,
4833					readl(phba->MBslimaddr + 0xa8),
4834					readl(phba->MBslimaddr + 0xac));
4835			phba->link_state = LPFC_HBA_ERROR;
4836			return -ETIMEDOUT;
4837		}
4838
4839		/* Check to see if any errors occurred during init */
4840		if (status & HS_FFERM) {
4841			/* ERROR: During chipset initialization */
4842			/* Adapter failed to init, chipset, status reg
4843			   <status> */
4844			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4845					"0437 Adapter failed to init, "
4846					"chipset, status reg x%x, "
4847					"FW Data: A8 x%x AC x%x\n", status,
4848					readl(phba->MBslimaddr + 0xa8),
4849					readl(phba->MBslimaddr + 0xac));
4850			phba->link_state = LPFC_HBA_ERROR;
4851			return -EIO;
4852		}
4853
4854		if (i <= 10)
4855			msleep(10);
4856		else if (i <= 100)
4857			msleep(100);
4858		else
4859			msleep(1000);
4860
4861		if (i == 150) {
4862			/* Do post */
4863			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4864			lpfc_sli_brdrestart(phba);
4865		}
4866		/* Read the HBA Host Status Register */
4867		if (lpfc_readl(phba->HSregaddr, &status))
4868			return -EIO;
4869	}
4870
4871	/* Check to see if any errors occurred during init */
4872	if (status & HS_FFERM) {
4873		/* ERROR: During chipset initialization */
4874		/* Adapter failed to init, chipset, status reg <status> */
4875		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4876				"0438 Adapter failed to init, chipset, "
4877				"status reg x%x, "
4878				"FW Data: A8 x%x AC x%x\n", status,
4879				readl(phba->MBslimaddr + 0xa8),
4880				readl(phba->MBslimaddr + 0xac));
4881		phba->link_state = LPFC_HBA_ERROR;
4882		return -EIO;
4883	}
4884
4885	/* Clear all interrupt enable conditions */
4886	writel(0, phba->HCregaddr);
4887	readl(phba->HCregaddr); /* flush */
4888
4889	/* setup host attn register */
4890	writel(0xffffffff, phba->HAregaddr);
4891	readl(phba->HAregaddr); /* flush */
4892	return 0;
4893}
4894
4895/**
4896 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4897 *
4898 * This function calculates and returns the number of HBQs required to be
4899 * configured.
4900 **/
4901int
4902lpfc_sli_hbq_count(void)
4903{
4904	return ARRAY_SIZE(lpfc_hbq_defs);
4905}
4906
4907/**
4908 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4909 *
4910 * This function adds the number of hbq entries in every HBQ to get
4911 * the total number of hbq entries required for the HBA and returns
4912 * the total count.
4913 **/
4914static int
4915lpfc_sli_hbq_entry_count(void)
4916{
4917	int  hbq_count = lpfc_sli_hbq_count();
4918	int  count = 0;
4919	int  i;
4920
4921	for (i = 0; i < hbq_count; ++i)
4922		count += lpfc_hbq_defs[i]->entry_count;
4923	return count;
4924}
4925
4926/**
4927 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4928 *
4929 * This function calculates amount of memory required for all hbq entries
4930 * to be configured and returns the total memory required.
4931 **/
4932int
4933lpfc_sli_hbq_size(void)
4934{
4935	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4936}
4937
4938/**
4939 * lpfc_sli_hbq_setup - configure and initialize HBQs
4940 * @phba: Pointer to HBA context object.
4941 *
4942 * This function is called during the SLI initialization to configure
4943 * all the HBQs and post buffers to the HBQ. The caller is not
4944 * required to hold any locks. This function will return zero if successful
4945 * else it will return negative error code.
4946 **/
4947static int
4948lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4949{
4950	int  hbq_count = lpfc_sli_hbq_count();
4951	LPFC_MBOXQ_t *pmb;
4952	MAILBOX_t *pmbox;
4953	uint32_t hbqno;
4954	uint32_t hbq_entry_index;
4955
4956				/* Get a Mailbox buffer to setup mailbox
4957				 * commands for HBA initialization
4958				 */
4959	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4960
4961	if (!pmb)
4962		return -ENOMEM;
4963
4964	pmbox = &pmb->u.mb;
4965
4966	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4967	phba->link_state = LPFC_INIT_MBX_CMDS;
4968	phba->hbq_in_use = 1;
4969
4970	hbq_entry_index = 0;
4971	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4972		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4973		phba->hbqs[hbqno].hbqPutIdx      = 0;
4974		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4975		phba->hbqs[hbqno].entry_count =
4976			lpfc_hbq_defs[hbqno]->entry_count;
4977		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4978			hbq_entry_index, pmb);
4979		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4980
4981		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4982			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4983			   mbxStatus <status>, ring <num> */
4984
4985			lpfc_printf_log(phba, KERN_ERR,
4986					LOG_SLI | LOG_VPORT,
4987					"1805 Adapter failed to init. "
4988					"Data: x%x x%x x%x\n",
4989					pmbox->mbxCommand,
4990					pmbox->mbxStatus, hbqno);
4991
4992			phba->link_state = LPFC_HBA_ERROR;
4993			mempool_free(pmb, phba->mbox_mem_pool);
4994			return -ENXIO;
4995		}
4996	}
4997	phba->hbq_count = hbq_count;
4998
4999	mempool_free(pmb, phba->mbox_mem_pool);
5000
5001	/* Initially populate or replenish the HBQs */
5002	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5003		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5004	return 0;
5005}
5006
5007/**
5008 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5009 * @phba: Pointer to HBA context object.
5010 *
5011 * This function is called during the SLI initialization to configure
5012 * all the HBQs and post buffers to the HBQ. The caller is not
5013 * required to hold any locks. This function will return zero if successful
5014 * else it will return negative error code.
5015 **/
5016static int
5017lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5018{
5019	phba->hbq_in_use = 1;
5020	/**
5021	 * Specific case when the MDS diagnostics is enabled and supported.
5022	 * The receive buffer count is truncated to manage the incoming
5023	 * traffic.
5024	 **/
5025	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5026		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5027			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5028	else
5029		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5030			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5031	phba->hbq_count = 1;
5032	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5033	/* Initially populate or replenish the HBQs */
5034	return 0;
5035}
5036
5037/**
5038 * lpfc_sli_config_port - Issue config port mailbox command
5039 * @phba: Pointer to HBA context object.
5040 * @sli_mode: sli mode - 2/3
5041 *
5042 * This function is called by the sli initialization code path
5043 * to issue config_port mailbox command. This function restarts the
5044 * HBA firmware and issues a config_port mailbox command to configure
5045 * the SLI interface in the sli mode specified by sli_mode
5046 * variable. The caller is not required to hold any locks.
5047 * The function returns 0 if successful, else returns negative error
5048 * code.
5049 **/
5050int
5051lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5052{
5053	LPFC_MBOXQ_t *pmb;
5054	uint32_t resetcount = 0, rc = 0, done = 0;
5055
5056	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5057	if (!pmb) {
5058		phba->link_state = LPFC_HBA_ERROR;
5059		return -ENOMEM;
5060	}
5061
5062	phba->sli_rev = sli_mode;
5063	while (resetcount < 2 && !done) {
5064		spin_lock_irq(&phba->hbalock);
5065		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5066		spin_unlock_irq(&phba->hbalock);
5067		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5068		lpfc_sli_brdrestart(phba);
5069		rc = lpfc_sli_chipset_init(phba);
5070		if (rc)
5071			break;
5072
5073		spin_lock_irq(&phba->hbalock);
5074		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5075		spin_unlock_irq(&phba->hbalock);
5076		resetcount++;
5077
5078		/* Call pre CONFIG_PORT mailbox command initialization.  A
5079		 * value of 0 means the call was successful.  Any other
5080		 * nonzero value is a failure, but if ERESTART is returned,
5081		 * the driver may reset the HBA and try again.
5082		 */
5083		rc = lpfc_config_port_prep(phba);
5084		if (rc == -ERESTART) {
5085			phba->link_state = LPFC_LINK_UNKNOWN;
5086			continue;
5087		} else if (rc)
5088			break;
5089
5090		phba->link_state = LPFC_INIT_MBX_CMDS;
5091		lpfc_config_port(phba, pmb);
5092		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5093		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5094					LPFC_SLI3_HBQ_ENABLED |
5095					LPFC_SLI3_CRP_ENABLED |
5096					LPFC_SLI3_DSS_ENABLED);
5097		if (rc != MBX_SUCCESS) {
5098			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5099				"0442 Adapter failed to init, mbxCmd x%x "
5100				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5101				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5102			spin_lock_irq(&phba->hbalock);
5103			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5104			spin_unlock_irq(&phba->hbalock);
5105			rc = -ENXIO;
5106		} else {
5107			/* Allow asynchronous mailbox command to go through */
5108			spin_lock_irq(&phba->hbalock);
5109			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5110			spin_unlock_irq(&phba->hbalock);
5111			done = 1;
5112
5113			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5114			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5115				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5116					"3110 Port did not grant ASABT\n");
5117		}
5118	}
5119	if (!done) {
5120		rc = -EINVAL;
5121		goto do_prep_failed;
5122	}
5123	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5124		if (!pmb->u.mb.un.varCfgPort.cMA) {
5125			rc = -ENXIO;
5126			goto do_prep_failed;
5127		}
5128		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5129			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5130			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5131			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5132				phba->max_vpi : phba->max_vports;
5133
5134		} else
5135			phba->max_vpi = 0;
5136		if (pmb->u.mb.un.varCfgPort.gerbm)
5137			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5138		if (pmb->u.mb.un.varCfgPort.gcrp)
5139			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5140
5141		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5142		phba->port_gp = phba->mbox->us.s3_pgp.port;
5143
5144		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5145			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5146				phba->cfg_enable_bg = 0;
5147				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5148				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5149						"0443 Adapter did not grant "
5150						"BlockGuard\n");
5151			}
5152		}
5153	} else {
5154		phba->hbq_get = NULL;
5155		phba->port_gp = phba->mbox->us.s2.port;
5156		phba->max_vpi = 0;
5157	}
5158do_prep_failed:
5159	mempool_free(pmb, phba->mbox_mem_pool);
5160	return rc;
5161}
5162
5163
5164/**
5165 * lpfc_sli_hba_setup - SLI initialization function
5166 * @phba: Pointer to HBA context object.
5167 *
5168 * This function is the main SLI initialization function. This function
5169 * is called by the HBA initialization code, HBA reset code and HBA
5170 * error attention handler code. Caller is not required to hold any
5171 * locks. This function issues config_port mailbox command to configure
5172 * the SLI, setup iocb rings and HBQ rings. In the end the function
5173 * calls the config_port_post function to issue init_link mailbox
5174 * command and to start the discovery. The function will return zero
5175 * if successful, else it will return negative error code.
5176 **/
5177int
5178lpfc_sli_hba_setup(struct lpfc_hba *phba)
5179{
5180	uint32_t rc;
5181	int  mode = 3, i;
5182	int longs;
5183
5184	switch (phba->cfg_sli_mode) {
5185	case 2:
5186		if (phba->cfg_enable_npiv) {
5187			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5188				"1824 NPIV enabled: Override sli_mode "
5189				"parameter (%d) to auto (0).\n",
5190				phba->cfg_sli_mode);
5191			break;
5192		}
5193		mode = 2;
5194		break;
5195	case 0:
5196	case 3:
5197		break;
5198	default:
5199		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5200				"1819 Unrecognized sli_mode parameter: %d.\n",
5201				phba->cfg_sli_mode);
5202
5203		break;
5204	}
5205	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5206
5207	rc = lpfc_sli_config_port(phba, mode);
5208
5209	if (rc && phba->cfg_sli_mode == 3)
5210		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5211				"1820 Unable to select SLI-3.  "
5212				"Not supported by adapter.\n");
5213	if (rc && mode != 2)
5214		rc = lpfc_sli_config_port(phba, 2);
5215	else if (rc && mode == 2)
5216		rc = lpfc_sli_config_port(phba, 3);
5217	if (rc)
5218		goto lpfc_sli_hba_setup_error;
5219
5220	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5221	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5222		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5223		if (!rc) {
5224			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5225					"2709 This device supports "
5226					"Advanced Error Reporting (AER)\n");
5227			spin_lock_irq(&phba->hbalock);
5228			phba->hba_flag |= HBA_AER_ENABLED;
5229			spin_unlock_irq(&phba->hbalock);
5230		} else {
5231			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5232					"2708 This device does not support "
5233					"Advanced Error Reporting (AER): %d\n",
5234					rc);
5235			phba->cfg_aer_support = 0;
5236		}
5237	}
5238
5239	if (phba->sli_rev == 3) {
5240		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5241		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5242	} else {
5243		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5244		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5245		phba->sli3_options = 0;
5246	}
5247
5248	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5249			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5250			phba->sli_rev, phba->max_vpi);
5251	rc = lpfc_sli_ring_map(phba);
5252
5253	if (rc)
5254		goto lpfc_sli_hba_setup_error;
5255
5256	/* Initialize VPIs. */
5257	if (phba->sli_rev == LPFC_SLI_REV3) {
5258		/*
5259		 * The VPI bitmask and physical ID array are allocated
5260		 * and initialized once only - at driver load.  A port
5261		 * reset doesn't need to reinitialize this memory.
5262		 */
5263		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5264			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5265			phba->vpi_bmask = kcalloc(longs,
5266						  sizeof(unsigned long),
5267						  GFP_KERNEL);
5268			if (!phba->vpi_bmask) {
5269				rc = -ENOMEM;
5270				goto lpfc_sli_hba_setup_error;
5271			}
5272
5273			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5274						sizeof(uint16_t),
5275						GFP_KERNEL);
5276			if (!phba->vpi_ids) {
5277				kfree(phba->vpi_bmask);
5278				rc = -ENOMEM;
5279				goto lpfc_sli_hba_setup_error;
5280			}
5281			for (i = 0; i < phba->max_vpi; i++)
5282				phba->vpi_ids[i] = i;
5283		}
5284	}
5285
5286	/* Init HBQs */
5287	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5288		rc = lpfc_sli_hbq_setup(phba);
5289		if (rc)
5290			goto lpfc_sli_hba_setup_error;
5291	}
5292	spin_lock_irq(&phba->hbalock);
5293	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5294	spin_unlock_irq(&phba->hbalock);
5295
5296	rc = lpfc_config_port_post(phba);
5297	if (rc)
5298		goto lpfc_sli_hba_setup_error;
5299
5300	return rc;
5301
5302lpfc_sli_hba_setup_error:
5303	phba->link_state = LPFC_HBA_ERROR;
5304	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5305			"0445 Firmware initialization failed\n");
5306	return rc;
5307}
5308
5309/**
5310 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5311 * @phba: Pointer to HBA context object.
5312 *
5313 * This function issue a dump mailbox command to read config region
5314 * 23 and parse the records in the region and populate driver
5315 * data structure.
5316 **/
5317static int
5318lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5319{
5320	LPFC_MBOXQ_t *mboxq;
5321	struct lpfc_dmabuf *mp;
5322	struct lpfc_mqe *mqe;
5323	uint32_t data_length;
5324	int rc;
5325
5326	/* Program the default value of vlan_id and fc_map */
5327	phba->valid_vlan = 0;
5328	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5329	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5330	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5331
5332	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5333	if (!mboxq)
5334		return -ENOMEM;
5335
5336	mqe = &mboxq->u.mqe;
5337	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5338		rc = -ENOMEM;
5339		goto out_free_mboxq;
5340	}
5341
5342	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5343	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5344
5345	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5346			"(%d):2571 Mailbox cmd x%x Status x%x "
5347			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5348			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5349			"CQ: x%x x%x x%x x%x\n",
5350			mboxq->vport ? mboxq->vport->vpi : 0,
5351			bf_get(lpfc_mqe_command, mqe),
5352			bf_get(lpfc_mqe_status, mqe),
5353			mqe->un.mb_words[0], mqe->un.mb_words[1],
5354			mqe->un.mb_words[2], mqe->un.mb_words[3],
5355			mqe->un.mb_words[4], mqe->un.mb_words[5],
5356			mqe->un.mb_words[6], mqe->un.mb_words[7],
5357			mqe->un.mb_words[8], mqe->un.mb_words[9],
5358			mqe->un.mb_words[10], mqe->un.mb_words[11],
5359			mqe->un.mb_words[12], mqe->un.mb_words[13],
5360			mqe->un.mb_words[14], mqe->un.mb_words[15],
5361			mqe->un.mb_words[16], mqe->un.mb_words[50],
5362			mboxq->mcqe.word0,
5363			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5364			mboxq->mcqe.trailer);
5365
5366	if (rc) {
5367		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5368		kfree(mp);
5369		rc = -EIO;
5370		goto out_free_mboxq;
5371	}
5372	data_length = mqe->un.mb_words[5];
5373	if (data_length > DMP_RGN23_SIZE) {
5374		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5375		kfree(mp);
5376		rc = -EIO;
5377		goto out_free_mboxq;
5378	}
5379
5380	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5381	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5382	kfree(mp);
5383	rc = 0;
5384
5385out_free_mboxq:
5386	mempool_free(mboxq, phba->mbox_mem_pool);
5387	return rc;
5388}
5389
5390/**
5391 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5392 * @phba: pointer to lpfc hba data structure.
5393 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5394 * @vpd: pointer to the memory to hold resulting port vpd data.
5395 * @vpd_size: On input, the number of bytes allocated to @vpd.
5396 *	      On output, the number of data bytes in @vpd.
5397 *
5398 * This routine executes a READ_REV SLI4 mailbox command.  In
5399 * addition, this routine gets the port vpd data.
5400 *
5401 * Return codes
5402 * 	0 - successful
5403 * 	-ENOMEM - could not allocated memory.
5404 **/
5405static int
5406lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5407		    uint8_t *vpd, uint32_t *vpd_size)
5408{
5409	int rc = 0;
5410	uint32_t dma_size;
5411	struct lpfc_dmabuf *dmabuf;
5412	struct lpfc_mqe *mqe;
5413
5414	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5415	if (!dmabuf)
5416		return -ENOMEM;
5417
5418	/*
5419	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5420	 * mailbox command.
5421	 */
5422	dma_size = *vpd_size;
5423	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5424					  &dmabuf->phys, GFP_KERNEL);
5425	if (!dmabuf->virt) {
5426		kfree(dmabuf);
5427		return -ENOMEM;
5428	}
5429
5430	/*
5431	 * The SLI4 implementation of READ_REV conflicts at word1,
5432	 * bits 31:16 and SLI4 adds vpd functionality not present
5433	 * in SLI3.  This code corrects the conflicts.
5434	 */
5435	lpfc_read_rev(phba, mboxq);
5436	mqe = &mboxq->u.mqe;
5437	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5438	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5439	mqe->un.read_rev.word1 &= 0x0000FFFF;
5440	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5441	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5442
5443	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5444	if (rc) {
5445		dma_free_coherent(&phba->pcidev->dev, dma_size,
5446				  dmabuf->virt, dmabuf->phys);
5447		kfree(dmabuf);
5448		return -EIO;
5449	}
5450
5451	/*
5452	 * The available vpd length cannot be bigger than the
5453	 * DMA buffer passed to the port.  Catch the less than
5454	 * case and update the caller's size.
5455	 */
5456	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5457		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5458
5459	memcpy(vpd, dmabuf->virt, *vpd_size);
5460
5461	dma_free_coherent(&phba->pcidev->dev, dma_size,
5462			  dmabuf->virt, dmabuf->phys);
5463	kfree(dmabuf);
5464	return 0;
5465}
5466
5467/**
5468 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5469 * @phba: pointer to lpfc hba data structure.
5470 *
5471 * This routine retrieves SLI4 device physical port name this PCI function
5472 * is attached to.
5473 *
5474 * Return codes
5475 *      0 - successful
5476 *      otherwise - failed to retrieve controller attributes
5477 **/
5478static int
5479lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5480{
5481	LPFC_MBOXQ_t *mboxq;
5482	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5483	struct lpfc_controller_attribute *cntl_attr;
5484	void *virtaddr = NULL;
5485	uint32_t alloclen, reqlen;
5486	uint32_t shdr_status, shdr_add_status;
5487	union lpfc_sli4_cfg_shdr *shdr;
5488	int rc;
5489
5490	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5491	if (!mboxq)
5492		return -ENOMEM;
5493
5494	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5495	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5496	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5497			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5498			LPFC_SLI4_MBX_NEMBED);
5499
5500	if (alloclen < reqlen) {
5501		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5502				"3084 Allocated DMA memory size (%d) is "
5503				"less than the requested DMA memory size "
5504				"(%d)\n", alloclen, reqlen);
5505		rc = -ENOMEM;
5506		goto out_free_mboxq;
5507	}
5508	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5509	virtaddr = mboxq->sge_array->addr[0];
5510	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5511	shdr = &mbx_cntl_attr->cfg_shdr;
5512	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5513	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5514	if (shdr_status || shdr_add_status || rc) {
5515		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5516				"3085 Mailbox x%x (x%x/x%x) failed, "
5517				"rc:x%x, status:x%x, add_status:x%x\n",
5518				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5519				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5520				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5521				rc, shdr_status, shdr_add_status);
5522		rc = -ENXIO;
5523		goto out_free_mboxq;
5524	}
5525
5526	cntl_attr = &mbx_cntl_attr->cntl_attr;
5527	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5528	phba->sli4_hba.lnk_info.lnk_tp =
5529		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5530	phba->sli4_hba.lnk_info.lnk_no =
5531		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5532
5533	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5534	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5535		sizeof(phba->BIOSVersion));
5536
5537	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5538			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5539			phba->sli4_hba.lnk_info.lnk_tp,
5540			phba->sli4_hba.lnk_info.lnk_no,
5541			phba->BIOSVersion);
5542out_free_mboxq:
5543	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5544		lpfc_sli4_mbox_cmd_free(phba, mboxq);
5545	else
5546		mempool_free(mboxq, phba->mbox_mem_pool);
5547	return rc;
5548}
5549
5550/**
5551 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5552 * @phba: pointer to lpfc hba data structure.
5553 *
5554 * This routine retrieves SLI4 device physical port name this PCI function
5555 * is attached to.
5556 *
5557 * Return codes
5558 *      0 - successful
5559 *      otherwise - failed to retrieve physical port name
5560 **/
5561static int
5562lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5563{
5564	LPFC_MBOXQ_t *mboxq;
5565	struct lpfc_mbx_get_port_name *get_port_name;
5566	uint32_t shdr_status, shdr_add_status;
5567	union lpfc_sli4_cfg_shdr *shdr;
5568	char cport_name = 0;
5569	int rc;
5570
5571	/* We assume nothing at this point */
5572	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5573	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5574
5575	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5576	if (!mboxq)
5577		return -ENOMEM;
5578	/* obtain link type and link number via READ_CONFIG */
5579	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5580	lpfc_sli4_read_config(phba);
5581	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5582		goto retrieve_ppname;
5583
5584	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5585	rc = lpfc_sli4_get_ctl_attr(phba);
5586	if (rc)
5587		goto out_free_mboxq;
5588
5589retrieve_ppname:
5590	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5591		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5592		sizeof(struct lpfc_mbx_get_port_name) -
5593		sizeof(struct lpfc_sli4_cfg_mhdr),
5594		LPFC_SLI4_MBX_EMBED);
5595	get_port_name = &mboxq->u.mqe.un.get_port_name;
5596	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5597	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5598	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5599		phba->sli4_hba.lnk_info.lnk_tp);
5600	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5601	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5602	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5603	if (shdr_status || shdr_add_status || rc) {
5604		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5605				"3087 Mailbox x%x (x%x/x%x) failed: "
5606				"rc:x%x, status:x%x, add_status:x%x\n",
5607				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5608				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5609				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5610				rc, shdr_status, shdr_add_status);
5611		rc = -ENXIO;
5612		goto out_free_mboxq;
5613	}
5614	switch (phba->sli4_hba.lnk_info.lnk_no) {
5615	case LPFC_LINK_NUMBER_0:
5616		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5617				&get_port_name->u.response);
5618		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5619		break;
5620	case LPFC_LINK_NUMBER_1:
5621		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5622				&get_port_name->u.response);
5623		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5624		break;
5625	case LPFC_LINK_NUMBER_2:
5626		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5627				&get_port_name->u.response);
5628		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5629		break;
5630	case LPFC_LINK_NUMBER_3:
5631		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5632				&get_port_name->u.response);
5633		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5634		break;
5635	default:
5636		break;
5637	}
5638
5639	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5640		phba->Port[0] = cport_name;
5641		phba->Port[1] = '\0';
5642		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5643				"3091 SLI get port name: %s\n", phba->Port);
5644	}
5645
5646out_free_mboxq:
5647	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5648		lpfc_sli4_mbox_cmd_free(phba, mboxq);
5649	else
5650		mempool_free(mboxq, phba->mbox_mem_pool);
5651	return rc;
5652}
5653
5654/**
5655 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5656 * @phba: pointer to lpfc hba data structure.
5657 *
5658 * This routine is called to explicitly arm the SLI4 device's completion and
5659 * event queues
5660 **/
5661static void
5662lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5663{
5664	int qidx;
5665	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5666	struct lpfc_sli4_hdw_queue *qp;
5667	struct lpfc_queue *eq;
5668
5669	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5670	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5671	if (sli4_hba->nvmels_cq)
5672		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5673					   LPFC_QUEUE_REARM);
5674
5675	if (sli4_hba->hdwq) {
5676		/* Loop thru all Hardware Queues */
5677		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5678			qp = &sli4_hba->hdwq[qidx];
5679			/* ARM the corresponding CQ */
5680			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5681						LPFC_QUEUE_REARM);
5682		}
5683
5684		/* Loop thru all IRQ vectors */
5685		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5686			eq = sli4_hba->hba_eq_hdl[qidx].eq;
5687			/* ARM the corresponding EQ */
5688			sli4_hba->sli4_write_eq_db(phba, eq,
5689						   0, LPFC_QUEUE_REARM);
5690		}
5691	}
5692
5693	if (phba->nvmet_support) {
5694		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5695			sli4_hba->sli4_write_cq_db(phba,
5696				sli4_hba->nvmet_cqset[qidx], 0,
5697				LPFC_QUEUE_REARM);
5698		}
5699	}
5700}
5701
5702/**
5703 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5704 * @phba: Pointer to HBA context object.
5705 * @type: The resource extent type.
5706 * @extnt_count: buffer to hold port available extent count.
5707 * @extnt_size: buffer to hold element count per extent.
5708 *
5709 * This function calls the port and retrievs the number of available
5710 * extents and their size for a particular extent type.
5711 *
5712 * Returns: 0 if successful.  Nonzero otherwise.
5713 **/
5714int
5715lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5716			       uint16_t *extnt_count, uint16_t *extnt_size)
5717{
5718	int rc = 0;
5719	uint32_t length;
5720	uint32_t mbox_tmo;
5721	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5722	LPFC_MBOXQ_t *mbox;
5723
5724	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5725	if (!mbox)
5726		return -ENOMEM;
5727
5728	/* Find out how many extents are available for this resource type */
5729	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5730		  sizeof(struct lpfc_sli4_cfg_mhdr));
5731	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5732			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5733			 length, LPFC_SLI4_MBX_EMBED);
5734
5735	/* Send an extents count of 0 - the GET doesn't use it. */
5736	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5737					LPFC_SLI4_MBX_EMBED);
5738	if (unlikely(rc)) {
5739		rc = -EIO;
5740		goto err_exit;
5741	}
5742
5743	if (!phba->sli4_hba.intr_enable)
5744		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5745	else {
5746		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5747		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5748	}
5749	if (unlikely(rc)) {
5750		rc = -EIO;
5751		goto err_exit;
5752	}
5753
5754	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5755	if (bf_get(lpfc_mbox_hdr_status,
5756		   &rsrc_info->header.cfg_shdr.response)) {
5757		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5758				"2930 Failed to get resource extents "
5759				"Status 0x%x Add'l Status 0x%x\n",
5760				bf_get(lpfc_mbox_hdr_status,
5761				       &rsrc_info->header.cfg_shdr.response),
5762				bf_get(lpfc_mbox_hdr_add_status,
5763				       &rsrc_info->header.cfg_shdr.response));
5764		rc = -EIO;
5765		goto err_exit;
5766	}
5767
5768	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5769			      &rsrc_info->u.rsp);
5770	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5771			     &rsrc_info->u.rsp);
5772
5773	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5774			"3162 Retrieved extents type-%d from port: count:%d, "
5775			"size:%d\n", type, *extnt_count, *extnt_size);
5776
5777err_exit:
5778	mempool_free(mbox, phba->mbox_mem_pool);
5779	return rc;
5780}
5781
5782/**
5783 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5784 * @phba: Pointer to HBA context object.
5785 * @type: The extent type to check.
5786 *
5787 * This function reads the current available extents from the port and checks
5788 * if the extent count or extent size has changed since the last access.
5789 * Callers use this routine post port reset to understand if there is a
5790 * extent reprovisioning requirement.
5791 *
5792 * Returns:
5793 *   -Error: error indicates problem.
5794 *   1: Extent count or size has changed.
5795 *   0: No changes.
5796 **/
5797static int
5798lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5799{
5800	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5801	uint16_t size_diff, rsrc_ext_size;
5802	int rc = 0;
5803	struct lpfc_rsrc_blks *rsrc_entry;
5804	struct list_head *rsrc_blk_list = NULL;
5805
5806	size_diff = 0;
5807	curr_ext_cnt = 0;
5808	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5809					    &rsrc_ext_cnt,
5810					    &rsrc_ext_size);
5811	if (unlikely(rc))
5812		return -EIO;
5813
5814	switch (type) {
5815	case LPFC_RSC_TYPE_FCOE_RPI:
5816		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5817		break;
5818	case LPFC_RSC_TYPE_FCOE_VPI:
5819		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5820		break;
5821	case LPFC_RSC_TYPE_FCOE_XRI:
5822		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5823		break;
5824	case LPFC_RSC_TYPE_FCOE_VFI:
5825		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5826		break;
5827	default:
5828		break;
5829	}
5830
5831	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5832		curr_ext_cnt++;
5833		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5834			size_diff++;
5835	}
5836
5837	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5838		rc = 1;
5839
5840	return rc;
5841}
5842
5843/**
5844 * lpfc_sli4_cfg_post_extnts -
5845 * @phba: Pointer to HBA context object.
5846 * @extnt_cnt: number of available extents.
5847 * @type: the extent type (rpi, xri, vfi, vpi).
5848 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5849 * @mbox: pointer to the caller's allocated mailbox structure.
5850 *
5851 * This function executes the extents allocation request.  It also
5852 * takes care of the amount of memory needed to allocate or get the
5853 * allocated extents. It is the caller's responsibility to evaluate
5854 * the response.
5855 *
5856 * Returns:
5857 *   -Error:  Error value describes the condition found.
5858 *   0: if successful
5859 **/
5860static int
5861lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5862			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5863{
5864	int rc = 0;
5865	uint32_t req_len;
5866	uint32_t emb_len;
5867	uint32_t alloc_len, mbox_tmo;
5868
5869	/* Calculate the total requested length of the dma memory */
5870	req_len = extnt_cnt * sizeof(uint16_t);
5871
5872	/*
5873	 * Calculate the size of an embedded mailbox.  The uint32_t
5874	 * accounts for extents-specific word.
5875	 */
5876	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5877		sizeof(uint32_t);
5878
5879	/*
5880	 * Presume the allocation and response will fit into an embedded
5881	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5882	 */
5883	*emb = LPFC_SLI4_MBX_EMBED;
5884	if (req_len > emb_len) {
5885		req_len = extnt_cnt * sizeof(uint16_t) +
5886			sizeof(union lpfc_sli4_cfg_shdr) +
5887			sizeof(uint32_t);
5888		*emb = LPFC_SLI4_MBX_NEMBED;
5889	}
5890
5891	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5892				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5893				     req_len, *emb);
5894	if (alloc_len < req_len) {
5895		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5896			"2982 Allocated DMA memory size (x%x) is "
5897			"less than the requested DMA memory "
5898			"size (x%x)\n", alloc_len, req_len);
5899		return -ENOMEM;
5900	}
5901	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5902	if (unlikely(rc))
5903		return -EIO;
5904
5905	if (!phba->sli4_hba.intr_enable)
5906		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5907	else {
5908		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5909		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5910	}
5911
5912	if (unlikely(rc))
5913		rc = -EIO;
5914	return rc;
5915}
5916
5917/**
5918 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5919 * @phba: Pointer to HBA context object.
5920 * @type:  The resource extent type to allocate.
5921 *
5922 * This function allocates the number of elements for the specified
5923 * resource type.
5924 **/
5925static int
5926lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5927{
5928	bool emb = false;
5929	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5930	uint16_t rsrc_id, rsrc_start, j, k;
5931	uint16_t *ids;
5932	int i, rc;
5933	unsigned long longs;
5934	unsigned long *bmask;
5935	struct lpfc_rsrc_blks *rsrc_blks;
5936	LPFC_MBOXQ_t *mbox;
5937	uint32_t length;
5938	struct lpfc_id_range *id_array = NULL;
5939	void *virtaddr = NULL;
5940	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5941	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5942	struct list_head *ext_blk_list;
5943
5944	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5945					    &rsrc_cnt,
5946					    &rsrc_size);
5947	if (unlikely(rc))
5948		return -EIO;
5949
5950	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5951		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5952			"3009 No available Resource Extents "
5953			"for resource type 0x%x: Count: 0x%x, "
5954			"Size 0x%x\n", type, rsrc_cnt,
5955			rsrc_size);
5956		return -ENOMEM;
5957	}
5958
5959	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5960			"2903 Post resource extents type-0x%x: "
5961			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5962
5963	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5964	if (!mbox)
5965		return -ENOMEM;
5966
5967	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5968	if (unlikely(rc)) {
5969		rc = -EIO;
5970		goto err_exit;
5971	}
5972
5973	/*
5974	 * Figure out where the response is located.  Then get local pointers
5975	 * to the response data.  The port does not guarantee to respond to
5976	 * all extents counts request so update the local variable with the
5977	 * allocated count from the port.
5978	 */
5979	if (emb == LPFC_SLI4_MBX_EMBED) {
5980		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5981		id_array = &rsrc_ext->u.rsp.id[0];
5982		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5983	} else {
5984		virtaddr = mbox->sge_array->addr[0];
5985		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5986		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5987		id_array = &n_rsrc->id;
5988	}
5989
5990	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5991	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5992
5993	/*
5994	 * Based on the resource size and count, correct the base and max
5995	 * resource values.
5996	 */
5997	length = sizeof(struct lpfc_rsrc_blks);
5998	switch (type) {
5999	case LPFC_RSC_TYPE_FCOE_RPI:
6000		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6001						   sizeof(unsigned long),
6002						   GFP_KERNEL);
6003		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6004			rc = -ENOMEM;
6005			goto err_exit;
6006		}
6007		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6008						 sizeof(uint16_t),
6009						 GFP_KERNEL);
6010		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6011			kfree(phba->sli4_hba.rpi_bmask);
6012			rc = -ENOMEM;
6013			goto err_exit;
6014		}
6015
6016		/*
6017		 * The next_rpi was initialized with the maximum available
6018		 * count but the port may allocate a smaller number.  Catch
6019		 * that case and update the next_rpi.
6020		 */
6021		phba->sli4_hba.next_rpi = rsrc_id_cnt;
6022
6023		/* Initialize local ptrs for common extent processing later. */
6024		bmask = phba->sli4_hba.rpi_bmask;
6025		ids = phba->sli4_hba.rpi_ids;
6026		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6027		break;
6028	case LPFC_RSC_TYPE_FCOE_VPI:
6029		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6030					  GFP_KERNEL);
6031		if (unlikely(!phba->vpi_bmask)) {
6032			rc = -ENOMEM;
6033			goto err_exit;
6034		}
6035		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6036					 GFP_KERNEL);
6037		if (unlikely(!phba->vpi_ids)) {
6038			kfree(phba->vpi_bmask);
6039			rc = -ENOMEM;
6040			goto err_exit;
6041		}
6042
6043		/* Initialize local ptrs for common extent processing later. */
6044		bmask = phba->vpi_bmask;
6045		ids = phba->vpi_ids;
6046		ext_blk_list = &phba->lpfc_vpi_blk_list;
6047		break;
6048	case LPFC_RSC_TYPE_FCOE_XRI:
6049		phba->sli4_hba.xri_bmask = kcalloc(longs,
6050						   sizeof(unsigned long),
6051						   GFP_KERNEL);
6052		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6053			rc = -ENOMEM;
6054			goto err_exit;
6055		}
6056		phba->sli4_hba.max_cfg_param.xri_used = 0;
6057		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6058						 sizeof(uint16_t),
6059						 GFP_KERNEL);
6060		if (unlikely(!phba->sli4_hba.xri_ids)) {
6061			kfree(phba->sli4_hba.xri_bmask);
6062			rc = -ENOMEM;
6063			goto err_exit;
6064		}
6065
6066		/* Initialize local ptrs for common extent processing later. */
6067		bmask = phba->sli4_hba.xri_bmask;
6068		ids = phba->sli4_hba.xri_ids;
6069		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6070		break;
6071	case LPFC_RSC_TYPE_FCOE_VFI:
6072		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6073						   sizeof(unsigned long),
6074						   GFP_KERNEL);
6075		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6076			rc = -ENOMEM;
6077			goto err_exit;
6078		}
6079		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6080						 sizeof(uint16_t),
6081						 GFP_KERNEL);
6082		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6083			kfree(phba->sli4_hba.vfi_bmask);
6084			rc = -ENOMEM;
6085			goto err_exit;
6086		}
6087
6088		/* Initialize local ptrs for common extent processing later. */
6089		bmask = phba->sli4_hba.vfi_bmask;
6090		ids = phba->sli4_hba.vfi_ids;
6091		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6092		break;
6093	default:
6094		/* Unsupported Opcode.  Fail call. */
6095		id_array = NULL;
6096		bmask = NULL;
6097		ids = NULL;
6098		ext_blk_list = NULL;
6099		goto err_exit;
6100	}
6101
6102	/*
6103	 * Complete initializing the extent configuration with the
6104	 * allocated ids assigned to this function.  The bitmask serves
6105	 * as an index into the array and manages the available ids.  The
6106	 * array just stores the ids communicated to the port via the wqes.
6107	 */
6108	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6109		if ((i % 2) == 0)
6110			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6111					 &id_array[k]);
6112		else
6113			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6114					 &id_array[k]);
6115
6116		rsrc_blks = kzalloc(length, GFP_KERNEL);
6117		if (unlikely(!rsrc_blks)) {
6118			rc = -ENOMEM;
6119			kfree(bmask);
6120			kfree(ids);
6121			goto err_exit;
6122		}
6123		rsrc_blks->rsrc_start = rsrc_id;
6124		rsrc_blks->rsrc_size = rsrc_size;
6125		list_add_tail(&rsrc_blks->list, ext_blk_list);
6126		rsrc_start = rsrc_id;
6127		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6128			phba->sli4_hba.io_xri_start = rsrc_start +
6129				lpfc_sli4_get_iocb_cnt(phba);
6130		}
6131
6132		while (rsrc_id < (rsrc_start + rsrc_size)) {
6133			ids[j] = rsrc_id;
6134			rsrc_id++;
6135			j++;
6136		}
6137		/* Entire word processed.  Get next word.*/
6138		if ((i % 2) == 1)
6139			k++;
6140	}
6141 err_exit:
6142	lpfc_sli4_mbox_cmd_free(phba, mbox);
6143	return rc;
6144}
6145
6146
6147
6148/**
6149 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6150 * @phba: Pointer to HBA context object.
6151 * @type: the extent's type.
6152 *
6153 * This function deallocates all extents of a particular resource type.
6154 * SLI4 does not allow for deallocating a particular extent range.  It
6155 * is the caller's responsibility to release all kernel memory resources.
6156 **/
6157static int
6158lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6159{
6160	int rc;
6161	uint32_t length, mbox_tmo = 0;
6162	LPFC_MBOXQ_t *mbox;
6163	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6164	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6165
6166	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6167	if (!mbox)
6168		return -ENOMEM;
6169
6170	/*
6171	 * This function sends an embedded mailbox because it only sends the
6172	 * the resource type.  All extents of this type are released by the
6173	 * port.
6174	 */
6175	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6176		  sizeof(struct lpfc_sli4_cfg_mhdr));
6177	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6178			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6179			 length, LPFC_SLI4_MBX_EMBED);
6180
6181	/* Send an extents count of 0 - the dealloc doesn't use it. */
6182	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6183					LPFC_SLI4_MBX_EMBED);
6184	if (unlikely(rc)) {
6185		rc = -EIO;
6186		goto out_free_mbox;
6187	}
6188	if (!phba->sli4_hba.intr_enable)
6189		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6190	else {
6191		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6192		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6193	}
6194	if (unlikely(rc)) {
6195		rc = -EIO;
6196		goto out_free_mbox;
6197	}
6198
6199	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6200	if (bf_get(lpfc_mbox_hdr_status,
6201		   &dealloc_rsrc->header.cfg_shdr.response)) {
6202		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6203				"2919 Failed to release resource extents "
6204				"for type %d - Status 0x%x Add'l Status 0x%x. "
6205				"Resource memory not released.\n",
6206				type,
6207				bf_get(lpfc_mbox_hdr_status,
6208				    &dealloc_rsrc->header.cfg_shdr.response),
6209				bf_get(lpfc_mbox_hdr_add_status,
6210				    &dealloc_rsrc->header.cfg_shdr.response));
6211		rc = -EIO;
6212		goto out_free_mbox;
6213	}
6214
6215	/* Release kernel memory resources for the specific type. */
6216	switch (type) {
6217	case LPFC_RSC_TYPE_FCOE_VPI:
6218		kfree(phba->vpi_bmask);
6219		kfree(phba->vpi_ids);
6220		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6221		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6222				    &phba->lpfc_vpi_blk_list, list) {
6223			list_del_init(&rsrc_blk->list);
6224			kfree(rsrc_blk);
6225		}
6226		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6227		break;
6228	case LPFC_RSC_TYPE_FCOE_XRI:
6229		kfree(phba->sli4_hba.xri_bmask);
6230		kfree(phba->sli4_hba.xri_ids);
6231		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6232				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6233			list_del_init(&rsrc_blk->list);
6234			kfree(rsrc_blk);
6235		}
6236		break;
6237	case LPFC_RSC_TYPE_FCOE_VFI:
6238		kfree(phba->sli4_hba.vfi_bmask);
6239		kfree(phba->sli4_hba.vfi_ids);
6240		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6241		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6242				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6243			list_del_init(&rsrc_blk->list);
6244			kfree(rsrc_blk);
6245		}
6246		break;
6247	case LPFC_RSC_TYPE_FCOE_RPI:
6248		/* RPI bitmask and physical id array are cleaned up earlier. */
6249		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6250				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6251			list_del_init(&rsrc_blk->list);
6252			kfree(rsrc_blk);
6253		}
6254		break;
6255	default:
6256		break;
6257	}
6258
6259	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6260
6261 out_free_mbox:
6262	mempool_free(mbox, phba->mbox_mem_pool);
6263	return rc;
6264}
6265
6266static void
6267lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6268		  uint32_t feature)
6269{
6270	uint32_t len;
6271
6272	len = sizeof(struct lpfc_mbx_set_feature) -
6273		sizeof(struct lpfc_sli4_cfg_mhdr);
6274	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6275			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6276			 LPFC_SLI4_MBX_EMBED);
6277
6278	switch (feature) {
6279	case LPFC_SET_UE_RECOVERY:
6280		bf_set(lpfc_mbx_set_feature_UER,
6281		       &mbox->u.mqe.un.set_feature, 1);
6282		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6283		mbox->u.mqe.un.set_feature.param_len = 8;
6284		break;
6285	case LPFC_SET_MDS_DIAGS:
6286		bf_set(lpfc_mbx_set_feature_mds,
6287		       &mbox->u.mqe.un.set_feature, 1);
6288		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6289		       &mbox->u.mqe.un.set_feature, 1);
6290		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6291		mbox->u.mqe.un.set_feature.param_len = 8;
6292		break;
6293	case LPFC_SET_DUAL_DUMP:
6294		bf_set(lpfc_mbx_set_feature_dd,
6295		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6296		bf_set(lpfc_mbx_set_feature_ddquery,
6297		       &mbox->u.mqe.un.set_feature, 0);
6298		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6299		mbox->u.mqe.un.set_feature.param_len = 4;
6300		break;
6301	}
6302
6303	return;
6304}
6305
6306/**
6307 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6308 * @phba: Pointer to HBA context object.
6309 *
6310 * Disable FW logging into host memory on the adapter. To
6311 * be done before reading logs from the host memory.
6312 **/
6313void
6314lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6315{
6316	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6317
6318	spin_lock_irq(&phba->hbalock);
6319	ras_fwlog->state = INACTIVE;
6320	spin_unlock_irq(&phba->hbalock);
6321
6322	/* Disable FW logging to host memory */
6323	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6324	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6325
6326	/* Wait 10ms for firmware to stop using DMA buffer */
6327	usleep_range(10 * 1000, 20 * 1000);
6328}
6329
6330/**
6331 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6332 * @phba: Pointer to HBA context object.
6333 *
6334 * This function is called to free memory allocated for RAS FW logging
6335 * support in the driver.
6336 **/
6337void
6338lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6339{
6340	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6341	struct lpfc_dmabuf *dmabuf, *next;
6342
6343	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6344		list_for_each_entry_safe(dmabuf, next,
6345				    &ras_fwlog->fwlog_buff_list,
6346				    list) {
6347			list_del(&dmabuf->list);
6348			dma_free_coherent(&phba->pcidev->dev,
6349					  LPFC_RAS_MAX_ENTRY_SIZE,
6350					  dmabuf->virt, dmabuf->phys);
6351			kfree(dmabuf);
6352		}
6353	}
6354
6355	if (ras_fwlog->lwpd.virt) {
6356		dma_free_coherent(&phba->pcidev->dev,
6357				  sizeof(uint32_t) * 2,
6358				  ras_fwlog->lwpd.virt,
6359				  ras_fwlog->lwpd.phys);
6360		ras_fwlog->lwpd.virt = NULL;
6361	}
6362
6363	spin_lock_irq(&phba->hbalock);
6364	ras_fwlog->state = INACTIVE;
6365	spin_unlock_irq(&phba->hbalock);
6366}
6367
6368/**
6369 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6370 * @phba: Pointer to HBA context object.
6371 * @fwlog_buff_count: Count of buffers to be created.
6372 *
6373 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6374 * to update FW log is posted to the adapter.
6375 * Buffer count is calculated based on module param ras_fwlog_buffsize
6376 * Size of each buffer posted to FW is 64K.
6377 **/
6378
6379static int
6380lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6381			uint32_t fwlog_buff_count)
6382{
6383	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6384	struct lpfc_dmabuf *dmabuf;
6385	int rc = 0, i = 0;
6386
6387	/* Initialize List */
6388	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6389
6390	/* Allocate memory for the LWPD */
6391	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6392					    sizeof(uint32_t) * 2,
6393					    &ras_fwlog->lwpd.phys,
6394					    GFP_KERNEL);
6395	if (!ras_fwlog->lwpd.virt) {
6396		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6397				"6185 LWPD Memory Alloc Failed\n");
6398
6399		return -ENOMEM;
6400	}
6401
6402	ras_fwlog->fw_buffcount = fwlog_buff_count;
6403	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6404		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6405				 GFP_KERNEL);
6406		if (!dmabuf) {
6407			rc = -ENOMEM;
6408			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6409					"6186 Memory Alloc failed FW logging");
6410			goto free_mem;
6411		}
6412
6413		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6414						  LPFC_RAS_MAX_ENTRY_SIZE,
6415						  &dmabuf->phys, GFP_KERNEL);
6416		if (!dmabuf->virt) {
6417			kfree(dmabuf);
6418			rc = -ENOMEM;
6419			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6420					"6187 DMA Alloc Failed FW logging");
6421			goto free_mem;
6422		}
6423		dmabuf->buffer_tag = i;
6424		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6425	}
6426
6427free_mem:
6428	if (rc)
6429		lpfc_sli4_ras_dma_free(phba);
6430
6431	return rc;
6432}
6433
6434/**
6435 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6436 * @phba: pointer to lpfc hba data structure.
6437 * @pmb: pointer to the driver internal queue element for mailbox command.
6438 *
6439 * Completion handler for driver's RAS MBX command to the device.
6440 **/
6441static void
6442lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6443{
6444	MAILBOX_t *mb;
6445	union lpfc_sli4_cfg_shdr *shdr;
6446	uint32_t shdr_status, shdr_add_status;
6447	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6448
6449	mb = &pmb->u.mb;
6450
6451	shdr = (union lpfc_sli4_cfg_shdr *)
6452		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6453	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6454	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6455
6456	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6457		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6458				"6188 FW LOG mailbox "
6459				"completed with status x%x add_status x%x,"
6460				" mbx status x%x\n",
6461				shdr_status, shdr_add_status, mb->mbxStatus);
6462
6463		ras_fwlog->ras_hwsupport = false;
6464		goto disable_ras;
6465	}
6466
6467	spin_lock_irq(&phba->hbalock);
6468	ras_fwlog->state = ACTIVE;
6469	spin_unlock_irq(&phba->hbalock);
6470	mempool_free(pmb, phba->mbox_mem_pool);
6471
6472	return;
6473
6474disable_ras:
6475	/* Free RAS DMA memory */
6476	lpfc_sli4_ras_dma_free(phba);
6477	mempool_free(pmb, phba->mbox_mem_pool);
6478}
6479
6480/**
6481 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6482 * @phba: pointer to lpfc hba data structure.
6483 * @fwlog_level: Logging verbosity level.
6484 * @fwlog_enable: Enable/Disable logging.
6485 *
6486 * Initialize memory and post mailbox command to enable FW logging in host
6487 * memory.
6488 **/
6489int
6490lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6491			 uint32_t fwlog_level,
6492			 uint32_t fwlog_enable)
6493{
6494	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6495	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6496	struct lpfc_dmabuf *dmabuf;
6497	LPFC_MBOXQ_t *mbox;
6498	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6499	int rc = 0;
6500
6501	spin_lock_irq(&phba->hbalock);
6502	ras_fwlog->state = INACTIVE;
6503	spin_unlock_irq(&phba->hbalock);
6504
6505	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6506			  phba->cfg_ras_fwlog_buffsize);
6507	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6508
6509	/*
6510	 * If re-enabling FW logging support use earlier allocated
6511	 * DMA buffers while posting MBX command.
6512	 **/
6513	if (!ras_fwlog->lwpd.virt) {
6514		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6515		if (rc) {
6516			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6517					"6189 FW Log Memory Allocation Failed");
6518			return rc;
6519		}
6520	}
6521
6522	/* Setup Mailbox command */
6523	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6524	if (!mbox) {
6525		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6526				"6190 RAS MBX Alloc Failed");
6527		rc = -ENOMEM;
6528		goto mem_free;
6529	}
6530
6531	ras_fwlog->fw_loglevel = fwlog_level;
6532	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6533		sizeof(struct lpfc_sli4_cfg_mhdr));
6534
6535	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6536			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6537			 len, LPFC_SLI4_MBX_EMBED);
6538
6539	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6540	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6541	       fwlog_enable);
6542	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6543	       ras_fwlog->fw_loglevel);
6544	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6545	       ras_fwlog->fw_buffcount);
6546	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6547	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6548
6549	/* Update DMA buffer address */
6550	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6551		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6552
6553		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6554			putPaddrLow(dmabuf->phys);
6555
6556		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6557			putPaddrHigh(dmabuf->phys);
6558	}
6559
6560	/* Update LPWD address */
6561	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6562	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6563
6564	spin_lock_irq(&phba->hbalock);
6565	ras_fwlog->state = REG_INPROGRESS;
6566	spin_unlock_irq(&phba->hbalock);
6567	mbox->vport = phba->pport;
6568	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6569
6570	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6571
6572	if (rc == MBX_NOT_FINISHED) {
6573		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6574				"6191 FW-Log Mailbox failed. "
6575				"status %d mbxStatus : x%x", rc,
6576				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6577		mempool_free(mbox, phba->mbox_mem_pool);
6578		rc = -EIO;
6579		goto mem_free;
6580	} else
6581		rc = 0;
6582mem_free:
6583	if (rc)
6584		lpfc_sli4_ras_dma_free(phba);
6585
6586	return rc;
6587}
6588
6589/**
6590 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6591 * @phba: Pointer to HBA context object.
6592 *
6593 * Check if RAS is supported on the adapter and initialize it.
6594 **/
6595void
6596lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6597{
6598	/* Check RAS FW Log needs to be enabled or not */
6599	if (lpfc_check_fwlog_support(phba))
6600		return;
6601
6602	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6603				 LPFC_RAS_ENABLE_LOGGING);
6604}
6605
6606/**
6607 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6608 * @phba: Pointer to HBA context object.
6609 *
6610 * This function allocates all SLI4 resource identifiers.
6611 **/
6612int
6613lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6614{
6615	int i, rc, error = 0;
6616	uint16_t count, base;
6617	unsigned long longs;
6618
6619	if (!phba->sli4_hba.rpi_hdrs_in_use)
6620		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6621	if (phba->sli4_hba.extents_in_use) {
6622		/*
6623		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6624		 * resource extent count must be read and allocated before
6625		 * provisioning the resource id arrays.
6626		 */
6627		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6628		    LPFC_IDX_RSRC_RDY) {
6629			/*
6630			 * Extent-based resources are set - the driver could
6631			 * be in a port reset. Figure out if any corrective
6632			 * actions need to be taken.
6633			 */
6634			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6635						 LPFC_RSC_TYPE_FCOE_VFI);
6636			if (rc != 0)
6637				error++;
6638			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6639						 LPFC_RSC_TYPE_FCOE_VPI);
6640			if (rc != 0)
6641				error++;
6642			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6643						 LPFC_RSC_TYPE_FCOE_XRI);
6644			if (rc != 0)
6645				error++;
6646			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6647						 LPFC_RSC_TYPE_FCOE_RPI);
6648			if (rc != 0)
6649				error++;
6650
6651			/*
6652			 * It's possible that the number of resources
6653			 * provided to this port instance changed between
6654			 * resets.  Detect this condition and reallocate
6655			 * resources.  Otherwise, there is no action.
6656			 */
6657			if (error) {
6658				lpfc_printf_log(phba, KERN_INFO,
6659						LOG_MBOX | LOG_INIT,
6660						"2931 Detected extent resource "
6661						"change.  Reallocating all "
6662						"extents.\n");
6663				rc = lpfc_sli4_dealloc_extent(phba,
6664						 LPFC_RSC_TYPE_FCOE_VFI);
6665				rc = lpfc_sli4_dealloc_extent(phba,
6666						 LPFC_RSC_TYPE_FCOE_VPI);
6667				rc = lpfc_sli4_dealloc_extent(phba,
6668						 LPFC_RSC_TYPE_FCOE_XRI);
6669				rc = lpfc_sli4_dealloc_extent(phba,
6670						 LPFC_RSC_TYPE_FCOE_RPI);
6671			} else
6672				return 0;
6673		}
6674
6675		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6676		if (unlikely(rc))
6677			goto err_exit;
6678
6679		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6680		if (unlikely(rc))
6681			goto err_exit;
6682
6683		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6684		if (unlikely(rc))
6685			goto err_exit;
6686
6687		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6688		if (unlikely(rc))
6689			goto err_exit;
6690		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6691		       LPFC_IDX_RSRC_RDY);
6692		return rc;
6693	} else {
6694		/*
6695		 * The port does not support resource extents.  The XRI, VPI,
6696		 * VFI, RPI resource ids were determined from READ_CONFIG.
6697		 * Just allocate the bitmasks and provision the resource id
6698		 * arrays.  If a port reset is active, the resources don't
6699		 * need any action - just exit.
6700		 */
6701		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6702		    LPFC_IDX_RSRC_RDY) {
6703			lpfc_sli4_dealloc_resource_identifiers(phba);
6704			lpfc_sli4_remove_rpis(phba);
6705		}
6706		/* RPIs. */
6707		count = phba->sli4_hba.max_cfg_param.max_rpi;
6708		if (count <= 0) {
6709			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6710					"3279 Invalid provisioning of "
6711					"rpi:%d\n", count);
6712			rc = -EINVAL;
6713			goto err_exit;
6714		}
6715		base = phba->sli4_hba.max_cfg_param.rpi_base;
6716		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6717		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6718						   sizeof(unsigned long),
6719						   GFP_KERNEL);
6720		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6721			rc = -ENOMEM;
6722			goto err_exit;
6723		}
6724		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6725						 GFP_KERNEL);
6726		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6727			rc = -ENOMEM;
6728			goto free_rpi_bmask;
6729		}
6730
6731		for (i = 0; i < count; i++)
6732			phba->sli4_hba.rpi_ids[i] = base + i;
6733
6734		/* VPIs. */
6735		count = phba->sli4_hba.max_cfg_param.max_vpi;
6736		if (count <= 0) {
6737			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6738					"3280 Invalid provisioning of "
6739					"vpi:%d\n", count);
6740			rc = -EINVAL;
6741			goto free_rpi_ids;
6742		}
6743		base = phba->sli4_hba.max_cfg_param.vpi_base;
6744		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6745		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6746					  GFP_KERNEL);
6747		if (unlikely(!phba->vpi_bmask)) {
6748			rc = -ENOMEM;
6749			goto free_rpi_ids;
6750		}
6751		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6752					GFP_KERNEL);
6753		if (unlikely(!phba->vpi_ids)) {
6754			rc = -ENOMEM;
6755			goto free_vpi_bmask;
6756		}
6757
6758		for (i = 0; i < count; i++)
6759			phba->vpi_ids[i] = base + i;
6760
6761		/* XRIs. */
6762		count = phba->sli4_hba.max_cfg_param.max_xri;
6763		if (count <= 0) {
6764			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6765					"3281 Invalid provisioning of "
6766					"xri:%d\n", count);
6767			rc = -EINVAL;
6768			goto free_vpi_ids;
6769		}
6770		base = phba->sli4_hba.max_cfg_param.xri_base;
6771		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6772		phba->sli4_hba.xri_bmask = kcalloc(longs,
6773						   sizeof(unsigned long),
6774						   GFP_KERNEL);
6775		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6776			rc = -ENOMEM;
6777			goto free_vpi_ids;
6778		}
6779		phba->sli4_hba.max_cfg_param.xri_used = 0;
6780		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6781						 GFP_KERNEL);
6782		if (unlikely(!phba->sli4_hba.xri_ids)) {
6783			rc = -ENOMEM;
6784			goto free_xri_bmask;
6785		}
6786
6787		for (i = 0; i < count; i++)
6788			phba->sli4_hba.xri_ids[i] = base + i;
6789
6790		/* VFIs. */
6791		count = phba->sli4_hba.max_cfg_param.max_vfi;
6792		if (count <= 0) {
6793			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6794					"3282 Invalid provisioning of "
6795					"vfi:%d\n", count);
6796			rc = -EINVAL;
6797			goto free_xri_ids;
6798		}
6799		base = phba->sli4_hba.max_cfg_param.vfi_base;
6800		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6801		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6802						   sizeof(unsigned long),
6803						   GFP_KERNEL);
6804		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6805			rc = -ENOMEM;
6806			goto free_xri_ids;
6807		}
6808		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6809						 GFP_KERNEL);
6810		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6811			rc = -ENOMEM;
6812			goto free_vfi_bmask;
6813		}
6814
6815		for (i = 0; i < count; i++)
6816			phba->sli4_hba.vfi_ids[i] = base + i;
6817
6818		/*
6819		 * Mark all resources ready.  An HBA reset doesn't need
6820		 * to reset the initialization.
6821		 */
6822		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6823		       LPFC_IDX_RSRC_RDY);
6824		return 0;
6825	}
6826
6827 free_vfi_bmask:
6828	kfree(phba->sli4_hba.vfi_bmask);
6829	phba->sli4_hba.vfi_bmask = NULL;
6830 free_xri_ids:
6831	kfree(phba->sli4_hba.xri_ids);
6832	phba->sli4_hba.xri_ids = NULL;
6833 free_xri_bmask:
6834	kfree(phba->sli4_hba.xri_bmask);
6835	phba->sli4_hba.xri_bmask = NULL;
6836 free_vpi_ids:
6837	kfree(phba->vpi_ids);
6838	phba->vpi_ids = NULL;
6839 free_vpi_bmask:
6840	kfree(phba->vpi_bmask);
6841	phba->vpi_bmask = NULL;
6842 free_rpi_ids:
6843	kfree(phba->sli4_hba.rpi_ids);
6844	phba->sli4_hba.rpi_ids = NULL;
6845 free_rpi_bmask:
6846	kfree(phba->sli4_hba.rpi_bmask);
6847	phba->sli4_hba.rpi_bmask = NULL;
6848 err_exit:
6849	return rc;
6850}
6851
6852/**
6853 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6854 * @phba: Pointer to HBA context object.
6855 *
6856 * This function allocates the number of elements for the specified
6857 * resource type.
6858 **/
6859int
6860lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6861{
6862	if (phba->sli4_hba.extents_in_use) {
6863		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6864		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6865		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6866		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6867	} else {
6868		kfree(phba->vpi_bmask);
6869		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6870		kfree(phba->vpi_ids);
6871		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6872		kfree(phba->sli4_hba.xri_bmask);
6873		kfree(phba->sli4_hba.xri_ids);
6874		kfree(phba->sli4_hba.vfi_bmask);
6875		kfree(phba->sli4_hba.vfi_ids);
6876		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6877		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6878	}
6879
6880	return 0;
6881}
6882
6883/**
6884 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6885 * @phba: Pointer to HBA context object.
6886 * @type: The resource extent type.
6887 * @extnt_cnt: buffer to hold port extent count response
6888 * @extnt_size: buffer to hold port extent size response.
6889 *
6890 * This function calls the port to read the host allocated extents
6891 * for a particular type.
6892 **/
6893int
6894lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6895			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6896{
6897	bool emb;
6898	int rc = 0;
6899	uint16_t curr_blks = 0;
6900	uint32_t req_len, emb_len;
6901	uint32_t alloc_len, mbox_tmo;
6902	struct list_head *blk_list_head;
6903	struct lpfc_rsrc_blks *rsrc_blk;
6904	LPFC_MBOXQ_t *mbox;
6905	void *virtaddr = NULL;
6906	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6907	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6908	union  lpfc_sli4_cfg_shdr *shdr;
6909
6910	switch (type) {
6911	case LPFC_RSC_TYPE_FCOE_VPI:
6912		blk_list_head = &phba->lpfc_vpi_blk_list;
6913		break;
6914	case LPFC_RSC_TYPE_FCOE_XRI:
6915		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6916		break;
6917	case LPFC_RSC_TYPE_FCOE_VFI:
6918		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6919		break;
6920	case LPFC_RSC_TYPE_FCOE_RPI:
6921		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6922		break;
6923	default:
6924		return -EIO;
6925	}
6926
6927	/* Count the number of extents currently allocatd for this type. */
6928	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6929		if (curr_blks == 0) {
6930			/*
6931			 * The GET_ALLOCATED mailbox does not return the size,
6932			 * just the count.  The size should be just the size
6933			 * stored in the current allocated block and all sizes
6934			 * for an extent type are the same so set the return
6935			 * value now.
6936			 */
6937			*extnt_size = rsrc_blk->rsrc_size;
6938		}
6939		curr_blks++;
6940	}
6941
6942	/*
6943	 * Calculate the size of an embedded mailbox.  The uint32_t
6944	 * accounts for extents-specific word.
6945	 */
6946	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6947		sizeof(uint32_t);
6948
6949	/*
6950	 * Presume the allocation and response will fit into an embedded
6951	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6952	 */
6953	emb = LPFC_SLI4_MBX_EMBED;
6954	req_len = emb_len;
6955	if (req_len > emb_len) {
6956		req_len = curr_blks * sizeof(uint16_t) +
6957			sizeof(union lpfc_sli4_cfg_shdr) +
6958			sizeof(uint32_t);
6959		emb = LPFC_SLI4_MBX_NEMBED;
6960	}
6961
6962	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6963	if (!mbox)
6964		return -ENOMEM;
6965	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6966
6967	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6968				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6969				     req_len, emb);
6970	if (alloc_len < req_len) {
6971		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6972			"2983 Allocated DMA memory size (x%x) is "
6973			"less than the requested DMA memory "
6974			"size (x%x)\n", alloc_len, req_len);
6975		rc = -ENOMEM;
6976		goto err_exit;
6977	}
6978	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6979	if (unlikely(rc)) {
6980		rc = -EIO;
6981		goto err_exit;
6982	}
6983
6984	if (!phba->sli4_hba.intr_enable)
6985		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6986	else {
6987		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6988		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6989	}
6990
6991	if (unlikely(rc)) {
6992		rc = -EIO;
6993		goto err_exit;
6994	}
6995
6996	/*
6997	 * Figure out where the response is located.  Then get local pointers
6998	 * to the response data.  The port does not guarantee to respond to
6999	 * all extents counts request so update the local variable with the
7000	 * allocated count from the port.
