1/******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24#include <linux/blkdev.h> 25#include <linux/pci.h> 26#include <linux/interrupt.h> 27#include <linux/delay.h> 28#include <linux/slab.h> 29#include <linux/lockdep.h> 30 31#include <scsi/scsi.h> 32#include <scsi/scsi_cmnd.h> 33#include <scsi/scsi_device.h> 34#include <scsi/scsi_host.h> 35#include <scsi/scsi_transport_fc.h> 36#include <scsi/fc/fc_fs.h> 37#include <linux/aer.h> 38#include <linux/crash_dump.h> 39#ifdef CONFIG_X86 40#include <asm/set_memory.h> 41#endif 42 43#include "lpfc_hw4.h" 44#include "lpfc_hw.h" 45#include "lpfc_sli.h" 46#include "lpfc_sli4.h" 47#include "lpfc_nl.h" 48#include "lpfc_disc.h" 49#include "lpfc.h" 50#include "lpfc_scsi.h" 51#include "lpfc_nvme.h" 52#include "lpfc_crtn.h" 53#include "lpfc_logmsg.h" 54#include "lpfc_compat.h" 55#include "lpfc_debugfs.h" 56#include "lpfc_vport.h" 57#include "lpfc_version.h" 58 59/* There are only four IOCB completion types. */ 60typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65} lpfc_iocb_type; 66 67 68/* Provide function prototypes local to this module. */ 69static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93static IOCB_t * 94lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 95{ 96 return &iocbq->iocb; 97} 98 99#if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 100/** 101 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 102 * @srcp: Source memory pointer. 103 * @destp: Destination memory pointer. 104 * @cnt: Number of words required to be copied. 105 * Must be a multiple of sizeof(uint64_t) 106 * 107 * This function is used for copying data between driver memory 108 * and the SLI WQ. This function also changes the endianness 109 * of each word if native endianness is different from SLI 110 * endianness. This function can be called with or without 111 * lock. 112 **/ 113static void 114lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 115{ 116 uint64_t *src = srcp; 117 uint64_t *dest = destp; 118 int i; 119 120 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 121 *dest++ = *src++; 122} 123#else 124#define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 125#endif 126 127/** 128 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 129 * @q: The Work Queue to operate on. 130 * @wqe: The work Queue Entry to put on the Work queue. 131 * 132 * This routine will copy the contents of @wqe to the next available entry on 133 * the @q. This function will then ring the Work Queue Doorbell to signal the 134 * HBA to start processing the Work Queue Entry. This function returns 0 if 135 * successful. If no entries are available on @q then this function will return 136 * -ENOMEM. 137 * The caller is expected to hold the hbalock when calling this routine. 138 **/ 139static int 140lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 141{ 142 union lpfc_wqe *temp_wqe; 143 struct lpfc_register doorbell; 144 uint32_t host_index; 145 uint32_t idx; 146 uint32_t i = 0; 147 uint8_t *tmp; 148 u32 if_type; 149 150 /* sanity check on queue memory */ 151 if (unlikely(!q)) 152 return -ENOMEM; 153 temp_wqe = lpfc_sli4_qe(q, q->host_index); 154 155 /* If the host has not yet processed the next entry then we are done */ 156 idx = ((q->host_index + 1) % q->entry_count); 157 if (idx == q->hba_index) { 158 q->WQ_overflow++; 159 return -EBUSY; 160 } 161 q->WQ_posted++; 162 /* set consumption flag every once in a while */ 163 if (!((q->host_index + 1) % q->notify_interval)) 164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 165 else 166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 167 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 168 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 169 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 170 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 171 /* write to DPP aperture taking advatage of Combined Writes */ 172 tmp = (uint8_t *)temp_wqe; 173#ifdef __raw_writeq 174 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 175 __raw_writeq(*((uint64_t *)(tmp + i)), 176 q->dpp_regaddr + i); 177#else 178 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 179 __raw_writel(*((uint32_t *)(tmp + i)), 180 q->dpp_regaddr + i); 181#endif 182 } 183 /* ensure WQE bcopy and DPP flushed before doorbell write */ 184 wmb(); 185 186 /* Update the host index before invoking device */ 187 host_index = q->host_index; 188 189 q->host_index = idx; 190 191 /* Ring Doorbell */ 192 doorbell.word0 = 0; 193 if (q->db_format == LPFC_DB_LIST_FORMAT) { 194 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 195 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 196 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 197 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 198 q->dpp_id); 199 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 200 q->queue_id); 201 } else { 202 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 203 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 204 205 /* Leave bits <23:16> clear for if_type 6 dpp */ 206 if_type = bf_get(lpfc_sli_intf_if_type, 207 &q->phba->sli4_hba.sli_intf); 208 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 209 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 210 host_index); 211 } 212 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 213 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 214 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 215 } else { 216 return -EINVAL; 217 } 218 writel(doorbell.word0, q->db_regaddr); 219 220 return 0; 221} 222 223/** 224 * lpfc_sli4_wq_release - Updates internal hba index for WQ 225 * @q: The Work Queue to operate on. 226 * @index: The index to advance the hba index to. 227 * 228 * This routine will update the HBA index of a queue to reflect consumption of 229 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 230 * an entry the host calls this function to update the queue's internal 231 * pointers. 232 **/ 233static void 234lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 235{ 236 /* sanity check on queue memory */ 237 if (unlikely(!q)) 238 return; 239 240 q->hba_index = index; 241} 242 243/** 244 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 245 * @q: The Mailbox Queue to operate on. 246 * @mqe: The Mailbox Queue Entry to put on the Work queue. 247 * 248 * This routine will copy the contents of @mqe to the next available entry on 249 * the @q. This function will then ring the Work Queue Doorbell to signal the 250 * HBA to start processing the Work Queue Entry. This function returns 0 if 251 * successful. If no entries are available on @q then this function will return 252 * -ENOMEM. 253 * The caller is expected to hold the hbalock when calling this routine. 254 **/ 255static uint32_t 256lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 257{ 258 struct lpfc_mqe *temp_mqe; 259 struct lpfc_register doorbell; 260 261 /* sanity check on queue memory */ 262 if (unlikely(!q)) 263 return -ENOMEM; 264 temp_mqe = lpfc_sli4_qe(q, q->host_index); 265 266 /* If the host has not yet processed the next entry then we are done */ 267 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 268 return -ENOMEM; 269 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 270 /* Save off the mailbox pointer for completion */ 271 q->phba->mbox = (MAILBOX_t *)temp_mqe; 272 273 /* Update the host index before invoking device */ 274 q->host_index = ((q->host_index + 1) % q->entry_count); 275 276 /* Ring Doorbell */ 277 doorbell.word0 = 0; 278 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 279 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 280 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 281 return 0; 282} 283 284/** 285 * lpfc_sli4_mq_release - Updates internal hba index for MQ 286 * @q: The Mailbox Queue to operate on. 287 * 288 * This routine will update the HBA index of a queue to reflect consumption of 289 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 290 * an entry the host calls this function to update the queue's internal 291 * pointers. This routine returns the number of entries that were consumed by 292 * the HBA. 293 **/ 294static uint32_t 295lpfc_sli4_mq_release(struct lpfc_queue *q) 296{ 297 /* sanity check on queue memory */ 298 if (unlikely(!q)) 299 return 0; 300 301 /* Clear the mailbox pointer for completion */ 302 q->phba->mbox = NULL; 303 q->hba_index = ((q->hba_index + 1) % q->entry_count); 304 return 1; 305} 306 307/** 308 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 309 * @q: The Event Queue to get the first valid EQE from 310 * 311 * This routine will get the first valid Event Queue Entry from @q, update 312 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 313 * the Queue (no more work to do), or the Queue is full of EQEs that have been 314 * processed, but not popped back to the HBA then this routine will return NULL. 315 **/ 316static struct lpfc_eqe * 317lpfc_sli4_eq_get(struct lpfc_queue *q) 318{ 319 struct lpfc_eqe *eqe; 320 321 /* sanity check on queue memory */ 322 if (unlikely(!q)) 323 return NULL; 324 eqe = lpfc_sli4_qe(q, q->host_index); 325 326 /* If the next EQE is not valid then we are done */ 327 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 328 return NULL; 329 330 /* 331 * insert barrier for instruction interlock : data from the hardware 332 * must have the valid bit checked before it can be copied and acted 333 * upon. Speculative instructions were allowing a bcopy at the start 334 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 335 * after our return, to copy data before the valid bit check above 336 * was done. As such, some of the copied data was stale. The barrier 337 * ensures the check is before any data is copied. 338 */ 339 mb(); 340 return eqe; 341} 342 343/** 344 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 345 * @q: The Event Queue to disable interrupts 346 * 347 **/ 348void 349lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 350{ 351 struct lpfc_register doorbell; 352 353 doorbell.word0 = 0; 354 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 355 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 356 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 357 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 358 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 359 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 360} 361 362/** 363 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 364 * @q: The Event Queue to disable interrupts 365 * 366 **/ 367void 368lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 369{ 370 struct lpfc_register doorbell; 371 372 doorbell.word0 = 0; 373 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 374 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 375} 376 377/** 378 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 379 * @phba: adapter with EQ 380 * @q: The Event Queue that the host has completed processing for. 381 * @count: Number of elements that have been consumed 382 * @arm: Indicates whether the host wants to arms this CQ. 383 * 384 * This routine will notify the HBA, by ringing the doorbell, that count 385 * number of EQEs have been processed. The @arm parameter indicates whether 386 * the queue should be rearmed when ringing the doorbell. 387 **/ 388void 389lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 390 uint32_t count, bool arm) 391{ 392 struct lpfc_register doorbell; 393 394 /* sanity check on queue memory */ 395 if (unlikely(!q || (count == 0 && !arm))) 396 return; 397 398 /* ring doorbell for number popped */ 399 doorbell.word0 = 0; 400 if (arm) { 401 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 402 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 403 } 404 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 405 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 406 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 407 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 408 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 409 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 410 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 411 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 412 readl(q->phba->sli4_hba.EQDBregaddr); 413} 414 415/** 416 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 417 * @phba: adapter with EQ 418 * @q: The Event Queue that the host has completed processing for. 419 * @count: Number of elements that have been consumed 420 * @arm: Indicates whether the host wants to arms this CQ. 421 * 422 * This routine will notify the HBA, by ringing the doorbell, that count 423 * number of EQEs have been processed. The @arm parameter indicates whether 424 * the queue should be rearmed when ringing the doorbell. 425 **/ 426void 427lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 428 uint32_t count, bool arm) 429{ 430 struct lpfc_register doorbell; 431 432 /* sanity check on queue memory */ 433 if (unlikely(!q || (count == 0 && !arm))) 434 return; 435 436 /* ring doorbell for number popped */ 437 doorbell.word0 = 0; 438 if (arm) 439 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 440 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 441 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 442 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 443 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 444 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 445 readl(q->phba->sli4_hba.EQDBregaddr); 446} 447 448static void 449__lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 450 struct lpfc_eqe *eqe) 451{ 452 if (!phba->sli4_hba.pc_sli4_params.eqav) 453 bf_set_le32(lpfc_eqe_valid, eqe, 0); 454 455 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 456 457 /* if the index wrapped around, toggle the valid bit */ 458 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 459 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 460} 461 462static void 463lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 464{ 465 struct lpfc_eqe *eqe = NULL; 466 u32 eq_count = 0, cq_count = 0; 467 struct lpfc_cqe *cqe = NULL; 468 struct lpfc_queue *cq = NULL, *childq = NULL; 469 int cqid = 0; 470 471 /* walk all the EQ entries and drop on the floor */ 472 eqe = lpfc_sli4_eq_get(eq); 473 while (eqe) { 474 /* Get the reference to the corresponding CQ */ 475 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 476 cq = NULL; 477 478 list_for_each_entry(childq, &eq->child_list, list) { 479 if (childq->queue_id == cqid) { 480 cq = childq; 481 break; 482 } 483 } 484 /* If CQ is valid, iterate through it and drop all the CQEs */ 485 if (cq) { 486 cqe = lpfc_sli4_cq_get(cq); 487 while (cqe) { 488 __lpfc_sli4_consume_cqe(phba, cq, cqe); 489 cq_count++; 490 cqe = lpfc_sli4_cq_get(cq); 491 } 492 /* Clear and re-arm the CQ */ 493 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 494 LPFC_QUEUE_REARM); 495 cq_count = 0; 496 } 497 __lpfc_sli4_consume_eqe(phba, eq, eqe); 498 eq_count++; 499 eqe = lpfc_sli4_eq_get(eq); 500 } 501 502 /* Clear and re-arm the EQ */ 503 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 504} 505 506static int 507lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 508 uint8_t rearm) 509{ 510 struct lpfc_eqe *eqe; 511 int count = 0, consumed = 0; 512 513 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 514 goto rearm_and_exit; 515 516 eqe = lpfc_sli4_eq_get(eq); 517 while (eqe) { 518 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 519 __lpfc_sli4_consume_eqe(phba, eq, eqe); 520 521 consumed++; 522 if (!(++count % eq->max_proc_limit)) 523 break; 524 525 if (!(count % eq->notify_interval)) { 526 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 527 LPFC_QUEUE_NOARM); 528 consumed = 0; 529 } 530 531 eqe = lpfc_sli4_eq_get(eq); 532 } 533 eq->EQ_processed += count; 534 535 /* Track the max number of EQEs processed in 1 intr */ 536 if (count > eq->EQ_max_eqe) 537 eq->EQ_max_eqe = count; 538 539 xchg(&eq->queue_claimed, 0); 540 541rearm_and_exit: 542 /* Always clear the EQ. */ 543 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 544 545 return count; 546} 547 548/** 549 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 550 * @q: The Completion Queue to get the first valid CQE from 551 * 552 * This routine will get the first valid Completion Queue Entry from @q, update 553 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 554 * the Queue (no more work to do), or the Queue is full of CQEs that have been 555 * processed, but not popped back to the HBA then this routine will return NULL. 556 **/ 557static struct lpfc_cqe * 558lpfc_sli4_cq_get(struct lpfc_queue *q) 559{ 560 struct lpfc_cqe *cqe; 561 562 /* sanity check on queue memory */ 563 if (unlikely(!q)) 564 return NULL; 565 cqe = lpfc_sli4_qe(q, q->host_index); 566 567 /* If the next CQE is not valid then we are done */ 568 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 569 return NULL; 570 571 /* 572 * insert barrier for instruction interlock : data from the hardware 573 * must have the valid bit checked before it can be copied and acted 574 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 575 * instructions allowing action on content before valid bit checked, 576 * add barrier here as well. May not be needed as "content" is a 577 * single 32-bit entity here (vs multi word structure for cq's). 578 */ 579 mb(); 580 return cqe; 581} 582 583static void 584__lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 585 struct lpfc_cqe *cqe) 586{ 587 if (!phba->sli4_hba.pc_sli4_params.cqav) 588 bf_set_le32(lpfc_cqe_valid, cqe, 0); 589 590 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 591 592 /* if the index wrapped around, toggle the valid bit */ 593 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 594 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 595} 596 597/** 598 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 599 * @phba: the adapter with the CQ 600 * @q: The Completion Queue that the host has completed processing for. 601 * @count: the number of elements that were consumed 602 * @arm: Indicates whether the host wants to arms this CQ. 603 * 604 * This routine will notify the HBA, by ringing the doorbell, that the 605 * CQEs have been processed. The @arm parameter specifies whether the 606 * queue should be rearmed when ringing the doorbell. 607 **/ 608void 609lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 610 uint32_t count, bool arm) 611{ 612 struct lpfc_register doorbell; 613 614 /* sanity check on queue memory */ 615 if (unlikely(!q || (count == 0 && !arm))) 616 return; 617 618 /* ring doorbell for number popped */ 619 doorbell.word0 = 0; 620 if (arm) 621 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 622 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 623 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 624 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 625 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 626 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 627 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 628} 629 630/** 631 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 632 * @phba: the adapter with the CQ 633 * @q: The Completion Queue that the host has completed processing for. 634 * @count: the number of elements that were consumed 635 * @arm: Indicates whether the host wants to arms this CQ. 636 * 637 * This routine will notify the HBA, by ringing the doorbell, that the 638 * CQEs have been processed. The @arm parameter specifies whether the 639 * queue should be rearmed when ringing the doorbell. 640 **/ 641void 642lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 643 uint32_t count, bool arm) 644{ 645 struct lpfc_register doorbell; 646 647 /* sanity check on queue memory */ 648 if (unlikely(!q || (count == 0 && !arm))) 649 return; 650 651 /* ring doorbell for number popped */ 652 doorbell.word0 = 0; 653 if (arm) 654 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 655 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 656 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 657 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 658} 659 660/* 661 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 662 * 663 * This routine will copy the contents of @wqe to the next available entry on 664 * the @q. This function will then ring the Receive Queue Doorbell to signal the 665 * HBA to start processing the Receive Queue Entry. This function returns the 666 * index that the rqe was copied to if successful. If no entries are available 667 * on @q then this function will return -ENOMEM. 668 * The caller is expected to hold the hbalock when calling this routine. 669 **/ 670int 671lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 672 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 673{ 674 struct lpfc_rqe *temp_hrqe; 675 struct lpfc_rqe *temp_drqe; 676 struct lpfc_register doorbell; 677 int hq_put_index; 678 int dq_put_index; 679 680 /* sanity check on queue memory */ 681 if (unlikely(!hq) || unlikely(!dq)) 682 return -ENOMEM; 683 hq_put_index = hq->host_index; 684 dq_put_index = dq->host_index; 685 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 686 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 687 688 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 689 return -EINVAL; 690 if (hq_put_index != dq_put_index) 691 return -EINVAL; 692 /* If the host has not yet processed the next entry then we are done */ 693 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 694 return -EBUSY; 695 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 696 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 697 698 /* Update the host index to point to the next slot */ 699 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 700 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 701 hq->RQ_buf_posted++; 702 703 /* Ring The Header Receive Queue Doorbell */ 704 if (!(hq->host_index % hq->notify_interval)) { 705 doorbell.word0 = 0; 706 if (hq->db_format == LPFC_DB_RING_FORMAT) { 707 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 708 hq->notify_interval); 709 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 710 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 711 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 712 hq->notify_interval); 713 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 714 hq->host_index); 715 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 716 } else { 717 return -EINVAL; 718 } 719 writel(doorbell.word0, hq->db_regaddr); 720 } 721 return hq_put_index; 722} 723 724/* 725 * lpfc_sli4_rq_release - Updates internal hba index for RQ 726 * 727 * This routine will update the HBA index of a queue to reflect consumption of 728 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 729 * consumed an entry the host calls this function to update the queue's 730 * internal pointers. This routine returns the number of entries that were 731 * consumed by the HBA. 732 **/ 733static uint32_t 734lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 735{ 736 /* sanity check on queue memory */ 737 if (unlikely(!hq) || unlikely(!dq)) 738 return 0; 739 740 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 741 return 0; 742 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 743 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 744 return 1; 745} 746 747/** 748 * lpfc_cmd_iocb - Get next command iocb entry in the ring 749 * @phba: Pointer to HBA context object. 750 * @pring: Pointer to driver SLI ring object. 751 * 752 * This function returns pointer to next command iocb entry 753 * in the command ring. The caller must hold hbalock to prevent 754 * other threads consume the next command iocb. 755 * SLI-2/SLI-3 provide different sized iocbs. 756 **/ 757static inline IOCB_t * 758lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 759{ 760 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 761 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 762} 763 764/** 765 * lpfc_resp_iocb - Get next response iocb entry in the ring 766 * @phba: Pointer to HBA context object. 767 * @pring: Pointer to driver SLI ring object. 768 * 769 * This function returns pointer to next response iocb entry 770 * in the response ring. The caller must hold hbalock to make sure 771 * that no other thread consume the next response iocb. 772 * SLI-2/SLI-3 provide different sized iocbs. 773 **/ 774static inline IOCB_t * 775lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 776{ 777 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 778 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 779} 780 781/** 782 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 783 * @phba: Pointer to HBA context object. 784 * 785 * This function is called with hbalock held. This function 786 * allocates a new driver iocb object from the iocb pool. If the 787 * allocation is successful, it returns pointer to the newly 788 * allocated iocb object else it returns NULL. 789 **/ 790struct lpfc_iocbq * 791__lpfc_sli_get_iocbq(struct lpfc_hba *phba) 792{ 793 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 794 struct lpfc_iocbq * iocbq = NULL; 795 796 lockdep_assert_held(&phba->hbalock); 797 798 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 799 if (iocbq) 800 phba->iocb_cnt++; 801 if (phba->iocb_cnt > phba->iocb_max) 802 phba->iocb_max = phba->iocb_cnt; 803 return iocbq; 804} 805 806/** 807 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 808 * @phba: Pointer to HBA context object. 809 * @xritag: XRI value. 810 * 811 * This function clears the sglq pointer from the array of acive 812 * sglq's. The xritag that is passed in is used to index into the 813 * array. Before the xritag can be used it needs to be adjusted 814 * by subtracting the xribase. 815 * 816 * Returns sglq ponter = success, NULL = Failure. 817 **/ 818struct lpfc_sglq * 819__lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 820{ 821 struct lpfc_sglq *sglq; 822 823 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 824 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 825 return sglq; 826} 827 828/** 829 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 830 * @phba: Pointer to HBA context object. 831 * @xritag: XRI value. 832 * 833 * This function returns the sglq pointer from the array of acive 834 * sglq's. The xritag that is passed in is used to index into the 835 * array. Before the xritag can be used it needs to be adjusted 836 * by subtracting the xribase. 837 * 838 * Returns sglq ponter = success, NULL = Failure. 839 **/ 840struct lpfc_sglq * 841__lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 842{ 843 struct lpfc_sglq *sglq; 844 845 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 846 return sglq; 847} 848 849/** 850 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 851 * @phba: Pointer to HBA context object. 852 * @xritag: xri used in this exchange. 853 * @rrq: The RRQ to be cleared. 854 * 855 **/ 856void 857lpfc_clr_rrq_active(struct lpfc_hba *phba, 858 uint16_t xritag, 859 struct lpfc_node_rrq *rrq) 860{ 861 struct lpfc_nodelist *ndlp = NULL; 862 863 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 864 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 865 866 /* The target DID could have been swapped (cable swap) 867 * we should use the ndlp from the findnode if it is 868 * available. 869 */ 870 if ((!ndlp) && rrq->ndlp) 871 ndlp = rrq->ndlp; 872 873 if (!ndlp) 874 goto out; 875 876 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 877 rrq->send_rrq = 0; 878 rrq->xritag = 0; 879 rrq->rrq_stop_time = 0; 880 } 881out: 882 mempool_free(rrq, phba->rrq_pool); 883} 884 885/** 886 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 887 * @phba: Pointer to HBA context object. 888 * 889 * This function is called with hbalock held. This function 890 * Checks if stop_time (ratov from setting rrq active) has 891 * been reached, if it has and the send_rrq flag is set then 892 * it will call lpfc_send_rrq. If the send_rrq flag is not set 893 * then it will just call the routine to clear the rrq and 894 * free the rrq resource. 895 * The timer is set to the next rrq that is going to expire before 896 * leaving the routine. 897 * 898 **/ 899void 900lpfc_handle_rrq_active(struct lpfc_hba *phba) 901{ 902 struct lpfc_node_rrq *rrq; 903 struct lpfc_node_rrq *nextrrq; 904 unsigned long next_time; 905 unsigned long iflags; 906 LIST_HEAD(send_rrq); 907 908 spin_lock_irqsave(&phba->hbalock, iflags); 909 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 910 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 911 list_for_each_entry_safe(rrq, nextrrq, 912 &phba->active_rrq_list, list) { 913 if (time_after(jiffies, rrq->rrq_stop_time)) 914 list_move(&rrq->list, &send_rrq); 915 else if (time_before(rrq->rrq_stop_time, next_time)) 916 next_time = rrq->rrq_stop_time; 917 } 918 spin_unlock_irqrestore(&phba->hbalock, iflags); 919 if ((!list_empty(&phba->active_rrq_list)) && 920 (!(phba->pport->load_flag & FC_UNLOADING))) 921 mod_timer(&phba->rrq_tmr, next_time); 922 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 923 list_del(&rrq->list); 924 if (!rrq->send_rrq) { 925 /* this call will free the rrq */ 926 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 927 } else if (lpfc_send_rrq(phba, rrq)) { 928 /* if we send the rrq then the completion handler 929 * will clear the bit in the xribitmap. 930 */ 931 lpfc_clr_rrq_active(phba, rrq->xritag, 932 rrq); 933 } 934 } 935} 936 937/** 938 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 939 * @vport: Pointer to vport context object. 940 * @xri: The xri used in the exchange. 941 * @did: The targets DID for this exchange. 942 * 943 * returns NULL = rrq not found in the phba->active_rrq_list. 944 * rrq = rrq for this xri and target. 945 **/ 946struct lpfc_node_rrq * 947lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 948{ 949 struct lpfc_hba *phba = vport->phba; 950 struct lpfc_node_rrq *rrq; 951 struct lpfc_node_rrq *nextrrq; 952 unsigned long iflags; 953 954 if (phba->sli_rev != LPFC_SLI_REV4) 955 return NULL; 956 spin_lock_irqsave(&phba->hbalock, iflags); 957 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 958 if (rrq->vport == vport && rrq->xritag == xri && 959 rrq->nlp_DID == did){ 960 list_del(&rrq->list); 961 spin_unlock_irqrestore(&phba->hbalock, iflags); 962 return rrq; 963 } 964 } 965 spin_unlock_irqrestore(&phba->hbalock, iflags); 966 return NULL; 967} 968 969/** 970 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 971 * @vport: Pointer to vport context object. 972 * @ndlp: Pointer to the lpfc_node_list structure. 973 * If ndlp is NULL Remove all active RRQs for this vport from the 974 * phba->active_rrq_list and clear the rrq. 975 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 976 **/ 977void 978lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 979 980{ 981 struct lpfc_hba *phba = vport->phba; 982 struct lpfc_node_rrq *rrq; 983 struct lpfc_node_rrq *nextrrq; 984 unsigned long iflags; 985 LIST_HEAD(rrq_list); 986 987 if (phba->sli_rev != LPFC_SLI_REV4) 988 return; 989 if (!ndlp) { 990 lpfc_sli4_vport_delete_els_xri_aborted(vport); 991 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 992 } 993 spin_lock_irqsave(&phba->hbalock, iflags); 994 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 995 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 996 list_move(&rrq->list, &rrq_list); 997 spin_unlock_irqrestore(&phba->hbalock, iflags); 998 999 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1000 list_del(&rrq->list); 1001 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1002 } 1003} 1004 1005/** 1006 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1007 * @phba: Pointer to HBA context object. 1008 * @ndlp: Targets nodelist pointer for this exchange. 1009 * @xritag: the xri in the bitmap to test. 1010 * 1011 * This function returns: 1012 * 0 = rrq not active for this xri 1013 * 1 = rrq is valid for this xri. 1014 **/ 1015int 1016lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1017 uint16_t xritag) 1018{ 1019 if (!ndlp) 1020 return 0; 1021 if (!ndlp->active_rrqs_xri_bitmap) 1022 return 0; 1023 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1024 return 1; 1025 else 1026 return 0; 1027} 1028 1029/** 1030 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1031 * @phba: Pointer to HBA context object. 1032 * @ndlp: nodelist pointer for this target. 1033 * @xritag: xri used in this exchange. 1034 * @rxid: Remote Exchange ID. 1035 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1036 * 1037 * This function takes the hbalock. 1038 * The active bit is always set in the active rrq xri_bitmap even 1039 * if there is no slot avaiable for the other rrq information. 1040 * 1041 * returns 0 rrq actived for this xri 1042 * < 0 No memory or invalid ndlp. 1043 **/ 1044int 1045lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1046 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1047{ 1048 unsigned long iflags; 1049 struct lpfc_node_rrq *rrq; 1050 int empty; 1051 1052 if (!ndlp) 1053 return -EINVAL; 1054 1055 if (!phba->cfg_enable_rrq) 1056 return -EINVAL; 1057 1058 spin_lock_irqsave(&phba->hbalock, iflags); 1059 if (phba->pport->load_flag & FC_UNLOADING) { 1060 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1061 goto out; 1062 } 1063 1064 /* 1065 * set the active bit even if there is no mem available. 1066 */ 1067 if (NLP_CHK_FREE_REQ(ndlp)) 1068 goto out; 1069 1070 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1071 goto out; 1072 1073 if (!ndlp->active_rrqs_xri_bitmap) 1074 goto out; 1075 1076 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1077 goto out; 1078 1079 spin_unlock_irqrestore(&phba->hbalock, iflags); 1080 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1081 if (!rrq) { 1082 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1083 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1084 " DID:0x%x Send:%d\n", 1085 xritag, rxid, ndlp->nlp_DID, send_rrq); 1086 return -EINVAL; 1087 } 1088 if (phba->cfg_enable_rrq == 1) 1089 rrq->send_rrq = send_rrq; 1090 else 1091 rrq->send_rrq = 0; 1092 rrq->xritag = xritag; 1093 rrq->rrq_stop_time = jiffies + 1094 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1095 rrq->ndlp = ndlp; 1096 rrq->nlp_DID = ndlp->nlp_DID; 1097 rrq->vport = ndlp->vport; 1098 rrq->rxid = rxid; 1099 spin_lock_irqsave(&phba->hbalock, iflags); 1100 empty = list_empty(&phba->active_rrq_list); 1101 list_add_tail(&rrq->list, &phba->active_rrq_list); 1102 phba->hba_flag |= HBA_RRQ_ACTIVE; 1103 if (empty) 1104 lpfc_worker_wake_up(phba); 1105 spin_unlock_irqrestore(&phba->hbalock, iflags); 1106 return 0; 1107out: 1108 spin_unlock_irqrestore(&phba->hbalock, iflags); 1109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1110 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1111 " DID:0x%x Send:%d\n", 1112 xritag, rxid, ndlp->nlp_DID, send_rrq); 1113 return -EINVAL; 1114} 1115 1116/** 1117 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1118 * @phba: Pointer to HBA context object. 1119 * @piocbq: Pointer to the iocbq. 1120 * 1121 * The driver calls this function with either the nvme ls ring lock 1122 * or the fc els ring lock held depending on the iocb usage. This function 1123 * gets a new driver sglq object from the sglq list. If the list is not empty 1124 * then it is successful, it returns pointer to the newly allocated sglq 1125 * object else it returns NULL. 1126 **/ 1127static struct lpfc_sglq * 1128__lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1129{ 1130 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1131 struct lpfc_sglq *sglq = NULL; 1132 struct lpfc_sglq *start_sglq = NULL; 1133 struct lpfc_io_buf *lpfc_cmd; 1134 struct lpfc_nodelist *ndlp; 1135 struct lpfc_sli_ring *pring = NULL; 1136 int found = 0; 1137 1138 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1139 pring = phba->sli4_hba.nvmels_wq->pring; 1140 else 1141 pring = lpfc_phba_elsring(phba); 1142 1143 lockdep_assert_held(&pring->ring_lock); 1144 1145 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1146 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1147 ndlp = lpfc_cmd->rdata->pnode; 1148 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1149 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1150 ndlp = piocbq->context_un.ndlp; 1151 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1152 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1153 ndlp = NULL; 1154 else 1155 ndlp = piocbq->context_un.ndlp; 1156 } else { 1157 ndlp = piocbq->context1; 1158 } 1159 1160 spin_lock(&phba->sli4_hba.sgl_list_lock); 1161 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1162 start_sglq = sglq; 1163 while (!found) { 1164 if (!sglq) 1165 break; 1166 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1167 test_bit(sglq->sli4_lxritag, 1168 ndlp->active_rrqs_xri_bitmap)) { 1169 /* This xri has an rrq outstanding for this DID. 1170 * put it back in the list and get another xri. 1171 */ 1172 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1173 sglq = NULL; 1174 list_remove_head(lpfc_els_sgl_list, sglq, 1175 struct lpfc_sglq, list); 1176 if (sglq == start_sglq) { 1177 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1178 sglq = NULL; 1179 break; 1180 } else 1181 continue; 1182 } 1183 sglq->ndlp = ndlp; 1184 found = 1; 1185 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1186 sglq->state = SGL_ALLOCATED; 1187 } 1188 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1189 return sglq; 1190} 1191 1192/** 1193 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1194 * @phba: Pointer to HBA context object. 1195 * @piocbq: Pointer to the iocbq. 1196 * 1197 * This function is called with the sgl_list lock held. This function 1198 * gets a new driver sglq object from the sglq list. If the 1199 * list is not empty then it is successful, it returns pointer to the newly 1200 * allocated sglq object else it returns NULL. 1201 **/ 1202struct lpfc_sglq * 1203__lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1204{ 1205 struct list_head *lpfc_nvmet_sgl_list; 1206 struct lpfc_sglq *sglq = NULL; 1207 1208 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1209 1210 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1211 1212 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1213 if (!sglq) 1214 return NULL; 1215 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1216 sglq->state = SGL_ALLOCATED; 1217 return sglq; 1218} 1219 1220/** 1221 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1222 * @phba: Pointer to HBA context object. 1223 * 1224 * This function is called with no lock held. This function 1225 * allocates a new driver iocb object from the iocb pool. If the 1226 * allocation is successful, it returns pointer to the newly 1227 * allocated iocb object else it returns NULL. 1228 **/ 1229struct lpfc_iocbq * 1230lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1231{ 1232 struct lpfc_iocbq * iocbq = NULL; 1233 unsigned long iflags; 1234 1235 spin_lock_irqsave(&phba->hbalock, iflags); 1236 iocbq = __lpfc_sli_get_iocbq(phba); 1237 spin_unlock_irqrestore(&phba->hbalock, iflags); 1238 return iocbq; 1239} 1240 1241/** 1242 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1243 * @phba: Pointer to HBA context object. 1244 * @iocbq: Pointer to driver iocb object. 1245 * 1246 * This function is called to release the driver iocb object 1247 * to the iocb pool. The iotag in the iocb object 1248 * does not change for each use of the iocb object. This function 1249 * clears all other fields of the iocb object when it is freed. 1250 * The sqlq structure that holds the xritag and phys and virtual 1251 * mappings for the scatter gather list is retrieved from the 1252 * active array of sglq. The get of the sglq pointer also clears 1253 * the entry in the array. If the status of the IO indiactes that 1254 * this IO was aborted then the sglq entry it put on the 1255 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1256 * IO has good status or fails for any other reason then the sglq 1257 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1258 * asserted held in the code path calling this routine. 1259 **/ 1260static void 1261__lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1262{ 1263 struct lpfc_sglq *sglq; 1264 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1265 unsigned long iflag = 0; 1266 struct lpfc_sli_ring *pring; 1267 1268 if (iocbq->sli4_xritag == NO_XRI) 1269 sglq = NULL; 1270 else 1271 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1272 1273 1274 if (sglq) { 1275 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1276 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1277 iflag); 1278 sglq->state = SGL_FREED; 1279 sglq->ndlp = NULL; 1280 list_add_tail(&sglq->list, 1281 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1282 spin_unlock_irqrestore( 1283 &phba->sli4_hba.sgl_list_lock, iflag); 1284 goto out; 1285 } 1286 1287 pring = phba->sli4_hba.els_wq->pring; 1288 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1289 (sglq->state != SGL_XRI_ABORTED)) { 1290 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1291 iflag); 1292 list_add(&sglq->list, 1293 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1294 spin_unlock_irqrestore( 1295 &phba->sli4_hba.sgl_list_lock, iflag); 1296 } else { 1297 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1298 iflag); 1299 sglq->state = SGL_FREED; 1300 sglq->ndlp = NULL; 1301 list_add_tail(&sglq->list, 1302 &phba->sli4_hba.lpfc_els_sgl_list); 1303 spin_unlock_irqrestore( 1304 &phba->sli4_hba.sgl_list_lock, iflag); 1305 1306 /* Check if TXQ queue needs to be serviced */ 1307 if (!list_empty(&pring->txq)) 1308 lpfc_worker_wake_up(phba); 1309 } 1310 } 1311 1312out: 1313 /* 1314 * Clean all volatile data fields, preserve iotag and node struct. 1315 */ 1316 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1317 iocbq->sli4_lxritag = NO_XRI; 1318 iocbq->sli4_xritag = NO_XRI; 1319 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1320 LPFC_IO_NVME_LS); 1321 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1322} 1323 1324 1325/** 1326 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1327 * @phba: Pointer to HBA context object. 1328 * @iocbq: Pointer to driver iocb object. 1329 * 1330 * This function is called to release the driver iocb object to the 1331 * iocb pool. The iotag in the iocb object does not change for each 1332 * use of the iocb object. This function clears all other fields of 1333 * the iocb object when it is freed. The hbalock is asserted held in 1334 * the code path calling this routine. 1335 **/ 1336static void 1337__lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1338{ 1339 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1340 1341 /* 1342 * Clean all volatile data fields, preserve iotag and node struct. 1343 */ 1344 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1345 iocbq->sli4_xritag = NO_XRI; 1346 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1347} 1348 1349/** 1350 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1351 * @phba: Pointer to HBA context object. 1352 * @iocbq: Pointer to driver iocb object. 1353 * 1354 * This function is called with hbalock held to release driver 1355 * iocb object to the iocb pool. The iotag in the iocb object 1356 * does not change for each use of the iocb object. This function 1357 * clears all other fields of the iocb object when it is freed. 1358 **/ 1359static void 1360__lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1361{ 1362 lockdep_assert_held(&phba->hbalock); 1363 1364 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1365 phba->iocb_cnt--; 1366} 1367 1368/** 1369 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1370 * @phba: Pointer to HBA context object. 1371 * @iocbq: Pointer to driver iocb object. 1372 * 1373 * This function is called with no lock held to release the iocb to 1374 * iocb pool. 1375 **/ 1376void 1377lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1378{ 1379 unsigned long iflags; 1380 1381 /* 1382 * Clean all volatile data fields, preserve iotag and node struct. 1383 */ 1384 spin_lock_irqsave(&phba->hbalock, iflags); 1385 __lpfc_sli_release_iocbq(phba, iocbq); 1386 spin_unlock_irqrestore(&phba->hbalock, iflags); 1387} 1388 1389/** 1390 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1391 * @phba: Pointer to HBA context object. 1392 * @iocblist: List of IOCBs. 1393 * @ulpstatus: ULP status in IOCB command field. 1394 * @ulpWord4: ULP word-4 in IOCB command field. 1395 * 1396 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1397 * on the list by invoking the complete callback function associated with the 1398 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1399 * fields. 1400 **/ 1401void 1402lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1403 uint32_t ulpstatus, uint32_t ulpWord4) 1404{ 1405 struct lpfc_iocbq *piocb; 1406 1407 while (!list_empty(iocblist)) { 1408 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1409 if (!piocb->iocb_cmpl) { 1410 if (piocb->iocb_flag & LPFC_IO_NVME) 1411 lpfc_nvme_cancel_iocb(phba, piocb); 1412 else 1413 lpfc_sli_release_iocbq(phba, piocb); 1414 } else { 1415 piocb->iocb.ulpStatus = ulpstatus; 1416 piocb->iocb.un.ulpWord[4] = ulpWord4; 1417 (piocb->iocb_cmpl) (phba, piocb, piocb); 1418 } 1419 } 1420 return; 1421} 1422 1423/** 1424 * lpfc_sli_iocb_cmd_type - Get the iocb type 1425 * @iocb_cmnd: iocb command code. 1426 * 1427 * This function is called by ring event handler function to get the iocb type. 1428 * This function translates the iocb command to an iocb command type used to 1429 * decide the final disposition of each completed IOCB. 1430 * The function returns 1431 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1432 * LPFC_SOL_IOCB if it is a solicited iocb completion 1433 * LPFC_ABORT_IOCB if it is an abort iocb 1434 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1435 * 1436 * The caller is not required to hold any lock. 1437 **/ 1438static lpfc_iocb_type 1439lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1440{ 1441 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1442 1443 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1444 return 0; 1445 1446 switch (iocb_cmnd) { 1447 case CMD_XMIT_SEQUENCE_CR: 1448 case CMD_XMIT_SEQUENCE_CX: 1449 case CMD_XMIT_BCAST_CN: 1450 case CMD_XMIT_BCAST_CX: 1451 case CMD_ELS_REQUEST_CR: 1452 case CMD_ELS_REQUEST_CX: 1453 case CMD_CREATE_XRI_CR: 1454 case CMD_CREATE_XRI_CX: 1455 case CMD_GET_RPI_CN: 1456 case CMD_XMIT_ELS_RSP_CX: 1457 case CMD_GET_RPI_CR: 1458 case CMD_FCP_IWRITE_CR: 1459 case CMD_FCP_IWRITE_CX: 1460 case CMD_FCP_IREAD_CR: 1461 case CMD_FCP_IREAD_CX: 1462 case CMD_FCP_ICMND_CR: 1463 case CMD_FCP_ICMND_CX: 1464 case CMD_FCP_TSEND_CX: 1465 case CMD_FCP_TRSP_CX: 1466 case CMD_FCP_TRECEIVE_CX: 1467 case CMD_FCP_AUTO_TRSP_CX: 1468 case CMD_ADAPTER_MSG: 1469 case CMD_ADAPTER_DUMP: 1470 case CMD_XMIT_SEQUENCE64_CR: 1471 case CMD_XMIT_SEQUENCE64_CX: 1472 case CMD_XMIT_BCAST64_CN: 1473 case CMD_XMIT_BCAST64_CX: 1474 case CMD_ELS_REQUEST64_CR: 1475 case CMD_ELS_REQUEST64_CX: 1476 case CMD_FCP_IWRITE64_CR: 1477 case CMD_FCP_IWRITE64_CX: 1478 case CMD_FCP_IREAD64_CR: 1479 case CMD_FCP_IREAD64_CX: 1480 case CMD_FCP_ICMND64_CR: 1481 case CMD_FCP_ICMND64_CX: 1482 case CMD_FCP_TSEND64_CX: 1483 case CMD_FCP_TRSP64_CX: 1484 case CMD_FCP_TRECEIVE64_CX: 1485 case CMD_GEN_REQUEST64_CR: 1486 case CMD_GEN_REQUEST64_CX: 1487 case CMD_XMIT_ELS_RSP64_CX: 1488 case DSSCMD_IWRITE64_CR: 1489 case DSSCMD_IWRITE64_CX: 1490 case DSSCMD_IREAD64_CR: 1491 case DSSCMD_IREAD64_CX: 1492 case CMD_SEND_FRAME: 1493 type = LPFC_SOL_IOCB; 1494 break; 1495 case CMD_ABORT_XRI_CN: 1496 case CMD_ABORT_XRI_CX: 1497 case CMD_CLOSE_XRI_CN: 1498 case CMD_CLOSE_XRI_CX: 1499 case CMD_XRI_ABORTED_CX: 1500 case CMD_ABORT_MXRI64_CN: 1501 case CMD_XMIT_BLS_RSP64_CX: 1502 type = LPFC_ABORT_IOCB; 1503 break; 1504 case CMD_RCV_SEQUENCE_CX: 1505 case CMD_RCV_ELS_REQ_CX: 1506 case CMD_RCV_SEQUENCE64_CX: 1507 case CMD_RCV_ELS_REQ64_CX: 1508 case CMD_ASYNC_STATUS: 1509 case CMD_IOCB_RCV_SEQ64_CX: 1510 case CMD_IOCB_RCV_ELS64_CX: 1511 case CMD_IOCB_RCV_CONT64_CX: 1512 case CMD_IOCB_RET_XRI64_CX: 1513 type = LPFC_UNSOL_IOCB; 1514 break; 1515 case CMD_IOCB_XMIT_MSEQ64_CR: 1516 case CMD_IOCB_XMIT_MSEQ64_CX: 1517 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1518 case CMD_IOCB_RCV_ELS_LIST64_CX: 1519 case CMD_IOCB_CLOSE_EXTENDED_CN: 1520 case CMD_IOCB_ABORT_EXTENDED_CN: 1521 case CMD_IOCB_RET_HBQE64_CN: 1522 case CMD_IOCB_FCP_IBIDIR64_CR: 1523 case CMD_IOCB_FCP_IBIDIR64_CX: 1524 case CMD_IOCB_FCP_ITASKMGT64_CX: 1525 case CMD_IOCB_LOGENTRY_CN: 1526 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1527 printk("%s - Unhandled SLI-3 Command x%x\n", 1528 __func__, iocb_cmnd); 1529 type = LPFC_UNKNOWN_IOCB; 1530 break; 1531 default: 1532 type = LPFC_UNKNOWN_IOCB; 1533 break; 1534 } 1535 1536 return type; 1537} 1538 1539/** 1540 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1541 * @phba: Pointer to HBA context object. 1542 * 1543 * This function is called from SLI initialization code 1544 * to configure every ring of the HBA's SLI interface. The 1545 * caller is not required to hold any lock. This function issues 1546 * a config_ring mailbox command for each ring. 1547 * This function returns zero if successful else returns a negative 1548 * error code. 1549 **/ 1550static int 1551lpfc_sli_ring_map(struct lpfc_hba *phba) 1552{ 1553 struct lpfc_sli *psli = &phba->sli; 1554 LPFC_MBOXQ_t *pmb; 1555 MAILBOX_t *pmbox; 1556 int i, rc, ret = 0; 1557 1558 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1559 if (!pmb) 1560 return -ENOMEM; 1561 pmbox = &pmb->u.mb; 1562 phba->link_state = LPFC_INIT_MBX_CMDS; 1563 for (i = 0; i < psli->num_rings; i++) { 1564 lpfc_config_ring(phba, i, pmb); 1565 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1566 if (rc != MBX_SUCCESS) { 1567 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1568 "0446 Adapter failed to init (%d), " 1569 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1570 "ring %d\n", 1571 rc, pmbox->mbxCommand, 1572 pmbox->mbxStatus, i); 1573 phba->link_state = LPFC_HBA_ERROR; 1574 ret = -ENXIO; 1575 break; 1576 } 1577 } 1578 mempool_free(pmb, phba->mbox_mem_pool); 1579 return ret; 1580} 1581 1582/** 1583 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1584 * @phba: Pointer to HBA context object. 1585 * @pring: Pointer to driver SLI ring object. 1586 * @piocb: Pointer to the driver iocb object. 1587 * 1588 * The driver calls this function with the hbalock held for SLI3 ports or 1589 * the ring lock held for SLI4 ports. The function adds the 1590 * new iocb to txcmplq of the given ring. This function always returns 1591 * 0. If this function is called for ELS ring, this function checks if 1592 * there is a vport associated with the ELS command. This function also 1593 * starts els_tmofunc timer if this is an ELS command. 1594 **/ 1595static int 1596lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1597 struct lpfc_iocbq *piocb) 1598{ 1599 if (phba->sli_rev == LPFC_SLI_REV4) 1600 lockdep_assert_held(&pring->ring_lock); 1601 else 1602 lockdep_assert_held(&phba->hbalock); 1603 1604 BUG_ON(!piocb); 1605 1606 list_add_tail(&piocb->list, &pring->txcmplq); 1607 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1608 pring->txcmplq_cnt++; 1609 1610 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1611 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1612 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1613 BUG_ON(!piocb->vport); 1614 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1615 mod_timer(&piocb->vport->els_tmofunc, 1616 jiffies + 1617 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1618 } 1619 1620 return 0; 1621} 1622 1623/** 1624 * lpfc_sli_ringtx_get - Get first element of the txq 1625 * @phba: Pointer to HBA context object. 1626 * @pring: Pointer to driver SLI ring object. 1627 * 1628 * This function is called with hbalock held to get next 1629 * iocb in txq of the given ring. If there is any iocb in 1630 * the txq, the function returns first iocb in the list after 1631 * removing the iocb from the list, else it returns NULL. 1632 **/ 1633struct lpfc_iocbq * 1634lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1635{ 1636 struct lpfc_iocbq *cmd_iocb; 1637 1638 lockdep_assert_held(&phba->hbalock); 1639 1640 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1641 return cmd_iocb; 1642} 1643 1644/** 1645 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1646 * @phba: Pointer to HBA context object. 1647 * @pring: Pointer to driver SLI ring object. 1648 * 1649 * This function is called with hbalock held and the caller must post the 1650 * iocb without releasing the lock. If the caller releases the lock, 1651 * iocb slot returned by the function is not guaranteed to be available. 1652 * The function returns pointer to the next available iocb slot if there 1653 * is available slot in the ring, else it returns NULL. 1654 * If the get index of the ring is ahead of the put index, the function 1655 * will post an error attention event to the worker thread to take the 1656 * HBA to offline state. 1657 **/ 1658static IOCB_t * 1659lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1660{ 1661 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1662 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1663 1664 lockdep_assert_held(&phba->hbalock); 1665 1666 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1667 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1668 pring->sli.sli3.next_cmdidx = 0; 1669 1670 if (unlikely(pring->sli.sli3.local_getidx == 1671 pring->sli.sli3.next_cmdidx)) { 1672 1673 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1674 1675 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1677 "0315 Ring %d issue: portCmdGet %d " 1678 "is bigger than cmd ring %d\n", 1679 pring->ringno, 1680 pring->sli.sli3.local_getidx, 1681 max_cmd_idx); 1682 1683 phba->link_state = LPFC_HBA_ERROR; 1684 /* 1685 * All error attention handlers are posted to 1686 * worker thread 1687 */ 1688 phba->work_ha |= HA_ERATT; 1689 phba->work_hs = HS_FFER3; 1690 1691 lpfc_worker_wake_up(phba); 1692 1693 return NULL; 1694 } 1695 1696 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1697 return NULL; 1698 } 1699 1700 return lpfc_cmd_iocb(phba, pring); 1701} 1702 1703/** 1704 * lpfc_sli_next_iotag - Get an iotag for the iocb 1705 * @phba: Pointer to HBA context object. 1706 * @iocbq: Pointer to driver iocb object. 1707 * 1708 * This function gets an iotag for the iocb. If there is no unused iotag and 1709 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1710 * array and assigns a new iotag. 1711 * The function returns the allocated iotag if successful, else returns zero. 1712 * Zero is not a valid iotag. 1713 * The caller is not required to hold any lock. 1714 **/ 1715uint16_t 1716lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1717{ 1718 struct lpfc_iocbq **new_arr; 1719 struct lpfc_iocbq **old_arr; 1720 size_t new_len; 1721 struct lpfc_sli *psli = &phba->sli; 1722 uint16_t iotag; 1723 1724 spin_lock_irq(&phba->hbalock); 1725 iotag = psli->last_iotag; 1726 if(++iotag < psli->iocbq_lookup_len) { 1727 psli->last_iotag = iotag; 1728 psli->iocbq_lookup[iotag] = iocbq; 1729 spin_unlock_irq(&phba->hbalock); 1730 iocbq->iotag = iotag; 1731 return iotag; 1732 } else if (psli->iocbq_lookup_len < (0xffff 1733 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1734 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1735 spin_unlock_irq(&phba->hbalock); 1736 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1737 GFP_KERNEL); 1738 if (new_arr) { 1739 spin_lock_irq(&phba->hbalock); 1740 old_arr = psli->iocbq_lookup; 1741 if (new_len <= psli->iocbq_lookup_len) { 1742 /* highly unprobable case */ 1743 kfree(new_arr); 1744 iotag = psli->last_iotag; 1745 if(++iotag < psli->iocbq_lookup_len) { 1746 psli->last_iotag = iotag; 1747 psli->iocbq_lookup[iotag] = iocbq; 1748 spin_unlock_irq(&phba->hbalock); 1749 iocbq->iotag = iotag; 1750 return iotag; 1751 } 1752 spin_unlock_irq(&phba->hbalock); 1753 return 0; 1754 } 1755 if (psli->iocbq_lookup) 1756 memcpy(new_arr, old_arr, 1757 ((psli->last_iotag + 1) * 1758 sizeof (struct lpfc_iocbq *))); 1759 psli->iocbq_lookup = new_arr; 1760 psli->iocbq_lookup_len = new_len; 1761 psli->last_iotag = iotag; 1762 psli->iocbq_lookup[iotag] = iocbq; 1763 spin_unlock_irq(&phba->hbalock); 1764 iocbq->iotag = iotag; 1765 kfree(old_arr); 1766 return iotag; 1767 } 1768 } else 1769 spin_unlock_irq(&phba->hbalock); 1770 1771 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1772 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1773 psli->last_iotag); 1774 1775 return 0; 1776} 1777 1778/** 1779 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1780 * @phba: Pointer to HBA context object. 1781 * @pring: Pointer to driver SLI ring object. 1782 * @iocb: Pointer to iocb slot in the ring. 1783 * @nextiocb: Pointer to driver iocb object which need to be 1784 * posted to firmware. 1785 * 1786 * This function is called to post a new iocb to the firmware. This 1787 * function copies the new iocb to ring iocb slot and updates the 1788 * ring pointers. It adds the new iocb to txcmplq if there is 1789 * a completion call back for this iocb else the function will free the 1790 * iocb object. The hbalock is asserted held in the code path calling 1791 * this routine. 1792 **/ 1793static void 1794lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1795 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1796{ 1797 /* 1798 * Set up an iotag 1799 */ 1800 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1801 1802 1803 if (pring->ringno == LPFC_ELS_RING) { 1804 lpfc_debugfs_slow_ring_trc(phba, 1805 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1806 *(((uint32_t *) &nextiocb->iocb) + 4), 1807 *(((uint32_t *) &nextiocb->iocb) + 6), 1808 *(((uint32_t *) &nextiocb->iocb) + 7)); 1809 } 1810 1811 /* 1812 * Issue iocb command to adapter 1813 */ 1814 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1815 wmb(); 1816 pring->stats.iocb_cmd++; 1817 1818 /* 1819 * If there is no completion routine to call, we can release the 1820 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1821 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1822 */ 1823 if (nextiocb->iocb_cmpl) 1824 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1825 else 1826 __lpfc_sli_release_iocbq(phba, nextiocb); 1827 1828 /* 1829 * Let the HBA know what IOCB slot will be the next one the 1830 * driver will put a command into. 1831 */ 1832 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1833 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1834} 1835 1836/** 1837 * lpfc_sli_update_full_ring - Update the chip attention register 1838 * @phba: Pointer to HBA context object. 1839 * @pring: Pointer to driver SLI ring object. 1840 * 1841 * The caller is not required to hold any lock for calling this function. 1842 * This function updates the chip attention bits for the ring to inform firmware 1843 * that there are pending work to be done for this ring and requests an 1844 * interrupt when there is space available in the ring. This function is 1845 * called when the driver is unable to post more iocbs to the ring due 1846 * to unavailability of space in the ring. 1847 **/ 1848static void 1849lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1850{ 1851 int ringno = pring->ringno; 1852 1853 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1854 1855 wmb(); 1856 1857 /* 1858 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1859 * The HBA will tell us when an IOCB entry is available. 1860 */ 1861 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1862 readl(phba->CAregaddr); /* flush */ 1863 1864 pring->stats.iocb_cmd_full++; 1865} 1866 1867/** 1868 * lpfc_sli_update_ring - Update chip attention register 1869 * @phba: Pointer to HBA context object. 1870 * @pring: Pointer to driver SLI ring object. 1871 * 1872 * This function updates the chip attention register bit for the 1873 * given ring to inform HBA that there is more work to be done 1874 * in this ring. The caller is not required to hold any lock. 1875 **/ 1876static void 1877lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1878{ 1879 int ringno = pring->ringno; 1880 1881 /* 1882 * Tell the HBA that there is work to do in this ring. 1883 */ 1884 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1885 wmb(); 1886 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1887 readl(phba->CAregaddr); /* flush */ 1888 } 1889} 1890 1891/** 1892 * lpfc_sli_resume_iocb - Process iocbs in the txq 1893 * @phba: Pointer to HBA context object. 1894 * @pring: Pointer to driver SLI ring object. 1895 * 1896 * This function is called with hbalock held to post pending iocbs 1897 * in the txq to the firmware. This function is called when driver 1898 * detects space available in the ring. 1899 **/ 1900static void 1901lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1902{ 1903 IOCB_t *iocb; 1904 struct lpfc_iocbq *nextiocb; 1905 1906 lockdep_assert_held(&phba->hbalock); 1907 1908 /* 1909 * Check to see if: 1910 * (a) there is anything on the txq to send 1911 * (b) link is up 1912 * (c) link attention events can be processed (fcp ring only) 1913 * (d) IOCB processing is not blocked by the outstanding mbox command. 1914 */ 1915 1916 if (lpfc_is_link_up(phba) && 1917 (!list_empty(&pring->txq)) && 1918 (pring->ringno != LPFC_FCP_RING || 1919 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1920 1921 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1922 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1923 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1924 1925 if (iocb) 1926 lpfc_sli_update_ring(phba, pring); 1927 else 1928 lpfc_sli_update_full_ring(phba, pring); 1929 } 1930 1931 return; 1932} 1933 1934/** 1935 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1936 * @phba: Pointer to HBA context object. 1937 * @hbqno: HBQ number. 1938 * 1939 * This function is called with hbalock held to get the next 1940 * available slot for the given HBQ. If there is free slot 1941 * available for the HBQ it will return pointer to the next available 1942 * HBQ entry else it will return NULL. 1943 **/ 1944static struct lpfc_hbq_entry * 1945lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1946{ 1947 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1948 1949 lockdep_assert_held(&phba->hbalock); 1950 1951 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1952 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1953 hbqp->next_hbqPutIdx = 0; 1954 1955 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1956 uint32_t raw_index = phba->hbq_get[hbqno]; 1957 uint32_t getidx = le32_to_cpu(raw_index); 1958 1959 hbqp->local_hbqGetIdx = getidx; 1960 1961 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1963 "1802 HBQ %d: local_hbqGetIdx " 1964 "%u is > than hbqp->entry_count %u\n", 1965 hbqno, hbqp->local_hbqGetIdx, 1966 hbqp->entry_count); 1967 1968 phba->link_state = LPFC_HBA_ERROR; 1969 return NULL; 1970 } 1971 1972 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1973 return NULL; 1974 } 1975 1976 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1977 hbqp->hbqPutIdx; 1978} 1979 1980/** 1981 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1982 * @phba: Pointer to HBA context object. 1983 * 1984 * This function is called with no lock held to free all the 1985 * hbq buffers while uninitializing the SLI interface. It also 1986 * frees the HBQ buffers returned by the firmware but not yet 1987 * processed by the upper layers. 1988 **/ 1989void 1990lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1991{ 1992 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1993 struct hbq_dmabuf *hbq_buf; 1994 unsigned long flags; 1995 int i, hbq_count; 1996 1997 hbq_count = lpfc_sli_hbq_count(); 1998 /* Return all memory used by all HBQs */ 1999 spin_lock_irqsave(&phba->hbalock, flags); 2000 for (i = 0; i < hbq_count; ++i) { 2001 list_for_each_entry_safe(dmabuf, next_dmabuf, 2002 &phba->hbqs[i].hbq_buffer_list, list) { 2003 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2004 list_del(&hbq_buf->dbuf.list); 2005 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2006 } 2007 phba->hbqs[i].buffer_count = 0; 2008 } 2009 2010 /* Mark the HBQs not in use */ 2011 phba->hbq_in_use = 0; 2012 spin_unlock_irqrestore(&phba->hbalock, flags); 2013} 2014 2015/** 2016 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2017 * @phba: Pointer to HBA context object. 2018 * @hbqno: HBQ number. 2019 * @hbq_buf: Pointer to HBQ buffer. 2020 * 2021 * This function is called with the hbalock held to post a 2022 * hbq buffer to the firmware. If the function finds an empty 2023 * slot in the HBQ, it will post the buffer. The function will return 2024 * pointer to the hbq entry if it successfully post the buffer 2025 * else it will return NULL. 2026 **/ 2027static int 2028lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2029 struct hbq_dmabuf *hbq_buf) 2030{ 2031 lockdep_assert_held(&phba->hbalock); 2032 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2033} 2034 2035/** 2036 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2037 * @phba: Pointer to HBA context object. 2038 * @hbqno: HBQ number. 2039 * @hbq_buf: Pointer to HBQ buffer. 2040 * 2041 * This function is called with the hbalock held to post a hbq buffer to the 2042 * firmware. If the function finds an empty slot in the HBQ, it will post the 2043 * buffer and place it on the hbq_buffer_list. The function will return zero if 2044 * it successfully post the buffer else it will return an error. 2045 **/ 2046static int 2047lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2048 struct hbq_dmabuf *hbq_buf) 2049{ 2050 struct lpfc_hbq_entry *hbqe; 2051 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2052 2053 lockdep_assert_held(&phba->hbalock); 2054 /* Get next HBQ entry slot to use */ 2055 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2056 if (hbqe) { 2057 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2058 2059 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2060 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2061 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2062 hbqe->bde.tus.f.bdeFlags = 0; 2063 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2064 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2065 /* Sync SLIM */ 2066 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2067 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2068 /* flush */ 2069 readl(phba->hbq_put + hbqno); 2070 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2071 return 0; 2072 } else 2073 return -ENOMEM; 2074} 2075 2076/** 2077 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2078 * @phba: Pointer to HBA context object. 2079 * @hbqno: HBQ number. 2080 * @hbq_buf: Pointer to HBQ buffer. 2081 * 2082 * This function is called with the hbalock held to post an RQE to the SLI4 2083 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2084 * the hbq_buffer_list and return zero, otherwise it will return an error. 2085 **/ 2086static int 2087lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2088 struct hbq_dmabuf *hbq_buf) 2089{ 2090 int rc; 2091 struct lpfc_rqe hrqe; 2092 struct lpfc_rqe drqe; 2093 struct lpfc_queue *hrq; 2094 struct lpfc_queue *drq; 2095 2096 if (hbqno != LPFC_ELS_HBQ) 2097 return 1; 2098 hrq = phba->sli4_hba.hdr_rq; 2099 drq = phba->sli4_hba.dat_rq; 2100 2101 lockdep_assert_held(&phba->hbalock); 2102 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2103 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2104 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2105 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2106 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2107 if (rc < 0) 2108 return rc; 2109 hbq_buf->tag = (rc | (hbqno << 16)); 2110 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2111 return 0; 2112} 2113 2114/* HBQ for ELS and CT traffic. */ 2115static struct lpfc_hbq_init lpfc_els_hbq = { 2116 .rn = 1, 2117 .entry_count = 256, 2118 .mask_count = 0, 2119 .profile = 0, 2120 .ring_mask = (1 << LPFC_ELS_RING), 2121 .buffer_count = 0, 2122 .init_count = 40, 2123 .add_count = 40, 2124}; 2125 2126/* Array of HBQs */ 2127struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2128 &lpfc_els_hbq, 2129}; 2130 2131/** 2132 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2133 * @phba: Pointer to HBA context object. 2134 * @hbqno: HBQ number. 2135 * @count: Number of HBQ buffers to be posted. 2136 * 2137 * This function is called with no lock held to post more hbq buffers to the 2138 * given HBQ. The function returns the number of HBQ buffers successfully 2139 * posted. 2140 **/ 2141static int 2142lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2143{ 2144 uint32_t i, posted = 0; 2145 unsigned long flags; 2146 struct hbq_dmabuf *hbq_buffer; 2147 LIST_HEAD(hbq_buf_list); 2148 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2149 return 0; 2150 2151 if ((phba->hbqs[hbqno].buffer_count + count) > 2152 lpfc_hbq_defs[hbqno]->entry_count) 2153 count = lpfc_hbq_defs[hbqno]->entry_count - 2154 phba->hbqs[hbqno].buffer_count; 2155 if (!count) 2156 return 0; 2157 /* Allocate HBQ entries */ 2158 for (i = 0; i < count; i++) { 2159 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2160 if (!hbq_buffer) 2161 break; 2162 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2163 } 2164 /* Check whether HBQ is still in use */ 2165 spin_lock_irqsave(&phba->hbalock, flags); 2166 if (!phba->hbq_in_use) 2167 goto err; 2168 while (!list_empty(&hbq_buf_list)) { 2169 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2170 dbuf.list); 2171 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2172 (hbqno << 16)); 2173 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2174 phba->hbqs[hbqno].buffer_count++; 2175 posted++; 2176 } else 2177 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2178 } 2179 spin_unlock_irqrestore(&phba->hbalock, flags); 2180 return posted; 2181err: 2182 spin_unlock_irqrestore(&phba->hbalock, flags); 2183 while (!list_empty(&hbq_buf_list)) { 2184 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2185 dbuf.list); 2186 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2187 } 2188 return 0; 2189} 2190 2191/** 2192 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2193 * @phba: Pointer to HBA context object. 2194 * @qno: HBQ number. 2195 * 2196 * This function posts more buffers to the HBQ. This function 2197 * is called with no lock held. The function returns the number of HBQ entries 2198 * successfully allocated. 2199 **/ 2200int 2201lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2202{ 2203 if (phba->sli_rev == LPFC_SLI_REV4) 2204 return 0; 2205 else 2206 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2207 lpfc_hbq_defs[qno]->add_count); 2208} 2209 2210/** 2211 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2212 * @phba: Pointer to HBA context object. 2213 * @qno: HBQ queue number. 2214 * 2215 * This function is called from SLI initialization code path with 2216 * no lock held to post initial HBQ buffers to firmware. The 2217 * function returns the number of HBQ entries successfully allocated. 2218 **/ 2219static int 2220lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2221{ 2222 if (phba->sli_rev == LPFC_SLI_REV4) 2223 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2224 lpfc_hbq_defs[qno]->entry_count); 2225 else 2226 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2227 lpfc_hbq_defs[qno]->init_count); 2228} 2229 2230/* 2231 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2232 * 2233 * This function removes the first hbq buffer on an hbq list and returns a 2234 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2235 **/ 2236static struct hbq_dmabuf * 2237lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2238{ 2239 struct lpfc_dmabuf *d_buf; 2240 2241 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2242 if (!d_buf) 2243 return NULL; 2244 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2245} 2246 2247/** 2248 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2249 * @phba: Pointer to HBA context object. 2250 * @hrq: HBQ number. 2251 * 2252 * This function removes the first RQ buffer on an RQ buffer list and returns a 2253 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2254 **/ 2255static struct rqb_dmabuf * 2256lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2257{ 2258 struct lpfc_dmabuf *h_buf; 2259 struct lpfc_rqb *rqbp; 2260 2261 rqbp = hrq->rqbp; 2262 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2263 struct lpfc_dmabuf, list); 2264 if (!h_buf) 2265 return NULL; 2266 rqbp->buffer_count--; 2267 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2268} 2269 2270/** 2271 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2272 * @phba: Pointer to HBA context object. 2273 * @tag: Tag of the hbq buffer. 2274 * 2275 * This function searches for the hbq buffer associated with the given tag in 2276 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2277 * otherwise it returns NULL. 2278 **/ 2279static struct hbq_dmabuf * 2280lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2281{ 2282 struct lpfc_dmabuf *d_buf; 2283 struct hbq_dmabuf *hbq_buf; 2284 uint32_t hbqno; 2285 2286 hbqno = tag >> 16; 2287 if (hbqno >= LPFC_MAX_HBQS) 2288 return NULL; 2289 2290 spin_lock_irq(&phba->hbalock); 2291 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2292 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2293 if (hbq_buf->tag == tag) { 2294 spin_unlock_irq(&phba->hbalock); 2295 return hbq_buf; 2296 } 2297 } 2298 spin_unlock_irq(&phba->hbalock); 2299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2300 "1803 Bad hbq tag. Data: x%x x%x\n", 2301 tag, phba->hbqs[tag >> 16].buffer_count); 2302 return NULL; 2303} 2304 2305/** 2306 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2307 * @phba: Pointer to HBA context object. 2308 * @hbq_buffer: Pointer to HBQ buffer. 2309 * 2310 * This function is called with hbalock. This function gives back 2311 * the hbq buffer to firmware. If the HBQ does not have space to 2312 * post the buffer, it will free the buffer. 2313 **/ 2314void 2315lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2316{ 2317 uint32_t hbqno; 2318 2319 if (hbq_buffer) { 2320 hbqno = hbq_buffer->tag >> 16; 2321 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2322 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2323 } 2324} 2325 2326/** 2327 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2328 * @mbxCommand: mailbox command code. 2329 * 2330 * This function is called by the mailbox event handler function to verify 2331 * that the completed mailbox command is a legitimate mailbox command. If the 2332 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2333 * and the mailbox event handler will take the HBA offline. 2334 **/ 2335static int 2336lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2337{ 2338 uint8_t ret; 2339 2340 switch (mbxCommand) { 2341 case MBX_LOAD_SM: 2342 case MBX_READ_NV: 2343 case MBX_WRITE_NV: 2344 case MBX_WRITE_VPARMS: 2345 case MBX_RUN_BIU_DIAG: 2346 case MBX_INIT_LINK: 2347 case MBX_DOWN_LINK: 2348 case MBX_CONFIG_LINK: 2349 case MBX_CONFIG_RING: 2350 case MBX_RESET_RING: 2351 case MBX_READ_CONFIG: 2352 case MBX_READ_RCONFIG: 2353 case MBX_READ_SPARM: 2354 case MBX_READ_STATUS: 2355 case MBX_READ_RPI: 2356 case MBX_READ_XRI: 2357 case MBX_READ_REV: 2358 case MBX_READ_LNK_STAT: 2359 case MBX_REG_LOGIN: 2360 case MBX_UNREG_LOGIN: 2361 case MBX_CLEAR_LA: 2362 case MBX_DUMP_MEMORY: 2363 case MBX_DUMP_CONTEXT: 2364 case MBX_RUN_DIAGS: 2365 case MBX_RESTART: 2366 case MBX_UPDATE_CFG: 2367 case MBX_DOWN_LOAD: 2368 case MBX_DEL_LD_ENTRY: 2369 case MBX_RUN_PROGRAM: 2370 case MBX_SET_MASK: 2371 case MBX_SET_VARIABLE: 2372 case MBX_UNREG_D_ID: 2373 case MBX_KILL_BOARD: 2374 case MBX_CONFIG_FARP: 2375 case MBX_BEACON: 2376 case MBX_LOAD_AREA: 2377 case MBX_RUN_BIU_DIAG64: 2378 case MBX_CONFIG_PORT: 2379 case MBX_READ_SPARM64: 2380 case MBX_READ_RPI64: 2381 case MBX_REG_LOGIN64: 2382 case MBX_READ_TOPOLOGY: 2383 case MBX_WRITE_WWN: 2384 case MBX_SET_DEBUG: 2385 case MBX_LOAD_EXP_ROM: 2386 case MBX_ASYNCEVT_ENABLE: 2387 case MBX_REG_VPI: 2388 case MBX_UNREG_VPI: 2389 case MBX_HEARTBEAT: 2390 case MBX_PORT_CAPABILITIES: 2391 case MBX_PORT_IOV_CONTROL: 2392 case MBX_SLI4_CONFIG: 2393 case MBX_SLI4_REQ_FTRS: 2394 case MBX_REG_FCFI: 2395 case MBX_UNREG_FCFI: 2396 case MBX_REG_VFI: 2397 case MBX_UNREG_VFI: 2398 case MBX_INIT_VPI: 2399 case MBX_INIT_VFI: 2400 case MBX_RESUME_RPI: 2401 case MBX_READ_EVENT_LOG_STATUS: 2402 case MBX_READ_EVENT_LOG: 2403 case MBX_SECURITY_MGMT: 2404 case MBX_AUTH_PORT: 2405 case MBX_ACCESS_VDATA: 2406 ret = mbxCommand; 2407 break; 2408 default: 2409 ret = MBX_SHUTDOWN; 2410 break; 2411 } 2412 return ret; 2413} 2414 2415/** 2416 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2417 * @phba: Pointer to HBA context object. 2418 * @pmboxq: Pointer to mailbox command. 2419 * 2420 * This is completion handler function for mailbox commands issued from 2421 * lpfc_sli_issue_mbox_wait function. This function is called by the 2422 * mailbox event handler function with no lock held. This function 2423 * will wake up thread waiting on the wait queue pointed by context1 2424 * of the mailbox. 2425 **/ 2426void 2427lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2428{ 2429 unsigned long drvr_flag; 2430 struct completion *pmbox_done; 2431 2432 /* 2433 * If pmbox_done is empty, the driver thread gave up waiting and 2434 * continued running. 2435 */ 2436 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2437 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2438 pmbox_done = (struct completion *)pmboxq->context3; 2439 if (pmbox_done) 2440 complete(pmbox_done); 2441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2442 return; 2443} 2444 2445static void 2446__lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2447{ 2448 unsigned long iflags; 2449 2450 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2451 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2452 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags); 2453 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2454 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2455 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags); 2456 } 2457 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2458} 2459 2460/** 2461 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2462 * @phba: Pointer to HBA context object. 2463 * @pmb: Pointer to mailbox object. 2464 * 2465 * This function is the default mailbox completion handler. It 2466 * frees the memory resources associated with the completed mailbox 2467 * command. If the completed command is a REG_LOGIN mailbox command, 2468 * this function will issue a UREG_LOGIN to re-claim the RPI. 2469 **/ 2470void 2471lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2472{ 2473 struct lpfc_vport *vport = pmb->vport; 2474 struct lpfc_dmabuf *mp; 2475 struct lpfc_nodelist *ndlp; 2476 struct Scsi_Host *shost; 2477 uint16_t rpi, vpi; 2478 int rc; 2479 2480 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2481 2482 if (mp) { 2483 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2484 kfree(mp); 2485 } 2486 2487 /* 2488 * If a REG_LOGIN succeeded after node is destroyed or node 2489 * is in re-discovery driver need to cleanup the RPI. 2490 */ 2491 if (!(phba->pport->load_flag & FC_UNLOADING) && 2492 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2493 !pmb->u.mb.mbxStatus) { 2494 rpi = pmb->u.mb.un.varWords[0]; 2495 vpi = pmb->u.mb.un.varRegLogin.vpi; 2496 if (phba->sli_rev == LPFC_SLI_REV4) 2497 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2498 lpfc_unreg_login(phba, vpi, rpi, pmb); 2499 pmb->vport = vport; 2500 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2501 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2502 if (rc != MBX_NOT_FINISHED) 2503 return; 2504 } 2505 2506 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2507 !(phba->pport->load_flag & FC_UNLOADING) && 2508 !pmb->u.mb.mbxStatus) { 2509 shost = lpfc_shost_from_vport(vport); 2510 spin_lock_irq(shost->host_lock); 2511 vport->vpi_state |= LPFC_VPI_REGISTERED; 2512 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2513 spin_unlock_irq(shost->host_lock); 2514 } 2515 2516 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2517 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2518 lpfc_nlp_put(ndlp); 2519 pmb->ctx_buf = NULL; 2520 pmb->ctx_ndlp = NULL; 2521 } 2522 2523 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2524 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2525 2526 /* Check to see if there are any deferred events to process */ 2527 if (ndlp) { 2528 lpfc_printf_vlog( 2529 vport, 2530 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2531 "1438 UNREG cmpl deferred mbox x%x " 2532 "on NPort x%x Data: x%x x%x %px\n", 2533 ndlp->nlp_rpi, ndlp->nlp_DID, 2534 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp); 2535 2536 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2537 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2538 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2539 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2540 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2541 } else { 2542 __lpfc_sli_rpi_release(vport, ndlp); 2543 } 2544 if (vport->load_flag & FC_UNLOADING) 2545 lpfc_nlp_put(ndlp); 2546 pmb->ctx_ndlp = NULL; 2547 } 2548 } 2549 2550 /* Check security permission status on INIT_LINK mailbox command */ 2551 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2552 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2554 "2860 SLI authentication is required " 2555 "for INIT_LINK but has not done yet\n"); 2556 2557 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2558 lpfc_sli4_mbox_cmd_free(phba, pmb); 2559 else 2560 mempool_free(pmb, phba->mbox_mem_pool); 2561} 2562 /** 2563 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2564 * @phba: Pointer to HBA context object. 2565 * @pmb: Pointer to mailbox object. 2566 * 2567 * This function is the unreg rpi mailbox completion handler. It 2568 * frees the memory resources associated with the completed mailbox 2569 * command. An additional refrenece is put on the ndlp to prevent 2570 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2571 * the unreg mailbox command completes, this routine puts the 2572 * reference back. 2573 * 2574 **/ 2575void 2576lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2577{ 2578 struct lpfc_vport *vport = pmb->vport; 2579 struct lpfc_nodelist *ndlp; 2580 2581 ndlp = pmb->ctx_ndlp; 2582 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2583 if (phba->sli_rev == LPFC_SLI_REV4 && 2584 (bf_get(lpfc_sli_intf_if_type, 2585 &phba->sli4_hba.sli_intf) >= 2586 LPFC_SLI_INTF_IF_TYPE_2)) { 2587 if (ndlp) { 2588 lpfc_printf_vlog( 2589 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2590 "0010 UNREG_LOGIN vpi:%x " 2591 "rpi:%x DID:%x defer x%x flg x%x " 2592 "map:%x %px\n", 2593 vport->vpi, ndlp->nlp_rpi, 2594 ndlp->nlp_DID, ndlp->nlp_defer_did, 2595 ndlp->nlp_flag, 2596 ndlp->nlp_usg_map, ndlp); 2597 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2598 lpfc_nlp_put(ndlp); 2599 2600 /* Check to see if there are any deferred 2601 * events to process 2602 */ 2603 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2604 (ndlp->nlp_defer_did != 2605 NLP_EVT_NOTHING_PENDING)) { 2606 lpfc_printf_vlog( 2607 vport, KERN_INFO, LOG_DISCOVERY, 2608 "4111 UNREG cmpl deferred " 2609 "clr x%x on " 2610 "NPort x%x Data: x%x x%px\n", 2611 ndlp->nlp_rpi, ndlp->nlp_DID, 2612 ndlp->nlp_defer_did, ndlp); 2613 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2614 ndlp->nlp_defer_did = 2615 NLP_EVT_NOTHING_PENDING; 2616 lpfc_issue_els_plogi( 2617 vport, ndlp->nlp_DID, 0); 2618 } else { 2619 __lpfc_sli_rpi_release(vport, ndlp); 2620 } 2621 } 2622 } 2623 } 2624 2625 mempool_free(pmb, phba->mbox_mem_pool); 2626} 2627 2628/** 2629 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2630 * @phba: Pointer to HBA context object. 