7001	 */
7002	if (emb == LPFC_SLI4_MBX_EMBED) {
7003		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7004		shdr = &rsrc_ext->header.cfg_shdr;
7005		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7006	} else {
7007		virtaddr = mbox->sge_array->addr[0];
7008		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7009		shdr = &n_rsrc->cfg_shdr;
7010		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7011	}
7012
7013	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7014		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7015			"2984 Failed to read allocated resources "
7016			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
7017			type,
7018			bf_get(lpfc_mbox_hdr_status, &shdr->response),
7019			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7020		rc = -EIO;
7021		goto err_exit;
7022	}
7023 err_exit:
7024	lpfc_sli4_mbox_cmd_free(phba, mbox);
7025	return rc;
7026}
7027
7028/**
7029 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7030 * @phba: pointer to lpfc hba data structure.
7031 * @sgl_list: linked link of sgl buffers to post
7032 * @cnt: number of linked list buffers
7033 *
7034 * This routine walks the list of buffers that have been allocated and
7035 * repost them to the port by using SGL block post. This is needed after a
7036 * pci_function_reset/warm_start or start. It attempts to construct blocks
7037 * of buffer sgls which contains contiguous xris and uses the non-embedded
7038 * SGL block post mailbox commands to post them to the port. For single
7039 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7040 * mailbox command for posting.
7041 *
7042 * Returns: 0 = success, non-zero failure.
7043 **/
7044static int
7045lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7046			  struct list_head *sgl_list, int cnt)
7047{
7048	struct lpfc_sglq *sglq_entry = NULL;
7049	struct lpfc_sglq *sglq_entry_next = NULL;
7050	struct lpfc_sglq *sglq_entry_first = NULL;
7051	int status, total_cnt;
7052	int post_cnt = 0, num_posted = 0, block_cnt = 0;
7053	int last_xritag = NO_XRI;
7054	LIST_HEAD(prep_sgl_list);
7055	LIST_HEAD(blck_sgl_list);
7056	LIST_HEAD(allc_sgl_list);
7057	LIST_HEAD(post_sgl_list);
7058	LIST_HEAD(free_sgl_list);
7059
7060	spin_lock_irq(&phba->hbalock);
7061	spin_lock(&phba->sli4_hba.sgl_list_lock);
7062	list_splice_init(sgl_list, &allc_sgl_list);
7063	spin_unlock(&phba->sli4_hba.sgl_list_lock);
7064	spin_unlock_irq(&phba->hbalock);
7065
7066	total_cnt = cnt;
7067	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7068				 &allc_sgl_list, list) {
7069		list_del_init(&sglq_entry->list);
7070		block_cnt++;
7071		if ((last_xritag != NO_XRI) &&
7072		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
7073			/* a hole in xri block, form a sgl posting block */
7074			list_splice_init(&prep_sgl_list, &blck_sgl_list);
7075			post_cnt = block_cnt - 1;
7076			/* prepare list for next posting block */
7077			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7078			block_cnt = 1;
7079		} else {
7080			/* prepare list for next posting block */
7081			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7082			/* enough sgls for non-embed sgl mbox command */
7083			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7084				list_splice_init(&prep_sgl_list,
7085						 &blck_sgl_list);
7086				post_cnt = block_cnt;
7087				block_cnt = 0;
7088			}
7089		}
7090		num_posted++;
7091
7092		/* keep track of last sgl's xritag */
7093		last_xritag = sglq_entry->sli4_xritag;
7094
7095		/* end of repost sgl list condition for buffers */
7096		if (num_posted == total_cnt) {
7097			if (post_cnt == 0) {
7098				list_splice_init(&prep_sgl_list,
7099						 &blck_sgl_list);
7100				post_cnt = block_cnt;
7101			} else if (block_cnt == 1) {
7102				status = lpfc_sli4_post_sgl(phba,
7103						sglq_entry->phys, 0,
7104						sglq_entry->sli4_xritag);
7105				if (!status) {
7106					/* successful, put sgl to posted list */
7107					list_add_tail(&sglq_entry->list,
7108						      &post_sgl_list);
7109				} else {
7110					/* Failure, put sgl to free list */
7111					lpfc_printf_log(phba, KERN_WARNING,
7112						LOG_SLI,
7113						"3159 Failed to post "
7114						"sgl, xritag:x%x\n",
7115						sglq_entry->sli4_xritag);
7116					list_add_tail(&sglq_entry->list,
7117						      &free_sgl_list);
7118					total_cnt--;
7119				}
7120			}
7121		}
7122
7123		/* continue until a nembed page worth of sgls */
7124		if (post_cnt == 0)
7125			continue;
7126
7127		/* post the buffer list sgls as a block */
7128		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7129						 post_cnt);
7130
7131		if (!status) {
7132			/* success, put sgl list to posted sgl list */
7133			list_splice_init(&blck_sgl_list, &post_sgl_list);
7134		} else {
7135			/* Failure, put sgl list to free sgl list */
7136			sglq_entry_first = list_first_entry(&blck_sgl_list,
7137							    struct lpfc_sglq,
7138							    list);
7139			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7140					"3160 Failed to post sgl-list, "
7141					"xritag:x%x-x%x\n",
7142					sglq_entry_first->sli4_xritag,
7143					(sglq_entry_first->sli4_xritag +
7144					 post_cnt - 1));
7145			list_splice_init(&blck_sgl_list, &free_sgl_list);
7146			total_cnt -= post_cnt;
7147		}
7148
7149		/* don't reset xirtag due to hole in xri block */
7150		if (block_cnt == 0)
7151			last_xritag = NO_XRI;
7152
7153		/* reset sgl post count for next round of posting */
7154		post_cnt = 0;
7155	}
7156
7157	/* free the sgls failed to post */
7158	lpfc_free_sgl_list(phba, &free_sgl_list);
7159
7160	/* push sgls posted to the available list */
7161	if (!list_empty(&post_sgl_list)) {
7162		spin_lock_irq(&phba->hbalock);
7163		spin_lock(&phba->sli4_hba.sgl_list_lock);
7164		list_splice_init(&post_sgl_list, sgl_list);
7165		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7166		spin_unlock_irq(&phba->hbalock);
7167	} else {
7168		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7169				"3161 Failure to post sgl to port.\n");
7170		return -EIO;
7171	}
7172
7173	/* return the number of XRIs actually posted */
7174	return total_cnt;
7175}
7176
7177/**
7178 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7179 * @phba: pointer to lpfc hba data structure.
7180 *
7181 * This routine walks the list of nvme buffers that have been allocated and
7182 * repost them to the port by using SGL block post. This is needed after a
7183 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7184 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7185 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7186 *
7187 * Returns: 0 = success, non-zero failure.
7188 **/
7189static int
7190lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7191{
7192	LIST_HEAD(post_nblist);
7193	int num_posted, rc = 0;
7194
7195	/* get all NVME buffers need to repost to a local list */
7196	lpfc_io_buf_flush(phba, &post_nblist);
7197
7198	/* post the list of nvme buffer sgls to port if available */
7199	if (!list_empty(&post_nblist)) {
7200		num_posted = lpfc_sli4_post_io_sgl_list(
7201			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7202		/* failed to post any nvme buffer, return error */
7203		if (num_posted == 0)
7204			rc = -EIO;
7205	}
7206	return rc;
7207}
7208
7209static void
7210lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7211{
7212	uint32_t len;
7213
7214	len = sizeof(struct lpfc_mbx_set_host_data) -
7215		sizeof(struct lpfc_sli4_cfg_mhdr);
7216	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7217			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7218			 LPFC_SLI4_MBX_EMBED);
7219
7220	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7221	mbox->u.mqe.un.set_host_data.param_len =
7222					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7223	snprintf(mbox->u.mqe.un.set_host_data.data,
7224		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7225		 "Linux %s v"LPFC_DRIVER_VERSION,
7226		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7227}
7228
7229int
7230lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7231		    struct lpfc_queue *drq, int count, int idx)
7232{
7233	int rc, i;
7234	struct lpfc_rqe hrqe;
7235	struct lpfc_rqe drqe;
7236	struct lpfc_rqb *rqbp;
7237	unsigned long flags;
7238	struct rqb_dmabuf *rqb_buffer;
7239	LIST_HEAD(rqb_buf_list);
7240
7241	rqbp = hrq->rqbp;
7242	for (i = 0; i < count; i++) {
7243		spin_lock_irqsave(&phba->hbalock, flags);
7244		/* IF RQ is already full, don't bother */
7245		if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7246			spin_unlock_irqrestore(&phba->hbalock, flags);
7247			break;
7248		}
7249		spin_unlock_irqrestore(&phba->hbalock, flags);
7250
7251		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7252		if (!rqb_buffer)
7253			break;
7254		rqb_buffer->hrq = hrq;
7255		rqb_buffer->drq = drq;
7256		rqb_buffer->idx = idx;
7257		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7258	}
7259
7260	spin_lock_irqsave(&phba->hbalock, flags);
7261	while (!list_empty(&rqb_buf_list)) {
7262		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7263				 hbuf.list);
7264
7265		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7266		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7267		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7268		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7269		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7270		if (rc < 0) {
7271			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7272					"6421 Cannot post to HRQ %d: %x %x %x "
7273					"DRQ %x %x\n",
7274					hrq->queue_id,
7275					hrq->host_index,
7276					hrq->hba_index,
7277					hrq->entry_count,
7278					drq->host_index,
7279					drq->hba_index);
7280			rqbp->rqb_free_buffer(phba, rqb_buffer);
7281		} else {
7282			list_add_tail(&rqb_buffer->hbuf.list,
7283				      &rqbp->rqb_buffer_list);
7284			rqbp->buffer_count++;
7285		}
7286	}
7287	spin_unlock_irqrestore(&phba->hbalock, flags);
7288	return 1;
7289}
7290
7291/**
7292 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7293 * @phba: pointer to lpfc hba data structure.
7294 *
7295 * This routine initializes the per-cq idle_stat to dynamically dictate
7296 * polling decisions.
7297 *
7298 * Return codes:
7299 *   None
7300 **/
7301static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7302{
7303	int i;
7304	struct lpfc_sli4_hdw_queue *hdwq;
7305	struct lpfc_queue *cq;
7306	struct lpfc_idle_stat *idle_stat;
7307	u64 wall;
7308
7309	for_each_present_cpu(i) {
7310		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7311		cq = hdwq->io_cq;
7312
7313		/* Skip if we've already handled this cq's primary CPU */
7314		if (cq->chann != i)
7315			continue;
7316
7317		idle_stat = &phba->sli4_hba.idle_stat[i];
7318
7319		idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7320		idle_stat->prev_wall = wall;
7321
7322		if (phba->nvmet_support)
7323			cq->poll_mode = LPFC_QUEUE_WORK;
7324		else
7325			cq->poll_mode = LPFC_IRQ_POLL;
7326	}
7327
7328	if (!phba->nvmet_support)
7329		schedule_delayed_work(&phba->idle_stat_delay_work,
7330				      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
7331}
7332
7333static void lpfc_sli4_dip(struct lpfc_hba *phba)
7334{
7335	uint32_t if_type;
7336
7337	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
7338	if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
7339	    if_type == LPFC_SLI_INTF_IF_TYPE_6) {
7340		struct lpfc_register reg_data;
7341
7342		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
7343			       &reg_data.word0))
7344			return;
7345
7346		if (bf_get(lpfc_sliport_status_dip, &reg_data))
7347			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7348					"2904 Firmware Dump Image Present"
7349					" on Adapter");
7350	}
7351}
7352
7353/**
7354 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7355 * @phba: Pointer to HBA context object.
7356 *
7357 * This function is the main SLI4 device initialization PCI function. This
7358 * function is called by the HBA initialization code, HBA reset code and
7359 * HBA error attention handler code. Caller is not required to hold any
7360 * locks.
7361 **/
7362int
7363lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7364{
7365	int rc, i, cnt, len, dd;
7366	LPFC_MBOXQ_t *mboxq;
7367	struct lpfc_mqe *mqe;
7368	uint8_t *vpd;
7369	uint32_t vpd_size;
7370	uint32_t ftr_rsp = 0;
7371	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7372	struct lpfc_vport *vport = phba->pport;
7373	struct lpfc_dmabuf *mp;
7374	struct lpfc_rqb *rqbp;
7375	u32 flg;
7376
7377	/* Perform a PCI function reset to start from clean */
7378	rc = lpfc_pci_function_reset(phba);
7379	if (unlikely(rc))
7380		return -ENODEV;
7381
7382	/* Check the HBA Host Status Register for readyness */
7383	rc = lpfc_sli4_post_status_check(phba);
7384	if (unlikely(rc))
7385		return -ENODEV;
7386	else {
7387		spin_lock_irq(&phba->hbalock);
7388		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7389		flg = phba->sli.sli_flag;
7390		spin_unlock_irq(&phba->hbalock);
7391		/* Allow a little time after setting SLI_ACTIVE for any polled
7392		 * MBX commands to complete via BSG.
7393		 */
7394		for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
7395			msleep(20);
7396			spin_lock_irq(&phba->hbalock);
7397			flg = phba->sli.sli_flag;
7398			spin_unlock_irq(&phba->hbalock);
7399		}
7400	}
7401
7402	lpfc_sli4_dip(phba);
7403
7404	/*
7405	 * Allocate a single mailbox container for initializing the
7406	 * port.
7407	 */
7408	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7409	if (!mboxq)
7410		return -ENOMEM;
7411
7412	/* Issue READ_REV to collect vpd and FW information. */
7413	vpd_size = SLI4_PAGE_SIZE;
7414	vpd = kzalloc(vpd_size, GFP_KERNEL);
7415	if (!vpd) {
7416		rc = -ENOMEM;
7417		goto out_free_mbox;
7418	}
7419
7420	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7421	if (unlikely(rc)) {
7422		kfree(vpd);
7423		goto out_free_mbox;
7424	}
7425
7426	mqe = &mboxq->u.mqe;
7427	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7428	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7429		phba->hba_flag |= HBA_FCOE_MODE;
7430		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7431	} else {
7432		phba->hba_flag &= ~HBA_FCOE_MODE;
7433	}
7434
7435	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7436		LPFC_DCBX_CEE_MODE)
7437		phba->hba_flag |= HBA_FIP_SUPPORT;
7438	else
7439		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7440
7441	phba->hba_flag &= ~HBA_IOQ_FLUSH;
7442
7443	if (phba->sli_rev != LPFC_SLI_REV4) {
7444		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7445			"0376 READ_REV Error. SLI Level %d "
7446			"FCoE enabled %d\n",
7447			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7448		rc = -EIO;
7449		kfree(vpd);
7450		goto out_free_mbox;
7451	}
7452
7453	/*
7454	 * Continue initialization with default values even if driver failed
7455	 * to read FCoE param config regions, only read parameters if the
7456	 * board is FCoE
7457	 */
7458	if (phba->hba_flag & HBA_FCOE_MODE &&
7459	    lpfc_sli4_read_fcoe_params(phba))
7460		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7461			"2570 Failed to read FCoE parameters\n");
7462
7463	/*
7464	 * Retrieve sli4 device physical port name, failure of doing it
7465	 * is considered as non-fatal.
7466	 */
7467	rc = lpfc_sli4_retrieve_pport_name(phba);
7468	if (!rc)
7469		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7470				"3080 Successful retrieving SLI4 device "
7471				"physical port name: %s.\n", phba->Port);
7472
7473	rc = lpfc_sli4_get_ctl_attr(phba);
7474	if (!rc)
7475		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7476				"8351 Successful retrieving SLI4 device "
7477				"CTL ATTR\n");
7478
7479	/*
7480	 * Evaluate the read rev and vpd data. Populate the driver
7481	 * state with the results. If this routine fails, the failure
7482	 * is not fatal as the driver will use generic values.
7483	 */
7484	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7485	if (unlikely(!rc)) {
7486		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7487				"0377 Error %d parsing vpd. "
7488				"Using defaults.\n", rc);
7489		rc = 0;
7490	}
7491	kfree(vpd);
7492
7493	/* Save information as VPD data */
7494	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7495	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7496
7497	/*
7498	 * This is because first G7 ASIC doesn't support the standard
7499	 * 0x5a NVME cmd descriptor type/subtype
7500	 */
7501	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7502			LPFC_SLI_INTF_IF_TYPE_6) &&
7503	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7504	    (phba->vpd.rev.smRev == 0) &&
7505	    (phba->cfg_nvme_embed_cmd == 1))
7506		phba->cfg_nvme_embed_cmd = 0;
7507
7508	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7509	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7510					 &mqe->un.read_rev);
7511	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7512				       &mqe->un.read_rev);
7513	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7514					    &mqe->un.read_rev);
7515	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7516					   &mqe->un.read_rev);
7517	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7518	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7519	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7520	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7521	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7522	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7523	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7524			"(%d):0380 READ_REV Status x%x "
7525			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7526			mboxq->vport ? mboxq->vport->vpi : 0,
7527			bf_get(lpfc_mqe_status, mqe),
7528			phba->vpd.rev.opFwName,
7529			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7530			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7531
7532	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7533	    LPFC_SLI_INTF_IF_TYPE_0) {
7534		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7535		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7536		if (rc == MBX_SUCCESS) {
7537			phba->hba_flag |= HBA_RECOVERABLE_UE;
7538			/* Set 1Sec interval to detect UE */
7539			phba->eratt_poll_interval = 1;
7540			phba->sli4_hba.ue_to_sr = bf_get(
7541					lpfc_mbx_set_feature_UESR,
7542					&mboxq->u.mqe.un.set_feature);
7543			phba->sli4_hba.ue_to_rp = bf_get(
7544					lpfc_mbx_set_feature_UERP,
7545					&mboxq->u.mqe.un.set_feature);
7546		}
7547	}
7548
7549	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7550		/* Enable MDS Diagnostics only if the SLI Port supports it */
7551		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7552		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7553		if (rc != MBX_SUCCESS)
7554			phba->mds_diags_support = 0;
7555	}
7556
7557	/*
7558	 * Discover the port's supported feature set and match it against the
7559	 * hosts requests.
7560	 */
7561	lpfc_request_features(phba, mboxq);
7562	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7563	if (unlikely(rc)) {
7564		rc = -EIO;
7565		goto out_free_mbox;
7566	}
7567
7568	/*
7569	 * The port must support FCP initiator mode as this is the
7570	 * only mode running in the host.
7571	 */
7572	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7573		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7574				"0378 No support for fcpi mode.\n");
7575		ftr_rsp++;
7576	}
7577
7578	/* Performance Hints are ONLY for FCoE */
7579	if (phba->hba_flag & HBA_FCOE_MODE) {
7580		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7581			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7582		else
7583			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7584	}
7585
7586	/*
7587	 * If the port cannot support the host's requested features
7588	 * then turn off the global config parameters to disable the
7589	 * feature in the driver.  This is not a fatal error.
7590	 */
7591	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7592		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7593			phba->cfg_enable_bg = 0;
7594			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7595			ftr_rsp++;
7596		}
7597	}
7598
7599	if (phba->max_vpi && phba->cfg_enable_npiv &&
7600	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7601		ftr_rsp++;
7602
7603	if (ftr_rsp) {
7604		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7605				"0379 Feature Mismatch Data: x%08x %08x "
7606				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7607				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7608				phba->cfg_enable_npiv, phba->max_vpi);
7609		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7610			phba->cfg_enable_bg = 0;
7611		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7612			phba->cfg_enable_npiv = 0;
7613	}
7614
7615	/* These SLI3 features are assumed in SLI4 */
7616	spin_lock_irq(&phba->hbalock);
7617	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7618	spin_unlock_irq(&phba->hbalock);
7619
7620	/* Always try to enable dual dump feature if we can */
7621	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7622	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7623	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7624	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7625		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7626				"6448 Dual Dump is enabled\n");
7627	else
7628		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7629				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7630				"rc:x%x dd:x%x\n",
7631				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7632				lpfc_sli_config_mbox_subsys_get(
7633					phba, mboxq),
7634				lpfc_sli_config_mbox_opcode_get(
7635					phba, mboxq),
7636				rc, dd);
7637	/*
7638	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7639	 * calls depends on these resources to complete port setup.
7640	 */
7641	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7642	if (rc) {
7643		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7644				"2920 Failed to alloc Resource IDs "
7645				"rc = x%x\n", rc);
7646		goto out_free_mbox;
7647	}
7648
7649	lpfc_set_host_data(phba, mboxq);
7650
7651	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7652	if (rc) {
7653		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7654				"2134 Failed to set host os driver version %x",
7655				rc);
7656	}
7657
7658	/* Read the port's service parameters. */
7659	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7660	if (rc) {
7661		phba->link_state = LPFC_HBA_ERROR;
7662		rc = -ENOMEM;
7663		goto out_free_mbox;
7664	}
7665
7666	mboxq->vport = vport;
7667	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7668	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7669	if (rc == MBX_SUCCESS) {
7670		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7671		rc = 0;
7672	}
7673
7674	/*
7675	 * This memory was allocated by the lpfc_read_sparam routine. Release
7676	 * it to the mbuf pool.
7677	 */
7678	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7679	kfree(mp);
7680	mboxq->ctx_buf = NULL;
7681	if (unlikely(rc)) {
7682		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7683				"0382 READ_SPARAM command failed "
7684				"status %d, mbxStatus x%x\n",
7685				rc, bf_get(lpfc_mqe_status, mqe));
7686		phba->link_state = LPFC_HBA_ERROR;
7687		rc = -EIO;
7688		goto out_free_mbox;
7689	}
7690
7691	lpfc_update_vport_wwn(vport);
7692
7693	/* Update the fc_host data structures with new wwn. */
7694	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7695	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7696
7697	/* Create all the SLI4 queues */
7698	rc = lpfc_sli4_queue_create(phba);
7699	if (rc) {
7700		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7701				"3089 Failed to allocate queues\n");
7702		rc = -ENODEV;
7703		goto out_free_mbox;
7704	}
7705	/* Set up all the queues to the device */
7706	rc = lpfc_sli4_queue_setup(phba);
7707	if (unlikely(rc)) {
7708		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7709				"0381 Error %d during queue setup.\n ", rc);
7710		goto out_stop_timers;
7711	}
7712	/* Initialize the driver internal SLI layer lists. */
7713	lpfc_sli4_setup(phba);
7714	lpfc_sli4_queue_init(phba);
7715
7716	/* update host els xri-sgl sizes and mappings */
7717	rc = lpfc_sli4_els_sgl_update(phba);
7718	if (unlikely(rc)) {
7719		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7720				"1400 Failed to update xri-sgl size and "
7721				"mapping: %d\n", rc);
7722		goto out_destroy_queue;
7723	}
7724
7725	/* register the els sgl pool to the port */
7726	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7727				       phba->sli4_hba.els_xri_cnt);
7728	if (unlikely(rc < 0)) {
7729		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7730				"0582 Error %d during els sgl post "
7731				"operation\n", rc);
7732		rc = -ENODEV;
7733		goto out_destroy_queue;
7734	}
7735	phba->sli4_hba.els_xri_cnt = rc;
7736
7737	if (phba->nvmet_support) {
7738		/* update host nvmet xri-sgl sizes and mappings */
7739		rc = lpfc_sli4_nvmet_sgl_update(phba);
7740		if (unlikely(rc)) {
7741			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7742					"6308 Failed to update nvmet-sgl size "
7743					"and mapping: %d\n", rc);
7744			goto out_destroy_queue;
7745		}
7746
7747		/* register the nvmet sgl pool to the port */
7748		rc = lpfc_sli4_repost_sgl_list(
7749			phba,
7750			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7751			phba->sli4_hba.nvmet_xri_cnt);
7752		if (unlikely(rc < 0)) {
7753			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7754					"3117 Error %d during nvmet "
7755					"sgl post\n", rc);
7756			rc = -ENODEV;
7757			goto out_destroy_queue;
7758		}
7759		phba->sli4_hba.nvmet_xri_cnt = rc;
7760
7761		/* We allocate an iocbq for every receive context SGL.
7762		 * The additional allocation is for abort and ls handling.
7763		 */
7764		cnt = phba->sli4_hba.nvmet_xri_cnt +
7765			phba->sli4_hba.max_cfg_param.max_xri;
7766	} else {
7767		/* update host common xri-sgl sizes and mappings */
7768		rc = lpfc_sli4_io_sgl_update(phba);
7769		if (unlikely(rc)) {
7770			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7771					"6082 Failed to update nvme-sgl size "
7772					"and mapping: %d\n", rc);
7773			goto out_destroy_queue;
7774		}
7775
7776		/* register the allocated common sgl pool to the port */
7777		rc = lpfc_sli4_repost_io_sgl_list(phba);
7778		if (unlikely(rc)) {
7779			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7780					"6116 Error %d during nvme sgl post "
7781					"operation\n", rc);
7782			/* Some NVME buffers were moved to abort nvme list */
7783			/* A pci function reset will repost them */
7784			rc = -ENODEV;
7785			goto out_destroy_queue;
7786		}
7787		/* Each lpfc_io_buf job structure has an iocbq element.
7788		 * This cnt provides for abort, els, ct and ls requests.
7789		 */
7790		cnt = phba->sli4_hba.max_cfg_param.max_xri;
7791	}
7792
7793	if (!phba->sli.iocbq_lookup) {
7794		/* Initialize and populate the iocb list per host */
7795		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7796				"2821 initialize iocb list with %d entries\n",
7797				cnt);
7798		rc = lpfc_init_iocb_list(phba, cnt);
7799		if (rc) {
7800			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7801					"1413 Failed to init iocb list.\n");
7802			goto out_destroy_queue;
7803		}
7804	}
7805
7806	if (phba->nvmet_support)
7807		lpfc_nvmet_create_targetport(phba);
7808
7809	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7810		/* Post initial buffers to all RQs created */
7811		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7812			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7813			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7814			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7815			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7816			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7817			rqbp->buffer_count = 0;
7818
7819			lpfc_post_rq_buffer(
7820				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7821				phba->sli4_hba.nvmet_mrq_data[i],
7822				phba->cfg_nvmet_mrq_post, i);
7823		}
7824	}
7825
7826	/* Post the rpi header region to the device. */
7827	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7828	if (unlikely(rc)) {
7829		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7830				"0393 Error %d during rpi post operation\n",
7831				rc);
7832		rc = -ENODEV;
7833		goto out_free_iocblist;
7834	}
7835	lpfc_sli4_node_prep(phba);
7836
7837	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7838		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7839			/*
7840			 * The FC Port needs to register FCFI (index 0)
7841			 */
7842			lpfc_reg_fcfi(phba, mboxq);
7843			mboxq->vport = phba->pport;
7844			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7845			if (rc != MBX_SUCCESS)
7846				goto out_unset_queue;
7847			rc = 0;
7848			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7849						&mboxq->u.mqe.un.reg_fcfi);
7850		} else {
7851			/* We are a NVME Target mode with MRQ > 1 */
7852
7853			/* First register the FCFI */
7854			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7855			mboxq->vport = phba->pport;
7856			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7857			if (rc != MBX_SUCCESS)
7858				goto out_unset_queue;
7859			rc = 0;
7860			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7861						&mboxq->u.mqe.un.reg_fcfi_mrq);
7862
7863			/* Next register the MRQs */
7864			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7865			mboxq->vport = phba->pport;
7866			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7867			if (rc != MBX_SUCCESS)
7868				goto out_unset_queue;
7869			rc = 0;
7870		}
7871		/* Check if the port is configured to be disabled */
7872		lpfc_sli_read_link_ste(phba);
7873	}
7874
7875	/* Don't post more new bufs if repost already recovered
7876	 * the nvme sgls.
7877	 */
7878	if (phba->nvmet_support == 0) {
7879		if (phba->sli4_hba.io_xri_cnt == 0) {
7880			len = lpfc_new_io_buf(
7881					      phba, phba->sli4_hba.io_xri_max);
7882			if (len == 0) {
7883				rc = -ENOMEM;
7884				goto out_unset_queue;
7885			}
7886
7887			if (phba->cfg_xri_rebalancing)
7888				lpfc_create_multixri_pools(phba);
7889		}
7890	} else {
7891		phba->cfg_xri_rebalancing = 0;
7892	}
7893
7894	/* Allow asynchronous mailbox command to go through */
7895	spin_lock_irq(&phba->hbalock);
7896	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7897	spin_unlock_irq(&phba->hbalock);
7898
7899	/* Post receive buffers to the device */
7900	lpfc_sli4_rb_setup(phba);
7901
7902	/* Reset HBA FCF states after HBA reset */
7903	phba->fcf.fcf_flag = 0;
7904	phba->fcf.current_rec.flag = 0;
7905
7906	/* Start the ELS watchdog timer */
7907	mod_timer(&vport->els_tmofunc,
7908		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7909
7910	/* Start heart beat timer */
7911	mod_timer(&phba->hb_tmofunc,
7912		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7913	phba->hb_outstanding = 0;
7914	phba->last_completion_time = jiffies;
7915
7916	/* start eq_delay heartbeat */
7917	if (phba->cfg_auto_imax)
7918		queue_delayed_work(phba->wq, &phba->eq_delay_work,
7919				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7920
7921	/* start per phba idle_stat_delay heartbeat */
7922	lpfc_init_idle_stat_hb(phba);
7923
7924	/* Start error attention (ERATT) polling timer */
7925	mod_timer(&phba->eratt_poll,
7926		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7927
7928	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7929	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7930		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7931		if (!rc) {
7932			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7933					"2829 This device supports "
7934					"Advanced Error Reporting (AER)\n");
7935			spin_lock_irq(&phba->hbalock);
7936			phba->hba_flag |= HBA_AER_ENABLED;
7937			spin_unlock_irq(&phba->hbalock);
7938		} else {
7939			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7940					"2830 This device does not support "
7941					"Advanced Error Reporting (AER)\n");
7942			phba->cfg_aer_support = 0;
7943		}
7944		rc = 0;
7945	}
7946
7947	/*
7948	 * The port is ready, set the host's link state to LINK_DOWN
7949	 * in preparation for link interrupts.
7950	 */
7951	spin_lock_irq(&phba->hbalock);
7952	phba->link_state = LPFC_LINK_DOWN;
7953
7954	/* Check if physical ports are trunked */
7955	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7956		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7957	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7958		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7959	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7960		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7961	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7962		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7963	spin_unlock_irq(&phba->hbalock);
7964
7965	/* Arm the CQs and then EQs on device */
7966	lpfc_sli4_arm_cqeq_intr(phba);
7967
7968	/* Indicate device interrupt mode */
7969	phba->sli4_hba.intr_enable = 1;
7970
7971	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7972	    (phba->hba_flag & LINK_DISABLED)) {
7973		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7974				"3103 Adapter Link is disabled.\n");
7975		lpfc_down_link(phba, mboxq);
7976		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7977		if (rc != MBX_SUCCESS) {
7978			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7979					"3104 Adapter failed to issue "
7980					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7981			goto out_io_buff_free;
7982		}
7983	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7984		/* don't perform init_link on SLI4 FC port loopback test */
7985		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7986			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7987			if (rc)
7988				goto out_io_buff_free;
7989		}
7990	}
7991	mempool_free(mboxq, phba->mbox_mem_pool);
7992	return rc;
7993out_io_buff_free:
7994	/* Free allocated IO Buffers */
7995	lpfc_io_free(phba);
7996out_unset_queue:
7997	/* Unset all the queues set up in this routine when error out */
7998	lpfc_sli4_queue_unset(phba);
7999out_free_iocblist:
8000	lpfc_free_iocb_list(phba);
8001out_destroy_queue:
8002	lpfc_sli4_queue_destroy(phba);
8003out_stop_timers:
8004	lpfc_stop_hba_timers(phba);
8005out_free_mbox:
8006	mempool_free(mboxq, phba->mbox_mem_pool);
8007	return rc;
8008}
8009
8010/**
8011 * lpfc_mbox_timeout - Timeout call back function for mbox timer
8012 * @t: Context to fetch pointer to hba structure from.
8013 *
8014 * This is the callback function for mailbox timer. The mailbox
8015 * timer is armed when a new mailbox command is issued and the timer
8016 * is deleted when the mailbox complete. The function is called by
8017 * the kernel timer code when a mailbox does not complete within
8018 * expected time. This function wakes up the worker thread to
8019 * process the mailbox timeout and returns. All the processing is
8020 * done by the worker thread function lpfc_mbox_timeout_handler.
8021 **/
8022void
8023lpfc_mbox_timeout(struct timer_list *t)
8024{
8025	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
8026	unsigned long iflag;
8027	uint32_t tmo_posted;
8028
8029	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
8030	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
8031	if (!tmo_posted)
8032		phba->pport->work_port_events |= WORKER_MBOX_TMO;
8033	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
8034
8035	if (!tmo_posted)
8036		lpfc_worker_wake_up(phba);
8037	return;
8038}
8039
8040/**
8041 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
8042 *                                    are pending
8043 * @phba: Pointer to HBA context object.
8044 *
8045 * This function checks if any mailbox completions are present on the mailbox
8046 * completion queue.
8047 **/
8048static bool
8049lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
8050{
8051
8052	uint32_t idx;
8053	struct lpfc_queue *mcq;
8054	struct lpfc_mcqe *mcqe;
8055	bool pending_completions = false;
8056	uint8_t	qe_valid;
8057
8058	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8059		return false;
8060
8061	/* Check for completions on mailbox completion queue */
8062
8063	mcq = phba->sli4_hba.mbx_cq;
8064	idx = mcq->hba_index;
8065	qe_valid = mcq->qe_valid;
8066	while (bf_get_le32(lpfc_cqe_valid,
8067	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
8068		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
8069		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
8070		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
8071			pending_completions = true;
8072			break;
8073		}
8074		idx = (idx + 1) % mcq->entry_count;
8075		if (mcq->hba_index == idx)
8076			break;
8077
8078		/* if the index wrapped around, toggle the valid bit */
8079		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
8080			qe_valid = (qe_valid) ? 0 : 1;
8081	}
8082	return pending_completions;
8083
8084}
8085
8086/**
8087 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
8088 *					      that were missed.
8089 * @phba: Pointer to HBA context object.
8090 *
8091 * For sli4, it is possible to miss an interrupt. As such mbox completions
8092 * maybe missed causing erroneous mailbox timeouts to occur. This function
8093 * checks to see if mbox completions are on the mailbox completion queue
8094 * and will process all the completions associated with the eq for the
8095 * mailbox completion queue.
8096 **/
8097static bool
8098lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
8099{
8100	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
8101	uint32_t eqidx;
8102	struct lpfc_queue *fpeq = NULL;
8103	struct lpfc_queue *eq;
8104	bool mbox_pending;
8105
8106	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8107		return false;
8108
8109	/* Find the EQ associated with the mbox CQ */
8110	if (sli4_hba->hdwq) {
8111		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
8112			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
8113			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
8114				fpeq = eq;
8115				break;
8116			}
8117		}
8118	}
8119	if (!fpeq)
8120		return false;
8121
8122	/* Turn off interrupts from this EQ */
8123
8124	sli4_hba->sli4_eq_clr_intr(fpeq);
8125
8126	/* Check to see if a mbox completion is pending */
8127
8128	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
8129
8130	/*
8131	 * If a mbox completion is pending, process all the events on EQ
8132	 * associated with the mbox completion queue (this could include
8133	 * mailbox commands, async events, els commands, receive queue data
8134	 * and fcp commands)
8135	 */
8136
8137	if (mbox_pending)
8138		/* process and rearm the EQ */
8139		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
8140	else
8141		/* Always clear and re-arm the EQ */
8142		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
8143
8144	return mbox_pending;
8145
8146}
8147
8148/**
8149 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
8150 * @phba: Pointer to HBA context object.
8151 *
8152 * This function is called from worker thread when a mailbox command times out.
8153 * The caller is not required to hold any locks. This function will reset the
8154 * HBA and recover all the pending commands.
8155 **/
8156void
8157lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8158{
8159	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8160	MAILBOX_t *mb = NULL;
8161
8162	struct lpfc_sli *psli = &phba->sli;
8163
8164	/* If the mailbox completed, process the completion and return */
8165	if (lpfc_sli4_process_missed_mbox_completions(phba))
8166		return;
8167
8168	if (pmbox != NULL)
8169		mb = &pmbox->u.mb;
8170	/* Check the pmbox pointer first.  There is a race condition
8171	 * between the mbox timeout handler getting executed in the
8172	 * worklist and the mailbox actually completing. When this
8173	 * race condition occurs, the mbox_active will be NULL.
8174	 */
8175	spin_lock_irq(&phba->hbalock);
8176	if (pmbox == NULL) {
8177		lpfc_printf_log(phba, KERN_WARNING,
8178				LOG_MBOX | LOG_SLI,
8179				"0353 Active Mailbox cleared - mailbox timeout "
8180				"exiting\n");
8181		spin_unlock_irq(&phba->hbalock);
8182		return;
8183	}
8184
8185	/* Mbox cmd <mbxCommand> timeout */
8186	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8187			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8188			mb->mbxCommand,
8189			phba->pport->port_state,
8190			phba->sli.sli_flag,
8191			phba->sli.mbox_active);
8192	spin_unlock_irq(&phba->hbalock);
8193
8194	/* Setting state unknown so lpfc_sli_abort_iocb_ring
8195	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8196	 * it to fail all outstanding SCSI IO.
8197	 */
8198	spin_lock_irq(&phba->pport->work_port_lock);
8199	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8200	spin_unlock_irq(&phba->pport->work_port_lock);
8201	spin_lock_irq(&phba->hbalock);
8202	phba->link_state = LPFC_LINK_UNKNOWN;
8203	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8204	spin_unlock_irq(&phba->hbalock);
8205
8206	lpfc_sli_abort_fcp_rings(phba);
8207
8208	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8209			"0345 Resetting board due to mailbox timeout\n");
8210
8211	/* Reset the HBA device */
8212	lpfc_reset_hba(phba);
8213}
8214
8215/**
8216 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8217 * @phba: Pointer to HBA context object.
8218 * @pmbox: Pointer to mailbox object.
8219 * @flag: Flag indicating how the mailbox need to be processed.
8220 *
8221 * This function is called by discovery code and HBA management code
8222 * to submit a mailbox command to firmware with SLI-3 interface spec. This
8223 * function gets the hbalock to protect the data structures.
8224 * The mailbox command can be submitted in polling mode, in which case
8225 * this function will wait in a polling loop for the completion of the
8226 * mailbox.
8227 * If the mailbox is submitted in no_wait mode (not polling) the
8228 * function will submit the command and returns immediately without waiting
8229 * for the mailbox completion. The no_wait is supported only when HBA
8230 * is in SLI2/SLI3 mode - interrupts are enabled.
8231 * The SLI interface allows only one mailbox pending at a time. If the
8232 * mailbox is issued in polling mode and there is already a mailbox
8233 * pending, then the function will return an error. If the mailbox is issued
8234 * in NO_WAIT mode and there is a mailbox pending already, the function
8235 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8236 * The sli layer owns the mailbox object until the completion of mailbox
8237 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8238 * return codes the caller owns the mailbox command after the return of
8239 * the function.
8240 **/
8241static int
8242lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8243		       uint32_t flag)
8244{
8245	MAILBOX_t *mbx;
8246	struct lpfc_sli *psli = &phba->sli;
8247	uint32_t status, evtctr;
8248	uint32_t ha_copy, hc_copy;
8249	int i;
8250	unsigned long timeout;
8251	unsigned long drvr_flag = 0;
8252	uint32_t word0, ldata;
8253	void __iomem *to_slim;
8254	int processing_queue = 0;
8255
8256	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8257	if (!pmbox) {
8258		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8259		/* processing mbox queue from intr_handler */
8260		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8261			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8262			return MBX_SUCCESS;
8263		}
8264		processing_queue = 1;
8265		pmbox = lpfc_mbox_get(phba);
8266		if (!pmbox) {
8267			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8268			return MBX_SUCCESS;
8269		}
8270	}
8271
8272	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8273		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8274		if(!pmbox->vport) {
8275			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8276			lpfc_printf_log(phba, KERN_ERR,
8277					LOG_MBOX | LOG_VPORT,
8278					"1806 Mbox x%x failed. No vport\n",
8279					pmbox->u.mb.mbxCommand);
8280			dump_stack();
8281			goto out_not_finished;
8282		}
8283	}
8284
8285	/* If the PCI channel is in offline state, do not post mbox. */
8286	if (unlikely(pci_channel_offline(phba->pcidev))) {
8287		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8288		goto out_not_finished;
8289	}
8290
8291	/* If HBA has a deferred error attention, fail the iocb. */
8292	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8293		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8294		goto out_not_finished;
8295	}
8296
8297	psli = &phba->sli;
8298
8299	mbx = &pmbox->u.mb;
8300	status = MBX_SUCCESS;
8301
8302	if (phba->link_state == LPFC_HBA_ERROR) {
8303		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8304
8305		/* Mbox command <mbxCommand> cannot issue */
8306		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8307				"(%d):0311 Mailbox command x%x cannot "
8308				"issue Data: x%x x%x\n",
8309				pmbox->vport ? pmbox->vport->vpi : 0,
8310				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8311		goto out_not_finished;
8312	}
8313
8314	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8315		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8316			!(hc_copy & HC_MBINT_ENA)) {
8317			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8318			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8319				"(%d):2528 Mailbox command x%x cannot "
8320				"issue Data: x%x x%x\n",
8321				pmbox->vport ? pmbox->vport->vpi : 0,
8322				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8323			goto out_not_finished;
8324		}
8325	}
8326
8327	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8328		/* Polling for a mbox command when another one is already active
8329		 * is not allowed in SLI. Also, the driver must have established
8330		 * SLI2 mode to queue and process multiple mbox commands.
8331		 */
8332
8333		if (flag & MBX_POLL) {
8334			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8335
8336			/* Mbox command <mbxCommand> cannot issue */
8337			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8338					"(%d):2529 Mailbox command x%x "
8339					"cannot issue Data: x%x x%x\n",
8340					pmbox->vport ? pmbox->vport->vpi : 0,
8341					pmbox->u.mb.mbxCommand,
8342					psli->sli_flag, flag);
8343			goto out_not_finished;
8344		}
8345
8346		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8347			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8348			/* Mbox command <mbxCommand> cannot issue */
8349			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8350					"(%d):2530 Mailbox command x%x "
8351					"cannot issue Data: x%x x%x\n",
8352					pmbox->vport ? pmbox->vport->vpi : 0,
8353					pmbox->u.mb.mbxCommand,
8354					psli->sli_flag, flag);
8355			goto out_not_finished;
8356		}
8357
8358		/* Another mailbox command is still being processed, queue this
8359		 * command to be processed later.
8360		 */
8361		lpfc_mbox_put(phba, pmbox);
8362
8363		/* Mbox cmd issue - BUSY */
8364		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8365				"(%d):0308 Mbox cmd issue - BUSY Data: "
8366				"x%x x%x x%x x%x\n",
8367				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8368				mbx->mbxCommand,
8369				phba->pport ? phba->pport->port_state : 0xff,
8370				psli->sli_flag, flag);
8371
8372		psli->slistat.mbox_busy++;
8373		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8374
8375		if (pmbox->vport) {
8376			lpfc_debugfs_disc_trc(pmbox->vport,
8377				LPFC_DISC_TRC_MBOX_VPORT,
8378				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8379				(uint32_t)mbx->mbxCommand,
8380				mbx->un.varWords[0], mbx->un.varWords[1]);
8381		}
8382		else {
8383			lpfc_debugfs_disc_trc(phba->pport,
8384				LPFC_DISC_TRC_MBOX,
8385				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8386				(uint32_t)mbx->mbxCommand,
8387				mbx->un.varWords[0], mbx->un.varWords[1]);
8388		}
8389
8390		return MBX_BUSY;
8391	}
8392
8393	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8394
8395	/* If we are not polling, we MUST be in SLI2 mode */
8396	if (flag != MBX_POLL) {
8397		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8398		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8399			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8400			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8401			/* Mbox command <mbxCommand> cannot issue */
8402			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8403					"(%d):2531 Mailbox command x%x "
8404					"cannot issue Data: x%x x%x\n",
8405					pmbox->vport ? pmbox->vport->vpi : 0,
8406					pmbox->u.mb.mbxCommand,
8407					psli->sli_flag, flag);
8408			goto out_not_finished;
8409		}
8410		/* timeout active mbox command */
8411		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8412					   1000);
8413		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8414	}
8415
8416	/* Mailbox cmd <cmd> issue */
8417	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8418			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8419			"x%x\n",
8420			pmbox->vport ? pmbox->vport->vpi : 0,
8421			mbx->mbxCommand,
8422			phba->pport ? phba->pport->port_state : 0xff,
8423			psli->sli_flag, flag);
8424
8425	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8426		if (pmbox->vport) {
8427			lpfc_debugfs_disc_trc(pmbox->vport,
8428				LPFC_DISC_TRC_MBOX_VPORT,
8429				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8430				(uint32_t)mbx->mbxCommand,
8431				mbx->un.varWords[0], mbx->un.varWords[1]);
8432		}
8433		else {
8434			lpfc_debugfs_disc_trc(phba->pport,
8435				LPFC_DISC_TRC_MBOX,
8436				"MBOX Send:       cmd:x%x mb:x%x x%x",
8437				(uint32_t)mbx->mbxCommand,
8438				mbx->un.varWords[0], mbx->un.varWords[1]);
8439		}
8440	}
8441
8442	psli->slistat.mbox_cmd++;
8443	evtctr = psli->slistat.mbox_event;
8444
8445	/* next set own bit for the adapter and copy over command word */
8446	mbx->mbxOwner = OWN_CHIP;
8447
8448	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8449		/* Populate mbox extension offset word. */
8450		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8451			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8452				= (uint8_t *)phba->mbox_ext
8453				  - (uint8_t *)phba->mbox;
8454		}
8455
8456		/* Copy the mailbox extension data */
8457		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8458			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8459					      (uint8_t *)phba->mbox_ext,
8460					      pmbox->in_ext_byte_len);
8461		}
8462		/* Copy command data to host SLIM area */
8463		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8464	} else {
8465		/* Populate mbox extension offset word. */
8466		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8467			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8468				= MAILBOX_HBA_EXT_OFFSET;
8469
8470		/* Copy the mailbox extension data */
8471		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8472			lpfc_memcpy_to_slim(phba->MBslimaddr +
8473				MAILBOX_HBA_EXT_OFFSET,
8474				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8475
8476		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8477			/* copy command data into host mbox for cmpl */
8478			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8479					      MAILBOX_CMD_SIZE);
8480
8481		/* First copy mbox command data to HBA SLIM, skip past first
8482		   word */
8483		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8484		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8485			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8486
8487		/* Next copy over first word, with mbxOwner set */
8488		ldata = *((uint32_t *)mbx);
8489		to_slim = phba->MBslimaddr;
8490		writel(ldata, to_slim);
8491		readl(to_slim); /* flush */
8492
8493		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8494			/* switch over to host mailbox */
8495			psli->sli_flag |= LPFC_SLI_ACTIVE;
8496	}
8497
8498	wmb();
8499
8500	switch (flag) {
8501	case MBX_NOWAIT:
8502		/* Set up reference to mailbox command */
8503		psli->mbox_active = pmbox;
8504		/* Interrupt board to do it */
8505		writel(CA_MBATT, phba->CAregaddr);
8506		readl(phba->CAregaddr); /* flush */
8507		/* Don't wait for it to finish, just return */
8508		break;
8509
8510	case MBX_POLL:
8511		/* Set up null reference to mailbox command */
8512		psli->mbox_active = NULL;
8513		/* Interrupt board to do it */
8514		writel(CA_MBATT, phba->CAregaddr);
8515		readl(phba->CAregaddr); /* flush */
8516
8517		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8518			/* First read mbox status word */
8519			word0 = *((uint32_t *)phba->mbox);
8520			word0 = le32_to_cpu(word0);
8521		} else {
8522			/* First read mbox status word */
8523			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8524				spin_unlock_irqrestore(&phba->hbalock,
8525						       drvr_flag);
8526				goto out_not_finished;
8527			}
8528		}
8529
8530		/* Read the HBA Host Attention Register */
8531		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8532			spin_unlock_irqrestore(&phba->hbalock,
8533						       drvr_flag);
8534			goto out_not_finished;
8535		}
8536		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8537							1000) + jiffies;
8538		i = 0;
8539		/* Wait for command to complete */
8540		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8541		       (!(ha_copy & HA_MBATT) &&
8542			(phba->link_state > LPFC_WARM_START))) {
8543			if (time_after(jiffies, timeout)) {
8544				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8545				spin_unlock_irqrestore(&phba->hbalock,
8546						       drvr_flag);
8547				goto out_not_finished;
8548			}
8549
8550			/* Check if we took a mbox interrupt while we were
8551			   polling */
8552			if (((word0 & OWN_CHIP) != OWN_CHIP)
8553			    && (evtctr != psli->slistat.mbox_event))
8554				break;
8555
8556			if (i++ > 10) {
8557				spin_unlock_irqrestore(&phba->hbalock,
8558						       drvr_flag);
8559				msleep(1);
8560				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8561			}
8562
8563			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8564				/* First copy command data */
8565				word0 = *((uint32_t *)phba->mbox);
8566				word0 = le32_to_cpu(word0);
8567				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8568					MAILBOX_t *slimmb;
8569					uint32_t slimword0;
8570					/* Check real SLIM for any errors */
8571					slimword0 = readl(phba->MBslimaddr);
8572					slimmb = (MAILBOX_t *) & slimword0;
8573					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8574					    && slimmb->mbxStatus) {
8575						psli->sli_flag &=
8576						    ~LPFC_SLI_ACTIVE;
8577						word0 = slimword0;
8578					}
8579				}
8580			} else {
8581				/* First copy command data */
8582				word0 = readl(phba->MBslimaddr);
8583			}
8584			/* Read the HBA Host Attention Register */
8585			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8586				spin_unlock_irqrestore(&phba->hbalock,
8587						       drvr_flag);
8588				goto out_not_finished;
8589			}
8590		}
8591
8592		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8593			/* copy results back to user */
8594			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8595						MAILBOX_CMD_SIZE);
8596			/* Copy the mailbox extension data */
8597			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8598				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8599						      pmbox->ctx_buf,
8600						      pmbox->out_ext_byte_len);
8601			}
8602		} else {
8603			/* First copy command data */
8604			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8605						MAILBOX_CMD_SIZE);
8606			/* Copy the mailbox extension data */
8607			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8608				lpfc_memcpy_from_slim(
8609					pmbox->ctx_buf,
8610					phba->MBslimaddr +
8611					MAILBOX_HBA_EXT_OFFSET,
8612					pmbox->out_ext_byte_len);
8613			}
8614		}
8615
8616		writel(HA_MBATT, phba->HAregaddr);
8617		readl(phba->HAregaddr); /* flush */
8618
8619		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8620		status = mbx->mbxStatus;
8621	}
8622
8623	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8624	return status;
8625
8626out_not_finished:
8627	if (processing_queue) {
8628		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8629		lpfc_mbox_cmpl_put(phba, pmbox);
8630	}
8631	return MBX_NOT_FINISHED;
8632}
8633
8634/**
8635 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8636 * @phba: Pointer to HBA context object.
8637 *
8638 * The function blocks the posting of SLI4 asynchronous mailbox commands from
8639 * the driver internal pending mailbox queue. It will then try to wait out the
8640 * possible outstanding mailbox command before return.
8641 *
8642 * Returns:
8643 * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8644 * 	the outstanding mailbox command timed out.
8645 **/
8646static int
8647lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8648{
8649	struct lpfc_sli *psli = &phba->sli;
8650	int rc = 0;
8651	unsigned long timeout = 0;
8652
8653	/* Mark the asynchronous mailbox command posting as blocked */
8654	spin_lock_irq(&phba->hbalock);
8655	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8656	/* Determine how long we might wait for the active mailbox
8657	 * command to be gracefully completed by firmware.
8658	 */
8659	if (phba->sli.mbox_active)
8660		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8661						phba->sli.mbox_active) *
8662						1000) + jiffies;
8663	spin_unlock_irq(&phba->hbalock);
8664
8665	/* Make sure the mailbox is really active */
8666	if (timeout)
8667		lpfc_sli4_process_missed_mbox_completions(phba);
8668
8669	/* Wait for the outstnading mailbox command to complete */
8670	while (phba->sli.mbox_active) {
8671		/* Check active mailbox complete status every 2ms */
8672		msleep(2);
8673		if (time_after(jiffies, timeout)) {
8674			/* Timeout, marked the outstanding cmd not complete */
8675			rc = 1;
8676			break;
8677		}
8678	}
8679
8680	/* Can not cleanly block async mailbox command, fails it */
8681	if (rc) {
8682		spin_lock_irq(&phba->hbalock);
8683		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8684		spin_unlock_irq(&phba->hbalock);
8685	}
8686	return rc;
8687}
8688
8689/**
8690 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8691 * @phba: Pointer to HBA context object.
8692 *
8693 * The function unblocks and resume posting of SLI4 asynchronous mailbox
8694 * commands from the driver internal pending mailbox queue. It makes sure
8695 * that there is no outstanding mailbox command before resuming posting
8696 * asynchronous mailbox commands. If, for any reason, there is outstanding
8697 * mailbox command, it will try to wait it out before resuming asynchronous
8698 * mailbox command posting.
8699 **/
8700static void
8701lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8702{
8703	struct lpfc_sli *psli = &phba->sli;
8704
8705	spin_lock_irq(&phba->hbalock);
8706	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8707		/* Asynchronous mailbox posting is not blocked, do nothing */
8708		spin_unlock_irq(&phba->hbalock);
8709		return;
8710	}
8711
8712	/* Outstanding synchronous mailbox command is guaranteed to be done,
8713	 * successful or timeout, after timing-out the outstanding mailbox
8714	 * command shall always be removed, so just unblock posting async
8715	 * mailbox command and resume
8716	 */
8717	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8718	spin_unlock_irq(&phba->hbalock);
8719
8720	/* wake up worker thread to post asynchronous mailbox command */
8721	lpfc_worker_wake_up(phba);
8722}
8723
8724/**
8725 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8726 * @phba: Pointer to HBA context object.
8727 * @mboxq: Pointer to mailbox object.
8728 *
8729 * The function waits for the bootstrap mailbox register ready bit from
8730 * port for twice the regular mailbox command timeout value.
8731 *
8732 *      0 - no timeout on waiting for bootstrap mailbox register ready.
8733 *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8734 **/
8735static int
8736lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8737{
8738	uint32_t db_ready;
8739	unsigned long timeout;
8740	struct lpfc_register bmbx_reg;
8741
8742	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8743				   * 1000) + jiffies;
8744
8745	do {
8746		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8747		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8748		if (!db_ready)
8749			mdelay(2);
8750
8751		if (time_after(jiffies, timeout))
8752			return MBXERR_ERROR;
8753	} while (!db_ready);
8754
8755	return 0;
8756}
8757
8758/**
8759 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8760 * @phba: Pointer to HBA context object.
8761 * @mboxq: Pointer to mailbox object.
8762 *
8763 * The function posts a mailbox to the port.  The mailbox is expected
8764 * to be comletely filled in and ready for the port to operate on it.
8765 * This routine executes a synchronous completion operation on the
8766 * mailbox by polling for its completion.
8767 *
8768 * The caller must not be holding any locks when calling this routine.
8769 *
8770 * Returns:
8771 *	MBX_SUCCESS - mailbox posted successfully
8772 *	Any of the MBX error values.
8773 **/
8774static int
8775lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8776{
8777	int rc = MBX_SUCCESS;
8778	unsigned long iflag;
8779	uint32_t mcqe_status;
8780	uint32_t mbx_cmnd;
8781	struct lpfc_sli *psli = &phba->sli;
8782	struct lpfc_mqe *mb = &mboxq->u.mqe;
8783	struct lpfc_bmbx_create *mbox_rgn;
8784	struct dma_address *dma_address;
8785
8786	/*
8787	 * Only one mailbox can be active to the bootstrap mailbox region
8788	 * at a time and there is no queueing provided.
8789	 */
8790	spin_lock_irqsave(&phba->hbalock, iflag);
8791	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8792		spin_unlock_irqrestore(&phba->hbalock, iflag);
8793		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8794				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8795				"cannot issue Data: x%x x%x\n",
8796				mboxq->vport ? mboxq->vport->vpi : 0,
8797				mboxq->u.mb.mbxCommand,
8798				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8799				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8800				psli->sli_flag, MBX_POLL);
8801		return MBXERR_ERROR;
8802	}
8803	/* The server grabs the token and owns it until release */
8804	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8805	phba->sli.mbox_active = mboxq;
8806	spin_unlock_irqrestore(&phba->hbalock, iflag);
8807
8808	/* wait for bootstrap mbox register for readyness */
8809	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8810	if (rc)
8811		goto exit;
8812	/*
8813	 * Initialize the bootstrap memory region to avoid stale data areas
8814	 * in the mailbox post.  Then copy the caller's mailbox contents to
8815	 * the bmbx mailbox region.
8816	 */
8817	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8818	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8819	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8820			       sizeof(struct lpfc_mqe));
8821
8822	/* Post the high mailbox dma address to the port and wait for ready. */
8823	dma_address = &phba->sli4_hba.bmbx.dma_address;
8824	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8825
8826	/* wait for bootstrap mbox register for hi-address write done */
8827	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8828	if (rc)
8829		goto exit;
8830
8831	/* Post the low mailbox dma address to the port. */
8832	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8833
8834	/* wait for bootstrap mbox register for low address write done */
8835	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8836	if (rc)
8837		goto exit;
8838
8839	/*
8840	 * Read the CQ to ensure the mailbox has completed.
8841	 * If so, update the mailbox status so that the upper layers
8842	 * can complete the request normally.
8843	 */
8844	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8845			       sizeof(struct lpfc_mqe));
8846	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8847	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8848			       sizeof(struct lpfc_mcqe));
8849	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8850	/*
8851	 * When the CQE status indicates a failure and the mailbox status
8852	 * indicates success then copy the CQE status into the mailbox status
8853	 * (and prefix it with x4000).
8854	 */
8855	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8856		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8857			bf_set(lpfc_mqe_status, mb,
8858			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8859		rc = MBXERR_ERROR;
8860	} else
8861		lpfc_sli4_swap_str(phba, mboxq);
8862
8863	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8864			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8865			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8866			" x%x x%x CQ: x%x x%x x%x x%x\n",
8867			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8868			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8869			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8870			bf_get(lpfc_mqe_status, mb),
8871			mb->un.mb_words[0], mb->un.mb_words[1],
8872			mb->un.mb_words[2], mb->un.mb_words[3],
8873			mb->un.mb_words[4], mb->un.mb_words[5],
8874			mb->un.mb_words[6], mb->un.mb_words[7],
8875			mb->un.mb_words[8], mb->un.mb_words[9],
8876			mb->un.mb_words[10], mb->un.mb_words[11],
8877			mb->un.mb_words[12], mboxq->mcqe.word0,
8878			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8879			mboxq->mcqe.trailer);
8880exit:
8881	/* We are holding the token, no needed for lock when release */
8882	spin_lock_irqsave(&phba->hbalock, iflag);
8883	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8884	phba->sli.mbox_active = NULL;
8885	spin_unlock_irqrestore(&phba->hbalock, iflag);
8886	return rc;
8887}
8888
8889/**
8890 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8891 * @phba: Pointer to HBA context object.
8892 * @mboxq: Pointer to mailbox object.
8893 * @flag: Flag indicating how the mailbox need to be processed.
8894 *
8895 * This function is called by discovery code and HBA management code to submit
8896 * a mailbox command to firmware with SLI-4 interface spec.
8897 *
8898 * Return codes the caller owns the mailbox command after the return of the
8899 * function.
8900 **/
8901static int
8902lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8903		       uint32_t flag)
8904{
8905	struct lpfc_sli *psli = &phba->sli;
8906	unsigned long iflags;
8907	int rc;
8908
8909	/* dump from issue mailbox command if setup */
8910	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8911
8912	rc = lpfc_mbox_dev_check(phba);
8913	if (unlikely(rc)) {
8914		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8915				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8916				"cannot issue Data: x%x x%x\n",
8917				mboxq->vport ? mboxq->vport->vpi : 0,
8918				mboxq->u.mb.mbxCommand,
8919				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8920				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8921				psli->sli_flag, flag);
8922		goto out_not_finished;
8923	}
8924
8925	/* Detect polling mode and jump to a handler */
8926	if (!phba->sli4_hba.intr_enable) {
8927		if (flag == MBX_POLL)
8928			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8929		else
8930			rc = -EIO;
8931		if (rc != MBX_SUCCESS)
8932			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8933					"(%d):2541 Mailbox command x%x "
8934					"(x%x/x%x) failure: "
8935					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8936					"Data: x%x x%x\n",
8937					mboxq->vport ? mboxq->vport->vpi : 0,
8938					mboxq->u.mb.mbxCommand,
8939					lpfc_sli_config_mbox_subsys_get(phba,
8940									mboxq),
8941					lpfc_sli_config_mbox_opcode_get(phba,
8942									mboxq),
8943					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8944					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8945					bf_get(lpfc_mcqe_ext_status,
8946					       &mboxq->mcqe),
8947					psli->sli_flag, flag);
8948		return rc;
8949	} else if (flag == MBX_POLL) {
8950		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8951				"(%d):2542 Try to issue mailbox command "
8952				"x%x (x%x/x%x) synchronously ahead of async "
8953				"mailbox command queue: x%x x%x\n",
8954				mboxq->vport ? mboxq->vport->vpi : 0,
8955				mboxq->u.mb.mbxCommand,
8956				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8957				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8958				psli->sli_flag, flag);
8959		/* Try to block the asynchronous mailbox posting */
8960		rc = lpfc_sli4_async_mbox_block(phba);
8961		if (!rc) {
8962			/* Successfully blocked, now issue sync mbox cmd */
8963			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8964			if (rc != MBX_SUCCESS)
8965				lpfc_printf_log(phba, KERN_WARNING,
8966					LOG_MBOX | LOG_SLI,
8967					"(%d):2597 Sync Mailbox command "
8968					"x%x (x%x/x%x) failure: "
8969					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8970					"Data: x%x x%x\n",
8971					mboxq->vport ? mboxq->vport->vpi : 0,
8972					mboxq->u.mb.mbxCommand,
8973					lpfc_sli_config_mbox_subsys_get(phba,
8974									mboxq),
8975					lpfc_sli_config_mbox_opcode_get(phba,
8976									mboxq),
8977					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8978					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8979					bf_get(lpfc_mcqe_ext_status,
8980					       &mboxq->mcqe),
8981					psli->sli_flag, flag);
8982			/* Unblock the async mailbox posting afterward */
8983			lpfc_sli4_async_mbox_unblock(phba);
8984		}
8985		return rc;
8986	}
8987
8988	/* Now, interrupt mode asynchronous mailbox command */
8989	rc = lpfc_mbox_cmd_check(phba, mboxq);
8990	if (rc) {
8991		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8992				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8993				"cannot issue Data: x%x x%x\n",
8994				mboxq->vport ? mboxq->vport->vpi : 0,
8995				mboxq->u.mb.mbxCommand,
8996				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8997				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8998				psli->sli_flag, flag);
8999		goto out_not_finished;
9000	}
9001
9002	/* Put the mailbox command to the driver internal FIFO */
9003	psli->slistat.mbox_busy++;
9004	spin_lock_irqsave(&phba->hbalock, iflags);
9005	lpfc_mbox_put(phba, mboxq);
9006	spin_unlock_irqrestore(&phba->hbalock, iflags);
9007	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9008			"(%d):0354 Mbox cmd issue - Enqueue Data: "
9009			"x%x (x%x/x%x) x%x x%x x%x\n",
9010			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
9011			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
9012			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9013			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9014			phba->pport->port_state,
9015			psli->sli_flag, MBX_NOWAIT);
9016	/* Wake up worker thread to transport mailbox command from head */
9017	lpfc_worker_wake_up(phba);
9018
9019	return MBX_BUSY;
9020
9021out_not_finished:
9022	return MBX_NOT_FINISHED;
9023}
9024
9025/**
9026 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
9027 * @phba: Pointer to HBA context object.
9028 *
9029 * This function is called by worker thread to send a mailbox command to
9030 * SLI4 HBA firmware.