2631 * 2632 * This function is called with no lock held. This function processes all 2633 * the completed mailbox commands and gives it to upper layers. The interrupt 2634 * service routine processes mailbox completion interrupt and adds completed 2635 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2636 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2637 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2638 * function returns the mailbox commands to the upper layer by calling the 2639 * completion handler function of each mailbox. 2640 **/ 2641int 2642lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2643{ 2644 MAILBOX_t *pmbox; 2645 LPFC_MBOXQ_t *pmb; 2646 int rc; 2647 LIST_HEAD(cmplq); 2648 2649 phba->sli.slistat.mbox_event++; 2650 2651 /* Get all completed mailboxe buffers into the cmplq */ 2652 spin_lock_irq(&phba->hbalock); 2653 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2654 spin_unlock_irq(&phba->hbalock); 2655 2656 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2657 do { 2658 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2659 if (pmb == NULL) 2660 break; 2661 2662 pmbox = &pmb->u.mb; 2663 2664 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2665 if (pmb->vport) { 2666 lpfc_debugfs_disc_trc(pmb->vport, 2667 LPFC_DISC_TRC_MBOX_VPORT, 2668 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2669 (uint32_t)pmbox->mbxCommand, 2670 pmbox->un.varWords[0], 2671 pmbox->un.varWords[1]); 2672 } 2673 else { 2674 lpfc_debugfs_disc_trc(phba->pport, 2675 LPFC_DISC_TRC_MBOX, 2676 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2677 (uint32_t)pmbox->mbxCommand, 2678 pmbox->un.varWords[0], 2679 pmbox->un.varWords[1]); 2680 } 2681 } 2682 2683 /* 2684 * It is a fatal error if unknown mbox command completion. 2685 */ 2686 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2687 MBX_SHUTDOWN) { 2688 /* Unknown mailbox command compl */ 2689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2690 "(%d):0323 Unknown Mailbox command " 2691 "x%x (x%x/x%x) Cmpl\n", 2692 pmb->vport ? pmb->vport->vpi : 2693 LPFC_VPORT_UNKNOWN, 2694 pmbox->mbxCommand, 2695 lpfc_sli_config_mbox_subsys_get(phba, 2696 pmb), 2697 lpfc_sli_config_mbox_opcode_get(phba, 2698 pmb)); 2699 phba->link_state = LPFC_HBA_ERROR; 2700 phba->work_hs = HS_FFER3; 2701 lpfc_handle_eratt(phba); 2702 continue; 2703 } 2704 2705 if (pmbox->mbxStatus) { 2706 phba->sli.slistat.mbox_stat_err++; 2707 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2708 /* Mbox cmd cmpl error - RETRYing */ 2709 lpfc_printf_log(phba, KERN_INFO, 2710 LOG_MBOX | LOG_SLI, 2711 "(%d):0305 Mbox cmd cmpl " 2712 "error - RETRYing Data: x%x " 2713 "(x%x/x%x) x%x x%x x%x\n", 2714 pmb->vport ? pmb->vport->vpi : 2715 LPFC_VPORT_UNKNOWN, 2716 pmbox->mbxCommand, 2717 lpfc_sli_config_mbox_subsys_get(phba, 2718 pmb), 2719 lpfc_sli_config_mbox_opcode_get(phba, 2720 pmb), 2721 pmbox->mbxStatus, 2722 pmbox->un.varWords[0], 2723 pmb->vport ? pmb->vport->port_state : 2724 LPFC_VPORT_UNKNOWN); 2725 pmbox->mbxStatus = 0; 2726 pmbox->mbxOwner = OWN_HOST; 2727 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2728 if (rc != MBX_NOT_FINISHED) 2729 continue; 2730 } 2731 } 2732 2733 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2734 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2735 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2736 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2737 "x%x x%x x%x\n", 2738 pmb->vport ? pmb->vport->vpi : 0, 2739 pmbox->mbxCommand, 2740 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2741 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2742 pmb->mbox_cmpl, 2743 *((uint32_t *) pmbox), 2744 pmbox->un.varWords[0], 2745 pmbox->un.varWords[1], 2746 pmbox->un.varWords[2], 2747 pmbox->un.varWords[3], 2748 pmbox->un.varWords[4], 2749 pmbox->un.varWords[5], 2750 pmbox->un.varWords[6], 2751 pmbox->un.varWords[7], 2752 pmbox->un.varWords[8], 2753 pmbox->un.varWords[9], 2754 pmbox->un.varWords[10]); 2755 2756 if (pmb->mbox_cmpl) 2757 pmb->mbox_cmpl(phba,pmb); 2758 } while (1); 2759 return 0; 2760} 2761 2762/** 2763 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2764 * @phba: Pointer to HBA context object. 2765 * @pring: Pointer to driver SLI ring object. 2766 * @tag: buffer tag. 2767 * 2768 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2769 * is set in the tag the buffer is posted for a particular exchange, 2770 * the function will return the buffer without replacing the buffer. 2771 * If the buffer is for unsolicited ELS or CT traffic, this function 2772 * returns the buffer and also posts another buffer to the firmware. 2773 **/ 2774static struct lpfc_dmabuf * 2775lpfc_sli_get_buff(struct lpfc_hba *phba, 2776 struct lpfc_sli_ring *pring, 2777 uint32_t tag) 2778{ 2779 struct hbq_dmabuf *hbq_entry; 2780 2781 if (tag & QUE_BUFTAG_BIT) 2782 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2783 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2784 if (!hbq_entry) 2785 return NULL; 2786 return &hbq_entry->dbuf; 2787} 2788 2789/** 2790 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2791 * containing a NVME LS request. 2792 * @phba: pointer to lpfc hba data structure. 2793 * @piocb: pointer to the iocbq struct representing the sequence starting 2794 * frame. 2795 * 2796 * This routine initially validates the NVME LS, validates there is a login 2797 * with the port that sent the LS, and then calls the appropriate nvme host 2798 * or target LS request handler. 2799 **/ 2800static void 2801lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2802{ 2803 struct lpfc_nodelist *ndlp; 2804 struct lpfc_dmabuf *d_buf; 2805 struct hbq_dmabuf *nvmebuf; 2806 struct fc_frame_header *fc_hdr; 2807 struct lpfc_async_xchg_ctx *axchg = NULL; 2808 char *failwhy = NULL; 2809 uint32_t oxid, sid, did, fctl, size; 2810 int ret = 1; 2811 2812 d_buf = piocb->context2; 2813 2814 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2815 fc_hdr = nvmebuf->hbuf.virt; 2816 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2817 sid = sli4_sid_from_fc_hdr(fc_hdr); 2818 did = sli4_did_from_fc_hdr(fc_hdr); 2819 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2820 fc_hdr->fh_f_ctl[1] << 8 | 2821 fc_hdr->fh_f_ctl[2]); 2822 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2823 2824 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2825 oxid, size, sid); 2826 2827 if (phba->pport->load_flag & FC_UNLOADING) { 2828 failwhy = "Driver Unloading"; 2829 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2830 failwhy = "NVME FC4 Disabled"; 2831 } else if (!phba->nvmet_support && !phba->pport->localport) { 2832 failwhy = "No Localport"; 2833 } else if (phba->nvmet_support && !phba->targetport) { 2834 failwhy = "No Targetport"; 2835 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2836 failwhy = "Bad NVME LS R_CTL"; 2837 } else if (unlikely((fctl & 0x00FF0000) != 2838 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2839 failwhy = "Bad NVME LS F_CTL"; 2840 } else { 2841 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2842 if (!axchg) 2843 failwhy = "No CTX memory"; 2844 } 2845 2846 if (unlikely(failwhy)) { 2847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2848 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2849 sid, oxid, failwhy); 2850 goto out_fail; 2851 } 2852 2853 /* validate the source of the LS is logged in */ 2854 ndlp = lpfc_findnode_did(phba->pport, sid); 2855 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2856 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2857 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2858 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2859 "6216 NVME Unsol rcv: No ndlp: " 2860 "NPort_ID x%x oxid x%x\n", 2861 sid, oxid); 2862 goto out_fail; 2863 } 2864 2865 axchg->phba = phba; 2866 axchg->ndlp = ndlp; 2867 axchg->size = size; 2868 axchg->oxid = oxid; 2869 axchg->sid = sid; 2870 axchg->wqeq = NULL; 2871 axchg->state = LPFC_NVME_STE_LS_RCV; 2872 axchg->entry_cnt = 1; 2873 axchg->rqb_buffer = (void *)nvmebuf; 2874 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 2875 axchg->payload = nvmebuf->dbuf.virt; 2876 INIT_LIST_HEAD(&axchg->list); 2877 2878 if (phba->nvmet_support) 2879 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 2880 else 2881 ret = lpfc_nvme_handle_lsreq(phba, axchg); 2882 2883 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 2884 if (!ret) 2885 return; 2886 2887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2888 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 2889 "NVMe%s handler failed %d\n", 2890 did, sid, oxid, 2891 (phba->nvmet_support) ? "T" : "I", ret); 2892 2893out_fail: 2894 2895 /* recycle receive buffer */ 2896 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 2897 2898 /* If start of new exchange, abort it */ 2899 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 2900 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 2901 2902 if (ret) 2903 kfree(axchg); 2904} 2905 2906/** 2907 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2908 * @phba: Pointer to HBA context object. 2909 * @pring: Pointer to driver SLI ring object. 2910 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2911 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2912 * @fch_type: the type for the first frame of the sequence. 2913 * 2914 * This function is called with no lock held. This function uses the r_ctl and 2915 * type of the received sequence to find the correct callback function to call 2916 * to process the sequence. 2917 **/ 2918static int 2919lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2920 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2921 uint32_t fch_type) 2922{ 2923 int i; 2924 2925 switch (fch_type) { 2926 case FC_TYPE_NVME: 2927 lpfc_nvme_unsol_ls_handler(phba, saveq); 2928 return 1; 2929 default: 2930 break; 2931 } 2932 2933 /* unSolicited Responses */ 2934 if (pring->prt[0].profile) { 2935 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2936 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2937 saveq); 2938 return 1; 2939 } 2940 /* We must search, based on rctl / type 2941 for the right routine */ 2942 for (i = 0; i < pring->num_mask; i++) { 2943 if ((pring->prt[i].rctl == fch_r_ctl) && 2944 (pring->prt[i].type == fch_type)) { 2945 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2946 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2947 (phba, pring, saveq); 2948 return 1; 2949 } 2950 } 2951 return 0; 2952} 2953 2954/** 2955 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2956 * @phba: Pointer to HBA context object. 2957 * @pring: Pointer to driver SLI ring object. 2958 * @saveq: Pointer to the unsolicited iocb. 2959 * 2960 * This function is called with no lock held by the ring event handler 2961 * when there is an unsolicited iocb posted to the response ring by the 2962 * firmware. This function gets the buffer associated with the iocbs 2963 * and calls the event handler for the ring. This function handles both 2964 * qring buffers and hbq buffers. 2965 * When the function returns 1 the caller can free the iocb object otherwise 2966 * upper layer functions will free the iocb objects. 2967 **/ 2968static int 2969lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2970 struct lpfc_iocbq *saveq) 2971{ 2972 IOCB_t * irsp; 2973 WORD5 * w5p; 2974 uint32_t Rctl, Type; 2975 struct lpfc_iocbq *iocbq; 2976 struct lpfc_dmabuf *dmzbuf; 2977 2978 irsp = &(saveq->iocb); 2979 2980 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2981 if (pring->lpfc_sli_rcv_async_status) 2982 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2983 else 2984 lpfc_printf_log(phba, 2985 KERN_WARNING, 2986 LOG_SLI, 2987 "0316 Ring %d handler: unexpected " 2988 "ASYNC_STATUS iocb received evt_code " 2989 "0x%x\n", 2990 pring->ringno, 2991 irsp->un.asyncstat.evt_code); 2992 return 1; 2993 } 2994 2995 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2996 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2997 if (irsp->ulpBdeCount > 0) { 2998 dmzbuf = lpfc_sli_get_buff(phba, pring, 2999 irsp->un.ulpWord[3]); 3000 lpfc_in_buf_free(phba, dmzbuf); 3001 } 3002 3003 if (irsp->ulpBdeCount > 1) { 3004 dmzbuf = lpfc_sli_get_buff(phba, pring, 3005 irsp->unsli3.sli3Words[3]); 3006 lpfc_in_buf_free(phba, dmzbuf); 3007 } 3008 3009 if (irsp->ulpBdeCount > 2) { 3010 dmzbuf = lpfc_sli_get_buff(phba, pring, 3011 irsp->unsli3.sli3Words[7]); 3012 lpfc_in_buf_free(phba, dmzbuf); 3013 } 3014 3015 return 1; 3016 } 3017 3018 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3019 if (irsp->ulpBdeCount != 0) { 3020 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3021 irsp->un.ulpWord[3]); 3022 if (!saveq->context2) 3023 lpfc_printf_log(phba, 3024 KERN_ERR, 3025 LOG_SLI, 3026 "0341 Ring %d Cannot find buffer for " 3027 "an unsolicited iocb. tag 0x%x\n", 3028 pring->ringno, 3029 irsp->un.ulpWord[3]); 3030 } 3031 if (irsp->ulpBdeCount == 2) { 3032 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3033 irsp->unsli3.sli3Words[7]); 3034 if (!saveq->context3) 3035 lpfc_printf_log(phba, 3036 KERN_ERR, 3037 LOG_SLI, 3038 "0342 Ring %d Cannot find buffer for an" 3039 " unsolicited iocb. tag 0x%x\n", 3040 pring->ringno, 3041 irsp->unsli3.sli3Words[7]); 3042 } 3043 list_for_each_entry(iocbq, &saveq->list, list) { 3044 irsp = &(iocbq->iocb); 3045 if (irsp->ulpBdeCount != 0) { 3046 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3047 irsp->un.ulpWord[3]); 3048 if (!iocbq->context2) 3049 lpfc_printf_log(phba, 3050 KERN_ERR, 3051 LOG_SLI, 3052 "0343 Ring %d Cannot find " 3053 "buffer for an unsolicited iocb" 3054 ". tag 0x%x\n", pring->ringno, 3055 irsp->un.ulpWord[3]); 3056 } 3057 if (irsp->ulpBdeCount == 2) { 3058 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3059 irsp->unsli3.sli3Words[7]); 3060 if (!iocbq->context3) 3061 lpfc_printf_log(phba, 3062 KERN_ERR, 3063 LOG_SLI, 3064 "0344 Ring %d Cannot find " 3065 "buffer for an unsolicited " 3066 "iocb. tag 0x%x\n", 3067 pring->ringno, 3068 irsp->unsli3.sli3Words[7]); 3069 } 3070 } 3071 } 3072 if (irsp->ulpBdeCount != 0 && 3073 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3074 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3075 int found = 0; 3076 3077 /* search continue save q for same XRI */ 3078 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3079 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3080 saveq->iocb.unsli3.rcvsli3.ox_id) { 3081 list_add_tail(&saveq->list, &iocbq->list); 3082 found = 1; 3083 break; 3084 } 3085 } 3086 if (!found) 3087 list_add_tail(&saveq->clist, 3088 &pring->iocb_continue_saveq); 3089 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3090 list_del_init(&iocbq->clist); 3091 saveq = iocbq; 3092 irsp = &(saveq->iocb); 3093 } else 3094 return 0; 3095 } 3096 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3097 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3098 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3099 Rctl = FC_RCTL_ELS_REQ; 3100 Type = FC_TYPE_ELS; 3101 } else { 3102 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3103 Rctl = w5p->hcsw.Rctl; 3104 Type = w5p->hcsw.Type; 3105 3106 /* Firmware Workaround */ 3107 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3108 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3109 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3110 Rctl = FC_RCTL_ELS_REQ; 3111 Type = FC_TYPE_ELS; 3112 w5p->hcsw.Rctl = Rctl; 3113 w5p->hcsw.Type = Type; 3114 } 3115 } 3116 3117 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3118 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3119 "0313 Ring %d handler: unexpected Rctl x%x " 3120 "Type x%x received\n", 3121 pring->ringno, Rctl, Type); 3122 3123 return 1; 3124} 3125 3126/** 3127 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3128 * @phba: Pointer to HBA context object. 3129 * @pring: Pointer to driver SLI ring object. 3130 * @prspiocb: Pointer to response iocb object. 3131 * 3132 * This function looks up the iocb_lookup table to get the command iocb 3133 * corresponding to the given response iocb using the iotag of the 3134 * response iocb. The driver calls this function with the hbalock held 3135 * for SLI3 ports or the ring lock held for SLI4 ports. 3136 * This function returns the command iocb object if it finds the command 3137 * iocb else returns NULL. 3138 **/ 3139static struct lpfc_iocbq * 3140lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3141 struct lpfc_sli_ring *pring, 3142 struct lpfc_iocbq *prspiocb) 3143{ 3144 struct lpfc_iocbq *cmd_iocb = NULL; 3145 uint16_t iotag; 3146 spinlock_t *temp_lock = NULL; 3147 unsigned long iflag = 0; 3148 3149 if (phba->sli_rev == LPFC_SLI_REV4) 3150 temp_lock = &pring->ring_lock; 3151 else 3152 temp_lock = &phba->hbalock; 3153 3154 spin_lock_irqsave(temp_lock, iflag); 3155 iotag = prspiocb->iocb.ulpIoTag; 3156 3157 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3158 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3159 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3160 /* remove from txcmpl queue list */ 3161 list_del_init(&cmd_iocb->list); 3162 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3163 pring->txcmplq_cnt--; 3164 spin_unlock_irqrestore(temp_lock, iflag); 3165 return cmd_iocb; 3166 } 3167 } 3168 3169 spin_unlock_irqrestore(temp_lock, iflag); 3170 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3171 "0317 iotag x%x is out of " 3172 "range: max iotag x%x wd0 x%x\n", 3173 iotag, phba->sli.last_iotag, 3174 *(((uint32_t *) &prspiocb->iocb) + 7)); 3175 return NULL; 3176} 3177 3178/** 3179 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3180 * @phba: Pointer to HBA context object. 3181 * @pring: Pointer to driver SLI ring object. 3182 * @iotag: IOCB tag. 3183 * 3184 * This function looks up the iocb_lookup table to get the command iocb 3185 * corresponding to the given iotag. The driver calls this function with 3186 * the ring lock held because this function is an SLI4 port only helper. 3187 * This function returns the command iocb object if it finds the command 3188 * iocb else returns NULL. 3189 **/ 3190static struct lpfc_iocbq * 3191lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3192 struct lpfc_sli_ring *pring, uint16_t iotag) 3193{ 3194 struct lpfc_iocbq *cmd_iocb = NULL; 3195 spinlock_t *temp_lock = NULL; 3196 unsigned long iflag = 0; 3197 3198 if (phba->sli_rev == LPFC_SLI_REV4) 3199 temp_lock = &pring->ring_lock; 3200 else 3201 temp_lock = &phba->hbalock; 3202 3203 spin_lock_irqsave(temp_lock, iflag); 3204 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3205 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3206 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3207 /* remove from txcmpl queue list */ 3208 list_del_init(&cmd_iocb->list); 3209 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3210 pring->txcmplq_cnt--; 3211 spin_unlock_irqrestore(temp_lock, iflag); 3212 return cmd_iocb; 3213 } 3214 } 3215 3216 spin_unlock_irqrestore(temp_lock, iflag); 3217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3218 "0372 iotag x%x lookup error: max iotag (x%x) " 3219 "iocb_flag x%x\n", 3220 iotag, phba->sli.last_iotag, 3221 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3222 return NULL; 3223} 3224 3225/** 3226 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3227 * @phba: Pointer to HBA context object. 3228 * @pring: Pointer to driver SLI ring object. 3229 * @saveq: Pointer to the response iocb to be processed. 3230 * 3231 * This function is called by the ring event handler for non-fcp 3232 * rings when there is a new response iocb in the response ring. 3233 * The caller is not required to hold any locks. This function 3234 * gets the command iocb associated with the response iocb and 3235 * calls the completion handler for the command iocb. If there 3236 * is no completion handler, the function will free the resources 3237 * associated with command iocb. If the response iocb is for 3238 * an already aborted command iocb, the status of the completion 3239 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3240 * This function always returns 1. 3241 **/ 3242static int 3243lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3244 struct lpfc_iocbq *saveq) 3245{ 3246 struct lpfc_iocbq *cmdiocbp; 3247 int rc = 1; 3248 unsigned long iflag; 3249 3250 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3251 if (cmdiocbp) { 3252 if (cmdiocbp->iocb_cmpl) { 3253 /* 3254 * If an ELS command failed send an event to mgmt 3255 * application. 3256 */ 3257 if (saveq->iocb.ulpStatus && 3258 (pring->ringno == LPFC_ELS_RING) && 3259 (cmdiocbp->iocb.ulpCommand == 3260 CMD_ELS_REQUEST64_CR)) 3261 lpfc_send_els_failure_event(phba, 3262 cmdiocbp, saveq); 3263 3264 /* 3265 * Post all ELS completions to the worker thread. 3266 * All other are passed to the completion callback. 3267 */ 3268 if (pring->ringno == LPFC_ELS_RING) { 3269 if ((phba->sli_rev < LPFC_SLI_REV4) && 3270 (cmdiocbp->iocb_flag & 3271 LPFC_DRIVER_ABORTED)) { 3272 spin_lock_irqsave(&phba->hbalock, 3273 iflag); 3274 cmdiocbp->iocb_flag &= 3275 ~LPFC_DRIVER_ABORTED; 3276 spin_unlock_irqrestore(&phba->hbalock, 3277 iflag); 3278 saveq->iocb.ulpStatus = 3279 IOSTAT_LOCAL_REJECT; 3280 saveq->iocb.un.ulpWord[4] = 3281 IOERR_SLI_ABORTED; 3282 3283 /* Firmware could still be in progress 3284 * of DMAing payload, so don't free data 3285 * buffer till after a hbeat. 3286 */ 3287 spin_lock_irqsave(&phba->hbalock, 3288 iflag); 3289 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3290 spin_unlock_irqrestore(&phba->hbalock, 3291 iflag); 3292 } 3293 if (phba->sli_rev == LPFC_SLI_REV4) { 3294 if (saveq->iocb_flag & 3295 LPFC_EXCHANGE_BUSY) { 3296 /* Set cmdiocb flag for the 3297 * exchange busy so sgl (xri) 3298 * will not be released until 3299 * the abort xri is received 3300 * from hba. 3301 */ 3302 spin_lock_irqsave( 3303 &phba->hbalock, iflag); 3304 cmdiocbp->iocb_flag |= 3305 LPFC_EXCHANGE_BUSY; 3306 spin_unlock_irqrestore( 3307 &phba->hbalock, iflag); 3308 } 3309 if (cmdiocbp->iocb_flag & 3310 LPFC_DRIVER_ABORTED) { 3311 /* 3312 * Clear LPFC_DRIVER_ABORTED 3313 * bit in case it was driver 3314 * initiated abort. 3315 */ 3316 spin_lock_irqsave( 3317 &phba->hbalock, iflag); 3318 cmdiocbp->iocb_flag &= 3319 ~LPFC_DRIVER_ABORTED; 3320 spin_unlock_irqrestore( 3321 &phba->hbalock, iflag); 3322 cmdiocbp->iocb.ulpStatus = 3323 IOSTAT_LOCAL_REJECT; 3324 cmdiocbp->iocb.un.ulpWord[4] = 3325 IOERR_ABORT_REQUESTED; 3326 /* 3327 * For SLI4, irsiocb contains 3328 * NO_XRI in sli_xritag, it 3329 * shall not affect releasing 3330 * sgl (xri) process. 3331 */ 3332 saveq->iocb.ulpStatus = 3333 IOSTAT_LOCAL_REJECT; 3334 saveq->iocb.un.ulpWord[4] = 3335 IOERR_SLI_ABORTED; 3336 spin_lock_irqsave( 3337 &phba->hbalock, iflag); 3338 saveq->iocb_flag |= 3339 LPFC_DELAY_MEM_FREE; 3340 spin_unlock_irqrestore( 3341 &phba->hbalock, iflag); 3342 } 3343 } 3344 } 3345 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3346 } else 3347 lpfc_sli_release_iocbq(phba, cmdiocbp); 3348 } else { 3349 /* 3350 * Unknown initiating command based on the response iotag. 3351 * This could be the case on the ELS ring because of 3352 * lpfc_els_abort(). 3353 */ 3354 if (pring->ringno != LPFC_ELS_RING) { 3355 /* 3356 * Ring <ringno> handler: unexpected completion IoTag 3357 * <IoTag> 3358 */ 3359 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3360 "0322 Ring %d handler: " 3361 "unexpected completion IoTag x%x " 3362 "Data: x%x x%x x%x x%x\n", 3363 pring->ringno, 3364 saveq->iocb.ulpIoTag, 3365 saveq->iocb.ulpStatus, 3366 saveq->iocb.un.ulpWord[4], 3367 saveq->iocb.ulpCommand, 3368 saveq->iocb.ulpContext); 3369 } 3370 } 3371 3372 return rc; 3373} 3374 3375/** 3376 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3377 * @phba: Pointer to HBA context object. 3378 * @pring: Pointer to driver SLI ring object. 3379 * 3380 * This function is called from the iocb ring event handlers when 3381 * put pointer is ahead of the get pointer for a ring. This function signal 3382 * an error attention condition to the worker thread and the worker 3383 * thread will transition the HBA to offline state. 3384 **/ 3385static void 3386lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3387{ 3388 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3389 /* 3390 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3391 * rsp ring <portRspMax> 3392 */ 3393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3394 "0312 Ring %d handler: portRspPut %d " 3395 "is bigger than rsp ring %d\n", 3396 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3397 pring->sli.sli3.numRiocb); 3398 3399 phba->link_state = LPFC_HBA_ERROR; 3400 3401 /* 3402 * All error attention handlers are posted to 3403 * worker thread 3404 */ 3405 phba->work_ha |= HA_ERATT; 3406 phba->work_hs = HS_FFER3; 3407 3408 lpfc_worker_wake_up(phba); 3409 3410 return; 3411} 3412 3413/** 3414 * lpfc_poll_eratt - Error attention polling timer timeout handler 3415 * @t: Context to fetch pointer to address of HBA context object from. 3416 * 3417 * This function is invoked by the Error Attention polling timer when the 3418 * timer times out. It will check the SLI Error Attention register for 3419 * possible attention events. If so, it will post an Error Attention event 3420 * and wake up worker thread to process it. Otherwise, it will set up the 3421 * Error Attention polling timer for the next poll. 3422 **/ 3423void lpfc_poll_eratt(struct timer_list *t) 3424{ 3425 struct lpfc_hba *phba; 3426 uint32_t eratt = 0; 3427 uint64_t sli_intr, cnt; 3428 3429 phba = from_timer(phba, t, eratt_poll); 3430 3431 /* Here we will also keep track of interrupts per sec of the hba */ 3432 sli_intr = phba->sli.slistat.sli_intr; 3433 3434 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3435 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3436 sli_intr); 3437 else 3438 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3439 3440 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3441 do_div(cnt, phba->eratt_poll_interval); 3442 phba->sli.slistat.sli_ips = cnt; 3443 3444 phba->sli.slistat.sli_prev_intr = sli_intr; 3445 3446 /* Check chip HA register for error event */ 3447 eratt = lpfc_sli_check_eratt(phba); 3448 3449 if (eratt) 3450 /* Tell the worker thread there is work to do */ 3451 lpfc_worker_wake_up(phba); 3452 else 3453 /* Restart the timer for next eratt poll */ 3454 mod_timer(&phba->eratt_poll, 3455 jiffies + 3456 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3457 return; 3458} 3459 3460 3461/** 3462 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3463 * @phba: Pointer to HBA context object. 3464 * @pring: Pointer to driver SLI ring object. 3465 * @mask: Host attention register mask for this ring. 3466 * 3467 * This function is called from the interrupt context when there is a ring 3468 * event for the fcp ring. The caller does not hold any lock. 3469 * The function processes each response iocb in the response ring until it 3470 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3471 * LE bit set. The function will call the completion handler of the command iocb 3472 * if the response iocb indicates a completion for a command iocb or it is 3473 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3474 * function if this is an unsolicited iocb. 3475 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3476 * to check it explicitly. 3477 */ 3478int 3479lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3480 struct lpfc_sli_ring *pring, uint32_t mask) 3481{ 3482 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3483 IOCB_t *irsp = NULL; 3484 IOCB_t *entry = NULL; 3485 struct lpfc_iocbq *cmdiocbq = NULL; 3486 struct lpfc_iocbq rspiocbq; 3487 uint32_t status; 3488 uint32_t portRspPut, portRspMax; 3489 int rc = 1; 3490 lpfc_iocb_type type; 3491 unsigned long iflag; 3492 uint32_t rsp_cmpl = 0; 3493 3494 spin_lock_irqsave(&phba->hbalock, iflag); 3495 pring->stats.iocb_event++; 3496 3497 /* 3498 * The next available response entry should never exceed the maximum 3499 * entries. If it does, treat it as an adapter hardware error. 3500 */ 3501 portRspMax = pring->sli.sli3.numRiocb; 3502 portRspPut = le32_to_cpu(pgp->rspPutInx); 3503 if (unlikely(portRspPut >= portRspMax)) { 3504 lpfc_sli_rsp_pointers_error(phba, pring); 3505 spin_unlock_irqrestore(&phba->hbalock, iflag); 3506 return 1; 3507 } 3508 if (phba->fcp_ring_in_use) { 3509 spin_unlock_irqrestore(&phba->hbalock, iflag); 3510 return 1; 3511 } else 3512 phba->fcp_ring_in_use = 1; 3513 3514 rmb(); 3515 while (pring->sli.sli3.rspidx != portRspPut) { 3516 /* 3517 * Fetch an entry off the ring and copy it into a local data 3518 * structure. The copy involves a byte-swap since the 3519 * network byte order and pci byte orders are different. 3520 */ 3521 entry = lpfc_resp_iocb(phba, pring); 3522 phba->last_completion_time = jiffies; 3523 3524 if (++pring->sli.sli3.rspidx >= portRspMax) 3525 pring->sli.sli3.rspidx = 0; 3526 3527 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3528 (uint32_t *) &rspiocbq.iocb, 3529 phba->iocb_rsp_size); 3530 INIT_LIST_HEAD(&(rspiocbq.list)); 3531 irsp = &rspiocbq.iocb; 3532 3533 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3534 pring->stats.iocb_rsp++; 3535 rsp_cmpl++; 3536 3537 if (unlikely(irsp->ulpStatus)) { 3538 /* 3539 * If resource errors reported from HBA, reduce 3540 * queuedepths of the SCSI device. 3541 */ 3542 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3543 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3544 IOERR_NO_RESOURCES)) { 3545 spin_unlock_irqrestore(&phba->hbalock, iflag); 3546 phba->lpfc_rampdown_queue_depth(phba); 3547 spin_lock_irqsave(&phba->hbalock, iflag); 3548 } 3549 3550 /* Rsp ring <ringno> error: IOCB */ 3551 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3552 "0336 Rsp Ring %d error: IOCB Data: " 3553 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3554 pring->ringno, 3555 irsp->un.ulpWord[0], 3556 irsp->un.ulpWord[1], 3557 irsp->un.ulpWord[2], 3558 irsp->un.ulpWord[3], 3559 irsp->un.ulpWord[4], 3560 irsp->un.ulpWord[5], 3561 *(uint32_t *)&irsp->un1, 3562 *((uint32_t *)&irsp->un1 + 1)); 3563 } 3564 3565 switch (type) { 3566 case LPFC_ABORT_IOCB: 3567 case LPFC_SOL_IOCB: 3568 /* 3569 * Idle exchange closed via ABTS from port. No iocb 3570 * resources need to be recovered. 3571 */ 3572 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3573 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3574 "0333 IOCB cmd 0x%x" 3575 " processed. Skipping" 3576 " completion\n", 3577 irsp->ulpCommand); 3578 break; 3579 } 3580 3581 spin_unlock_irqrestore(&phba->hbalock, iflag); 3582 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3583 &rspiocbq); 3584 spin_lock_irqsave(&phba->hbalock, iflag); 3585 if (unlikely(!cmdiocbq)) 3586 break; 3587 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3588 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3589 if (cmdiocbq->iocb_cmpl) { 3590 spin_unlock_irqrestore(&phba->hbalock, iflag); 3591 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3592 &rspiocbq); 3593 spin_lock_irqsave(&phba->hbalock, iflag); 3594 } 3595 break; 3596 case LPFC_UNSOL_IOCB: 3597 spin_unlock_irqrestore(&phba->hbalock, iflag); 3598 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3599 spin_lock_irqsave(&phba->hbalock, iflag); 3600 break; 3601 default: 3602 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3603 char adaptermsg[LPFC_MAX_ADPTMSG]; 3604 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3605 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3606 MAX_MSG_DATA); 3607 dev_warn(&((phba->pcidev)->dev), 3608 "lpfc%d: %s\n", 3609 phba->brd_no, adaptermsg); 3610 } else { 3611 /* Unknown IOCB command */ 3612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3613 "0334 Unknown IOCB command " 3614 "Data: x%x, x%x x%x x%x x%x\n", 3615 type, irsp->ulpCommand, 3616 irsp->ulpStatus, 3617 irsp->ulpIoTag, 3618 irsp->ulpContext); 3619 } 3620 break; 3621 } 3622 3623 /* 3624 * The response IOCB has been processed. Update the ring 3625 * pointer in SLIM. If the port response put pointer has not 3626 * been updated, sync the pgp->rspPutInx and fetch the new port 3627 * response put pointer. 3628 */ 3629 writel(pring->sli.sli3.rspidx, 3630 &phba->host_gp[pring->ringno].rspGetInx); 3631 3632 if (pring->sli.sli3.rspidx == portRspPut) 3633 portRspPut = le32_to_cpu(pgp->rspPutInx); 3634 } 3635 3636 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3637 pring->stats.iocb_rsp_full++; 3638 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3639 writel(status, phba->CAregaddr); 3640 readl(phba->CAregaddr); 3641 } 3642 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3643 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3644 pring->stats.iocb_cmd_empty++; 3645 3646 /* Force update of the local copy of cmdGetInx */ 3647 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3648 lpfc_sli_resume_iocb(phba, pring); 3649 3650 if ((pring->lpfc_sli_cmd_available)) 3651 (pring->lpfc_sli_cmd_available) (phba, pring); 3652 3653 } 3654 3655 phba->fcp_ring_in_use = 0; 3656 spin_unlock_irqrestore(&phba->hbalock, iflag); 3657 return rc; 3658} 3659 3660/** 3661 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3662 * @phba: Pointer to HBA context object. 3663 * @pring: Pointer to driver SLI ring object. 3664 * @rspiocbp: Pointer to driver response IOCB object. 3665 * 3666 * This function is called from the worker thread when there is a slow-path 3667 * response IOCB to process. This function chains all the response iocbs until 3668 * seeing the iocb with the LE bit set. The function will call 3669 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3670 * completion of a command iocb. The function will call the 3671 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3672 * The function frees the resources or calls the completion handler if this 3673 * iocb is an abort completion. The function returns NULL when the response 3674 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3675 * this function shall chain the iocb on to the iocb_continueq and return the 3676 * response iocb passed in. 3677 **/ 3678static struct lpfc_iocbq * 3679lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3680 struct lpfc_iocbq *rspiocbp) 3681{ 3682 struct lpfc_iocbq *saveq; 3683 struct lpfc_iocbq *cmdiocbp; 3684 struct lpfc_iocbq *next_iocb; 3685 IOCB_t *irsp = NULL; 3686 uint32_t free_saveq; 3687 uint8_t iocb_cmd_type; 3688 lpfc_iocb_type type; 3689 unsigned long iflag; 3690 int rc; 3691 3692 spin_lock_irqsave(&phba->hbalock, iflag); 3693 /* First add the response iocb to the countinueq list */ 3694 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3695 pring->iocb_continueq_cnt++; 3696 3697 /* Now, determine whether the list is completed for processing */ 3698 irsp = &rspiocbp->iocb; 3699 if (irsp->ulpLe) { 3700 /* 3701 * By default, the driver expects to free all resources 3702 * associated with this iocb completion. 3703 */ 3704 free_saveq = 1; 3705 saveq = list_get_first(&pring->iocb_continueq, 3706 struct lpfc_iocbq, list); 3707 irsp = &(saveq->iocb); 3708 list_del_init(&pring->iocb_continueq); 3709 pring->iocb_continueq_cnt = 0; 3710 3711 pring->stats.iocb_rsp++; 3712 3713 /* 3714 * If resource errors reported from HBA, reduce 3715 * queuedepths of the SCSI device. 3716 */ 3717 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3718 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3719 IOERR_NO_RESOURCES)) { 3720 spin_unlock_irqrestore(&phba->hbalock, iflag); 3721 phba->lpfc_rampdown_queue_depth(phba); 3722 spin_lock_irqsave(&phba->hbalock, iflag); 3723 } 3724 3725 if (irsp->ulpStatus) { 3726 /* Rsp ring <ringno> error: IOCB */ 3727 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3728 "0328 Rsp Ring %d error: " 3729 "IOCB Data: " 3730 "x%x x%x x%x x%x " 3731 "x%x x%x x%x x%x " 3732 "x%x x%x x%x x%x " 3733 "x%x x%x x%x x%x\n", 3734 pring->ringno, 3735 irsp->un.ulpWord[0], 3736 irsp->un.ulpWord[1], 3737 irsp->un.ulpWord[2], 3738 irsp->un.ulpWord[3], 3739 irsp->un.ulpWord[4], 3740 irsp->un.ulpWord[5], 3741 *(((uint32_t *) irsp) + 6), 3742 *(((uint32_t *) irsp) + 7), 3743 *(((uint32_t *) irsp) + 8), 3744 *(((uint32_t *) irsp) + 9), 3745 *(((uint32_t *) irsp) + 10), 3746 *(((uint32_t *) irsp) + 11), 3747 *(((uint32_t *) irsp) + 12), 3748 *(((uint32_t *) irsp) + 13), 3749 *(((uint32_t *) irsp) + 14), 3750 *(((uint32_t *) irsp) + 15)); 3751 } 3752 3753 /* 3754 * Fetch the IOCB command type and call the correct completion 3755 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3756 * get freed back to the lpfc_iocb_list by the discovery 3757 * kernel thread. 3758 */ 3759 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3760 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3761 switch (type) { 3762 case LPFC_SOL_IOCB: 3763 spin_unlock_irqrestore(&phba->hbalock, iflag); 3764 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3765 spin_lock_irqsave(&phba->hbalock, iflag); 3766 break; 3767 3768 case LPFC_UNSOL_IOCB: 3769 spin_unlock_irqrestore(&phba->hbalock, iflag); 3770 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3771 spin_lock_irqsave(&phba->hbalock, iflag); 3772 if (!rc) 3773 free_saveq = 0; 3774 break; 3775 3776 case LPFC_ABORT_IOCB: 3777 cmdiocbp = NULL; 3778 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3779 spin_unlock_irqrestore(&phba->hbalock, iflag); 3780 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3781 saveq); 3782 spin_lock_irqsave(&phba->hbalock, iflag); 3783 } 3784 if (cmdiocbp) { 3785 /* Call the specified completion routine */ 3786 if (cmdiocbp->iocb_cmpl) { 3787 spin_unlock_irqrestore(&phba->hbalock, 3788 iflag); 3789 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3790 saveq); 3791 spin_lock_irqsave(&phba->hbalock, 3792 iflag); 3793 } else 3794 __lpfc_sli_release_iocbq(phba, 3795 cmdiocbp); 3796 } 3797 break; 3798 3799 case LPFC_UNKNOWN_IOCB: 3800 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3801 char adaptermsg[LPFC_MAX_ADPTMSG]; 3802 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3803 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3804 MAX_MSG_DATA); 3805 dev_warn(&((phba->pcidev)->dev), 3806 "lpfc%d: %s\n", 3807 phba->brd_no, adaptermsg); 3808 } else { 3809 /* Unknown IOCB command */ 3810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3811 "0335 Unknown IOCB " 3812 "command Data: x%x " 3813 "x%x x%x x%x\n", 3814 irsp->ulpCommand, 3815 irsp->ulpStatus, 3816 irsp->ulpIoTag, 3817 irsp->ulpContext); 3818 } 3819 break; 3820 } 3821 3822 if (free_saveq) { 3823 list_for_each_entry_safe(rspiocbp, next_iocb, 3824 &saveq->list, list) { 3825 list_del_init(&rspiocbp->list); 3826 __lpfc_sli_release_iocbq(phba, rspiocbp); 3827 } 3828 __lpfc_sli_release_iocbq(phba, saveq); 3829 } 3830 rspiocbp = NULL; 3831 } 3832 spin_unlock_irqrestore(&phba->hbalock, iflag); 3833 return rspiocbp; 3834} 3835 3836/** 3837 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3838 * @phba: Pointer to HBA context object. 3839 * @pring: Pointer to driver SLI ring object. 3840 * @mask: Host attention register mask for this ring. 3841 * 3842 * This routine wraps the actual slow_ring event process routine from the 3843 * API jump table function pointer from the lpfc_hba struct. 3844 **/ 3845void 3846lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3847 struct lpfc_sli_ring *pring, uint32_t mask) 3848{ 3849 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3850} 3851 3852/** 3853 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3854 * @phba: Pointer to HBA context object. 3855 * @pring: Pointer to driver SLI ring object. 3856 * @mask: Host attention register mask for this ring. 3857 * 3858 * This function is called from the worker thread when there is a ring event 3859 * for non-fcp rings. The caller does not hold any lock. The function will 3860 * remove each response iocb in the response ring and calls the handle 3861 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3862 **/ 3863static void 3864lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3865 struct lpfc_sli_ring *pring, uint32_t mask) 3866{ 3867 struct lpfc_pgp *pgp; 3868 IOCB_t *entry; 3869 IOCB_t *irsp = NULL; 3870 struct lpfc_iocbq *rspiocbp = NULL; 3871 uint32_t portRspPut, portRspMax; 3872 unsigned long iflag; 3873 uint32_t status; 3874 3875 pgp = &phba->port_gp[pring->ringno]; 3876 spin_lock_irqsave(&phba->hbalock, iflag); 3877 pring->stats.iocb_event++; 3878 3879 /* 3880 * The next available response entry should never exceed the maximum 3881 * entries. If it does, treat it as an adapter hardware error. 3882 */ 3883 portRspMax = pring->sli.sli3.numRiocb; 3884 portRspPut = le32_to_cpu(pgp->rspPutInx); 3885 if (portRspPut >= portRspMax) { 3886 /* 3887 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3888 * rsp ring <portRspMax> 3889 */ 3890 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3891 "0303 Ring %d handler: portRspPut %d " 3892 "is bigger than rsp ring %d\n", 3893 pring->ringno, portRspPut, portRspMax); 3894 3895 phba->link_state = LPFC_HBA_ERROR; 3896 spin_unlock_irqrestore(&phba->hbalock, iflag); 3897 3898 phba->work_hs = HS_FFER3; 3899 lpfc_handle_eratt(phba); 3900 3901 return; 3902 } 3903 3904 rmb(); 3905 while (pring->sli.sli3.rspidx != portRspPut) { 3906 /* 3907 * Build a completion list and call the appropriate handler. 3908 * The process is to get the next available response iocb, get 3909 * a free iocb from the list, copy the response data into the 3910 * free iocb, insert to the continuation list, and update the 3911 * next response index to slim. This process makes response 3912 * iocb's in the ring available to DMA as fast as possible but 3913 * pays a penalty for a copy operation. Since the iocb is 3914 * only 32 bytes, this penalty is considered small relative to 3915 * the PCI reads for register values and a slim write. When 3916 * the ulpLe field is set, the entire Command has been 3917 * received. 3918 */ 3919 entry = lpfc_resp_iocb(phba, pring); 3920 3921 phba->last_completion_time = jiffies; 3922 rspiocbp = __lpfc_sli_get_iocbq(phba); 3923 if (rspiocbp == NULL) { 3924 printk(KERN_ERR "%s: out of buffers! Failing " 3925 "completion.\n", __func__); 3926 break; 3927 } 3928 3929 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3930 phba->iocb_rsp_size); 3931 irsp = &rspiocbp->iocb; 3932 3933 if (++pring->sli.sli3.rspidx >= portRspMax) 3934 pring->sli.sli3.rspidx = 0; 3935 3936 if (pring->ringno == LPFC_ELS_RING) { 3937 lpfc_debugfs_slow_ring_trc(phba, 3938 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3939 *(((uint32_t *) irsp) + 4), 3940 *(((uint32_t *) irsp) + 6), 3941 *(((uint32_t *) irsp) + 7)); 3942 } 3943 3944 writel(pring->sli.sli3.rspidx, 3945 &phba->host_gp[pring->ringno].rspGetInx); 3946 3947 spin_unlock_irqrestore(&phba->hbalock, iflag); 3948 /* Handle the response IOCB */ 3949 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3950 spin_lock_irqsave(&phba->hbalock, iflag); 3951 3952 /* 3953 * If the port response put pointer has not been updated, sync 3954 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3955 * response put pointer. 3956 */ 3957 if (pring->sli.sli3.rspidx == portRspPut) { 3958 portRspPut = le32_to_cpu(pgp->rspPutInx); 3959 } 3960 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3961 3962 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3963 /* At least one response entry has been freed */ 3964 pring->stats.iocb_rsp_full++; 3965 /* SET RxRE_RSP in Chip Att register */ 3966 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3967 writel(status, phba->CAregaddr); 3968 readl(phba->CAregaddr); /* flush */ 3969 } 3970 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3971 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3972 pring->stats.iocb_cmd_empty++; 3973 3974 /* Force update of the local copy of cmdGetInx */ 3975 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3976 lpfc_sli_resume_iocb(phba, pring); 3977 3978 if ((pring->lpfc_sli_cmd_available)) 3979 (pring->lpfc_sli_cmd_available) (phba, pring); 3980 3981 } 3982 3983 spin_unlock_irqrestore(&phba->hbalock, iflag); 3984 return; 3985} 3986 3987/** 3988 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3989 * @phba: Pointer to HBA context object. 3990 * @pring: Pointer to driver SLI ring object. 3991 * @mask: Host attention register mask for this ring. 3992 * 3993 * This function is called from the worker thread when there is a pending 3994 * ELS response iocb on the driver internal slow-path response iocb worker 3995 * queue. The caller does not hold any lock. The function will remove each 3996 * response iocb from the response worker queue and calls the handle 3997 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3998 **/ 3999static void 4000lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4001 struct lpfc_sli_ring *pring, uint32_t mask) 4002{ 4003 struct lpfc_iocbq *irspiocbq; 4004 struct hbq_dmabuf *dmabuf; 4005 struct lpfc_cq_event *cq_event; 4006 unsigned long iflag; 4007 int count = 0; 4008 4009 spin_lock_irqsave(&phba->hbalock, iflag); 4010 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4011 spin_unlock_irqrestore(&phba->hbalock, iflag); 4012 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4013 /* Get the response iocb from the head of work queue */ 4014 spin_lock_irqsave(&phba->hbalock, iflag); 4015 list_remove_head(&phba->sli4_hba.sp_queue_event, 4016 cq_event, struct lpfc_cq_event, list); 4017 spin_unlock_irqrestore(&phba->hbalock, iflag); 4018 4019 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4020 case CQE_CODE_COMPL_WQE: 4021 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4022 cq_event); 4023 /* Translate ELS WCQE to response IOCBQ */ 4024 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4025 irspiocbq); 4026 if (irspiocbq) 4027 lpfc_sli_sp_handle_rspiocb(phba, pring, 4028 irspiocbq); 4029 count++; 4030 break; 4031 case CQE_CODE_RECEIVE: 4032 case CQE_CODE_RECEIVE_V1: 4033 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4034 cq_event); 4035 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4036 count++; 4037 break; 4038 default: 4039 break; 4040 } 4041 4042 /* Limit the number of events to 64 to avoid soft lockups */ 4043 if (count == 64) 4044 break; 4045 } 4046} 4047 4048/** 4049 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4050 * @phba: Pointer to HBA context object. 4051 * @pring: Pointer to driver SLI ring object. 4052 * 4053 * This function aborts all iocbs in the given ring and frees all the iocb 4054 * objects in txq. This function issues an abort iocb for all the iocb commands 4055 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4056 * the return of this function. The caller is not required to hold any locks. 4057 **/ 4058void 4059lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4060{ 4061 LIST_HEAD(completions); 4062 struct lpfc_iocbq *iocb, *next_iocb; 4063 4064 if (pring->ringno == LPFC_ELS_RING) { 4065 lpfc_fabric_abort_hba(phba); 4066 } 4067 4068 /* Error everything on txq and txcmplq 4069 * First do the txq. 4070 */ 4071 if (phba->sli_rev >= LPFC_SLI_REV4) { 4072 spin_lock_irq(&pring->ring_lock); 4073 list_splice_init(&pring->txq, &completions); 4074 pring->txq_cnt = 0; 4075 spin_unlock_irq(&pring->ring_lock); 4076 4077 spin_lock_irq(&phba->hbalock); 4078 /* Next issue ABTS for everything on the txcmplq */ 4079 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4080 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 4081 spin_unlock_irq(&phba->hbalock); 4082 } else { 4083 spin_lock_irq(&phba->hbalock); 4084 list_splice_init(&pring->txq, &completions); 4085 pring->txq_cnt = 0; 4086 4087 /* Next issue ABTS for everything on the txcmplq */ 4088 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4089 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 4090 spin_unlock_irq(&phba->hbalock); 4091 } 4092 4093 /* Cancel all the IOCBs from the completions list */ 4094 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4095 IOERR_SLI_ABORTED); 4096} 4097 4098/** 4099 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4100 * @phba: Pointer to HBA context object. 4101 * 4102 * This function aborts all iocbs in FCP rings and frees all the iocb 4103 * objects in txq. This function issues an abort iocb for all the iocb commands 4104 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4105 * the return of this function. The caller is not required to hold any locks. 4106 **/ 4107void 4108lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4109{ 4110 struct lpfc_sli *psli = &phba->sli; 4111 struct lpfc_sli_ring *pring; 4112 uint32_t i; 4113 4114 /* Look on all the FCP Rings for the iotag */ 4115 if (phba->sli_rev >= LPFC_SLI_REV4) { 4116 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4117 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4118 lpfc_sli_abort_iocb_ring(phba, pring); 4119 } 4120 } else { 4121 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4122 lpfc_sli_abort_iocb_ring(phba, pring); 4123 } 4124} 4125 4126/** 4127 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4128 * @phba: Pointer to HBA context object. 4129 * 4130 * This function flushes all iocbs in the IO ring and frees all the iocb 4131 * objects in txq and txcmplq. This function will not issue abort iocbs 4132 * for all the iocb commands in txcmplq, they will just be returned with 4133 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4134 * slot has been permanently disabled. 4135 **/ 4136void 4137lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4138{ 4139 LIST_HEAD(txq); 4140 LIST_HEAD(txcmplq); 4141 struct lpfc_sli *psli = &phba->sli; 4142 struct lpfc_sli_ring *pring; 4143 uint32_t i; 4144 struct lpfc_iocbq *piocb, *next_iocb; 4145 4146 spin_lock_irq(&phba->hbalock); 4147 if (phba->hba_flag & HBA_IOQ_FLUSH || 4148 !phba->sli4_hba.hdwq) { 4149 spin_unlock_irq(&phba->hbalock); 4150 return; 4151 } 4152 /* Indicate the I/O queues are flushed */ 4153 phba->hba_flag |= HBA_IOQ_FLUSH; 4154 spin_unlock_irq(&phba->hbalock); 4155 4156 /* Look on all the FCP Rings for the iotag */ 4157 if (phba->sli_rev >= LPFC_SLI_REV4) { 4158 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4159 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4160 4161 spin_lock_irq(&pring->ring_lock); 4162 /* Retrieve everything on txq */ 4163 list_splice_init(&pring->txq, &txq); 4164 list_for_each_entry_safe(piocb, next_iocb, 4165 &pring->txcmplq, list) 4166 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4167 /* Retrieve everything on the txcmplq */ 4168 list_splice_init(&pring->txcmplq, &txcmplq); 4169 pring->txq_cnt = 0; 4170 pring->txcmplq_cnt = 0; 4171 spin_unlock_irq(&pring->ring_lock); 4172 4173 /* Flush the txq */ 4174 lpfc_sli_cancel_iocbs(phba, &txq, 4175 IOSTAT_LOCAL_REJECT, 4176 IOERR_SLI_DOWN); 4177 /* Flush the txcmpq */ 4178 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4179 IOSTAT_LOCAL_REJECT, 4180 IOERR_SLI_DOWN); 4181 } 4182 } else { 4183 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4184 4185 spin_lock_irq(&phba->hbalock); 4186 /* Retrieve everything on txq */ 4187 list_splice_init(&pring->txq, &txq); 4188 list_for_each_entry_safe(piocb, next_iocb, 4189 &pring->txcmplq, list) 4190 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4191 /* Retrieve everything on the txcmplq */ 4192 list_splice_init(&pring->txcmplq, &txcmplq); 4193 pring->txq_cnt = 0; 4194 pring->txcmplq_cnt = 0; 4195 spin_unlock_irq(&phba->hbalock); 4196 4197 /* Flush the txq */ 4198 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4199 IOERR_SLI_DOWN); 4200 /* Flush the txcmpq */ 4201 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4202 IOERR_SLI_DOWN); 4203 } 4204} 4205 4206/** 4207 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4208 * @phba: Pointer to HBA context object. 4209 * @mask: Bit mask to be checked. 4210 * 4211 * This function reads the host status register and compares 4212 * with the provided bit mask to check if HBA completed 4213 * the restart. This function will wait in a loop for the 4214 * HBA to complete restart. If the HBA does not restart within 4215 * 15 iterations, the function will reset the HBA again. The 4216 * function returns 1 when HBA fail to restart otherwise returns 4217 * zero. 4218 **/ 4219static int 4220lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4221{ 4222 uint32_t status; 4223 int i = 0; 4224 int retval = 0; 4225 4226 /* Read the HBA Host Status Register */ 4227 if (lpfc_readl(phba->HSregaddr, &status)) 4228 return 1; 4229 4230 /* 4231 * Check status register every 100ms for 5 retries, then every 4232 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4233 * every 2.5 sec for 4. 4234 * Break our of the loop if errors occurred during init. 4235 */ 4236 while (((status & mask) != mask) && 4237 !(status & HS_FFERM) && 4238 i++ < 20) { 4239 4240 if (i <= 5) 4241 msleep(10); 4242 else if (i <= 10) 4243 msleep(500); 4244 else 4245 msleep(2500); 4246 4247 if (i == 15) { 4248 /* Do post */ 4249 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4250 lpfc_sli_brdrestart(phba); 4251 } 4252 /* Read the HBA Host Status Register */ 4253 if (lpfc_readl(phba->HSregaddr, &status)) { 4254 retval = 1; 4255 break; 4256 } 4257 } 4258 4259 /* Check to see if any errors occurred during init */ 4260 if ((status & HS_FFERM) || (i >= 20)) { 4261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4262 "2751 Adapter failed to restart, " 4263 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4264 status, 4265 readl(phba->MBslimaddr + 0xa8), 4266 readl(phba->MBslimaddr + 0xac)); 4267 phba->link_state = LPFC_HBA_ERROR; 4268 retval = 1; 4269 } 4270 4271 return retval; 4272} 4273 4274/** 4275 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4276 * @phba: Pointer to HBA context object. 4277 * @mask: Bit mask to be checked. 4278 * 4279 * This function checks the host status register to check if HBA is 4280 * ready. This function will wait in a loop for the HBA to be ready 4281 * If the HBA is not ready , the function will will reset the HBA PCI 4282 * function again. The function returns 1 when HBA fail to be ready 4283 * otherwise returns zero. 4284 **/ 4285static int 4286lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4287{ 4288 uint32_t status; 4289 int retval = 0; 4290 4291 /* Read the HBA Host Status Register */ 4292 status = lpfc_sli4_post_status_check(phba); 4293 4294 if (status) { 4295 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4296 lpfc_sli_brdrestart(phba); 4297 status = lpfc_sli4_post_status_check(phba); 4298 } 4299 4300 /* Check to see if any errors occurred during init */ 4301 if (status) { 4302 phba->link_state = LPFC_HBA_ERROR; 4303 retval = 1; 4304 } else 4305 phba->sli4_hba.intr_enable = 0; 4306 4307 return retval; 4308} 4309 4310/** 4311 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4312 * @phba: Pointer to HBA context object. 4313 * @mask: Bit mask to be checked. 4314 * 4315 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4316 * from the API jump table function pointer from the lpfc_hba struct. 4317 **/ 4318int 4319lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4320{ 4321 return phba->lpfc_sli_brdready(phba, mask); 4322} 4323 4324#define BARRIER_TEST_PATTERN (0xdeadbeef) 4325 4326/** 4327 * lpfc_reset_barrier - Make HBA ready for HBA reset 4328 * @phba: Pointer to HBA context object. 4329 * 4330 * This function is called before resetting an HBA. This function is called 4331 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4332 **/ 4333void lpfc_reset_barrier(struct lpfc_hba *phba) 4334{ 4335 uint32_t __iomem *resp_buf; 4336 uint32_t __iomem *mbox_buf; 4337 volatile uint32_t mbox; 4338 uint32_t hc_copy, ha_copy, resp_data; 4339 int i; 4340 uint8_t hdrtype; 4341 4342 lockdep_assert_held(&phba->hbalock); 4343 4344 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4345 if (hdrtype != 0x80 || 4346 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4347 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4348 return; 4349 4350 /* 4351 * Tell the other part of the chip to suspend temporarily all 4352 * its DMA activity. 4353 */ 4354 resp_buf = phba->MBslimaddr; 4355 4356 /* Disable the error attention */ 4357 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4358 return; 4359 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4360 readl(phba->HCregaddr); /* flush */ 4361 phba->link_flag |= LS_IGNORE_ERATT; 4362 4363 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4364 return; 4365 if (ha_copy & HA_ERATT) { 4366 /* Clear Chip error bit */ 4367 writel(HA_ERATT, phba->HAregaddr); 4368 phba->pport->stopped = 1; 4369 } 4370 4371 mbox = 0; 4372 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4373 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4374 4375 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4376 mbox_buf = phba->MBslimaddr; 4377 writel(mbox, mbox_buf); 4378 4379 for (i = 0; i < 50; i++) { 4380 if (lpfc_readl((resp_buf + 1), &resp_data)) 4381 return; 4382 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4383 mdelay(1); 4384 else 4385 break; 4386 } 4387 resp_data = 0; 4388 if (lpfc_readl((resp_buf + 1), &resp_data)) 4389 return; 4390 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4391 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4392 phba->pport->stopped) 4393 goto restore_hc; 4394 else 4395 goto clear_errat; 4396 } 4397 4398 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4399 resp_data = 0; 4400 for (i = 0; i < 500; i++) { 4401 if (lpfc_readl(resp_buf, &resp_data)) 4402 return; 4403 if (resp_data != mbox) 4404 mdelay(1); 4405 else 4406 break; 4407 } 4408 4409clear_errat: 4410 4411 while (++i < 500) { 4412 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4413 return; 4414 if (!(ha_copy & HA_ERATT)) 4415 mdelay(1); 4416 else 4417 break; 4418 } 4419 4420 if (readl(phba->HAregaddr) & HA_ERATT) { 4421 writel(HA_ERATT, phba->HAregaddr); 4422 phba->pport->stopped = 1; 4423 } 4424 4425restore_hc: 4426 phba->link_flag &= ~LS_IGNORE_ERATT; 4427 writel(hc_copy, phba->HCregaddr); 4428 readl(phba->HCregaddr); /* flush */ 4429} 4430 4431/** 4432 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4433 * @phba: Pointer to HBA context object. 4434 * 4435 * This function issues a kill_board mailbox command and waits for 4436 * the error attention interrupt. This function is called for stopping 4437 * the firmware processing. The caller is not required to hold any 4438 * locks. This function calls lpfc_hba_down_post function to free 4439 * any pending commands after the kill. The function will return 1 when it 4440 * fails to kill the board else will return 0. 4441 **/ 4442int 4443lpfc_sli_brdkill(struct lpfc_hba *phba) 4444{ 4445 struct lpfc_sli *psli; 4446 LPFC_MBOXQ_t *pmb; 4447 uint32_t status; 4448 uint32_t ha_copy; 4449 int retval; 4450 int i = 0; 4451 4452 psli = &phba->sli; 4453 4454 /* Kill HBA */ 4455 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4456 "0329 Kill HBA Data: x%x x%x\n", 4457 phba->pport->port_state, psli->sli_flag); 4458 4459 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4460 if (!pmb) 4461 return 1; 4462 4463 /* Disable the error attention */ 4464 spin_lock_irq(&phba->hbalock); 4465 if (lpfc_readl(phba->HCregaddr, &status)) { 4466 spin_unlock_irq(&phba->hbalock); 4467 mempool_free(pmb, phba->mbox_mem_pool); 4468 return 1; 4469 } 4470 status &= ~HC_ERINT_ENA; 4471 writel(status, phba->HCregaddr); 4472 readl(phba->HCregaddr); /* flush */ 4473 phba->link_flag |= LS_IGNORE_ERATT; 4474 spin_unlock_irq(&phba->hbalock); 4475 4476 lpfc_kill_board(phba, pmb); 4477 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4478 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4479 4480 if (retval != MBX_SUCCESS) { 4481 if (retval != MBX_BUSY) 4482 mempool_free(pmb, phba->mbox_mem_pool); 4483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4484 "2752 KILL_BOARD command failed retval %d\n", 4485 retval); 4486 spin_lock_irq(&phba->hbalock); 4487 phba->link_flag &= ~LS_IGNORE_ERATT; 4488 spin_unlock_irq(&phba->hbalock); 4489 return 1; 4490 } 4491 4492 spin_lock_irq(&phba->hbalock); 4493 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4494 spin_unlock_irq(&phba->hbalock); 4495 4496 mempool_free(pmb, phba->mbox_mem_pool); 4497 4498 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4499 * attention every 100ms for 3 seconds. If we don't get ERATT after 4500 * 3 seconds we still set HBA_ERROR state because the status of the 4501 * board is now undefined. 4502 */ 4503 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4504 return 1; 4505 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4506 mdelay(100); 4507 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4508 return 1; 4509 } 4510 4511 del_timer_sync(&psli->mbox_tmo); 4512 if (ha_copy & HA_ERATT) { 4513 writel(HA_ERATT, phba->HAregaddr); 4514 phba->pport->stopped = 1; 4515 } 4516 spin_lock_irq(&phba->hbalock); 4517 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4518 psli->mbox_active = NULL; 4519 phba->link_flag &= ~LS_IGNORE_ERATT; 4520 spin_unlock_irq(&phba->hbalock); 4521 4522 lpfc_hba_down_post(phba); 4523 phba->link_state = LPFC_HBA_ERROR; 4524 4525 return ha_copy & HA_ERATT ? 0 : 1; 4526} 4527 4528/** 4529 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4530 * @phba: Pointer to HBA context object. 4531 * 4532 * This function resets the HBA by writing HC_INITFF to the control 4533 * register. After the HBA resets, this function resets all the iocb ring 4534 * indices. This function disables PCI layer parity checking during 4535 * the reset. 4536 * This function returns 0 always. 4537 * The caller is not required to hold any locks. 4538 **/ 4539int 4540lpfc_sli_brdreset(struct lpfc_hba *phba) 4541{ 4542 struct lpfc_sli *psli; 4543 struct lpfc_sli_ring *pring; 4544 uint16_t cfg_value; 4545 int i; 4546 4547 psli = &phba->sli; 4548 4549 /* Reset HBA */ 4550 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4551 "0325 Reset HBA Data: x%x x%x\n", 4552 (phba->pport) ? phba->pport->port_state : 0, 4553 psli->sli_flag); 4554 4555 /* perform board reset */ 4556 phba->fc_eventTag = 0; 4557 phba->link_events = 0; 4558 if (phba->pport) { 4559 phba->pport->fc_myDID = 0; 4560 phba->pport->fc_prevDID = 0; 4561 } 4562 4563 /* Turn off parity checking and serr during the physical reset */ 4564 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4565 return -EIO; 4566 4567 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4568 (cfg_value & 4569 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4570 4571 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4572 4573 /* Now toggle INITFF bit in the Host Control Register */ 4574 writel(HC_INITFF, phba->HCregaddr); 4575 mdelay(1); 4576 readl(phba->HCregaddr); /* flush */ 4577 writel(0, phba->HCregaddr); 4578 readl(phba->HCregaddr); /* flush */ 4579 4580 /* Restore PCI cmd register */ 4581 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4582 4583 /* Initialize relevant SLI info */ 4584 for (i = 0; i < psli->num_rings; i++) { 4585 pring = &psli->sli3_ring[i]; 4586 pring->flag = 0; 4587 pring->sli.sli3.rspidx = 0; 4588 pring->sli.sli3.next_cmdidx = 0; 4589 pring->sli.sli3.local_getidx = 0; 4590 pring->sli.sli3.cmdidx = 0; 4591 pring->missbufcnt = 0; 4592 } 4593 4594 phba->link_state = LPFC_WARM_START; 4595 return 0; 4596} 4597 4598/** 4599 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4600 * @phba: Pointer to HBA context object. 4601 * 4602 * This function resets a SLI4 HBA. This function disables PCI layer parity 4603 * checking during resets the device. The caller is not required to hold 4604 * any locks. 4605 * 4606 * This function returns 0 on success else returns negative error code. 4607 **/ 4608int 4609lpfc_sli4_brdreset(struct lpfc_hba *phba) 4610{ 4611 struct lpfc_sli *psli = &phba->sli; 4612 uint16_t cfg_value; 4613 int rc = 0; 4614 4615 /* Reset HBA */ 4616 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4617 "0295 Reset HBA Data: x%x x%x x%x\n", 4618 phba->pport->port_state, psli->sli_flag, 4619 phba->hba_flag); 4620 4621 /* perform board reset */ 4622 phba->fc_eventTag = 0; 4623 phba->link_events = 0; 4624 phba->pport->fc_myDID = 0; 4625 phba->pport->fc_prevDID = 0; 4626 4627 spin_lock_irq(&phba->hbalock); 4628 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4629 phba->fcf.fcf_flag = 0; 4630 spin_unlock_irq(&phba->hbalock); 4631 4632 /* Now physically reset the device */ 4633 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4634 "0389 Performing PCI function reset!\n"); 4635 4636 /* Turn off parity checking and serr during the physical reset */ 4637 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4638 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4639 "3205 PCI read Config failed\n"); 4640 return -EIO; 4641 } 4642 4643 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4644 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4645 4646 /* Perform FCoE PCI function reset before freeing queue memory */ 4647 rc = lpfc_pci_function_reset(phba); 4648 4649 /* Restore PCI cmd register */ 4650 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4651 4652 return rc; 4653} 4654 4655/** 4656 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4657 * @phba: Pointer to HBA context object. 4658 * 4659 * This function is called in the SLI initialization code path to 4660 * restart the HBA. The caller is not required to hold any lock. 4661 * This function writes MBX_RESTART mailbox command to the SLIM and 4662 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4663 * function to free any pending commands. The function enables 4664 * POST only during the first initialization. The function returns zero. 4665 * The function does not guarantee completion of MBX_RESTART mailbox 4666 * command before the return of this function. 4667 **/ 4668static int 4669lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4670{ 4671 MAILBOX_t *mb; 4672 struct lpfc_sli *psli; 4673 volatile uint32_t word0; 4674 void __iomem *to_slim; 4675 uint32_t hba_aer_enabled; 4676 4677 spin_lock_irq(&phba->hbalock); 4678 4679 /* Take PCIe device Advanced Error Reporting (AER) state */ 4680 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4681 4682 psli = &phba->sli; 4683 4684 /* Restart HBA */ 4685 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4686 "0337 Restart HBA Data: x%x x%x\n", 4687 (phba->pport) ? phba->pport->port_state : 0, 4688 psli->sli_flag); 4689 4690 word0 = 0; 4691 mb = (MAILBOX_t *) &word0; 4692 mb->mbxCommand = MBX_RESTART; 4693 mb->mbxHc = 1; 4694 4695 lpfc_reset_barrier(phba); 4696 4697 to_slim = phba->MBslimaddr; 4698 writel(*(uint32_t *) mb, to_slim); 4699 readl(to_slim); /* flush */ 4700 4701 /* Only skip post after fc_ffinit is completed */ 4702 if (phba->pport && phba->pport->port_state) 4703 word0 = 1; /* This is really setting up word1 */ 4704 else 4705 word0 = 0; /* This is really setting up word1 */ 4706 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4707 writel(*(uint32_t *) mb, to_slim); 4708 readl(to_slim); /* flush */ 4709 4710 lpfc_sli_brdreset(phba); 4711 if (phba->pport) 4712 phba->pport->stopped = 0; 4713 phba->link_state = LPFC_INIT_START; 4714 phba->hba_flag = 0; 4715 spin_unlock_irq(&phba->hbalock); 4716 4717 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4718 psli->stats_start = ktime_get_seconds(); 4719 4720 /* Give the INITFF and Post time to settle. */ 4721 mdelay(100); 4722 4723 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4724 if (hba_aer_enabled) 4725 pci_disable_pcie_error_reporting(phba->pcidev); 4726 4727 lpfc_hba_down_post(phba); 4728 4729 return 0; 4730} 4731 4732/** 4733 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4734 * @phba: Pointer to HBA context object. 4735 * 4736 * This function is called in the SLI initialization code path to restart 4737 * a SLI4 HBA. The caller is not required to hold any lock. 4738 * At the end of the function, it calls lpfc_hba_down_post function to 4739 * free any pending commands. 4740 **/ 4741static int 4742lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4743{ 4744 struct lpfc_sli *psli = &phba->sli; 4745 uint32_t hba_aer_enabled; 4746 int rc; 4747 4748 /* Restart HBA */ 4749 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4750 "0296 Restart HBA Data: x%x x%x\n", 4751 phba->pport->port_state, psli->sli_flag); 4752 4753 /* Take PCIe device Advanced Error Reporting (AER) state */ 4754 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4755 4756 rc = lpfc_sli4_brdreset(phba); 4757 if (rc) { 4758 phba->link_state = LPFC_HBA_ERROR; 4759 goto hba_down_queue; 4760 } 4761 4762 spin_lock_irq(&phba->hbalock); 4763 phba->pport->stopped = 0; 4764 phba->link_state = LPFC_INIT_START; 4765 phba->hba_flag = 0; 4766 spin_unlock_irq(&phba->hbalock); 4767 4768 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4769 psli->stats_start = ktime_get_seconds(); 4770 4771 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4772 if (hba_aer_enabled) 4773 pci_disable_pcie_error_reporting(phba->pcidev); 4774 4775hba_down_queue: 4776 lpfc_hba_down_post(phba); 4777 lpfc_sli4_queue_destroy(phba); 4778 4779 return rc; 4780} 4781 4782/** 4783 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4784 * @phba: Pointer to HBA context object. 4785 * 4786 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4787 * API jump table function pointer from the lpfc_hba struct. 4788**/ 4789int 4790lpfc_sli_brdrestart(struct lpfc_hba *phba) 4791{ 4792 return phba->lpfc_sli_brdrestart(phba); 4793} 4794 4795/** 4796 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4797 * @phba: Pointer to HBA context object. 4798 * 4799 * This function is called after a HBA restart to wait for successful 4800 * restart of the HBA. Successful restart of the HBA is indicated by 4801 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4802 * iteration, the function will restart the HBA again. The function returns 4803 * zero if HBA successfully restarted else returns negative error code. 4804 **/ 4805int 4806lpfc_sli_chipset_init(struct lpfc_hba *phba) 4807{ 4808 uint32_t status, i = 0; 4809 4810 /* Read the HBA Host Status Register */ 4811 if (lpfc_readl(phba->HSregaddr, &status)) 4812 return -EIO; 4813 4814 /* Check status register to see what current state is */ 4815 i = 0; 4816 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4817 4818 /* Check every 10ms for 10 retries, then every 100ms for 90 4819 * retries, then every 1 sec for 50 retires for a total of 4820 * ~60 seconds before reset the board again and check every 4821 * 1 sec for 50 retries. The up to 60 seconds before the 4822 * board ready is required by the Falcon FIPS zeroization 4823 * complete, and any reset the board in between shall cause 4824 * restart of zeroization, further delay the board ready. 4825 */ 4826 if (i++ >= 200) { 4827 /* Adapter failed to init, timeout, status reg 4828 <status> */ 4829 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4830 "0436 Adapter failed to init, " 4831 "timeout, status reg x%x, " 4832 "FW Data: A8 x%x AC x%x\n", status, 4833 readl(phba->MBslimaddr + 0xa8), 4834 readl(phba->MBslimaddr + 0xac)); 4835 phba->link_state = LPFC_HBA_ERROR; 4836 return -ETIMEDOUT; 4837 } 4838 4839 /* Check to see if any errors occurred during init */ 4840 if (status & HS_FFERM) { 4841 /* ERROR: During chipset initialization */ 4842 /* Adapter failed to init, chipset, status reg 4843 <status> */ 4844 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4845 "0437 Adapter failed to init, " 4846 "chipset, status reg x%x, " 4847 "FW Data: A8 x%x AC x%x\n", status, 4848 readl(phba->MBslimaddr + 0xa8), 4849 readl(phba->MBslimaddr + 0xac)); 4850 phba->link_state = LPFC_HBA_ERROR; 4851 return -EIO; 4852 } 4853 4854 if (i <= 10) 4855 msleep(10); 4856 else if (i <= 100) 4857 msleep(100); 4858 else 4859 msleep(1000); 4860 4861 if (i == 150) { 4862 /* Do post */ 4863 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4864 lpfc_sli_brdrestart(phba); 4865 } 4866 /* Read the HBA Host Status Register */ 4867 if (lpfc_readl(phba->HSregaddr, &status)) 4868 return -EIO; 4869 } 4870 4871 /* Check to see if any errors occurred during init */ 4872 if (status & HS_FFERM) { 4873 /* ERROR: During chipset initialization */ 4874 /* Adapter failed to init, chipset, status reg <status> */ 4875 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4876 "0438 Adapter failed to init, chipset, " 4877 "status reg x%x, " 4878 "FW Data: A8 x%x AC x%x\n", status, 4879 readl(phba->MBslimaddr + 0xa8), 4880 readl(phba->MBslimaddr + 0xac)); 4881 phba->link_state = LPFC_HBA_ERROR; 4882 return -EIO; 4883 } 4884 4885 /* Clear all interrupt enable conditions */ 4886 writel(0, phba->HCregaddr); 4887 readl(phba->HCregaddr); /* flush */ 4888 4889 /* setup host attn register */ 4890 writel(0xffffffff, phba->HAregaddr); 4891 readl(phba->HAregaddr); /* flush */ 4892 return 0; 4893} 4894 4895/** 4896 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4897 * 4898 * This function calculates and returns the number of HBQs required to be 4899 * configured. 4900 **/ 4901int 4902lpfc_sli_hbq_count(void) 4903{ 4904 return ARRAY_SIZE(lpfc_hbq_defs); 4905} 4906 4907/** 4908 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4909 * 4910 * This function adds the number of hbq entries in every HBQ to get 4911 * the total number of hbq entries required for the HBA and returns 4912 * the total count. 4913 **/ 4914static int 4915lpfc_sli_hbq_entry_count(void) 4916{ 4917 int hbq_count = lpfc_sli_hbq_count(); 4918 int count = 0; 4919 int i; 4920 4921 for (i = 0; i < hbq_count; ++i) 4922 count += lpfc_hbq_defs[i]->entry_count; 4923 return count; 4924} 4925 4926/** 4927 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4928 * 4929 * This function calculates amount of memory required for all hbq entries 4930 * to be configured and returns the total memory required. 4931 **/ 4932int 4933lpfc_sli_hbq_size(void) 4934{ 4935 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4936} 4937 4938/** 4939 * lpfc_sli_hbq_setup - configure and initialize HBQs 4940 * @phba: Pointer to HBA context object. 4941 * 4942 * This function is called during the SLI initialization to configure 4943 * all the HBQs and post buffers to the HBQ. The caller is not 4944 * required to hold any locks. This function will return zero if successful 4945 * else it will return negative error code. 4946 **/ 4947static int 4948lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4949{ 4950 int hbq_count = lpfc_sli_hbq_count(); 4951 LPFC_MBOXQ_t *pmb; 4952 MAILBOX_t *pmbox; 4953 uint32_t hbqno; 4954 uint32_t hbq_entry_index; 4955 4956 /* Get a Mailbox buffer to setup mailbox 4957 * commands for HBA initialization 4958 */ 4959 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4960 4961 if (!pmb) 4962 return -ENOMEM; 4963 4964 pmbox = &pmb->u.mb; 4965 4966 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4967 phba->link_state = LPFC_INIT_MBX_CMDS; 4968 phba->hbq_in_use = 1; 4969 4970 hbq_entry_index = 0; 4971 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4972 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4973 phba->hbqs[hbqno].hbqPutIdx = 0; 4974 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4975 phba->hbqs[hbqno].entry_count = 4976 lpfc_hbq_defs[hbqno]->entry_count; 4977 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4978 hbq_entry_index, pmb); 4979 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4980 4981 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4982 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4983 mbxStatus <status>, ring <num> */ 4984 4985 lpfc_printf_log(phba, KERN_ERR, 4986 LOG_SLI | LOG_VPORT, 4987 "1805 Adapter failed to init. " 4988 "Data: x%x x%x x%x\n", 4989 pmbox->mbxCommand, 4990 pmbox->mbxStatus, hbqno); 4991 4992 phba->link_state = LPFC_HBA_ERROR; 4993 mempool_free(pmb, phba->mbox_mem_pool); 4994 return -ENXIO; 4995 } 4996 } 4997 phba->hbq_count = hbq_count; 4998 4999 mempool_free(pmb, phba->mbox_mem_pool); 5000 5001 /* Initially populate or replenish the HBQs */ 5002 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5003 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5004 return 0; 5005} 5006 5007/** 5008 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5009 * @phba: Pointer to HBA context object. 5010 * 5011 * This function is called during the SLI initialization to configure 5012 * all the HBQs and post buffers to the HBQ. The caller is not 5013 * required to hold any locks. This function will return zero if successful 5014 * else it will return negative error code. 5015 **/ 5016static int 5017lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5018{ 5019 phba->hbq_in_use = 1; 5020 /** 5021 * Specific case when the MDS diagnostics is enabled and supported. 5022 * The receive buffer count is truncated to manage the incoming 5023 * traffic. 5024 **/ 5025 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5026 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5027 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5028 else 5029 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5030 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5031 phba->hbq_count = 1; 5032 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5033 /* Initially populate or replenish the HBQs */ 5034 return 0; 5035} 5036 5037/** 5038 * lpfc_sli_config_port - Issue config port mailbox command 5039 * @phba: Pointer to HBA context object. 5040 * @sli_mode: sli mode - 2/3 5041 * 5042 * This function is called by the sli initialization code path 5043 * to issue config_port mailbox command. This function restarts the 5044 * HBA firmware and issues a config_port mailbox command to configure 5045 * the SLI interface in the sli mode specified by sli_mode 5046 * variable. The caller is not required to hold any locks. 5047 * The function returns 0 if successful, else returns negative error 5048 * code. 5049 **/ 5050int 5051lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5052{ 5053 LPFC_MBOXQ_t *pmb; 5054 uint32_t resetcount = 0, rc = 0, done = 0; 5055 5056 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5057 if (!pmb) { 5058 phba->link_state = LPFC_HBA_ERROR; 5059 return -ENOMEM; 5060 } 5061 5062 phba->sli_rev = sli_mode; 5063 while (resetcount < 2 && !done) { 5064 spin_lock_irq(&phba->hbalock); 5065 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5066 spin_unlock_irq(&phba->hbalock); 5067 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5068 lpfc_sli_brdrestart(phba); 5069 rc = lpfc_sli_chipset_init(phba); 5070 if (rc) 5071 break; 5072 5073 spin_lock_irq(&phba->hbalock); 5074 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5075 spin_unlock_irq(&phba->hbalock); 5076 resetcount++; 5077 5078 /* Call pre CONFIG_PORT mailbox command initialization. A 5079 * value of 0 means the call was successful. Any other 5080 * nonzero value is a failure, but if ERESTART is returned, 5081 * the driver may reset the HBA and try again. 5082 */ 5083 rc = lpfc_config_port_prep(phba); 5084 if (rc == -ERESTART) { 5085 phba->link_state = LPFC_LINK_UNKNOWN; 5086 continue; 5087 } else if (rc) 5088 break; 5089 5090 phba->link_state = LPFC_INIT_MBX_CMDS; 5091 lpfc_config_port(phba, pmb); 5092 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5093 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5094 LPFC_SLI3_HBQ_ENABLED | 5095 LPFC_SLI3_CRP_ENABLED | 5096 LPFC_SLI3_DSS_ENABLED); 5097 if (rc != MBX_SUCCESS) { 5098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5099 "0442 Adapter failed to init, mbxCmd x%x " 5100 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5101 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5102 spin_lock_irq(&phba->hbalock); 5103 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5104 spin_unlock_irq(&phba->hbalock); 5105 rc = -ENXIO; 5106 } else { 5107 /* Allow asynchronous mailbox command to go through */ 5108 spin_lock_irq(&phba->hbalock); 5109 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5110 spin_unlock_irq(&phba->hbalock); 5111 done = 1; 5112 5113 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5114 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5115 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5116 "3110 Port did not grant ASABT\n"); 5117 } 5118 } 5119 if (!done) { 5120 rc = -EINVAL; 5121 goto do_prep_failed; 5122 } 5123 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5124 if (!pmb->u.mb.un.varCfgPort.cMA) { 5125 rc = -ENXIO; 5126 goto do_prep_failed; 5127 } 5128 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5129 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5130 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5131 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5132 phba->max_vpi : phba->max_vports; 5133 5134 } else 5135 phba->max_vpi = 0; 5136 if (pmb->u.mb.un.varCfgPort.gerbm) 5137 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5138 if (pmb->u.mb.un.varCfgPort.gcrp) 5139 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5140 5141 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5142 phba->port_gp = phba->mbox->us.s3_pgp.port; 5143 5144 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5145 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5146 phba->cfg_enable_bg = 0; 5147 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5148 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5149 "0443 Adapter did not grant " 5150 "BlockGuard\n"); 5151 } 5152 } 5153 } else { 5154 phba->hbq_get = NULL; 5155 phba->port_gp = phba->mbox->us.s2.port; 5156 phba->max_vpi = 0; 5157 } 5158do_prep_failed: 5159 mempool_free(pmb, phba->mbox_mem_pool); 5160 return rc; 5161} 5162 5163 5164/** 5165 * lpfc_sli_hba_setup - SLI initialization function 5166 * @phba: Pointer to HBA context object. 5167 * 5168 * This function is the main SLI initialization function. This function 5169 * is called by the HBA initialization code, HBA reset code and HBA 5170 * error attention handler code. Caller is not required to hold any 5171 * locks. This function issues config_port mailbox command to configure 5172 * the SLI, setup iocb rings and HBQ rings. In the end the function 5173 * calls the config_port_post function to issue init_link mailbox 5174 * command and to start the discovery. The function will return zero 5175 * if successful, else it will return negative error code. 5176 **/ 5177int 5178lpfc_sli_hba_setup(struct lpfc_hba *phba) 5179{ 5180 uint32_t rc; 5181 int mode = 3, i; 5182 int longs; 5183 5184 switch (phba->cfg_sli_mode) { 5185 case 2: 5186 if (phba->cfg_enable_npiv) { 5187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5188 "1824 NPIV enabled: Override sli_mode " 5189 "parameter (%d) to auto (0).\n", 5190 phba->cfg_sli_mode); 5191 break; 5192 } 5193 mode = 2; 5194 break; 5195 case 0: 5196 case 3: 5197 break; 5198 default: 5199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5200 "1819 Unrecognized sli_mode parameter: %d.