9031 *
9032 **/
9033int
9034lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
9035{
9036	struct lpfc_sli *psli = &phba->sli;
9037	LPFC_MBOXQ_t *mboxq;
9038	int rc = MBX_SUCCESS;
9039	unsigned long iflags;
9040	struct lpfc_mqe *mqe;
9041	uint32_t mbx_cmnd;
9042
9043	/* Check interrupt mode before post async mailbox command */
9044	if (unlikely(!phba->sli4_hba.intr_enable))
9045		return MBX_NOT_FINISHED;
9046
9047	/* Check for mailbox command service token */
9048	spin_lock_irqsave(&phba->hbalock, iflags);
9049	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9050		spin_unlock_irqrestore(&phba->hbalock, iflags);
9051		return MBX_NOT_FINISHED;
9052	}
9053	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9054		spin_unlock_irqrestore(&phba->hbalock, iflags);
9055		return MBX_NOT_FINISHED;
9056	}
9057	if (unlikely(phba->sli.mbox_active)) {
9058		spin_unlock_irqrestore(&phba->hbalock, iflags);
9059		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9060				"0384 There is pending active mailbox cmd\n");
9061		return MBX_NOT_FINISHED;
9062	}
9063	/* Take the mailbox command service token */
9064	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9065
9066	/* Get the next mailbox command from head of queue */
9067	mboxq = lpfc_mbox_get(phba);
9068
9069	/* If no more mailbox command waiting for post, we're done */
9070	if (!mboxq) {
9071		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9072		spin_unlock_irqrestore(&phba->hbalock, iflags);
9073		return MBX_SUCCESS;
9074	}
9075	phba->sli.mbox_active = mboxq;
9076	spin_unlock_irqrestore(&phba->hbalock, iflags);
9077
9078	/* Check device readiness for posting mailbox command */
9079	rc = lpfc_mbox_dev_check(phba);
9080	if (unlikely(rc))
9081		/* Driver clean routine will clean up pending mailbox */
9082		goto out_not_finished;
9083
9084	/* Prepare the mbox command to be posted */
9085	mqe = &mboxq->u.mqe;
9086	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
9087
9088	/* Start timer for the mbox_tmo and log some mailbox post messages */
9089	mod_timer(&psli->mbox_tmo, (jiffies +
9090		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
9091
9092	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9093			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
9094			"x%x x%x\n",
9095			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9096			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9097			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9098			phba->pport->port_state, psli->sli_flag);
9099
9100	if (mbx_cmnd != MBX_HEARTBEAT) {
9101		if (mboxq->vport) {
9102			lpfc_debugfs_disc_trc(mboxq->vport,
9103				LPFC_DISC_TRC_MBOX_VPORT,
9104				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9105				mbx_cmnd, mqe->un.mb_words[0],
9106				mqe->un.mb_words[1]);
9107		} else {
9108			lpfc_debugfs_disc_trc(phba->pport,
9109				LPFC_DISC_TRC_MBOX,
9110				"MBOX Send: cmd:x%x mb:x%x x%x",
9111				mbx_cmnd, mqe->un.mb_words[0],
9112				mqe->un.mb_words[1]);
9113		}
9114	}
9115	psli->slistat.mbox_cmd++;
9116
9117	/* Post the mailbox command to the port */
9118	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
9119	if (rc != MBX_SUCCESS) {
9120		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9121				"(%d):2533 Mailbox command x%x (x%x/x%x) "
9122				"cannot issue Data: x%x x%x\n",
9123				mboxq->vport ? mboxq->vport->vpi : 0,
9124				mboxq->u.mb.mbxCommand,
9125				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9126				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9127				psli->sli_flag, MBX_NOWAIT);
9128		goto out_not_finished;
9129	}
9130
9131	return rc;
9132
9133out_not_finished:
9134	spin_lock_irqsave(&phba->hbalock, iflags);
9135	if (phba->sli.mbox_active) {
9136		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
9137		__lpfc_mbox_cmpl_put(phba, mboxq);
9138		/* Release the token */
9139		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9140		phba->sli.mbox_active = NULL;
9141	}
9142	spin_unlock_irqrestore(&phba->hbalock, iflags);
9143
9144	return MBX_NOT_FINISHED;
9145}
9146
9147/**
9148 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
9149 * @phba: Pointer to HBA context object.
9150 * @pmbox: Pointer to mailbox object.
9151 * @flag: Flag indicating how the mailbox need to be processed.
9152 *
9153 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9154 * the API jump table function pointer from the lpfc_hba struct.
9155 *
9156 * Return codes the caller owns the mailbox command after the return of the
9157 * function.
9158 **/
9159int
9160lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9161{
9162	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9163}
9164
9165/**
9166 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9167 * @phba: The hba struct for which this call is being executed.
9168 * @dev_grp: The HBA PCI-Device group number.
9169 *
9170 * This routine sets up the mbox interface API function jump table in @phba
9171 * struct.
9172 * Returns: 0 - success, -ENODEV - failure.
9173 **/
9174int
9175lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9176{
9177
9178	switch (dev_grp) {
9179	case LPFC_PCI_DEV_LP:
9180		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9181		phba->lpfc_sli_handle_slow_ring_event =
9182				lpfc_sli_handle_slow_ring_event_s3;
9183		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9184		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9185		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9186		break;
9187	case LPFC_PCI_DEV_OC:
9188		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9189		phba->lpfc_sli_handle_slow_ring_event =
9190				lpfc_sli_handle_slow_ring_event_s4;
9191		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9192		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9193		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9194		break;
9195	default:
9196		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9197				"1420 Invalid HBA PCI-device group: 0x%x\n",
9198				dev_grp);
9199		return -ENODEV;
9200		break;
9201	}
9202	return 0;
9203}
9204
9205/**
9206 * __lpfc_sli_ringtx_put - Add an iocb to the txq
9207 * @phba: Pointer to HBA context object.
9208 * @pring: Pointer to driver SLI ring object.
9209 * @piocb: Pointer to address of newly added command iocb.
9210 *
9211 * This function is called with hbalock held for SLI3 ports or
9212 * the ring lock held for SLI4 ports to add a command
9213 * iocb to the txq when SLI layer cannot submit the command iocb
9214 * to the ring.
9215 **/
9216void
9217__lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9218		    struct lpfc_iocbq *piocb)
9219{
9220	if (phba->sli_rev == LPFC_SLI_REV4)
9221		lockdep_assert_held(&pring->ring_lock);
9222	else
9223		lockdep_assert_held(&phba->hbalock);
9224	/* Insert the caller's iocb in the txq tail for later processing. */
9225	list_add_tail(&piocb->list, &pring->txq);
9226}
9227
9228/**
9229 * lpfc_sli_next_iocb - Get the next iocb in the txq
9230 * @phba: Pointer to HBA context object.
9231 * @pring: Pointer to driver SLI ring object.
9232 * @piocb: Pointer to address of newly added command iocb.
9233 *
9234 * This function is called with hbalock held before a new
9235 * iocb is submitted to the firmware. This function checks
9236 * txq to flush the iocbs in txq to Firmware before
9237 * submitting new iocbs to the Firmware.
9238 * If there are iocbs in the txq which need to be submitted
9239 * to firmware, lpfc_sli_next_iocb returns the first element
9240 * of the txq after dequeuing it from txq.
9241 * If there is no iocb in the txq then the function will return
9242 * *piocb and *piocb is set to NULL. Caller needs to check
9243 * *piocb to find if there are more commands in the txq.
9244 **/
9245static struct lpfc_iocbq *
9246lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9247		   struct lpfc_iocbq **piocb)
9248{
9249	struct lpfc_iocbq * nextiocb;
9250
9251	lockdep_assert_held(&phba->hbalock);
9252
9253	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9254	if (!nextiocb) {
9255		nextiocb = *piocb;
9256		*piocb = NULL;
9257	}
9258
9259	return nextiocb;
9260}
9261
9262/**
9263 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9264 * @phba: Pointer to HBA context object.
9265 * @ring_number: SLI ring number to issue iocb on.
9266 * @piocb: Pointer to command iocb.
9267 * @flag: Flag indicating if this command can be put into txq.
9268 *
9269 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9270 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9271 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9272 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9273 * this function allows only iocbs for posting buffers. This function finds
9274 * next available slot in the command ring and posts the command to the
9275 * available slot and writes the port attention register to request HBA start
9276 * processing new iocb. If there is no slot available in the ring and
9277 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9278 * the function returns IOCB_BUSY.
9279 *
9280 * This function is called with hbalock held. The function will return success
9281 * after it successfully submit the iocb to firmware or after adding to the
9282 * txq.
9283 **/
9284static int
9285__lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9286		    struct lpfc_iocbq *piocb, uint32_t flag)
9287{
9288	struct lpfc_iocbq *nextiocb;
9289	IOCB_t *iocb;
9290	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9291
9292	lockdep_assert_held(&phba->hbalock);
9293
9294	if (piocb->iocb_cmpl && (!piocb->vport) &&
9295	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9296	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9297		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9298				"1807 IOCB x%x failed. No vport\n",
9299				piocb->iocb.ulpCommand);
9300		dump_stack();
9301		return IOCB_ERROR;
9302	}
9303
9304
9305	/* If the PCI channel is in offline state, do not post iocbs. */
9306	if (unlikely(pci_channel_offline(phba->pcidev)))
9307		return IOCB_ERROR;
9308
9309	/* If HBA has a deferred error attention, fail the iocb. */
9310	if (unlikely(phba->hba_flag & DEFER_ERATT))
9311		return IOCB_ERROR;
9312
9313	/*
9314	 * We should never get an IOCB if we are in a < LINK_DOWN state
9315	 */
9316	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9317		return IOCB_ERROR;
9318
9319	/*
9320	 * Check to see if we are blocking IOCB processing because of a
9321	 * outstanding event.
9322	 */
9323	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9324		goto iocb_busy;
9325
9326	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9327		/*
9328		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9329		 * can be issued if the link is not up.
9330		 */
9331		switch (piocb->iocb.ulpCommand) {
9332		case CMD_GEN_REQUEST64_CR:
9333		case CMD_GEN_REQUEST64_CX:
9334			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9335				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9336					FC_RCTL_DD_UNSOL_CMD) ||
9337				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9338					MENLO_TRANSPORT_TYPE))
9339
9340				goto iocb_busy;
9341			break;
9342		case CMD_QUE_RING_BUF_CN:
9343		case CMD_QUE_RING_BUF64_CN:
9344			/*
9345			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9346			 * completion, iocb_cmpl MUST be 0.
9347			 */
9348			if (piocb->iocb_cmpl)
9349				piocb->iocb_cmpl = NULL;
9350			fallthrough;
9351		case CMD_CREATE_XRI_CR:
9352		case CMD_CLOSE_XRI_CN:
9353		case CMD_CLOSE_XRI_CX:
9354			break;
9355		default:
9356			goto iocb_busy;
9357		}
9358
9359	/*
9360	 * For FCP commands, we must be in a state where we can process link
9361	 * attention events.
9362	 */
9363	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9364			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9365		goto iocb_busy;
9366	}
9367
9368	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9369	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9370		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9371
9372	if (iocb)
9373		lpfc_sli_update_ring(phba, pring);
9374	else
9375		lpfc_sli_update_full_ring(phba, pring);
9376
9377	if (!piocb)
9378		return IOCB_SUCCESS;
9379
9380	goto out_busy;
9381
9382 iocb_busy:
9383	pring->stats.iocb_cmd_delay++;
9384
9385 out_busy:
9386
9387	if (!(flag & SLI_IOCB_RET_IOCB)) {
9388		__lpfc_sli_ringtx_put(phba, pring, piocb);
9389		return IOCB_SUCCESS;
9390	}
9391
9392	return IOCB_BUSY;
9393}
9394
9395/**
9396 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9397 * @phba: Pointer to HBA context object.
9398 * @piocbq: Pointer to command iocb.
9399 * @sglq: Pointer to the scatter gather queue object.
9400 *
9401 * This routine converts the bpl or bde that is in the IOCB
9402 * to a sgl list for the sli4 hardware. The physical address
9403 * of the bpl/bde is converted back to a virtual address.
9404 * If the IOCB contains a BPL then the list of BDE's is
9405 * converted to sli4_sge's. If the IOCB contains a single
9406 * BDE then it is converted to a single sli_sge.
9407 * The IOCB is still in cpu endianess so the contents of
9408 * the bpl can be used without byte swapping.
9409 *
9410 * Returns valid XRI = Success, NO_XRI = Failure.
9411**/
9412static uint16_t
9413lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9414		struct lpfc_sglq *sglq)
9415{
9416	uint16_t xritag = NO_XRI;
9417	struct ulp_bde64 *bpl = NULL;
9418	struct ulp_bde64 bde;
9419	struct sli4_sge *sgl  = NULL;
9420	struct lpfc_dmabuf *dmabuf;
9421	IOCB_t *icmd;
9422	int numBdes = 0;
9423	int i = 0;
9424	uint32_t offset = 0; /* accumulated offset in the sg request list */
9425	int inbound = 0; /* number of sg reply entries inbound from firmware */
9426
9427	if (!piocbq || !sglq)
9428		return xritag;
9429
9430	sgl  = (struct sli4_sge *)sglq->sgl;
9431	icmd = &piocbq->iocb;
9432	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9433		return sglq->sli4_xritag;
9434	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9435		numBdes = icmd->un.genreq64.bdl.bdeSize /
9436				sizeof(struct ulp_bde64);
9437		/* The addrHigh and addrLow fields within the IOCB
9438		 * have not been byteswapped yet so there is no
9439		 * need to swap them back.
9440		 */
9441		if (piocbq->context3)
9442			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9443		else
9444			return xritag;
9445
9446		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9447		if (!bpl)
9448			return xritag;
9449
9450		for (i = 0; i < numBdes; i++) {
9451			/* Should already be byte swapped. */
9452			sgl->addr_hi = bpl->addrHigh;
9453			sgl->addr_lo = bpl->addrLow;
9454
9455			sgl->word2 = le32_to_cpu(sgl->word2);
9456			if ((i+1) == numBdes)
9457				bf_set(lpfc_sli4_sge_last, sgl, 1);
9458			else
9459				bf_set(lpfc_sli4_sge_last, sgl, 0);
9460			/* swap the size field back to the cpu so we
9461			 * can assign it to the sgl.
9462			 */
9463			bde.tus.w = le32_to_cpu(bpl->tus.w);
9464			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9465			/* The offsets in the sgl need to be accumulated
9466			 * separately for the request and reply lists.
9467			 * The request is always first, the reply follows.
9468			 */
9469			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9470				/* add up the reply sg entries */
9471				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9472					inbound++;
9473				/* first inbound? reset the offset */
9474				if (inbound == 1)
9475					offset = 0;
9476				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9477				bf_set(lpfc_sli4_sge_type, sgl,
9478					LPFC_SGE_TYPE_DATA);
9479				offset += bde.tus.f.bdeSize;
9480			}
9481			sgl->word2 = cpu_to_le32(sgl->word2);
9482			bpl++;
9483			sgl++;
9484		}
9485	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9486			/* The addrHigh and addrLow fields of the BDE have not
9487			 * been byteswapped yet so they need to be swapped
9488			 * before putting them in the sgl.
9489			 */
9490			sgl->addr_hi =
9491				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9492			sgl->addr_lo =
9493				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9494			sgl->word2 = le32_to_cpu(sgl->word2);
9495			bf_set(lpfc_sli4_sge_last, sgl, 1);
9496			sgl->word2 = cpu_to_le32(sgl->word2);
9497			sgl->sge_len =
9498				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9499	}
9500	return sglq->sli4_xritag;
9501}
9502
9503/**
9504 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9505 * @phba: Pointer to HBA context object.
9506 * @iocbq: Pointer to command iocb.
9507 * @wqe: Pointer to the work queue entry.
9508 *
9509 * This routine converts the iocb command to its Work Queue Entry
9510 * equivalent. The wqe pointer should not have any fields set when
9511 * this routine is called because it will memcpy over them.
9512 * This routine does not set the CQ_ID or the WQEC bits in the
9513 * wqe.
9514 *
9515 * Returns: 0 = Success, IOCB_ERROR = Failure.
9516 **/
9517static int
9518lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9519		union lpfc_wqe128 *wqe)
9520{
9521	uint32_t xmit_len = 0, total_len = 0;
9522	uint8_t ct = 0;
9523	uint32_t fip;
9524	uint32_t abort_tag;
9525	uint8_t command_type = ELS_COMMAND_NON_FIP;
9526	uint8_t cmnd;
9527	uint16_t xritag;
9528	uint16_t abrt_iotag;
9529	struct lpfc_iocbq *abrtiocbq;
9530	struct ulp_bde64 *bpl = NULL;
9531	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9532	int numBdes, i;
9533	struct ulp_bde64 bde;
9534	struct lpfc_nodelist *ndlp;
9535	uint32_t *pcmd;
9536	uint32_t if_type;
9537
9538	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9539	/* The fcp commands will set command type */
9540	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9541		command_type = FCP_COMMAND;
9542	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9543		command_type = ELS_COMMAND_FIP;
9544	else
9545		command_type = ELS_COMMAND_NON_FIP;
9546
9547	if (phba->fcp_embed_io)
9548		memset(wqe, 0, sizeof(union lpfc_wqe128));
9549	/* Some of the fields are in the right position already */
9550	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9551	/* The ct field has moved so reset */
9552	wqe->generic.wqe_com.word7 = 0;
9553	wqe->generic.wqe_com.word10 = 0;
9554
9555	abort_tag = (uint32_t) iocbq->iotag;
9556	xritag = iocbq->sli4_xritag;
9557	/* words0-2 bpl convert bde */
9558	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9559		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9560				sizeof(struct ulp_bde64);
9561		bpl  = (struct ulp_bde64 *)
9562			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9563		if (!bpl)
9564			return IOCB_ERROR;
9565
9566		/* Should already be byte swapped. */
9567		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9568		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9569		/* swap the size field back to the cpu so we
9570		 * can assign it to the sgl.
9571		 */
9572		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9573		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9574		total_len = 0;
9575		for (i = 0; i < numBdes; i++) {
9576			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9577			total_len += bde.tus.f.bdeSize;
9578		}
9579	} else
9580		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9581
9582	iocbq->iocb.ulpIoTag = iocbq->iotag;
9583	cmnd = iocbq->iocb.ulpCommand;
9584
9585	switch (iocbq->iocb.ulpCommand) {
9586	case CMD_ELS_REQUEST64_CR:
9587		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9588			ndlp = iocbq->context_un.ndlp;
9589		else
9590			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9591		if (!iocbq->iocb.ulpLe) {
9592			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9593				"2007 Only Limited Edition cmd Format"
9594				" supported 0x%x\n",
9595				iocbq->iocb.ulpCommand);
9596			return IOCB_ERROR;
9597		}
9598
9599		wqe->els_req.payload_len = xmit_len;
9600		/* Els_reguest64 has a TMO */
9601		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9602			iocbq->iocb.ulpTimeout);
9603		/* Need a VF for word 4 set the vf bit*/
9604		bf_set(els_req64_vf, &wqe->els_req, 0);
9605		/* And a VFID for word 12 */
9606		bf_set(els_req64_vfid, &wqe->els_req, 0);
9607		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9608		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9609		       iocbq->iocb.ulpContext);
9610		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9611		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9612		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9613		if (command_type == ELS_COMMAND_FIP)
9614			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9615					>> LPFC_FIP_ELS_ID_SHIFT);
9616		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9617					iocbq->context2)->virt);
9618		if_type = bf_get(lpfc_sli_intf_if_type,
9619					&phba->sli4_hba.sli_intf);
9620		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9621			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9622				*pcmd == ELS_CMD_SCR ||
9623				*pcmd == ELS_CMD_RDF ||
9624				*pcmd == ELS_CMD_RSCN_XMT ||
9625				*pcmd == ELS_CMD_FDISC ||
9626				*pcmd == ELS_CMD_LOGO ||
9627				*pcmd == ELS_CMD_PLOGI)) {
9628				bf_set(els_req64_sp, &wqe->els_req, 1);
9629				bf_set(els_req64_sid, &wqe->els_req,
9630					iocbq->vport->fc_myDID);
9631				if ((*pcmd == ELS_CMD_FLOGI) &&
9632					!(phba->fc_topology ==
9633						LPFC_TOPOLOGY_LOOP))
9634					bf_set(els_req64_sid, &wqe->els_req, 0);
9635				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9636				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9637					phba->vpi_ids[iocbq->vport->vpi]);
9638			} else if (pcmd && iocbq->context1) {
9639				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9640				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9641					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9642			}
9643		}
9644		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9645		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9646		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9647		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9648		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9649		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9650		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9651		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9652		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9653		break;
9654	case CMD_XMIT_SEQUENCE64_CX:
9655		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9656		       iocbq->iocb.un.ulpWord[3]);
9657		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9658		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9659		/* The entire sequence is transmitted for this IOCB */
9660		xmit_len = total_len;
9661		cmnd = CMD_XMIT_SEQUENCE64_CR;
9662		if (phba->link_flag & LS_LOOPBACK_MODE)
9663			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9664		fallthrough;
9665	case CMD_XMIT_SEQUENCE64_CR:
9666		/* word3 iocb=io_tag32 wqe=reserved */
9667		wqe->xmit_sequence.rsvd3 = 0;
9668		/* word4 relative_offset memcpy */
9669		/* word5 r_ctl/df_ctl memcpy */
9670		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9671		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9672		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9673		       LPFC_WQE_IOD_WRITE);
9674		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9675		       LPFC_WQE_LENLOC_WORD12);
9676		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9677		wqe->xmit_sequence.xmit_len = xmit_len;
9678		command_type = OTHER_COMMAND;
9679		break;
9680	case CMD_XMIT_BCAST64_CN:
9681		/* word3 iocb=iotag32 wqe=seq_payload_len */
9682		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9683		/* word4 iocb=rsvd wqe=rsvd */
9684		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9685		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9686		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9687			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9688		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9689		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9690		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9691		       LPFC_WQE_LENLOC_WORD3);
9692		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9693		break;
9694	case CMD_FCP_IWRITE64_CR:
9695		command_type = FCP_COMMAND_DATA_OUT;
9696		/* word3 iocb=iotag wqe=payload_offset_len */
9697		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9698		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9699		       xmit_len + sizeof(struct fcp_rsp));
9700		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9701		       0);
9702		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9703		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9704		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9705		       iocbq->iocb.ulpFCP2Rcvy);
9706		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9707		/* Always open the exchange */
9708		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9709		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9710		       LPFC_WQE_LENLOC_WORD4);
9711		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9712		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9713		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9714			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9715			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9716			if (iocbq->priority) {
9717				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9718				       (iocbq->priority << 1));
9719			} else {
9720				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9721				       (phba->cfg_XLanePriority << 1));
9722			}
9723		}
9724		/* Note, word 10 is already initialized to 0 */
9725
9726		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9727		if (phba->cfg_enable_pbde)
9728			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9729		else
9730			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9731
9732		if (phba->fcp_embed_io) {
9733			struct lpfc_io_buf *lpfc_cmd;
9734			struct sli4_sge *sgl;
9735			struct fcp_cmnd *fcp_cmnd;
9736			uint32_t *ptr;
9737
9738			/* 128 byte wqe support here */
9739
9740			lpfc_cmd = iocbq->context1;
9741			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9742			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9743
9744			/* Word 0-2 - FCP_CMND */
9745			wqe->generic.bde.tus.f.bdeFlags =
9746				BUFF_TYPE_BDE_IMMED;
9747			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9748			wqe->generic.bde.addrHigh = 0;
9749			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9750
9751			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9752			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9753
9754			/* Word 22-29  FCP CMND Payload */
9755			ptr = &wqe->words[22];
9756			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9757		}
9758		break;
9759	case CMD_FCP_IREAD64_CR:
9760		/* word3 iocb=iotag wqe=payload_offset_len */
9761		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9762		bf_set(payload_offset_len, &wqe->fcp_iread,
9763		       xmit_len + sizeof(struct fcp_rsp));
9764		bf_set(cmd_buff_len, &wqe->fcp_iread,
9765		       0);
9766		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9767		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9768		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9769		       iocbq->iocb.ulpFCP2Rcvy);
9770		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9771		/* Always open the exchange */
9772		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9773		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9774		       LPFC_WQE_LENLOC_WORD4);
9775		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9776		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9777		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9778			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9779			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9780			if (iocbq->priority) {
9781				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9782				       (iocbq->priority << 1));
9783			} else {
9784				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9785				       (phba->cfg_XLanePriority << 1));
9786			}
9787		}
9788		/* Note, word 10 is already initialized to 0 */
9789
9790		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9791		if (phba->cfg_enable_pbde)
9792			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9793		else
9794			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9795
9796		if (phba->fcp_embed_io) {
9797			struct lpfc_io_buf *lpfc_cmd;
9798			struct sli4_sge *sgl;
9799			struct fcp_cmnd *fcp_cmnd;
9800			uint32_t *ptr;
9801
9802			/* 128 byte wqe support here */
9803
9804			lpfc_cmd = iocbq->context1;
9805			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9806			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9807
9808			/* Word 0-2 - FCP_CMND */
9809			wqe->generic.bde.tus.f.bdeFlags =
9810				BUFF_TYPE_BDE_IMMED;
9811			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9812			wqe->generic.bde.addrHigh = 0;
9813			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9814
9815			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9816			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9817
9818			/* Word 22-29  FCP CMND Payload */
9819			ptr = &wqe->words[22];
9820			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9821		}
9822		break;
9823	case CMD_FCP_ICMND64_CR:
9824		/* word3 iocb=iotag wqe=payload_offset_len */
9825		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9826		bf_set(payload_offset_len, &wqe->fcp_icmd,
9827		       xmit_len + sizeof(struct fcp_rsp));
9828		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9829		       0);
9830		/* word3 iocb=IO_TAG wqe=reserved */
9831		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9832		/* Always open the exchange */
9833		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9834		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9835		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9836		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9837		       LPFC_WQE_LENLOC_NONE);
9838		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9839		       iocbq->iocb.ulpFCP2Rcvy);
9840		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9841			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9842			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9843			if (iocbq->priority) {
9844				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9845				       (iocbq->priority << 1));
9846			} else {
9847				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9848				       (phba->cfg_XLanePriority << 1));
9849			}
9850		}
9851		/* Note, word 10 is already initialized to 0 */
9852
9853		if (phba->fcp_embed_io) {
9854			struct lpfc_io_buf *lpfc_cmd;
9855			struct sli4_sge *sgl;
9856			struct fcp_cmnd *fcp_cmnd;
9857			uint32_t *ptr;
9858
9859			/* 128 byte wqe support here */
9860
9861			lpfc_cmd = iocbq->context1;
9862			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9863			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9864
9865			/* Word 0-2 - FCP_CMND */
9866			wqe->generic.bde.tus.f.bdeFlags =
9867				BUFF_TYPE_BDE_IMMED;
9868			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9869			wqe->generic.bde.addrHigh = 0;
9870			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9871
9872			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9873			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9874
9875			/* Word 22-29  FCP CMND Payload */
9876			ptr = &wqe->words[22];
9877			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9878		}
9879		break;
9880	case CMD_GEN_REQUEST64_CR:
9881		/* For this command calculate the xmit length of the
9882		 * request bde.
9883		 */
9884		xmit_len = 0;
9885		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9886			sizeof(struct ulp_bde64);
9887		for (i = 0; i < numBdes; i++) {
9888			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9889			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9890				break;
9891			xmit_len += bde.tus.f.bdeSize;
9892		}
9893		/* word3 iocb=IO_TAG wqe=request_payload_len */
9894		wqe->gen_req.request_payload_len = xmit_len;
9895		/* word4 iocb=parameter wqe=relative_offset memcpy */
9896		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9897		/* word6 context tag copied in memcpy */
9898		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9899			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9900			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9901				"2015 Invalid CT %x command 0x%x\n",
9902				ct, iocbq->iocb.ulpCommand);
9903			return IOCB_ERROR;
9904		}
9905		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9906		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9907		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9908		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9909		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9910		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9911		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9912		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9913		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9914		command_type = OTHER_COMMAND;
9915		break;
9916	case CMD_XMIT_ELS_RSP64_CX:
9917		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9918		/* words0-2 BDE memcpy */
9919		/* word3 iocb=iotag32 wqe=response_payload_len */
9920		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9921		/* word4 */
9922		wqe->xmit_els_rsp.word4 = 0;
9923		/* word5 iocb=rsvd wge=did */
9924		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9925			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9926
9927		if_type = bf_get(lpfc_sli_intf_if_type,
9928					&phba->sli4_hba.sli_intf);
9929		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9930			if (iocbq->vport->fc_flag & FC_PT2PT) {
9931				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9932				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9933					iocbq->vport->fc_myDID);
9934				if (iocbq->vport->fc_myDID == Fabric_DID) {
9935					bf_set(wqe_els_did,
9936						&wqe->xmit_els_rsp.wqe_dest, 0);
9937				}
9938			}
9939		}
9940		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9941		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9942		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9943		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9944		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9945		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9946			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9947			       phba->vpi_ids[iocbq->vport->vpi]);
9948		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9949		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9950		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9951		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9952		       LPFC_WQE_LENLOC_WORD3);
9953		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9954		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9955		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9956		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9957					iocbq->context2)->virt);
9958		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9959				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9960				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9961					iocbq->vport->fc_myDID);
9962				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9963				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9964					phba->vpi_ids[phba->pport->vpi]);
9965		}
9966		command_type = OTHER_COMMAND;
9967		break;
9968	case CMD_CLOSE_XRI_CN:
9969	case CMD_ABORT_XRI_CN:
9970	case CMD_ABORT_XRI_CX:
9971		/* words 0-2 memcpy should be 0 rserved */
9972		/* port will send abts */
9973		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9974		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9975			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9976			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9977		} else
9978			fip = 0;
9979
9980		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9981			/*
9982			 * The link is down, or the command was ELS_FIP
9983			 * so the fw does not need to send abts
9984			 * on the wire.
9985			 */
9986			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9987		else
9988			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9989		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9990		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9991		wqe->abort_cmd.rsrvd5 = 0;
9992		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9993			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9994		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9995		/*
9996		 * The abort handler will send us CMD_ABORT_XRI_CN or
9997		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9998		 */
9999		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
10000		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
10001		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
10002		       LPFC_WQE_LENLOC_NONE);
10003		cmnd = CMD_ABORT_XRI_CX;
10004		command_type = OTHER_COMMAND;
10005		xritag = 0;
10006		break;
10007	case CMD_XMIT_BLS_RSP64_CX:
10008		ndlp = (struct lpfc_nodelist *)iocbq->context1;
10009		/* As BLS ABTS RSP WQE is very different from other WQEs,
10010		 * we re-construct this WQE here based on information in
10011		 * iocbq from scratch.
10012		 */
10013		memset(wqe, 0, sizeof(*wqe));
10014		/* OX_ID is invariable to who sent ABTS to CT exchange */
10015		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
10016		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
10017		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
10018		    LPFC_ABTS_UNSOL_INT) {
10019			/* ABTS sent by initiator to CT exchange, the
10020			 * RX_ID field will be filled with the newly
10021			 * allocated responder XRI.
10022			 */
10023			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10024			       iocbq->sli4_xritag);
10025		} else {
10026			/* ABTS sent by responder to CT exchange, the
10027			 * RX_ID field will be filled with the responder
10028			 * RX_ID from ABTS.
10029			 */
10030			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10031			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
10032		}
10033		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
10034		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
10035
10036		/* Use CT=VPI */
10037		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
10038			ndlp->nlp_DID);
10039		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
10040			iocbq->iocb.ulpContext);
10041		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
10042		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
10043			phba->vpi_ids[phba->pport->vpi]);
10044		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
10045		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
10046		       LPFC_WQE_LENLOC_NONE);
10047		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
10048		command_type = OTHER_COMMAND;
10049		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
10050			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
10051			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
10052			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
10053			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
10054			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
10055			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
10056		}
10057
10058		break;
10059	case CMD_SEND_FRAME:
10060		bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
10061		bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
10062		bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
10063		bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
10064		bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
10065		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10066		bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
10067		bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
10068		bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10069		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10070		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10071		return 0;
10072	case CMD_XRI_ABORTED_CX:
10073	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
10074	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
10075	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
10076	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
10077	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
10078	default:
10079		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10080				"2014 Invalid command 0x%x\n",
10081				iocbq->iocb.ulpCommand);
10082		return IOCB_ERROR;
10083		break;
10084	}
10085
10086	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
10087		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
10088	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
10089		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
10090	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
10091		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
10092	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
10093			      LPFC_IO_DIF_INSERT);
10094	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10095	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10096	wqe->generic.wqe_com.abort_tag = abort_tag;
10097	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
10098	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
10099	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
10100	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10101	return 0;
10102}
10103
10104/**
10105 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10106 * @phba: Pointer to HBA context object.
10107 * @ring_number: SLI ring number to issue iocb on.
10108 * @piocb: Pointer to command iocb.
10109 * @flag: Flag indicating if this command can be put into txq.
10110 *
10111 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10112 * an iocb command to an HBA with SLI-4 interface spec.
10113 *
10114 * This function is called with ringlock held. The function will return success
10115 * after it successfully submit the iocb to firmware or after adding to the
10116 * txq.
10117 **/
10118static int
10119__lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10120			 struct lpfc_iocbq *piocb, uint32_t flag)
10121{
10122	struct lpfc_sglq *sglq;
10123	union lpfc_wqe128 wqe;
10124	struct lpfc_queue *wq;
10125	struct lpfc_sli_ring *pring;
10126
10127	/* Get the WQ */
10128	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
10129	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10130		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10131	} else {
10132		wq = phba->sli4_hba.els_wq;
10133	}
10134
10135	/* Get corresponding ring */
10136	pring = wq->pring;
10137
10138	/*
10139	 * The WQE can be either 64 or 128 bytes,
10140	 */
10141
10142	lockdep_assert_held(&pring->ring_lock);
10143
10144	if (piocb->sli4_xritag == NO_XRI) {
10145		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10146		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
10147			sglq = NULL;
10148		else {
10149			if (!list_empty(&pring->txq)) {
10150				if (!(flag & SLI_IOCB_RET_IOCB)) {
10151					__lpfc_sli_ringtx_put(phba,
10152						pring, piocb);
10153					return IOCB_SUCCESS;
10154				} else {
10155					return IOCB_BUSY;
10156				}
10157			} else {
10158				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10159				if (!sglq) {
10160					if (!(flag & SLI_IOCB_RET_IOCB)) {
10161						__lpfc_sli_ringtx_put(phba,
10162								pring,
10163								piocb);
10164						return IOCB_SUCCESS;
10165					} else
10166						return IOCB_BUSY;
10167				}
10168			}
10169		}
10170	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
10171		/* These IO's already have an XRI and a mapped sgl. */
10172		sglq = NULL;
10173	else {
10174		/*
10175		 * This is a continuation of a commandi,(CX) so this
10176		 * sglq is on the active list
10177		 */
10178		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10179		if (!sglq)
10180			return IOCB_ERROR;
10181	}
10182
10183	if (sglq) {
10184		piocb->sli4_lxritag = sglq->sli4_lxritag;
10185		piocb->sli4_xritag = sglq->sli4_xritag;
10186		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10187			return IOCB_ERROR;
10188	}
10189
10190	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10191		return IOCB_ERROR;
10192
10193	if (lpfc_sli4_wq_put(wq, &wqe))
10194		return IOCB_ERROR;
10195	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10196
10197	return 0;
10198}
10199
10200/*
10201 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10202 *
10203 * This routine wraps the actual lockless version for issusing IOCB function
10204 * pointer from the lpfc_hba struct.
10205 *
10206 * Return codes:
10207 * IOCB_ERROR - Error
10208 * IOCB_SUCCESS - Success
10209 * IOCB_BUSY - Busy
10210 **/
10211int
10212__lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10213		struct lpfc_iocbq *piocb, uint32_t flag)
10214{
10215	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10216}
10217
10218/**
10219 * lpfc_sli_api_table_setup - Set up sli api function jump table
10220 * @phba: The hba struct for which this call is being executed.
10221 * @dev_grp: The HBA PCI-Device group number.
10222 *
10223 * This routine sets up the SLI interface API function jump table in @phba
10224 * struct.
10225 * Returns: 0 - success, -ENODEV - failure.
10226 **/
10227int
10228lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10229{
10230
10231	switch (dev_grp) {
10232	case LPFC_PCI_DEV_LP:
10233		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10234		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10235		break;
10236	case LPFC_PCI_DEV_OC:
10237		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10238		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10239		break;
10240	default:
10241		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10242				"1419 Invalid HBA PCI-device group: 0x%x\n",
10243				dev_grp);
10244		return -ENODEV;
10245		break;
10246	}
10247	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10248	return 0;
10249}
10250
10251/**
10252 * lpfc_sli4_calc_ring - Calculates which ring to use
10253 * @phba: Pointer to HBA context object.
10254 * @piocb: Pointer to command iocb.
10255 *
10256 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10257 * hba_wqidx, thus we need to calculate the corresponding ring.
10258 * Since ABORTS must go on the same WQ of the command they are
10259 * aborting, we use command's hba_wqidx.
10260 */
10261struct lpfc_sli_ring *
10262lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10263{
10264	struct lpfc_io_buf *lpfc_cmd;
10265
10266	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10267		if (unlikely(!phba->sli4_hba.hdwq))
10268			return NULL;
10269		/*
10270		 * for abort iocb hba_wqidx should already
10271		 * be setup based on what work queue we used.
10272		 */
10273		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10274			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10275			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10276		}
10277		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10278	} else {
10279		if (unlikely(!phba->sli4_hba.els_wq))
10280			return NULL;
10281		piocb->hba_wqidx = 0;
10282		return phba->sli4_hba.els_wq->pring;
10283	}
10284}
10285
10286/**
10287 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10288 * @phba: Pointer to HBA context object.
10289 * @ring_number: Ring number
10290 * @piocb: Pointer to command iocb.
10291 * @flag: Flag indicating if this command can be put into txq.
10292 *
10293 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10294 * function. This function gets the hbalock and calls
10295 * __lpfc_sli_issue_iocb function and will return the error returned
10296 * by __lpfc_sli_issue_iocb function. This wrapper is used by
10297 * functions which do not hold hbalock.
10298 **/
10299int
10300lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10301		    struct lpfc_iocbq *piocb, uint32_t flag)
10302{
10303	struct lpfc_sli_ring *pring;
10304	struct lpfc_queue *eq;
10305	unsigned long iflags;
10306	int rc;
10307
10308	if (phba->sli_rev == LPFC_SLI_REV4) {
10309		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10310
10311		pring = lpfc_sli4_calc_ring(phba, piocb);
10312		if (unlikely(pring == NULL))
10313			return IOCB_ERROR;
10314
10315		spin_lock_irqsave(&pring->ring_lock, iflags);
10316		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10317		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10318
10319		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10320	} else {
10321		/* For now, SLI2/3 will still use hbalock */
10322		spin_lock_irqsave(&phba->hbalock, iflags);
10323		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10324		spin_unlock_irqrestore(&phba->hbalock, iflags);
10325	}
10326	return rc;
10327}
10328
10329/**
10330 * lpfc_extra_ring_setup - Extra ring setup function
10331 * @phba: Pointer to HBA context object.
10332 *
10333 * This function is called while driver attaches with the
10334 * HBA to setup the extra ring. The extra ring is used
10335 * only when driver needs to support target mode functionality
10336 * or IP over FC functionalities.
10337 *
10338 * This function is called with no lock held. SLI3 only.
10339 **/
10340static int
10341lpfc_extra_ring_setup( struct lpfc_hba *phba)
10342{
10343	struct lpfc_sli *psli;
10344	struct lpfc_sli_ring *pring;
10345
10346	psli = &phba->sli;
10347
10348	/* Adjust cmd/rsp ring iocb entries more evenly */
10349
10350	/* Take some away from the FCP ring */
10351	pring = &psli->sli3_ring[LPFC_FCP_RING];
10352	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10353	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10354	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10355	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10356
10357	/* and give them to the extra ring */
10358	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10359
10360	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10361	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10362	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10363	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10364
10365	/* Setup default profile for this ring */
10366	pring->iotag_max = 4096;
10367	pring->num_mask = 1;
10368	pring->prt[0].profile = 0;      /* Mask 0 */
10369	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10370	pring->prt[0].type = phba->cfg_multi_ring_type;
10371	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10372	return 0;
10373}
10374
10375static void
10376lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
10377			     struct lpfc_nodelist *ndlp)
10378{
10379	unsigned long iflags;
10380	struct lpfc_work_evt  *evtp = &ndlp->recovery_evt;
10381
10382	spin_lock_irqsave(&phba->hbalock, iflags);
10383	if (!list_empty(&evtp->evt_listp)) {
10384		spin_unlock_irqrestore(&phba->hbalock, iflags);
10385		return;
10386	}
10387
10388	/* Incrementing the reference count until the queued work is done. */
10389	evtp->evt_arg1  = lpfc_nlp_get(ndlp);
10390	if (!evtp->evt_arg1) {
10391		spin_unlock_irqrestore(&phba->hbalock, iflags);
10392		return;
10393	}
10394	evtp->evt = LPFC_EVT_RECOVER_PORT;
10395	list_add_tail(&evtp->evt_listp, &phba->work_list);
10396	spin_unlock_irqrestore(&phba->hbalock, iflags);
10397
10398	lpfc_worker_wake_up(phba);
10399}
10400
10401/* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10402 * @phba: Pointer to HBA context object.
10403 * @iocbq: Pointer to iocb object.
10404 *
10405 * The async_event handler calls this routine when it receives
10406 * an ASYNC_STATUS_CN event from the port.  The port generates
10407 * this event when an Abort Sequence request to an rport fails
10408 * twice in succession.  The abort could be originated by the
10409 * driver or by the port.  The ABTS could have been for an ELS
10410 * or FCP IO.  The port only generates this event when an ABTS
10411 * fails to complete after one retry.
10412 */
10413static void
10414lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10415			  struct lpfc_iocbq *iocbq)
10416{
10417	struct lpfc_nodelist *ndlp = NULL;
10418	uint16_t rpi = 0, vpi = 0;
10419	struct lpfc_vport *vport = NULL;
10420
10421	/* The rpi in the ulpContext is vport-sensitive. */
10422	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10423	rpi = iocbq->iocb.ulpContext;
10424
10425	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10426			"3092 Port generated ABTS async event "
10427			"on vpi %d rpi %d status 0x%x\n",
10428			vpi, rpi, iocbq->iocb.ulpStatus);
10429
10430	vport = lpfc_find_vport_by_vpid(phba, vpi);
10431	if (!vport)
10432		goto err_exit;
10433	ndlp = lpfc_findnode_rpi(vport, rpi);
10434	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10435		goto err_exit;
10436
10437	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10438		lpfc_sli_abts_recover_port(vport, ndlp);
10439	return;
10440
10441 err_exit:
10442	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10443			"3095 Event Context not found, no "
10444			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10445			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10446			vpi, rpi);
10447}
10448
10449/* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10450 * @phba: pointer to HBA context object.
10451 * @ndlp: nodelist pointer for the impacted rport.
10452 * @axri: pointer to the wcqe containing the failed exchange.
10453 *
10454 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10455 * port.  The port generates this event when an abort exchange request to an
10456 * rport fails twice in succession with no reply.  The abort could be originated
10457 * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10458 */
10459void
10460lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10461			   struct lpfc_nodelist *ndlp,
10462			   struct sli4_wcqe_xri_aborted *axri)
10463{
10464	uint32_t ext_status = 0;
10465
10466	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10467		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10468				"3115 Node Context not found, driver "
10469				"ignoring abts err event\n");
10470		return;
10471	}
10472
10473	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10474			"3116 Port generated FCP XRI ABORT event on "
10475			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10476			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10477			bf_get(lpfc_wcqe_xa_xri, axri),
10478			bf_get(lpfc_wcqe_xa_status, axri),
10479			axri->parameter);
10480
10481	/*
10482	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10483	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10484	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10485	 */
10486	ext_status = axri->parameter & IOERR_PARAM_MASK;
10487	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10488	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10489		lpfc_sli_post_recovery_event(phba, ndlp);
10490}
10491
10492/**
10493 * lpfc_sli_async_event_handler - ASYNC iocb handler function
10494 * @phba: Pointer to HBA context object.
10495 * @pring: Pointer to driver SLI ring object.
10496 * @iocbq: Pointer to iocb object.
10497 *
10498 * This function is called by the slow ring event handler
10499 * function when there is an ASYNC event iocb in the ring.
10500 * This function is called with no lock held.
10501 * Currently this function handles only temperature related
10502 * ASYNC events. The function decodes the temperature sensor
10503 * event message and posts events for the management applications.
10504 **/
10505static void
10506lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10507	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10508{
10509	IOCB_t *icmd;
10510	uint16_t evt_code;
10511	struct temp_event temp_event_data;
10512	struct Scsi_Host *shost;
10513	uint32_t *iocb_w;
10514
10515	icmd = &iocbq->iocb;
10516	evt_code = icmd->un.asyncstat.evt_code;
10517
10518	switch (evt_code) {
10519	case ASYNC_TEMP_WARN:
10520	case ASYNC_TEMP_SAFE:
10521		temp_event_data.data = (uint32_t) icmd->ulpContext;
10522		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10523		if (evt_code == ASYNC_TEMP_WARN) {
10524			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10525			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10526				"0347 Adapter is very hot, please take "
10527				"corrective action. temperature : %d Celsius\n",
10528				(uint32_t) icmd->ulpContext);
10529		} else {
10530			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10531			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10532				"0340 Adapter temperature is OK now. "
10533				"temperature : %d Celsius\n",
10534				(uint32_t) icmd->ulpContext);
10535		}
10536
10537		/* Send temperature change event to applications */
10538		shost = lpfc_shost_from_vport(phba->pport);
10539		fc_host_post_vendor_event(shost, fc_get_event_number(),
10540			sizeof(temp_event_data), (char *) &temp_event_data,
10541			LPFC_NL_VENDOR_ID);
10542		break;
10543	case ASYNC_STATUS_CN:
10544		lpfc_sli_abts_err_handler(phba, iocbq);
10545		break;
10546	default:
10547		iocb_w = (uint32_t *) icmd;
10548		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10549			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10550			" evt_code 0x%x\n"
10551			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10552			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10553			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10554			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10555			pring->ringno, icmd->un.asyncstat.evt_code,
10556			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10557			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10558			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10559			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10560
10561		break;
10562	}
10563}
10564
10565
10566/**
10567 * lpfc_sli4_setup - SLI ring setup function
10568 * @phba: Pointer to HBA context object.
10569 *
10570 * lpfc_sli_setup sets up rings of the SLI interface with
10571 * number of iocbs per ring and iotags. This function is
10572 * called while driver attach to the HBA and before the
10573 * interrupts are enabled. So there is no need for locking.
10574 *
10575 * This function always returns 0.
10576 **/
10577int
10578lpfc_sli4_setup(struct lpfc_hba *phba)
10579{
10580	struct lpfc_sli_ring *pring;
10581
10582	pring = phba->sli4_hba.els_wq->pring;
10583	pring->num_mask = LPFC_MAX_RING_MASK;
10584	pring->prt[0].profile = 0;	/* Mask 0 */
10585	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10586	pring->prt[0].type = FC_TYPE_ELS;
10587	pring->prt[0].lpfc_sli_rcv_unsol_event =
10588	    lpfc_els_unsol_event;
10589	pring->prt[1].profile = 0;	/* Mask 1 */
10590	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10591	pring->prt[1].type = FC_TYPE_ELS;
10592	pring->prt[1].lpfc_sli_rcv_unsol_event =
10593	    lpfc_els_unsol_event;
10594	pring->prt[2].profile = 0;	/* Mask 2 */
10595	/* NameServer Inquiry */
10596	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10597	/* NameServer */
10598	pring->prt[2].type = FC_TYPE_CT;
10599	pring->prt[2].lpfc_sli_rcv_unsol_event =
10600	    lpfc_ct_unsol_event;
10601	pring->prt[3].profile = 0;	/* Mask 3 */
10602	/* NameServer response */
10603	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10604	/* NameServer */
10605	pring->prt[3].type = FC_TYPE_CT;
10606	pring->prt[3].lpfc_sli_rcv_unsol_event =
10607	    lpfc_ct_unsol_event;
10608	return 0;
10609}
10610
10611/**
10612 * lpfc_sli_setup - SLI ring setup function
10613 * @phba: Pointer to HBA context object.
10614 *
10615 * lpfc_sli_setup sets up rings of the SLI interface with
10616 * number of iocbs per ring and iotags. This function is
10617 * called while driver attach to the HBA and before the
10618 * interrupts are enabled. So there is no need for locking.
10619 *
10620 * This function always returns 0. SLI3 only.
10621 **/
10622int
10623lpfc_sli_setup(struct lpfc_hba *phba)
10624{
10625	int i, totiocbsize = 0;
10626	struct lpfc_sli *psli = &phba->sli;
10627	struct lpfc_sli_ring *pring;
10628
10629	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10630	psli->sli_flag = 0;
10631
10632	psli->iocbq_lookup = NULL;
10633	psli->iocbq_lookup_len = 0;
10634	psli->last_iotag = 0;
10635
10636	for (i = 0; i < psli->num_rings; i++) {
10637		pring = &psli->sli3_ring[i];
10638		switch (i) {
10639		case LPFC_FCP_RING:	/* ring 0 - FCP */
10640			/* numCiocb and numRiocb are used in config_port */
10641			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10642			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10643			pring->sli.sli3.numCiocb +=
10644				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10645			pring->sli.sli3.numRiocb +=
10646				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10647			pring->sli.sli3.numCiocb +=
10648				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10649			pring->sli.sli3.numRiocb +=
10650				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10651			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10652							SLI3_IOCB_CMD_SIZE :
10653							SLI2_IOCB_CMD_SIZE;
10654			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10655							SLI3_IOCB_RSP_SIZE :
10656							SLI2_IOCB_RSP_SIZE;
10657			pring->iotag_ctr = 0;
10658			pring->iotag_max =
10659			    (phba->cfg_hba_queue_depth * 2);
10660			pring->fast_iotag = pring->iotag_max;
10661			pring->num_mask = 0;
10662			break;
10663		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10664			/* numCiocb and numRiocb are used in config_port */
10665			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10666			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10667			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10668							SLI3_IOCB_CMD_SIZE :
10669							SLI2_IOCB_CMD_SIZE;
10670			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10671							SLI3_IOCB_RSP_SIZE :
10672							SLI2_IOCB_RSP_SIZE;
10673			pring->iotag_max = phba->cfg_hba_queue_depth;
10674			pring->num_mask = 0;
10675			break;
10676		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10677			/* numCiocb and numRiocb are used in config_port */
10678			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10679			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10680			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10681							SLI3_IOCB_CMD_SIZE :
10682							SLI2_IOCB_CMD_SIZE;
10683			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10684							SLI3_IOCB_RSP_SIZE :
10685							SLI2_IOCB_RSP_SIZE;
10686			pring->fast_iotag = 0;
10687			pring->iotag_ctr = 0;
10688			pring->iotag_max = 4096;
10689			pring->lpfc_sli_rcv_async_status =
10690				lpfc_sli_async_event_handler;
10691			pring->num_mask = LPFC_MAX_RING_MASK;
10692			pring->prt[0].profile = 0;	/* Mask 0 */
10693			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10694			pring->prt[0].type = FC_TYPE_ELS;
10695			pring->prt[0].lpfc_sli_rcv_unsol_event =
10696			    lpfc_els_unsol_event;
10697			pring->prt[1].profile = 0;	/* Mask 1 */
10698			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10699			pring->prt[1].type = FC_TYPE_ELS;
10700			pring->prt[1].lpfc_sli_rcv_unsol_event =
10701			    lpfc_els_unsol_event;
10702			pring->prt[2].profile = 0;	/* Mask 2 */
10703			/* NameServer Inquiry */
10704			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10705			/* NameServer */
10706			pring->prt[2].type = FC_TYPE_CT;
10707			pring->prt[2].lpfc_sli_rcv_unsol_event =
10708			    lpfc_ct_unsol_event;
10709			pring->prt[3].profile = 0;	/* Mask 3 */
10710			/* NameServer response */
10711			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10712			/* NameServer */
10713			pring->prt[3].type = FC_TYPE_CT;
10714			pring->prt[3].lpfc_sli_rcv_unsol_event =
10715			    lpfc_ct_unsol_event;
10716			break;
10717		}
10718		totiocbsize += (pring->sli.sli3.numCiocb *
10719			pring->sli.sli3.sizeCiocb) +
10720			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10721	}
10722	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10723		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10724		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10725		       "SLI2 SLIM Data: x%x x%lx\n",
10726		       phba->brd_no, totiocbsize,
10727		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10728	}
10729	if (phba->cfg_multi_ring_support == 2)
10730		lpfc_extra_ring_setup(phba);
10731
10732	return 0;
10733}
10734
10735/**
10736 * lpfc_sli4_queue_init - Queue initialization function
10737 * @phba: Pointer to HBA context object.
10738 *
10739 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10740 * ring. This function also initializes ring indices of each ring.
10741 * This function is called during the initialization of the SLI
10742 * interface of an HBA.
10743 * This function is called with no lock held and always returns
10744 * 1.
10745 **/
10746void
10747lpfc_sli4_queue_init(struct lpfc_hba *phba)
10748{
10749	struct lpfc_sli *psli;
10750	struct lpfc_sli_ring *pring;
10751	int i;
10752
10753	psli = &phba->sli;
10754	spin_lock_irq(&phba->hbalock);
10755	INIT_LIST_HEAD(&psli->mboxq);
10756	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10757	/* Initialize list headers for txq and txcmplq as double linked lists */
10758	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10759		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10760		pring->flag = 0;
10761		pring->ringno = LPFC_FCP_RING;
10762		pring->txcmplq_cnt = 0;
10763		INIT_LIST_HEAD(&pring->txq);
10764		INIT_LIST_HEAD(&pring->txcmplq);
10765		INIT_LIST_HEAD(&pring->iocb_continueq);
10766		spin_lock_init(&pring->ring_lock);
10767	}
10768	pring = phba->sli4_hba.els_wq->pring;
10769	pring->flag = 0;
10770	pring->ringno = LPFC_ELS_RING;
10771	pring->txcmplq_cnt = 0;
10772	INIT_LIST_HEAD(&pring->txq);
10773	INIT_LIST_HEAD(&pring->txcmplq);
10774	INIT_LIST_HEAD(&pring->iocb_continueq);
10775	spin_lock_init(&pring->ring_lock);
10776
10777	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10778		pring = phba->sli4_hba.nvmels_wq->pring;
10779		pring->flag = 0;
10780		pring->ringno = LPFC_ELS_RING;
10781		pring->txcmplq_cnt = 0;
10782		INIT_LIST_HEAD(&pring->txq);
10783		INIT_LIST_HEAD(&pring->txcmplq);
10784		INIT_LIST_HEAD(&pring->iocb_continueq);
10785		spin_lock_init(&pring->ring_lock);
10786	}
10787
10788	spin_unlock_irq(&phba->hbalock);
10789}
10790
10791/**
10792 * lpfc_sli_queue_init - Queue initialization function
10793 * @phba: Pointer to HBA context object.
10794 *
10795 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10796 * ring. This function also initializes ring indices of each ring.
10797 * This function is called during the initialization of the SLI
10798 * interface of an HBA.
10799 * This function is called with no lock held and always returns
10800 * 1.
10801 **/
10802void
10803lpfc_sli_queue_init(struct lpfc_hba *phba)
10804{
10805	struct lpfc_sli *psli;
10806	struct lpfc_sli_ring *pring;
10807	int i;
10808
10809	psli = &phba->sli;
10810	spin_lock_irq(&phba->hbalock);
10811	INIT_LIST_HEAD(&psli->mboxq);
10812	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10813	/* Initialize list headers for txq and txcmplq as double linked lists */
10814	for (i = 0; i < psli->num_rings; i++) {
10815		pring = &psli->sli3_ring[i];
10816		pring->ringno = i;
10817		pring->sli.sli3.next_cmdidx  = 0;
10818		pring->sli.sli3.local_getidx = 0;
10819		pring->sli.sli3.cmdidx = 0;
10820		INIT_LIST_HEAD(&pring->iocb_continueq);
10821		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10822		INIT_LIST_HEAD(&pring->postbufq);
10823		pring->flag = 0;
10824		INIT_LIST_HEAD(&pring->txq);
10825		INIT_LIST_HEAD(&pring->txcmplq);
10826		spin_lock_init(&pring->ring_lock);
10827	}
10828	spin_unlock_irq(&phba->hbalock);
10829}
10830
10831/**
10832 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10833 * @phba: Pointer to HBA context object.
10834 *
10835 * This routine flushes the mailbox command subsystem. It will unconditionally
10836 * flush all the mailbox commands in the three possible stages in the mailbox
10837 * command sub-system: pending mailbox command queue; the outstanding mailbox
10838 * command; and completed mailbox command queue. It is caller's responsibility
10839 * to make sure that the driver is in the proper state to flush the mailbox
10840 * command sub-system. Namely, the posting of mailbox commands into the
10841 * pending mailbox command queue from the various clients must be stopped;
10842 * either the HBA is in a state that it will never works on the outstanding
10843 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10844 * mailbox command has been completed.
10845 **/
10846static void
10847lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10848{
10849	LIST_HEAD(completions);
10850	struct lpfc_sli *psli = &phba->sli;
10851	LPFC_MBOXQ_t *pmb;
10852	unsigned long iflag;
10853
10854	/* Disable softirqs, including timers from obtaining phba->hbalock */
10855	local_bh_disable();
10856
10857	/* Flush all the mailbox commands in the mbox system */
10858	spin_lock_irqsave(&phba->hbalock, iflag);
10859
10860	/* The pending mailbox command queue */
10861	list_splice_init(&phba->sli.mboxq, &completions);
10862	/* The outstanding active mailbox command */
10863	if (psli->mbox_active) {
10864		list_add_tail(&psli->mbox_active->list, &completions);
10865		psli->mbox_active = NULL;
10866		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10867	}
10868	/* The completed mailbox command queue */
10869	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10870	spin_unlock_irqrestore(&phba->hbalock, iflag);
10871
10872	/* Enable softirqs again, done with phba->hbalock */
10873	local_bh_enable();
10874
10875	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10876	while (!list_empty(&completions)) {
10877		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10878		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10879		if (pmb->mbox_cmpl)
10880			pmb->mbox_cmpl(phba, pmb);
10881	}
10882}
10883
10884/**
10885 * lpfc_sli_host_down - Vport cleanup function
10886 * @vport: Pointer to virtual port object.
10887 *
10888 * lpfc_sli_host_down is called to clean up the resources
10889 * associated with a vport before destroying virtual
10890 * port data structures.
10891 * This function does following operations:
10892 * - Free discovery resources associated with this virtual
10893 *   port.
10894 * - Free iocbs associated with this virtual port in
10895 *   the txq.
10896 * - Send abort for all iocb commands associated with this
10897 *   vport in txcmplq.
10898 *
10899 * This function is called with no lock held and always returns 1.
10900 **/
10901int
10902lpfc_sli_host_down(struct lpfc_vport *vport)
10903{
10904	LIST_HEAD(completions);
10905	struct lpfc_hba *phba = vport->phba;
10906	struct lpfc_sli *psli = &phba->sli;
10907	struct lpfc_queue *qp = NULL;
10908	struct lpfc_sli_ring *pring;
10909	struct lpfc_iocbq *iocb, *next_iocb;
10910	int i;
10911	unsigned long flags = 0;
10912	uint16_t prev_pring_flag;
10913
10914	lpfc_cleanup_discovery_resources(vport);
10915
10916	spin_lock_irqsave(&phba->hbalock, flags);
10917
10918	/*
10919	 * Error everything on the txq since these iocbs
10920	 * have not been given to the FW yet.
10921	 * Also issue ABTS for everything on the txcmplq
10922	 */
10923	if (phba->sli_rev != LPFC_SLI_REV4) {
10924		for (i = 0; i < psli->num_rings; i++) {
10925			pring = &psli->sli3_ring[i];
10926			prev_pring_flag = pring->flag;
10927			/* Only slow rings */
10928			if (pring->ringno == LPFC_ELS_RING) {
10929				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10930				/* Set the lpfc data pending flag */
10931				set_bit(LPFC_DATA_READY, &phba->data_flags);
10932			}
10933			list_for_each_entry_safe(iocb, next_iocb,
10934						 &pring->txq, list) {
10935				if (iocb->vport != vport)
10936					continue;
10937				list_move_tail(&iocb->list, &completions);
10938			}
10939			list_for_each_entry_safe(iocb, next_iocb,
10940						 &pring->txcmplq, list) {
10941				if (iocb->vport != vport)
10942					continue;
10943				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10944			}
10945			pring->flag = prev_pring_flag;
10946		}
10947	} else {
10948		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10949			pring = qp->pring;
10950			if (!pring)
10951				continue;
10952			if (pring == phba->sli4_hba.els_wq->pring) {
10953				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10954				/* Set the lpfc data pending flag */
10955				set_bit(LPFC_DATA_READY, &phba->data_flags);
10956			}
10957			prev_pring_flag = pring->flag;
10958			spin_lock(&pring->ring_lock);
10959			list_for_each_entry_safe(iocb, next_iocb,
10960						 &pring->txq, list) {
10961				if (iocb->vport != vport)
10962					continue;
10963				list_move_tail(&iocb->list, &completions);
10964			}
10965			spin_unlock(&pring->ring_lock);
10966			list_for_each_entry_safe(iocb, next_iocb,
10967						 &pring->txcmplq, list) {
10968				if (iocb->vport != vport)
10969					continue;
10970				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10971			}
10972			pring->flag = prev_pring_flag;
10973		}
10974	}
10975	spin_unlock_irqrestore(&phba->hbalock, flags);
10976
10977	/* Cancel all the IOCBs from the completions list */
10978	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10979			      IOERR_SLI_DOWN);
10980	return 1;
10981}
10982
10983/**
10984 * lpfc_sli_hba_down - Resource cleanup function for the HBA
10985 * @phba: Pointer to HBA context object.
10986 *
10987 * This function cleans up all iocb, buffers, mailbox commands
10988 * while shutting down the HBA. This function is called with no
10989 * lock held and always returns 1.
10990 * This function does the following to cleanup driver resources:
10991 * - Free discovery resources for each virtual port
10992 * - Cleanup any pending fabric iocbs
10993 * - Iterate through the iocb txq and free each entry
10994 *   in the list.
10995 * - Free up any buffer posted to the HBA
10996 * - Free mailbox commands in the mailbox queue.
10997 **/
10998int
10999lpfc_sli_hba_down(struct lpfc_hba *phba)
11000{
11001	LIST_HEAD(completions);
11002	struct lpfc_sli *psli = &phba->sli;
11003	struct lpfc_queue *qp = NULL;
11004	struct lpfc_sli_ring *pring;
11005	struct lpfc_dmabuf *buf_ptr;
11006	unsigned long flags = 0;
11007	int i;
11008
11009	/* Shutdown the mailbox command sub-system */
11010	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
11011
11012	lpfc_hba_down_prep(phba);
11013
11014	/* Disable softirqs, including timers from obtaining phba->hbalock */
11015	local_bh_disable();
11016
11017	lpfc_fabric_abort_hba(phba);
11018
11019	spin_lock_irqsave(&phba->hbalock, flags);
11020
11021	/*
11022	 * Error everything on the txq since these iocbs
11023	 * have not been given to the FW yet.
11024	 */
11025	if (phba->sli_rev != LPFC_SLI_REV4) {
11026		for (i = 0; i < psli->num_rings; i++) {
11027			pring = &psli->sli3_ring[i];
11028			/* Only slow rings */
11029			if (pring->ringno == LPFC_ELS_RING) {
11030				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11031				/* Set the lpfc data pending flag */
11032				set_bit(LPFC_DATA_READY, &phba->data_flags);
11033			}
11034			list_splice_init(&pring->txq, &completions);
11035		}
11036	} else {
11037		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11038			pring = qp->pring;
11039			if (!pring)
11040				continue;
11041			spin_lock(&pring->ring_lock);
11042			list_splice_init(&pring->txq, &completions);
11043			spin_unlock(&pring->ring_lock);
11044			if (pring == phba->sli4_hba.els_wq->pring) {
11045				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11046				/* Set the lpfc data pending flag */
11047				set_bit(LPFC_DATA_READY, &phba->data_flags);
11048			}
11049		}
11050	}
11051	spin_unlock_irqrestore(&phba->hbalock, flags);
11052
11053	/* Cancel all the IOCBs from the completions list */
11054	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11055			      IOERR_SLI_DOWN);
11056
11057	spin_lock_irqsave(&phba->hbalock, flags);
11058	list_splice_init(&phba->elsbuf, &completions);
11059	phba->elsbuf_cnt = 0;
11060	phba->elsbuf_prev_cnt = 0;
11061	spin_unlock_irqrestore(&phba->hbalock, flags);
11062
11063	while (!list_empty(&completions)) {
11064		list_remove_head(&completions, buf_ptr,
11065			struct lpfc_dmabuf, list);
11066		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
11067		kfree(buf_ptr);
11068	}
11069
11070	/* Enable softirqs again, done with phba->hbalock */
11071	local_bh_enable();
11072
11073	/* Return any active mbox cmds */
11074	del_timer_sync(&psli->mbox_tmo);
11075
11076	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
11077	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
11078	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
11079
11080	return 1;
11081}
11082
11083/**
11084 * lpfc_sli_pcimem_bcopy - SLI memory copy function
11085 * @srcp: Source memory pointer.