\n", 5201 phba->cfg_sli_mode); 5202 5203 break; 5204 } 5205 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5206 5207 rc = lpfc_sli_config_port(phba, mode); 5208 5209 if (rc && phba->cfg_sli_mode == 3) 5210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5211 "1820 Unable to select SLI-3. " 5212 "Not supported by adapter.\n"); 5213 if (rc && mode != 2) 5214 rc = lpfc_sli_config_port(phba, 2); 5215 else if (rc && mode == 2) 5216 rc = lpfc_sli_config_port(phba, 3); 5217 if (rc) 5218 goto lpfc_sli_hba_setup_error; 5219 5220 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5221 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5222 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5223 if (!rc) { 5224 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5225 "2709 This device supports " 5226 "Advanced Error Reporting (AER)\n"); 5227 spin_lock_irq(&phba->hbalock); 5228 phba->hba_flag |= HBA_AER_ENABLED; 5229 spin_unlock_irq(&phba->hbalock); 5230 } else { 5231 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5232 "2708 This device does not support " 5233 "Advanced Error Reporting (AER): %d\n", 5234 rc); 5235 phba->cfg_aer_support = 0; 5236 } 5237 } 5238 5239 if (phba->sli_rev == 3) { 5240 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5241 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5242 } else { 5243 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5244 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5245 phba->sli3_options = 0; 5246 } 5247 5248 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5249 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5250 phba->sli_rev, phba->max_vpi); 5251 rc = lpfc_sli_ring_map(phba); 5252 5253 if (rc) 5254 goto lpfc_sli_hba_setup_error; 5255 5256 /* Initialize VPIs. */ 5257 if (phba->sli_rev == LPFC_SLI_REV3) { 5258 /* 5259 * The VPI bitmask and physical ID array are allocated 5260 * and initialized once only - at driver load. A port 5261 * reset doesn't need to reinitialize this memory. 5262 */ 5263 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5264 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5265 phba->vpi_bmask = kcalloc(longs, 5266 sizeof(unsigned long), 5267 GFP_KERNEL); 5268 if (!phba->vpi_bmask) { 5269 rc = -ENOMEM; 5270 goto lpfc_sli_hba_setup_error; 5271 } 5272 5273 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5274 sizeof(uint16_t), 5275 GFP_KERNEL); 5276 if (!phba->vpi_ids) { 5277 kfree(phba->vpi_bmask); 5278 rc = -ENOMEM; 5279 goto lpfc_sli_hba_setup_error; 5280 } 5281 for (i = 0; i < phba->max_vpi; i++) 5282 phba->vpi_ids[i] = i; 5283 } 5284 } 5285 5286 /* Init HBQs */ 5287 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5288 rc = lpfc_sli_hbq_setup(phba); 5289 if (rc) 5290 goto lpfc_sli_hba_setup_error; 5291 } 5292 spin_lock_irq(&phba->hbalock); 5293 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5294 spin_unlock_irq(&phba->hbalock); 5295 5296 rc = lpfc_config_port_post(phba); 5297 if (rc) 5298 goto lpfc_sli_hba_setup_error; 5299 5300 return rc; 5301 5302lpfc_sli_hba_setup_error: 5303 phba->link_state = LPFC_HBA_ERROR; 5304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5305 "0445 Firmware initialization failed\n"); 5306 return rc; 5307} 5308 5309/** 5310 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5311 * @phba: Pointer to HBA context object. 5312 * 5313 * This function issue a dump mailbox command to read config region 5314 * 23 and parse the records in the region and populate driver 5315 * data structure. 5316 **/ 5317static int 5318lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5319{ 5320 LPFC_MBOXQ_t *mboxq; 5321 struct lpfc_dmabuf *mp; 5322 struct lpfc_mqe *mqe; 5323 uint32_t data_length; 5324 int rc; 5325 5326 /* Program the default value of vlan_id and fc_map */ 5327 phba->valid_vlan = 0; 5328 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5329 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5330 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5331 5332 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5333 if (!mboxq) 5334 return -ENOMEM; 5335 5336 mqe = &mboxq->u.mqe; 5337 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5338 rc = -ENOMEM; 5339 goto out_free_mboxq; 5340 } 5341 5342 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5343 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5344 5345 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5346 "(%d):2571 Mailbox cmd x%x Status x%x " 5347 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5348 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5349 "CQ: x%x x%x x%x x%x\n", 5350 mboxq->vport ? mboxq->vport->vpi : 0, 5351 bf_get(lpfc_mqe_command, mqe), 5352 bf_get(lpfc_mqe_status, mqe), 5353 mqe->un.mb_words[0], mqe->un.mb_words[1], 5354 mqe->un.mb_words[2], mqe->un.mb_words[3], 5355 mqe->un.mb_words[4], mqe->un.mb_words[5], 5356 mqe->un.mb_words[6], mqe->un.mb_words[7], 5357 mqe->un.mb_words[8], mqe->un.mb_words[9], 5358 mqe->un.mb_words[10], mqe->un.mb_words[11], 5359 mqe->un.mb_words[12], mqe->un.mb_words[13], 5360 mqe->un.mb_words[14], mqe->un.mb_words[15], 5361 mqe->un.mb_words[16], mqe->un.mb_words[50], 5362 mboxq->mcqe.word0, 5363 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5364 mboxq->mcqe.trailer); 5365 5366 if (rc) { 5367 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5368 kfree(mp); 5369 rc = -EIO; 5370 goto out_free_mboxq; 5371 } 5372 data_length = mqe->un.mb_words[5]; 5373 if (data_length > DMP_RGN23_SIZE) { 5374 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5375 kfree(mp); 5376 rc = -EIO; 5377 goto out_free_mboxq; 5378 } 5379 5380 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5381 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5382 kfree(mp); 5383 rc = 0; 5384 5385out_free_mboxq: 5386 mempool_free(mboxq, phba->mbox_mem_pool); 5387 return rc; 5388} 5389 5390/** 5391 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5392 * @phba: pointer to lpfc hba data structure. 5393 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5394 * @vpd: pointer to the memory to hold resulting port vpd data. 5395 * @vpd_size: On input, the number of bytes allocated to @vpd. 5396 * On output, the number of data bytes in @vpd. 5397 * 5398 * This routine executes a READ_REV SLI4 mailbox command. In 5399 * addition, this routine gets the port vpd data. 5400 * 5401 * Return codes 5402 * 0 - successful 5403 * -ENOMEM - could not allocated memory. 5404 **/ 5405static int 5406lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5407 uint8_t *vpd, uint32_t *vpd_size) 5408{ 5409 int rc = 0; 5410 uint32_t dma_size; 5411 struct lpfc_dmabuf *dmabuf; 5412 struct lpfc_mqe *mqe; 5413 5414 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5415 if (!dmabuf) 5416 return -ENOMEM; 5417 5418 /* 5419 * Get a DMA buffer for the vpd data resulting from the READ_REV 5420 * mailbox command. 5421 */ 5422 dma_size = *vpd_size; 5423 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5424 &dmabuf->phys, GFP_KERNEL); 5425 if (!dmabuf->virt) { 5426 kfree(dmabuf); 5427 return -ENOMEM; 5428 } 5429 5430 /* 5431 * The SLI4 implementation of READ_REV conflicts at word1, 5432 * bits 31:16 and SLI4 adds vpd functionality not present 5433 * in SLI3. This code corrects the conflicts. 5434 */ 5435 lpfc_read_rev(phba, mboxq); 5436 mqe = &mboxq->u.mqe; 5437 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5438 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5439 mqe->un.read_rev.word1 &= 0x0000FFFF; 5440 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5441 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5442 5443 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5444 if (rc) { 5445 dma_free_coherent(&phba->pcidev->dev, dma_size, 5446 dmabuf->virt, dmabuf->phys); 5447 kfree(dmabuf); 5448 return -EIO; 5449 } 5450 5451 /* 5452 * The available vpd length cannot be bigger than the 5453 * DMA buffer passed to the port. Catch the less than 5454 * case and update the caller's size. 5455 */ 5456 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5457 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5458 5459 memcpy(vpd, dmabuf->virt, *vpd_size); 5460 5461 dma_free_coherent(&phba->pcidev->dev, dma_size, 5462 dmabuf->virt, dmabuf->phys); 5463 kfree(dmabuf); 5464 return 0; 5465} 5466 5467/** 5468 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5469 * @phba: pointer to lpfc hba data structure. 5470 * 5471 * This routine retrieves SLI4 device physical port name this PCI function 5472 * is attached to. 5473 * 5474 * Return codes 5475 * 0 - successful 5476 * otherwise - failed to retrieve controller attributes 5477 **/ 5478static int 5479lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5480{ 5481 LPFC_MBOXQ_t *mboxq; 5482 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5483 struct lpfc_controller_attribute *cntl_attr; 5484 void *virtaddr = NULL; 5485 uint32_t alloclen, reqlen; 5486 uint32_t shdr_status, shdr_add_status; 5487 union lpfc_sli4_cfg_shdr *shdr; 5488 int rc; 5489 5490 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5491 if (!mboxq) 5492 return -ENOMEM; 5493 5494 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5495 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5496 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5497 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5498 LPFC_SLI4_MBX_NEMBED); 5499 5500 if (alloclen < reqlen) { 5501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5502 "3084 Allocated DMA memory size (%d) is " 5503 "less than the requested DMA memory size " 5504 "(%d)\n", alloclen, reqlen); 5505 rc = -ENOMEM; 5506 goto out_free_mboxq; 5507 } 5508 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5509 virtaddr = mboxq->sge_array->addr[0]; 5510 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5511 shdr = &mbx_cntl_attr->cfg_shdr; 5512 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5513 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5514 if (shdr_status || shdr_add_status || rc) { 5515 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5516 "3085 Mailbox x%x (x%x/x%x) failed, " 5517 "rc:x%x, status:x%x, add_status:x%x\n", 5518 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5519 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5520 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5521 rc, shdr_status, shdr_add_status); 5522 rc = -ENXIO; 5523 goto out_free_mboxq; 5524 } 5525 5526 cntl_attr = &mbx_cntl_attr->cntl_attr; 5527 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5528 phba->sli4_hba.lnk_info.lnk_tp = 5529 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5530 phba->sli4_hba.lnk_info.lnk_no = 5531 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5532 5533 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5534 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5535 sizeof(phba->BIOSVersion)); 5536 5537 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5538 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5539 phba->sli4_hba.lnk_info.lnk_tp, 5540 phba->sli4_hba.lnk_info.lnk_no, 5541 phba->BIOSVersion); 5542out_free_mboxq: 5543 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5544 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5545 else 5546 mempool_free(mboxq, phba->mbox_mem_pool); 5547 return rc; 5548} 5549 5550/** 5551 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5552 * @phba: pointer to lpfc hba data structure. 5553 * 5554 * This routine retrieves SLI4 device physical port name this PCI function 5555 * is attached to. 5556 * 5557 * Return codes 5558 * 0 - successful 5559 * otherwise - failed to retrieve physical port name 5560 **/ 5561static int 5562lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5563{ 5564 LPFC_MBOXQ_t *mboxq; 5565 struct lpfc_mbx_get_port_name *get_port_name; 5566 uint32_t shdr_status, shdr_add_status; 5567 union lpfc_sli4_cfg_shdr *shdr; 5568 char cport_name = 0; 5569 int rc; 5570 5571 /* We assume nothing at this point */ 5572 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5573 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5574 5575 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5576 if (!mboxq) 5577 return -ENOMEM; 5578 /* obtain link type and link number via READ_CONFIG */ 5579 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5580 lpfc_sli4_read_config(phba); 5581 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5582 goto retrieve_ppname; 5583 5584 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5585 rc = lpfc_sli4_get_ctl_attr(phba); 5586 if (rc) 5587 goto out_free_mboxq; 5588 5589retrieve_ppname: 5590 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5591 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5592 sizeof(struct lpfc_mbx_get_port_name) - 5593 sizeof(struct lpfc_sli4_cfg_mhdr), 5594 LPFC_SLI4_MBX_EMBED); 5595 get_port_name = &mboxq->u.mqe.un.get_port_name; 5596 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5597 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5598 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5599 phba->sli4_hba.lnk_info.lnk_tp); 5600 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5601 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5602 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5603 if (shdr_status || shdr_add_status || rc) { 5604 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5605 "3087 Mailbox x%x (x%x/x%x) failed: " 5606 "rc:x%x, status:x%x, add_status:x%x\n", 5607 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5608 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5609 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5610 rc, shdr_status, shdr_add_status); 5611 rc = -ENXIO; 5612 goto out_free_mboxq; 5613 } 5614 switch (phba->sli4_hba.lnk_info.lnk_no) { 5615 case LPFC_LINK_NUMBER_0: 5616 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5617 &get_port_name->u.response); 5618 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5619 break; 5620 case LPFC_LINK_NUMBER_1: 5621 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5622 &get_port_name->u.response); 5623 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5624 break; 5625 case LPFC_LINK_NUMBER_2: 5626 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5627 &get_port_name->u.response); 5628 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5629 break; 5630 case LPFC_LINK_NUMBER_3: 5631 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5632 &get_port_name->u.response); 5633 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5634 break; 5635 default: 5636 break; 5637 } 5638 5639 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5640 phba->Port[0] = cport_name; 5641 phba->Port[1] = '\0'; 5642 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5643 "3091 SLI get port name: %s\n", phba->Port); 5644 } 5645 5646out_free_mboxq: 5647 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5648 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5649 else 5650 mempool_free(mboxq, phba->mbox_mem_pool); 5651 return rc; 5652} 5653 5654/** 5655 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5656 * @phba: pointer to lpfc hba data structure. 5657 * 5658 * This routine is called to explicitly arm the SLI4 device's completion and 5659 * event queues 5660 **/ 5661static void 5662lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5663{ 5664 int qidx; 5665 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5666 struct lpfc_sli4_hdw_queue *qp; 5667 struct lpfc_queue *eq; 5668 5669 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5670 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5671 if (sli4_hba->nvmels_cq) 5672 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5673 LPFC_QUEUE_REARM); 5674 5675 if (sli4_hba->hdwq) { 5676 /* Loop thru all Hardware Queues */ 5677 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5678 qp = &sli4_hba->hdwq[qidx]; 5679 /* ARM the corresponding CQ */ 5680 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5681 LPFC_QUEUE_REARM); 5682 } 5683 5684 /* Loop thru all IRQ vectors */ 5685 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5686 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5687 /* ARM the corresponding EQ */ 5688 sli4_hba->sli4_write_eq_db(phba, eq, 5689 0, LPFC_QUEUE_REARM); 5690 } 5691 } 5692 5693 if (phba->nvmet_support) { 5694 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5695 sli4_hba->sli4_write_cq_db(phba, 5696 sli4_hba->nvmet_cqset[qidx], 0, 5697 LPFC_QUEUE_REARM); 5698 } 5699 } 5700} 5701 5702/** 5703 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5704 * @phba: Pointer to HBA context object. 5705 * @type: The resource extent type. 5706 * @extnt_count: buffer to hold port available extent count. 5707 * @extnt_size: buffer to hold element count per extent. 5708 * 5709 * This function calls the port and retrievs the number of available 5710 * extents and their size for a particular extent type. 5711 * 5712 * Returns: 0 if successful. Nonzero otherwise. 5713 **/ 5714int 5715lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5716 uint16_t *extnt_count, uint16_t *extnt_size) 5717{ 5718 int rc = 0; 5719 uint32_t length; 5720 uint32_t mbox_tmo; 5721 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5722 LPFC_MBOXQ_t *mbox; 5723 5724 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5725 if (!mbox) 5726 return -ENOMEM; 5727 5728 /* Find out how many extents are available for this resource type */ 5729 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5730 sizeof(struct lpfc_sli4_cfg_mhdr)); 5731 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5732 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5733 length, LPFC_SLI4_MBX_EMBED); 5734 5735 /* Send an extents count of 0 - the GET doesn't use it. */ 5736 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5737 LPFC_SLI4_MBX_EMBED); 5738 if (unlikely(rc)) { 5739 rc = -EIO; 5740 goto err_exit; 5741 } 5742 5743 if (!phba->sli4_hba.intr_enable) 5744 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5745 else { 5746 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5747 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5748 } 5749 if (unlikely(rc)) { 5750 rc = -EIO; 5751 goto err_exit; 5752 } 5753 5754 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5755 if (bf_get(lpfc_mbox_hdr_status, 5756 &rsrc_info->header.cfg_shdr.response)) { 5757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5758 "2930 Failed to get resource extents " 5759 "Status 0x%x Add'l Status 0x%x\n", 5760 bf_get(lpfc_mbox_hdr_status, 5761 &rsrc_info->header.cfg_shdr.response), 5762 bf_get(lpfc_mbox_hdr_add_status, 5763 &rsrc_info->header.cfg_shdr.response)); 5764 rc = -EIO; 5765 goto err_exit; 5766 } 5767 5768 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5769 &rsrc_info->u.rsp); 5770 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5771 &rsrc_info->u.rsp); 5772 5773 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5774 "3162 Retrieved extents type-%d from port: count:%d, " 5775 "size:%d\n", type, *extnt_count, *extnt_size); 5776 5777err_exit: 5778 mempool_free(mbox, phba->mbox_mem_pool); 5779 return rc; 5780} 5781 5782/** 5783 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5784 * @phba: Pointer to HBA context object. 5785 * @type: The extent type to check. 5786 * 5787 * This function reads the current available extents from the port and checks 5788 * if the extent count or extent size has changed since the last access. 5789 * Callers use this routine post port reset to understand if there is a 5790 * extent reprovisioning requirement. 5791 * 5792 * Returns: 5793 * -Error: error indicates problem. 5794 * 1: Extent count or size has changed. 5795 * 0: No changes. 5796 **/ 5797static int 5798lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5799{ 5800 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5801 uint16_t size_diff, rsrc_ext_size; 5802 int rc = 0; 5803 struct lpfc_rsrc_blks *rsrc_entry; 5804 struct list_head *rsrc_blk_list = NULL; 5805 5806 size_diff = 0; 5807 curr_ext_cnt = 0; 5808 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5809 &rsrc_ext_cnt, 5810 &rsrc_ext_size); 5811 if (unlikely(rc)) 5812 return -EIO; 5813 5814 switch (type) { 5815 case LPFC_RSC_TYPE_FCOE_RPI: 5816 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5817 break; 5818 case LPFC_RSC_TYPE_FCOE_VPI: 5819 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5820 break; 5821 case LPFC_RSC_TYPE_FCOE_XRI: 5822 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5823 break; 5824 case LPFC_RSC_TYPE_FCOE_VFI: 5825 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5826 break; 5827 default: 5828 break; 5829 } 5830 5831 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5832 curr_ext_cnt++; 5833 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5834 size_diff++; 5835 } 5836 5837 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5838 rc = 1; 5839 5840 return rc; 5841} 5842 5843/** 5844 * lpfc_sli4_cfg_post_extnts - 5845 * @phba: Pointer to HBA context object. 5846 * @extnt_cnt: number of available extents. 5847 * @type: the extent type (rpi, xri, vfi, vpi). 5848 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5849 * @mbox: pointer to the caller's allocated mailbox structure. 5850 * 5851 * This function executes the extents allocation request. It also 5852 * takes care of the amount of memory needed to allocate or get the 5853 * allocated extents. It is the caller's responsibility to evaluate 5854 * the response. 5855 * 5856 * Returns: 5857 * -Error: Error value describes the condition found. 5858 * 0: if successful 5859 **/ 5860static int 5861lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5862 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5863{ 5864 int rc = 0; 5865 uint32_t req_len; 5866 uint32_t emb_len; 5867 uint32_t alloc_len, mbox_tmo; 5868 5869 /* Calculate the total requested length of the dma memory */ 5870 req_len = extnt_cnt * sizeof(uint16_t); 5871 5872 /* 5873 * Calculate the size of an embedded mailbox. The uint32_t 5874 * accounts for extents-specific word. 5875 */ 5876 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5877 sizeof(uint32_t); 5878 5879 /* 5880 * Presume the allocation and response will fit into an embedded 5881 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5882 */ 5883 *emb = LPFC_SLI4_MBX_EMBED; 5884 if (req_len > emb_len) { 5885 req_len = extnt_cnt * sizeof(uint16_t) + 5886 sizeof(union lpfc_sli4_cfg_shdr) + 5887 sizeof(uint32_t); 5888 *emb = LPFC_SLI4_MBX_NEMBED; 5889 } 5890 5891 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5892 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5893 req_len, *emb); 5894 if (alloc_len < req_len) { 5895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5896 "2982 Allocated DMA memory size (x%x) is " 5897 "less than the requested DMA memory " 5898 "size (x%x)\n", alloc_len, req_len); 5899 return -ENOMEM; 5900 } 5901 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5902 if (unlikely(rc)) 5903 return -EIO; 5904 5905 if (!phba->sli4_hba.intr_enable) 5906 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5907 else { 5908 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5909 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5910 } 5911 5912 if (unlikely(rc)) 5913 rc = -EIO; 5914 return rc; 5915} 5916 5917/** 5918 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5919 * @phba: Pointer to HBA context object. 5920 * @type: The resource extent type to allocate. 5921 * 5922 * This function allocates the number of elements for the specified 5923 * resource type. 5924 **/ 5925static int 5926lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5927{ 5928 bool emb = false; 5929 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5930 uint16_t rsrc_id, rsrc_start, j, k; 5931 uint16_t *ids; 5932 int i, rc; 5933 unsigned long longs; 5934 unsigned long *bmask; 5935 struct lpfc_rsrc_blks *rsrc_blks; 5936 LPFC_MBOXQ_t *mbox; 5937 uint32_t length; 5938 struct lpfc_id_range *id_array = NULL; 5939 void *virtaddr = NULL; 5940 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5941 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5942 struct list_head *ext_blk_list; 5943 5944 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5945 &rsrc_cnt, 5946 &rsrc_size); 5947 if (unlikely(rc)) 5948 return -EIO; 5949 5950 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5952 "3009 No available Resource Extents " 5953 "for resource type 0x%x: Count: 0x%x, " 5954 "Size 0x%x\n", type, rsrc_cnt, 5955 rsrc_size); 5956 return -ENOMEM; 5957 } 5958 5959 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5960 "2903 Post resource extents type-0x%x: " 5961 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5962 5963 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5964 if (!mbox) 5965 return -ENOMEM; 5966 5967 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5968 if (unlikely(rc)) { 5969 rc = -EIO; 5970 goto err_exit; 5971 } 5972 5973 /* 5974 * Figure out where the response is located. Then get local pointers 5975 * to the response data. The port does not guarantee to respond to 5976 * all extents counts request so update the local variable with the 5977 * allocated count from the port. 5978 */ 5979 if (emb == LPFC_SLI4_MBX_EMBED) { 5980 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5981 id_array = &rsrc_ext->u.rsp.id[0]; 5982 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5983 } else { 5984 virtaddr = mbox->sge_array->addr[0]; 5985 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5986 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5987 id_array = &n_rsrc->id; 5988 } 5989 5990 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5991 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5992 5993 /* 5994 * Based on the resource size and count, correct the base and max 5995 * resource values. 5996 */ 5997 length = sizeof(struct lpfc_rsrc_blks); 5998 switch (type) { 5999 case LPFC_RSC_TYPE_FCOE_RPI: 6000 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6001 sizeof(unsigned long), 6002 GFP_KERNEL); 6003 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6004 rc = -ENOMEM; 6005 goto err_exit; 6006 } 6007 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6008 sizeof(uint16_t), 6009 GFP_KERNEL); 6010 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6011 kfree(phba->sli4_hba.rpi_bmask); 6012 rc = -ENOMEM; 6013 goto err_exit; 6014 } 6015 6016 /* 6017 * The next_rpi was initialized with the maximum available 6018 * count but the port may allocate a smaller number. Catch 6019 * that case and update the next_rpi. 6020 */ 6021 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6022 6023 /* Initialize local ptrs for common extent processing later. */ 6024 bmask = phba->sli4_hba.rpi_bmask; 6025 ids = phba->sli4_hba.rpi_ids; 6026 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6027 break; 6028 case LPFC_RSC_TYPE_FCOE_VPI: 6029 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6030 GFP_KERNEL); 6031 if (unlikely(!phba->vpi_bmask)) { 6032 rc = -ENOMEM; 6033 goto err_exit; 6034 } 6035 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6036 GFP_KERNEL); 6037 if (unlikely(!phba->vpi_ids)) { 6038 kfree(phba->vpi_bmask); 6039 rc = -ENOMEM; 6040 goto err_exit; 6041 } 6042 6043 /* Initialize local ptrs for common extent processing later. */ 6044 bmask = phba->vpi_bmask; 6045 ids = phba->vpi_ids; 6046 ext_blk_list = &phba->lpfc_vpi_blk_list; 6047 break; 6048 case LPFC_RSC_TYPE_FCOE_XRI: 6049 phba->sli4_hba.xri_bmask = kcalloc(longs, 6050 sizeof(unsigned long), 6051 GFP_KERNEL); 6052 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6053 rc = -ENOMEM; 6054 goto err_exit; 6055 } 6056 phba->sli4_hba.max_cfg_param.xri_used = 0; 6057 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6058 sizeof(uint16_t), 6059 GFP_KERNEL); 6060 if (unlikely(!phba->sli4_hba.xri_ids)) { 6061 kfree(phba->sli4_hba.xri_bmask); 6062 rc = -ENOMEM; 6063 goto err_exit; 6064 } 6065 6066 /* Initialize local ptrs for common extent processing later. */ 6067 bmask = phba->sli4_hba.xri_bmask; 6068 ids = phba->sli4_hba.xri_ids; 6069 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6070 break; 6071 case LPFC_RSC_TYPE_FCOE_VFI: 6072 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6073 sizeof(unsigned long), 6074 GFP_KERNEL); 6075 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6076 rc = -ENOMEM; 6077 goto err_exit; 6078 } 6079 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6080 sizeof(uint16_t), 6081 GFP_KERNEL); 6082 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6083 kfree(phba->sli4_hba.vfi_bmask); 6084 rc = -ENOMEM; 6085 goto err_exit; 6086 } 6087 6088 /* Initialize local ptrs for common extent processing later. */ 6089 bmask = phba->sli4_hba.vfi_bmask; 6090 ids = phba->sli4_hba.vfi_ids; 6091 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6092 break; 6093 default: 6094 /* Unsupported Opcode. Fail call. */ 6095 id_array = NULL; 6096 bmask = NULL; 6097 ids = NULL; 6098 ext_blk_list = NULL; 6099 goto err_exit; 6100 } 6101 6102 /* 6103 * Complete initializing the extent configuration with the 6104 * allocated ids assigned to this function. The bitmask serves 6105 * as an index into the array and manages the available ids. The 6106 * array just stores the ids communicated to the port via the wqes. 6107 */ 6108 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6109 if ((i % 2) == 0) 6110 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6111 &id_array[k]); 6112 else 6113 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6114 &id_array[k]); 6115 6116 rsrc_blks = kzalloc(length, GFP_KERNEL); 6117 if (unlikely(!rsrc_blks)) { 6118 rc = -ENOMEM; 6119 kfree(bmask); 6120 kfree(ids); 6121 goto err_exit; 6122 } 6123 rsrc_blks->rsrc_start = rsrc_id; 6124 rsrc_blks->rsrc_size = rsrc_size; 6125 list_add_tail(&rsrc_blks->list, ext_blk_list); 6126 rsrc_start = rsrc_id; 6127 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6128 phba->sli4_hba.io_xri_start = rsrc_start + 6129 lpfc_sli4_get_iocb_cnt(phba); 6130 } 6131 6132 while (rsrc_id < (rsrc_start + rsrc_size)) { 6133 ids[j] = rsrc_id; 6134 rsrc_id++; 6135 j++; 6136 } 6137 /* Entire word processed. Get next word.*/ 6138 if ((i % 2) == 1) 6139 k++; 6140 } 6141 err_exit: 6142 lpfc_sli4_mbox_cmd_free(phba, mbox); 6143 return rc; 6144} 6145 6146 6147 6148/** 6149 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6150 * @phba: Pointer to HBA context object. 6151 * @type: the extent's type. 6152 * 6153 * This function deallocates all extents of a particular resource type. 6154 * SLI4 does not allow for deallocating a particular extent range. It 6155 * is the caller's responsibility to release all kernel memory resources. 6156 **/ 6157static int 6158lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6159{ 6160 int rc; 6161 uint32_t length, mbox_tmo = 0; 6162 LPFC_MBOXQ_t *mbox; 6163 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6164 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6165 6166 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6167 if (!mbox) 6168 return -ENOMEM; 6169 6170 /* 6171 * This function sends an embedded mailbox because it only sends the 6172 * the resource type. All extents of this type are released by the 6173 * port. 6174 */ 6175 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6176 sizeof(struct lpfc_sli4_cfg_mhdr)); 6177 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6178 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6179 length, LPFC_SLI4_MBX_EMBED); 6180 6181 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6182 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6183 LPFC_SLI4_MBX_EMBED); 6184 if (unlikely(rc)) { 6185 rc = -EIO; 6186 goto out_free_mbox; 6187 } 6188 if (!phba->sli4_hba.intr_enable) 6189 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6190 else { 6191 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6192 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6193 } 6194 if (unlikely(rc)) { 6195 rc = -EIO; 6196 goto out_free_mbox; 6197 } 6198 6199 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6200 if (bf_get(lpfc_mbox_hdr_status, 6201 &dealloc_rsrc->header.cfg_shdr.response)) { 6202 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6203 "2919 Failed to release resource extents " 6204 "for type %d - Status 0x%x Add'l Status 0x%x. " 6205 "Resource memory not released.\n", 6206 type, 6207 bf_get(lpfc_mbox_hdr_status, 6208 &dealloc_rsrc->header.cfg_shdr.response), 6209 bf_get(lpfc_mbox_hdr_add_status, 6210 &dealloc_rsrc->header.cfg_shdr.response)); 6211 rc = -EIO; 6212 goto out_free_mbox; 6213 } 6214 6215 /* Release kernel memory resources for the specific type. */ 6216 switch (type) { 6217 case LPFC_RSC_TYPE_FCOE_VPI: 6218 kfree(phba->vpi_bmask); 6219 kfree(phba->vpi_ids); 6220 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6221 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6222 &phba->lpfc_vpi_blk_list, list) { 6223 list_del_init(&rsrc_blk->list); 6224 kfree(rsrc_blk); 6225 } 6226 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6227 break; 6228 case LPFC_RSC_TYPE_FCOE_XRI: 6229 kfree(phba->sli4_hba.xri_bmask); 6230 kfree(phba->sli4_hba.xri_ids); 6231 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6232 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6233 list_del_init(&rsrc_blk->list); 6234 kfree(rsrc_blk); 6235 } 6236 break; 6237 case LPFC_RSC_TYPE_FCOE_VFI: 6238 kfree(phba->sli4_hba.vfi_bmask); 6239 kfree(phba->sli4_hba.vfi_ids); 6240 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6241 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6242 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6243 list_del_init(&rsrc_blk->list); 6244 kfree(rsrc_blk); 6245 } 6246 break; 6247 case LPFC_RSC_TYPE_FCOE_RPI: 6248 /* RPI bitmask and physical id array are cleaned up earlier. */ 6249 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6250 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6251 list_del_init(&rsrc_blk->list); 6252 kfree(rsrc_blk); 6253 } 6254 break; 6255 default: 6256 break; 6257 } 6258 6259 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6260 6261 out_free_mbox: 6262 mempool_free(mbox, phba->mbox_mem_pool); 6263 return rc; 6264} 6265 6266static void 6267lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6268 uint32_t feature) 6269{ 6270 uint32_t len; 6271 6272 len = sizeof(struct lpfc_mbx_set_feature) - 6273 sizeof(struct lpfc_sli4_cfg_mhdr); 6274 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6275 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6276 LPFC_SLI4_MBX_EMBED); 6277 6278 switch (feature) { 6279 case LPFC_SET_UE_RECOVERY: 6280 bf_set(lpfc_mbx_set_feature_UER, 6281 &mbox->u.mqe.un.set_feature, 1); 6282 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6283 mbox->u.mqe.un.set_feature.param_len = 8; 6284 break; 6285 case LPFC_SET_MDS_DIAGS: 6286 bf_set(lpfc_mbx_set_feature_mds, 6287 &mbox->u.mqe.un.set_feature, 1); 6288 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6289 &mbox->u.mqe.un.set_feature, 1); 6290 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6291 mbox->u.mqe.un.set_feature.param_len = 8; 6292 break; 6293 case LPFC_SET_DUAL_DUMP: 6294 bf_set(lpfc_mbx_set_feature_dd, 6295 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6296 bf_set(lpfc_mbx_set_feature_ddquery, 6297 &mbox->u.mqe.un.set_feature, 0); 6298 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6299 mbox->u.mqe.un.set_feature.param_len = 4; 6300 break; 6301 } 6302 6303 return; 6304} 6305 6306/** 6307 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6308 * @phba: Pointer to HBA context object. 6309 * 6310 * Disable FW logging into host memory on the adapter. To 6311 * be done before reading logs from the host memory. 6312 **/ 6313void 6314lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6315{ 6316 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6317 6318 spin_lock_irq(&phba->hbalock); 6319 ras_fwlog->state = INACTIVE; 6320 spin_unlock_irq(&phba->hbalock); 6321 6322 /* Disable FW logging to host memory */ 6323 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6324 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6325 6326 /* Wait 10ms for firmware to stop using DMA buffer */ 6327 usleep_range(10 * 1000, 20 * 1000); 6328} 6329 6330/** 6331 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6332 * @phba: Pointer to HBA context object. 6333 * 6334 * This function is called to free memory allocated for RAS FW logging 6335 * support in the driver. 6336 **/ 6337void 6338lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6339{ 6340 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6341 struct lpfc_dmabuf *dmabuf, *next; 6342 6343 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6344 list_for_each_entry_safe(dmabuf, next, 6345 &ras_fwlog->fwlog_buff_list, 6346 list) { 6347 list_del(&dmabuf->list); 6348 dma_free_coherent(&phba->pcidev->dev, 6349 LPFC_RAS_MAX_ENTRY_SIZE, 6350 dmabuf->virt, dmabuf->phys); 6351 kfree(dmabuf); 6352 } 6353 } 6354 6355 if (ras_fwlog->lwpd.virt) { 6356 dma_free_coherent(&phba->pcidev->dev, 6357 sizeof(uint32_t) * 2, 6358 ras_fwlog->lwpd.virt, 6359 ras_fwlog->lwpd.phys); 6360 ras_fwlog->lwpd.virt = NULL; 6361 } 6362 6363 spin_lock_irq(&phba->hbalock); 6364 ras_fwlog->state = INACTIVE; 6365 spin_unlock_irq(&phba->hbalock); 6366} 6367 6368/** 6369 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6370 * @phba: Pointer to HBA context object. 6371 * @fwlog_buff_count: Count of buffers to be created. 6372 * 6373 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6374 * to update FW log is posted to the adapter. 6375 * Buffer count is calculated based on module param ras_fwlog_buffsize 6376 * Size of each buffer posted to FW is 64K. 6377 **/ 6378 6379static int 6380lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6381 uint32_t fwlog_buff_count) 6382{ 6383 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6384 struct lpfc_dmabuf *dmabuf; 6385 int rc = 0, i = 0; 6386 6387 /* Initialize List */ 6388 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6389 6390 /* Allocate memory for the LWPD */ 6391 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6392 sizeof(uint32_t) * 2, 6393 &ras_fwlog->lwpd.phys, 6394 GFP_KERNEL); 6395 if (!ras_fwlog->lwpd.virt) { 6396 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6397 "6185 LWPD Memory Alloc Failed\n"); 6398 6399 return -ENOMEM; 6400 } 6401 6402 ras_fwlog->fw_buffcount = fwlog_buff_count; 6403 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6404 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6405 GFP_KERNEL); 6406 if (!dmabuf) { 6407 rc = -ENOMEM; 6408 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6409 "6186 Memory Alloc failed FW logging"); 6410 goto free_mem; 6411 } 6412 6413 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6414 LPFC_RAS_MAX_ENTRY_SIZE, 6415 &dmabuf->phys, GFP_KERNEL); 6416 if (!dmabuf->virt) { 6417 kfree(dmabuf); 6418 rc = -ENOMEM; 6419 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6420 "6187 DMA Alloc Failed FW logging"); 6421 goto free_mem; 6422 } 6423 dmabuf->buffer_tag = i; 6424 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6425 } 6426 6427free_mem: 6428 if (rc) 6429 lpfc_sli4_ras_dma_free(phba); 6430 6431 return rc; 6432} 6433 6434/** 6435 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6436 * @phba: pointer to lpfc hba data structure. 6437 * @pmb: pointer to the driver internal queue element for mailbox command. 6438 * 6439 * Completion handler for driver's RAS MBX command to the device. 6440 **/ 6441static void 6442lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6443{ 6444 MAILBOX_t *mb; 6445 union lpfc_sli4_cfg_shdr *shdr; 6446 uint32_t shdr_status, shdr_add_status; 6447 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6448 6449 mb = &pmb->u.mb; 6450 6451 shdr = (union lpfc_sli4_cfg_shdr *) 6452 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6453 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6454 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6455 6456 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6458 "6188 FW LOG mailbox " 6459 "completed with status x%x add_status x%x," 6460 " mbx status x%x\n", 6461 shdr_status, shdr_add_status, mb->mbxStatus); 6462 6463 ras_fwlog->ras_hwsupport = false; 6464 goto disable_ras; 6465 } 6466 6467 spin_lock_irq(&phba->hbalock); 6468 ras_fwlog->state = ACTIVE; 6469 spin_unlock_irq(&phba->hbalock); 6470 mempool_free(pmb, phba->mbox_mem_pool); 6471 6472 return; 6473 6474disable_ras: 6475 /* Free RAS DMA memory */ 6476 lpfc_sli4_ras_dma_free(phba); 6477 mempool_free(pmb, phba->mbox_mem_pool); 6478} 6479 6480/** 6481 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6482 * @phba: pointer to lpfc hba data structure. 6483 * @fwlog_level: Logging verbosity level. 6484 * @fwlog_enable: Enable/Disable logging. 6485 * 6486 * Initialize memory and post mailbox command to enable FW logging in host 6487 * memory. 6488 **/ 6489int 6490lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6491 uint32_t fwlog_level, 6492 uint32_t fwlog_enable) 6493{ 6494 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6495 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6496 struct lpfc_dmabuf *dmabuf; 6497 LPFC_MBOXQ_t *mbox; 6498 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6499 int rc = 0; 6500 6501 spin_lock_irq(&phba->hbalock); 6502 ras_fwlog->state = INACTIVE; 6503 spin_unlock_irq(&phba->hbalock); 6504 6505 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6506 phba->cfg_ras_fwlog_buffsize); 6507 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6508 6509 /* 6510 * If re-enabling FW logging support use earlier allocated 6511 * DMA buffers while posting MBX command. 6512 **/ 6513 if (!ras_fwlog->lwpd.virt) { 6514 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6515 if (rc) { 6516 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6517 "6189 FW Log Memory Allocation Failed"); 6518 return rc; 6519 } 6520 } 6521 6522 /* Setup Mailbox command */ 6523 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6524 if (!mbox) { 6525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6526 "6190 RAS MBX Alloc Failed"); 6527 rc = -ENOMEM; 6528 goto mem_free; 6529 } 6530 6531 ras_fwlog->fw_loglevel = fwlog_level; 6532 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6533 sizeof(struct lpfc_sli4_cfg_mhdr)); 6534 6535 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6536 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6537 len, LPFC_SLI4_MBX_EMBED); 6538 6539 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6540 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6541 fwlog_enable); 6542 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6543 ras_fwlog->fw_loglevel); 6544 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6545 ras_fwlog->fw_buffcount); 6546 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6547 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6548 6549 /* Update DMA buffer address */ 6550 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6551 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6552 6553 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6554 putPaddrLow(dmabuf->phys); 6555 6556 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6557 putPaddrHigh(dmabuf->phys); 6558 } 6559 6560 /* Update LPWD address */ 6561 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6562 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6563 6564 spin_lock_irq(&phba->hbalock); 6565 ras_fwlog->state = REG_INPROGRESS; 6566 spin_unlock_irq(&phba->hbalock); 6567 mbox->vport = phba->pport; 6568 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6569 6570 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6571 6572 if (rc == MBX_NOT_FINISHED) { 6573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6574 "6191 FW-Log Mailbox failed. " 6575 "status %d mbxStatus : x%x", rc, 6576 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6577 mempool_free(mbox, phba->mbox_mem_pool); 6578 rc = -EIO; 6579 goto mem_free; 6580 } else 6581 rc = 0; 6582mem_free: 6583 if (rc) 6584 lpfc_sli4_ras_dma_free(phba); 6585 6586 return rc; 6587} 6588 6589/** 6590 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6591 * @phba: Pointer to HBA context object. 6592 * 6593 * Check if RAS is supported on the adapter and initialize it. 6594 **/ 6595void 6596lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6597{ 6598 /* Check RAS FW Log needs to be enabled or not */ 6599 if (lpfc_check_fwlog_support(phba)) 6600 return; 6601 6602 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6603 LPFC_RAS_ENABLE_LOGGING); 6604} 6605 6606/** 6607 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6608 * @phba: Pointer to HBA context object. 6609 * 6610 * This function allocates all SLI4 resource identifiers. 6611 **/ 6612int 6613lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6614{ 6615 int i, rc, error = 0; 6616 uint16_t count, base; 6617 unsigned long longs; 6618 6619 if (!phba->sli4_hba.rpi_hdrs_in_use) 6620 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6621 if (phba->sli4_hba.extents_in_use) { 6622 /* 6623 * The port supports resource extents. The XRI, VPI, VFI, RPI 6624 * resource extent count must be read and allocated before 6625 * provisioning the resource id arrays. 6626 */ 6627 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6628 LPFC_IDX_RSRC_RDY) { 6629 /* 6630 * Extent-based resources are set - the driver could 6631 * be in a port reset. Figure out if any corrective 6632 * actions need to be taken. 6633 */ 6634 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6635 LPFC_RSC_TYPE_FCOE_VFI); 6636 if (rc != 0) 6637 error++; 6638 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6639 LPFC_RSC_TYPE_FCOE_VPI); 6640 if (rc != 0) 6641 error++; 6642 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6643 LPFC_RSC_TYPE_FCOE_XRI); 6644 if (rc != 0) 6645 error++; 6646 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6647 LPFC_RSC_TYPE_FCOE_RPI); 6648 if (rc != 0) 6649 error++; 6650 6651 /* 6652 * It's possible that the number of resources 6653 * provided to this port instance changed between 6654 * resets. Detect this condition and reallocate 6655 * resources. Otherwise, there is no action. 6656 */ 6657 if (error) { 6658 lpfc_printf_log(phba, KERN_INFO, 6659 LOG_MBOX | LOG_INIT, 6660 "2931 Detected extent resource " 6661 "change. Reallocating all " 6662 "extents.\n"); 6663 rc = lpfc_sli4_dealloc_extent(phba, 6664 LPFC_RSC_TYPE_FCOE_VFI); 6665 rc = lpfc_sli4_dealloc_extent(phba, 6666 LPFC_RSC_TYPE_FCOE_VPI); 6667 rc = lpfc_sli4_dealloc_extent(phba, 6668 LPFC_RSC_TYPE_FCOE_XRI); 6669 rc = lpfc_sli4_dealloc_extent(phba, 6670 LPFC_RSC_TYPE_FCOE_RPI); 6671 } else 6672 return 0; 6673 } 6674 6675 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6676 if (unlikely(rc)) 6677 goto err_exit; 6678 6679 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6680 if (unlikely(rc)) 6681 goto err_exit; 6682 6683 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6684 if (unlikely(rc)) 6685 goto err_exit; 6686 6687 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6688 if (unlikely(rc)) 6689 goto err_exit; 6690 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6691 LPFC_IDX_RSRC_RDY); 6692 return rc; 6693 } else { 6694 /* 6695 * The port does not support resource extents. The XRI, VPI, 6696 * VFI, RPI resource ids were determined from READ_CONFIG. 6697 * Just allocate the bitmasks and provision the resource id 6698 * arrays. If a port reset is active, the resources don't 6699 * need any action - just exit. 6700 */ 6701 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6702 LPFC_IDX_RSRC_RDY) { 6703 lpfc_sli4_dealloc_resource_identifiers(phba); 6704 lpfc_sli4_remove_rpis(phba); 6705 } 6706 /* RPIs. */ 6707 count = phba->sli4_hba.max_cfg_param.max_rpi; 6708 if (count <= 0) { 6709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6710 "3279 Invalid provisioning of " 6711 "rpi:%d\n", count); 6712 rc = -EINVAL; 6713 goto err_exit; 6714 } 6715 base = phba->sli4_hba.max_cfg_param.rpi_base; 6716 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6717 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6718 sizeof(unsigned long), 6719 GFP_KERNEL); 6720 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6721 rc = -ENOMEM; 6722 goto err_exit; 6723 } 6724 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6725 GFP_KERNEL); 6726 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6727 rc = -ENOMEM; 6728 goto free_rpi_bmask; 6729 } 6730 6731 for (i = 0; i < count; i++) 6732 phba->sli4_hba.rpi_ids[i] = base + i; 6733 6734 /* VPIs. */ 6735 count = phba->sli4_hba.max_cfg_param.max_vpi; 6736 if (count <= 0) { 6737 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6738 "3280 Invalid provisioning of " 6739 "vpi:%d\n", count); 6740 rc = -EINVAL; 6741 goto free_rpi_ids; 6742 } 6743 base = phba->sli4_hba.max_cfg_param.vpi_base; 6744 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6745 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6746 GFP_KERNEL); 6747 if (unlikely(!phba->vpi_bmask)) { 6748 rc = -ENOMEM; 6749 goto free_rpi_ids; 6750 } 6751 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6752 GFP_KERNEL); 6753 if (unlikely(!phba->vpi_ids)) { 6754 rc = -ENOMEM; 6755 goto free_vpi_bmask; 6756 } 6757 6758 for (i = 0; i < count; i++) 6759 phba->vpi_ids[i] = base + i; 6760 6761 /* XRIs. */ 6762 count = phba->sli4_hba.max_cfg_param.max_xri; 6763 if (count <= 0) { 6764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6765 "3281 Invalid provisioning of " 6766 "xri:%d\n", count); 6767 rc = -EINVAL; 6768 goto free_vpi_ids; 6769 } 6770 base = phba->sli4_hba.max_cfg_param.xri_base; 6771 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6772 phba->sli4_hba.xri_bmask = kcalloc(longs, 6773 sizeof(unsigned long), 6774 GFP_KERNEL); 6775 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6776 rc = -ENOMEM; 6777 goto free_vpi_ids; 6778 } 6779 phba->sli4_hba.max_cfg_param.xri_used = 0; 6780 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6781 GFP_KERNEL); 6782 if (unlikely(!phba->sli4_hba.xri_ids)) { 6783 rc = -ENOMEM; 6784 goto free_xri_bmask; 6785 } 6786 6787 for (i = 0; i < count; i++) 6788 phba->sli4_hba.xri_ids[i] = base + i; 6789 6790 /* VFIs. */ 6791 count = phba->sli4_hba.max_cfg_param.max_vfi; 6792 if (count <= 0) { 6793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6794 "3282 Invalid provisioning of " 6795 "vfi:%d\n", count); 6796 rc = -EINVAL; 6797 goto free_xri_ids; 6798 } 6799 base = phba->sli4_hba.max_cfg_param.vfi_base; 6800 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6801 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6802 sizeof(unsigned long), 6803 GFP_KERNEL); 6804 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6805 rc = -ENOMEM; 6806 goto free_xri_ids; 6807 } 6808 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6809 GFP_KERNEL); 6810 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6811 rc = -ENOMEM; 6812 goto free_vfi_bmask; 6813 } 6814 6815 for (i = 0; i < count; i++) 6816 phba->sli4_hba.vfi_ids[i] = base + i; 6817 6818 /* 6819 * Mark all resources ready. An HBA reset doesn't need 6820 * to reset the initialization. 6821 */ 6822 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6823 LPFC_IDX_RSRC_RDY); 6824 return 0; 6825 } 6826 6827 free_vfi_bmask: 6828 kfree(phba->sli4_hba.vfi_bmask); 6829 phba->sli4_hba.vfi_bmask = NULL; 6830 free_xri_ids: 6831 kfree(phba->sli4_hba.xri_ids); 6832 phba->sli4_hba.xri_ids = NULL; 6833 free_xri_bmask: 6834 kfree(phba->sli4_hba.xri_bmask); 6835 phba->sli4_hba.xri_bmask = NULL; 6836 free_vpi_ids: 6837 kfree(phba->vpi_ids); 6838 phba->vpi_ids = NULL; 6839 free_vpi_bmask: 6840 kfree(phba->vpi_bmask); 6841 phba->vpi_bmask = NULL; 6842 free_rpi_ids: 6843 kfree(phba->sli4_hba.rpi_ids); 6844 phba->sli4_hba.rpi_ids = NULL; 6845 free_rpi_bmask: 6846 kfree(phba->sli4_hba.rpi_bmask); 6847 phba->sli4_hba.rpi_bmask = NULL; 6848 err_exit: 6849 return rc; 6850} 6851 6852/** 6853 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6854 * @phba: Pointer to HBA context object. 6855 * 6856 * This function allocates the number of elements for the specified 6857 * resource type. 6858 **/ 6859int 6860lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6861{ 6862 if (phba->sli4_hba.extents_in_use) { 6863 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6864 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6865 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6866 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6867 } else { 6868 kfree(phba->vpi_bmask); 6869 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6870 kfree(phba->vpi_ids); 6871 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6872 kfree(phba->sli4_hba.xri_bmask); 6873 kfree(phba->sli4_hba.xri_ids); 6874 kfree(phba->sli4_hba.vfi_bmask); 6875 kfree(phba->sli4_hba.vfi_ids); 6876 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6877 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6878 } 6879 6880 return 0; 6881} 6882 6883/** 6884 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6885 * @phba: Pointer to HBA context object. 6886 * @type: The resource extent type. 6887 * @extnt_cnt: buffer to hold port extent count response 6888 * @extnt_size: buffer to hold port extent size response. 6889 * 6890 * This function calls the port to read the host allocated extents 6891 * for a particular type. 6892 **/ 6893int 6894lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6895 uint16_t *extnt_cnt, uint16_t *extnt_size) 6896{ 6897 bool emb; 6898 int rc = 0; 6899 uint16_t curr_blks = 0; 6900 uint32_t req_len, emb_len; 6901 uint32_t alloc_len, mbox_tmo; 6902 struct list_head *blk_list_head; 6903 struct lpfc_rsrc_blks *rsrc_blk; 6904 LPFC_MBOXQ_t *mbox; 6905 void *virtaddr = NULL; 6906 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6907 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6908 union lpfc_sli4_cfg_shdr *shdr; 6909 6910 switch (type) { 6911 case LPFC_RSC_TYPE_FCOE_VPI: 6912 blk_list_head = &phba->lpfc_vpi_blk_list; 6913 break; 6914 case LPFC_RSC_TYPE_FCOE_XRI: 6915 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6916 break; 6917 case LPFC_RSC_TYPE_FCOE_VFI: 6918 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6919 break; 6920 case LPFC_RSC_TYPE_FCOE_RPI: 6921 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6922 break; 6923 default: 6924 return -EIO; 6925 } 6926 6927 /* Count the number of extents currently allocatd for this type. */ 6928 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6929 if (curr_blks == 0) { 6930 /* 6931 * The GET_ALLOCATED mailbox does not return the size, 6932 * just the count. The size should be just the size 6933 * stored in the current allocated block and all sizes 6934 * for an extent type are the same so set the return 6935 * value now. 6936 */ 6937 *extnt_size = rsrc_blk->rsrc_size; 6938 } 6939 curr_blks++; 6940 } 6941 6942 /* 6943 * Calculate the size of an embedded mailbox. The uint32_t 6944 * accounts for extents-specific word. 6945 */ 6946 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6947 sizeof(uint32_t); 6948 6949 /* 6950 * Presume the allocation and response will fit into an embedded 6951 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6952 */ 6953 emb = LPFC_SLI4_MBX_EMBED; 6954 req_len = emb_len; 6955 if (req_len > emb_len) { 6956 req_len = curr_blks * sizeof(uint16_t) + 6957 sizeof(union lpfc_sli4_cfg_shdr) + 6958 sizeof(uint32_t); 6959 emb = LPFC_SLI4_MBX_NEMBED; 6960 } 6961 6962 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6963 if (!mbox) 6964 return -ENOMEM; 6965 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6966 6967 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6968 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6969 req_len, emb); 6970 if (alloc_len < req_len) { 6971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6972 "2983 Allocated DMA memory size (x%x) is " 6973 "less than the requested DMA memory " 6974 "size (x%x)\n", alloc_len, req_len); 6975 rc = -ENOMEM; 6976 goto err_exit; 6977 } 6978 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6979 if (unlikely(rc)) { 6980 rc = -EIO; 6981 goto err_exit; 6982 } 6983 6984 if (!phba->sli4_hba.intr_enable) 6985 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6986 else { 6987 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6988 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6989 } 6990 6991 if (unlikely(rc)) { 6992 rc = -EIO; 6993 goto err_exit; 6994 } 6995 6996 /* 6997 * Figure out where the response is located. Then get local pointers 6998 * to the response data. The port does not guarantee to respond to 6999 * all extents counts request so update the local variable with the 7000 * allocated count from the port. 7001 */ 7002 if (emb == LPFC_SLI4_MBX_EMBED) { 7003 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7004 shdr = &rsrc_ext->header.cfg_shdr; 7005 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7006 } else { 7007 virtaddr = mbox->sge_array->addr[0]; 7008 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7009 shdr = &n_rsrc->cfg_shdr; 7010 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7011 } 7012 7013 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7015 "2984 Failed to read allocated resources " 7016 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7017 type, 7018 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7019 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7020 rc = -EIO; 7021 goto err_exit; 7022 } 7023 err_exit: 7024 lpfc_sli4_mbox_cmd_free(phba, mbox); 7025 return rc; 7026} 7027 7028/** 7029 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7030 * @phba: pointer to lpfc hba data structure. 7031 * @sgl_list: linked link of sgl buffers to post 7032 * @cnt: number of linked list buffers 7033 * 7034 * This routine walks the list of buffers that have been allocated and 7035 * repost them to the port by using SGL block post. This is needed after a 7036 * pci_function_reset/warm_start or start. It attempts to construct blocks 7037 * of buffer sgls which contains contiguous xris and uses the non-embedded 7038 * SGL block post mailbox commands to post them to the port. For single 7039 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7040 * mailbox command for posting. 7041 * 7042 * Returns: 0 = success, non-zero failure. 7043 **/ 7044static int 7045lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7046 struct list_head *sgl_list, int cnt) 7047{ 7048 struct lpfc_sglq *sglq_entry = NULL; 7049 struct lpfc_sglq *sglq_entry_next = NULL; 7050 struct lpfc_sglq *sglq_entry_first = NULL; 7051 int status, total_cnt; 7052 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7053 int last_xritag = NO_XRI; 7054 LIST_HEAD(prep_sgl_list); 7055 LIST_HEAD(blck_sgl_list); 7056 LIST_HEAD(allc_sgl_list); 7057 LIST_HEAD(post_sgl_list); 7058 LIST_HEAD(free_sgl_list); 7059 7060 spin_lock_irq(&phba->hbalock); 7061 spin_lock(&phba->sli4_hba.sgl_list_lock); 7062 list_splice_init(sgl_list, &allc_sgl_list); 7063 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7064 spin_unlock_irq(&phba->hbalock); 7065 7066 total_cnt = cnt; 7067 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7068 &allc_sgl_list, list) { 7069 list_del_init(&sglq_entry->list); 7070 block_cnt++; 7071 if ((last_xritag != NO_XRI) && 7072 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7073 /* a hole in xri block, form a sgl posting block */ 7074 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7075 post_cnt = block_cnt - 1; 7076 /* prepare list for next posting block */ 7077 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7078 block_cnt = 1; 7079 } else { 7080 /* prepare list for next posting block */ 7081 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7082 /* enough sgls for non-embed sgl mbox command */ 7083 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7084 list_splice_init(&prep_sgl_list, 7085 &blck_sgl_list); 7086 post_cnt = block_cnt; 7087 block_cnt = 0; 7088 } 7089 } 7090 num_posted++; 7091 7092 /* keep track of last sgl's xritag */ 7093 last_xritag = sglq_entry->sli4_xritag; 7094 7095 /* end of repost sgl list condition for buffers */ 7096 if (num_posted == total_cnt) { 7097 if (post_cnt == 0) { 7098 list_splice_init(&prep_sgl_list, 7099 &blck_sgl_list); 7100 post_cnt = block_cnt; 7101 } else if (block_cnt == 1) { 7102 status = lpfc_sli4_post_sgl(phba, 7103 sglq_entry->phys, 0, 7104 sglq_entry->sli4_xritag); 7105 if (!status) { 7106 /* successful, put sgl to posted list */ 7107 list_add_tail(&sglq_entry->list, 7108 &post_sgl_list); 7109 } else { 7110 /* Failure, put sgl to free list */ 7111 lpfc_printf_log(phba, KERN_WARNING, 7112 LOG_SLI, 7113 "3159 Failed to post " 7114 "sgl, xritag:x%x\n", 7115 sglq_entry->sli4_xritag); 7116 list_add_tail(&sglq_entry->list, 7117 &free_sgl_list); 7118 total_cnt--; 7119 } 7120 } 7121 } 7122 7123 /* continue until a nembed page worth of sgls */ 7124 if (post_cnt == 0) 7125 continue; 7126 7127 /* post the buffer list sgls as a block */ 7128 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7129 post_cnt); 7130 7131 if (!status) { 7132 /* success, put sgl list to posted sgl list */ 7133 list_splice_init(&blck_sgl_list, &post_sgl_list); 7134 } else { 7135 /* Failure, put sgl list to free sgl list */ 7136 sglq_entry_first = list_first_entry(&blck_sgl_list, 7137 struct lpfc_sglq, 7138 list); 7139 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7140 "3160 Failed to post sgl-list, " 7141 "xritag:x%x-x%x\n", 7142 sglq_entry_first->sli4_xritag, 7143 (sglq_entry_first->sli4_xritag + 7144 post_cnt - 1)); 7145 list_splice_init(&blck_sgl_list, &free_sgl_list); 7146 total_cnt -= post_cnt; 7147 } 7148 7149 /* don't reset xirtag due to hole in xri block */ 7150 if (block_cnt == 0) 7151 last_xritag = NO_XRI; 7152 7153 /* reset sgl post count for next round of posting */ 7154 post_cnt = 0; 7155 } 7156 7157 /* free the sgls failed to post */ 7158 lpfc_free_sgl_list(phba, &free_sgl_list); 7159 7160 /* push sgls posted to the available list */ 7161 if (!list_empty(&post_sgl_list)) { 7162 spin_lock_irq(&phba->hbalock); 7163 spin_lock(&phba->sli4_hba.sgl_list_lock); 7164 list_splice_init(&post_sgl_list, sgl_list); 7165 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7166 spin_unlock_irq(&phba->hbalock); 7167 } else { 7168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7169 "3161 Failure to post sgl to port.\n"); 7170 return -EIO; 7171 } 7172 7173 /* return the number of XRIs actually posted */ 7174 return total_cnt; 7175} 7176 7177/** 7178 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7179 * @phba: pointer to lpfc hba data structure. 7180 * 7181 * This routine walks the list of nvme buffers that have been allocated and 7182 * repost them to the port by using SGL block post. This is needed after a 7183 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7184 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7185 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7186 * 7187 * Returns: 0 = success, non-zero failure. 7188 **/ 7189static int 7190lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7191{ 7192 LIST_HEAD(post_nblist); 7193 int num_posted, rc = 0; 7194 7195 /* get all NVME buffers need to repost to a local list */ 7196 lpfc_io_buf_flush(phba, &post_nblist); 7197 7198 /* post the list of nvme buffer sgls to port if available */ 7199 if (!list_empty(&post_nblist)) { 7200 num_posted = lpfc_sli4_post_io_sgl_list( 7201 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7202 /* failed to post any nvme buffer, return error */ 7203 if (num_posted == 0) 7204 rc = -EIO; 7205 } 7206 return rc; 7207} 7208 7209static void 7210lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7211{ 7212 uint32_t len; 7213 7214 len = sizeof(struct lpfc_mbx_set_host_data) - 7215 sizeof(struct lpfc_sli4_cfg_mhdr); 7216 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7217 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7218 LPFC_SLI4_MBX_EMBED); 7219 7220 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7221 mbox->u.mqe.un.set_host_data.param_len = 7222 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7223 snprintf(mbox->u.mqe.un.set_host_data.data, 7224 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7225 "Linux %s v"LPFC_DRIVER_VERSION, 7226 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7227} 7228 7229int 7230lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7231 struct lpfc_queue *drq, int count, int idx) 7232{ 7233 int rc, i; 7234 struct lpfc_rqe hrqe; 7235 struct lpfc_rqe drqe; 7236 struct lpfc_rqb *rqbp; 7237 unsigned long flags; 7238 struct rqb_dmabuf *rqb_buffer; 7239 LIST_HEAD(rqb_buf_list); 7240 7241 rqbp = hrq->rqbp; 7242 for (i = 0; i < count; i++) { 7243 spin_lock_irqsave(&phba->hbalock, flags); 7244 /* IF RQ is already full, don't bother */ 7245 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7246 spin_unlock_irqrestore(&phba->hbalock, flags); 7247 break; 7248 } 7249 spin_unlock_irqrestore(&phba->hbalock, flags); 7250 7251 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7252 if (!rqb_buffer) 7253 break; 7254 rqb_buffer->hrq = hrq; 7255 rqb_buffer->drq = drq; 7256 rqb_buffer->idx = idx; 7257 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7258 } 7259 7260 spin_lock_irqsave(&phba->hbalock, flags); 7261 while (!list_empty(&rqb_buf_list)) { 7262 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7263 hbuf.list); 7264 7265 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7266 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7267 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7268 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7269 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7270 if (rc < 0) { 7271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7272 "6421 Cannot post to HRQ %d: %x %x %x " 7273 "DRQ %x %x\n", 7274 hrq->queue_id, 7275 hrq->host_index, 7276 hrq->hba_index, 7277 hrq->entry_count, 7278 drq->host_index, 7279 drq->hba_index); 7280 rqbp->rqb_free_buffer(phba, rqb_buffer); 7281 } else { 7282 list_add_tail(&rqb_buffer->hbuf.list, 7283 &rqbp->rqb_buffer_list); 7284 rqbp->buffer_count++; 7285 } 7286 } 7287 spin_unlock_irqrestore(&phba->hbalock, flags); 7288 return 1; 7289} 7290 7291/** 7292 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7293 * @phba: pointer to lpfc hba data structure. 7294 * 7295 * This routine initializes the per-cq idle_stat to dynamically dictate 7296 * polling decisions. 7297 * 7298 * Return codes: 7299 * None 7300 **/ 7301static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7302{ 7303 int i; 7304 struct lpfc_sli4_hdw_queue *hdwq; 7305 struct lpfc_queue *cq; 7306 struct lpfc_idle_stat *idle_stat; 7307 u64 wall; 7308 7309 for_each_present_cpu(i) { 7310 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7311 cq = hdwq->io_cq; 7312 7313 /* Skip if we've already handled this cq's primary CPU */ 7314 if (cq->chann != i) 7315 continue; 7316 7317 idle_stat = &phba->sli4_hba.idle_stat[i]; 7318 7319 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7320 idle_stat->prev_wall = wall; 7321 7322 if (phba->nvmet_support) 7323 cq->poll_mode = LPFC_QUEUE_WORK; 7324 else 7325 cq->poll_mode = LPFC_IRQ_POLL; 7326 } 7327 7328 if (!phba->nvmet_support) 7329 schedule_delayed_work(&phba->idle_stat_delay_work, 7330 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7331} 7332 7333static void lpfc_sli4_dip(struct lpfc_hba *phba) 7334{ 7335 uint32_t if_type; 7336 7337 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7338 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7339 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7340 struct lpfc_register reg_data; 7341 7342 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7343 ®_data.word0)) 7344 return; 7345 7346 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7348 "2904 Firmware Dump Image Present" 7349 " on Adapter"); 7350 } 7351} 7352 7353/** 7354 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7355 * @phba: Pointer to HBA context object. 7356 * 7357 * This function is the main SLI4 device initialization PCI function. This 7358 * function is called by the HBA initialization code, HBA reset code and 7359 * HBA error attention handler code. Caller is not required to hold any 7360 * locks. 7361 **/ 7362int 7363lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7364{ 7365 int rc, i, cnt, len, dd; 7366 LPFC_MBOXQ_t *mboxq; 7367 struct lpfc_mqe *mqe; 7368 uint8_t *vpd; 7369 uint32_t vpd_size; 7370 uint32_t ftr_rsp = 0; 7371 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7372 struct lpfc_vport *vport = phba->pport; 7373 struct lpfc_dmabuf *mp; 7374 struct lpfc_rqb *rqbp; 7375 u32 flg; 7376 7377 /* Perform a PCI function reset to start from clean */ 7378 rc = lpfc_pci_function_reset(phba); 7379 if (unlikely(rc)) 7380 return -ENODEV; 7381 7382 /* Check the HBA Host Status Register for readyness */ 7383 rc = lpfc_sli4_post_status_check(phba); 7384 if (unlikely(rc)) 7385 return -ENODEV; 7386 else { 7387 spin_lock_irq(&phba->hbalock); 7388 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7389 flg = phba->sli.sli_flag; 7390 spin_unlock_irq(&phba->hbalock); 7391 /* Allow a little time after setting SLI_ACTIVE for any polled 7392 * MBX commands to complete via BSG. 7393 */ 7394 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 7395 msleep(20); 7396 spin_lock_irq(&phba->hbalock); 7397 flg = phba->sli.sli_flag; 7398 spin_unlock_irq(&phba->hbalock); 7399 } 7400 } 7401 7402 lpfc_sli4_dip(phba); 7403 7404 /* 7405 * Allocate a single mailbox container for initializing the 7406 * port. 7407 */ 7408 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7409 if (!mboxq) 7410 return -ENOMEM; 7411 7412 /* Issue READ_REV to collect vpd and FW information. */ 7413 vpd_size = SLI4_PAGE_SIZE; 7414 vpd = kzalloc(vpd_size, GFP_KERNEL); 7415 if (!vpd) { 7416 rc = -ENOMEM; 7417 goto out_free_mbox; 7418 } 7419 7420 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7421 if (unlikely(rc)) { 7422 kfree(vpd); 7423 goto out_free_mbox; 7424 } 7425 7426 mqe = &mboxq->u.mqe; 7427 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7428 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7429 phba->hba_flag |= HBA_FCOE_MODE; 7430 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7431 } else { 7432 phba->hba_flag &= ~HBA_FCOE_MODE; 7433 } 7434 7435 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7436 LPFC_DCBX_CEE_MODE) 7437 phba->hba_flag |= HBA_FIP_SUPPORT; 7438 else 7439 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7440 7441 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7442 7443 if (phba->sli_rev != LPFC_SLI_REV4) { 7444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7445 "0376 READ_REV Error. SLI Level %d " 7446 "FCoE enabled %d\n", 7447 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7448 rc = -EIO; 7449 kfree(vpd); 7450 goto out_free_mbox; 7451 } 7452 7453 /* 7454 * Continue initialization with default values even if driver failed 7455 * to read FCoE param config regions, only read parameters if the 7456 * board is FCoE 7457 */ 7458 if (phba->hba_flag & HBA_FCOE_MODE && 7459 lpfc_sli4_read_fcoe_params(phba)) 7460 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7461 "2570 Failed to read FCoE parameters\n"); 7462 7463 /* 7464 * Retrieve sli4 device physical port name, failure of doing it 7465 * is considered as non-fatal. 7466 */ 7467 rc = lpfc_sli4_retrieve_pport_name(phba); 7468 if (!rc) 7469 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7470 "3080 Successful retrieving SLI4 device " 7471 "physical port name: %s.\n", phba->Port); 7472 7473 rc = lpfc_sli4_get_ctl_attr(phba); 7474 if (!rc) 7475 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7476 "8351 Successful retrieving SLI4 device " 7477 "CTL ATTR\n"); 7478 7479 /* 7480 * Evaluate the read rev and vpd data. Populate the driver 7481 * state with the results. If this routine fails, the failure 7482 * is not fatal as the driver will use generic values. 7483 */ 7484 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7485 if (unlikely(!rc)) { 7486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7487 "0377 Error %d parsing vpd. " 7488 "Using defaults.\n", rc); 7489 rc = 0; 7490 } 7491 kfree(vpd); 7492 7493 /* Save information as VPD data */ 7494 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7495 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7496 7497 /* 7498 * This is because first G7 ASIC doesn't support the standard 7499 * 0x5a NVME cmd descriptor type/subtype 7500 */ 7501 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7502 LPFC_SLI_INTF_IF_TYPE_6) && 7503 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7504 (phba->vpd.rev.smRev == 0) && 7505 (phba->cfg_nvme_embed_cmd == 1)) 7506 phba->cfg_nvme_embed_cmd = 0; 7507 7508 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7509 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7510 &mqe->un.read_rev); 7511 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7512 &mqe->un.read_rev); 7513 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7514 &mqe->un.read_rev); 7515 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7516 &mqe->un.read_rev); 7517 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7518 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7519 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7520 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7521 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7522 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7523 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7524 "(%d):0380 READ_REV Status x%x " 7525 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7526 mboxq->vport ? mboxq->vport->vpi : 0, 7527 bf_get(lpfc_mqe_status, mqe), 7528 phba->vpd.rev.opFwName, 7529 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7530 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7531 7532 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7533 LPFC_SLI_INTF_IF_TYPE_0) { 7534 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7535 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7536 if (rc == MBX_SUCCESS) { 7537 phba->hba_flag |= HBA_RECOVERABLE_UE; 7538 /* Set 1Sec interval to detect UE */ 7539 phba->eratt_poll_interval = 1; 7540 phba->sli4_hba.ue_to_sr = bf_get( 7541 lpfc_mbx_set_feature_UESR, 7542 &mboxq->u.mqe.un.set_feature); 7543 phba->sli4_hba.ue_to_rp = bf_get( 7544 lpfc_mbx_set_feature_UERP, 7545 &mboxq->u.mqe.un.set_feature); 7546 } 7547 } 7548 7549 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7550 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7551 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7552 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7553 if (rc != MBX_SUCCESS) 7554 phba->mds_diags_support = 0; 7555 } 7556 7557 /* 7558 * Discover the port's supported feature set and match it against the 7559 * hosts requests. 7560 */ 7561 lpfc_request_features(phba, mboxq); 7562 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7563 if (unlikely(rc)) { 7564 rc = -EIO; 7565 goto out_free_mbox; 7566 } 7567 7568 /* 7569 * The port must support FCP initiator mode as this is the 7570 * only mode running in the host. 7571 */ 7572 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7573 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7574 "0378 No support for fcpi mode.\n"); 7575 ftr_rsp++; 7576 } 7577 7578 /* Performance Hints are ONLY for FCoE */ 7579 if (phba->hba_flag & HBA_FCOE_MODE) { 7580 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7581 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7582 else 7583 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7584 } 7585 7586 /* 7587 * If the port cannot support the host's requested features 7588 * then turn off the global config parameters to disable the 7589 * feature in the driver. This is not a fatal error. 7590 */ 7591 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7592 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7593 phba->cfg_enable_bg = 0; 7594 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7595 ftr_rsp++; 7596 } 7597 } 7598 7599 if (phba->max_vpi && phba->cfg_enable_npiv && 7600 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7601 ftr_rsp++; 7602 7603 if (ftr_rsp) { 7604 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7605 "0379 Feature Mismatch Data: x%08x %08x " 7606 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7607 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7608 phba->cfg_enable_npiv, phba->max_vpi); 7609 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7610 phba->cfg_enable_bg = 0; 7611 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7612 phba->cfg_enable_npiv = 0; 7613 } 7614 7615 /* These SLI3 features are assumed in SLI4 */ 7616 spin_lock_irq(&phba->hbalock); 7617 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7618 spin_unlock_irq(&phba->hbalock); 7619 7620 /* Always try to enable dual dump feature if we can */ 7621 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7622 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7623 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7624 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7625 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7626 "6448 Dual Dump is enabled\n"); 7627 else 7628 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7629 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7630 "rc:x%x dd:x%x\n", 7631 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7632 lpfc_sli_config_mbox_subsys_get( 7633 phba, mboxq), 7634 lpfc_sli_config_mbox_opcode_get( 7635 phba, mboxq), 7636 rc, dd); 7637 /* 7638 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7639 * calls depends on these resources to complete port setup. 7640 */ 7641 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7642 if (rc) { 7643 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7644 "2920 Failed to alloc Resource IDs " 7645 "rc = x%x\n", rc); 7646 goto out_free_mbox; 7647 } 7648 7649 lpfc_set_host_data(phba, mboxq); 7650 7651 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7652 if (rc) { 7653 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7654 "2134 Failed to set host os driver version %x", 7655 rc); 7656 } 7657 7658 /* Read the port's service parameters. */ 7659 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7660 if (rc) { 7661 phba->link_state = LPFC_HBA_ERROR; 7662 rc = -ENOMEM; 7663 goto out_free_mbox; 7664 } 7665 7666 mboxq->vport = vport; 7667 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7668 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7669 if (rc == MBX_SUCCESS) { 7670 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7671 rc = 0; 7672 } 7673 7674 /* 7675 * This memory was allocated by the lpfc_read_sparam routine. Release 7676 * it to the mbuf pool. 7677 */ 7678 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7679 kfree(mp); 7680 mboxq->ctx_buf = NULL; 7681 if (unlikely(rc)) { 7682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7683 "0382 READ_SPARAM command failed " 7684 "status %d, mbxStatus x%x\n", 7685 rc, bf_get(lpfc_mqe_status, mqe)); 7686 phba->link_state = LPFC_HBA_ERROR; 7687 rc = -EIO; 7688 goto out_free_mbox; 7689 } 7690 7691 lpfc_update_vport_wwn(vport); 7692 7693 /* Update the fc_host data structures with new wwn. */ 7694 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7695 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7696 7697 /* Create all the SLI4 queues */ 7698 rc = lpfc_sli4_queue_create(phba); 7699 if (rc) { 7700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7701 "3089 Failed to allocate queues\n"); 7702 rc = -ENODEV; 7703 goto out_free_mbox; 7704 } 7705 /* Set up all the queues to the device */ 7706 rc = lpfc_sli4_queue_setup(phba); 7707 if (unlikely(rc)) { 7708 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7709 "0381 Error %d during queue setup.\n ", rc); 7710 goto out_stop_timers; 7711 } 7712 /* Initialize the driver internal SLI layer lists. */ 7713 lpfc_sli4_setup(phba); 7714 lpfc_sli4_queue_init(phba); 7715 7716 /* update host els xri-sgl sizes and mappings */ 7717 rc = lpfc_sli4_els_sgl_update(phba); 7718 if (unlikely(rc)) { 7719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7720 "1400 Failed to update xri-sgl size and " 7721 "mapping: %d\n", rc); 7722 goto out_destroy_queue; 7723 } 7724 7725 /* register the els sgl pool to the port */ 7726 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7727 phba->sli4_hba.els_xri_cnt); 7728 if (unlikely(rc < 0)) { 7729 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7730 "0582 Error %d during els sgl post " 7731 "operation\n", rc); 7732 rc = -ENODEV; 7733 goto out_destroy_queue; 7734 } 7735 phba->sli4_hba.els_xri_cnt = rc; 7736 7737 if (phba->nvmet_support) { 7738 /* update host nvmet xri-sgl sizes and mappings */ 7739 rc = lpfc_sli4_nvmet_sgl_update(phba); 7740 if (unlikely(rc)) { 7741 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7742 "6308 Failed to update nvmet-sgl size " 7743 "and mapping: %d\n", rc); 7744 goto out_destroy_queue; 7745 } 7746 7747 /* register the nvmet sgl pool to the port */ 7748 rc = lpfc_sli4_repost_sgl_list( 7749 phba, 7750 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7751 phba->sli4_hba.nvmet_xri_cnt); 7752 if (unlikely(rc < 0)) { 7753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7754 "3117 Error %d during nvmet " 7755 "sgl post\n", rc); 7756 rc = -ENODEV; 7757 goto out_destroy_queue; 7758 } 7759 phba->sli4_hba.nvmet_xri_cnt = rc; 7760 7761 /* We allocate an iocbq for every receive context SGL. 7762 * The additional allocation is for abort and ls handling. 7763 */ 7764 cnt = phba->sli4_hba.nvmet_xri_cnt + 7765 phba->sli4_hba.max_cfg_param.max_xri; 7766 } else { 7767 /* update host common xri-sgl sizes and mappings */ 7768 rc = lpfc_sli4_io_sgl_update(phba); 7769 if (unlikely(rc)) { 7770 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7771 "6082 Failed to update nvme-sgl size " 7772 "and mapping: %d\n", rc); 7773 goto out_destroy_queue; 7774 } 7775 7776 /* register the allocated common sgl pool to the port */ 7777 rc = lpfc_sli4_repost_io_sgl_list(phba); 7778 if (unlikely(rc)) { 7779 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7780 "6116 Error %d during nvme sgl post " 7781 "operation\n", rc); 7782 /* Some NVME buffers were moved to abort nvme list */ 7783 /* A pci function reset will repost them */ 7784 rc = -ENODEV; 7785 goto out_destroy_queue; 7786 } 7787 /* Each lpfc_io_buf job structure has an iocbq element. 7788 * This cnt provides for abort, els, ct and ls requests. 7789 */ 7790 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7791 } 7792 7793 if (!phba->sli.iocbq_lookup) { 7794 /* Initialize and populate the iocb list per host */ 7795 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7796 "2821 initialize iocb list with %d entries\n", 7797 cnt); 7798 rc = lpfc_init_iocb_list(phba, cnt); 7799 if (rc) { 7800 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7801 "1413 Failed to init iocb list.