11086 * @destp: Destination memory pointer.
11087 * @cnt: Number of words required to be copied.
11088 *
11089 * This function is used for copying data between driver memory
11090 * and the SLI memory. This function also changes the endianness
11091 * of each word if native endianness is different from SLI
11092 * endianness. This function can be called with or without
11093 * lock.
11094 **/
11095void
11096lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
11097{
11098	uint32_t *src = srcp;
11099	uint32_t *dest = destp;
11100	uint32_t ldata;
11101	int i;
11102
11103	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
11104		ldata = *src;
11105		ldata = le32_to_cpu(ldata);
11106		*dest = ldata;
11107		src++;
11108		dest++;
11109	}
11110}
11111
11112
11113/**
11114 * lpfc_sli_bemem_bcopy - SLI memory copy function
11115 * @srcp: Source memory pointer.
11116 * @destp: Destination memory pointer.
11117 * @cnt: Number of words required to be copied.
11118 *
11119 * This function is used for copying data between a data structure
11120 * with big endian representation to local endianness.
11121 * This function can be called with or without lock.
11122 **/
11123void
11124lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
11125{
11126	uint32_t *src = srcp;
11127	uint32_t *dest = destp;
11128	uint32_t ldata;
11129	int i;
11130
11131	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
11132		ldata = *src;
11133		ldata = be32_to_cpu(ldata);
11134		*dest = ldata;
11135		src++;
11136		dest++;
11137	}
11138}
11139
11140/**
11141 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
11142 * @phba: Pointer to HBA context object.
11143 * @pring: Pointer to driver SLI ring object.
11144 * @mp: Pointer to driver buffer object.
11145 *
11146 * This function is called with no lock held.
11147 * It always return zero after adding the buffer to the postbufq
11148 * buffer list.
11149 **/
11150int
11151lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11152			 struct lpfc_dmabuf *mp)
11153{
11154	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
11155	   later */
11156	spin_lock_irq(&phba->hbalock);
11157	list_add_tail(&mp->list, &pring->postbufq);
11158	pring->postbufq_cnt++;
11159	spin_unlock_irq(&phba->hbalock);
11160	return 0;
11161}
11162
11163/**
11164 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
11165 * @phba: Pointer to HBA context object.
11166 *
11167 * When HBQ is enabled, buffers are searched based on tags. This function
11168 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
11169 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
11170 * does not conflict with tags of buffer posted for unsolicited events.
11171 * The function returns the allocated tag. The function is called with
11172 * no locks held.
11173 **/
11174uint32_t
11175lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
11176{
11177	spin_lock_irq(&phba->hbalock);
11178	phba->buffer_tag_count++;
11179	/*
11180	 * Always set the QUE_BUFTAG_BIT to distiguish between
11181	 * a tag assigned by HBQ.
11182	 */
11183	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11184	spin_unlock_irq(&phba->hbalock);
11185	return phba->buffer_tag_count;
11186}
11187
11188/**
11189 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11190 * @phba: Pointer to HBA context object.
11191 * @pring: Pointer to driver SLI ring object.
11192 * @tag: Buffer tag.
11193 *
11194 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11195 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11196 * iocb is posted to the response ring with the tag of the buffer.
11197 * This function searches the pring->postbufq list using the tag
11198 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11199 * iocb. If the buffer is found then lpfc_dmabuf object of the
11200 * buffer is returned to the caller else NULL is returned.
11201 * This function is called with no lock held.
11202 **/
11203struct lpfc_dmabuf *
11204lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11205			uint32_t tag)
11206{
11207	struct lpfc_dmabuf *mp, *next_mp;
11208	struct list_head *slp = &pring->postbufq;
11209
11210	/* Search postbufq, from the beginning, looking for a match on tag */
11211	spin_lock_irq(&phba->hbalock);
11212	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11213		if (mp->buffer_tag == tag) {
11214			list_del_init(&mp->list);
11215			pring->postbufq_cnt--;
11216			spin_unlock_irq(&phba->hbalock);
11217			return mp;
11218		}
11219	}
11220
11221	spin_unlock_irq(&phba->hbalock);
11222	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11223			"0402 Cannot find virtual addr for buffer tag on "
11224			"ring %d Data x%lx x%px x%px x%x\n",
11225			pring->ringno, (unsigned long) tag,
11226			slp->next, slp->prev, pring->postbufq_cnt);
11227
11228	return NULL;
11229}
11230
11231/**
11232 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11233 * @phba: Pointer to HBA context object.
11234 * @pring: Pointer to driver SLI ring object.
11235 * @phys: DMA address of the buffer.
11236 *
11237 * This function searches the buffer list using the dma_address
11238 * of unsolicited event to find the driver's lpfc_dmabuf object
11239 * corresponding to the dma_address. The function returns the
11240 * lpfc_dmabuf object if a buffer is found else it returns NULL.
11241 * This function is called by the ct and els unsolicited event
11242 * handlers to get the buffer associated with the unsolicited
11243 * event.
11244 *
11245 * This function is called with no lock held.
11246 **/
11247struct lpfc_dmabuf *
11248lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11249			 dma_addr_t phys)
11250{
11251	struct lpfc_dmabuf *mp, *next_mp;
11252	struct list_head *slp = &pring->postbufq;
11253
11254	/* Search postbufq, from the beginning, looking for a match on phys */
11255	spin_lock_irq(&phba->hbalock);
11256	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11257		if (mp->phys == phys) {
11258			list_del_init(&mp->list);
11259			pring->postbufq_cnt--;
11260			spin_unlock_irq(&phba->hbalock);
11261			return mp;
11262		}
11263	}
11264
11265	spin_unlock_irq(&phba->hbalock);
11266	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11267			"0410 Cannot find virtual addr for mapped buf on "
11268			"ring %d Data x%llx x%px x%px x%x\n",
11269			pring->ringno, (unsigned long long)phys,
11270			slp->next, slp->prev, pring->postbufq_cnt);
11271	return NULL;
11272}
11273
11274/**
11275 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11276 * @phba: Pointer to HBA context object.
11277 * @cmdiocb: Pointer to driver command iocb object.
11278 * @rspiocb: Pointer to driver response iocb object.
11279 *
11280 * This function is the completion handler for the abort iocbs for
11281 * ELS commands. This function is called from the ELS ring event
11282 * handler with no lock held. This function frees memory resources
11283 * associated with the abort iocb.
11284 **/
11285static void
11286lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11287			struct lpfc_iocbq *rspiocb)
11288{
11289	IOCB_t *irsp = &rspiocb->iocb;
11290	uint16_t abort_iotag, abort_context;
11291	struct lpfc_iocbq *abort_iocb = NULL;
11292
11293	if (irsp->ulpStatus) {
11294
11295		/*
11296		 * Assume that the port already completed and returned, or
11297		 * will return the iocb. Just Log the message.
11298		 */
11299		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11300		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11301
11302		spin_lock_irq(&phba->hbalock);
11303		if (phba->sli_rev < LPFC_SLI_REV4) {
11304			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11305			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11306			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11307				spin_unlock_irq(&phba->hbalock);
11308				goto release_iocb;
11309			}
11310			if (abort_iotag != 0 &&
11311				abort_iotag <= phba->sli.last_iotag)
11312				abort_iocb =
11313					phba->sli.iocbq_lookup[abort_iotag];
11314		} else
11315			/* For sli4 the abort_tag is the XRI,
11316			 * so the abort routine puts the iotag  of the iocb
11317			 * being aborted in the context field of the abort
11318			 * IOCB.
11319			 */
11320			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11321
11322		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11323				"0327 Cannot abort els iocb x%px "
11324				"with tag %x context %x, abort status %x, "
11325				"abort code %x\n",
11326				abort_iocb, abort_iotag, abort_context,
11327				irsp->ulpStatus, irsp->un.ulpWord[4]);
11328
11329		spin_unlock_irq(&phba->hbalock);
11330	}
11331release_iocb:
11332	lpfc_sli_release_iocbq(phba, cmdiocb);
11333	return;
11334}
11335
11336/**
11337 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11338 * @phba: Pointer to HBA context object.
11339 * @cmdiocb: Pointer to driver command iocb object.
11340 * @rspiocb: Pointer to driver response iocb object.
11341 *
11342 * The function is called from SLI ring event handler with no
11343 * lock held. This function is the completion handler for ELS commands
11344 * which are aborted. The function frees memory resources used for
11345 * the aborted ELS commands.
11346 **/
11347static void
11348lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11349		     struct lpfc_iocbq *rspiocb)
11350{
11351	IOCB_t *irsp = &rspiocb->iocb;
11352
11353	/* ELS cmd tag <ulpIoTag> completes */
11354	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11355			"0139 Ignoring ELS cmd tag x%x completion Data: "
11356			"x%x x%x x%x\n",
11357			irsp->ulpIoTag, irsp->ulpStatus,
11358			irsp->un.ulpWord[4], irsp->ulpTimeout);
11359	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11360		lpfc_ct_free_iocb(phba, cmdiocb);
11361	else
11362		lpfc_els_free_iocb(phba, cmdiocb);
11363	return;
11364}
11365
11366/**
11367 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11368 * @phba: Pointer to HBA context object.
11369 * @pring: Pointer to driver SLI ring object.
11370 * @cmdiocb: Pointer to driver command iocb object.
11371 *
11372 * This function issues an abort iocb for the provided command iocb down to
11373 * the port. Other than the case the outstanding command iocb is an abort
11374 * request, this function issues abort out unconditionally. This function is
11375 * called with hbalock held. The function returns 0 when it fails due to
11376 * memory allocation failure or when the command iocb is an abort request.
11377 * The hbalock is asserted held in the code path calling this routine.
11378 **/
11379static int
11380lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11381			   struct lpfc_iocbq *cmdiocb)
11382{
11383	struct lpfc_vport *vport = cmdiocb->vport;
11384	struct lpfc_iocbq *abtsiocbp;
11385	IOCB_t *icmd = NULL;
11386	IOCB_t *iabt = NULL;
11387	int retval;
11388	unsigned long iflags;
11389	struct lpfc_nodelist *ndlp;
11390
11391	/*
11392	 * There are certain command types we don't want to abort.  And we
11393	 * don't want to abort commands that are already in the process of
11394	 * being aborted.
11395	 */
11396	icmd = &cmdiocb->iocb;
11397	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11398	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11399	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11400		return 0;
11401
11402	/* issue ABTS for this IOCB based on iotag */
11403	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11404	if (abtsiocbp == NULL)
11405		return 0;
11406
11407	/* This signals the response to set the correct status
11408	 * before calling the completion handler
11409	 */
11410	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11411
11412	iabt = &abtsiocbp->iocb;
11413	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11414	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11415	if (phba->sli_rev == LPFC_SLI_REV4) {
11416		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11417		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11418	} else {
11419		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11420		if (pring->ringno == LPFC_ELS_RING) {
11421			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11422			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11423		}
11424	}
11425	iabt->ulpLe = 1;
11426	iabt->ulpClass = icmd->ulpClass;
11427
11428	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11429	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11430	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11431		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11432	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11433		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11434
11435	if (phba->link_state >= LPFC_LINK_UP)
11436		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11437	else
11438		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11439
11440	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11441	abtsiocbp->vport = vport;
11442
11443	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11444			 "0339 Abort xri x%x, original iotag x%x, "
11445			 "abort cmd iotag x%x\n",
11446			 iabt->un.acxri.abortIoTag,
11447			 iabt->un.acxri.abortContextTag,
11448			 abtsiocbp->iotag);
11449
11450	if (phba->sli_rev == LPFC_SLI_REV4) {
11451		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11452		if (unlikely(pring == NULL))
11453			return 0;
11454		/* Note: both hbalock and ring_lock need to be set here */
11455		spin_lock_irqsave(&pring->ring_lock, iflags);
11456		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11457			abtsiocbp, 0);
11458		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11459	} else {
11460		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11461			abtsiocbp, 0);
11462	}
11463
11464	if (retval)
11465		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11466
11467	/*
11468	 * Caller to this routine should check for IOCB_ERROR
11469	 * and handle it properly.  This routine no longer removes
11470	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11471	 */
11472	return retval;
11473}
11474
11475/**
11476 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11477 * @phba: Pointer to HBA context object.
11478 * @pring: Pointer to driver SLI ring object.
11479 * @cmdiocb: Pointer to driver command iocb object.
11480 *
11481 * This function issues an abort iocb for the provided command iocb. In case
11482 * of unloading, the abort iocb will not be issued to commands on the ELS
11483 * ring. Instead, the callback function shall be changed to those commands
11484 * so that nothing happens when them finishes. This function is called with
11485 * hbalock held. The function returns 0 when the command iocb is an abort
11486 * request.
11487 **/
11488int
11489lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11490			   struct lpfc_iocbq *cmdiocb)
11491{
11492	struct lpfc_vport *vport = cmdiocb->vport;
11493	int retval = IOCB_ERROR;
11494	IOCB_t *icmd = NULL;
11495
11496	lockdep_assert_held(&phba->hbalock);
11497
11498	/*
11499	 * There are certain command types we don't want to abort.  And we
11500	 * don't want to abort commands that are already in the process of
11501	 * being aborted.
11502	 */
11503	icmd = &cmdiocb->iocb;
11504	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11505	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11506	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11507		return 0;
11508
11509	if (!pring) {
11510		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11511			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11512		else
11513			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11514		goto abort_iotag_exit;
11515	}
11516
11517	/*
11518	 * If we're unloading, don't abort iocb on the ELS ring, but change
11519	 * the callback so that nothing happens when it finishes.
11520	 */
11521	if ((vport->load_flag & FC_UNLOADING) &&
11522	    (pring->ringno == LPFC_ELS_RING)) {
11523		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11524			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11525		else
11526			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11527		goto abort_iotag_exit;
11528	}
11529
11530	/* Now, we try to issue the abort to the cmdiocb out */
11531	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11532
11533abort_iotag_exit:
11534	/*
11535	 * Caller to this routine should check for IOCB_ERROR
11536	 * and handle it properly.  This routine no longer removes
11537	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11538	 */
11539	return retval;
11540}
11541
11542/**
11543 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11544 * @phba: pointer to lpfc HBA data structure.
11545 *
11546 * This routine will abort all pending and outstanding iocbs to an HBA.
11547 **/
11548void
11549lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11550{
11551	struct lpfc_sli *psli = &phba->sli;
11552	struct lpfc_sli_ring *pring;
11553	struct lpfc_queue *qp = NULL;
11554	int i;
11555
11556	if (phba->sli_rev != LPFC_SLI_REV4) {
11557		for (i = 0; i < psli->num_rings; i++) {
11558			pring = &psli->sli3_ring[i];
11559			lpfc_sli_abort_iocb_ring(phba, pring);
11560		}
11561		return;
11562	}
11563	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11564		pring = qp->pring;
11565		if (!pring)
11566			continue;
11567		lpfc_sli_abort_iocb_ring(phba, pring);
11568	}
11569}
11570
11571/**
11572 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11573 * @iocbq: Pointer to driver iocb object.
11574 * @vport: Pointer to driver virtual port object.
11575 * @tgt_id: SCSI ID of the target.
11576 * @lun_id: LUN ID of the scsi device.
11577 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11578 *
11579 * This function acts as an iocb filter for functions which abort or count
11580 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11581 * 0 if the filtering criteria is met for the given iocb and will return
11582 * 1 if the filtering criteria is not met.
11583 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11584 * given iocb is for the SCSI device specified by vport, tgt_id and
11585 * lun_id parameter.
11586 * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11587 * given iocb is for the SCSI target specified by vport and tgt_id
11588 * parameters.
11589 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11590 * given iocb is for the SCSI host associated with the given vport.
11591 * This function is called with no locks held.
11592 **/
11593static int
11594lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11595			   uint16_t tgt_id, uint64_t lun_id,
11596			   lpfc_ctx_cmd ctx_cmd)
11597{
11598	struct lpfc_io_buf *lpfc_cmd;
11599	IOCB_t *icmd = NULL;
11600	int rc = 1;
11601
11602	if (iocbq->vport != vport)
11603		return rc;
11604
11605	if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
11606	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) ||
11607	      iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11608		return rc;
11609
11610	icmd = &iocbq->iocb;
11611	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11612	    icmd->ulpCommand == CMD_CLOSE_XRI_CN)
11613		return rc;
11614
11615	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11616
11617	if (lpfc_cmd->pCmd == NULL)
11618		return rc;
11619
11620	switch (ctx_cmd) {
11621	case LPFC_CTX_LUN:
11622		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11623		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11624		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11625			rc = 0;
11626		break;
11627	case LPFC_CTX_TGT:
11628		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11629		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11630			rc = 0;
11631		break;
11632	case LPFC_CTX_HOST:
11633		rc = 0;
11634		break;
11635	default:
11636		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11637			__func__, ctx_cmd);
11638		break;
11639	}
11640
11641	return rc;
11642}
11643
11644/**
11645 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11646 * @vport: Pointer to virtual port.
11647 * @tgt_id: SCSI ID of the target.
11648 * @lun_id: LUN ID of the scsi device.
11649 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11650 *
11651 * This function returns number of FCP commands pending for the vport.
11652 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11653 * commands pending on the vport associated with SCSI device specified
11654 * by tgt_id and lun_id parameters.
11655 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11656 * commands pending on the vport associated with SCSI target specified
11657 * by tgt_id parameter.
11658 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11659 * commands pending on the vport.
11660 * This function returns the number of iocbs which satisfy the filter.
11661 * This function is called without any lock held.
11662 **/
11663int
11664lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11665		  lpfc_ctx_cmd ctx_cmd)
11666{
11667	struct lpfc_hba *phba = vport->phba;
11668	struct lpfc_iocbq *iocbq;
11669	int sum, i;
11670
11671	spin_lock_irq(&phba->hbalock);
11672	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11673		iocbq = phba->sli.iocbq_lookup[i];
11674
11675		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11676						ctx_cmd) == 0)
11677			sum++;
11678	}
11679	spin_unlock_irq(&phba->hbalock);
11680
11681	return sum;
11682}
11683
11684/**
11685 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11686 * @phba: Pointer to HBA context object
11687 * @cmdiocb: Pointer to command iocb object.
11688 * @rspiocb: Pointer to response iocb object.
11689 *
11690 * This function is called when an aborted FCP iocb completes. This
11691 * function is called by the ring event handler with no lock held.
11692 * This function frees the iocb.
11693 **/
11694void
11695lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11696			struct lpfc_iocbq *rspiocb)
11697{
11698	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11699			"3096 ABORT_XRI_CN completing on rpi x%x "
11700			"original iotag x%x, abort cmd iotag x%x "
11701			"status 0x%x, reason 0x%x\n",
11702			cmdiocb->iocb.un.acxri.abortContextTag,
11703			cmdiocb->iocb.un.acxri.abortIoTag,
11704			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11705			rspiocb->iocb.un.ulpWord[4]);
11706	lpfc_sli_release_iocbq(phba, cmdiocb);
11707	return;
11708}
11709
11710/**
11711 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11712 * @vport: Pointer to virtual port.
11713 * @pring: Pointer to driver SLI ring object.
11714 * @tgt_id: SCSI ID of the target.
11715 * @lun_id: LUN ID of the scsi device.
11716 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11717 *
11718 * This function sends an abort command for every SCSI command
11719 * associated with the given virtual port pending on the ring
11720 * filtered by lpfc_sli_validate_fcp_iocb function.
11721 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11722 * FCP iocbs associated with lun specified by tgt_id and lun_id
11723 * parameters
11724 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11725 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11726 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11727 * FCP iocbs associated with virtual port.
11728 * This function returns number of iocbs it failed to abort.
11729 * This function is called with no locks held.
11730 **/
11731int
11732lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11733		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11734{
11735	struct lpfc_hba *phba = vport->phba;
11736	struct lpfc_iocbq *iocbq;
11737	struct lpfc_iocbq *abtsiocb;
11738	struct lpfc_sli_ring *pring_s4;
11739	IOCB_t *cmd = NULL;
11740	int errcnt = 0, ret_val = 0;
11741	int i;
11742
11743	/* all I/Os are in process of being flushed */
11744	if (phba->hba_flag & HBA_IOQ_FLUSH)
11745		return errcnt;
11746
11747	for (i = 1; i <= phba->sli.last_iotag; i++) {
11748		iocbq = phba->sli.iocbq_lookup[i];
11749
11750		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11751					       abort_cmd) != 0)
11752			continue;
11753
11754		/*
11755		 * If the iocbq is already being aborted, don't take a second
11756		 * action, but do count it.
11757		 */
11758		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11759			continue;
11760
11761		/* issue ABTS for this IOCB based on iotag */
11762		abtsiocb = lpfc_sli_get_iocbq(phba);
11763		if (abtsiocb == NULL) {
11764			errcnt++;
11765			continue;
11766		}
11767
11768		/* indicate the IO is being aborted by the driver. */
11769		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11770
11771		cmd = &iocbq->iocb;
11772		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11773		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11774		if (phba->sli_rev == LPFC_SLI_REV4)
11775			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11776		else
11777			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11778		abtsiocb->iocb.ulpLe = 1;
11779		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11780		abtsiocb->vport = vport;
11781
11782		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11783		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11784		if (iocbq->iocb_flag & LPFC_IO_FCP)
11785			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11786		if (iocbq->iocb_flag & LPFC_IO_FOF)
11787			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11788
11789		if (lpfc_is_link_up(phba))
11790			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11791		else
11792			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11793
11794		/* Setup callback routine and issue the command. */
11795		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11796		if (phba->sli_rev == LPFC_SLI_REV4) {
11797			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11798			if (!pring_s4)
11799				continue;
11800			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11801						      abtsiocb, 0);
11802		} else
11803			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11804						      abtsiocb, 0);
11805		if (ret_val == IOCB_ERROR) {
11806			lpfc_sli_release_iocbq(phba, abtsiocb);
11807			errcnt++;
11808			continue;
11809		}
11810	}
11811
11812	return errcnt;
11813}
11814
11815/**
11816 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11817 * @vport: Pointer to virtual port.
11818 * @pring: Pointer to driver SLI ring object.
11819 * @tgt_id: SCSI ID of the target.
11820 * @lun_id: LUN ID of the scsi device.
11821 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11822 *
11823 * This function sends an abort command for every SCSI command
11824 * associated with the given virtual port pending on the ring
11825 * filtered by lpfc_sli_validate_fcp_iocb function.
11826 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11827 * FCP iocbs associated with lun specified by tgt_id and lun_id
11828 * parameters
11829 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11830 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11831 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11832 * FCP iocbs associated with virtual port.
11833 * This function returns number of iocbs it aborted .
11834 * This function is called with no locks held right after a taskmgmt
11835 * command is sent.
11836 **/
11837int
11838lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11839			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11840{
11841	struct lpfc_hba *phba = vport->phba;
11842	struct lpfc_io_buf *lpfc_cmd;
11843	struct lpfc_iocbq *abtsiocbq;
11844	struct lpfc_nodelist *ndlp;
11845	struct lpfc_iocbq *iocbq;
11846	IOCB_t *icmd;
11847	int sum, i, ret_val;
11848	unsigned long iflags;
11849	struct lpfc_sli_ring *pring_s4 = NULL;
11850
11851	spin_lock_irqsave(&phba->hbalock, iflags);
11852
11853	/* all I/Os are in process of being flushed */
11854	if (phba->hba_flag & HBA_IOQ_FLUSH) {
11855		spin_unlock_irqrestore(&phba->hbalock, iflags);
11856		return 0;
11857	}
11858	sum = 0;
11859
11860	for (i = 1; i <= phba->sli.last_iotag; i++) {
11861		iocbq = phba->sli.iocbq_lookup[i];
11862
11863		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11864					       cmd) != 0)
11865			continue;
11866
11867		/* Guard against IO completion being called at same time */
11868		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11869		spin_lock(&lpfc_cmd->buf_lock);
11870
11871		if (!lpfc_cmd->pCmd) {
11872			spin_unlock(&lpfc_cmd->buf_lock);
11873			continue;
11874		}
11875
11876		if (phba->sli_rev == LPFC_SLI_REV4) {
11877			pring_s4 =
11878			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
11879			if (!pring_s4) {
11880				spin_unlock(&lpfc_cmd->buf_lock);
11881				continue;
11882			}
11883			/* Note: both hbalock and ring_lock must be set here */
11884			spin_lock(&pring_s4->ring_lock);
11885		}
11886
11887		/*
11888		 * If the iocbq is already being aborted, don't take a second
11889		 * action, but do count it.
11890		 */
11891		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11892		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11893			if (phba->sli_rev == LPFC_SLI_REV4)
11894				spin_unlock(&pring_s4->ring_lock);
11895			spin_unlock(&lpfc_cmd->buf_lock);
11896			continue;
11897		}
11898
11899		/* issue ABTS for this IOCB based on iotag */
11900		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11901		if (!abtsiocbq) {
11902			if (phba->sli_rev == LPFC_SLI_REV4)
11903				spin_unlock(&pring_s4->ring_lock);
11904			spin_unlock(&lpfc_cmd->buf_lock);
11905			continue;
11906		}
11907
11908		icmd = &iocbq->iocb;
11909		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11910		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11911		if (phba->sli_rev == LPFC_SLI_REV4)
11912			abtsiocbq->iocb.un.acxri.abortIoTag =
11913							 iocbq->sli4_xritag;
11914		else
11915			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11916		abtsiocbq->iocb.ulpLe = 1;
11917		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11918		abtsiocbq->vport = vport;
11919
11920		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11921		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11922		if (iocbq->iocb_flag & LPFC_IO_FCP)
11923			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11924		if (iocbq->iocb_flag & LPFC_IO_FOF)
11925			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11926
11927		ndlp = lpfc_cmd->rdata->pnode;
11928
11929		if (lpfc_is_link_up(phba) &&
11930		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11931			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11932		else
11933			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11934
11935		/* Setup callback routine and issue the command. */
11936		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11937
11938		/*
11939		 * Indicate the IO is being aborted by the driver and set
11940		 * the caller's flag into the aborted IO.
11941		 */
11942		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11943
11944		if (phba->sli_rev == LPFC_SLI_REV4) {
11945			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11946							abtsiocbq, 0);
11947			spin_unlock(&pring_s4->ring_lock);
11948		} else {
11949			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11950							abtsiocbq, 0);
11951		}
11952
11953		spin_unlock(&lpfc_cmd->buf_lock);
11954
11955		if (ret_val == IOCB_ERROR)
11956			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11957		else
11958			sum++;
11959	}
11960	spin_unlock_irqrestore(&phba->hbalock, iflags);
11961	return sum;
11962}
11963
11964/**
11965 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11966 * @phba: Pointer to HBA context object.
11967 * @cmdiocbq: Pointer to command iocb.
11968 * @rspiocbq: Pointer to response iocb.
11969 *
11970 * This function is the completion handler for iocbs issued using
11971 * lpfc_sli_issue_iocb_wait function. This function is called by the
11972 * ring event handler function without any lock held. This function
11973 * can be called from both worker thread context and interrupt
11974 * context. This function also can be called from other thread which
11975 * cleans up the SLI layer objects.
11976 * This function copy the contents of the response iocb to the
11977 * response iocb memory object provided by the caller of
11978 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11979 * sleeps for the iocb completion.
11980 **/
11981static void
11982lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11983			struct lpfc_iocbq *cmdiocbq,
11984			struct lpfc_iocbq *rspiocbq)
11985{
11986	wait_queue_head_t *pdone_q;
11987	unsigned long iflags;
11988	struct lpfc_io_buf *lpfc_cmd;
11989
11990	spin_lock_irqsave(&phba->hbalock, iflags);
11991	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11992
11993		/*
11994		 * A time out has occurred for the iocb.  If a time out
11995		 * completion handler has been supplied, call it.  Otherwise,
11996		 * just free the iocbq.
11997		 */
11998
11999		spin_unlock_irqrestore(&phba->hbalock, iflags);
12000		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
12001		cmdiocbq->wait_iocb_cmpl = NULL;
12002		if (cmdiocbq->iocb_cmpl)
12003			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
12004		else
12005			lpfc_sli_release_iocbq(phba, cmdiocbq);
12006		return;
12007	}
12008
12009	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
12010	if (cmdiocbq->context2 && rspiocbq)
12011		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
12012		       &rspiocbq->iocb, sizeof(IOCB_t));
12013
12014	/* Set the exchange busy flag for task management commands */
12015	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
12016		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
12017		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
12018			cur_iocbq);
12019		if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
12020			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
12021		else
12022			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
12023	}
12024
12025	pdone_q = cmdiocbq->context_un.wait_queue;
12026	if (pdone_q)
12027		wake_up(pdone_q);
12028	spin_unlock_irqrestore(&phba->hbalock, iflags);
12029	return;
12030}
12031
12032/**
12033 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
12034 * @phba: Pointer to HBA context object..
12035 * @piocbq: Pointer to command iocb.
12036 * @flag: Flag to test.
12037 *
12038 * This routine grabs the hbalock and then test the iocb_flag to
12039 * see if the passed in flag is set.
12040 * Returns:
12041 * 1 if flag is set.
12042 * 0 if flag is not set.
12043 **/
12044static int
12045lpfc_chk_iocb_flg(struct lpfc_hba *phba,
12046		 struct lpfc_iocbq *piocbq, uint32_t flag)
12047{
12048	unsigned long iflags;
12049	int ret;
12050
12051	spin_lock_irqsave(&phba->hbalock, iflags);
12052	ret = piocbq->iocb_flag & flag;
12053	spin_unlock_irqrestore(&phba->hbalock, iflags);
12054	return ret;
12055
12056}
12057
12058/**
12059 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
12060 * @phba: Pointer to HBA context object..
12061 * @ring_number: Ring number
12062 * @piocb: Pointer to command iocb.
12063 * @prspiocbq: Pointer to response iocb.
12064 * @timeout: Timeout in number of seconds.
12065 *
12066 * This function issues the iocb to firmware and waits for the
12067 * iocb to complete. The iocb_cmpl field of the shall be used
12068 * to handle iocbs which time out. If the field is NULL, the
12069 * function shall free the iocbq structure.  If more clean up is
12070 * needed, the caller is expected to provide a completion function
12071 * that will provide the needed clean up.  If the iocb command is
12072 * not completed within timeout seconds, the function will either
12073 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
12074 * completion function set in the iocb_cmpl field and then return
12075 * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
12076 * resources if this function returns IOCB_TIMEDOUT.
12077 * The function waits for the iocb completion using an
12078 * non-interruptible wait.
12079 * This function will sleep while waiting for iocb completion.
12080 * So, this function should not be called from any context which
12081 * does not allow sleeping. Due to the same reason, this function
12082 * cannot be called with interrupt disabled.
12083 * This function assumes that the iocb completions occur while
12084 * this function sleep. So, this function cannot be called from
12085 * the thread which process iocb completion for this ring.
12086 * This function clears the iocb_flag of the iocb object before
12087 * issuing the iocb and the iocb completion handler sets this
12088 * flag and wakes this thread when the iocb completes.
12089 * The contents of the response iocb will be copied to prspiocbq
12090 * by the completion handler when the command completes.
12091 * This function returns IOCB_SUCCESS when success.
12092 * This function is called with no lock held.
12093 **/
12094int
12095lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
12096			 uint32_t ring_number,
12097			 struct lpfc_iocbq *piocb,
12098			 struct lpfc_iocbq *prspiocbq,
12099			 uint32_t timeout)
12100{
12101	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
12102	long timeleft, timeout_req = 0;
12103	int retval = IOCB_SUCCESS;
12104	uint32_t creg_val;
12105	struct lpfc_iocbq *iocb;
12106	int txq_cnt = 0;
12107	int txcmplq_cnt = 0;
12108	struct lpfc_sli_ring *pring;
12109	unsigned long iflags;
12110	bool iocb_completed = true;
12111
12112	if (phba->sli_rev >= LPFC_SLI_REV4)
12113		pring = lpfc_sli4_calc_ring(phba, piocb);
12114	else
12115		pring = &phba->sli.sli3_ring[ring_number];
12116	/*
12117	 * If the caller has provided a response iocbq buffer, then context2
12118	 * is NULL or its an error.
12119	 */
12120	if (prspiocbq) {
12121		if (piocb->context2)
12122			return IOCB_ERROR;
12123		piocb->context2 = prspiocbq;
12124	}
12125
12126	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
12127	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
12128	piocb->context_un.wait_queue = &done_q;
12129	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
12130
12131	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12132		if (lpfc_readl(phba->HCregaddr, &creg_val))
12133			return IOCB_ERROR;
12134		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
12135		writel(creg_val, phba->HCregaddr);
12136		readl(phba->HCregaddr); /* flush */
12137	}
12138
12139	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
12140				     SLI_IOCB_RET_IOCB);
12141	if (retval == IOCB_SUCCESS) {
12142		timeout_req = msecs_to_jiffies(timeout * 1000);
12143		timeleft = wait_event_timeout(done_q,
12144				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
12145				timeout_req);
12146		spin_lock_irqsave(&phba->hbalock, iflags);
12147		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
12148
12149			/*
12150			 * IOCB timed out.  Inform the wake iocb wait
12151			 * completion function and set local status
12152			 */
12153
12154			iocb_completed = false;
12155			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
12156		}
12157		spin_unlock_irqrestore(&phba->hbalock, iflags);
12158		if (iocb_completed) {
12159			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12160					"0331 IOCB wake signaled\n");
12161			/* Note: we are not indicating if the IOCB has a success
12162			 * status or not - that's for the caller to check.
12163			 * IOCB_SUCCESS means just that the command was sent and
12164			 * completed. Not that it completed successfully.
12165			 * */
12166		} else if (timeleft == 0) {
12167			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12168					"0338 IOCB wait timeout error - no "
12169					"wake response Data x%x\n", timeout);
12170			retval = IOCB_TIMEDOUT;
12171		} else {
12172			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12173					"0330 IOCB wake NOT set, "
12174					"Data x%x x%lx\n",
12175					timeout, (timeleft / jiffies));
12176			retval = IOCB_TIMEDOUT;
12177		}
12178	} else if (retval == IOCB_BUSY) {
12179		if (phba->cfg_log_verbose & LOG_SLI) {
12180			list_for_each_entry(iocb, &pring->txq, list) {
12181				txq_cnt++;
12182			}
12183			list_for_each_entry(iocb, &pring->txcmplq, list) {
12184				txcmplq_cnt++;
12185			}
12186			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12187				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12188				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12189		}
12190		return retval;
12191	} else {
12192		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12193				"0332 IOCB wait issue failed, Data x%x\n",
12194				retval);
12195		retval = IOCB_ERROR;
12196	}
12197
12198	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12199		if (lpfc_readl(phba->HCregaddr, &creg_val))
12200			return IOCB_ERROR;
12201		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12202		writel(creg_val, phba->HCregaddr);
12203		readl(phba->HCregaddr); /* flush */
12204	}
12205
12206	if (prspiocbq)
12207		piocb->context2 = NULL;
12208
12209	piocb->context_un.wait_queue = NULL;
12210	piocb->iocb_cmpl = NULL;
12211	return retval;
12212}
12213
12214/**
12215 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12216 * @phba: Pointer to HBA context object.
12217 * @pmboxq: Pointer to driver mailbox object.
12218 * @timeout: Timeout in number of seconds.
12219 *
12220 * This function issues the mailbox to firmware and waits for the
12221 * mailbox command to complete. If the mailbox command is not
12222 * completed within timeout seconds, it returns MBX_TIMEOUT.
12223 * The function waits for the mailbox completion using an
12224 * interruptible wait. If the thread is woken up due to a
12225 * signal, MBX_TIMEOUT error is returned to the caller. Caller
12226 * should not free the mailbox resources, if this function returns
12227 * MBX_TIMEOUT.
12228 * This function will sleep while waiting for mailbox completion.
12229 * So, this function should not be called from any context which
12230 * does not allow sleeping. Due to the same reason, this function
12231 * cannot be called with interrupt disabled.
12232 * This function assumes that the mailbox completion occurs while
12233 * this function sleep. So, this function cannot be called from
12234 * the worker thread which processes mailbox completion.
12235 * This function is called in the context of HBA management
12236 * applications.
12237 * This function returns MBX_SUCCESS when successful.
12238 * This function is called with no lock held.
12239 **/
12240int
12241lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12242			 uint32_t timeout)
12243{
12244	struct completion mbox_done;
12245	int retval;
12246	unsigned long flag;
12247
12248	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12249	/* setup wake call as IOCB callback */
12250	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12251
12252	/* setup context3 field to pass wait_queue pointer to wake function  */
12253	init_completion(&mbox_done);
12254	pmboxq->context3 = &mbox_done;
12255	/* now issue the command */
12256	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12257	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12258		wait_for_completion_timeout(&mbox_done,
12259					    msecs_to_jiffies(timeout * 1000));
12260
12261		spin_lock_irqsave(&phba->hbalock, flag);
12262		pmboxq->context3 = NULL;
12263		/*
12264		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12265		 * else do not free the resources.
12266		 */
12267		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12268			retval = MBX_SUCCESS;
12269		} else {
12270			retval = MBX_TIMEOUT;
12271			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12272		}
12273		spin_unlock_irqrestore(&phba->hbalock, flag);
12274	}
12275	return retval;
12276}
12277
12278/**
12279 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12280 * @phba: Pointer to HBA context.
12281 * @mbx_action: Mailbox shutdown options.
12282 *
12283 * This function is called to shutdown the driver's mailbox sub-system.
12284 * It first marks the mailbox sub-system is in a block state to prevent
12285 * the asynchronous mailbox command from issued off the pending mailbox
12286 * command queue. If the mailbox command sub-system shutdown is due to
12287 * HBA error conditions such as EEH or ERATT, this routine shall invoke
12288 * the mailbox sub-system flush routine to forcefully bring down the
12289 * mailbox sub-system. Otherwise, if it is due to normal condition (such
12290 * as with offline or HBA function reset), this routine will wait for the
12291 * outstanding mailbox command to complete before invoking the mailbox
12292 * sub-system flush routine to gracefully bring down mailbox sub-system.
12293 **/
12294void
12295lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12296{
12297	struct lpfc_sli *psli = &phba->sli;
12298	unsigned long timeout;
12299
12300	if (mbx_action == LPFC_MBX_NO_WAIT) {
12301		/* delay 100ms for port state */
12302		msleep(100);
12303		lpfc_sli_mbox_sys_flush(phba);
12304		return;
12305	}
12306	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12307
12308	/* Disable softirqs, including timers from obtaining phba->hbalock */
12309	local_bh_disable();
12310
12311	spin_lock_irq(&phba->hbalock);
12312	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12313
12314	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12315		/* Determine how long we might wait for the active mailbox
12316		 * command to be gracefully completed by firmware.
12317		 */
12318		if (phba->sli.mbox_active)
12319			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12320						phba->sli.mbox_active) *
12321						1000) + jiffies;
12322		spin_unlock_irq(&phba->hbalock);
12323
12324		/* Enable softirqs again, done with phba->hbalock */
12325		local_bh_enable();
12326
12327		while (phba->sli.mbox_active) {
12328			/* Check active mailbox complete status every 2ms */
12329			msleep(2);
12330			if (time_after(jiffies, timeout))
12331				/* Timeout, let the mailbox flush routine to
12332				 * forcefully release active mailbox command
12333				 */
12334				break;
12335		}
12336	} else {
12337		spin_unlock_irq(&phba->hbalock);
12338
12339		/* Enable softirqs again, done with phba->hbalock */
12340		local_bh_enable();
12341	}
12342
12343	lpfc_sli_mbox_sys_flush(phba);
12344}
12345
12346/**
12347 * lpfc_sli_eratt_read - read sli-3 error attention events
12348 * @phba: Pointer to HBA context.
12349 *
12350 * This function is called to read the SLI3 device error attention registers
12351 * for possible error attention events. The caller must hold the hostlock
12352 * with spin_lock_irq().
12353 *
12354 * This function returns 1 when there is Error Attention in the Host Attention
12355 * Register and returns 0 otherwise.
12356 **/
12357static int
12358lpfc_sli_eratt_read(struct lpfc_hba *phba)
12359{
12360	uint32_t ha_copy;
12361
12362	/* Read chip Host Attention (HA) register */
12363	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12364		goto unplug_err;
12365
12366	if (ha_copy & HA_ERATT) {
12367		/* Read host status register to retrieve error event */
12368		if (lpfc_sli_read_hs(phba))
12369			goto unplug_err;
12370
12371		/* Check if there is a deferred error condition is active */
12372		if ((HS_FFER1 & phba->work_hs) &&
12373		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12374		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12375			phba->hba_flag |= DEFER_ERATT;
12376			/* Clear all interrupt enable conditions */
12377			writel(0, phba->HCregaddr);
12378			readl(phba->HCregaddr);
12379		}
12380
12381		/* Set the driver HA work bitmap */
12382		phba->work_ha |= HA_ERATT;
12383		/* Indicate polling handles this ERATT */
12384		phba->hba_flag |= HBA_ERATT_HANDLED;
12385		return 1;
12386	}
12387	return 0;
12388
12389unplug_err:
12390	/* Set the driver HS work bitmap */
12391	phba->work_hs |= UNPLUG_ERR;
12392	/* Set the driver HA work bitmap */
12393	phba->work_ha |= HA_ERATT;
12394	/* Indicate polling handles this ERATT */
12395	phba->hba_flag |= HBA_ERATT_HANDLED;
12396	return 1;
12397}
12398
12399/**
12400 * lpfc_sli4_eratt_read - read sli-4 error attention events
12401 * @phba: Pointer to HBA context.
12402 *
12403 * This function is called to read the SLI4 device error attention registers
12404 * for possible error attention events. The caller must hold the hostlock
12405 * with spin_lock_irq().
12406 *
12407 * This function returns 1 when there is Error Attention in the Host Attention
12408 * Register and returns 0 otherwise.
12409 **/
12410static int
12411lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12412{
12413	uint32_t uerr_sta_hi, uerr_sta_lo;
12414	uint32_t if_type, portsmphr;
12415	struct lpfc_register portstat_reg;
12416	u32 logmask;
12417
12418	/*
12419	 * For now, use the SLI4 device internal unrecoverable error
12420	 * registers for error attention. This can be changed later.
12421	 */
12422	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12423	switch (if_type) {
12424	case LPFC_SLI_INTF_IF_TYPE_0:
12425		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12426			&uerr_sta_lo) ||
12427			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12428			&uerr_sta_hi)) {
12429			phba->work_hs |= UNPLUG_ERR;
12430			phba->work_ha |= HA_ERATT;
12431			phba->hba_flag |= HBA_ERATT_HANDLED;
12432			return 1;
12433		}
12434		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12435		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12436			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12437					"1423 HBA Unrecoverable error: "
12438					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12439					"ue_mask_lo_reg=0x%x, "
12440					"ue_mask_hi_reg=0x%x\n",
12441					uerr_sta_lo, uerr_sta_hi,
12442					phba->sli4_hba.ue_mask_lo,
12443					phba->sli4_hba.ue_mask_hi);
12444			phba->work_status[0] = uerr_sta_lo;
12445			phba->work_status[1] = uerr_sta_hi;
12446			phba->work_ha |= HA_ERATT;
12447			phba->hba_flag |= HBA_ERATT_HANDLED;
12448			return 1;
12449		}
12450		break;
12451	case LPFC_SLI_INTF_IF_TYPE_2:
12452	case LPFC_SLI_INTF_IF_TYPE_6:
12453		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12454			&portstat_reg.word0) ||
12455			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12456			&portsmphr)){
12457			phba->work_hs |= UNPLUG_ERR;
12458			phba->work_ha |= HA_ERATT;
12459			phba->hba_flag |= HBA_ERATT_HANDLED;
12460			return 1;
12461		}
12462		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12463			phba->work_status[0] =
12464				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12465			phba->work_status[1] =
12466				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12467			logmask = LOG_TRACE_EVENT;
12468			if (phba->work_status[0] ==
12469				SLIPORT_ERR1_REG_ERR_CODE_2 &&
12470			    phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART)
12471				logmask = LOG_SLI;
12472			lpfc_printf_log(phba, KERN_ERR, logmask,
12473					"2885 Port Status Event: "
12474					"port status reg 0x%x, "
12475					"port smphr reg 0x%x, "
12476					"error 1=0x%x, error 2=0x%x\n",
12477					portstat_reg.word0,
12478					portsmphr,
12479					phba->work_status[0],
12480					phba->work_status[1]);
12481			phba->work_ha |= HA_ERATT;
12482			phba->hba_flag |= HBA_ERATT_HANDLED;
12483			return 1;
12484		}
12485		break;
12486	case LPFC_SLI_INTF_IF_TYPE_1:
12487	default:
12488		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12489				"2886 HBA Error Attention on unsupported "
12490				"if type %d.", if_type);
12491		return 1;
12492	}
12493
12494	return 0;
12495}
12496
12497/**
12498 * lpfc_sli_check_eratt - check error attention events
12499 * @phba: Pointer to HBA context.
12500 *
12501 * This function is called from timer soft interrupt context to check HBA's
12502 * error attention register bit for error attention events.
12503 *
12504 * This function returns 1 when there is Error Attention in the Host Attention
12505 * Register and returns 0 otherwise.
12506 **/
12507int
12508lpfc_sli_check_eratt(struct lpfc_hba *phba)
12509{
12510	uint32_t ha_copy;
12511
12512	/* If somebody is waiting to handle an eratt, don't process it
12513	 * here. The brdkill function will do this.
12514	 */
12515	if (phba->link_flag & LS_IGNORE_ERATT)
12516		return 0;
12517
12518	/* Check if interrupt handler handles this ERATT */
12519	spin_lock_irq(&phba->hbalock);
12520	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12521		/* Interrupt handler has handled ERATT */
12522		spin_unlock_irq(&phba->hbalock);
12523		return 0;
12524	}
12525
12526	/*
12527	 * If there is deferred error attention, do not check for error
12528	 * attention
12529	 */
12530	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12531		spin_unlock_irq(&phba->hbalock);
12532		return 0;
12533	}
12534
12535	/* If PCI channel is offline, don't process it */
12536	if (unlikely(pci_channel_offline(phba->pcidev))) {
12537		spin_unlock_irq(&phba->hbalock);
12538		return 0;
12539	}
12540
12541	switch (phba->sli_rev) {
12542	case LPFC_SLI_REV2:
12543	case LPFC_SLI_REV3:
12544		/* Read chip Host Attention (HA) register */
12545		ha_copy = lpfc_sli_eratt_read(phba);
12546		break;
12547	case LPFC_SLI_REV4:
12548		/* Read device Uncoverable Error (UERR) registers */
12549		ha_copy = lpfc_sli4_eratt_read(phba);
12550		break;
12551	default:
12552		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12553				"0299 Invalid SLI revision (%d)\n",
12554				phba->sli_rev);
12555		ha_copy = 0;
12556		break;
12557	}
12558	spin_unlock_irq(&phba->hbalock);
12559
12560	return ha_copy;
12561}
12562
12563/**
12564 * lpfc_intr_state_check - Check device state for interrupt handling
12565 * @phba: Pointer to HBA context.
12566 *
12567 * This inline routine checks whether a device or its PCI slot is in a state
12568 * that the interrupt should be handled.
12569 *
12570 * This function returns 0 if the device or the PCI slot is in a state that
12571 * interrupt should be handled, otherwise -EIO.
12572 */
12573static inline int
12574lpfc_intr_state_check(struct lpfc_hba *phba)
12575{
12576	/* If the pci channel is offline, ignore all the interrupts */
12577	if (unlikely(pci_channel_offline(phba->pcidev)))
12578		return -EIO;
12579
12580	/* Update device level interrupt statistics */
12581	phba->sli.slistat.sli_intr++;
12582
12583	/* Ignore all interrupts during initialization. */
12584	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12585		return -EIO;
12586
12587	return 0;
12588}
12589
12590/**
12591 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12592 * @irq: Interrupt number.
12593 * @dev_id: The device context pointer.
12594 *
12595 * This function is directly called from the PCI layer as an interrupt
12596 * service routine when device with SLI-3 interface spec is enabled with
12597 * MSI-X multi-message interrupt mode and there are slow-path events in
12598 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12599 * interrupt mode, this function is called as part of the device-level
12600 * interrupt handler. When the PCI slot is in error recovery or the HBA
12601 * is undergoing initialization, the interrupt handler will not process
12602 * the interrupt. The link attention and ELS ring attention events are
12603 * handled by the worker thread. The interrupt handler signals the worker
12604 * thread and returns for these events. This function is called without
12605 * any lock held. It gets the hbalock to access and update SLI data
12606 * structures.
12607 *
12608 * This function returns IRQ_HANDLED when interrupt is handled else it
12609 * returns IRQ_NONE.
12610 **/
12611irqreturn_t
12612lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12613{
12614	struct lpfc_hba  *phba;
12615	uint32_t ha_copy, hc_copy;
12616	uint32_t work_ha_copy;
12617	unsigned long status;
12618	unsigned long iflag;
12619	uint32_t control;
12620
12621	MAILBOX_t *mbox, *pmbox;
12622	struct lpfc_vport *vport;
12623	struct lpfc_nodelist *ndlp;
12624	struct lpfc_dmabuf *mp;
12625	LPFC_MBOXQ_t *pmb;
12626	int rc;
12627
12628	/*
12629	 * Get the driver's phba structure from the dev_id and
12630	 * assume the HBA is not interrupting.
12631	 */
12632	phba = (struct lpfc_hba *)dev_id;
12633
12634	if (unlikely(!phba))
12635		return IRQ_NONE;
12636
12637	/*
12638	 * Stuff needs to be attented to when this function is invoked as an
12639	 * individual interrupt handler in MSI-X multi-message interrupt mode
12640	 */
12641	if (phba->intr_type == MSIX) {
12642		/* Check device state for handling interrupt */
12643		if (lpfc_intr_state_check(phba))
12644			return IRQ_NONE;
12645		/* Need to read HA REG for slow-path events */
12646		spin_lock_irqsave(&phba->hbalock, iflag);
12647		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12648			goto unplug_error;
12649		/* If somebody is waiting to handle an eratt don't process it
12650		 * here. The brdkill function will do this.
12651		 */
12652		if (phba->link_flag & LS_IGNORE_ERATT)
12653			ha_copy &= ~HA_ERATT;
12654		/* Check the need for handling ERATT in interrupt handler */
12655		if (ha_copy & HA_ERATT) {
12656			if (phba->hba_flag & HBA_ERATT_HANDLED)
12657				/* ERATT polling has handled ERATT */
12658				ha_copy &= ~HA_ERATT;
12659			else
12660				/* Indicate interrupt handler handles ERATT */
12661				phba->hba_flag |= HBA_ERATT_HANDLED;
12662		}
12663
12664		/*
12665		 * If there is deferred error attention, do not check for any
12666		 * interrupt.
12667		 */
12668		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12669			spin_unlock_irqrestore(&phba->hbalock, iflag);
12670			return IRQ_NONE;
12671		}
12672
12673		/* Clear up only attention source related to slow-path */
12674		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12675			goto unplug_error;
12676
12677		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12678			HC_LAINT_ENA | HC_ERINT_ENA),
12679			phba->HCregaddr);
12680		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12681			phba->HAregaddr);
12682		writel(hc_copy, phba->HCregaddr);
12683		readl(phba->HAregaddr); /* flush */
12684		spin_unlock_irqrestore(&phba->hbalock, iflag);
12685	} else
12686		ha_copy = phba->ha_copy;
12687
12688	work_ha_copy = ha_copy & phba->work_ha_mask;
12689
12690	if (work_ha_copy) {
12691		if (work_ha_copy & HA_LATT) {
12692			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12693				/*
12694				 * Turn off Link Attention interrupts
12695				 * until CLEAR_LA done
12696				 */
12697				spin_lock_irqsave(&phba->hbalock, iflag);
12698				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12699				if (lpfc_readl(phba->HCregaddr, &control))
12700					goto unplug_error;
12701				control &= ~HC_LAINT_ENA;
12702				writel(control, phba->HCregaddr);
12703				readl(phba->HCregaddr); /* flush */
12704				spin_unlock_irqrestore(&phba->hbalock, iflag);
12705			}
12706			else
12707				work_ha_copy &= ~HA_LATT;
12708		}
12709
12710		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12711			/*
12712			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12713			 * the only slow ring.
12714			 */
12715			status = (work_ha_copy &
12716				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12717			status >>= (4*LPFC_ELS_RING);
12718			if (status & HA_RXMASK) {
12719				spin_lock_irqsave(&phba->hbalock, iflag);
12720				if (lpfc_readl(phba->HCregaddr, &control))
12721					goto unplug_error;
12722
12723				lpfc_debugfs_slow_ring_trc(phba,
12724				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12725				control, status,
12726				(uint32_t)phba->sli.slistat.sli_intr);
12727
12728				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12729					lpfc_debugfs_slow_ring_trc(phba,
12730						"ISR Disable ring:"
12731						"pwork:x%x hawork:x%x wait:x%x",
12732						phba->work_ha, work_ha_copy,
12733						(uint32_t)((unsigned long)
12734						&phba->work_waitq));
12735
12736					control &=
12737					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12738					writel(control, phba->HCregaddr);
12739					readl(phba->HCregaddr); /* flush */
12740				}
12741				else {
12742					lpfc_debugfs_slow_ring_trc(phba,
12743						"ISR slow ring:   pwork:"
12744						"x%x hawork:x%x wait:x%x",
12745						phba->work_ha, work_ha_copy,
12746						(uint32_t)((unsigned long)
12747						&phba->work_waitq));
12748				}
12749				spin_unlock_irqrestore(&phba->hbalock, iflag);
12750			}
12751		}
12752		spin_lock_irqsave(&phba->hbalock, iflag);
12753		if (work_ha_copy & HA_ERATT) {
12754			if (lpfc_sli_read_hs(phba))
12755				goto unplug_error;
12756			/*
12757			 * Check if there is a deferred error condition
12758			 * is active
12759			 */
12760			if ((HS_FFER1 & phba->work_hs) &&
12761				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12762				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12763				  phba->work_hs)) {
12764				phba->hba_flag |= DEFER_ERATT;
12765				/* Clear all interrupt enable conditions */
12766				writel(0, phba->HCregaddr);
12767				readl(phba->HCregaddr);
12768			}
12769		}
12770
12771		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12772			pmb = phba->sli.mbox_active;
12773			pmbox = &pmb->u.mb;
12774			mbox = phba->mbox;
12775			vport = pmb->vport;
12776
12777			/* First check out the status word */
12778			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12779			if (pmbox->mbxOwner != OWN_HOST) {
12780				spin_unlock_irqrestore(&phba->hbalock, iflag);
12781				/*
12782				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12783				 * mbxStatus <status>
12784				 */
12785				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12786						"(%d):0304 Stray Mailbox "
12787						"Interrupt mbxCommand x%x "
12788						"mbxStatus x%x\n",
12789						(vport ? vport->vpi : 0),
12790						pmbox->mbxCommand,
12791						pmbox->mbxStatus);
12792				/* clear mailbox attention bit */
12793				work_ha_copy &= ~HA_MBATT;
12794			} else {
12795				phba->sli.mbox_active = NULL;
12796				spin_unlock_irqrestore(&phba->hbalock, iflag);
12797				phba->last_completion_time = jiffies;
12798				del_timer(&phba->sli.mbox_tmo);
12799				if (pmb->mbox_cmpl) {
12800					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12801							MAILBOX_CMD_SIZE);
12802					if (pmb->out_ext_byte_len &&
12803						pmb->ctx_buf)
12804						lpfc_sli_pcimem_bcopy(
12805						phba->mbox_ext,
12806						pmb->ctx_buf,
12807						pmb->out_ext_byte_len);
12808				}
12809				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12810					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12811
12812					lpfc_debugfs_disc_trc(vport,
12813						LPFC_DISC_TRC_MBOX_VPORT,
12814						"MBOX dflt rpi: : "
12815						"status:x%x rpi:x%x",
12816						(uint32_t)pmbox->mbxStatus,
12817						pmbox->un.varWords[0], 0);
12818
12819					if (!pmbox->mbxStatus) {
12820						mp = (struct lpfc_dmabuf *)
12821							(pmb->ctx_buf);
12822						ndlp = (struct lpfc_nodelist *)
12823							pmb->ctx_ndlp;
12824
12825						/* Reg_LOGIN of dflt RPI was
12826						 * successful. new lets get
12827						 * rid of the RPI using the
12828						 * same mbox buffer.
12829						 */
12830						lpfc_unreg_login(phba,
12831							vport->vpi,
12832							pmbox->un.varWords[0],
12833							pmb);
12834						pmb->mbox_cmpl =
12835							lpfc_mbx_cmpl_dflt_rpi;
12836						pmb->ctx_buf = mp;
12837						pmb->ctx_ndlp = ndlp;
12838						pmb->vport = vport;
12839						rc = lpfc_sli_issue_mbox(phba,
12840								pmb,
12841								MBX_NOWAIT);
12842						if (rc != MBX_BUSY)
12843							lpfc_printf_log(phba,
12844							KERN_ERR,
12845							LOG_TRACE_EVENT,
12846							"0350 rc should have"
12847							"been MBX_BUSY\n");
12848						if (rc != MBX_NOT_FINISHED)
12849							goto send_current_mbox;
12850					}
12851				}
12852				spin_lock_irqsave(
12853						&phba->pport->work_port_lock,
12854						iflag);
12855				phba->pport->work_port_events &=
12856					~WORKER_MBOX_TMO;
12857				spin_unlock_irqrestore(
12858						&phba->pport->work_port_lock,
12859						iflag);
12860				lpfc_mbox_cmpl_put(phba, pmb);
12861			}
12862		} else
12863			spin_unlock_irqrestore(&phba->hbalock, iflag);
12864
12865		if ((work_ha_copy & HA_MBATT) &&
12866		    (phba->sli.mbox_active == NULL)) {
12867send_current_mbox:
12868			/* Process next mailbox command if there is one */
12869			do {
12870				rc = lpfc_sli_issue_mbox(phba, NULL,
12871							 MBX_NOWAIT);
12872			} while (rc == MBX_NOT_FINISHED);
12873			if (rc != MBX_SUCCESS)
12874				lpfc_printf_log(phba, KERN_ERR,
12875						LOG_TRACE_EVENT,
12876						"0349 rc should be "
12877						"MBX_SUCCESS\n");
12878		}
12879
12880		spin_lock_irqsave(&phba->hbalock, iflag);
12881		phba->work_ha |= work_ha_copy;
12882		spin_unlock_irqrestore(&phba->hbalock, iflag);
12883		lpfc_worker_wake_up(phba);
12884	}
12885	return IRQ_HANDLED;
12886unplug_error:
12887	spin_unlock_irqrestore(&phba->hbalock, iflag);
12888	return IRQ_HANDLED;
12889
12890} /* lpfc_sli_sp_intr_handler */
12891
12892/**
12893 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12894 * @irq: Interrupt number.
12895 * @dev_id: The device context pointer.
12896 *
12897 * This function is directly called from the PCI layer as an interrupt
12898 * service routine when device with SLI-3 interface spec is enabled with
12899 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12900 * ring event in the HBA. However, when the device is enabled with either
12901 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12902 * device-level interrupt handler. When the PCI slot is in error recovery
12903 * or the HBA is undergoing initialization, the interrupt handler will not
12904 * process the interrupt. The SCSI FCP fast-path ring event are handled in
12905 * the intrrupt context. This function is called without any lock held.
12906 * It gets the hbalock to access and update SLI data structures.
12907 *
12908 * This function returns IRQ_HANDLED when interrupt is handled else it
12909 * returns IRQ_NONE.
12910 **/
12911irqreturn_t
12912lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12913{
12914	struct lpfc_hba  *phba;
12915	uint32_t ha_copy;
12916	unsigned long status;
12917	unsigned long iflag;
12918	struct lpfc_sli_ring *pring;
12919
12920	/* Get the driver's phba structure from the dev_id and
12921	 * assume the HBA is not interrupting.
12922	 */
12923	phba = (struct lpfc_hba *) dev_id;
12924
12925	if (unlikely(!phba))
12926		return IRQ_NONE;
12927
12928	/*
12929	 * Stuff needs to be attented to when this function is invoked as an
12930	 * individual interrupt handler in MSI-X multi-message interrupt mode
12931	 */
12932	if (phba->intr_type == MSIX) {
12933		/* Check device state for handling interrupt */
12934		if (lpfc_intr_state_check(phba))
12935			return IRQ_NONE;
12936		/* Need to read HA REG for FCP ring and other ring events */
12937		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12938			return IRQ_HANDLED;
12939		/* Clear up only attention source related to fast-path */
12940		spin_lock_irqsave(&phba->hbalock, iflag);
12941		/*
12942		 * If there is deferred error attention, do not check for
12943		 * any interrupt.
12944		 */
12945		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12946			spin_unlock_irqrestore(&phba->hbalock, iflag);
12947			return IRQ_NONE;
12948		}
12949		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12950			phba->HAregaddr);
12951		readl(phba->HAregaddr); /* flush */
12952		spin_unlock_irqrestore(&phba->hbalock, iflag);
12953	} else
12954		ha_copy = phba->ha_copy;
12955
12956	/*
12957	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12958	 */
12959	ha_copy &= ~(phba->work_ha_mask);
12960
12961	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12962	status >>= (4*LPFC_FCP_RING);
12963	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12964	if (status & HA_RXMASK)
12965		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12966
12967	if (phba->cfg_multi_ring_support == 2) {
12968		/*
12969		 * Process all events on extra ring. Take the optimized path
12970		 * for extra ring IO.
12971		 */
12972		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12973		status >>= (4*LPFC_EXTRA_RING);
12974		if (status & HA_RXMASK) {
12975			lpfc_sli_handle_fast_ring_event(phba,
12976					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12977					status);
12978		}
12979	}
12980	return IRQ_HANDLED;
12981}  /* lpfc_sli_fp_intr_handler */
12982
12983/**
12984 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12985 * @irq: Interrupt number.
12986 * @dev_id: The device context pointer.
12987 *
12988 * This function is the HBA device-level interrupt handler to device with
12989 * SLI-3 interface spec, called from the PCI layer when either MSI or
12990 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12991 * requires driver attention. This function invokes the slow-path interrupt
12992 * attention handling function and fast-path interrupt attention handling
12993 * function in turn to process the relevant HBA attention events. This
12994 * function is called without any lock held. It gets the hbalock to access
12995 * and update SLI data structures.
12996 *
12997 * This function returns IRQ_HANDLED when interrupt is handled, else it
12998 * returns IRQ_NONE.
12999 **/
13000irqreturn_t
13001lpfc_sli_intr_handler(int irq, void *dev_id)
13002{
13003	struct lpfc_hba  *phba;
13004	irqreturn_t sp_irq_rc, fp_irq_rc;
13005	unsigned long status1, status2;
13006	uint32_t hc_copy;
13007
13008	/*
13009	 * Get the driver's phba structure from the dev_id and
13010	 * assume the HBA is not interrupting.
13011	 */
13012	phba = (struct lpfc_hba *) dev_id;
13013
13014	if (unlikely(!phba))
13015		return IRQ_NONE;
13016
13017	/* Check device state for handling interrupt */
13018	if (lpfc_intr_state_check(phba))
13019		return IRQ_NONE;
13020
13021	spin_lock(&phba->hbalock);
13022	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
13023		spin_unlock(&phba->hbalock);
13024		return IRQ_HANDLED;
13025	}
13026
13027	if (unlikely(!phba->ha_copy)) {
13028		spin_unlock(&phba->hbalock);
13029		return IRQ_NONE;
13030	} else if (phba->ha_copy & HA_ERATT) {
13031		if (phba->hba_flag & HBA_ERATT_HANDLED)
13032			/* ERATT polling has handled ERATT */
13033			phba->ha_copy &= ~HA_ERATT;
13034		else
13035			/* Indicate interrupt handler handles ERATT */
13036			phba->hba_flag |= HBA_ERATT_HANDLED;
13037	}
13038
13039	/*
13040	 * If there is deferred error attention, do not check for any interrupt.