\n"); 7802 goto out_destroy_queue; 7803 } 7804 } 7805 7806 if (phba->nvmet_support) 7807 lpfc_nvmet_create_targetport(phba); 7808 7809 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7810 /* Post initial buffers to all RQs created */ 7811 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7812 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7813 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7814 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7815 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7816 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7817 rqbp->buffer_count = 0; 7818 7819 lpfc_post_rq_buffer( 7820 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7821 phba->sli4_hba.nvmet_mrq_data[i], 7822 phba->cfg_nvmet_mrq_post, i); 7823 } 7824 } 7825 7826 /* Post the rpi header region to the device. */ 7827 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7828 if (unlikely(rc)) { 7829 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7830 "0393 Error %d during rpi post operation\n", 7831 rc); 7832 rc = -ENODEV; 7833 goto out_free_iocblist; 7834 } 7835 lpfc_sli4_node_prep(phba); 7836 7837 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7838 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7839 /* 7840 * The FC Port needs to register FCFI (index 0) 7841 */ 7842 lpfc_reg_fcfi(phba, mboxq); 7843 mboxq->vport = phba->pport; 7844 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7845 if (rc != MBX_SUCCESS) 7846 goto out_unset_queue; 7847 rc = 0; 7848 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7849 &mboxq->u.mqe.un.reg_fcfi); 7850 } else { 7851 /* We are a NVME Target mode with MRQ > 1 */ 7852 7853 /* First register the FCFI */ 7854 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7855 mboxq->vport = phba->pport; 7856 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7857 if (rc != MBX_SUCCESS) 7858 goto out_unset_queue; 7859 rc = 0; 7860 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7861 &mboxq->u.mqe.un.reg_fcfi_mrq); 7862 7863 /* Next register the MRQs */ 7864 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7865 mboxq->vport = phba->pport; 7866 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7867 if (rc != MBX_SUCCESS) 7868 goto out_unset_queue; 7869 rc = 0; 7870 } 7871 /* Check if the port is configured to be disabled */ 7872 lpfc_sli_read_link_ste(phba); 7873 } 7874 7875 /* Don't post more new bufs if repost already recovered 7876 * the nvme sgls. 7877 */ 7878 if (phba->nvmet_support == 0) { 7879 if (phba->sli4_hba.io_xri_cnt == 0) { 7880 len = lpfc_new_io_buf( 7881 phba, phba->sli4_hba.io_xri_max); 7882 if (len == 0) { 7883 rc = -ENOMEM; 7884 goto out_unset_queue; 7885 } 7886 7887 if (phba->cfg_xri_rebalancing) 7888 lpfc_create_multixri_pools(phba); 7889 } 7890 } else { 7891 phba->cfg_xri_rebalancing = 0; 7892 } 7893 7894 /* Allow asynchronous mailbox command to go through */ 7895 spin_lock_irq(&phba->hbalock); 7896 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7897 spin_unlock_irq(&phba->hbalock); 7898 7899 /* Post receive buffers to the device */ 7900 lpfc_sli4_rb_setup(phba); 7901 7902 /* Reset HBA FCF states after HBA reset */ 7903 phba->fcf.fcf_flag = 0; 7904 phba->fcf.current_rec.flag = 0; 7905 7906 /* Start the ELS watchdog timer */ 7907 mod_timer(&vport->els_tmofunc, 7908 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7909 7910 /* Start heart beat timer */ 7911 mod_timer(&phba->hb_tmofunc, 7912 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7913 phba->hb_outstanding = 0; 7914 phba->last_completion_time = jiffies; 7915 7916 /* start eq_delay heartbeat */ 7917 if (phba->cfg_auto_imax) 7918 queue_delayed_work(phba->wq, &phba->eq_delay_work, 7919 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 7920 7921 /* start per phba idle_stat_delay heartbeat */ 7922 lpfc_init_idle_stat_hb(phba); 7923 7924 /* Start error attention (ERATT) polling timer */ 7925 mod_timer(&phba->eratt_poll, 7926 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7927 7928 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7929 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7930 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7931 if (!rc) { 7932 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7933 "2829 This device supports " 7934 "Advanced Error Reporting (AER)\n"); 7935 spin_lock_irq(&phba->hbalock); 7936 phba->hba_flag |= HBA_AER_ENABLED; 7937 spin_unlock_irq(&phba->hbalock); 7938 } else { 7939 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7940 "2830 This device does not support " 7941 "Advanced Error Reporting (AER)\n"); 7942 phba->cfg_aer_support = 0; 7943 } 7944 rc = 0; 7945 } 7946 7947 /* 7948 * The port is ready, set the host's link state to LINK_DOWN 7949 * in preparation for link interrupts. 7950 */ 7951 spin_lock_irq(&phba->hbalock); 7952 phba->link_state = LPFC_LINK_DOWN; 7953 7954 /* Check if physical ports are trunked */ 7955 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 7956 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 7957 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 7958 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 7959 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 7960 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 7961 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 7962 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 7963 spin_unlock_irq(&phba->hbalock); 7964 7965 /* Arm the CQs and then EQs on device */ 7966 lpfc_sli4_arm_cqeq_intr(phba); 7967 7968 /* Indicate device interrupt mode */ 7969 phba->sli4_hba.intr_enable = 1; 7970 7971 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7972 (phba->hba_flag & LINK_DISABLED)) { 7973 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7974 "3103 Adapter Link is disabled.\n"); 7975 lpfc_down_link(phba, mboxq); 7976 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7977 if (rc != MBX_SUCCESS) { 7978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7979 "3104 Adapter failed to issue " 7980 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7981 goto out_io_buff_free; 7982 } 7983 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7984 /* don't perform init_link on SLI4 FC port loopback test */ 7985 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7986 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7987 if (rc) 7988 goto out_io_buff_free; 7989 } 7990 } 7991 mempool_free(mboxq, phba->mbox_mem_pool); 7992 return rc; 7993out_io_buff_free: 7994 /* Free allocated IO Buffers */ 7995 lpfc_io_free(phba); 7996out_unset_queue: 7997 /* Unset all the queues set up in this routine when error out */ 7998 lpfc_sli4_queue_unset(phba); 7999out_free_iocblist: 8000 lpfc_free_iocb_list(phba); 8001out_destroy_queue: 8002 lpfc_sli4_queue_destroy(phba); 8003out_stop_timers: 8004 lpfc_stop_hba_timers(phba); 8005out_free_mbox: 8006 mempool_free(mboxq, phba->mbox_mem_pool); 8007 return rc; 8008} 8009 8010/** 8011 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8012 * @t: Context to fetch pointer to hba structure from. 8013 * 8014 * This is the callback function for mailbox timer. The mailbox 8015 * timer is armed when a new mailbox command is issued and the timer 8016 * is deleted when the mailbox complete. The function is called by 8017 * the kernel timer code when a mailbox does not complete within 8018 * expected time. This function wakes up the worker thread to 8019 * process the mailbox timeout and returns. All the processing is 8020 * done by the worker thread function lpfc_mbox_timeout_handler. 8021 **/ 8022void 8023lpfc_mbox_timeout(struct timer_list *t) 8024{ 8025 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8026 unsigned long iflag; 8027 uint32_t tmo_posted; 8028 8029 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8030 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8031 if (!tmo_posted) 8032 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8033 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8034 8035 if (!tmo_posted) 8036 lpfc_worker_wake_up(phba); 8037 return; 8038} 8039 8040/** 8041 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8042 * are pending 8043 * @phba: Pointer to HBA context object. 8044 * 8045 * This function checks if any mailbox completions are present on the mailbox 8046 * completion queue. 8047 **/ 8048static bool 8049lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8050{ 8051 8052 uint32_t idx; 8053 struct lpfc_queue *mcq; 8054 struct lpfc_mcqe *mcqe; 8055 bool pending_completions = false; 8056 uint8_t qe_valid; 8057 8058 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8059 return false; 8060 8061 /* Check for completions on mailbox completion queue */ 8062 8063 mcq = phba->sli4_hba.mbx_cq; 8064 idx = mcq->hba_index; 8065 qe_valid = mcq->qe_valid; 8066 while (bf_get_le32(lpfc_cqe_valid, 8067 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8068 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8069 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8070 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8071 pending_completions = true; 8072 break; 8073 } 8074 idx = (idx + 1) % mcq->entry_count; 8075 if (mcq->hba_index == idx) 8076 break; 8077 8078 /* if the index wrapped around, toggle the valid bit */ 8079 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8080 qe_valid = (qe_valid) ? 0 : 1; 8081 } 8082 return pending_completions; 8083 8084} 8085 8086/** 8087 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8088 * that were missed. 8089 * @phba: Pointer to HBA context object. 8090 * 8091 * For sli4, it is possible to miss an interrupt. As such mbox completions 8092 * maybe missed causing erroneous mailbox timeouts to occur. This function 8093 * checks to see if mbox completions are on the mailbox completion queue 8094 * and will process all the completions associated with the eq for the 8095 * mailbox completion queue. 8096 **/ 8097static bool 8098lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8099{ 8100 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8101 uint32_t eqidx; 8102 struct lpfc_queue *fpeq = NULL; 8103 struct lpfc_queue *eq; 8104 bool mbox_pending; 8105 8106 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8107 return false; 8108 8109 /* Find the EQ associated with the mbox CQ */ 8110 if (sli4_hba->hdwq) { 8111 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8112 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8113 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8114 fpeq = eq; 8115 break; 8116 } 8117 } 8118 } 8119 if (!fpeq) 8120 return false; 8121 8122 /* Turn off interrupts from this EQ */ 8123 8124 sli4_hba->sli4_eq_clr_intr(fpeq); 8125 8126 /* Check to see if a mbox completion is pending */ 8127 8128 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8129 8130 /* 8131 * If a mbox completion is pending, process all the events on EQ 8132 * associated with the mbox completion queue (this could include 8133 * mailbox commands, async events, els commands, receive queue data 8134 * and fcp commands) 8135 */ 8136 8137 if (mbox_pending) 8138 /* process and rearm the EQ */ 8139 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8140 else 8141 /* Always clear and re-arm the EQ */ 8142 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8143 8144 return mbox_pending; 8145 8146} 8147 8148/** 8149 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8150 * @phba: Pointer to HBA context object. 8151 * 8152 * This function is called from worker thread when a mailbox command times out. 8153 * The caller is not required to hold any locks. This function will reset the 8154 * HBA and recover all the pending commands. 8155 **/ 8156void 8157lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8158{ 8159 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8160 MAILBOX_t *mb = NULL; 8161 8162 struct lpfc_sli *psli = &phba->sli; 8163 8164 /* If the mailbox completed, process the completion and return */ 8165 if (lpfc_sli4_process_missed_mbox_completions(phba)) 8166 return; 8167 8168 if (pmbox != NULL) 8169 mb = &pmbox->u.mb; 8170 /* Check the pmbox pointer first. There is a race condition 8171 * between the mbox timeout handler getting executed in the 8172 * worklist and the mailbox actually completing. When this 8173 * race condition occurs, the mbox_active will be NULL. 8174 */ 8175 spin_lock_irq(&phba->hbalock); 8176 if (pmbox == NULL) { 8177 lpfc_printf_log(phba, KERN_WARNING, 8178 LOG_MBOX | LOG_SLI, 8179 "0353 Active Mailbox cleared - mailbox timeout " 8180 "exiting\n"); 8181 spin_unlock_irq(&phba->hbalock); 8182 return; 8183 } 8184 8185 /* Mbox cmd <mbxCommand> timeout */ 8186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8187 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8188 mb->mbxCommand, 8189 phba->pport->port_state, 8190 phba->sli.sli_flag, 8191 phba->sli.mbox_active); 8192 spin_unlock_irq(&phba->hbalock); 8193 8194 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8195 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8196 * it to fail all outstanding SCSI IO. 8197 */ 8198 spin_lock_irq(&phba->pport->work_port_lock); 8199 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8200 spin_unlock_irq(&phba->pport->work_port_lock); 8201 spin_lock_irq(&phba->hbalock); 8202 phba->link_state = LPFC_LINK_UNKNOWN; 8203 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8204 spin_unlock_irq(&phba->hbalock); 8205 8206 lpfc_sli_abort_fcp_rings(phba); 8207 8208 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8209 "0345 Resetting board due to mailbox timeout\n"); 8210 8211 /* Reset the HBA device */ 8212 lpfc_reset_hba(phba); 8213} 8214 8215/** 8216 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8217 * @phba: Pointer to HBA context object. 8218 * @pmbox: Pointer to mailbox object. 8219 * @flag: Flag indicating how the mailbox need to be processed. 8220 * 8221 * This function is called by discovery code and HBA management code 8222 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8223 * function gets the hbalock to protect the data structures. 8224 * The mailbox command can be submitted in polling mode, in which case 8225 * this function will wait in a polling loop for the completion of the 8226 * mailbox. 8227 * If the mailbox is submitted in no_wait mode (not polling) the 8228 * function will submit the command and returns immediately without waiting 8229 * for the mailbox completion. The no_wait is supported only when HBA 8230 * is in SLI2/SLI3 mode - interrupts are enabled. 8231 * The SLI interface allows only one mailbox pending at a time. If the 8232 * mailbox is issued in polling mode and there is already a mailbox 8233 * pending, then the function will return an error. If the mailbox is issued 8234 * in NO_WAIT mode and there is a mailbox pending already, the function 8235 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8236 * The sli layer owns the mailbox object until the completion of mailbox 8237 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8238 * return codes the caller owns the mailbox command after the return of 8239 * the function. 8240 **/ 8241static int 8242lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8243 uint32_t flag) 8244{ 8245 MAILBOX_t *mbx; 8246 struct lpfc_sli *psli = &phba->sli; 8247 uint32_t status, evtctr; 8248 uint32_t ha_copy, hc_copy; 8249 int i; 8250 unsigned long timeout; 8251 unsigned long drvr_flag = 0; 8252 uint32_t word0, ldata; 8253 void __iomem *to_slim; 8254 int processing_queue = 0; 8255 8256 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8257 if (!pmbox) { 8258 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8259 /* processing mbox queue from intr_handler */ 8260 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8261 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8262 return MBX_SUCCESS; 8263 } 8264 processing_queue = 1; 8265 pmbox = lpfc_mbox_get(phba); 8266 if (!pmbox) { 8267 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8268 return MBX_SUCCESS; 8269 } 8270 } 8271 8272 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8273 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8274 if(!pmbox->vport) { 8275 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8276 lpfc_printf_log(phba, KERN_ERR, 8277 LOG_MBOX | LOG_VPORT, 8278 "1806 Mbox x%x failed. No vport\n", 8279 pmbox->u.mb.mbxCommand); 8280 dump_stack(); 8281 goto out_not_finished; 8282 } 8283 } 8284 8285 /* If the PCI channel is in offline state, do not post mbox. */ 8286 if (unlikely(pci_channel_offline(phba->pcidev))) { 8287 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8288 goto out_not_finished; 8289 } 8290 8291 /* If HBA has a deferred error attention, fail the iocb. */ 8292 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8293 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8294 goto out_not_finished; 8295 } 8296 8297 psli = &phba->sli; 8298 8299 mbx = &pmbox->u.mb; 8300 status = MBX_SUCCESS; 8301 8302 if (phba->link_state == LPFC_HBA_ERROR) { 8303 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8304 8305 /* Mbox command <mbxCommand> cannot issue */ 8306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8307 "(%d):0311 Mailbox command x%x cannot " 8308 "issue Data: x%x x%x\n", 8309 pmbox->vport ? pmbox->vport->vpi : 0, 8310 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8311 goto out_not_finished; 8312 } 8313 8314 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8315 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8316 !(hc_copy & HC_MBINT_ENA)) { 8317 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8319 "(%d):2528 Mailbox command x%x cannot " 8320 "issue Data: x%x x%x\n", 8321 pmbox->vport ? pmbox->vport->vpi : 0, 8322 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8323 goto out_not_finished; 8324 } 8325 } 8326 8327 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8328 /* Polling for a mbox command when another one is already active 8329 * is not allowed in SLI. Also, the driver must have established 8330 * SLI2 mode to queue and process multiple mbox commands. 8331 */ 8332 8333 if (flag & MBX_POLL) { 8334 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8335 8336 /* Mbox command <mbxCommand> cannot issue */ 8337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8338 "(%d):2529 Mailbox command x%x " 8339 "cannot issue Data: x%x x%x\n", 8340 pmbox->vport ? pmbox->vport->vpi : 0, 8341 pmbox->u.mb.mbxCommand, 8342 psli->sli_flag, flag); 8343 goto out_not_finished; 8344 } 8345 8346 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8347 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8348 /* Mbox command <mbxCommand> cannot issue */ 8349 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8350 "(%d):2530 Mailbox command x%x " 8351 "cannot issue Data: x%x x%x\n", 8352 pmbox->vport ? pmbox->vport->vpi : 0, 8353 pmbox->u.mb.mbxCommand, 8354 psli->sli_flag, flag); 8355 goto out_not_finished; 8356 } 8357 8358 /* Another mailbox command is still being processed, queue this 8359 * command to be processed later. 8360 */ 8361 lpfc_mbox_put(phba, pmbox); 8362 8363 /* Mbox cmd issue - BUSY */ 8364 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8365 "(%d):0308 Mbox cmd issue - BUSY Data: " 8366 "x%x x%x x%x x%x\n", 8367 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8368 mbx->mbxCommand, 8369 phba->pport ? phba->pport->port_state : 0xff, 8370 psli->sli_flag, flag); 8371 8372 psli->slistat.mbox_busy++; 8373 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8374 8375 if (pmbox->vport) { 8376 lpfc_debugfs_disc_trc(pmbox->vport, 8377 LPFC_DISC_TRC_MBOX_VPORT, 8378 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8379 (uint32_t)mbx->mbxCommand, 8380 mbx->un.varWords[0], mbx->un.varWords[1]); 8381 } 8382 else { 8383 lpfc_debugfs_disc_trc(phba->pport, 8384 LPFC_DISC_TRC_MBOX, 8385 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8386 (uint32_t)mbx->mbxCommand, 8387 mbx->un.varWords[0], mbx->un.varWords[1]); 8388 } 8389 8390 return MBX_BUSY; 8391 } 8392 8393 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8394 8395 /* If we are not polling, we MUST be in SLI2 mode */ 8396 if (flag != MBX_POLL) { 8397 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8398 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8399 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8400 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8401 /* Mbox command <mbxCommand> cannot issue */ 8402 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8403 "(%d):2531 Mailbox command x%x " 8404 "cannot issue Data: x%x x%x\n", 8405 pmbox->vport ? pmbox->vport->vpi : 0, 8406 pmbox->u.mb.mbxCommand, 8407 psli->sli_flag, flag); 8408 goto out_not_finished; 8409 } 8410 /* timeout active mbox command */ 8411 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8412 1000); 8413 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8414 } 8415 8416 /* Mailbox cmd <cmd> issue */ 8417 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8418 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8419 "x%x\n", 8420 pmbox->vport ? pmbox->vport->vpi : 0, 8421 mbx->mbxCommand, 8422 phba->pport ? phba->pport->port_state : 0xff, 8423 psli->sli_flag, flag); 8424 8425 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8426 if (pmbox->vport) { 8427 lpfc_debugfs_disc_trc(pmbox->vport, 8428 LPFC_DISC_TRC_MBOX_VPORT, 8429 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8430 (uint32_t)mbx->mbxCommand, 8431 mbx->un.varWords[0], mbx->un.varWords[1]); 8432 } 8433 else { 8434 lpfc_debugfs_disc_trc(phba->pport, 8435 LPFC_DISC_TRC_MBOX, 8436 "MBOX Send: cmd:x%x mb:x%x x%x", 8437 (uint32_t)mbx->mbxCommand, 8438 mbx->un.varWords[0], mbx->un.varWords[1]); 8439 } 8440 } 8441 8442 psli->slistat.mbox_cmd++; 8443 evtctr = psli->slistat.mbox_event; 8444 8445 /* next set own bit for the adapter and copy over command word */ 8446 mbx->mbxOwner = OWN_CHIP; 8447 8448 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8449 /* Populate mbox extension offset word. */ 8450 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8451 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8452 = (uint8_t *)phba->mbox_ext 8453 - (uint8_t *)phba->mbox; 8454 } 8455 8456 /* Copy the mailbox extension data */ 8457 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8458 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8459 (uint8_t *)phba->mbox_ext, 8460 pmbox->in_ext_byte_len); 8461 } 8462 /* Copy command data to host SLIM area */ 8463 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8464 } else { 8465 /* Populate mbox extension offset word. */ 8466 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8467 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8468 = MAILBOX_HBA_EXT_OFFSET; 8469 8470 /* Copy the mailbox extension data */ 8471 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8472 lpfc_memcpy_to_slim(phba->MBslimaddr + 8473 MAILBOX_HBA_EXT_OFFSET, 8474 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8475 8476 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8477 /* copy command data into host mbox for cmpl */ 8478 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8479 MAILBOX_CMD_SIZE); 8480 8481 /* First copy mbox command data to HBA SLIM, skip past first 8482 word */ 8483 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8484 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8485 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8486 8487 /* Next copy over first word, with mbxOwner set */ 8488 ldata = *((uint32_t *)mbx); 8489 to_slim = phba->MBslimaddr; 8490 writel(ldata, to_slim); 8491 readl(to_slim); /* flush */ 8492 8493 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8494 /* switch over to host mailbox */ 8495 psli->sli_flag |= LPFC_SLI_ACTIVE; 8496 } 8497 8498 wmb(); 8499 8500 switch (flag) { 8501 case MBX_NOWAIT: 8502 /* Set up reference to mailbox command */ 8503 psli->mbox_active = pmbox; 8504 /* Interrupt board to do it */ 8505 writel(CA_MBATT, phba->CAregaddr); 8506 readl(phba->CAregaddr); /* flush */ 8507 /* Don't wait for it to finish, just return */ 8508 break; 8509 8510 case MBX_POLL: 8511 /* Set up null reference to mailbox command */ 8512 psli->mbox_active = NULL; 8513 /* Interrupt board to do it */ 8514 writel(CA_MBATT, phba->CAregaddr); 8515 readl(phba->CAregaddr); /* flush */ 8516 8517 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8518 /* First read mbox status word */ 8519 word0 = *((uint32_t *)phba->mbox); 8520 word0 = le32_to_cpu(word0); 8521 } else { 8522 /* First read mbox status word */ 8523 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8524 spin_unlock_irqrestore(&phba->hbalock, 8525 drvr_flag); 8526 goto out_not_finished; 8527 } 8528 } 8529 8530 /* Read the HBA Host Attention Register */ 8531 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8532 spin_unlock_irqrestore(&phba->hbalock, 8533 drvr_flag); 8534 goto out_not_finished; 8535 } 8536 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8537 1000) + jiffies; 8538 i = 0; 8539 /* Wait for command to complete */ 8540 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8541 (!(ha_copy & HA_MBATT) && 8542 (phba->link_state > LPFC_WARM_START))) { 8543 if (time_after(jiffies, timeout)) { 8544 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8545 spin_unlock_irqrestore(&phba->hbalock, 8546 drvr_flag); 8547 goto out_not_finished; 8548 } 8549 8550 /* Check if we took a mbox interrupt while we were 8551 polling */ 8552 if (((word0 & OWN_CHIP) != OWN_CHIP) 8553 && (evtctr != psli->slistat.mbox_event)) 8554 break; 8555 8556 if (i++ > 10) { 8557 spin_unlock_irqrestore(&phba->hbalock, 8558 drvr_flag); 8559 msleep(1); 8560 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8561 } 8562 8563 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8564 /* First copy command data */ 8565 word0 = *((uint32_t *)phba->mbox); 8566 word0 = le32_to_cpu(word0); 8567 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8568 MAILBOX_t *slimmb; 8569 uint32_t slimword0; 8570 /* Check real SLIM for any errors */ 8571 slimword0 = readl(phba->MBslimaddr); 8572 slimmb = (MAILBOX_t *) & slimword0; 8573 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8574 && slimmb->mbxStatus) { 8575 psli->sli_flag &= 8576 ~LPFC_SLI_ACTIVE; 8577 word0 = slimword0; 8578 } 8579 } 8580 } else { 8581 /* First copy command data */ 8582 word0 = readl(phba->MBslimaddr); 8583 } 8584 /* Read the HBA Host Attention Register */ 8585 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8586 spin_unlock_irqrestore(&phba->hbalock, 8587 drvr_flag); 8588 goto out_not_finished; 8589 } 8590 } 8591 8592 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8593 /* copy results back to user */ 8594 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8595 MAILBOX_CMD_SIZE); 8596 /* Copy the mailbox extension data */ 8597 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8598 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8599 pmbox->ctx_buf, 8600 pmbox->out_ext_byte_len); 8601 } 8602 } else { 8603 /* First copy command data */ 8604 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8605 MAILBOX_CMD_SIZE); 8606 /* Copy the mailbox extension data */ 8607 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8608 lpfc_memcpy_from_slim( 8609 pmbox->ctx_buf, 8610 phba->MBslimaddr + 8611 MAILBOX_HBA_EXT_OFFSET, 8612 pmbox->out_ext_byte_len); 8613 } 8614 } 8615 8616 writel(HA_MBATT, phba->HAregaddr); 8617 readl(phba->HAregaddr); /* flush */ 8618 8619 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8620 status = mbx->mbxStatus; 8621 } 8622 8623 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8624 return status; 8625 8626out_not_finished: 8627 if (processing_queue) { 8628 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8629 lpfc_mbox_cmpl_put(phba, pmbox); 8630 } 8631 return MBX_NOT_FINISHED; 8632} 8633 8634/** 8635 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8636 * @phba: Pointer to HBA context object. 8637 * 8638 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8639 * the driver internal pending mailbox queue. It will then try to wait out the 8640 * possible outstanding mailbox command before return. 8641 * 8642 * Returns: 8643 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8644 * the outstanding mailbox command timed out. 8645 **/ 8646static int 8647lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8648{ 8649 struct lpfc_sli *psli = &phba->sli; 8650 int rc = 0; 8651 unsigned long timeout = 0; 8652 8653 /* Mark the asynchronous mailbox command posting as blocked */ 8654 spin_lock_irq(&phba->hbalock); 8655 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8656 /* Determine how long we might wait for the active mailbox 8657 * command to be gracefully completed by firmware. 8658 */ 8659 if (phba->sli.mbox_active) 8660 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8661 phba->sli.mbox_active) * 8662 1000) + jiffies; 8663 spin_unlock_irq(&phba->hbalock); 8664 8665 /* Make sure the mailbox is really active */ 8666 if (timeout) 8667 lpfc_sli4_process_missed_mbox_completions(phba); 8668 8669 /* Wait for the outstnading mailbox command to complete */ 8670 while (phba->sli.mbox_active) { 8671 /* Check active mailbox complete status every 2ms */ 8672 msleep(2); 8673 if (time_after(jiffies, timeout)) { 8674 /* Timeout, marked the outstanding cmd not complete */ 8675 rc = 1; 8676 break; 8677 } 8678 } 8679 8680 /* Can not cleanly block async mailbox command, fails it */ 8681 if (rc) { 8682 spin_lock_irq(&phba->hbalock); 8683 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8684 spin_unlock_irq(&phba->hbalock); 8685 } 8686 return rc; 8687} 8688 8689/** 8690 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8691 * @phba: Pointer to HBA context object. 8692 * 8693 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8694 * commands from the driver internal pending mailbox queue. It makes sure 8695 * that there is no outstanding mailbox command before resuming posting 8696 * asynchronous mailbox commands. If, for any reason, there is outstanding 8697 * mailbox command, it will try to wait it out before resuming asynchronous 8698 * mailbox command posting. 8699 **/ 8700static void 8701lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8702{ 8703 struct lpfc_sli *psli = &phba->sli; 8704 8705 spin_lock_irq(&phba->hbalock); 8706 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8707 /* Asynchronous mailbox posting is not blocked, do nothing */ 8708 spin_unlock_irq(&phba->hbalock); 8709 return; 8710 } 8711 8712 /* Outstanding synchronous mailbox command is guaranteed to be done, 8713 * successful or timeout, after timing-out the outstanding mailbox 8714 * command shall always be removed, so just unblock posting async 8715 * mailbox command and resume 8716 */ 8717 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8718 spin_unlock_irq(&phba->hbalock); 8719 8720 /* wake up worker thread to post asynchronous mailbox command */ 8721 lpfc_worker_wake_up(phba); 8722} 8723 8724/** 8725 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8726 * @phba: Pointer to HBA context object. 8727 * @mboxq: Pointer to mailbox object. 8728 * 8729 * The function waits for the bootstrap mailbox register ready bit from 8730 * port for twice the regular mailbox command timeout value. 8731 * 8732 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8733 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8734 **/ 8735static int 8736lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8737{ 8738 uint32_t db_ready; 8739 unsigned long timeout; 8740 struct lpfc_register bmbx_reg; 8741 8742 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8743 * 1000) + jiffies; 8744 8745 do { 8746 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8747 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8748 if (!db_ready) 8749 mdelay(2); 8750 8751 if (time_after(jiffies, timeout)) 8752 return MBXERR_ERROR; 8753 } while (!db_ready); 8754 8755 return 0; 8756} 8757 8758/** 8759 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8760 * @phba: Pointer to HBA context object. 8761 * @mboxq: Pointer to mailbox object. 8762 * 8763 * The function posts a mailbox to the port. The mailbox is expected 8764 * to be comletely filled in and ready for the port to operate on it. 8765 * This routine executes a synchronous completion operation on the 8766 * mailbox by polling for its completion. 8767 * 8768 * The caller must not be holding any locks when calling this routine. 8769 * 8770 * Returns: 8771 * MBX_SUCCESS - mailbox posted successfully 8772 * Any of the MBX error values. 8773 **/ 8774static int 8775lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8776{ 8777 int rc = MBX_SUCCESS; 8778 unsigned long iflag; 8779 uint32_t mcqe_status; 8780 uint32_t mbx_cmnd; 8781 struct lpfc_sli *psli = &phba->sli; 8782 struct lpfc_mqe *mb = &mboxq->u.mqe; 8783 struct lpfc_bmbx_create *mbox_rgn; 8784 struct dma_address *dma_address; 8785 8786 /* 8787 * Only one mailbox can be active to the bootstrap mailbox region 8788 * at a time and there is no queueing provided. 8789 */ 8790 spin_lock_irqsave(&phba->hbalock, iflag); 8791 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8792 spin_unlock_irqrestore(&phba->hbalock, iflag); 8793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8794 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8795 "cannot issue Data: x%x x%x\n", 8796 mboxq->vport ? mboxq->vport->vpi : 0, 8797 mboxq->u.mb.mbxCommand, 8798 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8799 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8800 psli->sli_flag, MBX_POLL); 8801 return MBXERR_ERROR; 8802 } 8803 /* The server grabs the token and owns it until release */ 8804 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8805 phba->sli.mbox_active = mboxq; 8806 spin_unlock_irqrestore(&phba->hbalock, iflag); 8807 8808 /* wait for bootstrap mbox register for readyness */ 8809 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8810 if (rc) 8811 goto exit; 8812 /* 8813 * Initialize the bootstrap memory region to avoid stale data areas 8814 * in the mailbox post. Then copy the caller's mailbox contents to 8815 * the bmbx mailbox region. 8816 */ 8817 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8818 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8819 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8820 sizeof(struct lpfc_mqe)); 8821 8822 /* Post the high mailbox dma address to the port and wait for ready. */ 8823 dma_address = &phba->sli4_hba.bmbx.dma_address; 8824 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8825 8826 /* wait for bootstrap mbox register for hi-address write done */ 8827 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8828 if (rc) 8829 goto exit; 8830 8831 /* Post the low mailbox dma address to the port. */ 8832 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8833 8834 /* wait for bootstrap mbox register for low address write done */ 8835 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8836 if (rc) 8837 goto exit; 8838 8839 /* 8840 * Read the CQ to ensure the mailbox has completed. 8841 * If so, update the mailbox status so that the upper layers 8842 * can complete the request normally. 8843 */ 8844 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8845 sizeof(struct lpfc_mqe)); 8846 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8847 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8848 sizeof(struct lpfc_mcqe)); 8849 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8850 /* 8851 * When the CQE status indicates a failure and the mailbox status 8852 * indicates success then copy the CQE status into the mailbox status 8853 * (and prefix it with x4000). 8854 */ 8855 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8856 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8857 bf_set(lpfc_mqe_status, mb, 8858 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8859 rc = MBXERR_ERROR; 8860 } else 8861 lpfc_sli4_swap_str(phba, mboxq); 8862 8863 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8864 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8865 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8866 " x%x x%x CQ: x%x x%x x%x x%x\n", 8867 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8868 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8869 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8870 bf_get(lpfc_mqe_status, mb), 8871 mb->un.mb_words[0], mb->un.mb_words[1], 8872 mb->un.mb_words[2], mb->un.mb_words[3], 8873 mb->un.mb_words[4], mb->un.mb_words[5], 8874 mb->un.mb_words[6], mb->un.mb_words[7], 8875 mb->un.mb_words[8], mb->un.mb_words[9], 8876 mb->un.mb_words[10], mb->un.mb_words[11], 8877 mb->un.mb_words[12], mboxq->mcqe.word0, 8878 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8879 mboxq->mcqe.trailer); 8880exit: 8881 /* We are holding the token, no needed for lock when release */ 8882 spin_lock_irqsave(&phba->hbalock, iflag); 8883 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8884 phba->sli.mbox_active = NULL; 8885 spin_unlock_irqrestore(&phba->hbalock, iflag); 8886 return rc; 8887} 8888 8889/** 8890 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8891 * @phba: Pointer to HBA context object. 8892 * @mboxq: Pointer to mailbox object. 8893 * @flag: Flag indicating how the mailbox need to be processed. 8894 * 8895 * This function is called by discovery code and HBA management code to submit 8896 * a mailbox command to firmware with SLI-4 interface spec. 8897 * 8898 * Return codes the caller owns the mailbox command after the return of the 8899 * function. 8900 **/ 8901static int 8902lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8903 uint32_t flag) 8904{ 8905 struct lpfc_sli *psli = &phba->sli; 8906 unsigned long iflags; 8907 int rc; 8908 8909 /* dump from issue mailbox command if setup */ 8910 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8911 8912 rc = lpfc_mbox_dev_check(phba); 8913 if (unlikely(rc)) { 8914 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8915 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8916 "cannot issue Data: x%x x%x\n", 8917 mboxq->vport ? mboxq->vport->vpi : 0, 8918 mboxq->u.mb.mbxCommand, 8919 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8920 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8921 psli->sli_flag, flag); 8922 goto out_not_finished; 8923 } 8924 8925 /* Detect polling mode and jump to a handler */ 8926 if (!phba->sli4_hba.intr_enable) { 8927 if (flag == MBX_POLL) 8928 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8929 else 8930 rc = -EIO; 8931 if (rc != MBX_SUCCESS) 8932 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8933 "(%d):2541 Mailbox command x%x " 8934 "(x%x/x%x) failure: " 8935 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8936 "Data: x%x x%x\n", 8937 mboxq->vport ? mboxq->vport->vpi : 0, 8938 mboxq->u.mb.mbxCommand, 8939 lpfc_sli_config_mbox_subsys_get(phba, 8940 mboxq), 8941 lpfc_sli_config_mbox_opcode_get(phba, 8942 mboxq), 8943 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8944 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8945 bf_get(lpfc_mcqe_ext_status, 8946 &mboxq->mcqe), 8947 psli->sli_flag, flag); 8948 return rc; 8949 } else if (flag == MBX_POLL) { 8950 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8951 "(%d):2542 Try to issue mailbox command " 8952 "x%x (x%x/x%x) synchronously ahead of async " 8953 "mailbox command queue: x%x x%x\n", 8954 mboxq->vport ? mboxq->vport->vpi : 0, 8955 mboxq->u.mb.mbxCommand, 8956 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8957 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8958 psli->sli_flag, flag); 8959 /* Try to block the asynchronous mailbox posting */ 8960 rc = lpfc_sli4_async_mbox_block(phba); 8961 if (!rc) { 8962 /* Successfully blocked, now issue sync mbox cmd */ 8963 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8964 if (rc != MBX_SUCCESS) 8965 lpfc_printf_log(phba, KERN_WARNING, 8966 LOG_MBOX | LOG_SLI, 8967 "(%d):2597 Sync Mailbox command " 8968 "x%x (x%x/x%x) failure: " 8969 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8970 "Data: x%x x%x\n", 8971 mboxq->vport ? mboxq->vport->vpi : 0, 8972 mboxq->u.mb.mbxCommand, 8973 lpfc_sli_config_mbox_subsys_get(phba, 8974 mboxq), 8975 lpfc_sli_config_mbox_opcode_get(phba, 8976 mboxq), 8977 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8978 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8979 bf_get(lpfc_mcqe_ext_status, 8980 &mboxq->mcqe), 8981 psli->sli_flag, flag); 8982 /* Unblock the async mailbox posting afterward */ 8983 lpfc_sli4_async_mbox_unblock(phba); 8984 } 8985 return rc; 8986 } 8987 8988 /* Now, interrupt mode asynchronous mailbox command */ 8989 rc = lpfc_mbox_cmd_check(phba, mboxq); 8990 if (rc) { 8991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8992 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8993 "cannot issue Data: x%x x%x\n", 8994 mboxq->vport ? mboxq->vport->vpi : 0, 8995 mboxq->u.mb.mbxCommand, 8996 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8997 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8998 psli->sli_flag, flag); 8999 goto out_not_finished; 9000 } 9001 9002 /* Put the mailbox command to the driver internal FIFO */ 9003 psli->slistat.mbox_busy++; 9004 spin_lock_irqsave(&phba->hbalock, iflags); 9005 lpfc_mbox_put(phba, mboxq); 9006 spin_unlock_irqrestore(&phba->hbalock, iflags); 9007 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9008 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9009 "x%x (x%x/x%x) x%x x%x x%x\n", 9010 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9011 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9012 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9013 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9014 phba->pport->port_state, 9015 psli->sli_flag, MBX_NOWAIT); 9016 /* Wake up worker thread to transport mailbox command from head */ 9017 lpfc_worker_wake_up(phba); 9018 9019 return MBX_BUSY; 9020 9021out_not_finished: 9022 return MBX_NOT_FINISHED; 9023} 9024 9025/** 9026 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9027 * @phba: Pointer to HBA context object. 9028 * 9029 * This function is called by worker thread to send a mailbox command to 9030 * SLI4 HBA firmware. 