13041	 */
13042	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13043		spin_unlock(&phba->hbalock);
13044		return IRQ_NONE;
13045	}
13046
13047	/* Clear attention sources except link and error attentions */
13048	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
13049		spin_unlock(&phba->hbalock);
13050		return IRQ_HANDLED;
13051	}
13052	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
13053		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
13054		phba->HCregaddr);
13055	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
13056	writel(hc_copy, phba->HCregaddr);
13057	readl(phba->HAregaddr); /* flush */
13058	spin_unlock(&phba->hbalock);
13059
13060	/*
13061	 * Invokes slow-path host attention interrupt handling as appropriate.
13062	 */
13063
13064	/* status of events with mailbox and link attention */
13065	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
13066
13067	/* status of events with ELS ring */
13068	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
13069	status2 >>= (4*LPFC_ELS_RING);
13070
13071	if (status1 || (status2 & HA_RXMASK))
13072		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
13073	else
13074		sp_irq_rc = IRQ_NONE;
13075
13076	/*
13077	 * Invoke fast-path host attention interrupt handling as appropriate.
13078	 */
13079
13080	/* status of events with FCP ring */
13081	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13082	status1 >>= (4*LPFC_FCP_RING);
13083
13084	/* status of events with extra ring */
13085	if (phba->cfg_multi_ring_support == 2) {
13086		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13087		status2 >>= (4*LPFC_EXTRA_RING);
13088	} else
13089		status2 = 0;
13090
13091	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
13092		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
13093	else
13094		fp_irq_rc = IRQ_NONE;
13095
13096	/* Return device-level interrupt handling status */
13097	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
13098}  /* lpfc_sli_intr_handler */
13099
13100/**
13101 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
13102 * @phba: pointer to lpfc hba data structure.
13103 *
13104 * This routine is invoked by the worker thread to process all the pending
13105 * SLI4 els abort xri events.
13106 **/
13107void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
13108{
13109	struct lpfc_cq_event *cq_event;
13110	unsigned long iflags;
13111
13112	/* First, declare the els xri abort event has been handled */
13113	spin_lock_irqsave(&phba->hbalock, iflags);
13114	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
13115	spin_unlock_irqrestore(&phba->hbalock, iflags);
13116
13117	/* Now, handle all the els xri abort events */
13118	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13119	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
13120		/* Get the first event from the head of the event queue */
13121		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
13122				 cq_event, struct lpfc_cq_event, list);
13123		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13124				       iflags);
13125		/* Notify aborted XRI for ELS work queue */
13126		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
13127
13128		/* Free the event processed back to the free pool */
13129		lpfc_sli4_cq_event_release(phba, cq_event);
13130		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13131				  iflags);
13132	}
13133	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13134}
13135
13136/**
13137 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
13138 * @phba: pointer to lpfc hba data structure
13139 * @pIocbIn: pointer to the rspiocbq
13140 * @pIocbOut: pointer to the cmdiocbq
13141 * @wcqe: pointer to the complete wcqe
13142 *
13143 * This routine transfers the fields of a command iocbq to a response iocbq
13144 * by copying all the IOCB fields from command iocbq and transferring the
13145 * completion status information from the complete wcqe.
13146 **/
13147static void
13148lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
13149			      struct lpfc_iocbq *pIocbIn,
13150			      struct lpfc_iocbq *pIocbOut,
13151			      struct lpfc_wcqe_complete *wcqe)
13152{
13153	int numBdes, i;
13154	unsigned long iflags;
13155	uint32_t status, max_response;
13156	struct lpfc_dmabuf *dmabuf;
13157	struct ulp_bde64 *bpl, bde;
13158	size_t offset = offsetof(struct lpfc_iocbq, iocb);
13159
13160	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
13161	       sizeof(struct lpfc_iocbq) - offset);
13162	/* Map WCQE parameters into irspiocb parameters */
13163	status = bf_get(lpfc_wcqe_c_status, wcqe);
13164	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
13165	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
13166		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
13167			pIocbIn->iocb.un.fcpi.fcpi_parm =
13168					pIocbOut->iocb.un.fcpi.fcpi_parm -
13169					wcqe->total_data_placed;
13170		else
13171			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13172	else {
13173		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13174		switch (pIocbOut->iocb.ulpCommand) {
13175		case CMD_ELS_REQUEST64_CR:
13176			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13177			bpl  = (struct ulp_bde64 *)dmabuf->virt;
13178			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
13179			max_response = bde.tus.f.bdeSize;
13180			break;
13181		case CMD_GEN_REQUEST64_CR:
13182			max_response = 0;
13183			if (!pIocbOut->context3)
13184				break;
13185			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
13186					sizeof(struct ulp_bde64);
13187			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13188			bpl = (struct ulp_bde64 *)dmabuf->virt;
13189			for (i = 0; i < numBdes; i++) {
13190				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
13191				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
13192					max_response += bde.tus.f.bdeSize;
13193			}
13194			break;
13195		default:
13196			max_response = wcqe->total_data_placed;
13197			break;
13198		}
13199		if (max_response < wcqe->total_data_placed)
13200			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13201		else
13202			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13203				wcqe->total_data_placed;
13204	}
13205
13206	/* Convert BG errors for completion status */
13207	if (status == CQE_STATUS_DI_ERROR) {
13208		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13209
13210		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13211			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13212		else
13213			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13214
13215		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13216		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13217			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13218				BGS_GUARD_ERR_MASK;
13219		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13220			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13221				BGS_APPTAG_ERR_MASK;
13222		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13223			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13224				BGS_REFTAG_ERR_MASK;
13225
13226		/* Check to see if there was any good data before the error */
13227		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13228			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13229				BGS_HI_WATER_MARK_PRESENT_MASK;
13230			pIocbIn->iocb.unsli3.sli3_bg.bghm =
13231				wcqe->total_data_placed;
13232		}
13233
13234		/*
13235		* Set ALL the error bits to indicate we don't know what
13236		* type of error it is.
13237		*/
13238		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13239			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13240				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13241				BGS_GUARD_ERR_MASK);
13242	}
13243
13244	/* Pick up HBA exchange busy condition */
13245	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13246		spin_lock_irqsave(&phba->hbalock, iflags);
13247		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13248		spin_unlock_irqrestore(&phba->hbalock, iflags);
13249	}
13250}
13251
13252/**
13253 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13254 * @phba: Pointer to HBA context object.
13255 * @irspiocbq: Pointer to work-queue completion queue entry.
13256 *
13257 * This routine handles an ELS work-queue completion event and construct
13258 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13259 * discovery engine to handle.
13260 *
13261 * Return: Pointer to the receive IOCBQ, NULL otherwise.
13262 **/
13263static struct lpfc_iocbq *
13264lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13265			       struct lpfc_iocbq *irspiocbq)
13266{
13267	struct lpfc_sli_ring *pring;
13268	struct lpfc_iocbq *cmdiocbq;
13269	struct lpfc_wcqe_complete *wcqe;
13270	unsigned long iflags;
13271
13272	pring = lpfc_phba_elsring(phba);
13273	if (unlikely(!pring))
13274		return NULL;
13275
13276	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13277	pring->stats.iocb_event++;
13278	/* Look up the ELS command IOCB and create pseudo response IOCB */
13279	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13280				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13281	if (unlikely(!cmdiocbq)) {
13282		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13283				"0386 ELS complete with no corresponding "
13284				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13285				wcqe->word0, wcqe->total_data_placed,
13286				wcqe->parameter, wcqe->word3);
13287		lpfc_sli_release_iocbq(phba, irspiocbq);
13288		return NULL;
13289	}
13290
13291	spin_lock_irqsave(&pring->ring_lock, iflags);
13292	/* Put the iocb back on the txcmplq */
13293	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13294	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13295
13296	/* Fake the irspiocbq and copy necessary response information */
13297	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13298
13299	return irspiocbq;
13300}
13301
13302inline struct lpfc_cq_event *
13303lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13304{
13305	struct lpfc_cq_event *cq_event;
13306
13307	/* Allocate a new internal CQ_EVENT entry */
13308	cq_event = lpfc_sli4_cq_event_alloc(phba);
13309	if (!cq_event) {
13310		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13311				"0602 Failed to alloc CQ_EVENT entry\n");
13312		return NULL;
13313	}
13314
13315	/* Move the CQE into the event */
13316	memcpy(&cq_event->cqe, entry, size);
13317	return cq_event;
13318}
13319
13320/**
13321 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13322 * @phba: Pointer to HBA context object.
13323 * @mcqe: Pointer to mailbox completion queue entry.
13324 *
13325 * This routine process a mailbox completion queue entry with asynchronous
13326 * event.
13327 *
13328 * Return: true if work posted to worker thread, otherwise false.
13329 **/
13330static bool
13331lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13332{
13333	struct lpfc_cq_event *cq_event;
13334	unsigned long iflags;
13335
13336	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13337			"0392 Async Event: word0:x%x, word1:x%x, "
13338			"word2:x%x, word3:x%x\n", mcqe->word0,
13339			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13340
13341	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13342	if (!cq_event)
13343		return false;
13344
13345	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
13346	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13347	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
13348
13349	/* Set the async event flag */
13350	spin_lock_irqsave(&phba->hbalock, iflags);
13351	phba->hba_flag |= ASYNC_EVENT;
13352	spin_unlock_irqrestore(&phba->hbalock, iflags);
13353
13354	return true;
13355}
13356
13357/**
13358 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13359 * @phba: Pointer to HBA context object.
13360 * @mcqe: Pointer to mailbox completion queue entry.
13361 *
13362 * This routine process a mailbox completion queue entry with mailbox
13363 * completion event.
13364 *
13365 * Return: true if work posted to worker thread, otherwise false.
13366 **/
13367static bool
13368lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13369{
13370	uint32_t mcqe_status;
13371	MAILBOX_t *mbox, *pmbox;
13372	struct lpfc_mqe *mqe;
13373	struct lpfc_vport *vport;
13374	struct lpfc_nodelist *ndlp;
13375	struct lpfc_dmabuf *mp;
13376	unsigned long iflags;
13377	LPFC_MBOXQ_t *pmb;
13378	bool workposted = false;
13379	int rc;
13380
13381	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13382	if (!bf_get(lpfc_trailer_completed, mcqe))
13383		goto out_no_mqe_complete;
13384
13385	/* Get the reference to the active mbox command */
13386	spin_lock_irqsave(&phba->hbalock, iflags);
13387	pmb = phba->sli.mbox_active;
13388	if (unlikely(!pmb)) {
13389		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13390				"1832 No pending MBOX command to handle\n");
13391		spin_unlock_irqrestore(&phba->hbalock, iflags);
13392		goto out_no_mqe_complete;
13393	}
13394	spin_unlock_irqrestore(&phba->hbalock, iflags);
13395	mqe = &pmb->u.mqe;
13396	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13397	mbox = phba->mbox;
13398	vport = pmb->vport;
13399
13400	/* Reset heartbeat timer */
13401	phba->last_completion_time = jiffies;
13402	del_timer(&phba->sli.mbox_tmo);
13403
13404	/* Move mbox data to caller's mailbox region, do endian swapping */
13405	if (pmb->mbox_cmpl && mbox)
13406		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13407
13408	/*
13409	 * For mcqe errors, conditionally move a modified error code to
13410	 * the mbox so that the error will not be missed.
13411	 */
13412	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13413	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13414		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13415			bf_set(lpfc_mqe_status, mqe,
13416			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13417	}
13418	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13419		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13420		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13421				      "MBOX dflt rpi: status:x%x rpi:x%x",
13422				      mcqe_status,
13423				      pmbox->un.varWords[0], 0);
13424		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13425			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13426			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13427			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13428			 * RID of the PPI using the same mbox buffer.
13429			 */
13430			lpfc_unreg_login(phba, vport->vpi,
13431					 pmbox->un.varWords[0], pmb);
13432			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13433			pmb->ctx_buf = mp;
13434			pmb->ctx_ndlp = ndlp;
13435			pmb->vport = vport;
13436			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13437			if (rc != MBX_BUSY)
13438				lpfc_printf_log(phba, KERN_ERR,
13439						LOG_TRACE_EVENT,
13440						"0385 rc should "
13441						"have been MBX_BUSY\n");
13442			if (rc != MBX_NOT_FINISHED)
13443				goto send_current_mbox;
13444		}
13445	}
13446	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13447	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13448	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13449
13450	/* There is mailbox completion work to do */
13451	spin_lock_irqsave(&phba->hbalock, iflags);
13452	__lpfc_mbox_cmpl_put(phba, pmb);
13453	phba->work_ha |= HA_MBATT;
13454	spin_unlock_irqrestore(&phba->hbalock, iflags);
13455	workposted = true;
13456
13457send_current_mbox:
13458	spin_lock_irqsave(&phba->hbalock, iflags);
13459	/* Release the mailbox command posting token */
13460	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13461	/* Setting active mailbox pointer need to be in sync to flag clear */
13462	phba->sli.mbox_active = NULL;
13463	if (bf_get(lpfc_trailer_consumed, mcqe))
13464		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13465	spin_unlock_irqrestore(&phba->hbalock, iflags);
13466	/* Wake up worker thread to post the next pending mailbox command */
13467	lpfc_worker_wake_up(phba);
13468	return workposted;
13469
13470out_no_mqe_complete:
13471	spin_lock_irqsave(&phba->hbalock, iflags);
13472	if (bf_get(lpfc_trailer_consumed, mcqe))
13473		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13474	spin_unlock_irqrestore(&phba->hbalock, iflags);
13475	return false;
13476}
13477
13478/**
13479 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13480 * @phba: Pointer to HBA context object.
13481 * @cq: Pointer to associated CQ
13482 * @cqe: Pointer to mailbox completion queue entry.
13483 *
13484 * This routine process a mailbox completion queue entry, it invokes the
13485 * proper mailbox complete handling or asynchronous event handling routine
13486 * according to the MCQE's async bit.
13487 *
13488 * Return: true if work posted to worker thread, otherwise false.
13489 **/
13490static bool
13491lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13492			 struct lpfc_cqe *cqe)
13493{
13494	struct lpfc_mcqe mcqe;
13495	bool workposted;
13496
13497	cq->CQ_mbox++;
13498
13499	/* Copy the mailbox MCQE and convert endian order as needed */
13500	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13501
13502	/* Invoke the proper event handling routine */
13503	if (!bf_get(lpfc_trailer_async, &mcqe))
13504		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13505	else
13506		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13507	return workposted;
13508}
13509
13510/**
13511 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13512 * @phba: Pointer to HBA context object.
13513 * @cq: Pointer to associated CQ
13514 * @wcqe: Pointer to work-queue completion queue entry.
13515 *
13516 * This routine handles an ELS work-queue completion event.
13517 *
13518 * Return: true if work posted to worker thread, otherwise false.
13519 **/
13520static bool
13521lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13522			     struct lpfc_wcqe_complete *wcqe)
13523{
13524	struct lpfc_iocbq *irspiocbq;
13525	unsigned long iflags;
13526	struct lpfc_sli_ring *pring = cq->pring;
13527	int txq_cnt = 0;
13528	int txcmplq_cnt = 0;
13529
13530	/* Check for response status */
13531	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13532		/* Log the error status */
13533		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13534				"0357 ELS CQE error: status=x%x: "
13535				"CQE: %08x %08x %08x %08x\n",
13536				bf_get(lpfc_wcqe_c_status, wcqe),
13537				wcqe->word0, wcqe->total_data_placed,
13538				wcqe->parameter, wcqe->word3);
13539	}
13540
13541	/* Get an irspiocbq for later ELS response processing use */
13542	irspiocbq = lpfc_sli_get_iocbq(phba);
13543	if (!irspiocbq) {
13544		if (!list_empty(&pring->txq))
13545			txq_cnt++;
13546		if (!list_empty(&pring->txcmplq))
13547			txcmplq_cnt++;
13548		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13549			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13550			"els_txcmplq_cnt=%d\n",
13551			txq_cnt, phba->iocb_cnt,
13552			txcmplq_cnt);
13553		return false;
13554	}
13555
13556	/* Save off the slow-path queue event for work thread to process */
13557	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13558	spin_lock_irqsave(&phba->hbalock, iflags);
13559	list_add_tail(&irspiocbq->cq_event.list,
13560		      &phba->sli4_hba.sp_queue_event);
13561	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13562	spin_unlock_irqrestore(&phba->hbalock, iflags);
13563
13564	return true;
13565}
13566
13567/**
13568 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13569 * @phba: Pointer to HBA context object.
13570 * @wcqe: Pointer to work-queue completion queue entry.
13571 *
13572 * This routine handles slow-path WQ entry consumed event by invoking the
13573 * proper WQ release routine to the slow-path WQ.
13574 **/
13575static void
13576lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13577			     struct lpfc_wcqe_release *wcqe)
13578{
13579	/* sanity check on queue memory */
13580	if (unlikely(!phba->sli4_hba.els_wq))
13581		return;
13582	/* Check for the slow-path ELS work queue */
13583	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13584		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13585				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13586	else
13587		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13588				"2579 Slow-path wqe consume event carries "
13589				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13590				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13591				phba->sli4_hba.els_wq->queue_id);
13592}
13593
13594/**
13595 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13596 * @phba: Pointer to HBA context object.
13597 * @cq: Pointer to a WQ completion queue.
13598 * @wcqe: Pointer to work-queue completion queue entry.
13599 *
13600 * This routine handles an XRI abort event.
13601 *
13602 * Return: true if work posted to worker thread, otherwise false.
13603 **/
13604static bool
13605lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13606				   struct lpfc_queue *cq,
13607				   struct sli4_wcqe_xri_aborted *wcqe)
13608{
13609	bool workposted = false;
13610	struct lpfc_cq_event *cq_event;
13611	unsigned long iflags;
13612
13613	switch (cq->subtype) {
13614	case LPFC_IO:
13615		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13616		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13617			/* Notify aborted XRI for NVME work queue */
13618			if (phba->nvmet_support)
13619				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13620		}
13621		workposted = false;
13622		break;
13623	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13624	case LPFC_ELS:
13625		cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
13626		if (!cq_event) {
13627			workposted = false;
13628			break;
13629		}
13630		cq_event->hdwq = cq->hdwq;
13631		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13632				  iflags);
13633		list_add_tail(&cq_event->list,
13634			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13635		/* Set the els xri abort event flag */
13636		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13637		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13638				       iflags);
13639		workposted = true;
13640		break;
13641	default:
13642		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13643				"0603 Invalid CQ subtype %d: "
13644				"%08x %08x %08x %08x\n",
13645				cq->subtype, wcqe->word0, wcqe->parameter,
13646				wcqe->word2, wcqe->word3);
13647		workposted = false;
13648		break;
13649	}
13650	return workposted;
13651}
13652
13653#define FC_RCTL_MDS_DIAGS	0xF4
13654
13655/**
13656 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13657 * @phba: Pointer to HBA context object.
13658 * @rcqe: Pointer to receive-queue completion queue entry.
13659 *
13660 * This routine process a receive-queue completion queue entry.
13661 *
13662 * Return: true if work posted to worker thread, otherwise false.
13663 **/
13664static bool
13665lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13666{
13667	bool workposted = false;
13668	struct fc_frame_header *fc_hdr;
13669	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13670	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13671	struct lpfc_nvmet_tgtport *tgtp;
13672	struct hbq_dmabuf *dma_buf;
13673	uint32_t status, rq_id;
13674	unsigned long iflags;
13675
13676	/* sanity check on queue memory */
13677	if (unlikely(!hrq) || unlikely(!drq))
13678		return workposted;
13679
13680	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13681		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13682	else
13683		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13684	if (rq_id != hrq->queue_id)
13685		goto out;
13686
13687	status = bf_get(lpfc_rcqe_status, rcqe);
13688	switch (status) {
13689	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13690		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13691				"2537 Receive Frame Truncated!!\n");
13692		fallthrough;
13693	case FC_STATUS_RQ_SUCCESS:
13694		spin_lock_irqsave(&phba->hbalock, iflags);
13695		lpfc_sli4_rq_release(hrq, drq);
13696		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13697		if (!dma_buf) {
13698			hrq->RQ_no_buf_found++;
13699			spin_unlock_irqrestore(&phba->hbalock, iflags);
13700			goto out;
13701		}
13702		hrq->RQ_rcv_buf++;
13703		hrq->RQ_buf_posted--;
13704		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13705
13706		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13707
13708		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13709		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13710			spin_unlock_irqrestore(&phba->hbalock, iflags);
13711			/* Handle MDS Loopback frames */
13712			if  (!(phba->pport->load_flag & FC_UNLOADING))
13713				lpfc_sli4_handle_mds_loopback(phba->pport,
13714							      dma_buf);
13715			else
13716				lpfc_in_buf_free(phba, &dma_buf->dbuf);
13717			break;
13718		}
13719
13720		/* save off the frame for the work thread to process */
13721		list_add_tail(&dma_buf->cq_event.list,
13722			      &phba->sli4_hba.sp_queue_event);
13723		/* Frame received */
13724		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13725		spin_unlock_irqrestore(&phba->hbalock, iflags);
13726		workposted = true;
13727		break;
13728	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13729		if (phba->nvmet_support) {
13730			tgtp = phba->targetport->private;
13731			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13732					"6402 RQE Error x%x, posted %d err_cnt "
13733					"%d: %x %x %x\n",
13734					status, hrq->RQ_buf_posted,
13735					hrq->RQ_no_posted_buf,
13736					atomic_read(&tgtp->rcv_fcp_cmd_in),
13737					atomic_read(&tgtp->rcv_fcp_cmd_out),
13738					atomic_read(&tgtp->xmt_fcp_release));
13739		}
13740		fallthrough;
13741
13742	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13743		hrq->RQ_no_posted_buf++;
13744		/* Post more buffers if possible */
13745		spin_lock_irqsave(&phba->hbalock, iflags);
13746		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13747		spin_unlock_irqrestore(&phba->hbalock, iflags);
13748		workposted = true;
13749		break;
13750	}
13751out:
13752	return workposted;
13753}
13754
13755/**
13756 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13757 * @phba: Pointer to HBA context object.
13758 * @cq: Pointer to the completion queue.
13759 * @cqe: Pointer to a completion queue entry.
13760 *
13761 * This routine process a slow-path work-queue or receive queue completion queue
13762 * entry.
13763 *
13764 * Return: true if work posted to worker thread, otherwise false.
13765 **/
13766static bool
13767lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13768			 struct lpfc_cqe *cqe)
13769{
13770	struct lpfc_cqe cqevt;
13771	bool workposted = false;
13772
13773	/* Copy the work queue CQE and convert endian order if needed */
13774	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13775
13776	/* Check and process for different type of WCQE and dispatch */
13777	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13778	case CQE_CODE_COMPL_WQE:
13779		/* Process the WQ/RQ complete event */
13780		phba->last_completion_time = jiffies;
13781		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13782				(struct lpfc_wcqe_complete *)&cqevt);
13783		break;
13784	case CQE_CODE_RELEASE_WQE:
13785		/* Process the WQ release event */
13786		lpfc_sli4_sp_handle_rel_wcqe(phba,
13787				(struct lpfc_wcqe_release *)&cqevt);
13788		break;
13789	case CQE_CODE_XRI_ABORTED:
13790		/* Process the WQ XRI abort event */
13791		phba->last_completion_time = jiffies;
13792		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13793				(struct sli4_wcqe_xri_aborted *)&cqevt);
13794		break;
13795	case CQE_CODE_RECEIVE:
13796	case CQE_CODE_RECEIVE_V1:
13797		/* Process the RQ event */
13798		phba->last_completion_time = jiffies;
13799		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13800				(struct lpfc_rcqe *)&cqevt);
13801		break;
13802	default:
13803		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13804				"0388 Not a valid WCQE code: x%x\n",
13805				bf_get(lpfc_cqe_code, &cqevt));
13806		break;
13807	}
13808	return workposted;
13809}
13810
13811/**
13812 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13813 * @phba: Pointer to HBA context object.
13814 * @eqe: Pointer to fast-path event queue entry.
13815 * @speq: Pointer to slow-path event queue.
13816 *
13817 * This routine process a event queue entry from the slow-path event queue.
13818 * It will check the MajorCode and MinorCode to determine this is for a
13819 * completion event on a completion queue, if not, an error shall be logged
13820 * and just return. Otherwise, it will get to the corresponding completion
13821 * queue and process all the entries on that completion queue, rearm the
13822 * completion queue, and then return.
13823 *
13824 **/
13825static void
13826lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13827	struct lpfc_queue *speq)
13828{
13829	struct lpfc_queue *cq = NULL, *childq;
13830	uint16_t cqid;
13831	int ret = 0;
13832
13833	/* Get the reference to the corresponding CQ */
13834	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13835
13836	list_for_each_entry(childq, &speq->child_list, list) {
13837		if (childq->queue_id == cqid) {
13838			cq = childq;
13839			break;
13840		}
13841	}
13842	if (unlikely(!cq)) {
13843		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13844			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13845					"0365 Slow-path CQ identifier "
13846					"(%d) does not exist\n", cqid);
13847		return;
13848	}
13849
13850	/* Save EQ associated with this CQ */
13851	cq->assoc_qp = speq;
13852
13853	if (is_kdump_kernel())
13854		ret = queue_work(phba->wq, &cq->spwork);
13855	else
13856		ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
13857
13858	if (!ret)
13859		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13860				"0390 Cannot schedule queue work "
13861				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13862				cqid, cq->queue_id, raw_smp_processor_id());
13863}
13864
13865/**
13866 * __lpfc_sli4_process_cq - Process elements of a CQ
13867 * @phba: Pointer to HBA context object.
13868 * @cq: Pointer to CQ to be processed
13869 * @handler: Routine to process each cqe
13870 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13871 * @poll_mode: Polling mode we were called from
13872 *
13873 * This routine processes completion queue entries in a CQ. While a valid
13874 * queue element is found, the handler is called. During processing checks
13875 * are made for periodic doorbell writes to let the hardware know of
13876 * element consumption.
13877 *
13878 * If the max limit on cqes to process is hit, or there are no more valid
13879 * entries, the loop stops. If we processed a sufficient number of elements,
13880 * meaning there is sufficient load, rather than rearming and generating
13881 * another interrupt, a cq rescheduling delay will be set. A delay of 0
13882 * indicates no rescheduling.
13883 *
13884 * Returns True if work scheduled, False otherwise.
13885 **/
13886static bool
13887__lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13888	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13889			struct lpfc_cqe *), unsigned long *delay,
13890			enum lpfc_poll_mode poll_mode)
13891{
13892	struct lpfc_cqe *cqe;
13893	bool workposted = false;
13894	int count = 0, consumed = 0;
13895	bool arm = true;
13896
13897	/* default - no reschedule */
13898	*delay = 0;
13899
13900	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13901		goto rearm_and_exit;
13902
13903	/* Process all the entries to the CQ */
13904	cq->q_flag = 0;
13905	cqe = lpfc_sli4_cq_get(cq);
13906	while (cqe) {
13907		workposted |= handler(phba, cq, cqe);
13908		__lpfc_sli4_consume_cqe(phba, cq, cqe);
13909
13910		consumed++;
13911		if (!(++count % cq->max_proc_limit))
13912			break;
13913
13914		if (!(count % cq->notify_interval)) {
13915			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13916						LPFC_QUEUE_NOARM);
13917			consumed = 0;
13918			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
13919		}
13920
13921		if (count == LPFC_NVMET_CQ_NOTIFY)
13922			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13923
13924		cqe = lpfc_sli4_cq_get(cq);
13925	}
13926	if (count >= phba->cfg_cq_poll_threshold) {
13927		*delay = 1;
13928		arm = false;
13929	}
13930
13931	/* Note: complete the irq_poll softirq before rearming CQ */
13932	if (poll_mode == LPFC_IRQ_POLL)
13933		irq_poll_complete(&cq->iop);
13934
13935	/* Track the max number of CQEs processed in 1 EQ */
13936	if (count > cq->CQ_max_cqe)
13937		cq->CQ_max_cqe = count;
13938
13939	cq->assoc_qp->EQ_cqe_cnt += count;
13940
13941	/* Catch the no cq entry condition */
13942	if (unlikely(count == 0))
13943		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13944				"0369 No entry from completion queue "
13945				"qid=%d\n", cq->queue_id);
13946
13947	xchg(&cq->queue_claimed, 0);
13948
13949rearm_and_exit:
13950	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13951			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13952
13953	return workposted;
13954}
13955
13956/**
13957 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13958 * @cq: pointer to CQ to process
13959 *
13960 * This routine calls the cq processing routine with a handler specific
13961 * to the type of queue bound to it.
13962 *
13963 * The CQ routine returns two values: the first is the calling status,
13964 * which indicates whether work was queued to the  background discovery
13965 * thread. If true, the routine should wakeup the discovery thread;
13966 * the second is the delay parameter. If non-zero, rather than rearming
13967 * the CQ and yet another interrupt, the CQ handler should be queued so
13968 * that it is processed in a subsequent polling action. The value of
13969 * the delay indicates when to reschedule it.
13970 **/
13971static void
13972__lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13973{
13974	struct lpfc_hba *phba = cq->phba;
13975	unsigned long delay;
13976	bool workposted = false;
13977	int ret = 0;
13978
13979	/* Process and rearm the CQ */
13980	switch (cq->type) {
13981	case LPFC_MCQ:
13982		workposted |= __lpfc_sli4_process_cq(phba, cq,
13983						lpfc_sli4_sp_handle_mcqe,
13984						&delay, LPFC_QUEUE_WORK);
13985		break;
13986	case LPFC_WCQ:
13987		if (cq->subtype == LPFC_IO)
13988			workposted |= __lpfc_sli4_process_cq(phba, cq,
13989						lpfc_sli4_fp_handle_cqe,
13990						&delay, LPFC_QUEUE_WORK);
13991		else
13992			workposted |= __lpfc_sli4_process_cq(phba, cq,
13993						lpfc_sli4_sp_handle_cqe,
13994						&delay, LPFC_QUEUE_WORK);
13995		break;
13996	default:
13997		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13998				"0370 Invalid completion queue type (%d)\n",
13999				cq->type);
14000		return;
14001	}
14002
14003	if (delay) {
14004		if (is_kdump_kernel())
14005			ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14006						delay);
14007		else
14008			ret = queue_delayed_work_on(cq->chann, phba->wq,
14009						&cq->sched_spwork, delay);
14010		if (!ret)
14011			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14012				"0394 Cannot schedule queue work "
14013				"for cqid=%d on CPU %d\n",
14014				cq->queue_id, cq->chann);
14015	}
14016
14017	/* wake up worker thread if there are works to be done */
14018	if (workposted)
14019		lpfc_worker_wake_up(phba);
14020}
14021
14022/**
14023 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14024 *   interrupt
14025 * @work: pointer to work element
14026 *
14027 * translates from the work handler and calls the slow-path handler.
14028 **/
14029static void
14030lpfc_sli4_sp_process_cq(struct work_struct *work)
14031{
14032	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14033
14034	__lpfc_sli4_sp_process_cq(cq);
14035}
14036
14037/**
14038 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
14039 * @work: pointer to work element
14040 *
14041 * translates from the work handler and calls the slow-path handler.
14042 **/
14043static void
14044lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
14045{
14046	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14047					struct lpfc_queue, sched_spwork);
14048
14049	__lpfc_sli4_sp_process_cq(cq);
14050}
14051
14052/**
14053 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
14054 * @phba: Pointer to HBA context object.
14055 * @cq: Pointer to associated CQ
14056 * @wcqe: Pointer to work-queue completion queue entry.
14057 *
14058 * This routine process a fast-path work queue completion entry from fast-path
14059 * event queue for FCP command response completion.
14060 **/
14061static void
14062lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14063			     struct lpfc_wcqe_complete *wcqe)
14064{
14065	struct lpfc_sli_ring *pring = cq->pring;
14066	struct lpfc_iocbq *cmdiocbq;
14067	struct lpfc_iocbq irspiocbq;
14068	unsigned long iflags;
14069
14070	/* Check for response status */
14071	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14072		/* If resource errors reported from HBA, reduce queue
14073		 * depth of the SCSI device.
14074		 */
14075		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
14076		     IOSTAT_LOCAL_REJECT)) &&
14077		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
14078		     IOERR_NO_RESOURCES))
14079			phba->lpfc_rampdown_queue_depth(phba);
14080
14081		/* Log the cmpl status */
14082		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14083				"0373 FCP CQE cmpl: status=x%x: "
14084				"CQE: %08x %08x %08x %08x\n",
14085				bf_get(lpfc_wcqe_c_status, wcqe),
14086				wcqe->word0, wcqe->total_data_placed,
14087				wcqe->parameter, wcqe->word3);
14088	}
14089
14090	/* Look up the FCP command IOCB and create pseudo response IOCB */
14091	spin_lock_irqsave(&pring->ring_lock, iflags);
14092	pring->stats.iocb_event++;
14093	spin_unlock_irqrestore(&pring->ring_lock, iflags);
14094	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14095				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14096	if (unlikely(!cmdiocbq)) {
14097		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14098				"0374 FCP complete with no corresponding "
14099				"cmdiocb: iotag (%d)\n",
14100				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14101		return;
14102	}
14103#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14104	cmdiocbq->isr_timestamp = cq->isr_timestamp;
14105#endif
14106	if (cmdiocbq->iocb_cmpl == NULL) {
14107		if (cmdiocbq->wqe_cmpl) {
14108			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14109				spin_lock_irqsave(&phba->hbalock, iflags);
14110				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14111				spin_unlock_irqrestore(&phba->hbalock, iflags);
14112			}
14113
14114			/* Pass the cmd_iocb and the wcqe to the upper layer */
14115			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
14116			return;
14117		}
14118		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14119				"0375 FCP cmdiocb not callback function "
14120				"iotag: (%d)\n",
14121				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14122		return;
14123	}
14124
14125	/* Fake the irspiocb and copy necessary response information */
14126	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
14127
14128	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14129		spin_lock_irqsave(&phba->hbalock, iflags);
14130		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14131		spin_unlock_irqrestore(&phba->hbalock, iflags);
14132	}
14133
14134	/* Pass the cmd_iocb and the rsp state to the upper layer */
14135	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
14136}
14137
14138/**
14139 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
14140 * @phba: Pointer to HBA context object.
14141 * @cq: Pointer to completion queue.
14142 * @wcqe: Pointer to work-queue completion queue entry.
14143 *
14144 * This routine handles an fast-path WQ entry consumed event by invoking the
14145 * proper WQ release routine to the slow-path WQ.
14146 **/
14147static void
14148lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14149			     struct lpfc_wcqe_release *wcqe)
14150{
14151	struct lpfc_queue *childwq;
14152	bool wqid_matched = false;
14153	uint16_t hba_wqid;
14154
14155	/* Check for fast-path FCP work queue release */
14156	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
14157	list_for_each_entry(childwq, &cq->child_list, list) {
14158		if (childwq->queue_id == hba_wqid) {
14159			lpfc_sli4_wq_release(childwq,
14160					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14161			if (childwq->q_flag & HBA_NVMET_WQFULL)
14162				lpfc_nvmet_wqfull_process(phba, childwq);
14163			wqid_matched = true;
14164			break;
14165		}
14166	}
14167	/* Report warning log message if no match found */
14168	if (wqid_matched != true)
14169		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14170				"2580 Fast-path wqe consume event carries "
14171				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
14172}
14173
14174/**
14175 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
14176 * @phba: Pointer to HBA context object.
14177 * @cq: Pointer to completion queue.
14178 * @rcqe: Pointer to receive-queue completion queue entry.
14179 *
14180 * This routine process a receive-queue completion queue entry.
14181 *
14182 * Return: true if work posted to worker thread, otherwise false.
14183 **/
14184static bool
14185lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14186			    struct lpfc_rcqe *rcqe)
14187{
14188	bool workposted = false;
14189	struct lpfc_queue *hrq;
14190	struct lpfc_queue *drq;
14191	struct rqb_dmabuf *dma_buf;
14192	struct fc_frame_header *fc_hdr;
14193	struct lpfc_nvmet_tgtport *tgtp;
14194	uint32_t status, rq_id;
14195	unsigned long iflags;
14196	uint32_t fctl, idx;
14197
14198	if ((phba->nvmet_support == 0) ||
14199	    (phba->sli4_hba.nvmet_cqset == NULL))
14200		return workposted;
14201
14202	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
14203	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
14204	drq = phba->sli4_hba.nvmet_mrq_data[idx];
14205
14206	/* sanity check on queue memory */
14207	if (unlikely(!hrq) || unlikely(!drq))
14208		return workposted;
14209
14210	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14211		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14212	else
14213		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14214
14215	if ((phba->nvmet_support == 0) ||
14216	    (rq_id != hrq->queue_id))
14217		return workposted;
14218
14219	status = bf_get(lpfc_rcqe_status, rcqe);
14220	switch (status) {
14221	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14222		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14223				"6126 Receive Frame Truncated!!\n");
14224		fallthrough;
14225	case FC_STATUS_RQ_SUCCESS:
14226		spin_lock_irqsave(&phba->hbalock, iflags);
14227		lpfc_sli4_rq_release(hrq, drq);
14228		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
14229		if (!dma_buf) {
14230			hrq->RQ_no_buf_found++;
14231			spin_unlock_irqrestore(&phba->hbalock, iflags);
14232			goto out;
14233		}
14234		spin_unlock_irqrestore(&phba->hbalock, iflags);
14235		hrq->RQ_rcv_buf++;
14236		hrq->RQ_buf_posted--;
14237		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14238
14239		/* Just some basic sanity checks on FCP Command frame */
14240		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14241			fc_hdr->fh_f_ctl[1] << 8 |
14242			fc_hdr->fh_f_ctl[2]);
14243		if (((fctl &
14244		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14245		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14246		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14247			goto drop;
14248
14249		if (fc_hdr->fh_type == FC_TYPE_FCP) {
14250			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14251			lpfc_nvmet_unsol_fcp_event(
14252				phba, idx, dma_buf, cq->isr_timestamp,
14253				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14254			return false;
14255		}
14256drop:
14257		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14258		break;
14259	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14260		if (phba->nvmet_support) {
14261			tgtp = phba->targetport->private;
14262			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14263					"6401 RQE Error x%x, posted %d err_cnt "
14264					"%d: %x %x %x\n",
14265					status, hrq->RQ_buf_posted,
14266					hrq->RQ_no_posted_buf,
14267					atomic_read(&tgtp->rcv_fcp_cmd_in),
14268					atomic_read(&tgtp->rcv_fcp_cmd_out),
14269					atomic_read(&tgtp->xmt_fcp_release));
14270		}
14271		fallthrough;
14272
14273	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14274		hrq->RQ_no_posted_buf++;
14275		/* Post more buffers if possible */
14276		break;
14277	}
14278out:
14279	return workposted;
14280}
14281
14282/**
14283 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14284 * @phba: adapter with cq
14285 * @cq: Pointer to the completion queue.
14286 * @cqe: Pointer to fast-path completion queue entry.
14287 *
14288 * This routine process a fast-path work queue completion entry from fast-path
14289 * event queue for FCP command response completion.
14290 *
14291 * Return: true if work posted to worker thread, otherwise false.
14292 **/
14293static bool
14294lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14295			 struct lpfc_cqe *cqe)
14296{
14297	struct lpfc_wcqe_release wcqe;
14298	bool workposted = false;
14299
14300	/* Copy the work queue CQE and convert endian order if needed */
14301	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14302
14303	/* Check and process for different type of WCQE and dispatch */
14304	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14305	case CQE_CODE_COMPL_WQE:
14306	case CQE_CODE_NVME_ERSP:
14307		cq->CQ_wq++;
14308		/* Process the WQ complete event */
14309		phba->last_completion_time = jiffies;
14310		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14311			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14312				(struct lpfc_wcqe_complete *)&wcqe);
14313		break;
14314	case CQE_CODE_RELEASE_WQE:
14315		cq->CQ_release_wqe++;
14316		/* Process the WQ release event */
14317		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14318				(struct lpfc_wcqe_release *)&wcqe);
14319		break;
14320	case CQE_CODE_XRI_ABORTED:
14321		cq->CQ_xri_aborted++;
14322		/* Process the WQ XRI abort event */
14323		phba->last_completion_time = jiffies;
14324		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14325				(struct sli4_wcqe_xri_aborted *)&wcqe);
14326		break;
14327	case CQE_CODE_RECEIVE_V1:
14328	case CQE_CODE_RECEIVE:
14329		phba->last_completion_time = jiffies;
14330		if (cq->subtype == LPFC_NVMET) {
14331			workposted = lpfc_sli4_nvmet_handle_rcqe(
14332				phba, cq, (struct lpfc_rcqe *)&wcqe);
14333		}
14334		break;
14335	default:
14336		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14337				"0144 Not a valid CQE code: x%x\n",
14338				bf_get(lpfc_wcqe_c_code, &wcqe));
14339		break;
14340	}
14341	return workposted;
14342}
14343
14344/**
14345 * lpfc_sli4_sched_cq_work - Schedules cq work
14346 * @phba: Pointer to HBA context object.
14347 * @cq: Pointer to CQ
14348 * @cqid: CQ ID
14349 *
14350 * This routine checks the poll mode of the CQ corresponding to
14351 * cq->chann, then either schedules a softirq or queue_work to complete
14352 * cq work.
14353 *
14354 * queue_work path is taken if in NVMET mode, or if poll_mode is in
14355 * LPFC_QUEUE_WORK mode.  Otherwise, softirq path is taken.
14356 *
14357 **/
14358static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
14359				    struct lpfc_queue *cq, uint16_t cqid)
14360{
14361	int ret = 0;
14362
14363	switch (cq->poll_mode) {
14364	case LPFC_IRQ_POLL:
14365		irq_poll_sched(&cq->iop);
14366		break;
14367	case LPFC_QUEUE_WORK:
14368	default:
14369		if (is_kdump_kernel())
14370			ret = queue_work(phba->wq, &cq->irqwork);
14371		else
14372			ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
14373		if (!ret)
14374			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14375					"0383 Cannot schedule queue work "
14376					"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14377					cqid, cq->queue_id,
14378					raw_smp_processor_id());
14379	}
14380}
14381
14382/**
14383 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14384 * @phba: Pointer to HBA context object.
14385 * @eq: Pointer to the queue structure.
14386 * @eqe: Pointer to fast-path event queue entry.
14387 *
14388 * This routine process a event queue entry from the fast-path event queue.
14389 * It will check the MajorCode and MinorCode to determine this is for a
14390 * completion event on a completion queue, if not, an error shall be logged
14391 * and just return. Otherwise, it will get to the corresponding completion
14392 * queue and process all the entries on the completion queue, rearm the
14393 * completion queue, and then return.
14394 **/
14395static void
14396lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14397			 struct lpfc_eqe *eqe)
14398{
14399	struct lpfc_queue *cq = NULL;
14400	uint32_t qidx = eq->hdwq;
14401	uint16_t cqid, id;
14402
14403	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14404		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14405				"0366 Not a valid completion "
14406				"event: majorcode=x%x, minorcode=x%x\n",
14407				bf_get_le32(lpfc_eqe_major_code, eqe),
14408				bf_get_le32(lpfc_eqe_minor_code, eqe));
14409		return;
14410	}
14411
14412	/* Get the reference to the corresponding CQ */
14413	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14414
14415	/* Use the fast lookup method first */
14416	if (cqid <= phba->sli4_hba.cq_max) {
14417		cq = phba->sli4_hba.cq_lookup[cqid];
14418		if (cq)
14419			goto  work_cq;
14420	}
14421
14422	/* Next check for NVMET completion */
14423	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14424		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14425		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14426			/* Process NVMET unsol rcv */
14427			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14428			goto  process_cq;
14429		}
14430	}
14431
14432	if (phba->sli4_hba.nvmels_cq &&
14433	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14434		/* Process NVME unsol rcv */
14435		cq = phba->sli4_hba.nvmels_cq;
14436	}
14437
14438	/* Otherwise this is a Slow path event */
14439	if (cq == NULL) {
14440		lpfc_sli4_sp_handle_eqe(phba, eqe,
14441					phba->sli4_hba.hdwq[qidx].hba_eq);
14442		return;
14443	}
14444
14445process_cq:
14446	if (unlikely(cqid != cq->queue_id)) {
14447		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14448				"0368 Miss-matched fast-path completion "
14449				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14450				cqid, cq->queue_id);
14451		return;
14452	}
14453
14454work_cq:
14455#if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14456	if (phba->ktime_on)
14457		cq->isr_timestamp = ktime_get_ns();
14458	else
14459		cq->isr_timestamp = 0;
14460#endif
14461	lpfc_sli4_sched_cq_work(phba, cq, cqid);
14462}
14463
14464/**
14465 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14466 * @cq: Pointer to CQ to be processed
14467 * @poll_mode: Enum lpfc_poll_state to determine poll mode
14468 *
14469 * This routine calls the cq processing routine with the handler for
14470 * fast path CQEs.
14471 *
14472 * The CQ routine returns two values: the first is the calling status,
14473 * which indicates whether work was queued to the  background discovery
14474 * thread. If true, the routine should wakeup the discovery thread;
14475 * the second is the delay parameter. If non-zero, rather than rearming
14476 * the CQ and yet another interrupt, the CQ handler should be queued so
14477 * that it is processed in a subsequent polling action. The value of
14478 * the delay indicates when to reschedule it.
14479 **/
14480static void
14481__lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
14482			   enum lpfc_poll_mode poll_mode)
14483{
14484	struct lpfc_hba *phba = cq->phba;
14485	unsigned long delay;
14486	bool workposted = false;
14487	int ret = 0;
14488
14489	/* process and rearm the CQ */
14490	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14491					     &delay, poll_mode);
14492
14493	if (delay) {
14494		if (is_kdump_kernel())
14495			ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
14496						delay);
14497		else
14498			ret = queue_delayed_work_on(cq->chann, phba->wq,
14499						&cq->sched_irqwork, delay);
14500		if (!ret)
14501			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14502					"0367 Cannot schedule queue work "
14503					"for cqid=%d on CPU %d\n",
14504					cq->queue_id, cq->chann);
14505	}
14506
14507	/* wake up worker thread if there are works to be done */
14508	if (workposted)
14509		lpfc_worker_wake_up(phba);
14510}
14511
14512/**
14513 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14514 *   interrupt
14515 * @work: pointer to work element
14516 *
14517 * translates from the work handler and calls the fast-path handler.
14518 **/
14519static void
14520lpfc_sli4_hba_process_cq(struct work_struct *work)
14521{
14522	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14523
14524	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14525}
14526
14527/**
14528 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14529 * @work: pointer to work element
14530 *
14531 * translates from the work handler and calls the fast-path handler.
14532 **/
14533static void
14534lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14535{
14536	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14537					struct lpfc_queue, sched_irqwork);
14538
14539	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14540}
14541
14542/**
14543 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14544 * @irq: Interrupt number.
14545 * @dev_id: The device context pointer.
14546 *
14547 * This function is directly called from the PCI layer as an interrupt
14548 * service routine when device with SLI-4 interface spec is enabled with
14549 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14550 * ring event in the HBA. However, when the device is enabled with either
14551 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14552 * device-level interrupt handler. When the PCI slot is in error recovery
14553 * or the HBA is undergoing initialization, the interrupt handler will not
14554 * process the interrupt. The SCSI FCP fast-path ring event are handled in
14555 * the intrrupt context. This function is called without any lock held.
14556 * It gets the hbalock to access and update SLI data structures. Note that,
14557 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14558 * equal to that of FCP CQ index.
14559 *
14560 * The link attention and ELS ring attention events are handled
14561 * by the worker thread. The interrupt handler signals the worker thread
14562 * and returns for these events. This function is called without any lock
14563 * held. It gets the hbalock to access and update SLI data structures.
14564 *
14565 * This function returns IRQ_HANDLED when interrupt is handled else it
14566 * returns IRQ_NONE.
14567 **/
14568irqreturn_t
14569lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14570{
14571	struct lpfc_hba *phba;
14572	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14573	struct lpfc_queue *fpeq;
14574	unsigned long iflag;
14575	int ecount = 0;
14576	int hba_eqidx;
14577	struct lpfc_eq_intr_info *eqi;
14578
14579	/* Get the driver's phba structure from the dev_id */
14580	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14581	phba = hba_eq_hdl->phba;
14582	hba_eqidx = hba_eq_hdl->idx;
14583
14584	if (unlikely(!phba))
14585		return IRQ_NONE;
14586	if (unlikely(!phba->sli4_hba.hdwq))
14587		return IRQ_NONE;
14588
14589	/* Get to the EQ struct associated with this vector */
14590	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14591	if (unlikely(!fpeq))
14592		return IRQ_NONE;
14593
14594	/* Check device state for handling interrupt */
14595	if (unlikely(lpfc_intr_state_check(phba))) {
14596		/* Check again for link_state with lock held */
14597		spin_lock_irqsave(&phba->hbalock, iflag);
14598		if (phba->link_state < LPFC_LINK_DOWN)
14599			/* Flush, clear interrupt, and rearm the EQ */
14600			lpfc_sli4_eqcq_flush(phba, fpeq);
14601		spin_unlock_irqrestore(&phba->hbalock, iflag);
14602		return IRQ_NONE;
14603	}
14604
14605	eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
14606	eqi->icnt++;
14607
14608	fpeq->last_cpu = raw_smp_processor_id();
14609
14610	if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
14611	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14612	    phba->cfg_auto_imax &&
14613	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14614	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14615		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14616
14617	/* process and rearm the EQ */
14618	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14619
14620	if (unlikely(ecount == 0)) {
14621		fpeq->EQ_no_entry++;
14622		if (phba->intr_type == MSIX)
14623			/* MSI-X treated interrupt served as no EQ share INT */
14624			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14625					"0358 MSI-X interrupt with no EQE\n");
14626		else
14627			/* Non MSI-X treated on interrupt as EQ share INT */
14628			return IRQ_NONE;
14629	}
14630
14631	return IRQ_HANDLED;
14632} /* lpfc_sli4_fp_intr_handler */
14633
14634/**
14635 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14636 * @irq: Interrupt number.
14637 * @dev_id: The device context pointer.
14638 *
14639 * This function is the device-level interrupt handler to device with SLI-4
14640 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14641 * interrupt mode is enabled and there is an event in the HBA which requires
14642 * driver attention. This function invokes the slow-path interrupt attention
14643 * handling function and fast-path interrupt attention handling function in
14644 * turn to process the relevant HBA attention events. This function is called
14645 * without any lock held. It gets the hbalock to access and update SLI data
14646 * structures.
14647 *
14648 * This function returns IRQ_HANDLED when interrupt is handled, else it
14649 * returns IRQ_NONE.
14650 **/
14651irqreturn_t
14652lpfc_sli4_intr_handler(int irq, void *dev_id)
14653{
14654	struct lpfc_hba  *phba;
14655	irqreturn_t hba_irq_rc;
14656	bool hba_handled = false;
14657	int qidx;
14658
14659	/* Get the driver's phba structure from the dev_id */
14660	phba = (struct lpfc_hba *)dev_id;
14661
14662	if (unlikely(!phba))
14663		return IRQ_NONE;
14664
14665	/*
14666	 * Invoke fast-path host attention interrupt handling as appropriate.
14667	 */
14668	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14669		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14670					&phba->sli4_hba.hba_eq_hdl[qidx]);
14671		if (hba_irq_rc == IRQ_HANDLED)
14672			hba_handled |= true;
14673	}
14674
14675	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14676} /* lpfc_sli4_intr_handler */
14677
14678void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14679{
14680	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14681	struct lpfc_queue *eq;
14682	int i = 0;
14683
14684	rcu_read_lock();
14685
14686	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14687		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14688	if (!list_empty(&phba->poll_list))
14689		mod_timer(&phba->cpuhp_poll_timer,
14690			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14691
14692	rcu_read_unlock();
14693}
14694
14695inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14696{
14697	struct lpfc_hba *phba = eq->phba;
14698	int i = 0;
14699
14700	/*
14701	 * Unlocking an irq is one of the entry point to check
14702	 * for re-schedule, but we are good for io submission
14703	 * path as midlayer does a get_cpu to glue us in. Flush
14704	 * out the invalidate queue so we can see the updated
14705	 * value for flag.
14706	 */
14707	smp_rmb();
14708
14709	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14710		/* We will not likely get the completion for the caller
14711		 * during this iteration but i guess that's fine.
14712		 * Future io's coming on this eq should be able to
14713		 * pick it up.  As for the case of single io's, they
14714		 * will be handled through a sched from polling timer
14715		 * function which is currently triggered every 1msec.
14716		 */
14717		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14718
14719	return i;
14720}
14721
14722static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14723{
14724	struct lpfc_hba *phba = eq->phba;
14725
14726	/* kickstart slowpath processing if needed */
14727	if (list_empty(&phba->poll_list))
14728		mod_timer(&phba->cpuhp_poll_timer,
14729			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14730
14731	list_add_rcu(&eq->_poll_list, &phba->poll_list);
14732	synchronize_rcu();
14733}
14734
14735static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
14736{
14737	struct lpfc_hba *phba = eq->phba;
14738
14739	/* Disable slowpath processing for this eq.  Kick start the eq
14740	 * by RE-ARMING the eq's ASAP
14741	 */
14742	list_del_rcu(&eq->_poll_list);
14743	synchronize_rcu();
14744
14745	if (list_empty(&phba->poll_list))
14746		del_timer_sync(&phba->cpuhp_poll_timer);
14747}
14748
14749void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
14750{
14751	struct lpfc_queue *eq, *next;
14752
14753	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
14754		list_del(&eq->_poll_list);
14755
14756	INIT_LIST_HEAD(&phba->poll_list);
14757	synchronize_rcu();
14758}
14759
14760static inline void
14761__lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
14762{
14763	if (mode == eq->mode)
14764		return;
14765	/*
14766	 * currently this function is only called during a hotplug
14767	 * event and the cpu on which this function is executing
14768	 * is going offline.  By now the hotplug has instructed
14769	 * the scheduler to remove this cpu from cpu active mask.
14770	 * So we don't need to work about being put aside by the
14771	 * scheduler for a high priority process.  Yes, the inte-
14772	 * rrupts could come but they are known to retire ASAP.
14773	 */
14774
14775	/* Disable polling in the fastpath */
14776	WRITE_ONCE(eq->mode, mode);
14777	/* flush out the store buffer */
14778	smp_wmb();
14779
14780	/*
14781	 * Add this eq to the polling list and start polling. For
14782	 * a grace period both interrupt handler and poller will
14783	 * try to process the eq _but_ that's fine.  We have a
14784	 * synchronization mechanism in place (queue_claimed) to
14785	 * deal with it.  This is just a draining phase for int-
14786	 * errupt handler (not eq's) as we have guranteed through
14787	 * barrier that all the CPUs have seen the new CQ_POLLED
14788	 * state. which will effectively disable the REARMING of
14789	 * the EQ.  The whole idea is eq's die off eventually as
14790	 * we are not rearming EQ's anymore.
14791	 */
14792	mode ? lpfc_sli4_add_to_poll_list(eq) :
14793	       lpfc_sli4_remove_from_poll_list(eq);
14794}
14795
14796void lpfc_sli4_start_polling(struct lpfc_queue *eq)
14797{
14798	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
14799}
14800
14801void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
14802{
14803	struct lpfc_hba *phba = eq->phba;
14804
14805	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
14806
14807	/* Kick start for the pending io's in h/w.
14808	 * Once we switch back to interrupt processing on a eq
14809	 * the io path completion will only arm eq's when it
14810	 * receives a completion.  But since eq's are in disa-
14811	 * rmed state it doesn't receive a completion.  This
14812	 * creates a deadlock scenaro.
14813	 */
14814	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
14815}
14816
14817/**
14818 * lpfc_sli4_queue_free - free a queue structure and associated memory
14819 * @queue: The queue structure to free.
14820 *
14821 * This function frees a queue structure and the DMAable memory used for
14822 * the host resident queue. This function must be called after destroying the
14823 * queue on the HBA.
14824 **/
14825void
14826lpfc_sli4_queue_free(struct lpfc_queue *queue)
14827{
14828	struct lpfc_dmabuf *dmabuf;
14829
14830	if (!queue)
14831		return;
14832
14833	if (!list_empty(&queue->wq_list))
14834		list_del(&queue->wq_list);
14835
14836	while (!list_empty(&queue->page_list)) {
14837		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14838				 list);
14839		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14840				  dmabuf->virt, dmabuf->phys);
14841		kfree(dmabuf);
14842	}
14843	if (queue->rqbp) {
14844		lpfc_free_rq_buffer(queue->phba, queue);
14845		kfree(queue->rqbp);
14846	}
14847
14848	if (!list_empty(&queue->cpu_list))
14849		list_del(&queue->cpu_list);
14850
14851	kfree(queue);
14852	return;
14853}
14854
14855/**
14856 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14857 * @phba: The HBA that this queue is being created on.
14858 * @page_size: The size of a queue page
14859 * @entry_size: The size of each queue entry for this queue.
14860 * @entry_count: The number of entries that this queue will handle.
14861 * @cpu: The cpu that will primarily utilize this queue.
14862 *
14863 * This function allocates a queue structure and the DMAable memory used for
14864 * the host resident queue. This function must be called before creating the
14865 * queue on the HBA.
14866 **/
14867struct lpfc_queue *
14868lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14869		      uint32_t entry_size, uint32_t entry_count, int cpu)
14870{
14871	struct lpfc_queue *queue;
14872	struct lpfc_dmabuf *dmabuf;
14873	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14874	uint16_t x, pgcnt;
14875
14876	if (!phba->sli4_hba.pc_sli4_params.supported)
14877		hw_page_size = page_size;
14878
14879	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14880
14881	/* If needed, Adjust page count to match the max the adapter supports */
14882	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14883		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14884
14885	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14886			     GFP_KERNEL, cpu_to_node(cpu));
14887	if (!queue)
14888		return NULL;
14889
14890	INIT_LIST_HEAD(&queue->list);
14891	INIT_LIST_HEAD(&queue->_poll_list);
14892	INIT_LIST_HEAD(&queue->wq_list);
14893	INIT_LIST_HEAD(&queue->wqfull_list);
14894	INIT_LIST_HEAD(&queue->page_list);
14895	INIT_LIST_HEAD(&queue->child_list);
14896	INIT_LIST_HEAD(&queue->cpu_list);
14897
14898	/* Set queue parameters now.  If the system cannot provide memory
14899	 * resources, the free routine needs to know what was allocated.
14900	 */
14901	queue->page_count = pgcnt;
14902	queue->q_pgs = (void **)&queue[1];
14903	queue->entry_cnt_per_pg = hw_page_size / entry_size;
14904	queue->entry_size = entry_size;
14905	queue->entry_count = entry_count;
14906	queue->page_size = hw_page_size;
14907	queue->phba = phba;
14908
14909	for (x = 0; x < queue->page_count; x++) {
14910		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14911				      dev_to_node(&phba->pcidev->dev));
14912		if (!dmabuf)
14913			goto out_fail;
14914		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14915						  hw_page_size, &dmabuf->phys,
14916						  GFP_KERNEL);
14917		if (!dmabuf->virt) {
14918			kfree(dmabuf);
14919			goto out_fail;
14920		}
14921		dmabuf->buffer_tag = x;
14922		list_add_tail(&dmabuf->list, &queue->page_list);
14923		/* use lpfc_sli4_qe to index a paritcular entry in this page */
14924		queue->q_pgs[x] = dmabuf->virt;
14925	}
14926	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14927	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14928	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14929	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14930
14931	/* notify_interval will be set during q creation */
14932
14933	return queue;
14934out_fail:
14935	lpfc_sli4_queue_free(queue);
14936	return NULL;
14937}
14938
14939/**
14940 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14941 * @phba: HBA structure that indicates port to create a queue on.
14942 * @pci_barset: PCI BAR set flag.
14943 *
14944 * This function shall perform iomap of the specified PCI BAR address to host
14945 * memory address if not already done so and return it. The returned host
14946 * memory address can be NULL.
14947 */
14948static void __iomem *
14949lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14950{
14951	if (!phba->pcidev)
14952		return NULL;
14953
14954	switch (pci_barset) {
14955	case WQ_PCI_BAR_0_AND_1:
14956		return phba->pci_bar0_memmap_p;
14957	case WQ_PCI_BAR_2_AND_3:
14958		return phba->pci_bar2_memmap_p;
14959	case WQ_PCI_BAR_4_AND_5:
14960		return phba->pci_bar4_memmap_p;
14961	default:
14962		break;
14963	}
14964	return NULL;
14965}
14966
14967/**
14968 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14969 * @phba: HBA structure that EQs are on.
14970 * @startq: The starting EQ index to modify
14971 * @numq: The number of EQs (consecutive indexes) to modify
14972 * @usdelay: amount of delay
14973 *
14974 * This function revises the EQ delay on 1 or more EQs. The EQ delay
14975 * is set either by writing to a register (if supported by the SLI Port)
14976 * or by mailbox command. The mailbox command allows several EQs to be
14977 * updated at once.
14978 *
14979 * The @phba struct is used to send a mailbox command to HBA. The @startq
14980 * is used to get the starting EQ index to change. The @numq value is
14981 * used to specify how many consecutive EQ indexes, starting at EQ index,
14982 * are to be changed. This function is asynchronous and will wait for any
14983 * mailbox commands to finish before returning.
14984 *
14985 * On success this function will return a zero. If unable to allocate
14986 * enough memory this function will return -ENOMEM. If a mailbox command
14987 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14988 * have had their delay multipler changed.
14989 **/
14990void
14991lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14992			 uint32_t numq, uint32_t usdelay)
14993{
14994	struct lpfc_mbx_modify_eq_delay *eq_delay;
14995	LPFC_MBOXQ_t *mbox;
14996	struct lpfc_queue *eq;
14997	int cnt = 0, rc, length;
14998	uint32_t shdr_status, shdr_add_status;
14999	uint32_t dmult;
15000	int qidx;
15001	union lpfc_sli4_cfg_shdr *shdr;
15002
15003	if (startq >= phba->cfg_irq_chann)
15004		return;
15005
15006	if (usdelay > 0xFFFF) {
15007		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15008				"6429 usdelay %d too large. Scaled down to "
15009				"0xFFFF.\n", usdelay);
15010		usdelay = 0xFFFF;
15011	}
15012
15013	/* set values by EQ_DELAY register if supported */
15014	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15015		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15016			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15017			if (!eq)
15018				continue;
15019
15020			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15021
15022			if (++cnt >= numq)
15023				break;
15024		}
15025		return;
15026	}
15027
15028	/* Otherwise, set values by mailbox cmd */
15029
15030	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15031	if (!mbox) {
15032		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15033				"6428 Failed allocating mailbox cmd buffer."
15034				" EQ delay was not set.\n");
15035		return;
15036	}
15037	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15038		  sizeof(struct lpfc_sli4_cfg_mhdr));
15039	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15040			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15041			 length, LPFC_SLI4_MBX_EMBED);
15042	eq_delay = &mbox->u.mqe.un.eq_delay;
15043
15044	/* Calculate delay multiper from maximum interrupt per second */
15045	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
15046	if (dmult)
15047		dmult--;
15048	if (dmult > LPFC_DMULT_MAX)
15049		dmult = LPFC_DMULT_MAX;
15050
15051	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15052		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15053		if (!eq)
15054			continue;
15055		eq->q_mode = usdelay;
15056		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
15057		eq_delay->u.request.eq[cnt].phase = 0;
15058		eq_delay->u.request.eq[cnt].delay_multi = dmult;
15059
15060		if (++cnt >= numq)
15061			break;
15062	}
15063	eq_delay->u.request.num_eq = cnt;
15064
15065	mbox->vport = phba->pport;
15066	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15067	mbox->ctx_buf = NULL;
15068	mbox->ctx_ndlp = NULL;
15069	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15070	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
15071	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15072	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15073	if (shdr_status || shdr_add_status || rc) {
15074		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15075				"2512 MODIFY_EQ_DELAY mailbox failed with "
15076				"status x%x add_status x%x, mbx status x%x\n",
15077				shdr_status, shdr_add_status, rc);
15078	}
15079	mempool_free(mbox, phba->mbox_mem_pool);
15080	return;
15081}
15082
15083/**
15084 * lpfc_eq_create - Create an Event Queue on the HBA
15085 * @phba: HBA structure that indicates port to create a queue on.
15086 * @eq: The queue structure to use to create the event queue.
15087 * @imax: The maximum interrupt per second limit.
15088 *
15089 * This function creates an event queue, as detailed in @eq, on a port,
15090 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
15091 *
15092 * The @phba struct is used to send mailbox command to HBA. The @eq struct
15093 * is used to get the entry count and entry size that are necessary to
15094 * determine the number of pages to allocate and use for this queue. This
15095 * function will send the EQ_CREATE mailbox command to the HBA to setup the
15096 * event queue. This function is asynchronous and will wait for the mailbox
15097 * command to finish before continuing.
15098 *
15099 * On success this function will return a zero. If unable to allocate enough
15100 * memory this function will return -ENOMEM. If the queue create mailbox command
15101 * fails this function will return -ENXIO.
15102 **/
15103int
15104lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
15105{
15106	struct lpfc_mbx_eq_create *eq_create;
15107	LPFC_MBOXQ_t *mbox;
15108	int rc, length, status = 0;
15109	struct lpfc_dmabuf *dmabuf;
15110	uint32_t shdr_status, shdr_add_status;
15111	union lpfc_sli4_cfg_shdr *shdr;
15112	uint16_t dmult;
15113	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15114
15115	/* sanity check on queue memory */
15116	if (!eq)
15117		return -ENODEV;
15118	if (!phba->sli4_hba.pc_sli4_params.supported)
15119		hw_page_size = SLI4_PAGE_SIZE;
15120
15121	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15122	if (!mbox)
15123		return -ENOMEM;
15124	length = (sizeof(struct lpfc_mbx_eq_create) -
15125		  sizeof(struct lpfc_sli4_cfg_mhdr));
15126	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15127			 LPFC_MBOX_OPCODE_EQ_CREATE,
15128			 length, LPFC_SLI4_MBX_EMBED);
15129	eq_create = &mbox->u.mqe.un.eq_create;
15130	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
15131	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
15132	       eq->page_count);
15133	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
15134	       LPFC_EQE_SIZE);
15135	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
15136
15137	/* Use version 2 of CREATE_EQ if eqav is set */
15138	if (phba->sli4_hba.pc_sli4_params.eqav) {
15139		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15140		       LPFC_Q_CREATE_VERSION_2);
15141		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
15142		       phba->sli4_hba.pc_sli4_params.eqav);
15143	}
15144
15145	/* don't setup delay multiplier using EQ_CREATE */
15146	dmult = 0;
15147	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
15148	       dmult);
15149	switch (eq->entry_count) {
15150	default:
15151		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15152				"0360 Unsupported EQ count. (%d)\n",
15153				eq->entry_count);
15154		if (eq->entry_count < 256) {
15155			status = -EINVAL;
15156			goto out;
15157		}
15158		fallthrough;	/* otherwise default to smallest count */
15159	case 256:
15160		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15161		       LPFC_EQ_CNT_256);
15162		break;
15163	case 512:
15164		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15165		       LPFC_EQ_CNT_512);
15166		break;
15167	case 1024:
15168		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15169		       LPFC_EQ_CNT_1024);
15170		break;
15171	case 2048:
15172		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15173		       LPFC_EQ_CNT_2048);
15174		break;
15175	case 4096:
15176		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15177		       LPFC_EQ_CNT_4096);
15178		break;
15179	}
15180	list_for_each_entry(dmabuf, &eq->page_list, list) {
15181		memset(dmabuf->virt, 0, hw_page_size);
15182		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15183					putPaddrLow(dmabuf->phys);
15184		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15185					putPaddrHigh(dmabuf->phys);
15186	}
15187	mbox->vport = phba->pport;
15188	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15189	mbox->ctx_buf = NULL;
15190	mbox->ctx_ndlp = NULL;
15191	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15192	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15193	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15194	if (shdr_status || shdr_add_status || rc) {
15195		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15196				"2500 EQ_CREATE mailbox failed with "
15197				"status x%x add_status x%x, mbx status x%x\n",
15198				shdr_status, shdr_add_status, rc);
15199		status = -ENXIO;
15200	}
15201	eq->type = LPFC_EQ;
15202	eq->subtype = LPFC_NONE;
15203	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
15204	if (eq->queue_id == 0xFFFF)
15205		status = -ENXIO;
15206	eq->host_index = 0;
15207	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
15208	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
15209out:
15210	mempool_free(mbox, phba->mbox_mem_pool);
15211	return status;
15212}
15213
15214static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
15215{
15216	struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
15217
15218	__lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
15219
15220	return 1;
15221}
15222
15223/**
15224 * lpfc_cq_create - Create a Completion Queue on the HBA
15225 * @phba: HBA structure that indicates port to create a queue on.
15226 * @cq: The queue structure to use to create the completion queue.
15227 * @eq: The event queue to bind this completion queue to.
15228 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15229 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15230 *
15231 * This function creates a completion queue, as detailed in @wq, on a port,
15232 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
15233 *
15234 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15235 * is used to get the entry count and entry size that are necessary to
15236 * determine the number of pages to allocate and use for this queue. The @eq
15237 * is used to indicate which event queue to bind this completion queue to. This
15238 * function will send the CQ_CREATE mailbox command to the HBA to setup the
15239 * completion queue. This function is asynchronous and will wait for the mailbox
15240 * command to finish before continuing.
15241 *
15242 * On success this function will return a zero. If unable to allocate enough
15243 * memory this function will return -ENOMEM. If the queue create mailbox command
15244 * fails this function will return -ENXIO.
15245 **/
15246int
15247lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
15248	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
15249{
15250	struct lpfc_mbx_cq_create *cq_create;
15251	struct lpfc_dmabuf *dmabuf;
15252	LPFC_MBOXQ_t *mbox;
15253	int rc, length, status = 0;
15254	uint32_t shdr_status, shdr_add_status;
15255	union lpfc_sli4_cfg_shdr *shdr;
15256
15257	/* sanity check on queue memory */
15258	if (!cq || !eq)
15259		return -ENODEV;
15260
15261	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15262	if (!mbox)
15263		return -ENOMEM;
15264	length = (sizeof(struct lpfc_mbx_cq_create) -
15265		  sizeof(struct lpfc_sli4_cfg_mhdr));
15266	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15267			 LPFC_MBOX_OPCODE_CQ_CREATE,
15268			 length, LPFC_SLI4_MBX_EMBED);
15269	cq_create = &mbox->u.mqe.un.cq_create;
15270	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
15271	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
15272		    cq->page_count);
15273	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
15274	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
15275	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15276	       phba->sli4_hba.pc_sli4_params.cqv);
15277	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
15278		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
15279		       (cq->page_size / SLI4_PAGE_SIZE));
15280		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
15281		       eq->queue_id);
15282		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15283		       phba->sli4_hba.pc_sli4_params.cqav);
15284	} else {
15285		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15286		       eq->queue_id);
15287	}
15288	switch (cq->entry_count) {
15289	case 2048:
15290	case 4096:
15291		if (phba->sli4_hba.pc_sli4_params.cqv ==
15292		    LPFC_Q_CREATE_VERSION_2) {
15293			cq_create->u.request.context.lpfc_cq_context_count =
15294				cq->entry_count;
15295			bf_set(lpfc_cq_context_count,
15296			       &cq_create->u.request.context,
15297			       LPFC_CQ_CNT_WORD7);
15298			break;
15299		}
15300		fallthrough;
15301	default:
15302		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15303				"0361 Unsupported CQ count: "
15304				"entry cnt %d sz %d pg cnt %d\n",
15305				cq->entry_count, cq->entry_size,
15306				cq->page_count);
15307		if (cq->entry_count < 256) {
15308			status = -EINVAL;
15309			goto out;
15310		}
15311		fallthrough;	/* otherwise default to smallest count */
15312	case 256:
15313		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15314		       LPFC_CQ_CNT_256);
15315		break;
15316	case 512:
15317		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15318		       LPFC_CQ_CNT_512);
15319		break;
15320	case 1024:
15321		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15322		       LPFC_CQ_CNT_1024);
15323		break;
15324	}
15325	list_for_each_entry(dmabuf, &cq->page_list, list) {
15326		memset(dmabuf->virt, 0, cq->page_size);
15327		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15328					putPaddrLow(dmabuf->phys);
15329		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15330					putPaddrHigh(dmabuf->phys);
15331	}
15332	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15333
15334	/* The IOCTL status is embedded in the mailbox subheader. */
15335	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15336	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15337	if (shdr_status || shdr_add_status || rc) {
15338		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15339				"2501 CQ_CREATE mailbox failed with "
15340				"status x%x add_status x%x, mbx status x%x\n",
15341				shdr_status, shdr_add_status, rc);
15342		status = -ENXIO;
15343		goto out;
15344	}
15345	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15346	if (cq->queue_id == 0xFFFF) {
15347		status = -ENXIO;
15348		goto out;
15349	}
15350	/* link the cq onto the parent eq child list */
15351	list_add_tail(&cq->list, &eq->child_list);
15352	/* Set up completion queue's type and subtype */
15353	cq->type = type;
15354	cq->subtype = subtype;
15355	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15356	cq->assoc_qid = eq->queue_id;
15357	cq->assoc_qp = eq;
15358	cq->host_index = 0;
15359	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15360	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15361
15362	if (cq->queue_id > phba->sli4_hba.cq_max)
15363		phba->sli4_hba.cq_max = cq->queue_id;
15364
15365	irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
15366out:
15367	mempool_free(mbox, phba->mbox_mem_pool);
15368	return status;
15369}
15370
15371/**
15372 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15373 * @phba: HBA structure that indicates port to create a queue on.
15374 * @cqp: The queue structure array to use to create the completion queues.
15375 * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
15376 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15377 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15378 *
15379 * This function creates a set of  completion queue, s to support MRQ
15380 * as detailed in @cqp, on a port,
15381 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15382 *
15383 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15384 * is used to get the entry count and entry size that are necessary to
15385 * determine the number of pages to allocate and use for this queue. The @eq
15386 * is used to indicate which event queue to bind this completion queue to. This
15387 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15388 * completion queue. This function is asynchronous and will wait for the mailbox
15389 * command to finish before continuing.
15390 *
15391 * On success this function will return a zero. If unable to allocate enough
15392 * memory this function will return -ENOMEM. If the queue create mailbox command
15393 * fails this function will return -ENXIO.
15394 **/
15395int
15396lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15397		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15398		   uint32_t subtype)
15399{
15400	struct lpfc_queue *cq;
15401	struct lpfc_queue *eq;
15402	struct lpfc_mbx_cq_create_set *cq_set;
15403	struct lpfc_dmabuf *dmabuf;
15404	LPFC_MBOXQ_t *mbox;
15405	int rc, length, alloclen, status = 0;
15406	int cnt, idx, numcq, page_idx = 0;
15407	uint32_t shdr_status, shdr_add_status;
15408	union lpfc_sli4_cfg_shdr *shdr;
15409	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15410
15411	/* sanity check on queue memory */
15412	numcq = phba->cfg_nvmet_mrq;
15413	if (!cqp || !hdwq || !numcq)
15414		return -ENODEV;
15415
15416	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15417	if (!mbox)
15418		return -ENOMEM;
15419
15420	length = sizeof(struct lpfc_mbx_cq_create_set);
15421	length += ((numcq * cqp[0]->page_count) *
15422		   sizeof(struct dma_address));
15423	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15424			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15425			LPFC_SLI4_MBX_NEMBED);
15426	if (alloclen < length) {
15427		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15428				"3098 Allocated DMA memory size (%d) is "
15429				"less than the requested DMA memory size "
15430				"(%d)\n", alloclen, length);
15431		status = -ENOMEM;
15432		goto out;
15433	}
15434	cq_set = mbox->sge_array->addr[0];
15435	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15436	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15437
15438	for (idx = 0; idx < numcq; idx++) {
15439		cq = cqp[idx];
15440		eq = hdwq[idx].hba_eq;
15441		if (!cq || !eq) {
15442			status = -ENOMEM;
15443			goto out;
15444		}
15445		if (!phba->sli4_hba.pc_sli4_params.supported)
15446			hw_page_size = cq->page_size;
15447
15448		switch (idx) {
15449		case 0:
15450			bf_set(lpfc_mbx_cq_create_set_page_size,
15451			       &cq_set->u.request,
15452			       (hw_page_size / SLI4_PAGE_SIZE));
15453			bf_set(lpfc_mbx_cq_create_set_num_pages,
15454			       &cq_set->u.request, cq->page_count);
15455			bf_set(lpfc_mbx_cq_create_set_evt,
15456			       &cq_set->u.request, 1);
15457			bf_set(lpfc_mbx_cq_create_set_valid,
15458			       &cq_set->u.request, 1);
15459			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15460			       &cq_set->u.request, 0);
15461			bf_set(lpfc_mbx_cq_create_set_num_cq,
15462			       &cq_set->u.request, numcq);
15463			bf_set(lpfc_mbx_cq_create_set_autovalid,
15464			       &cq_set->u.request,
15465			       phba->sli4_hba.pc_sli4_params.cqav);
15466			switch (cq->entry_count) {
15467			case 2048:
15468			case 4096:
15469				if (phba->sli4_hba.pc_sli4_params.cqv ==
15470				    LPFC_Q_CREATE_VERSION_2) {
15471					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15472					       &cq_set->u.request,
15473						cq->entry_count);
15474					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15475					       &cq_set->u.request,
15476					       LPFC_CQ_CNT_WORD7);
15477					break;
15478				}
15479				fallthrough;
15480			default:
15481				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15482						"3118 Bad CQ count. (%d)\n",
15483						cq->entry_count);
15484				if (cq->entry_count < 256) {
15485					status = -EINVAL;
15486					goto out;
15487				}
15488				fallthrough;	/* otherwise default to smallest */
15489			case 256:
15490				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15491				       &cq_set->u.request, LPFC_CQ_CNT_256);
15492				break;
15493			case 512:
15494				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15495				       &cq_set->u.request, LPFC_CQ_CNT_512);
15496				break;
15497			case 1024:
15498				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15499				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15500				break;
15501			}
15502			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15503			       &cq_set->u.request, eq->queue_id);
15504			break;
15505		case 1:
15506			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15507			       &cq_set->u.request, eq->queue_id);
15508			break;
15509		case 2:
15510			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15511			       &cq_set->u.request, eq->queue_id);
15512			break;
15513		case 3:
15514			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15515			       &cq_set->u.request, eq->queue_id);
15516			break;
15517		case 4:
15518			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15519			       &cq_set->u.request, eq->queue_id);
15520			break;
15521		case 5:
15522			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15523			       &cq_set->u.request, eq->queue_id);
15524			break;
15525		case 6:
15526			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15527			       &cq_set->u.request, eq->queue_id);
15528			break;
15529		case 7:
15530			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15531			       &cq_set->u.request, eq->queue_id);
15532			break;
15533		case 8:
15534			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15535			       &cq_set->u.request, eq->queue_id);
15536			break;
15537		case 9:
15538			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15539			       &cq_set->u.request, eq->queue_id);
15540			break;
15541		case 10:
15542			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15543			       &cq_set->u.request, eq->queue_id);
15544			break;
15545		case 11:
15546			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15547			       &cq_set->u.request, eq->queue_id);
15548			break;
15549		case 12:
15550			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15551			       &cq_set->u.request, eq->queue_id);
15552			break;
15553		case 13:
15554			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15555			       &cq_set->u.request, eq->queue_id);
15556			break;
15557		case 14:
15558			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15559			       &cq_set->u.request, eq->queue_id);
15560			break;
15561		case 15:
15562			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15563			       &cq_set->u.request, eq->queue_id);
15564			break;
15565		}
15566
15567		/* link the cq onto the parent eq child list */
15568		list_add_tail(&cq->list, &eq->child_list);
15569		/* Set up completion queue's type and subtype */
15570		cq->type = type;
15571		cq->subtype = subtype;
15572		cq->assoc_qid = eq->queue_id;
15573		cq->assoc_qp = eq;
15574		cq->host_index = 0;
15575		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15576		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15577					 cq->entry_count);
15578		cq->chann = idx;
15579
15580		rc = 0;
15581		list_for_each_entry(dmabuf, &cq->page_list, list) {
15582			memset(dmabuf->virt, 0, hw_page_size);
15583			cnt = page_idx + dmabuf->buffer_tag;
15584			cq_set->u.request.page[cnt].addr_lo =
15585					putPaddrLow(dmabuf->phys);
15586			cq_set->u.request.page[cnt].addr_hi =
15587					putPaddrHigh(dmabuf->phys);
15588			rc++;
15589		}
15590		page_idx += rc;
15591	}
15592
15593	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15594
15595	/* The IOCTL status is embedded in the mailbox subheader. */
15596	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15597	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15598	if (shdr_status || shdr_add_status || rc) {
15599		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15600				"3119 CQ_CREATE_SET mailbox failed with "
15601				"status x%x add_status x%x, mbx status x%x\n",
15602				shdr_status, shdr_add_status, rc);
15603		status = -ENXIO;
15604		goto out;
15605	}
15606	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15607	if (rc == 0xFFFF) {
15608		status = -ENXIO;
15609		goto out;
15610	}
15611
15612	for (idx = 0; idx < numcq; idx++) {
15613		cq = cqp[idx];
15614		cq->queue_id = rc + idx;
15615		if (cq->queue_id > phba->sli4_hba.cq_max)
15616			phba->sli4_hba.cq_max = cq->queue_id;
15617	}
15618
15619out:
15620	lpfc_sli4_mbox_cmd_free(phba, mbox);
15621	return status;
15622}
15623
15624/**
15625 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15626 * @phba: HBA structure that indicates port to create a queue on.
15627 * @mq: The queue structure to use to create the mailbox queue.
15628 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15629 * @cq: The completion queue to associate with this cq.
15630 *
15631 * This function provides failback (fb) functionality when the
15632 * mq_create_ext fails on older FW generations.  It's purpose is identical
15633 * to mq_create_ext otherwise.
15634 *
15635 * This routine cannot fail as all attributes were previously accessed and
15636 * initialized in mq_create_ext.
15637 **/
15638static void
15639lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15640		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15641{
15642	struct lpfc_mbx_mq_create *mq_create;
15643	struct lpfc_dmabuf *dmabuf;
15644	int length;
15645
15646	length = (sizeof(struct lpfc_mbx_mq_create) -
15647		  sizeof(struct lpfc_sli4_cfg_mhdr));
15648	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15649			 LPFC_MBOX_OPCODE_MQ_CREATE,
15650			 length, LPFC_SLI4_MBX_EMBED);
15651	mq_create = &mbox->u.mqe.un.mq_create;
15652	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15653	       mq->page_count);
15654	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15655	       cq->queue_id);
15656	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15657	switch (mq->entry_count) {
15658	case 16:
15659		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15660		       LPFC_MQ_RING_SIZE_16);
15661		break;
15662	case 32:
15663		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15664		       LPFC_MQ_RING_SIZE_32);
15665		break;
15666	case 64:
15667		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15668		       LPFC_MQ_RING_SIZE_64);
15669		break;
15670	case 128:
15671		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15672		       LPFC_MQ_RING_SIZE_128);
15673		break;
15674	}
15675	list_for_each_entry(dmabuf, &mq->page_list, list) {
15676		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15677			putPaddrLow(dmabuf->phys);
15678		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15679			putPaddrHigh(dmabuf->phys);
15680	}
15681}
15682
15683/**
15684 * lpfc_mq_create - Create a mailbox Queue on the HBA
15685 * @phba: HBA structure that indicates port to create a queue on.
15686 * @mq: The queue structure to use to create the mailbox queue.
15687 * @cq: The completion queue to associate with this cq.
15688 * @subtype: The queue's subtype.
15689 *
15690 * This function creates a mailbox queue, as detailed in @mq, on a port,
15691 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15692 *
15693 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15694 * is used to get the entry count and entry size that are necessary to
15695 * determine the number of pages to allocate and use for this queue. This
15696 * function will send the MQ_CREATE mailbox command to the HBA to setup the
15697 * mailbox queue. This function is asynchronous and will wait for the mailbox
15698 * command to finish before continuing.
15699 *
15700 * On success this function will return a zero. If unable to allocate enough
15701 * memory this function will return -ENOMEM. If the queue create mailbox command
15702 * fails this function will return -ENXIO.
15703 **/
15704int32_t
15705lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15706	       struct lpfc_queue *cq, uint32_t subtype)
15707{
15708	struct lpfc_mbx_mq_create *mq_create;
15709	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15710	struct lpfc_dmabuf *dmabuf;
15711	LPFC_MBOXQ_t *mbox;
15712	int rc, length, status = 0;
15713	uint32_t shdr_status, shdr_add_status;
15714	union lpfc_sli4_cfg_shdr *shdr;
15715	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15716
15717	/* sanity check on queue memory */
15718	if (!mq || !cq)
15719		return -ENODEV;
15720	if (!phba->sli4_hba.pc_sli4_params.supported)
15721		hw_page_size = SLI4_PAGE_SIZE;
15722
15723	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15724	if (!mbox)
15725		return -ENOMEM;
15726	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15727		  sizeof(struct lpfc_sli4_cfg_mhdr));
15728	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15729			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15730			 length, LPFC_SLI4_MBX_EMBED);
15731
15732	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15733	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15734	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15735	       &mq_create_ext->u.request, mq->page_count);
15736	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15737	       &mq_create_ext->u.request, 1);
15738	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15739	       &mq_create_ext->u.request, 1);
15740	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15741	       &mq_create_ext->u.request, 1);
15742	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15743	       &mq_create_ext->u.request, 1);
15744	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15745	       &mq_create_ext->u.request, 1);
15746	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15747	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15748	       phba->sli4_hba.pc_sli4_params.mqv);
15749	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15750		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15751		       cq->queue_id);
15752	else
15753		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15754		       cq->queue_id);
15755	switch (mq->entry_count) {
15756	default:
15757		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15758				"0362 Unsupported MQ count. (%d)\n",
15759				mq->entry_count);
15760		if (mq->entry_count < 16) {
15761			status = -EINVAL;
15762			goto out;
15763		}
15764		fallthrough;	/* otherwise default to smallest count */
15765	case 16:
15766		bf_set(lpfc_mq_context_ring_size,
15767		       &mq_create_ext->u.request.context,
15768		       LPFC_MQ_RING_SIZE_16);
15769		break;
15770	case 32:
15771		bf_set(lpfc_mq_context_ring_size,
15772		       &mq_create_ext->u.request.context,
15773		       LPFC_MQ_RING_SIZE_32);
15774		break;
15775	case 64:
15776		bf_set(lpfc_mq_context_ring_size,
15777		       &mq_create_ext->u.request.context,
15778		       LPFC_MQ_RING_SIZE_64);
15779		break;
15780	case 128:
15781		bf_set(lpfc_mq_context_ring_size,
15782		       &mq_create_ext->u.request.context,
15783		       LPFC_MQ_RING_SIZE_128);
15784		break;
15785	}
15786	list_for_each_entry(dmabuf, &mq->page_list, list) {
15787		memset(dmabuf->virt, 0, hw_page_size);
15788		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15789					putPaddrLow(dmabuf->phys);
15790		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15791					putPaddrHigh(dmabuf->phys);
15792	}
15793	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15794	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15795			      &mq_create_ext->u.response);
15796	if (rc != MBX_SUCCESS) {
15797		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15798				"2795 MQ_CREATE_EXT failed with "
15799				"status x%x. Failback to MQ_CREATE.\n",
15800				rc);
15801		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15802		mq_create = &mbox->u.mqe.un.mq_create;
15803		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15804		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15805		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15806				      &mq_create->u.response);
15807	}
15808
15809	/* The IOCTL status is embedded in the mailbox subheader. */
15810	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15811	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15812	if (shdr_status || shdr_add_status || rc) {
15813		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15814				"2502 MQ_CREATE mailbox failed with "
15815				"status x%x add_status x%x, mbx status x%x\n",
15816				shdr_status, shdr_add_status, rc);
15817		status = -ENXIO;
15818		goto out;
15819	}
15820	if (mq->queue_id == 0xFFFF) {
15821		status = -ENXIO;
15822		goto out;
15823	}
15824	mq->type = LPFC_MQ;
15825	mq->assoc_qid = cq->queue_id;
15826	mq->subtype = subtype;
15827	mq->host_index = 0;
15828	mq->hba_index = 0;
15829
15830	/* link the mq onto the parent cq child list */
15831	list_add_tail(&mq->list, &cq->child_list);
15832out:
15833	mempool_free(mbox, phba->mbox_mem_pool);
15834	return status;
15835}
15836
15837/**
15838 * lpfc_wq_create - Create a Work Queue on the HBA
15839 * @phba: HBA structure that indicates port to create a queue on.
15840 * @wq: The queue structure to use to create the work queue.
15841 * @cq: The completion queue to bind this work queue to.
15842 * @subtype: The subtype of the work queue indicating its functionality.
15843 *
15844 * This function creates a work queue, as detailed in @wq, on a port, described
15845 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15846 *
15847 * The @phba struct is used to send mailbox command to HBA. The @wq struct
15848 * is used to get the entry count and entry size that are necessary to
15849 * determine the number of pages to allocate and use for this queue. The @cq
15850 * is used to indicate which completion queue to bind this work queue to. This
15851 * function will send the WQ_CREATE mailbox command to the HBA to setup the
15852 * work queue. This function is asynchronous and will wait for the mailbox
15853 * command to finish before continuing.
15854 *
15855 * On success this function will return a zero. If unable to allocate enough
15856 * memory this function will return -ENOMEM. If the queue create mailbox command
15857 * fails this function will return -ENXIO.
15858 **/
15859int
15860lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15861	       struct lpfc_queue *cq, uint32_t subtype)
15862{
15863	struct lpfc_mbx_wq_create *wq_create;
15864	struct lpfc_dmabuf *dmabuf;
15865	LPFC_MBOXQ_t *mbox;
15866	int rc, length, status = 0;
15867	uint32_t shdr_status, shdr_add_status;
15868	union lpfc_sli4_cfg_shdr *shdr;
15869	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15870	struct dma_address *page;
15871	void __iomem *bar_memmap_p;
15872	uint32_t db_offset;
15873	uint16_t pci_barset;
15874	uint8_t dpp_barset;
15875	uint32_t dpp_offset;
15876	uint8_t wq_create_version;
15877#ifdef CONFIG_X86
15878	unsigned long pg_addr;
15879#endif
15880
15881	/* sanity check on queue memory */
15882	if (!wq || !cq)
15883		return -ENODEV;
15884	if (!phba->sli4_hba.pc_sli4_params.supported)
15885		hw_page_size = wq->page_size;
15886
15887	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15888	if (!mbox)
15889		return -ENOMEM;
15890	length = (sizeof(struct lpfc_mbx_wq_create) -
15891		  sizeof(struct lpfc_sli4_cfg_mhdr));
15892	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15893			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15894			 length, LPFC_SLI4_MBX_EMBED);
15895	wq_create = &mbox->u.mqe.un.wq_create;
15896	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15897	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15898		    wq->page_count);
15899	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15900		    cq->queue_id);
15901
15902	/* wqv is the earliest version supported, NOT the latest */
15903	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15904	       phba->sli4_hba.pc_sli4_params.wqv);
15905
15906	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15907	    (wq->page_size > SLI4_PAGE_SIZE))
15908		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15909	else
15910		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15911
15912
15913	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15914		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15915	else
15916		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15917
15918	switch (wq_create_version) {
15919	case LPFC_Q_CREATE_VERSION_1:
15920		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15921		       wq->entry_count);
15922		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15923		       LPFC_Q_CREATE_VERSION_1);
15924
15925		switch (wq->entry_size) {
15926		default:
15927		case 64:
15928			bf_set(lpfc_mbx_wq_create_wqe_size,
15929			       &wq_create->u.request_1,
15930			       LPFC_WQ_WQE_SIZE_64);
15931			break;
15932		case 128:
15933			bf_set(lpfc_mbx_wq_create_wqe_size,
15934			       &wq_create->u.request_1,
15935			       LPFC_WQ_WQE_SIZE_128);
15936			break;
15937		}
15938		/* Request DPP by default */
15939		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15940		bf_set(lpfc_mbx_wq_create_page_size,
15941		       &wq_create->u.request_1,
15942		       (wq->page_size / SLI4_PAGE_SIZE));
15943		page = wq_create->u.request_1.page;
15944		break;
15945	default:
15946		page = wq_create->u.request.page;
15947		break;
15948	}
15949
15950	list_for_each_entry(dmabuf, &wq->page_list, list) {
15951		memset(dmabuf->virt, 0, hw_page_size);
15952		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15953		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15954	}
15955
15956	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15957		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15958
15959	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15960	/* The IOCTL status is embedded in the mailbox subheader. */
15961	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15962	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15963	if (shdr_status || shdr_add_status || rc) {
15964		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15965				"2503 WQ_CREATE mailbox failed with "
15966				"status x%x add_status x%x, mbx status x%x\n",
15967				shdr_status, shdr_add_status, rc);
15968		status = -ENXIO;
15969		goto out;
15970	}
15971
15972	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15973		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15974					&wq_create->u.response);
15975	else
15976		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15977					&wq_create->u.response_1);
15978
15979	if (wq->queue_id == 0xFFFF) {
15980		status = -ENXIO;
15981		goto out;
15982	}
15983
15984	wq->db_format = LPFC_DB_LIST_FORMAT;
15985	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15986		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15987			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15988					       &wq_create->u.response);
15989			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15990			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15991				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15992						"3265 WQ[%d] doorbell format "
15993						"not supported: x%x\n",
15994						wq->queue_id, wq->db_format);
15995				status = -EINVAL;
15996				goto out;
15997			}
15998			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15999					    &wq_create->u.response);
16000			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16001								   pci_barset);
16002			if (!bar_memmap_p) {
16003				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16004						"3263 WQ[%d] failed to memmap "
16005						"pci barset:x%x\n",
16006						wq->queue_id, pci_barset);
16007				status = -ENOMEM;
16008				goto out;
16009			}
16010			db_offset = wq_create->u.response.doorbell_offset;
16011			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
16012			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
16013				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16014						"3252 WQ[%d] doorbell offset "
16015						"not supported: x%x\n",
16016						wq->queue_id, db_offset);
16017				status = -EINVAL;
16018				goto out;
16019			}
16020			wq->db_regaddr = bar_memmap_p + db_offset;
16021			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16022					"3264 WQ[%d]: barset:x%x, offset:x%x, "
16023					"format:x%x\n", wq->queue_id,
16024					pci_barset, db_offset, wq->db_format);
16025		} else
16026			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16027	} else {
16028		/* Check if DPP was honored by the firmware */
16029		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
16030				    &wq_create->u.response_1);
16031		if (wq->dpp_enable) {
16032			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
16033					    &wq_create->u.response_1);
16034			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16035								   pci_barset);
16036			if (!bar_memmap_p) {
16037				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16038						"3267 WQ[%d] failed to memmap "
16039						"pci barset:x%x\n",
16040						wq->queue_id, pci_barset);
16041				status = -ENOMEM;
16042				goto out;
16043			}
16044			db_offset = wq_create->u.response_1.doorbell_offset;
16045			wq->db_regaddr = bar_memmap_p + db_offset;
16046			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
16047					    &wq_create->u.response_1);
16048			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
16049					    &wq_create->u.response_1);
16050			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16051								   dpp_barset);
16052			if (!bar_memmap_p) {
16053				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16054						"3268 WQ[%d] failed to memmap "
16055						"pci barset:x%x\n",
16056						wq->queue_id, dpp_barset);
16057				status = -ENOMEM;
16058				goto out;
16059			}
16060			dpp_offset = wq_create->u.response_1.dpp_offset;
16061			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
16062			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16063					"3271 WQ[%d]: barset:x%x, offset:x%x, "
16064					"dpp_id:x%x dpp_barset:x%x "
16065					"dpp_offset:x%x\n",
16066					wq->queue_id, pci_barset, db_offset,
16067					wq->dpp_id, dpp_barset, dpp_offset);
16068
16069#ifdef CONFIG_X86
16070			/* Enable combined writes for DPP aperture */
16071			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
16072			rc = set_memory_wc(pg_addr, 1);
16073			if (rc) {
16074				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16075					"3272 Cannot setup Combined "
16076					"Write on WQ[%d] - disable DPP\n",
16077					wq->queue_id);
16078				phba->cfg_enable_dpp = 0;
16079			}
16080#else
16081			phba->cfg_enable_dpp = 0;
16082#endif
16083		} else
16084			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16085	}
16086	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
16087	if (wq->pring == NULL) {
16088		status = -ENOMEM;
16089		goto out;
16090	}
16091	wq->type = LPFC_WQ;
16092	wq->assoc_qid = cq->queue_id;
16093	wq->subtype = subtype;
16094	wq->host_index = 0;
16095	wq->hba_index = 0;
16096	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
16097
16098	/* link the wq onto the parent cq child list */
16099	list_add_tail(&wq->list, &cq->child_list);
16100out:
16101	mempool_free(mbox, phba->mbox_mem_pool);
16102	return status;
16103}
16104
16105/**
16106 * lpfc_rq_create - Create a Receive Queue on the HBA
16107 * @phba: HBA structure that indicates port to create a queue on.
16108 * @hrq: The queue structure to use to create the header receive queue.
16109 * @drq: The queue structure to use to create the data receive queue.
16110 * @cq: The completion queue to bind this work queue to.
16111 * @subtype: The subtype of the work queue indicating its functionality.
16112 *
16113 * This function creates a receive buffer queue pair , as detailed in @hrq and
16114 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16115 * to the HBA.
16116 *
16117 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16118 * struct is used to get the entry count that is necessary to determine the
16119 * number of pages to use for this queue. The @cq is used to indicate which
16120 * completion queue to bind received buffers that are posted to these queues to.
16121 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16122 * receive queue pair. This function is asynchronous and will wait for the
16123 * mailbox command to finish before continuing.
16124 *
16125 * On success this function will return a zero. If unable to allocate enough
16126 * memory this function will return -ENOMEM. If the queue create mailbox command
16127 * fails this function will return -ENXIO.
16128 **/
16129int
16130lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16131	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
16132{
16133	struct lpfc_mbx_rq_create *rq_create;
16134	struct lpfc_dmabuf *dmabuf;
16135	LPFC_MBOXQ_t *mbox;
16136	int rc, length, status = 0;
16137	uint32_t shdr_status, shdr_add_status;
16138	union lpfc_sli4_cfg_shdr *shdr;
16139	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16140	void __iomem *bar_memmap_p;
16141	uint32_t db_offset;
16142	uint16_t pci_barset;
16143
16144	/* sanity check on queue memory */
16145	if (!hrq || !drq || !cq)
16146		return -ENODEV;
16147	if (!phba->sli4_hba.pc_sli4_params.supported)
16148		hw_page_size = SLI4_PAGE_SIZE;
16149
16150	if (hrq->entry_count != drq->entry_count)
16151		return -EINVAL;
16152	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16153	if (!mbox)
16154		return -ENOMEM;
16155	length = (sizeof(struct lpfc_mbx_rq_create) -
16156		  sizeof(struct lpfc_sli4_cfg_mhdr));
16157	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16158			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16159			 length, LPFC_SLI4_MBX_EMBED);
16160	rq_create = &mbox->u.mqe.un.rq_create;
16161	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16162	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16163	       phba->sli4_hba.pc_sli4_params.rqv);
16164	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16165		bf_set(lpfc_rq_context_rqe_count_1,
16166		       &rq_create->u.request.context,
16167		       hrq->entry_count);
16168		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
16169		bf_set(lpfc_rq_context_rqe_size,
16170		       &rq_create->u.request.context,
16171		       LPFC_RQE_SIZE_8);
16172		bf_set(lpfc_rq_context_page_size,
16173		       &rq_create->u.request.context,
16174		       LPFC_RQ_PAGE_SIZE_4096);
16175	} else {
16176		switch (hrq->entry_count) {
16177		default:
16178			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16179					"2535 Unsupported RQ count. (%d)\n",
16180					hrq->entry_count);
16181			if (hrq->entry_count < 512) {
16182				status = -EINVAL;
16183				goto out;
16184			}
16185			fallthrough;	/* otherwise default to smallest count */
16186		case 512:
16187			bf_set(lpfc_rq_context_rqe_count,
16188			       &rq_create->u.request.context,
16189			       LPFC_RQ_RING_SIZE_512);
16190			break;
16191		case 1024:
16192			bf_set(lpfc_rq_context_rqe_count,
16193			       &rq_create->u.request.context,
16194			       LPFC_RQ_RING_SIZE_1024);
16195			break;
16196		case 2048:
16197			bf_set(lpfc_rq_context_rqe_count,
16198			       &rq_create->u.request.context,
16199			       LPFC_RQ_RING_SIZE_2048);
16200			break;
16201		case 4096:
16202			bf_set(lpfc_rq_context_rqe_count,
16203			       &rq_create->u.request.context,
16204			       LPFC_RQ_RING_SIZE_4096);
16205			break;
16206		}
16207		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
16208		       LPFC_HDR_BUF_SIZE);
16209	}
16210	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16211	       cq->queue_id);
16212	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16213	       hrq->page_count);
16214	list_for_each_entry(dmabuf, &hrq->page_list, list) {
16215		memset(dmabuf->virt, 0, hw_page_size);
16216		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16217					putPaddrLow(dmabuf->phys);
16218		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16219					putPaddrHigh(dmabuf->phys);
16220	}
16221	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16222		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16223
16224	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16225	/* The IOCTL status is embedded in the mailbox subheader. */
16226	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16227	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16228	if (shdr_status || shdr_add_status || rc) {
16229		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16230				"2504 RQ_CREATE mailbox failed with "
16231				"status x%x add_status x%x, mbx status x%x\n",
16232				shdr_status, shdr_add_status, rc);
16233		status = -ENXIO;
16234		goto out;
16235	}
16236	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16237	if (hrq->queue_id == 0xFFFF) {
16238		status = -ENXIO;
16239		goto out;
16240	}
16241
16242	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16243		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
16244					&rq_create->u.response);
16245		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
16246		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
16247			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16248					"3262 RQ [%d] doorbell format not "
16249					"supported: x%x\n", hrq->queue_id,
16250					hrq->db_format);
16251			status = -EINVAL;
16252			goto out;
16253		}
16254
16255		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
16256				    &rq_create->u.response);
16257		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
16258		if (!bar_memmap_p) {
16259			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16260					"3269 RQ[%d] failed to memmap pci "
16261					"barset:x%x\n", hrq->queue_id,
16262					pci_barset);
16263			status = -ENOMEM;
16264			goto out;
16265		}
16266
16267		db_offset = rq_create->u.response.doorbell_offset;
16268		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
16269		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
16270			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16271					"3270 RQ[%d] doorbell offset not "
16272					"supported: x%x\n", hrq->queue_id,
16273					db_offset);
16274			status = -EINVAL;
16275			goto out;
16276		}
16277		hrq->db_regaddr = bar_memmap_p + db_offset;
16278		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16279				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
16280				"format:x%x\n", hrq->queue_id, pci_barset,
16281				db_offset, hrq->db_format);
16282	} else {
16283		hrq->db_format = LPFC_DB_RING_FORMAT;
16284		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16285	}
16286	hrq->type = LPFC_HRQ;
16287	hrq->assoc_qid = cq->queue_id;
16288	hrq->subtype = subtype;
16289	hrq->host_index = 0;
16290	hrq->hba_index = 0;
16291	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16292
16293	/* now create the data queue */
16294	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16295			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16296			 length, LPFC_SLI4_MBX_EMBED);
16297	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16298	       phba->sli4_hba.pc_sli4_params.rqv);
16299	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16300		bf_set(lpfc_rq_context_rqe_count_1,
16301		       &rq_create->u.request.context, hrq->entry_count);
16302		if (subtype == LPFC_NVMET)
16303			rq_create->u.request.context.buffer_size =
16304				LPFC_NVMET_DATA_BUF_SIZE;
16305		else
16306			rq_create->u.request.context.buffer_size =
16307				LPFC_DATA_BUF_SIZE;
16308		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16309		       LPFC_RQE_SIZE_8);
16310		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16311		       (PAGE_SIZE/SLI4_PAGE_SIZE));
16312	} else {
16313		switch (drq->entry_count) {
16314		default:
16315			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16316					"2536 Unsupported RQ count. (%d)\n",
16317					drq->entry_count);
16318			if (drq->entry_count < 512) {
16319				status = -EINVAL;
16320				goto out;
16321			}
16322			fallthrough;	/* otherwise default to smallest count */
16323		case 512:
16324			bf_set(lpfc_rq_context_rqe_count,
16325			       &rq_create->u.request.context,
16326			       LPFC_RQ_RING_SIZE_512);
16327			break;
16328		case 1024:
16329			bf_set(lpfc_rq_context_rqe_count,
16330			       &rq_create->u.request.context,
16331			       LPFC_RQ_RING_SIZE_1024);
16332			break;
16333		case 2048:
16334			bf_set(lpfc_rq_context_rqe_count,
16335			       &rq_create->u.request.context,
16336			       LPFC_RQ_RING_SIZE_2048);
16337			break;
16338		case 4096:
16339			bf_set(lpfc_rq_context_rqe_count,
16340			       &rq_create->u.request.context,
16341			       LPFC_RQ_RING_SIZE_4096);
16342			break;
16343		}
16344		if (subtype == LPFC_NVMET)
16345			bf_set(lpfc_rq_context_buf_size,
16346			       &rq_create->u.request.context,
16347			       LPFC_NVMET_DATA_BUF_SIZE);
16348		else
16349			bf_set(lpfc_rq_context_buf_size,
16350			       &rq_create->u.request.context,
16351			       LPFC_DATA_BUF_SIZE);
16352	}
16353	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16354	       cq->queue_id);
16355	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16356	       drq->page_count);
16357	list_for_each_entry(dmabuf, &drq->page_list, list) {
16358		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16359					putPaddrLow(dmabuf->phys);
16360		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16361					putPaddrHigh(dmabuf->phys);
16362	}
16363	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16364		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16365	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16366	/* The IOCTL status is embedded in the mailbox subheader. */
16367	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16368	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16369	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16370	if (shdr_status || shdr_add_status || rc) {
16371		status = -ENXIO;
16372		goto out;
16373	}
16374	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16375	if (drq->queue_id == 0xFFFF) {
16376		status = -ENXIO;
16377		goto out;
16378	}
16379	drq->type = LPFC_DRQ;
16380	drq->assoc_qid = cq->queue_id;
16381	drq->subtype = subtype;
16382	drq->host_index = 0;
16383	drq->hba_index = 0;
16384	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16385
16386	/* link the header and data RQs onto the parent cq child list */
16387	list_add_tail(&hrq->list, &cq->child_list);
16388	list_add_tail(&drq->list, &cq->child_list);
16389
16390out:
16391	mempool_free(mbox, phba->mbox_mem_pool);
16392	return status;
16393}
16394
16395/**
16396 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16397 * @phba: HBA structure that indicates port to create a queue on.
16398 * @hrqp: The queue structure array to use to create the header receive queues.
16399 * @drqp: The queue structure array to use to create the data receive queues.
16400 * @cqp: The completion queue array to bind these receive queues to.
16401 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16402 *
16403 * This function creates a receive buffer queue pair , as detailed in @hrq and
16404 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16405 * to the HBA.
16406 *
16407 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16408 * struct is used to get the entry count that is necessary to determine the
16409 * number of pages to use for this queue. The @cq is used to indicate which
16410 * completion queue to bind received buffers that are posted to these queues to.
16411 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16412 * receive queue pair. This function is asynchronous and will wait for the
16413 * mailbox command to finish before continuing.
16414 *
16415 * On success this function will return a zero. If unable to allocate enough
16416 * memory this function will return -ENOMEM. If the queue create mailbox command
16417 * fails this function will return -ENXIO.
16418 **/
16419int
16420lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16421		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16422		uint32_t subtype)
16423{
16424	struct lpfc_queue *hrq, *drq, *cq;
16425	struct lpfc_mbx_rq_create_v2 *rq_create;
16426	struct lpfc_dmabuf *dmabuf;
16427	LPFC_MBOXQ_t *mbox;
16428	int rc, length, alloclen, status = 0;
16429	int cnt, idx, numrq, page_idx = 0;
16430	uint32_t shdr_status, shdr_add_status;
16431	union lpfc_sli4_cfg_shdr *shdr;
16432	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16433
16434	numrq = phba->cfg_nvmet_mrq;
16435	/* sanity check on array memory */
16436	if (!hrqp || !drqp || !cqp || !numrq)
16437		return -ENODEV;
16438	if (!phba->sli4_hba.pc_sli4_params.supported)
16439		hw_page_size = SLI4_PAGE_SIZE;
16440
16441	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16442	if (!mbox)
16443		return -ENOMEM;
16444
16445	length = sizeof(struct lpfc_mbx_rq_create_v2);
16446	length += ((2 * numrq * hrqp[0]->page_count) *
16447		   sizeof(struct dma_address));
16448
16449	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16450				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16451				    LPFC_SLI4_MBX_NEMBED);
16452	if (alloclen < length) {
16453		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16454				"3099 Allocated DMA memory size (%d) is "
16455				"less than the requested DMA memory size "
16456				"(%d)\n", alloclen, length);
16457		status = -ENOMEM;
16458		goto out;
16459	}
16460
16461
16462
16463	rq_create = mbox->sge_array->addr[0];
16464	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16465
16466	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16467	cnt = 0;
16468
16469	for (idx = 0; idx < numrq; idx++) {
16470		hrq = hrqp[idx];
16471		drq = drqp[idx];
16472		cq  = cqp[idx];
16473
16474		/* sanity check on queue memory */
16475		if (!hrq || !drq || !cq) {
16476			status = -ENODEV;
16477			goto out;
16478		}
16479
16480		if (hrq->entry_count != drq->entry_count) {
16481			status = -EINVAL;
16482			goto out;
16483		}
16484
16485		if (idx == 0) {
16486			bf_set(lpfc_mbx_rq_create_num_pages,
16487			       &rq_create->u.request,
16488			       hrq->page_count);
16489			bf_set(lpfc_mbx_rq_create_rq_cnt,
16490			       &rq_create->u.request, (numrq * 2));
16491			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16492			       1);
16493			bf_set(lpfc_rq_context_base_cq,
16494			       &rq_create->u.request.context,
16495			       cq->queue_id);
16496			bf_set(lpfc_rq_context_data_size,
16497			       &rq_create->u.request.context,
16498			       LPFC_NVMET_DATA_BUF_SIZE);
16499			bf_set(lpfc_rq_context_hdr_size,
16500			       &rq_create->u.request.context,
16501			       LPFC_HDR_BUF_SIZE);
16502			bf_set(lpfc_rq_context_rqe_count_1,
16503			       &rq_create->u.request.context,
16504			       hrq->entry_count);
16505			bf_set(lpfc_rq_context_rqe_size,
16506			       &rq_create->u.request.context,
16507			       LPFC_RQE_SIZE_8);
16508			bf_set(lpfc_rq_context_page_size,
16509			       &rq_create->u.request.context,
16510			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16511		}
16512		rc = 0;
16513		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16514			memset(dmabuf->virt, 0, hw_page_size);
16515			cnt = page_idx + dmabuf->buffer_tag;
16516			rq_create->u.request.page[cnt].addr_lo =
16517					putPaddrLow(dmabuf->phys);
16518			rq_create->u.request.page[cnt].addr_hi =
16519					putPaddrHigh(dmabuf->phys);
16520			rc++;
16521		}
16522		page_idx += rc;
16523
16524		rc = 0;
16525		list_for_each_entry(dmabuf, &drq->page_list, list) {
16526			memset(dmabuf->virt, 0, hw_page_size);
16527			cnt = page_idx + dmabuf->buffer_tag;
16528			rq_create->u.request.page[cnt].addr_lo =
16529					putPaddrLow(dmabuf->phys);
16530			rq_create->u.request.page[cnt].addr_hi =
16531					putPaddrHigh(dmabuf->phys);
16532			rc++;
16533		}
16534		page_idx += rc;
16535
16536		hrq->db_format = LPFC_DB_RING_FORMAT;
16537		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16538		hrq->type = LPFC_HRQ;
16539		hrq->assoc_qid = cq->queue_id;
16540		hrq->subtype = subtype;
16541		hrq->host_index = 0;
16542		hrq->hba_index = 0;
16543		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16544
16545		drq->db_format = LPFC_DB_RING_FORMAT;
16546		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16547		drq->type = LPFC_DRQ;
16548		drq->assoc_qid = cq->queue_id;
16549		drq->subtype = subtype;
16550		drq->host_index = 0;
16551		drq->hba_index = 0;
16552		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16553
16554		list_add_tail(&hrq->list, &cq->child_list);
16555		list_add_tail(&drq->list, &cq->child_list);
16556	}
16557
16558	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16559	/* The IOCTL status is embedded in the mailbox subheader. */
16560	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16561	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16562	if (shdr_status || shdr_add_status || rc) {
16563		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16564				"3120 RQ_CREATE mailbox failed with "
16565				"status x%x add_status x%x, mbx status x%x\n",
16566				shdr_status, shdr_add_status, rc);
16567		status = -ENXIO;
16568		goto out;
16569	}
16570	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16571	if (rc == 0xFFFF) {
16572		status = -ENXIO;
16573		goto out;
16574	}
16575
16576	/* Initialize all RQs with associated queue id */
16577	for (idx = 0; idx < numrq; idx++) {
16578		hrq = hrqp[idx];
16579		hrq->queue_id = rc + (2 * idx);
16580		drq = drqp[idx];
16581		drq->queue_id = rc + (2 * idx) + 1;
16582	}
16583
16584out:
16585	lpfc_sli4_mbox_cmd_free(phba, mbox);
16586	return status;
16587}
16588
16589/**
16590 * lpfc_eq_destroy - Destroy an event Queue on the HBA
16591 * @phba: HBA structure that indicates port to destroy a queue on.
16592 * @eq: The queue structure associated with the queue to destroy.
16593 *
16594 * This function destroys a queue, as detailed in @eq by sending an mailbox
16595 * command, specific to the type of queue, to the HBA.
16596 *
16597 * The @eq struct is used to get the queue ID of the queue to destroy.
16598 *
16599 * On success this function will return a zero. If the queue destroy mailbox
16600 * command fails this function will return -ENXIO.
16601 **/
16602int
16603lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16604{
16605	LPFC_MBOXQ_t *mbox;
16606	int rc, length, status = 0;
16607	uint32_t shdr_status, shdr_add_status;
16608	union lpfc_sli4_cfg_shdr *shdr;
16609
16610	/* sanity check on queue memory */
16611	if (!eq)
16612		return -ENODEV;
16613
16614	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16615	if (!mbox)
16616		return -ENOMEM;
16617	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16618		  sizeof(struct lpfc_sli4_cfg_mhdr));
16619	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16620			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16621			 length, LPFC_SLI4_MBX_EMBED);
16622	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16623	       eq->queue_id);
16624	mbox->vport = eq->phba->pport;
16625	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16626
16627	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16628	/* The IOCTL status is embedded in the mailbox subheader. */
16629	shdr = (union lpfc_sli4_cfg_shdr *)
16630		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16631	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16632	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16633	if (shdr_status || shdr_add_status || rc) {
16634		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16635				"2505 EQ_DESTROY mailbox failed with "
16636				"status x%x add_status x%x, mbx status x%x\n",
16637				shdr_status, shdr_add_status, rc);
16638		status = -ENXIO;
16639	}
16640
16641	/* Remove eq from any list */
16642	list_del_init(&eq->list);
16643	mempool_free(mbox, eq->phba->mbox_mem_pool);
16644	return status;
16645}
16646
16647/**
16648 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16649 * @phba: HBA structure that indicates port to destroy a queue on.
16650 * @cq: The queue structure associated with the queue to destroy.
16651 *
16652 * This function destroys a queue, as detailed in @cq by sending an mailbox
16653 * command, specific to the type of queue, to the HBA.
16654 *
16655 * The @cq struct is used to get the queue ID of the queue to destroy.
16656 *
16657 * On success this function will return a zero. If the queue destroy mailbox
16658 * command fails this function will return -ENXIO.
16659 **/
16660int
16661lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16662{
16663	LPFC_MBOXQ_t *mbox;
16664	int rc, length, status = 0;
16665	uint32_t shdr_status, shdr_add_status;
16666	union lpfc_sli4_cfg_shdr *shdr;
16667
16668	/* sanity check on queue memory */
16669	if (!cq)
16670		return -ENODEV;
16671	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16672	if (!mbox)
16673		return -ENOMEM;
16674	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16675		  sizeof(struct lpfc_sli4_cfg_mhdr));
16676	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16677			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16678			 length, LPFC_SLI4_MBX_EMBED);
16679	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16680	       cq->queue_id);
16681	mbox->vport = cq->phba->pport;
16682	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16683	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16684	/* The IOCTL status is embedded in the mailbox subheader. */
16685	shdr = (union lpfc_sli4_cfg_shdr *)
16686		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16687	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16688	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16689	if (shdr_status || shdr_add_status || rc) {
16690		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16691				"2506 CQ_DESTROY mailbox failed with "
16692				"status x%x add_status x%x, mbx status x%x\n",
16693				shdr_status, shdr_add_status, rc);
16694		status = -ENXIO;
16695	}
16696	/* Remove cq from any list */
16697	list_del_init(&cq->list);
16698	mempool_free(mbox, cq->phba->mbox_mem_pool);
16699	return status;
16700}
16701
16702/**
16703 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16704 * @phba: HBA structure that indicates port to destroy a queue on.
16705 * @mq: The queue structure associated with the queue to destroy.
16706 *
16707 * This function destroys a queue, as detailed in @mq by sending an mailbox
16708 * command, specific to the type of queue, to the HBA.
16709 *
16710 * The @mq struct is used to get the queue ID of the queue to destroy.
16711 *
16712 * On success this function will return a zero. If the queue destroy mailbox
16713 * command fails this function will return -ENXIO.
16714 **/
16715int
16716lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16717{
16718	LPFC_MBOXQ_t *mbox;
16719	int rc, length, status = 0;
16720	uint32_t shdr_status, shdr_add_status;
16721	union lpfc_sli4_cfg_shdr *shdr;
16722
16723	/* sanity check on queue memory */
16724	if (!mq)
16725		return -ENODEV;
16726	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16727	if (!mbox)
16728		return -ENOMEM;
16729	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16730		  sizeof(struct lpfc_sli4_cfg_mhdr));
16731	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16732			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16733			 length, LPFC_SLI4_MBX_EMBED);
16734	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16735	       mq->queue_id);
16736	mbox->vport = mq->phba->pport;
16737	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16738	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16739	/* The IOCTL status is embedded in the mailbox subheader. */
16740	shdr = (union lpfc_sli4_cfg_shdr *)
16741		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16742	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16743	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16744	if (shdr_status || shdr_add_status || rc) {
16745		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16746				"2507 MQ_DESTROY mailbox failed with "
16747				"status x%x add_status x%x, mbx status x%x\n",
16748				shdr_status, shdr_add_status, rc);
16749		status = -ENXIO;
16750	}
16751	/* Remove mq from any list */
16752	list_del_init(&mq->list);
16753	mempool_free(mbox, mq->phba->mbox_mem_pool);
16754	return status;
16755}
16756
16757/**
16758 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16759 * @phba: HBA structure that indicates port to destroy a queue on.
16760 * @wq: The queue structure associated with the queue to destroy.
16761 *
16762 * This function destroys a queue, as detailed in @wq by sending an mailbox
16763 * command, specific to the type of queue, to the HBA.
16764 *
16765 * The @wq struct is used to get the queue ID of the queue to destroy.
16766 *
16767 * On success this function will return a zero. If the queue destroy mailbox
16768 * command fails this function will return -ENXIO.
16769 **/
16770int
16771lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16772{
16773	LPFC_MBOXQ_t *mbox;
16774	int rc, length, status = 0;
16775	uint32_t shdr_status, shdr_add_status;
16776	union lpfc_sli4_cfg_shdr *shdr;
16777
16778	/* sanity check on queue memory */
16779	if (!wq)
16780		return -ENODEV;
16781	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16782	if (!mbox)
16783		return -ENOMEM;
16784	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16785		  sizeof(struct lpfc_sli4_cfg_mhdr));
16786	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16787			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16788			 length, LPFC_SLI4_MBX_EMBED);
16789	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16790	       wq->queue_id);
16791	mbox->vport = wq->phba->pport;
16792	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16793	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16794	shdr = (union lpfc_sli4_cfg_shdr *)
16795		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16796	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16797	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16798	if (shdr_status || shdr_add_status || rc) {
16799		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16800				"2508 WQ_DESTROY mailbox failed with "
16801				"status x%x add_status x%x, mbx status x%x\n",
16802				shdr_status, shdr_add_status, rc);
16803		status = -ENXIO;
16804	}
16805	/* Remove wq from any list */
16806	list_del_init(&wq->list);
16807	kfree(wq->pring);
16808	wq->pring = NULL;
16809	mempool_free(mbox, wq->phba->mbox_mem_pool);
16810	return status;
16811}
16812
16813/**
16814 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16815 * @phba: HBA structure that indicates port to destroy a queue on.
16816 * @hrq: The queue structure associated with the queue to destroy.
16817 * @drq: The queue structure associated with the queue to destroy.
16818 *
16819 * This function destroys a queue, as detailed in @rq by sending an mailbox
16820 * command, specific to the type of queue, to the HBA.
16821 *
16822 * The @rq struct is used to get the queue ID of the queue to destroy.
16823 *
16824 * On success this function will return a zero. If the queue destroy mailbox
16825 * command fails this function will return -ENXIO.
16826 **/
16827int
16828lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16829		struct lpfc_queue *drq)
16830{
16831	LPFC_MBOXQ_t *mbox;
16832	int rc, length, status = 0;
16833	uint32_t shdr_status, shdr_add_status;
16834	union lpfc_sli4_cfg_shdr *shdr;
16835
16836	/* sanity check on queue memory */
16837	if (!hrq || !drq)
16838		return -ENODEV;
16839	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16840	if (!mbox)
16841		return -ENOMEM;
16842	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16843		  sizeof(struct lpfc_sli4_cfg_mhdr));
16844	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16845			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16846			 length, LPFC_SLI4_MBX_EMBED);
16847	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16848	       hrq->queue_id);
16849	mbox->vport = hrq->phba->pport;
16850	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16851	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16852	/* The IOCTL status is embedded in the mailbox subheader. */
16853	shdr = (union lpfc_sli4_cfg_shdr *)
16854		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16855	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16856	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16857	if (shdr_status || shdr_add_status || rc) {
16858		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16859				"2509 RQ_DESTROY mailbox failed with "
16860				"status x%x add_status x%x, mbx status x%x\n",
16861				shdr_status, shdr_add_status, rc);
16862		mempool_free(mbox, hrq->phba->mbox_mem_pool);
16863		return -ENXIO;
16864	}
16865	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16866	       drq->queue_id);
16867	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16868	shdr = (union lpfc_sli4_cfg_shdr *)
16869		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16870	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16871	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16872	if (shdr_status || shdr_add_status || rc) {
16873		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16874				"2510 RQ_DESTROY mailbox failed with "
16875				"status x%x add_status x%x, mbx status x%x\n",
16876				shdr_status, shdr_add_status, rc);
16877		status = -ENXIO;
16878	}
16879	list_del_init(&hrq->list);
16880	list_del_init(&drq->list);
16881	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16882	return status;
16883}
16884
16885/**
16886 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16887 * @phba: The virtual port for which this call being executed.
16888 * @pdma_phys_addr0: Physical address of the 1st SGL page.
16889 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16890 * @xritag: the xritag that ties this io to the SGL pages.
16891 *
16892 * This routine will post the sgl pages for the IO that has the xritag
16893 * that is in the iocbq structure. The xritag is assigned during iocbq
16894 * creation and persists for as long as the driver is loaded.
16895 * if the caller has fewer than 256 scatter gather segments to map then
16896 * pdma_phys_addr1 should be 0.
16897 * If the caller needs to map more than 256 scatter gather segment then
16898 * pdma_phys_addr1 should be a valid physical address.
16899 * physical address for SGLs must be 64 byte aligned.
16900 * If you are going to map 2 SGL's then the first one must have 256 entries
16901 * the second sgl can have between 1 and 256 entries.
16902 *
16903 * Return codes:
16904 * 	0 - Success
16905 * 	-ENXIO, -ENOMEM - Failure
16906 **/
16907int
16908lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16909		dma_addr_t pdma_phys_addr0,
16910		dma_addr_t pdma_phys_addr1,
16911		uint16_t xritag)
16912{
16913	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16914	LPFC_MBOXQ_t *mbox;
16915	int rc;
16916	uint32_t shdr_status, shdr_add_status;
16917	uint32_t mbox_tmo;
16918	union lpfc_sli4_cfg_shdr *shdr;
16919
16920	if (xritag == NO_XRI) {
16921		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16922				"0364 Invalid param:\n");
16923		return -EINVAL;
16924	}
16925
16926	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16927	if (!mbox)
16928		return -ENOMEM;
16929
16930	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16931			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16932			sizeof(struct lpfc_mbx_post_sgl_pages) -
16933			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16934
16935	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16936				&mbox->u.mqe.un.post_sgl_pages;
16937	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16938	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16939
16940	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16941				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16942	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16943				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16944
16945	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16946				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16947	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16948				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16949	if (!phba->sli4_hba.intr_enable)
16950		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16951	else {
16952		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16953		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16954	}
16955	/* The IOCTL status is embedded in the mailbox subheader. */
16956	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16957	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16958	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16959	if (!phba->sli4_hba.intr_enable)
16960		mempool_free(mbox, phba->mbox_mem_pool);
16961	else if (rc != MBX_TIMEOUT)
16962		mempool_free(mbox, phba->mbox_mem_pool);
16963	if (shdr_status || shdr_add_status || rc) {
16964		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16965				"2511 POST_SGL mailbox failed with "
16966				"status x%x add_status x%x, mbx status x%x\n",
16967				shdr_status, shdr_add_status, rc);
16968	}
16969	return 0;
16970}
16971
16972/**
16973 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16974 * @phba: pointer to lpfc hba data structure.
16975 *
16976 * This routine is invoked to post rpi header templates to the
16977 * HBA consistent with the SLI-4 interface spec.  This routine
16978 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16979 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16980 *
16981 * Returns
16982 *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16983 *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16984 **/
16985static uint16_t
16986lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16987{
16988	unsigned long xri;
16989
16990	/*
16991	 * Fetch the next logical xri.  Because this index is logical,
16992	 * the driver starts at 0 each time.
16993	 */
16994	spin_lock_irq(&phba->hbalock);
16995	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16996				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16997	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16998		spin_unlock_irq(&phba->hbalock);
16999		return NO_XRI;
17000	} else {
17001		set_bit(xri, phba->sli4_hba.xri_bmask);
17002		phba->sli4_hba.max_cfg_param.xri_used++;
17003	}
17004	spin_unlock_irq(&phba->hbalock);
17005	return xri;
17006}
17007
17008/**
17009 * lpfc_sli4_free_xri - Release an xri for reuse.
17010 * @phba: pointer to lpfc hba data structure.
17011 * @xri: xri to release.
17012 *
17013 * This routine is invoked to release an xri to the pool of
17014 * available rpis maintained by the driver.
17015 **/
17016static void
17017__lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17018{
17019	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
17020		phba->sli4_hba.max_cfg_param.xri_used--;
17021	}
17022}
17023
17024/**
17025 * lpfc_sli4_free_xri - Release an xri for reuse.
17026 * @phba: pointer to lpfc hba data structure.
17027 * @xri: xri to release.
17028 *
17029 * This routine is invoked to release an xri to the pool of
17030 * available rpis maintained by the driver.
17031 **/
17032void
17033lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17034{
17035	spin_lock_irq(&phba->hbalock);
17036	__lpfc_sli4_free_xri(phba, xri);
17037	spin_unlock_irq(&phba->hbalock);
17038}
17039
17040/**
17041 * lpfc_sli4_next_xritag - Get an xritag for the io
17042 * @phba: Pointer to HBA context object.
17043 *
17044 * This function gets an xritag for the iocb. If there is no unused xritag
17045 * it will return 0xffff.
17046 * The function returns the allocated xritag if successful, else returns zero.
17047 * Zero is not a valid xritag.
17048 * The caller is not required to hold any lock.
17049 **/
17050uint16_t
17051lpfc_sli4_next_xritag(struct lpfc_hba *phba)
17052{
17053	uint16_t xri_index;
17054
17055	xri_index = lpfc_sli4_alloc_xri(phba);
17056	if (xri_index == NO_XRI)
17057		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17058				"2004 Failed to allocate XRI.last XRITAG is %d"
17059				" Max XRI is %d, Used XRI is %d\n",
17060				xri_index,
17061				phba->sli4_hba.max_cfg_param.max_xri,
17062				phba->sli4_hba.max_cfg_param.xri_used);
17063	return xri_index;
17064}
17065
17066/**
17067 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
17068 * @phba: pointer to lpfc hba data structure.
17069 * @post_sgl_list: pointer to els sgl entry list.
17070 * @post_cnt: number of els sgl entries on the list.
17071 *
17072 * This routine is invoked to post a block of driver's sgl pages to the
17073 * HBA using non-embedded mailbox command. No Lock is held. This routine
17074 * is only called when the driver is loading and after all IO has been
17075 * stopped.
17076 **/
17077static int
17078lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
17079			    struct list_head *post_sgl_list,
17080			    int post_cnt)
17081{
17082	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
17083	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17084	struct sgl_page_pairs *sgl_pg_pairs;
17085	void *viraddr;
17086	LPFC_MBOXQ_t *mbox;
17087	uint32_t reqlen, alloclen, pg_pairs;
17088	uint32_t mbox_tmo;
17089	uint16_t xritag_start = 0;
17090	int rc = 0;
17091	uint32_t shdr_status, shdr_add_status;
17092	union lpfc_sli4_cfg_shdr *shdr;
17093
17094	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
17095		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17096	if (reqlen > SLI4_PAGE_SIZE) {
17097		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17098				"2559 Block sgl registration required DMA "
17099				"size (%d) great than a page\n", reqlen);
17100		return -ENOMEM;
17101	}
17102
17103	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17104	if (!mbox)
17105		return -ENOMEM;
17106
17107	/* Allocate DMA memory and set up the non-embedded mailbox command */
17108	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17109			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
17110			 LPFC_SLI4_MBX_NEMBED);
17111
17112	if (alloclen < reqlen) {
17113		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17114				"0285 Allocated DMA memory size (%d) is "
17115				"less than the requested DMA memory "
17116				"size (%d)\n", alloclen, reqlen);
17117		lpfc_sli4_mbox_cmd_free(phba, mbox);
17118		return -ENOMEM;
17119	}
17120	/* Set up the SGL pages in the non-embedded DMA pages */
17121	viraddr = mbox->sge_array->addr[0];
17122	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17123	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17124
17125	pg_pairs = 0;
17126	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
17127		/* Set up the sge entry */
17128		sgl_pg_pairs->sgl_pg0_addr_lo =
17129				cpu_to_le32(putPaddrLow(sglq_entry->phys));
17130		sgl_pg_pairs->sgl_pg0_addr_hi =
17131				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
17132		sgl_pg_pairs->sgl_pg1_addr_lo =
17133				cpu_to_le32(putPaddrLow(0));
17134		sgl_pg_pairs->sgl_pg1_addr_hi =
17135				cpu_to_le32(putPaddrHigh(0));
17136
17137		/* Keep the first xritag on the list */
17138		if (pg_pairs == 0)
17139			xritag_start = sglq_entry->sli4_xritag;
17140		sgl_pg_pairs++;
17141		pg_pairs++;
17142	}
17143
17144	/* Complete initialization and perform endian conversion. */
17145	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17146	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
17147	sgl->word0 = cpu_to_le32(sgl->word0);
17148
17149	if (!phba->sli4_hba.intr_enable)
17150		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17151	else {
17152		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17153		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17154	}
17155	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
17156	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17157	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17158	if (!phba->sli4_hba.intr_enable)
17159		lpfc_sli4_mbox_cmd_free(phba, mbox);
17160	else if (rc != MBX_TIMEOUT)
17161		lpfc_sli4_mbox_cmd_free(phba, mbox);
17162	if (shdr_status || shdr_add_status || rc) {
17163		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17164				"2513 POST_SGL_BLOCK mailbox command failed "
17165				"status x%x add_status x%x mbx status x%x\n",
17166				shdr_status, shdr_add_status, rc);
17167		rc = -ENXIO;
17168	}
17169	return rc;
17170}
17171
17172/**
17173 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
17174 * @phba: pointer to lpfc hba data structure.
17175 * @nblist: pointer to nvme buffer list.
17176 * @count: number of scsi buffers on the list.
17177 *
17178 * This routine is invoked to post a block of @count scsi sgl pages from a
17179 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
17180 * No Lock is held.
17181 *
17182 **/
17183static int
17184lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
17185			    int count)
17186{
17187	struct lpfc_io_buf *lpfc_ncmd;
17188	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17189	struct sgl_page_pairs *sgl_pg_pairs;
17190	void *viraddr;
17191	LPFC_MBOXQ_t *mbox;
17192	uint32_t reqlen, alloclen, pg_pairs;
17193	uint32_t mbox_tmo;
17194	uint16_t xritag_start = 0;
17195	int rc = 0;
17196	uint32_t shdr_status, shdr_add_status;
17197	dma_addr_t pdma_phys_bpl1;
17198	union lpfc_sli4_cfg_shdr *shdr;
17199
17200	/* Calculate the requested length of the dma memory */
17201	reqlen = count * sizeof(struct sgl_page_pairs) +
17202		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17203	if (reqlen > SLI4_PAGE_SIZE) {
17204		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
17205				"6118 Block sgl registration required DMA "
17206				"size (%d) great than a page\n", reqlen);
17207		return -ENOMEM;
17208	}
17209	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17210	if (!mbox) {
17211		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17212				"6119 Failed to allocate mbox cmd memory\n");
17213		return -ENOMEM;
17214	}
17215
17216	/* Allocate DMA memory and set up the non-embedded mailbox command */
17217	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17218				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17219				    reqlen, LPFC_SLI4_MBX_NEMBED);
17220
17221	if (alloclen < reqlen) {
17222		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17223				"6120 Allocated DMA memory size (%d) is "
17224				"less than the requested DMA memory "
17225				"size (%d)\n", alloclen, reqlen);
17226		lpfc_sli4_mbox_cmd_free(phba, mbox);
17227		return -ENOMEM;
17228	}
17229
17230	/* Get the first SGE entry from the non-embedded DMA memory */
17231	viraddr = mbox->sge_array->addr[0];
17232
17233	/* Set up the SGL pages in the non-embedded DMA pages */
17234	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17235	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17236
17237	pg_pairs = 0;
17238	list_for_each_entry(lpfc_ncmd, nblist, list) {
17239		/* Set up the sge entry */
17240		sgl_pg_pairs->sgl_pg0_addr_lo =
17241			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
17242		sgl_pg_pairs->sgl_pg0_addr_hi =
17243			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
17244		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
17245			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
17246						SGL_PAGE_SIZE;
17247		else
17248			pdma_phys_bpl1 = 0;
17249		sgl_pg_pairs->sgl_pg1_addr_lo =
17250			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
17251		sgl_pg_pairs->sgl_pg1_addr_hi =
17252			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
17253		/* Keep the first xritag on the list */
17254		if (pg_pairs == 0)
17255			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
17256		sgl_pg_pairs++;
17257		pg_pairs++;
17258	}
17259	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17260	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
17261	/* Perform endian conversion if necessary */
17262	sgl->word0 = cpu_to_le32(sgl->word0);
17263
17264	if (!phba->sli4_hba.intr_enable) {
17265		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17266	} else {
17267		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17268		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17269	}
17270	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
17271	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17272	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17273	if (!phba->sli4_hba.intr_enable)
17274		lpfc_sli4_mbox_cmd_free(phba, mbox);
17275	else if (rc != MBX_TIMEOUT)
17276		lpfc_sli4_mbox_cmd_free(phba, mbox);
17277	if (shdr_status || shdr_add_status || rc) {
17278		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17279				"6125 POST_SGL_BLOCK mailbox command failed "
17280				"status x%x add_status x%x mbx status x%x\n",
17281				shdr_status, shdr_add_status, rc);
17282		rc = -ENXIO;
17283	}
17284	return rc;
17285}
17286
17287/**
17288 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
17289 * @phba: pointer to lpfc hba data structure.
17290 * @post_nblist: pointer to the nvme buffer list.
17291 * @sb_count: number of nvme buffers.
17292 *
17293 * This routine walks a list of nvme buffers that was passed in. It attempts
17294 * to construct blocks of nvme buffer sgls which contains contiguous xris and
17295 * uses the non-embedded SGL block post mailbox commands to post to the port.
17296 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
17297 * embedded SGL post mailbox command for posting. The @post_nblist passed in
17298 * must be local list, thus no lock is needed when manipulate the list.
17299 *
17300 * Returns: 0 = failure, non-zero number of successfully posted buffers.
17301 **/
17302int
17303lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17304			   struct list_head *post_nblist, int sb_count)
17305{
17306	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17307	int status, sgl_size;
17308	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17309	dma_addr_t pdma_phys_sgl1;
17310	int last_xritag = NO_XRI;
17311	int cur_xritag;
17312	LIST_HEAD(prep_nblist);
17313	LIST_HEAD(blck_nblist);
17314	LIST_HEAD(nvme_nblist);
17315
17316	/* sanity check */
17317	if (sb_count <= 0)
17318		return -EINVAL;
17319
17320	sgl_size = phba->cfg_sg_dma_buf_size;
17321	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17322		list_del_init(&lpfc_ncmd->list);
17323		block_cnt++;
17324		if ((last_xritag != NO_XRI) &&
17325		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17326			/* a hole in xri block, form a sgl posting block */
17327			list_splice_init(&prep_nblist, &blck_nblist);
17328			post_cnt = block_cnt - 1;
17329			/* prepare list for next posting block */
17330			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17331			block_cnt = 1;
17332		} else {
17333			/* prepare list for next posting block */
17334			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17335			/* enough sgls for non-embed sgl mbox command */
17336			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17337				list_splice_init(&prep_nblist, &blck_nblist);
17338				post_cnt = block_cnt;
17339				block_cnt = 0;
17340			}
17341		}
17342		num_posting++;
17343		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17344
17345		/* end of repost sgl list condition for NVME buffers */
17346		if (num_posting == sb_count) {
17347			if (post_cnt == 0) {
17348				/* last sgl posting block */
17349				list_splice_init(&prep_nblist, &blck_nblist);
17350				post_cnt = block_cnt;
17351			} else if (block_cnt == 1) {
17352				/* last single sgl with non-contiguous xri */
17353				if (sgl_size > SGL_PAGE_SIZE)
17354					pdma_phys_sgl1 =
17355						lpfc_ncmd->dma_phys_sgl +
17356						SGL_PAGE_SIZE;
17357				else
17358					pdma_phys_sgl1 = 0;
17359				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17360				status = lpfc_sli4_post_sgl(
17361						phba, lpfc_ncmd->dma_phys_sgl,
17362						pdma_phys_sgl1, cur_xritag);
17363				if (status) {
17364					/* Post error.  Buffer unavailable. */
17365					lpfc_ncmd->flags |=
17366						LPFC_SBUF_NOT_POSTED;
17367				} else {
17368					/* Post success. Bffer available. */
17369					lpfc_ncmd->flags &=
17370						~LPFC_SBUF_NOT_POSTED;
17371					lpfc_ncmd->status = IOSTAT_SUCCESS;
17372					num_posted++;
17373				}
17374				/* success, put on NVME buffer sgl list */
17375				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17376			}
17377		}
17378
17379		/* continue until a nembed page worth of sgls */
17380		if (post_cnt == 0)
17381			continue;
17382
17383		/* post block of NVME buffer list sgls */
17384		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17385						     post_cnt);
17386
17387		/* don't reset xirtag due to hole in xri block */
17388		if (block_cnt == 0)
17389			last_xritag = NO_XRI;
17390
17391		/* reset NVME buffer post count for next round of posting */
17392		post_cnt = 0;
17393
17394		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17395		while (!list_empty(&blck_nblist)) {
17396			list_remove_head(&blck_nblist, lpfc_ncmd,
17397					 struct lpfc_io_buf, list);
17398			if (status) {
17399				/* Post error.  Mark buffer unavailable. */
17400				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17401			} else {
17402				/* Post success, Mark buffer available. */
17403				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17404				lpfc_ncmd->status = IOSTAT_SUCCESS;
17405				num_posted++;
17406			}
17407			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17408		}
17409	}
17410	/* Push NVME buffers with sgl posted to the available list */
17411	lpfc_io_buf_replenish(phba, &nvme_nblist);
17412
17413	return num_posted;
17414}
17415
17416/**
17417 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17418 * @phba: pointer to lpfc_hba struct that the frame was received on
17419 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17420 *
17421 * This function checks the fields in the @fc_hdr to see if the FC frame is a
17422 * valid type of frame that the LPFC driver will handle. This function will
17423 * return a zero if the frame is a valid frame or a non zero value when the
17424 * frame does not pass the check.
17425 **/
17426static int
17427lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17428{
17429	/*  make rctl_names static to save stack space */
17430	struct fc_vft_header *fc_vft_hdr;
17431	uint32_t *header = (uint32_t *) fc_hdr;
17432
17433#define FC_RCTL_MDS_DIAGS	0xF4
17434
17435	switch (fc_hdr->fh_r_ctl) {
17436	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
17437	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
17438	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
17439	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
17440	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
17441	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
17442	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
17443	case FC_RCTL_DD_CMD_STATUS:	/* command status */
17444	case FC_RCTL_ELS_REQ:	/* extended link services request */
17445	case FC_RCTL_ELS_REP:	/* extended link services reply */
17446	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
17447	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
17448	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
17449	case FC_RCTL_BA_RMC: 	/* remove connection */
17450	case FC_RCTL_BA_ACC:	/* basic accept */
17451	case FC_RCTL_BA_RJT:	/* basic reject */
17452	case FC_RCTL_BA_PRMT:
17453	case FC_RCTL_ACK_1:	/* acknowledge_1 */
17454	case FC_RCTL_ACK_0:	/* acknowledge_0 */
17455	case FC_RCTL_P_RJT:	/* port reject */
17456	case FC_RCTL_F_RJT:	/* fabric reject */
17457	case FC_RCTL_P_BSY:	/* port busy */
17458	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
17459	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
17460	case FC_RCTL_LCR:	/* link credit reset */
17461	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17462	case FC_RCTL_END:	/* end */
17463		break;
17464	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
17465		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17466		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17467		return lpfc_fc_frame_check(phba, fc_hdr);
17468	case FC_RCTL_BA_NOP:	/* basic link service NOP */
17469	default:
17470		goto drop;
17471	}
17472
17473	switch (fc_hdr->fh_type) {
17474	case FC_TYPE_BLS:
17475	case FC_TYPE_ELS:
17476	case FC_TYPE_FCP:
17477	case FC_TYPE_CT:
17478	case FC_TYPE_NVME:
17479		break;
17480	case FC_TYPE_IP:
17481	case FC_TYPE_ILS:
17482	default:
17483		goto drop;
17484	}
17485
17486	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17487			"2538 Received frame rctl:x%x, type:x%x, "
17488			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17489			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17490			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17491			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17492			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17493			be32_to_cpu(header[6]));
17494	return 0;
17495drop:
17496	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17497			"2539 Dropped frame rctl:x%x type:x%x\n",
17498			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17499	return 1;
17500}
17501
17502/**
17503 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17504 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17505 *
17506 * This function processes the FC header to retrieve the VFI from the VF
17507 * header, if one exists. This function will return the VFI if one exists
17508 * or 0 if no VSAN Header exists.
17509 **/
17510static uint32_t
17511lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17512{
17513	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17514
17515	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17516		return 0;
17517	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17518}
17519
17520/**
17521 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17522 * @phba: Pointer to the HBA structure to search for the vport on
17523 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17524 * @fcfi: The FC Fabric ID that the frame came from
17525 * @did: Destination ID to match against
17526 *
17527 * This function searches the @phba for a vport that matches the content of the
17528 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17529 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17530 * returns the matching vport pointer or NULL if unable to match frame to a
17531 * vport.
17532 **/
17533static struct lpfc_vport *
17534lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17535		       uint16_t fcfi, uint32_t did)
17536{
17537	struct lpfc_vport **vports;
17538	struct lpfc_vport *vport = NULL;
17539	int i;
17540
17541	if (did == Fabric_DID)
17542		return phba->pport;
17543	if ((phba->pport->fc_flag & FC_PT2PT) &&
17544		!(phba->link_state == LPFC_HBA_READY))
17545		return phba->pport;
17546
17547	vports = lpfc_create_vport_work_array(phba);
17548	if (vports != NULL) {
17549		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17550			if (phba->fcf.fcfi == fcfi &&
17551			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17552			    vports[i]->fc_myDID == did) {
17553				vport = vports[i];
17554				break;
17555			}
17556		}
17557	}
17558	lpfc_destroy_vport_work_array(phba, vports);
17559	return vport;
17560}
17561
17562/**
17563 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17564 * @vport: The vport to work on.
17565 *
17566 * This function updates the receive sequence time stamp for this vport. The
17567 * receive sequence time stamp indicates the time that the last frame of the
17568 * the sequence that has been idle for the longest amount of time was received.
17569 * the driver uses this time stamp to indicate if any received sequences have
17570 * timed out.
17571 **/
17572static void
17573lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17574{
17575	struct lpfc_dmabuf *h_buf;
17576	struct hbq_dmabuf *dmabuf = NULL;
17577
17578	/* get the oldest sequence on the rcv list */
17579	h_buf = list_get_first(&vport->rcv_buffer_list,
17580			       struct lpfc_dmabuf, list);
17581	if (!h_buf)
17582		return;
17583	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17584	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17585}
17586
17587/**
17588 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17589 * @vport: The vport that the received sequences were sent to.
17590 *
17591 * This function cleans up all outstanding received sequences. This is called
17592 * by the driver when a link event or user action invalidates all the received
17593 * sequences.
17594 **/
17595void
17596lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17597{
17598	struct lpfc_dmabuf *h_buf, *hnext;
17599	struct lpfc_dmabuf *d_buf, *dnext;
17600	struct hbq_dmabuf *dmabuf = NULL;
17601
17602	/* start with the oldest sequence on the rcv list */
17603	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17604		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17605		list_del_init(&dmabuf->hbuf.list);
17606		list_for_each_entry_safe(d_buf, dnext,
17607					 &dmabuf->dbuf.list, list) {
17608			list_del_init(&d_buf->list);
17609			lpfc_in_buf_free(vport->phba, d_buf);
17610		}
17611		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17612	}
17613}
17614
17615/**
17616 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17617 * @vport: The vport that the received sequences were sent to.
17618 *
17619 * This function determines whether any received sequences have timed out by
17620 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17621 * indicates that there is at least one timed out sequence this routine will
17622 * go through the received sequences one at a time from most inactive to most
17623 * active to determine which ones need to be cleaned up. Once it has determined
17624 * that a sequence needs to be cleaned up it will simply free up the resources
17625 * without sending an abort.
17626 **/
17627void
17628lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17629{
17630	struct lpfc_dmabuf *h_buf, *hnext;
17631	struct lpfc_dmabuf *d_buf, *dnext;
17632	struct hbq_dmabuf *dmabuf = NULL;
17633	unsigned long timeout;
17634	int abort_count = 0;
17635
17636	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17637		   vport->rcv_buffer_time_stamp);
17638	if (list_empty(&vport->rcv_buffer_list) ||
17639	    time_before(jiffies, timeout))
17640		return;
17641	/* start with the oldest sequence on the rcv list */
17642	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17643		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17644		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17645			   dmabuf->time_stamp);
17646		if (time_before(jiffies, timeout))
17647			break;
17648		abort_count++;
17649		list_del_init(&dmabuf->hbuf.list);
17650		list_for_each_entry_safe(d_buf, dnext,
17651					 &dmabuf->dbuf.list, list) {
17652			list_del_init(&d_buf->list);
17653			lpfc_in_buf_free(vport->phba, d_buf);
17654		}
17655		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17656	}
17657	if (abort_count)
17658		lpfc_update_rcv_time_stamp(vport);
17659}
17660
17661/**
17662 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17663 * @vport: pointer to a vitural port
17664 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17665 *
17666 * This function searches through the existing incomplete sequences that have
17667 * been sent to this @vport. If the frame matches one of the incomplete
17668 * sequences then the dbuf in the @dmabuf is added to the list of frames that
17669 * make up that sequence. If no sequence is found that matches this frame then
17670 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17671 * This function returns a pointer to the first dmabuf in the sequence list that
17672 * the frame was linked to.
17673 **/
17674static struct hbq_dmabuf *
17675lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17676{
17677	struct fc_frame_header *new_hdr;
17678	struct fc_frame_header *temp_hdr;
17679	struct lpfc_dmabuf *d_buf;
17680	struct lpfc_dmabuf *h_buf;
17681	struct hbq_dmabuf *seq_dmabuf = NULL;
17682	struct hbq_dmabuf *temp_dmabuf = NULL;
17683	uint8_t	found = 0;
17684
17685	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17686	dmabuf->time_stamp = jiffies;
17687	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17688
17689	/* Use the hdr_buf to find the sequence that this frame belongs to */
17690	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17691		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17692		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17693		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17694		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17695			continue;
17696		/* found a pending sequence that matches this frame */
17697		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17698		break;
17699	}
17700	if (!seq_dmabuf) {
17701		/*
17702		 * This indicates first frame received for this sequence.
17703		 * Queue the buffer on the vport's rcv_buffer_list.
17704		 */
17705		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17706		lpfc_update_rcv_time_stamp(vport);
17707		return dmabuf;
17708	}
17709	temp_hdr = seq_dmabuf->hbuf.virt;
17710	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17711		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17712		list_del_init(&seq_dmabuf->hbuf.list);
17713		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17714		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17715		lpfc_update_rcv_time_stamp(vport);
17716		return dmabuf;
17717	}
17718	/* move this sequence to the tail to indicate a young sequence */
17719	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17720	seq_dmabuf->time_stamp = jiffies;
17721	lpfc_update_rcv_time_stamp(vport);
17722	if (list_empty(&seq_dmabuf->dbuf.list)) {
17723		temp_hdr = dmabuf->hbuf.virt;
17724		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17725		return seq_dmabuf;
17726	}
17727	/* find the correct place in the sequence to insert this frame */
17728	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17729	while (!found) {
17730		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17731		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17732		/*
17733		 * If the frame's sequence count is greater than the frame on
17734		 * the list then insert the frame right after this frame
17735		 */
17736		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17737			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17738			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17739			found = 1;
17740			break;
17741		}
17742
17743		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17744			break;
17745		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17746	}
17747
17748	if (found)
17749		return seq_dmabuf;
17750	return NULL;
17751}
17752
17753/**
17754 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17755 * @vport: pointer to a vitural port
17756 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17757 *
17758 * This function tries to abort from the partially assembed sequence, described
17759 * by the information from basic abbort @dmabuf. It checks to see whether such
17760 * partially assembled sequence held by the driver. If so, it shall free up all
17761 * the frames from the partially assembled sequence.
17762 *
17763 * Return
17764 * true  -- if there is matching partially assembled sequence present and all
17765 *          the frames freed with the sequence;
17766 * false -- if there is no matching partially assembled sequence present so
17767 *          nothing got aborted in the lower layer driver
17768 **/
17769static bool
17770lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17771			    struct hbq_dmabuf *dmabuf)
17772{
17773	struct fc_frame_header *new_hdr;
17774	struct fc_frame_header *temp_hdr;
17775	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17776	struct hbq_dmabuf *seq_dmabuf = NULL;
17777
17778	/* Use the hdr_buf to find the sequence that matches this frame */
17779	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17780	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17781	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17782	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17783		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17784		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17785		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17786		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17787			continue;
17788		/* found a pending sequence that matches this frame */
17789		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17790		break;
17791	}
17792
17793	/* Free up all the frames from the partially assembled sequence */
17794	if (seq_dmabuf) {
17795		list_for_each_entry_safe(d_buf, n_buf,
17796					 &seq_dmabuf->dbuf.list, list) {
17797			list_del_init(&d_buf->list);
17798			lpfc_in_buf_free(vport->phba, d_buf);
17799		}
17800		return true;
17801	}
17802	return false;
17803}
17804
17805/**
17806 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17807 * @vport: pointer to a vitural port
17808 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17809 *
17810 * This function tries to abort from the assembed sequence from upper level
17811 * protocol, described by the information from basic abbort @dmabuf. It
17812 * checks to see whether such pending context exists at upper level protocol.
17813 * If so, it shall clean up the pending context.
17814 *
17815 * Return
17816 * true  -- if there is matching pending context of the sequence cleaned
17817 *          at ulp;
17818 * false -- if there is no matching pending context of the sequence present
17819 *          at ulp.
17820 **/
17821static bool
17822lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17823{
17824	struct lpfc_hba *phba = vport->phba;
17825	int handled;
17826
17827	/* Accepting abort at ulp with SLI4 only */
17828	if (phba->sli_rev < LPFC_SLI_REV4)
17829		return false;
17830
17831	/* Register all caring upper level protocols to attend abort */
17832	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17833	if (handled)
17834		return true;
17835
17836	return false;
17837}
17838
17839/**
17840 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17841 * @phba: Pointer to HBA context object.
17842 * @cmd_iocbq: pointer to the command iocbq structure.
17843 * @rsp_iocbq: pointer to the response iocbq structure.
17844 *
17845 * This function handles the sequence abort response iocb command complete
17846 * event. It properly releases the memory allocated to the sequence abort
17847 * accept iocb.
17848 **/
17849static void
17850lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17851			     struct lpfc_iocbq *cmd_iocbq,
17852			     struct lpfc_iocbq *rsp_iocbq)
17853{
17854	struct lpfc_nodelist *ndlp;
17855
17856	if (cmd_iocbq) {
17857		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17858		lpfc_nlp_put(ndlp);
17859		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17860	}
17861
17862	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17863	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17864		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17865			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17866			rsp_iocbq->iocb.ulpStatus,
17867			rsp_iocbq->iocb.un.ulpWord[4]);
17868}
17869
17870/**
17871 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17872 * @phba: Pointer to HBA context object.
17873 * @xri: xri id in transaction.
17874 *
17875 * This function validates the xri maps to the known range of XRIs allocated an
17876 * used by the driver.
17877 **/
17878uint16_t
17879lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17880		      uint16_t xri)
17881{
17882	uint16_t i;
17883
17884	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17885		if (xri == phba->sli4_hba.xri_ids[i])
17886			return i;
17887	}
17888	return NO_XRI;
17889}
17890
17891/**
17892 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17893 * @vport: pointer to a vitural port.
17894 * @fc_hdr: pointer to a FC frame header.
17895 * @aborted: was the partially assembled receive sequence successfully aborted
17896 *
17897 * This function sends a basic response to a previous unsol sequence abort
17898 * event after aborting the sequence handling.
17899 **/
17900void
17901lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17902			struct fc_frame_header *fc_hdr, bool aborted)
17903{
17904	struct lpfc_hba *phba = vport->phba;
17905	struct lpfc_iocbq *ctiocb = NULL;
17906	struct lpfc_nodelist *ndlp;
17907	uint16_t oxid, rxid, xri, lxri;
17908	uint32_t sid, fctl;
17909	IOCB_t *icmd;
17910	int rc;
17911
17912	if (!lpfc_is_link_up(phba))
17913		return;
17914
17915	sid = sli4_sid_from_fc_hdr(fc_hdr);
17916	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17917	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17918
17919	ndlp = lpfc_findnode_did(vport, sid);
17920	if (!ndlp) {
17921		ndlp = lpfc_nlp_init(vport, sid);
17922		if (!ndlp) {
17923			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17924					 "1268 Failed to allocate ndlp for "
17925					 "oxid:x%x SID:x%x\n", oxid, sid);
17926			return;
17927		}
17928		/* Put ndlp onto pport node list */
17929		lpfc_enqueue_node(vport, ndlp);
17930	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17931		/* re-setup ndlp without removing from node list */
17932		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17933		if (!ndlp) {
17934			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17935					 "3275 Failed to active ndlp found "
17936					 "for oxid:x%x SID:x%x\n", oxid, sid);
17937			return;
17938		}
17939	}
17940
17941	/* Allocate buffer for rsp iocb */
17942	ctiocb = lpfc_sli_get_iocbq(phba);
17943	if (!ctiocb)
17944		return;
17945
17946	/* Extract the F_CTL field from FC_HDR */
17947	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17948
17949	icmd = &ctiocb->iocb;
17950	icmd->un.xseq64.bdl.bdeSize = 0;
17951	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17952	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17953	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17954	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17955
17956	/* Fill in the rest of iocb fields */
17957	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17958	icmd->ulpBdeCount = 0;
17959	icmd->ulpLe = 1;
17960	icmd->ulpClass = CLASS3;
17961	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17962	ctiocb->context1 = lpfc_nlp_get(ndlp);
17963
17964	ctiocb->vport = phba->pport;
17965	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17966	ctiocb->sli4_lxritag = NO_XRI;
17967	ctiocb->sli4_xritag = NO_XRI;
17968
17969	if (fctl & FC_FC_EX_CTX)
17970		/* Exchange responder sent the abort so we
17971		 * own the oxid.
17972		 */
17973		xri = oxid;
17974	else
17975		xri = rxid;
17976	lxri = lpfc_sli4_xri_inrange(phba, xri);
17977	if (lxri != NO_XRI)
17978		lpfc_set_rrq_active(phba, ndlp, lxri,
17979			(xri == oxid) ? rxid : oxid, 0);
17980	/* For BA_ABTS from exchange responder, if the logical xri with
17981	 * the oxid maps to the FCP XRI range, the port no longer has
17982	 * that exchange context, send a BLS_RJT. Override the IOCB for
17983	 * a BA_RJT.
17984	 */
17985	if ((fctl & FC_FC_EX_CTX) &&
17986	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17987		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17988		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17989		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17990		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17991	}
17992
17993	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17994	 * the driver no longer has that exchange, send a BLS_RJT. Override
17995	 * the IOCB for a BA_RJT.
17996	 */
17997	if (aborted == false) {
17998		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17999		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18000		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18001		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18002	}
18003
18004	if (fctl & FC_FC_EX_CTX) {
18005		/* ABTS sent by responder to CT exchange, construction
18006		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
18007		 * field and RX_ID from ABTS for RX_ID field.
18008		 */
18009		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
18010	} else {
18011		/* ABTS sent by initiator to CT exchange, construction
18012		 * of BA_ACC will need to allocate a new XRI as for the
18013		 * XRI_TAG field.
18014		 */
18015		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
18016	}
18017	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
18018	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
18019
18020	/* Xmit CT abts response on exchange <xid> */
18021	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
18022			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
18023			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
18024
18025	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
18026	if (rc == IOCB_ERROR) {
18027		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18028				 "2925 Failed to issue CT ABTS RSP x%x on "
18029				 "xri x%x, Data x%x\n",
18030				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
18031				 phba->link_state);
18032		lpfc_nlp_put(ndlp);
18033		ctiocb->context1 = NULL;
18034		lpfc_sli_release_iocbq(phba, ctiocb);
18035	}
18036}
18037
18038/**
18039 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
18040 * @vport: Pointer to the vport on which this sequence was received
18041 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18042 *
18043 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
18044 * receive sequence is only partially assembed by the driver, it shall abort
18045 * the partially assembled frames for the sequence. Otherwise, if the
18046 * unsolicited receive sequence has been completely assembled and passed to
18047 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
18048 * unsolicited sequence has been aborted. After that, it will issue a basic
18049 * accept to accept the abort.
18050 **/
18051static void
18052lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
18053			     struct hbq_dmabuf *dmabuf)
18054{
18055	struct lpfc_hba *phba = vport->phba;
18056	struct fc_frame_header fc_hdr;
18057	uint32_t fctl;
18058	bool aborted;
18059
18060	/* Make a copy of fc_hdr before the dmabuf being released */
18061	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
18062	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
18063
18064	if (fctl & FC_FC_EX_CTX) {
18065		/* ABTS by responder to exchange, no cleanup needed */
18066		aborted = true;
18067	} else {
18068		/* ABTS by initiator to exchange, need to do cleanup */
18069		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
18070		if (aborted == false)
18071			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
18072	}
18073	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18074
18075	if (phba->nvmet_support) {
18076		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
18077		return;
18078	}
18079
18080	/* Respond with BA_ACC or BA_RJT accordingly */
18081	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
18082}
18083
18084/**
18085 * lpfc_seq_complete - Indicates if a sequence is complete
18086 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18087 *
18088 * This function checks the sequence, starting with the frame described by
18089 * @dmabuf, to see if all the frames associated with this sequence are present.
18090 * the frames associated with this sequence are linked to the @dmabuf using the
18091 * dbuf list. This function looks for two major things. 1) That the first frame
18092 * has a sequence count of zero. 2) There is a frame with last frame of sequence
18093 * set. 3) That there are no holes in the sequence count. The function will
18094 * return 1 when the sequence is complete, otherwise it will return 0.
18095 **/
18096static int
18097lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
18098{
18099	struct fc_frame_header *hdr;
18100	struct lpfc_dmabuf *d_buf;
18101	struct hbq_dmabuf *seq_dmabuf;
18102	uint32_t fctl;
18103	int seq_count = 0;
18104
18105	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18106	/* make sure first fame of sequence has a sequence count of zero */
18107	if (hdr->fh_seq_cnt != seq_count)
18108		return 0;
18109	fctl = (hdr->fh_f_ctl[0] << 16 |
18110		hdr->fh_f_ctl[1] << 8 |
18111		hdr->fh_f_ctl[2]);
18112	/* If last frame of sequence we can return success. */
18113	if (fctl & FC_FC_END_SEQ)
18114		return 1;
18115	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
18116		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18117		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18118		/* If there is a hole in the sequence count then fail. */
18119		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
18120			return 0;
18121		fctl = (hdr->fh_f_ctl[0] << 16 |
18122			hdr->fh_f_ctl[1] << 8 |
18123			hdr->fh_f_ctl[2]);
18124		/* If last frame of sequence we can return success. */
18125		if (fctl & FC_FC_END_SEQ)
18126			return 1;
18127	}
18128	return 0;
18129}
18130
18131/**
18132 * lpfc_prep_seq - Prep sequence for ULP processing
18133 * @vport: Pointer to the vport on which this sequence was received
18134 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
18135 *
18136 * This function takes a sequence, described by a list of frames, and creates
18137 * a list of iocbq structures to describe the sequence. This iocbq list will be
18138 * used to issue to the generic unsolicited sequence handler. This routine
18139 * returns a pointer to the first iocbq in the list. If the function is unable
18140 * to allocate an iocbq then it throw out the received frames that were not
18141 * able to be described and return a pointer to the first iocbq. If unable to
18142 * allocate any iocbqs (including the first) this function will return NULL.
18143 **/
18144static struct lpfc_iocbq *
18145lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
18146{
18147	struct hbq_dmabuf *hbq_buf;
18148	struct lpfc_dmabuf *d_buf, *n_buf;
18149	struct lpfc_iocbq *first_iocbq, *iocbq;
18150	struct fc_frame_header *fc_hdr;
18151	uint32_t sid;
18152	uint32_t len, tot_len;
18153	struct ulp_bde64 *pbde;
18154
18155	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18156	/* remove from receive buffer list */
18157	list_del_init(&seq_dmabuf->hbuf.list);
18158	lpfc_update_rcv_time_stamp(vport);
18159	/* get the Remote Port's SID */
18160	sid = sli4_sid_from_fc_hdr(fc_hdr);
18161	tot_len = 0;
18162	/* Get an iocbq struct to fill in. */
18163	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
18164	if (first_iocbq) {
18165		/* Initialize the first IOCB. */
18166		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
18167		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
18168		first_iocbq->vport = vport;
18169
18170		/* Check FC Header to see what TYPE of frame we are rcv'ing */
18171		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
18172			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
18173			first_iocbq->iocb.un.rcvels.parmRo =
18174				sli4_did_from_fc_hdr(fc_hdr);
18175			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
18176		} else
18177			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
18178		first_iocbq->iocb.ulpContext = NO_XRI;
18179		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
18180			be16_to_cpu(fc_hdr->fh_ox_id);
18181		/* iocbq is prepped for internal consumption.  Physical vpi. */
18182		first_iocbq->iocb.unsli3.rcvsli3.vpi =
18183			vport->phba->vpi_ids[vport->vpi];
18184		/* put the first buffer into the first IOCBq */
18185		tot_len = bf_get(lpfc_rcqe_length,
18186				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
18187
18188		first_iocbq->context2 = &seq_dmabuf->dbuf;
18189		first_iocbq->context3 = NULL;
18190		first_iocbq->iocb.ulpBdeCount = 1;
18191		if (tot_len > LPFC_DATA_BUF_SIZE)
18192			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18193							LPFC_DATA_BUF_SIZE;
18194		else
18195			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
18196
18197		first_iocbq->iocb.un.rcvels.remoteID = sid;
18198
18199		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18200	}
18201	iocbq = first_iocbq;
18202	/*
18203	 * Each IOCBq can have two Buffers assigned, so go through the list
18204	 * of buffers for this sequence and save two buffers in each IOCBq
18205	 */
18206	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
18207		if (!iocbq) {
18208			lpfc_in_buf_free(vport->phba, d_buf);
18209			continue;
18210		}
18211		if (!iocbq->context3) {
18212			iocbq->context3 = d_buf;
18213			iocbq->iocb.ulpBdeCount++;
18214			/* We need to get the size out of the right CQE */
18215			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18216			len = bf_get(lpfc_rcqe_length,
18217				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18218			pbde = (struct ulp_bde64 *)
18219					&iocbq->iocb.unsli3.sli3Words[4];
18220			if (len > LPFC_DATA_BUF_SIZE)
18221				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
18222			else
18223				pbde->tus.f.bdeSize = len;
18224
18225			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
18226			tot_len += len;
18227		} else {
18228			iocbq = lpfc_sli_get_iocbq(vport->phba);
18229			if (!iocbq) {
18230				if (first_iocbq) {
18231					first_iocbq->iocb.ulpStatus =
18232							IOSTAT_FCP_RSP_ERROR;
18233					first_iocbq->iocb.un.ulpWord[4] =
18234							IOERR_NO_RESOURCES;
18235				}
18236				lpfc_in_buf_free(vport->phba, d_buf);
18237				continue;
18238			}
18239			/* We need to get the size out of the right CQE */
18240			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18241			len = bf_get(lpfc_rcqe_length,
18242				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18243			iocbq->context2 = d_buf;
18244			iocbq->context3 = NULL;
18245			iocbq->iocb.ulpBdeCount = 1;
18246			if (len > LPFC_DATA_BUF_SIZE)
18247				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18248							LPFC_DATA_BUF_SIZE;
18249			else
18250				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
18251
18252			tot_len += len;
18253			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18254
18255			iocbq->iocb.un.rcvels.remoteID = sid;
18256			list_add_tail(&iocbq->list, &first_iocbq->list);
18257		}
18258	}
18259	/* Free the sequence's header buffer */
18260	if (!first_iocbq)
18261		lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
18262
18263	return first_iocbq;
18264}
18265
18266static void
18267lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
18268			  struct hbq_dmabuf *seq_dmabuf)
18269{
18270	struct fc_frame_header *fc_hdr;
18271	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
18272	struct lpfc_hba *phba = vport->phba;
18273
18274	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18275	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
18276	if (!iocbq) {
18277		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18278				"2707 Ring %d handler: Failed to allocate "
18279				"iocb Rctl x%x Type x%x received\n",
18280				LPFC_ELS_RING,
18281				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18282		return;
18283	}
18284	if (!lpfc_complete_unsol_iocb(phba,
18285				      phba->sli4_hba.els_wq->pring,
18286				      iocbq, fc_hdr->fh_r_ctl,
18287				      fc_hdr->fh_type)) {
18288		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18289				"2540 Ring %d handler: unexpected Rctl "
18290				"x%x Type x%x received\n",
18291				LPFC_ELS_RING,
18292				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18293		lpfc_in_buf_free(phba, &seq_dmabuf->dbuf);
18294	}
18295
18296	/* Free iocb created in lpfc_prep_seq */
18297	list_for_each_entry_safe(curr_iocb, next_iocb,
18298		&iocbq->list, list) {
18299		list_del_init(&curr_iocb->list);
18300		lpfc_sli_release_iocbq(phba, curr_iocb);
18301	}
18302	lpfc_sli_release_iocbq(phba, iocbq);
18303}
18304
18305static void
18306lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
18307			    struct lpfc_iocbq *rspiocb)
18308{
18309	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
18310
18311	if (pcmd && pcmd->virt)
18312		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18313	kfree(pcmd);
18314	lpfc_sli_release_iocbq(phba, cmdiocb);
18315	lpfc_drain_txq(phba);
18316}
18317
18318static void
18319lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18320			      struct hbq_dmabuf *dmabuf)
18321{
18322	struct fc_frame_header *fc_hdr;
18323	struct lpfc_hba *phba = vport->phba;
18324	struct lpfc_iocbq *iocbq = NULL;
18325	union  lpfc_wqe *wqe;
18326	struct lpfc_dmabuf *pcmd = NULL;
18327	uint32_t frame_len;
18328	int rc;
18329	unsigned long iflags;
18330
18331	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18332	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18333
18334	/* Send the received frame back */
18335	iocbq = lpfc_sli_get_iocbq(phba);
18336	if (!iocbq) {
18337		/* Queue cq event and wakeup worker thread to process it */
18338		spin_lock_irqsave(&phba->hbalock, iflags);
18339		list_add_tail(&dmabuf->cq_event.list,
18340			      &phba->sli4_hba.sp_queue_event);
18341		phba->hba_flag |= HBA_SP_QUEUE_EVT;
18342		spin_unlock_irqrestore(&phba->hbalock, iflags);
18343		lpfc_worker_wake_up(phba);
18344		return;
18345	}
18346
18347	/* Allocate buffer for command payload */
18348	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18349	if (pcmd)
18350		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18351					    &pcmd->phys);
18352	if (!pcmd || !pcmd->virt)
18353		goto exit;
18354
18355	INIT_LIST_HEAD(&pcmd->list);
18356
18357	/* copyin the payload */
18358	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18359
18360	/* fill in BDE's for command */
18361	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18362	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18363	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18364	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18365
18366	iocbq->context2 = pcmd;
18367	iocbq->vport = vport;
18368	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18369	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18370
18371	/*
18372	 * Setup rest of the iocb as though it were a WQE
18373	 * Build the SEND_FRAME WQE
18374	 */
18375	wqe = (union lpfc_wqe *)&iocbq->iocb;
18376
18377	wqe->send_frame.frame_len = frame_len;
18378	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18379	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18380	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18381	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18382	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18383	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18384
18385	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18386	iocbq->iocb.ulpLe = 1;
18387	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18388	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18389	if (rc == IOCB_ERROR)
18390		goto exit;
18391
18392	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18393	return;
18394
18395exit:
18396	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18397			"2023 Unable to process MDS loopback frame\n");
18398	if (pcmd && pcmd->virt)
18399		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18400	kfree(pcmd);
18401	if (iocbq)
18402		lpfc_sli_release_iocbq(phba, iocbq);
18403	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18404}
18405
18406/**
18407 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18408 * @phba: Pointer to HBA context object.
18409 * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
18410 *
18411 * This function is called with no lock held. This function processes all
18412 * the received buffers and gives it to upper layers when a received buffer
18413 * indicates that it is the final frame in the sequence. The interrupt
18414 * service routine processes received buffers at interrupt contexts.
18415 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18416 * appropriate receive function when the final frame in a sequence is received.
18417 **/
18418void
18419lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18420				 struct hbq_dmabuf *dmabuf)
18421{
18422	struct hbq_dmabuf *seq_dmabuf;
18423	struct fc_frame_header *fc_hdr;
18424	struct lpfc_vport *vport;
18425	uint32_t fcfi;
18426	uint32_t did;
18427
18428	/* Process each received buffer */
18429	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18430
18431	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18432	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18433		vport = phba->pport;
18434		/* Handle MDS Loopback frames */
18435		if  (!(phba->pport->load_flag & FC_UNLOADING))
18436			lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18437		else
18438			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18439		return;
18440	}
18441
18442	/* check to see if this a valid type of frame */
18443	if (lpfc_fc_frame_check(phba, fc_hdr)) {
18444		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18445		return;
18446	}
18447
18448	if ((bf_get(lpfc_cqe_code,
18449		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18450		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18451			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18452	else
18453		fcfi = bf_get(lpfc_rcqe_fcf_id,
18454			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18455
18456	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18457		vport = phba->pport;
18458		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18459				"2023 MDS Loopback %d bytes\n",
18460				bf_get(lpfc_rcqe_length,
18461				       &dmabuf->cq_event.cqe.rcqe_cmpl));
18462		/* Handle MDS Loopback frames */
18463		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18464		return;
18465	}
18466
18467	/* d_id this frame is directed to */
18468	did = sli4_did_from_fc_hdr(fc_hdr);
18469
18470	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18471	if (!vport) {
18472		/* throw out the frame */
18473		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18474		return;
18475	}
18476
18477	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18478	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18479		(did != Fabric_DID)) {
18480		/*
18481		 * Throw out the frame if we are not pt2pt.
18482		 * The pt2pt protocol allows for discovery frames
18483		 * to be received without a registered VPI.
18484		 */
18485		if (!(vport->fc_flag & FC_PT2PT) ||
18486			(phba->link_state == LPFC_HBA_READY)) {
18487			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18488			return;
18489		}
18490	}
18491
18492	/* Handle the basic abort sequence (BA_ABTS) event */
18493	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18494		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18495		return;
18496	}
18497
18498	/* Link this frame */
18499	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18500	if (!seq_dmabuf) {
18501		/* unable to add frame to vport - throw it out */
18502		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18503		return;
18504	}
18505	/* If not last frame in sequence continue processing frames. */
18506	if (!lpfc_seq_complete(seq_dmabuf))
18507		return;
18508
18509	/* Send the complete sequence to the upper layer protocol */
18510	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18511}
18512
18513/**
18514 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18515 * @phba: pointer to lpfc hba data structure.
18516 *
18517 * This routine is invoked to post rpi header templates to the
18518 * HBA consistent with the SLI-4 interface spec.  This routine
18519 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18520 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18521 *
18522 * This routine does not require any locks.  It's usage is expected
18523 * to be driver load or reset recovery when the driver is
18524 * sequential.
18525 *
18526 * Return codes
18527 * 	0 - successful
18528 *      -EIO - The mailbox failed to complete successfully.
18529 * 	When this error occurs, the driver is not guaranteed
18530 *	to have any rpi regions posted to the device and
18531 *	must either attempt to repost the regions or take a
18532 *	fatal error.
18533 **/
18534int
18535lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18536{
18537	struct lpfc_rpi_hdr *rpi_page;
18538	uint32_t rc = 0;
18539	uint16_t lrpi = 0;
18540
18541	/* SLI4 ports that support extents do not require RPI headers. */
18542	if (!phba->sli4_hba.rpi_hdrs_in_use)
18543		goto exit;
18544	if (phba->sli4_hba.extents_in_use)
18545		return -EIO;
18546
18547	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18548		/*
18549		 * Assign the rpi headers a physical rpi only if the driver
18550		 * has not initialized those resources.  A port reset only
18551		 * needs the headers posted.
18552		 */
18553		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18554		    LPFC_RPI_RSRC_RDY)
18555			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18556
18557		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18558		if (rc != MBX_SUCCESS) {
18559			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18560					"2008 Error %d posting all rpi "
18561					"headers\n", rc);
18562			rc = -EIO;
18563			break;
18564		}
18565	}
18566
18567 exit:
18568	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18569	       LPFC_RPI_RSRC_RDY);
18570	return rc;
18571}
18572
18573/**
18574 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18575 * @phba: pointer to lpfc hba data structure.
18576 * @rpi_page:  pointer to the rpi memory region.
18577 *
18578 * This routine is invoked to post a single rpi header to the
18579 * HBA consistent with the SLI-4 interface spec.  This memory region
18580 * maps up to 64 rpi context regions.
18581 *
18582 * Return codes
18583 * 	0 - successful
18584 * 	-ENOMEM - No available memory
18585 *      -EIO - The mailbox failed to complete successfully.
18586 **/
18587int
18588lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18589{
18590	LPFC_MBOXQ_t *mboxq;
18591	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18592	uint32_t rc = 0;
18593	uint32_t shdr_status, shdr_add_status;
18594	union lpfc_sli4_cfg_shdr *shdr;
18595
18596	/* SLI4 ports that support extents do not require RPI headers. */
18597	if (!phba->sli4_hba.rpi_hdrs_in_use)
18598		return rc;
18599	if (phba->sli4_hba.extents_in_use)
18600		return -EIO;
18601
18602	/* The port is notified of the header region via a mailbox command. */
18603	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18604	if (!mboxq) {
18605		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18606				"2001 Unable to allocate memory for issuing "
18607				"SLI_CONFIG_SPECIAL mailbox command\n");
18608		return -ENOMEM;
18609	}
18610
18611	/* Post all rpi memory regions to the port. */
18612	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18613	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18614			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18615			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18616			 sizeof(struct lpfc_sli4_cfg_mhdr),
18617			 LPFC_SLI4_MBX_EMBED);
18618
18619
18620	/* Post the physical rpi to the port for this rpi header. */
18621	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18622	       rpi_page->start_rpi);
18623	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18624	       hdr_tmpl, rpi_page->page_count);
18625
18626	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18627	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18628	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18629	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18630	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18631	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18632	mempool_free(mboxq, phba->mbox_mem_pool);
18633	if (shdr_status || shdr_add_status || rc) {
18634		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18635				"2514 POST_RPI_HDR mailbox failed with "
18636				"status x%x add_status x%x, mbx status x%x\n",
18637				shdr_status, shdr_add_status, rc);
18638		rc = -ENXIO;
18639	} else {
18640		/*
18641		 * The next_rpi stores the next logical module-64 rpi value used
18642		 * to post physical rpis in subsequent rpi postings.
18643		 */
18644		spin_lock_irq(&phba->hbalock);
18645		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18646		spin_unlock_irq(&phba->hbalock);
18647	}
18648	return rc;
18649}
18650
18651/**
18652 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18653 * @phba: pointer to lpfc hba data structure.
18654 *
18655 * This routine is invoked to post rpi header templates to the
18656 * HBA consistent with the SLI-4 interface spec.  This routine
18657 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18658 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18659 *
18660 * Returns
18661 * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18662 * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18663 **/
18664int
18665lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18666{
18667	unsigned long rpi;
18668	uint16_t max_rpi, rpi_limit;
18669	uint16_t rpi_remaining, lrpi = 0;
18670	struct lpfc_rpi_hdr *rpi_hdr;
18671	unsigned long iflag;
18672
18673	/*
18674	 * Fetch the next logical rpi.  Because this index is logical,
18675	 * the  driver starts at 0 each time.
18676	 */
18677	spin_lock_irqsave(&phba->hbalock, iflag);
18678	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18679	rpi_limit = phba->sli4_hba.next_rpi;
18680
18681	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18682	if (rpi >= rpi_limit)
18683		rpi = LPFC_RPI_ALLOC_ERROR;
18684	else {
18685		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18686		phba->sli4_hba.max_cfg_param.rpi_used++;
18687		phba->sli4_hba.rpi_count++;
18688	}
18689	lpfc_printf_log(phba, KERN_INFO,
18690			LOG_NODE | LOG_DISCOVERY,
18691			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18692			(int) rpi, max_rpi, rpi_limit);
18693
18694	/*
18695	 * Don't try to allocate more rpi header regions if the device limit
18696	 * has been exhausted.
18697	 */
18698	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18699	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18700		spin_unlock_irqrestore(&phba->hbalock, iflag);
18701		return rpi;
18702	}
18703
18704	/*
18705	 * RPI header postings are not required for SLI4 ports capable of
18706	 * extents.
18707	 */
18708	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18709		spin_unlock_irqrestore(&phba->hbalock, iflag);
18710		return rpi;
18711	}
18712
18713	/*
18714	 * If the driver is running low on rpi resources, allocate another
18715	 * page now.  Note that the next_rpi value is used because
18716	 * it represents how many are actually in use whereas max_rpi notes
18717	 * how many are supported max by the device.
18718	 */
18719	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18720	spin_unlock_irqrestore(&phba->hbalock, iflag);
18721	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18722		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18723		if (!rpi_hdr) {
18724			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18725					"2002 Error Could not grow rpi "
18726					"count\n");
18727		} else {
18728			lrpi = rpi_hdr->start_rpi;
18729			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18730			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18731		}
18732	}
18733
18734	return rpi;
18735}
18736
18737/**
18738 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18739 * @phba: pointer to lpfc hba data structure.
18740 * @rpi: rpi to free
18741 *
18742 * This routine is invoked to release an rpi to the pool of
18743 * available rpis maintained by the driver.
18744 **/
18745static void
18746__lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18747{
18748	/*
18749	 * if the rpi value indicates a prior unreg has already
18750	 * been done, skip the unreg.
18751	 */
18752	if (rpi == LPFC_RPI_ALLOC_ERROR)
18753		return;
18754
18755	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18756		phba->sli4_hba.rpi_count--;
18757		phba->sli4_hba.max_cfg_param.rpi_used--;
18758	} else {
18759		lpfc_printf_log(phba, KERN_INFO,
18760				LOG_NODE | LOG_DISCOVERY,
18761				"2016 rpi %x not inuse\n",
18762				rpi);
18763	}
18764}
18765
18766/**
18767 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18768 * @phba: pointer to lpfc hba data structure.
18769 * @rpi: rpi to free
18770 *
18771 * This routine is invoked to release an rpi to the pool of
18772 * available rpis maintained by the driver.
18773 **/
18774void
18775lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18776{
18777	spin_lock_irq(&phba->hbalock);
18778	__lpfc_sli4_free_rpi(phba, rpi);
18779	spin_unlock_irq(&phba->hbalock);
18780}
18781
18782/**
18783 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18784 * @phba: pointer to lpfc hba data structure.
18785 *
18786 * This routine is invoked to remove the memory region that
18787 * provided rpi via a bitmask.
18788 **/
18789void
18790lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18791{
18792	kfree(phba->sli4_hba.rpi_bmask);
18793	kfree(phba->sli4_hba.rpi_ids);
18794	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18795}
18796
18797/**
18798 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18799 * @ndlp: pointer to lpfc nodelist data structure.
18800 * @cmpl: completion call-back.
18801 * @arg: data to load as MBox 'caller buffer information'
18802 *
18803 * This routine is invoked to remove the memory region that
18804 * provided rpi via a bitmask.
18805 **/
18806int
18807lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18808	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18809{
18810	LPFC_MBOXQ_t *mboxq;
18811	struct lpfc_hba *phba = ndlp->phba;
18812	int rc;
18813
18814	/* The port is notified of the header region via a mailbox command. */
18815	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18816	if (!mboxq)
18817		return -ENOMEM;
18818
18819	/* Post all rpi memory regions to the port. */
18820	lpfc_resume_rpi(mboxq, ndlp);
18821	if (cmpl) {
18822		mboxq->mbox_cmpl = cmpl;
18823		mboxq->ctx_buf = arg;
18824		mboxq->ctx_ndlp = ndlp;
18825	} else
18826		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18827	mboxq->vport = ndlp->vport;
18828	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18829	if (rc == MBX_NOT_FINISHED) {
18830		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18831				"2010 Resume RPI Mailbox failed "
18832				"status %d, mbxStatus x%x\n", rc,
18833				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18834		mempool_free(mboxq, phba->mbox_mem_pool);
18835		return -EIO;
18836	}
18837	return 0;
18838}
18839
18840/**
18841 * lpfc_sli4_init_vpi - Initialize a vpi with the port
18842 * @vport: Pointer to the vport for which the vpi is being initialized
18843 *
18844 * This routine is invoked to activate a vpi with the port.
18845 *
18846 * Returns:
18847 *    0 success
18848 *    -Evalue otherwise
18849 **/
18850int
18851lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18852{
18853	LPFC_MBOXQ_t *mboxq;
18854	int rc = 0;
18855	int retval = MBX_SUCCESS;
18856	uint32_t mbox_tmo;
18857	struct lpfc_hba *phba = vport->phba;
18858	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18859	if (!mboxq)
18860		return -ENOMEM;
18861	lpfc_init_vpi(phba, mboxq, vport->vpi);
18862	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18863	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18864	if (rc != MBX_SUCCESS) {
18865		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18866				"2022 INIT VPI Mailbox failed "
18867				"status %d, mbxStatus x%x\n", rc,
18868				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18869		retval = -EIO;
18870	}
18871	if (rc != MBX_TIMEOUT)
18872		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18873
18874	return retval;
18875}
18876
18877/**
18878 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18879 * @phba: pointer to lpfc hba data structure.
18880 * @mboxq: Pointer to mailbox object.
18881 *
18882 * This routine is invoked to manually add a single FCF record. The caller
18883 * must pass a completely initialized FCF_Record.  This routine takes
18884 * care of the nonembedded mailbox operations.
18885 **/
18886static void
18887lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18888{
18889	void *virt_addr;
18890	union lpfc_sli4_cfg_shdr *shdr;
18891	uint32_t shdr_status, shdr_add_status;
18892
18893	virt_addr = mboxq->sge_array->addr[0];
18894	/* The IOCTL status is embedded in the mailbox subheader. */
18895	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18896	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18897	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18898
18899	if ((shdr_status || shdr_add_status) &&
18900		(shdr_status != STATUS_FCF_IN_USE))
18901		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18902			"2558 ADD_FCF_RECORD mailbox failed with "
18903			"status x%x add_status x%x\n",
18904			shdr_status, shdr_add_status);
18905
18906	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18907}
18908
18909/**
18910 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18911 * @phba: pointer to lpfc hba data structure.
18912 * @fcf_record:  pointer to the initialized fcf record to add.
18913 *
18914 * This routine is invoked to manually add a single FCF record. The caller
18915 * must pass a completely initialized FCF_Record.  This routine takes
18916 * care of the nonembedded mailbox operations.
18917 **/
18918int
18919lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18920{
18921	int rc = 0;
18922	LPFC_MBOXQ_t *mboxq;
18923	uint8_t *bytep;
18924	void *virt_addr;
18925	struct lpfc_mbx_sge sge;
18926	uint32_t alloc_len, req_len;
18927	uint32_t fcfindex;
18928
18929	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18930	if (!mboxq) {
18931		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18932			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18933		return -ENOMEM;
18934	}
18935
18936	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18937		  sizeof(uint32_t);
18938
18939	/* Allocate DMA memory and set up the non-embedded mailbox command */
18940	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18941				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18942				     req_len, LPFC_SLI4_MBX_NEMBED);
18943	if (alloc_len < req_len) {
18944		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18945			"2523 Allocated DMA memory size (x%x) is "
18946			"less than the requested DMA memory "
18947			"size (x%x)\n", alloc_len, req_len);
18948		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18949		return -ENOMEM;
18950	}
18951
18952	/*
18953	 * Get the first SGE entry from the non-embedded DMA memory.  This
18954	 * routine only uses a single SGE.
18955	 */
18956	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18957	virt_addr = mboxq->sge_array->addr[0];
18958	/*
18959	 * Configure the FCF record for FCFI 0.  This is the driver's
18960	 * hardcoded default and gets used in nonFIP mode.
18961	 */
18962	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18963	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18964	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18965
18966	/*
18967	 * Copy the fcf_index and the FCF Record Data. The data starts after
18968	 * the FCoE header plus word10. The data copy needs to be endian
18969	 * correct.
18970	 */
18971	bytep += sizeof(uint32_t);
18972	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18973	mboxq->vport = phba->pport;
18974	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18975	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18976	if (rc == MBX_NOT_FINISHED) {
18977		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18978			"2515 ADD_FCF_RECORD mailbox failed with "
18979			"status 0x%x\n", rc);
18980		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18981		rc = -EIO;
18982	} else
18983		rc = 0;
18984
18985	return rc;
18986}
18987
18988/**
18989 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18990 * @phba: pointer to lpfc hba data structure.
18991 * @fcf_record:  pointer to the fcf record to write the default data.
18992 * @fcf_index: FCF table entry index.
18993 *
18994 * This routine is invoked to build the driver's default FCF record.  The
18995 * values used are hardcoded.  This routine handles memory initialization.
18996 *
18997 **/
18998void
18999lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
19000				struct fcf_record *fcf_record,
19001				uint16_t fcf_index)
19002{
19003	memset(fcf_record, 0, sizeof(struct fcf_record));
19004	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
19005	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
19006	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
19007	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
19008	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
19009	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
19010	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
19011	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
19012	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
19013	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
19014	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
19015	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
19016	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
19017	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
19018	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
19019	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
19020		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
19021	/* Set the VLAN bit map */
19022	if (phba->valid_vlan) {
19023		fcf_record->vlan_bitmap[phba->vlan_id / 8]
19024			= 1 << (phba->vlan_id % 8);
19025	}
19026}
19027
19028/**
19029 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
19030 * @phba: pointer to lpfc hba data structure.
19031 * @fcf_index: FCF table entry offset.
19032 *
19033 * This routine is invoked to scan the entire FCF table by reading FCF
19034 * record and processing it one at a time starting from the @fcf_index
19035 * for initial FCF discovery or fast FCF failover rediscovery.
19036 *
19037 * Return 0 if the mailbox command is submitted successfully, none 0
19038 * otherwise.
19039 **/
19040int
19041lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19042{
19043	int rc = 0, error;
19044	LPFC_MBOXQ_t *mboxq;
19045
19046	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
19047	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
19048	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19049	if (!mboxq) {
19050		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19051				"2000 Failed to allocate mbox for "
19052				"READ_FCF cmd\n");
19053		error = -ENOMEM;
19054		goto fail_fcf_scan;
19055	}
19056	/* Construct the read FCF record mailbox command */
19057	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19058	if (rc) {
19059		error = -EINVAL;
19060		goto fail_fcf_scan;
19061	}
19062	/* Issue the mailbox command asynchronously */
19063	mboxq->vport = phba->pport;
19064	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
19065
19066	spin_lock_irq(&phba->hbalock);
19067	phba->hba_flag |= FCF_TS_INPROG;
19068	spin_unlock_irq(&phba->hbalock);
19069
19070	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19071	if (rc == MBX_NOT_FINISHED)
19072		error = -EIO;
19073	else {
19074		/* Reset eligible FCF count for new scan */
19075		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
19076			phba->fcf.eligible_fcf_cnt = 0;
19077		error = 0;
19078	}
19079fail_fcf_scan:
19080	if (error) {
19081		if (mboxq)
19082			lpfc_sli4_mbox_cmd_free(phba, mboxq);
19083		/* FCF scan failed, clear FCF_TS_INPROG flag */
19084		spin_lock_irq(&phba->hbalock);
19085		phba->hba_flag &= ~FCF_TS_INPROG;
19086		spin_unlock_irq(&phba->hbalock);
19087	}
19088	return error;
19089}
19090
19091/**
19092 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
19093 * @phba: pointer to lpfc hba data structure.
19094 * @fcf_index: FCF table entry offset.
19095 *
19096 * This routine is invoked to read an FCF record indicated by @fcf_index
19097 * and to use it for FLOGI roundrobin FCF failover.
19098 *
19099 * Return 0 if the mailbox command is submitted successfully, none 0
19100 * otherwise.
19101 **/
19102int
19103lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19104{
19105	int rc = 0, error;
19106	LPFC_MBOXQ_t *mboxq;
19107
19108	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19109	if (!mboxq) {
19110		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19111				"2763 Failed to allocate mbox for "
19112				"READ_FCF cmd\n");
19113		error = -ENOMEM;
19114		goto fail_fcf_read;
19115	}
19116	/* Construct the read FCF record mailbox command */
19117	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19118	if (rc) {
19119		error = -EINVAL;
19120		goto fail_fcf_read;
19121	}
19122	/* Issue the mailbox command asynchronously */
19123	mboxq->vport = phba->pport;
19124	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
19125	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19126	if (rc == MBX_NOT_FINISHED)
19127		error = -EIO;
19128	else
19129		error = 0;
19130
19131fail_fcf_read:
19132	if (error && mboxq)
19133		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19134	return error;
19135}
19136
19137/**
19138 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
19139 * @phba: pointer to lpfc hba data structure.
19140 * @fcf_index: FCF table entry offset.
19141 *
19142 * This routine is invoked to read an FCF record indicated by @fcf_index to
19143 * determine whether it's eligible for FLOGI roundrobin failover list.
19144 *
19145 * Return 0 if the mailbox command is submitted successfully, none 0
19146 * otherwise.
19147 **/
19148int
19149lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19150{
19151	int rc = 0, error;
19152	LPFC_MBOXQ_t *mboxq;
19153
19154	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19155	if (!mboxq) {
19156		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19157				"2758 Failed to allocate mbox for "
19158				"READ_FCF cmd\n");
19159				error = -ENOMEM;
19160				goto fail_fcf_read;
19161	}
19162	/* Construct the read FCF record mailbox command */
19163	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19164	if (rc) {
19165		error = -EINVAL;
19166		goto fail_fcf_read;
19167	}
19168	/* Issue the mailbox command asynchronously */
19169	mboxq->vport = phba->pport;
19170	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
19171	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19172	if (rc == MBX_NOT_FINISHED)
19173		error = -EIO;
19174	else
19175		error = 0;
19176
19177fail_fcf_read:
19178	if (error && mboxq)
19179		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19180	return error;
19181}
19182
19183/**
19184 * lpfc_check_next_fcf_pri_level
19185 * @phba: pointer to the lpfc_hba struct for this port.
19186 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
19187 * routine when the rr_bmask is empty. The FCF indecies are put into the
19188 * rr_bmask based on their priority level. Starting from the highest priority
19189 * to the lowest. The most likely FCF candidate will be in the highest
19190 * priority group. When this routine is called it searches the fcf_pri list for
19191 * next lowest priority group and repopulates the rr_bmask with only those
19192 * fcf_indexes.
19193 * returns:
19194 * 1=success 0=failure
19195 **/
19196static int
19197lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
19198{
19199	uint16_t next_fcf_pri;
19200	uint16_t last_index;
19201	struct lpfc_fcf_pri *fcf_pri;
19202	int rc;
19203	int ret = 0;
19204
19205	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
19206			LPFC_SLI4_FCF_TBL_INDX_MAX);
19207	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19208			"3060 Last IDX %d\n", last_index);
19209
19210	/* Verify the priority list has 2 or more entries */
19211	spin_lock_irq(&phba->hbalock);
19212	if (list_empty(&phba->fcf.fcf_pri_list) ||
19213	    list_is_singular(&phba->fcf.fcf_pri_list)) {
19214		spin_unlock_irq(&phba->hbalock);
19215		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19216			"3061 Last IDX %d\n", last_index);
19217		return 0; /* Empty rr list */
19218	}
19219	spin_unlock_irq(&phba->hbalock);
19220
19221	next_fcf_pri = 0;
19222	/*
19223	 * Clear the rr_bmask and set all of the bits that are at this
19224	 * priority.
19225	 */
19226	memset(phba->fcf.fcf_rr_bmask, 0,
19227			sizeof(*phba->fcf.fcf_rr_bmask));
19228	spin_lock_irq(&phba->hbalock);
19229	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19230		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
19231			continue;
19232		/*
19233		 * the 1st priority that has not FLOGI failed
19234		 * will be the highest.
19235		 */
19236		if (!next_fcf_pri)
19237			next_fcf_pri = fcf_pri->fcf_rec.priority;
19238		spin_unlock_irq(&phba->hbalock);
19239		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19240			rc = lpfc_sli4_fcf_rr_index_set(phba,
19241						fcf_pri->fcf_rec.fcf_index);
19242			if (rc)
19243				return 0;
19244		}
19245		spin_lock_irq(&phba->hbalock);
19246	}
19247	/*
19248	 * if next_fcf_pri was not set above and the list is not empty then
19249	 * we have failed flogis on all of them. So reset flogi failed
19250	 * and start at the beginning.
19251	 */
19252	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
19253		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19254			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
19255			/*
19256			 * the 1st priority that has not FLOGI failed
19257			 * will be the highest.
19258			 */
19259			if (!next_fcf_pri)
19260				next_fcf_pri = fcf_pri->fcf_rec.priority;
19261			spin_unlock_irq(&phba->hbalock);
19262			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19263				rc = lpfc_sli4_fcf_rr_index_set(phba,
19264						fcf_pri->fcf_rec.fcf_index);
19265				if (rc)
19266					return 0;
19267			}
19268			spin_lock_irq(&phba->hbalock);
19269		}
19270	} else
19271		ret = 1;
19272	spin_unlock_irq(&phba->hbalock);
19273
19274	return ret;
19275}
19276/**
19277 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
19278 * @phba: pointer to lpfc hba data structure.
19279 *
19280 * This routine is to get the next eligible FCF record index in a round
19281 * robin fashion. If the next eligible FCF record index equals to the
19282 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
19283 * shall be returned, otherwise, the next eligible FCF record's index
19284 * shall be returned.
19285 **/
19286uint16_t
19287lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
19288{
19289	uint16_t next_fcf_index;
19290
19291initial_priority:
19292	/* Search start from next bit of currently registered FCF index */
19293	next_fcf_index = phba->fcf.current_rec.fcf_indx;
19294
19295next_priority:
19296	/* Determine the next fcf index to check */
19297	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
19298	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19299				       LPFC_SLI4_FCF_TBL_INDX_MAX,
19300				       next_fcf_index);
19301
19302	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
19303	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19304		/*
19305		 * If we have wrapped then we need to clear the bits that
19306		 * have been tested so that we can detect when we should
19307		 * change the priority level.
19308		 */
19309		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19310					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
19311	}
19312
19313
19314	/* Check roundrobin failover list empty condition */
19315	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
19316		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
19317		/*
19318		 * If next fcf index is not found check if there are lower
19319		 * Priority level fcf's in the fcf_priority list.
19320		 * Set up the rr_bmask with all of the avaiable fcf bits
19321		 * at that level and continue the selection process.
19322		 */
19323		if (lpfc_check_next_fcf_pri_level(phba))
19324			goto initial_priority;
19325		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19326				"2844 No roundrobin failover FCF available\n");
19327
19328		return LPFC_FCOE_FCF_NEXT_NONE;
19329	}
19330
19331	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19332		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19333		LPFC_FCF_FLOGI_FAILED) {
19334		if (list_is_singular(&phba->fcf.fcf_pri_list))
19335			return LPFC_FCOE_FCF_NEXT_NONE;
19336
19337		goto next_priority;
19338	}
19339
19340	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19341			"2845 Get next roundrobin failover FCF (x%x)\n",
19342			next_fcf_index);
19343
19344	return next_fcf_index;
19345}
19346
19347/**
19348 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19349 * @phba: pointer to lpfc hba data structure.
19350 * @fcf_index: index into the FCF table to 'set'
19351 *
19352 * This routine sets the FCF record index in to the eligible bmask for
19353 * roundrobin failover search. It checks to make sure that the index
19354 * does not go beyond the range of the driver allocated bmask dimension
19355 * before setting the bit.
19356 *
19357 * Returns 0 if the index bit successfully set, otherwise, it returns
19358 * -EINVAL.
19359 **/
19360int
19361lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19362{
19363	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19364		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19365				"2610 FCF (x%x) reached driver's book "
19366				"keeping dimension:x%x\n",
19367				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19368		return -EINVAL;
19369	}
19370	/* Set the eligible FCF record index bmask */
19371	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19372
19373	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19374			"2790 Set FCF (x%x) to roundrobin FCF failover "
19375			"bmask\n", fcf_index);
19376
19377	return 0;
19378}
19379
19380/**
19381 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19382 * @phba: pointer to lpfc hba data structure.
19383 * @fcf_index: index into the FCF table to 'clear'
19384 *
19385 * This routine clears the FCF record index from the eligible bmask for
19386 * roundrobin failover search. It checks to make sure that the index
19387 * does not go beyond the range of the driver allocated bmask dimension
19388 * before clearing the bit.
19389 **/
19390void
19391lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19392{
19393	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19394	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19395		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19396				"2762 FCF (x%x) reached driver's book "
19397				"keeping dimension:x%x\n",
19398				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19399		return;
19400	}
19401	/* Clear the eligible FCF record index bmask */
19402	spin_lock_irq(&phba->hbalock);
19403	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19404				 list) {
19405		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19406			list_del_init(&fcf_pri->list);
19407			break;
19408		}
19409	}
19410	spin_unlock_irq(&phba->hbalock);
19411	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19412
19413	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19414			"2791 Clear FCF (x%x) from roundrobin failover "
19415			"bmask\n", fcf_index);
19416}
19417
19418/**
19419 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19420 * @phba: pointer to lpfc hba data structure.
19421 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
19422 *
19423 * This routine is the completion routine for the rediscover FCF table mailbox
19424 * command. If the mailbox command returned failure, it will try to stop the
19425 * FCF rediscover wait timer.
19426 **/
19427static void
19428lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19429{
19430	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19431	uint32_t shdr_status, shdr_add_status;
19432
19433	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19434
19435	shdr_status = bf_get(lpfc_mbox_hdr_status,
19436			     &redisc_fcf->header.cfg_shdr.response);
19437	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19438			     &redisc_fcf->header.cfg_shdr.response);
19439	if (shdr_status || shdr_add_status) {
19440		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19441				"2746 Requesting for FCF rediscovery failed "
19442				"status x%x add_status x%x\n",
19443				shdr_status, shdr_add_status);
19444		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19445			spin_lock_irq(&phba->hbalock);
19446			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19447			spin_unlock_irq(&phba->hbalock);
19448			/*
19449			 * CVL event triggered FCF rediscover request failed,
19450			 * last resort to re-try current registered FCF entry.
19451			 */
19452			lpfc_retry_pport_discovery(phba);
19453		} else {
19454			spin_lock_irq(&phba->hbalock);
19455			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19456			spin_unlock_irq(&phba->hbalock);
19457			/*
19458			 * DEAD FCF event triggered FCF rediscover request
19459			 * failed, last resort to fail over as a link down
19460			 * to FCF registration.
19461			 */
19462			lpfc_sli4_fcf_dead_failthrough(phba);
19463		}
19464	} else {
19465		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19466				"2775 Start FCF rediscover quiescent timer\n");
19467		/*
19468		 * Start FCF rediscovery wait timer for pending FCF
19469		 * before rescan FCF record table.
19470		 */
19471		lpfc_fcf_redisc_wait_start_timer(phba);
19472	}
19473
19474	mempool_free(mbox, phba->mbox_mem_pool);
19475}
19476
19477/**
19478 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19479 * @phba: pointer to lpfc hba data structure.
19480 *
19481 * This routine is invoked to request for rediscovery of the entire FCF table
19482 * by the port.
19483 **/
19484int
19485lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19486{
19487	LPFC_MBOXQ_t *mbox;
19488	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19489	int rc, length;
19490
19491	/* Cancel retry delay timers to all vports before FCF rediscover */
19492	lpfc_cancel_all_vport_retry_delay_timer(phba);
19493
19494	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19495	if (!mbox) {
19496		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19497				"2745 Failed to allocate mbox for "
19498				"requesting FCF rediscover.\n");
19499		return -ENOMEM;
19500	}
19501
19502	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19503		  sizeof(struct lpfc_sli4_cfg_mhdr));
19504	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19505			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19506			 length, LPFC_SLI4_MBX_EMBED);
19507
19508	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19509	/* Set count to 0 for invalidating the entire FCF database */
19510	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19511
19512	/* Issue the mailbox command asynchronously */
19513	mbox->vport = phba->pport;
19514	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19515	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19516
19517	if (rc == MBX_NOT_FINISHED) {
19518		mempool_free(mbox, phba->mbox_mem_pool);
19519		return -EIO;
19520	}
19521	return 0;
19522}
19523
19524/**
19525 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19526 * @phba: pointer to lpfc hba data structure.
19527 *
19528 * This function is the failover routine as a last resort to the FCF DEAD
19529 * event when driver failed to perform fast FCF failover.
19530 **/
19531void
19532lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19533{
19534	uint32_t link_state;
19535
19536	/*
19537	 * Last resort as FCF DEAD event failover will treat this as
19538	 * a link down, but save the link state because we don't want
19539	 * it to be changed to Link Down unless it is already down.
19540	 */
19541	link_state = phba->link_state;
19542	lpfc_linkdown(phba);
19543	phba->link_state = link_state;
19544
19545	/* Unregister FCF if no devices connected to it */
19546	lpfc_unregister_unused_fcf(phba);
19547}
19548
19549/**
19550 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19551 * @phba: pointer to lpfc hba data structure.
19552 * @rgn23_data: pointer to configure region 23 data.
19553 *
19554 * This function gets SLI3 port configure region 23 data through memory dump
19555 * mailbox command. When it successfully retrieves data, the size of the data
19556 * will be returned, otherwise, 0 will be returned.
19557 **/
19558static uint32_t
19559lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19560{
19561	LPFC_MBOXQ_t *pmb = NULL;
19562	MAILBOX_t *mb;
19563	uint32_t offset = 0;
19564	int i, rc;
19565
19566	if (!rgn23_data)
19567		return 0;
19568
19569	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19570	if (!pmb) {
19571		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19572				"2600 failed to allocate mailbox memory\n");
19573		return 0;
19574	}
19575	mb = &pmb->u.mb;
19576
19577	do {
19578		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19579		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19580
19581		if (rc != MBX_SUCCESS) {
19582			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19583					"2601 failed to read config "
19584					"region 23, rc 0x%x Status 0x%x\n",
19585					rc, mb->mbxStatus);
19586			mb->un.varDmp.word_cnt = 0;
19587		}
19588		/*
19589		 * dump mem may return a zero when finished or we got a
19590		 * mailbox error, either way we are done.
19591		 */
19592		if (mb->un.varDmp.word_cnt == 0)
19593			break;
19594
19595		i =  mb->un.varDmp.word_cnt * sizeof(uint32_t);
19596		if (offset + i >  DMP_RGN23_SIZE)
19597			i =  DMP_RGN23_SIZE - offset;
19598		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19599				      rgn23_data  + offset, i);
19600		offset += i;
19601	} while (offset < DMP_RGN23_SIZE);
19602
19603	mempool_free(pmb, phba->mbox_mem_pool);
19604	return offset;
19605}
19606
19607/**
19608 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19609 * @phba: pointer to lpfc hba data structure.
19610 * @rgn23_data: pointer to configure region 23 data.
19611 *
19612 * This function gets SLI4 port configure region 23 data through memory dump
19613 * mailbox command. When it successfully retrieves data, the size of the data
19614 * will be returned, otherwise, 0 will be returned.
19615 **/
19616static uint32_t
19617lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19618{
19619	LPFC_MBOXQ_t *mboxq = NULL;
19620	struct lpfc_dmabuf *mp = NULL;
19621	struct lpfc_mqe *mqe;
19622	uint32_t data_length = 0;
19623	int rc;
19624
19625	if (!rgn23_data)
19626		return 0;
19627
19628	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19629	if (!mboxq) {
19630		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19631				"3105 failed to allocate mailbox memory\n");
19632		return 0;
19633	}
19634
19635	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19636		goto out;
19637	mqe = &mboxq->u.mqe;
19638	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19639	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19640	if (rc)
19641		goto out;
19642	data_length = mqe->un.mb_words[5];
19643	if (data_length == 0)
19644		goto out;
19645	if (data_length > DMP_RGN23_SIZE) {
19646		data_length = 0;
19647		goto out;
19648	}
19649	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19650out:
19651	mempool_free(mboxq, phba->mbox_mem_pool);
19652	if (mp) {
19653		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19654		kfree(mp);
19655	}
19656	return data_length;
19657}
19658
19659/**
19660 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19661 * @phba: pointer to lpfc hba data structure.
19662 *
19663 * This function read region 23 and parse TLV for port status to
19664 * decide if the user disaled the port. If the TLV indicates the
19665 * port is disabled, the hba_flag is set accordingly.
19666 **/
19667void
19668lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19669{
19670	uint8_t *rgn23_data = NULL;
19671	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19672	uint32_t offset = 0;
19673
19674	/* Get adapter Region 23 data */
19675	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19676	if (!rgn23_data)
19677		goto out;
19678
19679	if (phba->sli_rev < LPFC_SLI_REV4)
19680		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19681	else {
19682		if_type = bf_get(lpfc_sli_intf_if_type,
19683				 &phba->sli4_hba.sli_intf);
19684		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19685			goto out;
19686		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19687	}
19688
19689	if (!data_size)
19690		goto out;
19691
19692	/* Check the region signature first */
19693	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19694		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19695			"2619 Config region 23 has bad signature\n");
19696			goto out;
19697	}
19698	offset += 4;
19699
19700	/* Check the data structure version */
19701	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19702		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19703			"2620 Config region 23 has bad version\n");
19704		goto out;
19705	}
19706	offset += 4;
19707
19708	/* Parse TLV entries in the region */
19709	while (offset < data_size) {
19710		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19711			break;
19712		/*
19713		 * If the TLV is not driver specific TLV or driver id is
19714		 * not linux driver id, skip the record.
19715		 */
19716		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19717		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19718		    (rgn23_data[offset + 3] != 0)) {
19719			offset += rgn23_data[offset + 1] * 4 + 4;
19720			continue;
19721		}
19722
19723		/* Driver found a driver specific TLV in the config region */
19724		sub_tlv_len = rgn23_data[offset + 1] * 4;
19725		offset += 4;
19726		tlv_offset = 0;
19727
19728		/*
19729		 * Search for configured port state sub-TLV.
19730		 */
19731		while ((offset < data_size) &&
19732			(tlv_offset < sub_tlv_len)) {
19733			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19734				offset += 4;
19735				tlv_offset += 4;
19736				break;
19737			}
19738			if (rgn23_data[offset] != PORT_STE_TYPE) {
19739				offset += rgn23_data[offset + 1] * 4 + 4;
19740				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19741				continue;
19742			}
19743
19744			/* This HBA contains PORT_STE configured */
19745			if (!rgn23_data[offset + 2])
19746				phba->hba_flag |= LINK_DISABLED;
19747
19748			goto out;
19749		}
19750	}
19751
19752out:
19753	kfree(rgn23_data);
19754	return;
19755}
19756
19757/**
19758 * lpfc_wr_object - write an object to the firmware
19759 * @phba: HBA structure that indicates port to create a queue on.
19760 * @dmabuf_list: list of dmabufs to write to the port.
19761 * @size: the total byte value of the objects to write to the port.
19762 * @offset: the current offset to be used to start the transfer.
19763 *
19764 * This routine will create a wr_object mailbox command to send to the port.
19765 * the mailbox command will be constructed using the dma buffers described in
19766 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19767 * BDEs that the imbedded mailbox can support. The @offset variable will be
19768 * used to indicate the starting offset of the transfer and will also return
19769 * the offset after the write object mailbox has completed. @size is used to
19770 * determine the end of the object and whether the eof bit should be set.
19771 *
19772 * Return 0 is successful and offset will contain the the new offset to use
19773 * for the next write.
19774 * Return negative value for error cases.
19775 **/
19776int
19777lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19778	       uint32_t size, uint32_t *offset)
19779{
19780	struct lpfc_mbx_wr_object *wr_object;
19781	LPFC_MBOXQ_t *mbox;
19782	int rc = 0, i = 0;
19783	uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
19784	uint32_t mbox_tmo;
19785	struct lpfc_dmabuf *dmabuf;
19786	uint32_t written = 0;
19787	bool check_change_status = false;
19788
19789	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19790	if (!mbox)
19791		return -ENOMEM;
19792
19793	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19794			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19795			sizeof(struct lpfc_mbx_wr_object) -
19796			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19797
19798	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19799	wr_object->u.request.write_offset = *offset;
19800	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19801	wr_object->u.request.object_name[0] =
19802		cpu_to_le32(wr_object->u.request.object_name[0]);
19803	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19804	list_for_each_entry(dmabuf, dmabuf_list, list) {
19805		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19806			break;
19807		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19808		wr_object->u.request.bde[i].addrHigh =
19809			putPaddrHigh(dmabuf->phys);
19810		if (written + SLI4_PAGE_SIZE >= size) {
19811			wr_object->u.request.bde[i].tus.f.bdeSize =
19812				(size - written);
19813			written += (size - written);
19814			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19815			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19816			check_change_status = true;
19817		} else {
19818			wr_object->u.request.bde[i].tus.f.bdeSize =
19819				SLI4_PAGE_SIZE;
19820			written += SLI4_PAGE_SIZE;
19821		}
19822		i++;
19823	}
19824	wr_object->u.request.bde_count = i;
19825	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19826	if (!phba->sli4_hba.intr_enable)
19827		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19828	else {
19829		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19830		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19831	}
19832	/* The IOCTL status is embedded in the mailbox subheader. */
19833	shdr_status = bf_get(lpfc_mbox_hdr_status,
19834			     &wr_object->header.cfg_shdr.response);
19835	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19836				 &wr_object->header.cfg_shdr.response);
19837	if (check_change_status) {
19838		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19839					    &wr_object->u.response);
19840
19841		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
19842		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
19843			shdr_csf = bf_get(lpfc_wr_object_csf,
19844					  &wr_object->u.response);
19845			if (shdr_csf)
19846				shdr_change_status =
19847						   LPFC_CHANGE_STATUS_PCI_RESET;
19848		}
19849
19850		switch (shdr_change_status) {
19851		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19852			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19853					"3198 Firmware write complete: System "
19854					"reboot required to instantiate\n");
19855			break;
19856		case (LPFC_CHANGE_STATUS_FW_RESET):
19857			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19858					"3199 Firmware write complete: Firmware"
19859					" reset required to instantiate\n");
19860			break;
19861		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19862			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19863					"3200 Firmware write complete: Port "
19864					"Migration or PCI Reset required to "
19865					"instantiate\n");
19866			break;
19867		case (LPFC_CHANGE_STATUS_PCI_RESET):
19868			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19869					"3201 Firmware write complete: PCI "
19870					"Reset required to instantiate\n");
19871			break;
19872		default:
19873			break;
19874		}
19875	}
19876	if (!phba->sli4_hba.intr_enable)
19877		mempool_free(mbox, phba->mbox_mem_pool);
19878	else if (rc != MBX_TIMEOUT)
19879		mempool_free(mbox, phba->mbox_mem_pool);
19880	if (shdr_status || shdr_add_status || rc) {
19881		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19882				"3025 Write Object mailbox failed with "
19883				"status x%x add_status x%x, mbx status x%x\n",
19884				shdr_status, shdr_add_status, rc);
19885		rc = -ENXIO;
19886		*offset = shdr_add_status;
19887	} else
19888		*offset += wr_object->u.response.actual_write_length;
19889	return rc;
19890}
19891
19892/**
19893 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19894 * @vport: pointer to vport data structure.
19895 *
19896 * This function iterate through the mailboxq and clean up all REG_LOGIN
19897 * and REG_VPI mailbox commands associated with the vport. This function
19898 * is called when driver want to restart discovery of the vport due to
19899 * a Clear Virtual Link event.
19900 **/
19901void
19902lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19903{
19904	struct lpfc_hba *phba = vport->phba;
19905	LPFC_MBOXQ_t *mb, *nextmb;
19906	struct lpfc_dmabuf *mp;
19907	struct lpfc_nodelist *ndlp;
19908	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19909	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19910	LIST_HEAD(mbox_cmd_list);
19911	uint8_t restart_loop;
19912
19913	/* Clean up internally queued mailbox commands with the vport */
19914	spin_lock_irq(&phba->hbalock);
19915	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19916		if (mb->vport != vport)
19917			continue;
19918
19919		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19920			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19921			continue;
19922
19923		list_del(&mb->list);
19924		list_add_tail(&mb->list, &mbox_cmd_list);
19925	}
19926	/* Clean up active mailbox command with the vport */
19927	mb = phba->sli.mbox_active;
19928	if (mb && (mb->vport == vport)) {
19929		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19930			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19931			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19932		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19933			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19934			/* Put reference count for delayed processing */
19935			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19936			/* Unregister the RPI when mailbox complete */
19937			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19938		}
19939	}
19940	/* Cleanup any mailbox completions which are not yet processed */
19941	do {
19942		restart_loop = 0;
19943		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19944			/*
19945			 * If this mailox is already processed or it is
19946			 * for another vport ignore it.
19947			 */
19948			if ((mb->vport != vport) ||
19949				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19950				continue;
19951
19952			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19953				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19954				continue;
19955
19956			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19957			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19958				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19959				/* Unregister the RPI when mailbox complete */
19960				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19961				restart_loop = 1;
19962				spin_unlock_irq(&phba->hbalock);
19963				spin_lock(shost->host_lock);
19964				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19965				spin_unlock(shost->host_lock);
19966				spin_lock_irq(&phba->hbalock);
19967				break;
19968			}
19969		}
19970	} while (restart_loop);
19971
19972	spin_unlock_irq(&phba->hbalock);
19973
19974	/* Release the cleaned-up mailbox commands */
19975	while (!list_empty(&mbox_cmd_list)) {
19976		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19977		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19978			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19979			if (mp) {
19980				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19981				kfree(mp);
19982			}
19983			mb->ctx_buf = NULL;
19984			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19985			mb->ctx_ndlp = NULL;
19986			if (ndlp) {
19987				spin_lock(shost->host_lock);
19988				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19989				spin_unlock(shost->host_lock);
19990				lpfc_nlp_put(ndlp);
19991			}
19992		}
19993		mempool_free(mb, phba->mbox_mem_pool);
19994	}
19995
19996	/* Release the ndlp with the cleaned-up active mailbox command */
19997	if (act_mbx_ndlp) {
19998		spin_lock(shost->host_lock);
19999		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20000		spin_unlock(shost->host_lock);
20001		lpfc_nlp_put(act_mbx_ndlp);
20002	}
20003}
20004
20005/**
20006 * lpfc_drain_txq - Drain the txq
20007 * @phba: Pointer to HBA context object.
20008 *
20009 * This function attempt to submit IOCBs on the txq
20010 * to the adapter.  For SLI4 adapters, the txq contains
20011 * ELS IOCBs that have been deferred because the there
20012 * are no SGLs.  This congestion can occur with large
20013 * vport counts during node discovery.
20014 **/
20015
20016uint32_t
20017lpfc_drain_txq(struct lpfc_hba *phba)
20018{
20019	LIST_HEAD(completions);
20020	struct lpfc_sli_ring *pring;
20021	struct lpfc_iocbq *piocbq = NULL;
20022	unsigned long iflags = 0;
20023	char *fail_msg = NULL;
20024	struct lpfc_sglq *sglq;
20025	union lpfc_wqe128 wqe;
20026	uint32_t txq_cnt = 0;
20027	struct lpfc_queue *wq;
20028
20029	if (phba->link_flag & LS_MDS_LOOPBACK) {
20030		/* MDS WQE are posted only to first WQ*/
20031		wq = phba->sli4_hba.hdwq[0].io_wq;
20032		if (unlikely(!wq))
20033			return 0;
20034		pring = wq->pring;
20035	} else {
20036		wq = phba->sli4_hba.els_wq;
20037		if (unlikely(!wq))
20038			return 0;
20039		pring = lpfc_phba_elsring(phba);
20040	}
20041
20042	if (unlikely(!pring) || list_empty(&pring->txq))
20043		return 0;
20044
20045	spin_lock_irqsave(&pring->ring_lock, iflags);
20046	list_for_each_entry(piocbq, &pring->txq, list) {
20047		txq_cnt++;
20048	}
20049
20050	if (txq_cnt > pring->txq_max)
20051		pring->txq_max = txq_cnt;
20052
20053	spin_unlock_irqrestore(&pring->ring_lock, iflags);
20054
20055	while (!list_empty(&pring->txq)) {
20056		spin_lock_irqsave(&pring->ring_lock, iflags);
20057
20058		piocbq = lpfc_sli_ringtx_get(phba, pring);
20059		if (!piocbq) {
20060			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20061			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20062				"2823 txq empty and txq_cnt is %d\n ",
20063				txq_cnt);
20064			break;
20065		}
20066		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
20067		if (!sglq) {
20068			__lpfc_sli_ringtx_put(phba, pring, piocbq);
20069			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20070			break;
20071		}
20072		txq_cnt--;
20073
20074		/* The xri and iocb resources secured,
20075		 * attempt to issue request
20076		 */
20077		piocbq->sli4_lxritag = sglq->sli4_lxritag;
20078		piocbq->sli4_xritag = sglq->sli4_xritag;
20079		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
20080			fail_msg = "to convert bpl to sgl";
20081		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
20082			fail_msg = "to convert iocb to wqe";
20083		else if (lpfc_sli4_wq_put(wq, &wqe))
20084			fail_msg = " - Wq is full";
20085		else
20086			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
20087
20088		if (fail_msg) {
20089			/* Failed means we can't issue and need to cancel */
20090			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20091					"2822 IOCB failed %s iotag 0x%x "
20092					"xri 0x%x\n",
20093					fail_msg,
20094					piocbq->iotag, piocbq->sli4_xritag);
20095			list_add_tail(&piocbq->list, &completions);
20096			fail_msg = NULL;
20097		}
20098		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20099	}
20100
20101	/* Cancel all the IOCBs that cannot be issued */
20102	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
20103				IOERR_SLI_ABORTED);
20104
20105	return txq_cnt;
20106}
20107
20108/**
20109 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
20110 * @phba: Pointer to HBA context object.
20111 * @pwqeq: Pointer to command WQE.
20112 * @sglq: Pointer to the scatter gather queue object.
20113 *
20114 * This routine converts the bpl or bde that is in the WQE
20115 * to a sgl list for the sli4 hardware. The physical address
20116 * of the bpl/bde is converted back to a virtual address.
20117 * If the WQE contains a BPL then the list of BDE's is
20118 * converted to sli4_sge's. If the WQE contains a single
20119 * BDE then it is converted to a single sli_sge.
20120 * The WQE is still in cpu endianness so the contents of
20121 * the bpl can be used without byte swapping.
20122 *
20123 * Returns valid XRI = Success, NO_XRI = Failure.
20124 */
20125static uint16_t
20126lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
20127		 struct lpfc_sglq *sglq)
20128{
20129	uint16_t xritag = NO_XRI;
20130	struct ulp_bde64 *bpl = NULL;
20131	struct ulp_bde64 bde;
20132	struct sli4_sge *sgl  = NULL;
20133	struct lpfc_dmabuf *dmabuf;
20134	union lpfc_wqe128 *wqe;
20135	int numBdes = 0;
20136	int i = 0;
20137	uint32_t offset = 0; /* accumulated offset in the sg request list */
20138	int inbound = 0; /* number of sg reply entries inbound from firmware */
20139	uint32_t cmd;
20140
20141	if (!pwqeq || !sglq)
20142		return xritag;
20143
20144	sgl  = (struct sli4_sge *)sglq->sgl;
20145	wqe = &pwqeq->wqe;
20146	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
20147
20148	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
20149	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
20150		return sglq->sli4_xritag;
20151	numBdes = pwqeq->rsvd2;
20152	if (numBdes) {
20153		/* The addrHigh and addrLow fields within the WQE
20154		 * have not been byteswapped yet so there is no
20155		 * need to swap them back.
20156		 */
20157		if (pwqeq->context3)
20158			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
20159		else
20160			return xritag;
20161
20162		bpl  = (struct ulp_bde64 *)dmabuf->virt;
20163		if (!bpl)
20164			return xritag;
20165
20166		for (i = 0; i < numBdes; i++) {
20167			/* Should already be byte swapped. */
20168			sgl->addr_hi = bpl->addrHigh;
20169			sgl->addr_lo = bpl->addrLow;
20170
20171			sgl->word2 = le32_to_cpu(sgl->word2);
20172			if ((i+1) == numBdes)
20173				bf_set(lpfc_sli4_sge_last, sgl, 1);
20174			else
20175				bf_set(lpfc_sli4_sge_last, sgl, 0);
20176			/* swap the size field back to the cpu so we
20177			 * can assign it to the sgl.
20178			 */
20179			bde.tus.w = le32_to_cpu(bpl->tus.w);
20180			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
20181			/* The offsets in the sgl need to be accumulated
20182			 * separately for the request and reply lists.
20183			 * The request is always first, the reply follows.
20184			 */
20185			switch (cmd) {
20186			case CMD_GEN_REQUEST64_WQE:
20187				/* add up the reply sg entries */
20188				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
20189					inbound++;
20190				/* first inbound? reset the offset */
20191				if (inbound == 1)
20192					offset = 0;
20193				bf_set(lpfc_sli4_sge_offset, sgl, offset);
20194				bf_set(lpfc_sli4_sge_type, sgl,
20195					LPFC_SGE_TYPE_DATA);
20196				offset += bde.tus.f.bdeSize;
20197				break;
20198			case CMD_FCP_TRSP64_WQE:
20199				bf_set(lpfc_sli4_sge_offset, sgl, 0);
20200				bf_set(lpfc_sli4_sge_type, sgl,
20201					LPFC_SGE_TYPE_DATA);
20202				break;
20203			case CMD_FCP_TSEND64_WQE:
20204			case CMD_FCP_TRECEIVE64_WQE:
20205				bf_set(lpfc_sli4_sge_type, sgl,
20206					bpl->tus.f.bdeFlags);
20207				if (i < 3)
20208					offset = 0;
20209				else
20210					offset += bde.tus.f.bdeSize;
20211				bf_set(lpfc_sli4_sge_offset, sgl, offset);
20212				break;
20213			}
20214			sgl->word2 = cpu_to_le32(sgl->word2);
20215			bpl++;
20216			sgl++;
20217		}
20218	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
20219		/* The addrHigh and addrLow fields of the BDE have not
20220		 * been byteswapped yet so they need to be swapped
20221		 * before putting them in the sgl.
20222		 */
20223		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
20224		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
20225		sgl->word2 = le32_to_cpu(sgl->word2);
20226		bf_set(lpfc_sli4_sge_last, sgl, 1);
20227		sgl->word2 = cpu_to_le32(sgl->word2);
20228		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
20229	}
20230	return sglq->sli4_xritag;
20231}
20232
20233/**
20234 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
20235 * @phba: Pointer to HBA context object.
20236 * @qp: Pointer to HDW queue.
20237 * @pwqe: Pointer to command WQE.
20238 **/
20239int
20240lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20241		    struct lpfc_iocbq *pwqe)
20242{
20243	union lpfc_wqe128 *wqe = &pwqe->wqe;
20244	struct lpfc_async_xchg_ctx *ctxp;
20245	struct lpfc_queue *wq;
20246	struct lpfc_sglq *sglq;
20247	struct lpfc_sli_ring *pring;
20248	unsigned long iflags;
20249	uint32_t ret = 0;
20250
20251	/* NVME_LS and NVME_LS ABTS requests. */
20252	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
20253		pring =  phba->sli4_hba.nvmels_wq->pring;
20254		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20255					  qp, wq_access);
20256		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
20257		if (!sglq) {
20258			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20259			return WQE_BUSY;
20260		}
20261		pwqe->sli4_lxritag = sglq->sli4_lxritag;
20262		pwqe->sli4_xritag = sglq->sli4_xritag;
20263		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
20264			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20265			return WQE_ERROR;
20266		}
20267		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20268		       pwqe->sli4_xritag);
20269		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
20270		if (ret) {
20271			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20272			return ret;
20273		}
20274
20275		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20276		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20277
20278		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20279		return 0;
20280	}
20281
20282	/* NVME_FCREQ and NVME_ABTS requests */
20283	if (pwqe->iocb_flag & LPFC_IO_NVME) {
20284		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20285		wq = qp->io_wq;
20286		pring = wq->pring;
20287
20288		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20289
20290		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20291					  qp, wq_access);
20292		ret = lpfc_sli4_wq_put(wq, wqe);
20293		if (ret) {
20294			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20295			return ret;
20296		}
20297		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20298		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20299
20300		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20301		return 0;
20302	}
20303
20304	/* NVMET requests */
20305	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
20306		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20307		wq = qp->io_wq;
20308		pring = wq->pring;
20309
20310		ctxp = pwqe->context2;
20311		sglq = ctxp->ctxbuf->sglq;
20312		if (pwqe->sli4_xritag ==  NO_XRI) {
20313			pwqe->sli4_lxritag = sglq->sli4_lxritag;
20314			pwqe->sli4_xritag = sglq->sli4_xritag;
20315		}
20316		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20317		       pwqe->sli4_xritag);
20318		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20319
20320		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20321					  qp, wq_access);
20322		ret = lpfc_sli4_wq_put(wq, wqe);
20323		if (ret) {
20324			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20325			return ret;
20326		}
20327		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20328		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20329
20330		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20331		return 0;
20332	}
20333	return WQE_ERROR;
20334}
20335
20336#ifdef LPFC_MXP_STAT
20337/**
20338 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
20339 * @phba: pointer to lpfc hba data structure.
20340 * @hwqid: belong to which HWQ.
20341 *
20342 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
20343 * 15 seconds after a test case is running.
20344 *
20345 * The user should call lpfc_debugfs_multixripools_write before running a test
20346 * case to clear stat_snapshot_taken. Then the user starts a test case. During
20347 * test case is running, stat_snapshot_taken is incremented by 1 every time when
20348 * this routine is called from heartbeat timer. When stat_snapshot_taken is
20349 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20350 **/
20351void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20352{
20353	struct lpfc_sli4_hdw_queue *qp;
20354	struct lpfc_multixri_pool *multixri_pool;
20355	struct lpfc_pvt_pool *pvt_pool;
20356	struct lpfc_pbl_pool *pbl_pool;
20357	u32 txcmplq_cnt;
20358
20359	qp = &phba->sli4_hba.hdwq[hwqid];
20360	multixri_pool = qp->p_multixri_pool;
20361	if (!multixri_pool)
20362		return;
20363
20364	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20365		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20366		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20367		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20368
20369		multixri_pool->stat_pbl_count = pbl_pool->count;
20370		multixri_pool->stat_pvt_count = pvt_pool->count;
20371		multixri_pool->stat_busy_count = txcmplq_cnt;
20372	}
20373
20374	multixri_pool->stat_snapshot_taken++;
20375}
20376#endif
20377
20378/**
20379 * lpfc_adjust_pvt_pool_count - Adjust private pool count
20380 * @phba: pointer to lpfc hba data structure.
20381 * @hwqid: belong to which HWQ.
20382 *
20383 * This routine moves some XRIs from private to public pool when private pool
20384 * is not busy.
20385 **/
20386void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20387{
20388	struct lpfc_multixri_pool *multixri_pool;
20389	u32 io_req_count;
20390	u32 prev_io_req_count;
20391
20392	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20393	if (!multixri_pool)
20394		return;
20395	io_req_count = multixri_pool->io_req_count;
20396	prev_io_req_count = multixri_pool->prev_io_req_count;
20397
20398	if (prev_io_req_count != io_req_count) {
20399		/* Private pool is busy */
20400		multixri_pool->prev_io_req_count = io_req_count;
20401	} else {
20402		/* Private pool is not busy.
20403		 * Move XRIs from private to public pool.
20404		 */
20405		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20406	}
20407}
20408
20409/**
20410 * lpfc_adjust_high_watermark - Adjust high watermark
20411 * @phba: pointer to lpfc hba data structure.
20412 * @hwqid: belong to which HWQ.
20413 *
20414 * This routine sets high watermark as number of outstanding XRIs,
20415 * but make sure the new value is between xri_limit/2 and xri_limit.
20416 **/
20417void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20418{
20419	u32 new_watermark;
20420	u32 watermark_max;
20421	u32 watermark_min;
20422	u32 xri_limit;
20423	u32 txcmplq_cnt;
20424	u32 abts_io_bufs;
20425	struct lpfc_multixri_pool *multixri_pool;
20426	struct lpfc_sli4_hdw_queue *qp;
20427
20428	qp = &phba->sli4_hba.hdwq[hwqid];
20429	multixri_pool = qp->p_multixri_pool;
20430	if (!multixri_pool)
20431		return;
20432	xri_limit = multixri_pool->xri_limit;
20433
20434	watermark_max = xri_limit;
20435	watermark_min = xri_limit / 2;
20436
20437	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20438	abts_io_bufs = qp->abts_scsi_io_bufs;
20439	abts_io_bufs += qp->abts_nvme_io_bufs;
20440
20441	new_watermark = txcmplq_cnt + abts_io_bufs;
20442	new_watermark = min(watermark_max, new_watermark);
20443	new_watermark = max(watermark_min, new_watermark);
20444	multixri_pool->pvt_pool.high_watermark = new_watermark;
20445
20446#ifdef LPFC_MXP_STAT
20447	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20448					  new_watermark);
20449#endif
20450}
20451
20452/**
20453 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20454 * @phba: pointer to lpfc hba data structure.
20455 * @hwqid: belong to which HWQ.
20456 *
20457 * This routine is called from hearbeat timer when pvt_pool is idle.
20458 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20459 * The first step moves (all - low_watermark) amount of XRIs.
20460 * The second step moves the rest of XRIs.
20461 **/
20462void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20463{
20464	struct lpfc_pbl_pool *pbl_pool;
20465	struct lpfc_pvt_pool *pvt_pool;
20466	struct lpfc_sli4_hdw_queue *qp;
20467	struct lpfc_io_buf *lpfc_ncmd;
20468	struct lpfc_io_buf *lpfc_ncmd_next;
20469	unsigned long iflag;
20470	struct list_head tmp_list;
20471	u32 tmp_count;
20472
20473	qp = &phba->sli4_hba.hdwq[hwqid];
20474	pbl_pool = &qp->p_multixri_pool->pbl_pool;
20475	pvt_pool = &qp->p_multixri_pool->pvt_pool;
20476	tmp_count = 0;
20477
20478	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20479	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20480
20481	if (pvt_pool->count > pvt_pool->low_watermark) {
20482		/* Step 1: move (all - low_watermark) from pvt_pool
20483		 * to pbl_pool
20484		 */
20485
20486		/* Move low watermark of bufs from pvt_pool to tmp_list */
20487		INIT_LIST_HEAD(&tmp_list);
20488		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20489					 &pvt_pool->list, list) {
20490			list_move_tail(&lpfc_ncmd->list, &tmp_list);
20491			tmp_count++;
20492			if (tmp_count >= pvt_pool->low_watermark)
20493				break;
20494		}
20495
20496		/* Move all bufs from pvt_pool to pbl_pool */
20497		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20498
20499		/* Move all bufs from tmp_list to pvt_pool */
20500		list_splice(&tmp_list, &pvt_pool->list);
20501
20502		pbl_pool->count += (pvt_pool->count - tmp_count);
20503		pvt_pool->count = tmp_count;
20504	} else {
20505		/* Step 2: move the rest from pvt_pool to pbl_pool */
20506		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20507		pbl_pool->count += pvt_pool->count;
20508		pvt_pool->count = 0;
20509	}
20510
20511	spin_unlock(&pvt_pool->lock);
20512	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20513}
20514
20515/**
20516 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20517 * @phba: pointer to lpfc hba data structure
20518 * @qp: pointer to HDW queue
20519 * @pbl_pool: specified public free XRI pool
20520 * @pvt_pool: specified private free XRI pool
20521 * @count: number of XRIs to move
20522 *
20523 * This routine tries to move some free common bufs from the specified pbl_pool
20524 * to the specified pvt_pool. It might move less than count XRIs if there's not
20525 * enough in public pool.
20526 *
20527 * Return:
20528 *   true - if XRIs are successfully moved from the specified pbl_pool to the
20529 *          specified pvt_pool
20530 *   false - if the specified pbl_pool is empty or locked by someone else
20531 **/
20532static bool
20533_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20534			  struct lpfc_pbl_pool *pbl_pool,
20535			  struct lpfc_pvt_pool *pvt_pool, u32 count)
20536{
20537	struct lpfc_io_buf *lpfc_ncmd;
20538	struct lpfc_io_buf *lpfc_ncmd_next;
20539	unsigned long iflag;
20540	int ret;
20541
20542	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20543	if (ret) {
20544		if (pbl_pool->count) {
20545			/* Move a batch of XRIs from public to private pool */
20546			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20547			list_for_each_entry_safe(lpfc_ncmd,
20548						 lpfc_ncmd_next,
20549						 &pbl_pool->list,
20550						 list) {
20551				list_move_tail(&lpfc_ncmd->list,
20552					       &pvt_pool->list);
20553				pvt_pool->count++;
20554				pbl_pool->count--;
20555				count--;
20556				if (count == 0)
20557					break;
20558			}
20559
20560			spin_unlock(&pvt_pool->lock);
20561			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20562			return true;
20563		}
20564		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20565	}
20566
20567	return false;
20568}
20569
20570/**
20571 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20572 * @phba: pointer to lpfc hba data structure.
20573 * @hwqid: belong to which HWQ.
20574 * @count: number of XRIs to move
20575 *
20576 * This routine tries to find some free common bufs in one of public pools with
20577 * Round Robin method. The search always starts from local hwqid, then the next
20578 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20579 * a batch of free common bufs are moved to private pool on hwqid.
20580 * It might move less than count XRIs if there's not enough in public pool.
20581 **/
20582void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20583{
20584	struct lpfc_multixri_pool *multixri_pool;
20585	struct lpfc_multixri_pool *next_multixri_pool;
20586	struct lpfc_pvt_pool *pvt_pool;
20587	struct lpfc_pbl_pool *pbl_pool;
20588	struct lpfc_sli4_hdw_queue *qp;
20589	u32 next_hwqid;
20590	u32 hwq_count;
20591	int ret;
20592
20593	qp = &phba->sli4_hba.hdwq[hwqid];
20594	multixri_pool = qp->p_multixri_pool;
20595	pvt_pool = &multixri_pool->pvt_pool;
20596	pbl_pool = &multixri_pool->pbl_pool;
20597
20598	/* Check if local pbl_pool is available */
20599	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20600	if (ret) {
20601#ifdef LPFC_MXP_STAT
20602		multixri_pool->local_pbl_hit_count++;
20603#endif
20604		return;
20605	}
20606
20607	hwq_count = phba->cfg_hdw_queue;
20608
20609	/* Get the next hwqid which was found last time */
20610	next_hwqid = multixri_pool->rrb_next_hwqid;
20611
20612	do {
20613		/* Go to next hwq */
20614		next_hwqid = (next_hwqid + 1) % hwq_count;
20615
20616		next_multixri_pool =
20617			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20618		pbl_pool = &next_multixri_pool->pbl_pool;
20619
20620		/* Check if the public free xri pool is available */
20621		ret = _lpfc_move_xri_pbl_to_pvt(
20622			phba, qp, pbl_pool, pvt_pool, count);
20623
20624		/* Exit while-loop if success or all hwqid are checked */
20625	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20626
20627	/* Starting point for the next time */
20628	multixri_pool->rrb_next_hwqid = next_hwqid;
20629
20630	if (!ret) {
20631		/* stats: all public pools are empty*/
20632		multixri_pool->pbl_empty_count++;
20633	}
20634
20635#ifdef LPFC_MXP_STAT
20636	if (ret) {
20637		if (next_hwqid == hwqid)
20638			multixri_pool->local_pbl_hit_count++;
20639		else
20640			multixri_pool->other_pbl_hit_count++;
20641	}
20642#endif
20643}
20644
20645/**
20646 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20647 * @phba: pointer to lpfc hba data structure.
20648 * @hwqid: belong to which HWQ.
20649 *
20650 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20651 * low watermark.
20652 **/
20653void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20654{
20655	struct lpfc_multixri_pool *multixri_pool;
20656	struct lpfc_pvt_pool *pvt_pool;
20657
20658	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20659	pvt_pool = &multixri_pool->pvt_pool;
20660
20661	if (pvt_pool->count < pvt_pool->low_watermark)
20662		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20663}
20664
20665/**
20666 * lpfc_release_io_buf - Return one IO buf back to free pool
20667 * @phba: pointer to lpfc hba data structure.
20668 * @lpfc_ncmd: IO buf to be returned.
20669 * @qp: belong to which HWQ.
20670 *
20671 * This routine returns one IO buf back to free pool. If this is an urgent IO,
20672 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20673 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20674 * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20675 * lpfc_io_buf_list_put.
20676 **/
20677void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20678			 struct lpfc_sli4_hdw_queue *qp)
20679{
20680	unsigned long iflag;
20681	struct lpfc_pbl_pool *pbl_pool;
20682	struct lpfc_pvt_pool *pvt_pool;
20683	struct lpfc_epd_pool *epd_pool;
20684	u32 txcmplq_cnt;
20685	u32 xri_owned;
20686	u32 xri_limit;
20687	u32 abts_io_bufs;
20688
20689	/* MUST zero fields if buffer is reused by another protocol */
20690	lpfc_ncmd->nvmeCmd = NULL;
20691	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20692	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20693
20694	if (phba->cfg_xpsgl && !phba->nvmet_support &&
20695	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20696		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20697
20698	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20699		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20700
20701	if (phba->cfg_xri_rebalancing) {
20702		if (lpfc_ncmd->expedite) {
20703			/* Return to expedite pool */
20704			epd_pool = &phba->epd_pool;
20705			spin_lock_irqsave(&epd_pool->lock, iflag);
20706			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20707			epd_pool->count++;
20708			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20709			return;
20710		}
20711
20712		/* Avoid invalid access if an IO sneaks in and is being rejected
20713		 * just _after_ xri pools are destroyed in lpfc_offline.
20714		 * Nothing much can be done at this point.
20715		 */
20716		if (!qp->p_multixri_pool)
20717			return;
20718
20719		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20720		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20721
20722		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20723		abts_io_bufs = qp->abts_scsi_io_bufs;
20724		abts_io_bufs += qp->abts_nvme_io_bufs;
20725
20726		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20727		xri_limit = qp->p_multixri_pool->xri_limit;
20728
20729#ifdef LPFC_MXP_STAT
20730		if (xri_owned <= xri_limit)
20731			qp->p_multixri_pool->below_limit_count++;
20732		else
20733			qp->p_multixri_pool->above_limit_count++;
20734#endif
20735
20736		/* XRI goes to either public or private free xri pool
20737		 *     based on watermark and xri_limit
20738		 */
20739		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20740		    (xri_owned < xri_limit &&
20741		     pvt_pool->count < pvt_pool->high_watermark)) {
20742			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20743						  qp, free_pvt_pool);
20744			list_add_tail(&lpfc_ncmd->list,
20745				      &pvt_pool->list);
20746			pvt_pool->count++;
20747			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20748		} else {
20749			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20750						  qp, free_pub_pool);
20751			list_add_tail(&lpfc_ncmd->list,
20752				      &pbl_pool->list);
20753			pbl_pool->count++;
20754			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20755		}
20756	} else {
20757		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20758					  qp, free_xri);
20759		list_add_tail(&lpfc_ncmd->list,
20760			      &qp->lpfc_io_buf_list_put);
20761		qp->put_io_bufs++;
20762		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20763				       iflag);
20764	}
20765}
20766
20767/**
20768 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20769 * @phba: pointer to lpfc hba data structure.
20770 * @qp: pointer to HDW queue
20771 * @pvt_pool: pointer to private pool data structure.
20772 * @ndlp: pointer to lpfc nodelist data structure.
20773 *
20774 * This routine tries to get one free IO buf from private pool.
20775 *
20776 * Return:
20777 *   pointer to one free IO buf - if private pool is not empty
20778 *   NULL - if private pool is empty
20779 **/
20780static struct lpfc_io_buf *
20781lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20782				  struct lpfc_sli4_hdw_queue *qp,
20783				  struct lpfc_pvt_pool *pvt_pool,
20784				  struct lpfc_nodelist *ndlp)
20785{
20786	struct lpfc_io_buf *lpfc_ncmd;
20787	struct lpfc_io_buf *lpfc_ncmd_next;
20788	unsigned long iflag;
20789
20790	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20791	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20792				 &pvt_pool->list, list) {
20793		if (lpfc_test_rrq_active(
20794			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20795			continue;
20796		list_del(&lpfc_ncmd->list);
20797		pvt_pool->count--;
20798		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20799		return lpfc_ncmd;
20800	}
20801	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20802
20803	return NULL;
20804}
20805
20806/**
20807 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20808 * @phba: pointer to lpfc hba data structure.
20809 *
20810 * This routine tries to get one free IO buf from expedite pool.
20811 *
20812 * Return:
20813 *   pointer to one free IO buf - if expedite pool is not empty
20814 *   NULL - if expedite pool is empty
20815 **/
20816static struct lpfc_io_buf *
20817lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20818{
20819	struct lpfc_io_buf *lpfc_ncmd = NULL, *iter;
20820	struct lpfc_io_buf *lpfc_ncmd_next;
20821	unsigned long iflag;
20822	struct lpfc_epd_pool *epd_pool;
20823
20824	epd_pool = &phba->epd_pool;
20825
20826	spin_lock_irqsave(&epd_pool->lock, iflag);
20827	if (epd_pool->count > 0) {
20828		list_for_each_entry_safe(iter, lpfc_ncmd_next,
20829					 &epd_pool->list, list) {
20830			list_del(&iter->list);
20831			epd_pool->count--;
20832			lpfc_ncmd = iter;
20833			break;
20834		}
20835	}
20836	spin_unlock_irqrestore(&epd_pool->lock, iflag);
20837
20838	return lpfc_ncmd;
20839}
20840
20841/**
20842 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20843 * @phba: pointer to lpfc hba data structure.
20844 * @ndlp: pointer to lpfc nodelist data structure.
20845 * @hwqid: belong to which HWQ
20846 * @expedite: 1 means this request is urgent.
20847 *
20848 * This routine will do the following actions and then return a pointer to
20849 * one free IO buf.
20850 *
20851 * 1. If private free xri count is empty, move some XRIs from public to
20852 *    private pool.
20853 * 2. Get one XRI from private free xri pool.
20854 * 3. If we fail to get one from pvt_pool and this is an expedite request,
20855 *    get one free xri from expedite pool.
20856 *
20857 * Note: ndlp is only used on SCSI side for RRQ testing.
20858 *       The caller should pass NULL for ndlp on NVME side.
20859 *
20860 * Return:
20861 *   pointer to one free IO buf - if private pool is not empty
20862 *   NULL - if private pool is empty
20863 **/
20864static struct lpfc_io_buf *
20865lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20866				    struct lpfc_nodelist *ndlp,
20867				    int hwqid, int expedite)
20868{
20869	struct lpfc_sli4_hdw_queue *qp;
20870	struct lpfc_multixri_pool *multixri_pool;
20871	struct lpfc_pvt_pool *pvt_pool;
20872	struct lpfc_io_buf *lpfc_ncmd;
20873
20874	qp = &phba->sli4_hba.hdwq[hwqid];
20875	lpfc_ncmd = NULL;
20876	multixri_pool = qp->p_multixri_pool;
20877	pvt_pool = &multixri_pool->pvt_pool;
20878	multixri_pool->io_req_count++;
20879
20880	/* If pvt_pool is empty, move some XRIs from public to private pool */
20881	if (pvt_pool->count == 0)
20882		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20883
20884	/* Get one XRI from private free xri pool */
20885	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20886
20887	if (lpfc_ncmd) {
20888		lpfc_ncmd->hdwq = qp;
20889		lpfc_ncmd->hdwq_no = hwqid;
20890	} else if (expedite) {
20891		/* If we fail to get one from pvt_pool and this is an expedite
20892		 * request, get one free xri from expedite pool.
20893		 */
20894		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20895	}
20896
20897	return lpfc_ncmd;
20898}
20899
20900static inline struct lpfc_io_buf *
20901lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20902{
20903	struct lpfc_sli4_hdw_queue *qp;
20904	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20905
20906	qp = &phba->sli4_hba.hdwq[idx];
20907	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20908				 &qp->lpfc_io_buf_list_get, list) {
20909		if (lpfc_test_rrq_active(phba, ndlp,
20910					 lpfc_cmd->cur_iocbq.sli4_lxritag))
20911			continue;
20912
20913		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20914			continue;
20915
20916		list_del_init(&lpfc_cmd->list);
20917		qp->get_io_bufs--;
20918		lpfc_cmd->hdwq = qp;
20919		lpfc_cmd->hdwq_no = idx;
20920		return lpfc_cmd;
20921	}
20922	return NULL;
20923}
20924
20925/**
20926 * lpfc_get_io_buf - Get one IO buffer from free pool
20927 * @phba: The HBA for which this call is being executed.
20928 * @ndlp: pointer to lpfc nodelist data structure.
20929 * @hwqid: belong to which HWQ
20930 * @expedite: 1 means this request is urgent.
20931 *
20932 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20933 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20934 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20935 *
20936 * Note: ndlp is only used on SCSI side for RRQ testing.
20937 *       The caller should pass NULL for ndlp on NVME side.
20938 *
20939 * Return codes:
20940 *   NULL - Error
20941 *   Pointer to lpfc_io_buf - Success
20942 **/
20943struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20944				    struct lpfc_nodelist *ndlp,
20945				    u32 hwqid, int expedite)
20946{
20947	struct lpfc_sli4_hdw_queue *qp;
20948	unsigned long iflag;
20949	struct lpfc_io_buf *lpfc_cmd;
20950
20951	qp = &phba->sli4_hba.hdwq[hwqid];
20952	lpfc_cmd = NULL;
20953
20954	if (phba->cfg_xri_rebalancing)
20955		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20956			phba, ndlp, hwqid, expedite);
20957	else {
20958		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20959					  qp, alloc_xri_get);
20960		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20961			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20962		if (!lpfc_cmd) {
20963			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20964					  qp, alloc_xri_put);
20965			list_splice(&qp->lpfc_io_buf_list_put,
20966				    &qp->lpfc_io_buf_list_get);
20967			qp->get_io_bufs += qp->put_io_bufs;
20968			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20969			qp->put_io_bufs = 0;
20970			spin_unlock(&qp->io_buf_list_put_lock);
20971			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20972			    expedite)
20973				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20974		}
20975		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20976	}
20977
20978	return lpfc_cmd;
20979}
20980
20981/**
20982 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
20983 * @phba: The HBA for which this call is being executed.
20984 * @lpfc_buf: IO buf structure to append the SGL chunk
20985 *
20986 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
20987 * and will allocate an SGL chunk if the pool is empty.
20988 *
20989 * Return codes:
20990 *   NULL - Error
20991 *   Pointer to sli4_hybrid_sgl - Success
20992 **/
20993struct sli4_hybrid_sgl *
20994lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20995{
20996	struct sli4_hybrid_sgl *list_entry = NULL;
20997	struct sli4_hybrid_sgl *tmp = NULL;
20998	struct sli4_hybrid_sgl *allocated_sgl = NULL;
20999	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21000	struct list_head *buf_list = &hdwq->sgl_list;
21001	unsigned long iflags;
21002
21003	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21004
21005	if (likely(!list_empty(buf_list))) {
21006		/* break off 1 chunk from the sgl_list */
21007		list_for_each_entry_safe(list_entry, tmp,
21008					 buf_list, list_node) {
21009			list_move_tail(&list_entry->list_node,
21010				       &lpfc_buf->dma_sgl_xtra_list);
21011			break;
21012		}
21013	} else {
21014		/* allocate more */
21015		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21016		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21017				   cpu_to_node(hdwq->io_wq->chann));
21018		if (!tmp) {
21019			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21020					"8353 error kmalloc memory for HDWQ "
21021					"%d %s\n",
21022					lpfc_buf->hdwq_no, __func__);
21023			return NULL;
21024		}
21025
21026		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
21027					      GFP_ATOMIC, &tmp->dma_phys_sgl);
21028		if (!tmp->dma_sgl) {
21029			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21030					"8354 error pool_alloc memory for HDWQ "
21031					"%d %s\n",
21032					lpfc_buf->hdwq_no, __func__);
21033			kfree(tmp);
21034			return NULL;
21035		}
21036
21037		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21038		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
21039	}
21040
21041	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
21042					struct sli4_hybrid_sgl,
21043					list_node);
21044
21045	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21046
21047	return allocated_sgl;
21048}
21049
21050/**
21051 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
21052 * @phba: The HBA for which this call is being executed.
21053 * @lpfc_buf: IO buf structure with the SGL chunk
21054 *
21055 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
21056 *
21057 * Return codes:
21058 *   0 - Success
21059 *   -EINVAL - Error
21060 **/
21061int
21062lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21063{
21064	int rc = 0;
21065	struct sli4_hybrid_sgl *list_entry = NULL;
21066	struct sli4_hybrid_sgl *tmp = NULL;
21067	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21068	struct list_head *buf_list = &hdwq->sgl_list;
21069	unsigned long iflags;
21070
21071	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21072
21073	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
21074		list_for_each_entry_safe(list_entry, tmp,
21075					 &lpfc_buf->dma_sgl_xtra_list,
21076					 list_node) {
21077			list_move_tail(&list_entry->list_node,
21078				       buf_list);
21079		}
21080	} else {
21081		rc = -EINVAL;
21082	}
21083
21084	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21085	return rc;
21086}
21087
21088/**
21089 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
21090 * @phba: phba object
21091 * @hdwq: hdwq to cleanup sgl buff resources on
21092 *
21093 * This routine frees all SGL chunks of hdwq SGL chunk pool.
21094 *
21095 * Return codes:
21096 *   None
21097 **/
21098void
21099lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
21100		       struct lpfc_sli4_hdw_queue *hdwq)
21101{
21102	struct list_head *buf_list = &hdwq->sgl_list;
21103	struct sli4_hybrid_sgl *list_entry = NULL;
21104	struct sli4_hybrid_sgl *tmp = NULL;
21105	unsigned long iflags;
21106
21107	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21108
21109	/* Free sgl pool */
21110	list_for_each_entry_safe(list_entry, tmp,
21111				 buf_list, list_node) {
21112		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
21113			      list_entry->dma_sgl,
21114			      list_entry->dma_phys_sgl);
21115		list_del(&list_entry->list_node);
21116		kfree(list_entry);
21117	}
21118
21119	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21120}
21121
21122/**
21123 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
21124 * @phba: The HBA for which this call is being executed.
21125 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
21126 *
21127 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
21128 * and will allocate an CMD/RSP buffer if the pool is empty.
21129 *
21130 * Return codes:
21131 *   NULL - Error
21132 *   Pointer to fcp_cmd_rsp_buf - Success
21133 **/
21134struct fcp_cmd_rsp_buf *
21135lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21136			      struct lpfc_io_buf *lpfc_buf)
21137{
21138	struct fcp_cmd_rsp_buf *list_entry = NULL;
21139	struct fcp_cmd_rsp_buf *tmp = NULL;
21140	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
21141	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21142	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21143	unsigned long iflags;
21144
21145	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21146
21147	if (likely(!list_empty(buf_list))) {
21148		/* break off 1 chunk from the list */
21149		list_for_each_entry_safe(list_entry, tmp,
21150					 buf_list,
21151					 list_node) {
21152			list_move_tail(&list_entry->list_node,
21153				       &lpfc_buf->dma_cmd_rsp_list);
21154			break;
21155		}
21156	} else {
21157		/* allocate more */
21158		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21159		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21160				   cpu_to_node(hdwq->io_wq->chann));
21161		if (!tmp) {
21162			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21163					"8355 error kmalloc memory for HDWQ "
21164					"%d %s\n",
21165					lpfc_buf->hdwq_no, __func__);
21166			return NULL;
21167		}
21168
21169		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
21170						GFP_ATOMIC,
21171						&tmp->fcp_cmd_rsp_dma_handle);
21172
21173		if (!tmp->fcp_cmnd) {
21174			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21175					"8356 error pool_alloc memory for HDWQ "
21176					"%d %s\n",
21177					lpfc_buf->hdwq_no, __func__);
21178			kfree(tmp);
21179			return NULL;
21180		}
21181
21182		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
21183				sizeof(struct fcp_cmnd));
21184
21185		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21186		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
21187	}
21188
21189	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
21190					struct fcp_cmd_rsp_buf,
21191					list_node);
21192
21193	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21194
21195	return allocated_buf;
21196}
21197
21198/**
21199 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
21200 * @phba: The HBA for which this call is being executed.
21201 * @lpfc_buf: IO buf structure with the CMD/RSP buf
21202 *
21203 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
21204 *
21205 * Return codes:
21206 *   0 - Success
21207 *   -EINVAL - Error
21208 **/
21209int
21210lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21211			      struct lpfc_io_buf *lpfc_buf)
21212{
21213	int rc = 0;
21214	struct fcp_cmd_rsp_buf *list_entry = NULL;
21215	struct fcp_cmd_rsp_buf *tmp = NULL;
21216	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21217	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21218	unsigned long iflags;
21219
21220	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21221
21222	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
21223		list_for_each_entry_safe(list_entry, tmp,
21224					 &lpfc_buf->dma_cmd_rsp_list,
21225					 list_node) {
21226			list_move_tail(&list_entry->list_node,
21227				       buf_list);
21228		}
21229	} else {
21230		rc = -EINVAL;
21231	}
21232
21233	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21234	return rc;
21235}
21236
21237/**
21238 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
21239 * @phba: phba object
21240 * @hdwq: hdwq to cleanup cmd rsp buff resources on
21241 *
21242 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
21243 *
21244 * Return codes:
21245 *   None
21246 **/
21247void
21248lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21249			       struct lpfc_sli4_hdw_queue *hdwq)
21250{
21251	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21252	struct fcp_cmd_rsp_buf *list_entry = NULL;
21253	struct fcp_cmd_rsp_buf *tmp = NULL;
21254	unsigned long iflags;
21255
21256	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21257
21258	/* Free cmd_rsp buf pool */
21259	list_for_each_entry_safe(list_entry, tmp,
21260				 buf_list,
21261				 list_node) {
21262		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
21263			      list_entry->fcp_cmnd,
21264			      list_entry->fcp_cmd_rsp_dma_handle);
21265		list_del(&list_entry->list_node);
21266		kfree(list_entry);
21267	}
21268
21269	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21270}
21271