9031 * 9032 **/ 9033int 9034lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9035{ 9036 struct lpfc_sli *psli = &phba->sli; 9037 LPFC_MBOXQ_t *mboxq; 9038 int rc = MBX_SUCCESS; 9039 unsigned long iflags; 9040 struct lpfc_mqe *mqe; 9041 uint32_t mbx_cmnd; 9042 9043 /* Check interrupt mode before post async mailbox command */ 9044 if (unlikely(!phba->sli4_hba.intr_enable)) 9045 return MBX_NOT_FINISHED; 9046 9047 /* Check for mailbox command service token */ 9048 spin_lock_irqsave(&phba->hbalock, iflags); 9049 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9050 spin_unlock_irqrestore(&phba->hbalock, iflags); 9051 return MBX_NOT_FINISHED; 9052 } 9053 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9054 spin_unlock_irqrestore(&phba->hbalock, iflags); 9055 return MBX_NOT_FINISHED; 9056 } 9057 if (unlikely(phba->sli.mbox_active)) { 9058 spin_unlock_irqrestore(&phba->hbalock, iflags); 9059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9060 "0384 There is pending active mailbox cmd\n"); 9061 return MBX_NOT_FINISHED; 9062 } 9063 /* Take the mailbox command service token */ 9064 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9065 9066 /* Get the next mailbox command from head of queue */ 9067 mboxq = lpfc_mbox_get(phba); 9068 9069 /* If no more mailbox command waiting for post, we're done */ 9070 if (!mboxq) { 9071 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9072 spin_unlock_irqrestore(&phba->hbalock, iflags); 9073 return MBX_SUCCESS; 9074 } 9075 phba->sli.mbox_active = mboxq; 9076 spin_unlock_irqrestore(&phba->hbalock, iflags); 9077 9078 /* Check device readiness for posting mailbox command */ 9079 rc = lpfc_mbox_dev_check(phba); 9080 if (unlikely(rc)) 9081 /* Driver clean routine will clean up pending mailbox */ 9082 goto out_not_finished; 9083 9084 /* Prepare the mbox command to be posted */ 9085 mqe = &mboxq->u.mqe; 9086 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9087 9088 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9089 mod_timer(&psli->mbox_tmo, (jiffies + 9090 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9091 9092 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9093 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9094 "x%x x%x\n", 9095 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9096 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9097 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9098 phba->pport->port_state, psli->sli_flag); 9099 9100 if (mbx_cmnd != MBX_HEARTBEAT) { 9101 if (mboxq->vport) { 9102 lpfc_debugfs_disc_trc(mboxq->vport, 9103 LPFC_DISC_TRC_MBOX_VPORT, 9104 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9105 mbx_cmnd, mqe->un.mb_words[0], 9106 mqe->un.mb_words[1]); 9107 } else { 9108 lpfc_debugfs_disc_trc(phba->pport, 9109 LPFC_DISC_TRC_MBOX, 9110 "MBOX Send: cmd:x%x mb:x%x x%x", 9111 mbx_cmnd, mqe->un.mb_words[0], 9112 mqe->un.mb_words[1]); 9113 } 9114 } 9115 psli->slistat.mbox_cmd++; 9116 9117 /* Post the mailbox command to the port */ 9118 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9119 if (rc != MBX_SUCCESS) { 9120 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9121 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9122 "cannot issue Data: x%x x%x\n", 9123 mboxq->vport ? mboxq->vport->vpi : 0, 9124 mboxq->u.mb.mbxCommand, 9125 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9126 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9127 psli->sli_flag, MBX_NOWAIT); 9128 goto out_not_finished; 9129 } 9130 9131 return rc; 9132 9133out_not_finished: 9134 spin_lock_irqsave(&phba->hbalock, iflags); 9135 if (phba->sli.mbox_active) { 9136 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9137 __lpfc_mbox_cmpl_put(phba, mboxq); 9138 /* Release the token */ 9139 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9140 phba->sli.mbox_active = NULL; 9141 } 9142 spin_unlock_irqrestore(&phba->hbalock, iflags); 9143 9144 return MBX_NOT_FINISHED; 9145} 9146 9147/** 9148 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9149 * @phba: Pointer to HBA context object. 9150 * @pmbox: Pointer to mailbox object. 9151 * @flag: Flag indicating how the mailbox need to be processed. 9152 * 9153 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9154 * the API jump table function pointer from the lpfc_hba struct. 9155 * 9156 * Return codes the caller owns the mailbox command after the return of the 9157 * function. 9158 **/ 9159int 9160lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9161{ 9162 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9163} 9164 9165/** 9166 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9167 * @phba: The hba struct for which this call is being executed. 9168 * @dev_grp: The HBA PCI-Device group number. 9169 * 9170 * This routine sets up the mbox interface API function jump table in @phba 9171 * struct. 9172 * Returns: 0 - success, -ENODEV - failure. 9173 **/ 9174int 9175lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9176{ 9177 9178 switch (dev_grp) { 9179 case LPFC_PCI_DEV_LP: 9180 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9181 phba->lpfc_sli_handle_slow_ring_event = 9182 lpfc_sli_handle_slow_ring_event_s3; 9183 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9184 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9185 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9186 break; 9187 case LPFC_PCI_DEV_OC: 9188 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9189 phba->lpfc_sli_handle_slow_ring_event = 9190 lpfc_sli_handle_slow_ring_event_s4; 9191 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9192 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9193 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9194 break; 9195 default: 9196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9197 "1420 Invalid HBA PCI-device group: 0x%x\n", 9198 dev_grp); 9199 return -ENODEV; 9200 break; 9201 } 9202 return 0; 9203} 9204 9205/** 9206 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9207 * @phba: Pointer to HBA context object. 9208 * @pring: Pointer to driver SLI ring object. 9209 * @piocb: Pointer to address of newly added command iocb. 9210 * 9211 * This function is called with hbalock held for SLI3 ports or 9212 * the ring lock held for SLI4 ports to add a command 9213 * iocb to the txq when SLI layer cannot submit the command iocb 9214 * to the ring. 9215 **/ 9216void 9217__lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9218 struct lpfc_iocbq *piocb) 9219{ 9220 if (phba->sli_rev == LPFC_SLI_REV4) 9221 lockdep_assert_held(&pring->ring_lock); 9222 else 9223 lockdep_assert_held(&phba->hbalock); 9224 /* Insert the caller's iocb in the txq tail for later processing. */ 9225 list_add_tail(&piocb->list, &pring->txq); 9226} 9227 9228/** 9229 * lpfc_sli_next_iocb - Get the next iocb in the txq 9230 * @phba: Pointer to HBA context object. 9231 * @pring: Pointer to driver SLI ring object. 9232 * @piocb: Pointer to address of newly added command iocb. 9233 * 9234 * This function is called with hbalock held before a new 9235 * iocb is submitted to the firmware. This function checks 9236 * txq to flush the iocbs in txq to Firmware before 9237 * submitting new iocbs to the Firmware. 9238 * If there are iocbs in the txq which need to be submitted 9239 * to firmware, lpfc_sli_next_iocb returns the first element 9240 * of the txq after dequeuing it from txq. 9241 * If there is no iocb in the txq then the function will return 9242 * *piocb and *piocb is set to NULL. Caller needs to check 9243 * *piocb to find if there are more commands in the txq. 9244 **/ 9245static struct lpfc_iocbq * 9246lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9247 struct lpfc_iocbq **piocb) 9248{ 9249 struct lpfc_iocbq * nextiocb; 9250 9251 lockdep_assert_held(&phba->hbalock); 9252 9253 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9254 if (!nextiocb) { 9255 nextiocb = *piocb; 9256 *piocb = NULL; 9257 } 9258 9259 return nextiocb; 9260} 9261 9262/** 9263 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9264 * @phba: Pointer to HBA context object. 9265 * @ring_number: SLI ring number to issue iocb on. 9266 * @piocb: Pointer to command iocb. 9267 * @flag: Flag indicating if this command can be put into txq. 9268 * 9269 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9270 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9271 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9272 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9273 * this function allows only iocbs for posting buffers. This function finds 9274 * next available slot in the command ring and posts the command to the 9275 * available slot and writes the port attention register to request HBA start 9276 * processing new iocb. If there is no slot available in the ring and 9277 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9278 * the function returns IOCB_BUSY. 9279 * 9280 * This function is called with hbalock held. The function will return success 9281 * after it successfully submit the iocb to firmware or after adding to the 9282 * txq. 9283 **/ 9284static int 9285__lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9286 struct lpfc_iocbq *piocb, uint32_t flag) 9287{ 9288 struct lpfc_iocbq *nextiocb; 9289 IOCB_t *iocb; 9290 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9291 9292 lockdep_assert_held(&phba->hbalock); 9293 9294 if (piocb->iocb_cmpl && (!piocb->vport) && 9295 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9296 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9298 "1807 IOCB x%x failed. No vport\n", 9299 piocb->iocb.ulpCommand); 9300 dump_stack(); 9301 return IOCB_ERROR; 9302 } 9303 9304 9305 /* If the PCI channel is in offline state, do not post iocbs. */ 9306 if (unlikely(pci_channel_offline(phba->pcidev))) 9307 return IOCB_ERROR; 9308 9309 /* If HBA has a deferred error attention, fail the iocb. */ 9310 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9311 return IOCB_ERROR; 9312 9313 /* 9314 * We should never get an IOCB if we are in a < LINK_DOWN state 9315 */ 9316 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9317 return IOCB_ERROR; 9318 9319 /* 9320 * Check to see if we are blocking IOCB processing because of a 9321 * outstanding event. 9322 */ 9323 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9324 goto iocb_busy; 9325 9326 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9327 /* 9328 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9329 * can be issued if the link is not up. 9330 */ 9331 switch (piocb->iocb.ulpCommand) { 9332 case CMD_GEN_REQUEST64_CR: 9333 case CMD_GEN_REQUEST64_CX: 9334 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9335 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9336 FC_RCTL_DD_UNSOL_CMD) || 9337 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9338 MENLO_TRANSPORT_TYPE)) 9339 9340 goto iocb_busy; 9341 break; 9342 case CMD_QUE_RING_BUF_CN: 9343 case CMD_QUE_RING_BUF64_CN: 9344 /* 9345 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9346 * completion, iocb_cmpl MUST be 0. 9347 */ 9348 if (piocb->iocb_cmpl) 9349 piocb->iocb_cmpl = NULL; 9350 fallthrough; 9351 case CMD_CREATE_XRI_CR: 9352 case CMD_CLOSE_XRI_CN: 9353 case CMD_CLOSE_XRI_CX: 9354 break; 9355 default: 9356 goto iocb_busy; 9357 } 9358 9359 /* 9360 * For FCP commands, we must be in a state where we can process link 9361 * attention events. 9362 */ 9363 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9364 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9365 goto iocb_busy; 9366 } 9367 9368 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9369 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9370 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9371 9372 if (iocb) 9373 lpfc_sli_update_ring(phba, pring); 9374 else 9375 lpfc_sli_update_full_ring(phba, pring); 9376 9377 if (!piocb) 9378 return IOCB_SUCCESS; 9379 9380 goto out_busy; 9381 9382 iocb_busy: 9383 pring->stats.iocb_cmd_delay++; 9384 9385 out_busy: 9386 9387 if (!(flag & SLI_IOCB_RET_IOCB)) { 9388 __lpfc_sli_ringtx_put(phba, pring, piocb); 9389 return IOCB_SUCCESS; 9390 } 9391 9392 return IOCB_BUSY; 9393} 9394 9395/** 9396 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9397 * @phba: Pointer to HBA context object. 9398 * @piocbq: Pointer to command iocb. 9399 * @sglq: Pointer to the scatter gather queue object. 9400 * 9401 * This routine converts the bpl or bde that is in the IOCB 9402 * to a sgl list for the sli4 hardware. The physical address 9403 * of the bpl/bde is converted back to a virtual address. 9404 * If the IOCB contains a BPL then the list of BDE's is 9405 * converted to sli4_sge's. If the IOCB contains a single 9406 * BDE then it is converted to a single sli_sge. 9407 * The IOCB is still in cpu endianess so the contents of 9408 * the bpl can be used without byte swapping. 9409 * 9410 * Returns valid XRI = Success, NO_XRI = Failure. 9411**/ 9412static uint16_t 9413lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9414 struct lpfc_sglq *sglq) 9415{ 9416 uint16_t xritag = NO_XRI; 9417 struct ulp_bde64 *bpl = NULL; 9418 struct ulp_bde64 bde; 9419 struct sli4_sge *sgl = NULL; 9420 struct lpfc_dmabuf *dmabuf; 9421 IOCB_t *icmd; 9422 int numBdes = 0; 9423 int i = 0; 9424 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9425 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9426 9427 if (!piocbq || !sglq) 9428 return xritag; 9429 9430 sgl = (struct sli4_sge *)sglq->sgl; 9431 icmd = &piocbq->iocb; 9432 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9433 return sglq->sli4_xritag; 9434 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9435 numBdes = icmd->un.genreq64.bdl.bdeSize / 9436 sizeof(struct ulp_bde64); 9437 /* The addrHigh and addrLow fields within the IOCB 9438 * have not been byteswapped yet so there is no 9439 * need to swap them back. 9440 */ 9441 if (piocbq->context3) 9442 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9443 else 9444 return xritag; 9445 9446 bpl = (struct ulp_bde64 *)dmabuf->virt; 9447 if (!bpl) 9448 return xritag; 9449 9450 for (i = 0; i < numBdes; i++) { 9451 /* Should already be byte swapped. */ 9452 sgl->addr_hi = bpl->addrHigh; 9453 sgl->addr_lo = bpl->addrLow; 9454 9455 sgl->word2 = le32_to_cpu(sgl->word2); 9456 if ((i+1) == numBdes) 9457 bf_set(lpfc_sli4_sge_last, sgl, 1); 9458 else 9459 bf_set(lpfc_sli4_sge_last, sgl, 0); 9460 /* swap the size field back to the cpu so we 9461 * can assign it to the sgl. 9462 */ 9463 bde.tus.w = le32_to_cpu(bpl->tus.w); 9464 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9465 /* The offsets in the sgl need to be accumulated 9466 * separately for the request and reply lists. 9467 * The request is always first, the reply follows. 9468 */ 9469 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9470 /* add up the reply sg entries */ 9471 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9472 inbound++; 9473 /* first inbound? reset the offset */ 9474 if (inbound == 1) 9475 offset = 0; 9476 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9477 bf_set(lpfc_sli4_sge_type, sgl, 9478 LPFC_SGE_TYPE_DATA); 9479 offset += bde.tus.f.bdeSize; 9480 } 9481 sgl->word2 = cpu_to_le32(sgl->word2); 9482 bpl++; 9483 sgl++; 9484 } 9485 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9486 /* The addrHigh and addrLow fields of the BDE have not 9487 * been byteswapped yet so they need to be swapped 9488 * before putting them in the sgl. 9489 */ 9490 sgl->addr_hi = 9491 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9492 sgl->addr_lo = 9493 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9494 sgl->word2 = le32_to_cpu(sgl->word2); 9495 bf_set(lpfc_sli4_sge_last, sgl, 1); 9496 sgl->word2 = cpu_to_le32(sgl->word2); 9497 sgl->sge_len = 9498 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9499 } 9500 return sglq->sli4_xritag; 9501} 9502 9503/** 9504 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9505 * @phba: Pointer to HBA context object. 9506 * @iocbq: Pointer to command iocb. 9507 * @wqe: Pointer to the work queue entry. 9508 * 9509 * This routine converts the iocb command to its Work Queue Entry 9510 * equivalent. The wqe pointer should not have any fields set when 9511 * this routine is called because it will memcpy over them. 9512 * This routine does not set the CQ_ID or the WQEC bits in the 9513 * wqe. 9514 * 9515 * Returns: 0 = Success, IOCB_ERROR = Failure. 9516 **/ 9517static int 9518lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9519 union lpfc_wqe128 *wqe) 9520{ 9521 uint32_t xmit_len = 0, total_len = 0; 9522 uint8_t ct = 0; 9523 uint32_t fip; 9524 uint32_t abort_tag; 9525 uint8_t command_type = ELS_COMMAND_NON_FIP; 9526 uint8_t cmnd; 9527 uint16_t xritag; 9528 uint16_t abrt_iotag; 9529 struct lpfc_iocbq *abrtiocbq; 9530 struct ulp_bde64 *bpl = NULL; 9531 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9532 int numBdes, i; 9533 struct ulp_bde64 bde; 9534 struct lpfc_nodelist *ndlp; 9535 uint32_t *pcmd; 9536 uint32_t if_type; 9537 9538 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9539 /* The fcp commands will set command type */ 9540 if (iocbq->iocb_flag & LPFC_IO_FCP) 9541 command_type = FCP_COMMAND; 9542 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9543 command_type = ELS_COMMAND_FIP; 9544 else 9545 command_type = ELS_COMMAND_NON_FIP; 9546 9547 if (phba->fcp_embed_io) 9548 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9549 /* Some of the fields are in the right position already */ 9550 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9551 /* The ct field has moved so reset */ 9552 wqe->generic.wqe_com.word7 = 0; 9553 wqe->generic.wqe_com.word10 = 0; 9554 9555 abort_tag = (uint32_t) iocbq->iotag; 9556 xritag = iocbq->sli4_xritag; 9557 /* words0-2 bpl convert bde */ 9558 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9559 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9560 sizeof(struct ulp_bde64); 9561 bpl = (struct ulp_bde64 *) 9562 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9563 if (!bpl) 9564 return IOCB_ERROR; 9565 9566 /* Should already be byte swapped. */ 9567 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9568 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9569 /* swap the size field back to the cpu so we 9570 * can assign it to the sgl. 9571 */ 9572 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9573 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9574 total_len = 0; 9575 for (i = 0; i < numBdes; i++) { 9576 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9577 total_len += bde.tus.f.bdeSize; 9578 } 9579 } else 9580 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9581 9582 iocbq->iocb.ulpIoTag = iocbq->iotag; 9583 cmnd = iocbq->iocb.ulpCommand; 9584 9585 switch (iocbq->iocb.ulpCommand) { 9586 case CMD_ELS_REQUEST64_CR: 9587 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9588 ndlp = iocbq->context_un.ndlp; 9589 else 9590 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9591 if (!iocbq->iocb.ulpLe) { 9592 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9593 "2007 Only Limited Edition cmd Format" 9594 " supported 0x%x\n", 9595 iocbq->iocb.ulpCommand); 9596 return IOCB_ERROR; 9597 } 9598 9599 wqe->els_req.payload_len = xmit_len; 9600 /* Els_reguest64 has a TMO */ 9601 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9602 iocbq->iocb.ulpTimeout); 9603 /* Need a VF for word 4 set the vf bit*/ 9604 bf_set(els_req64_vf, &wqe->els_req, 0); 9605 /* And a VFID for word 12 */ 9606 bf_set(els_req64_vfid, &wqe->els_req, 0); 9607 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9608 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9609 iocbq->iocb.ulpContext); 9610 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9611 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9612 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9613 if (command_type == ELS_COMMAND_FIP) 9614 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9615 >> LPFC_FIP_ELS_ID_SHIFT); 9616 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9617 iocbq->context2)->virt); 9618 if_type = bf_get(lpfc_sli_intf_if_type, 9619 &phba->sli4_hba.sli_intf); 9620 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9621 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9622 *pcmd == ELS_CMD_SCR || 9623 *pcmd == ELS_CMD_RDF || 9624 *pcmd == ELS_CMD_RSCN_XMT || 9625 *pcmd == ELS_CMD_FDISC || 9626 *pcmd == ELS_CMD_LOGO || 9627 *pcmd == ELS_CMD_PLOGI)) { 9628 bf_set(els_req64_sp, &wqe->els_req, 1); 9629 bf_set(els_req64_sid, &wqe->els_req, 9630 iocbq->vport->fc_myDID); 9631 if ((*pcmd == ELS_CMD_FLOGI) && 9632 !(phba->fc_topology == 9633 LPFC_TOPOLOGY_LOOP)) 9634 bf_set(els_req64_sid, &wqe->els_req, 0); 9635 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9636 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9637 phba->vpi_ids[iocbq->vport->vpi]); 9638 } else if (pcmd && iocbq->context1) { 9639 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9640 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9641 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9642 } 9643 } 9644 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9645 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9646 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9647 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9648 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9649 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9650 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9651 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9652 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9653 break; 9654 case CMD_XMIT_SEQUENCE64_CX: 9655 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9656 iocbq->iocb.un.ulpWord[3]); 9657 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9658 iocbq->iocb.unsli3.rcvsli3.ox_id); 9659 /* The entire sequence is transmitted for this IOCB */ 9660 xmit_len = total_len; 9661 cmnd = CMD_XMIT_SEQUENCE64_CR; 9662 if (phba->link_flag & LS_LOOPBACK_MODE) 9663 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9664 fallthrough; 9665 case CMD_XMIT_SEQUENCE64_CR: 9666 /* word3 iocb=io_tag32 wqe=reserved */ 9667 wqe->xmit_sequence.rsvd3 = 0; 9668 /* word4 relative_offset memcpy */ 9669 /* word5 r_ctl/df_ctl memcpy */ 9670 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9671 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9672 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9673 LPFC_WQE_IOD_WRITE); 9674 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9675 LPFC_WQE_LENLOC_WORD12); 9676 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9677 wqe->xmit_sequence.xmit_len = xmit_len; 9678 command_type = OTHER_COMMAND; 9679 break; 9680 case CMD_XMIT_BCAST64_CN: 9681 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9682 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9683 /* word4 iocb=rsvd wqe=rsvd */ 9684 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9685 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9686 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9687 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9688 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9689 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9690 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9691 LPFC_WQE_LENLOC_WORD3); 9692 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9693 break; 9694 case CMD_FCP_IWRITE64_CR: 9695 command_type = FCP_COMMAND_DATA_OUT; 9696 /* word3 iocb=iotag wqe=payload_offset_len */ 9697 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9698 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9699 xmit_len + sizeof(struct fcp_rsp)); 9700 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9701 0); 9702 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9703 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9704 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9705 iocbq->iocb.ulpFCP2Rcvy); 9706 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9707 /* Always open the exchange */ 9708 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9709 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9710 LPFC_WQE_LENLOC_WORD4); 9711 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9712 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9713 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9714 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9715 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9716 if (iocbq->priority) { 9717 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9718 (iocbq->priority << 1)); 9719 } else { 9720 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9721 (phba->cfg_XLanePriority << 1)); 9722 } 9723 } 9724 /* Note, word 10 is already initialized to 0 */ 9725 9726 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9727 if (phba->cfg_enable_pbde) 9728 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9729 else 9730 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9731 9732 if (phba->fcp_embed_io) { 9733 struct lpfc_io_buf *lpfc_cmd; 9734 struct sli4_sge *sgl; 9735 struct fcp_cmnd *fcp_cmnd; 9736 uint32_t *ptr; 9737 9738 /* 128 byte wqe support here */ 9739 9740 lpfc_cmd = iocbq->context1; 9741 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9742 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9743 9744 /* Word 0-2 - FCP_CMND */ 9745 wqe->generic.bde.tus.f.bdeFlags = 9746 BUFF_TYPE_BDE_IMMED; 9747 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9748 wqe->generic.bde.addrHigh = 0; 9749 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9750 9751 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9752 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9753 9754 /* Word 22-29 FCP CMND Payload */ 9755 ptr = &wqe->words[22]; 9756 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9757 } 9758 break; 9759 case CMD_FCP_IREAD64_CR: 9760 /* word3 iocb=iotag wqe=payload_offset_len */ 9761 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9762 bf_set(payload_offset_len, &wqe->fcp_iread, 9763 xmit_len + sizeof(struct fcp_rsp)); 9764 bf_set(cmd_buff_len, &wqe->fcp_iread, 9765 0); 9766 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9767 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9768 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9769 iocbq->iocb.ulpFCP2Rcvy); 9770 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9771 /* Always open the exchange */ 9772 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9773 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9774 LPFC_WQE_LENLOC_WORD4); 9775 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9776 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9777 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9778 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9779 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9780 if (iocbq->priority) { 9781 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9782 (iocbq->priority << 1)); 9783 } else { 9784 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9785 (phba->cfg_XLanePriority << 1)); 9786 } 9787 } 9788 /* Note, word 10 is already initialized to 0 */ 9789 9790 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9791 if (phba->cfg_enable_pbde) 9792 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9793 else 9794 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9795 9796 if (phba->fcp_embed_io) { 9797 struct lpfc_io_buf *lpfc_cmd; 9798 struct sli4_sge *sgl; 9799 struct fcp_cmnd *fcp_cmnd; 9800 uint32_t *ptr; 9801 9802 /* 128 byte wqe support here */ 9803 9804 lpfc_cmd = iocbq->context1; 9805 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9806 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9807 9808 /* Word 0-2 - FCP_CMND */ 9809 wqe->generic.bde.tus.f.bdeFlags = 9810 BUFF_TYPE_BDE_IMMED; 9811 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9812 wqe->generic.bde.addrHigh = 0; 9813 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9814 9815 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9816 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9817 9818 /* Word 22-29 FCP CMND Payload */ 9819 ptr = &wqe->words[22]; 9820 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9821 } 9822 break; 9823 case CMD_FCP_ICMND64_CR: 9824 /* word3 iocb=iotag wqe=payload_offset_len */ 9825 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9826 bf_set(payload_offset_len, &wqe->fcp_icmd, 9827 xmit_len + sizeof(struct fcp_rsp)); 9828 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9829 0); 9830 /* word3 iocb=IO_TAG wqe=reserved */ 9831 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9832 /* Always open the exchange */ 9833 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9834 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9835 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9836 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9837 LPFC_WQE_LENLOC_NONE); 9838 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9839 iocbq->iocb.ulpFCP2Rcvy); 9840 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9841 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9842 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9843 if (iocbq->priority) { 9844 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9845 (iocbq->priority << 1)); 9846 } else { 9847 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9848 (phba->cfg_XLanePriority << 1)); 9849 } 9850 } 9851 /* Note, word 10 is already initialized to 0 */ 9852 9853 if (phba->fcp_embed_io) { 9854 struct lpfc_io_buf *lpfc_cmd; 9855 struct sli4_sge *sgl; 9856 struct fcp_cmnd *fcp_cmnd; 9857 uint32_t *ptr; 9858 9859 /* 128 byte wqe support here */ 9860 9861 lpfc_cmd = iocbq->context1; 9862 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9863 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9864 9865 /* Word 0-2 - FCP_CMND */ 9866 wqe->generic.bde.tus.f.bdeFlags = 9867 BUFF_TYPE_BDE_IMMED; 9868 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9869 wqe->generic.bde.addrHigh = 0; 9870 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9871 9872 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9873 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9874 9875 /* Word 22-29 FCP CMND Payload */ 9876 ptr = &wqe->words[22]; 9877 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9878 } 9879 break; 9880 case CMD_GEN_REQUEST64_CR: 9881 /* For this command calculate the xmit length of the 9882 * request bde. 9883 */ 9884 xmit_len = 0; 9885 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9886 sizeof(struct ulp_bde64); 9887 for (i = 0; i < numBdes; i++) { 9888 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9889 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9890 break; 9891 xmit_len += bde.tus.f.bdeSize; 9892 } 9893 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9894 wqe->gen_req.request_payload_len = xmit_len; 9895 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9896 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9897 /* word6 context tag copied in memcpy */ 9898 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9899 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9901 "2015 Invalid CT %x command 0x%x\n", 9902 ct, iocbq->iocb.ulpCommand); 9903 return IOCB_ERROR; 9904 } 9905 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9906 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9907 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9908 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9909 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9910 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9911 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9912 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9913 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9914 command_type = OTHER_COMMAND; 9915 break; 9916 case CMD_XMIT_ELS_RSP64_CX: 9917 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9918 /* words0-2 BDE memcpy */ 9919 /* word3 iocb=iotag32 wqe=response_payload_len */ 9920 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9921 /* word4 */ 9922 wqe->xmit_els_rsp.word4 = 0; 9923 /* word5 iocb=rsvd wge=did */ 9924 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9925 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9926 9927 if_type = bf_get(lpfc_sli_intf_if_type, 9928 &phba->sli4_hba.sli_intf); 9929 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9930 if (iocbq->vport->fc_flag & FC_PT2PT) { 9931 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9932 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9933 iocbq->vport->fc_myDID); 9934 if (iocbq->vport->fc_myDID == Fabric_DID) { 9935 bf_set(wqe_els_did, 9936 &wqe->xmit_els_rsp.wqe_dest, 0); 9937 } 9938 } 9939 } 9940 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9941 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9942 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9943 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9944 iocbq->iocb.unsli3.rcvsli3.ox_id); 9945 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9946 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9947 phba->vpi_ids[iocbq->vport->vpi]); 9948 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9949 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9950 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9951 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9952 LPFC_WQE_LENLOC_WORD3); 9953 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9954 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9955 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9956 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9957 iocbq->context2)->virt); 9958 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9959 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9960 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9961 iocbq->vport->fc_myDID); 9962 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9963 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9964 phba->vpi_ids[phba->pport->vpi]); 9965 } 9966 command_type = OTHER_COMMAND; 9967 break; 9968 case CMD_CLOSE_XRI_CN: 9969 case CMD_ABORT_XRI_CN: 9970 case CMD_ABORT_XRI_CX: 9971 /* words 0-2 memcpy should be 0 rserved */ 9972 /* port will send abts */ 9973 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9974 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9975 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9976 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9977 } else 9978 fip = 0; 9979 9980 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9981 /* 9982 * The link is down, or the command was ELS_FIP 9983 * so the fw does not need to send abts 9984 * on the wire. 9985 */ 9986 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9987 else 9988 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9989 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9990 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9991 wqe->abort_cmd.rsrvd5 = 0; 9992 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9993 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9994 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9995 /* 9996 * The abort handler will send us CMD_ABORT_XRI_CN or 9997 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9998 */ 9999 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10000 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10001 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10002 LPFC_WQE_LENLOC_NONE); 10003 cmnd = CMD_ABORT_XRI_CX; 10004 command_type = OTHER_COMMAND; 10005 xritag = 0; 10006 break; 10007 case CMD_XMIT_BLS_RSP64_CX: 10008 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10009 /* As BLS ABTS RSP WQE is very different from other WQEs, 10010 * we re-construct this WQE here based on information in 10011 * iocbq from scratch. 10012 */ 10013 memset(wqe, 0, sizeof(*wqe)); 10014 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10015 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10016 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10017 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10018 LPFC_ABTS_UNSOL_INT) { 10019 /* ABTS sent by initiator to CT exchange, the 10020 * RX_ID field will be filled with the newly 10021 * allocated responder XRI. 10022 */ 10023 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10024 iocbq->sli4_xritag); 10025 } else { 10026 /* ABTS sent by responder to CT exchange, the 10027 * RX_ID field will be filled with the responder 10028 * RX_ID from ABTS. 10029 */ 10030 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10031 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10032 } 10033 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10034 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10035 10036 /* Use CT=VPI */ 10037 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10038 ndlp->nlp_DID); 10039 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10040 iocbq->iocb.ulpContext); 10041 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10042 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10043 phba->vpi_ids[phba->pport->vpi]); 10044 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10045 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10046 LPFC_WQE_LENLOC_NONE); 10047 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10048 command_type = OTHER_COMMAND; 10049 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10050 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10051 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10052 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10053 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10054 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10055 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10056 } 10057 10058 break; 10059 case CMD_SEND_FRAME: 10060 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10061 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10062 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10063 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10064 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10065 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10066 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10067 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10068 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10069 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10070 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10071 return 0; 10072 case CMD_XRI_ABORTED_CX: 10073 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10074 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10075 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10076 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10077 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10078 default: 10079 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10080 "2014 Invalid command 0x%x\n", 10081 iocbq->iocb.ulpCommand); 10082 return IOCB_ERROR; 10083 break; 10084 } 10085 10086 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10087 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10088 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10089 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10090 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10091 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10092 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10093 LPFC_IO_DIF_INSERT); 10094 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10095 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10096 wqe->generic.wqe_com.abort_tag = abort_tag; 10097 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10098 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10099 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10100 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10101 return 0; 10102} 10103 10104/** 10105 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10106 * @phba: Pointer to HBA context object. 10107 * @ring_number: SLI ring number to issue iocb on. 10108 * @piocb: Pointer to command iocb. 10109 * @flag: Flag indicating if this command can be put into txq. 10110 * 10111 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10112 * an iocb command to an HBA with SLI-4 interface spec. 10113 * 10114 * This function is called with ringlock held. The function will return success 10115 * after it successfully submit the iocb to firmware or after adding to the 10116 * txq. 10117 **/ 10118static int 10119__lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10120 struct lpfc_iocbq *piocb, uint32_t flag) 10121{ 10122 struct lpfc_sglq *sglq; 10123 union lpfc_wqe128 wqe; 10124 struct lpfc_queue *wq; 10125 struct lpfc_sli_ring *pring; 10126 10127 /* Get the WQ */ 10128 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10129 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10130 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10131 } else { 10132 wq = phba->sli4_hba.els_wq; 10133 } 10134 10135 /* Get corresponding ring */ 10136 pring = wq->pring; 10137 10138 /* 10139 * The WQE can be either 64 or 128 bytes, 10140 */ 10141 10142 lockdep_assert_held(&pring->ring_lock); 10143 10144 if (piocb->sli4_xritag == NO_XRI) { 10145 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10146 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10147 sglq = NULL; 10148 else { 10149 if (!list_empty(&pring->txq)) { 10150 if (!(flag & SLI_IOCB_RET_IOCB)) { 10151 __lpfc_sli_ringtx_put(phba, 10152 pring, piocb); 10153 return IOCB_SUCCESS; 10154 } else { 10155 return IOCB_BUSY; 10156 } 10157 } else { 10158 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10159 if (!sglq) { 10160 if (!(flag & SLI_IOCB_RET_IOCB)) { 10161 __lpfc_sli_ringtx_put(phba, 10162 pring, 10163 piocb); 10164 return IOCB_SUCCESS; 10165 } else 10166 return IOCB_BUSY; 10167 } 10168 } 10169 } 10170 } else if (piocb->iocb_flag & LPFC_IO_FCP) 10171 /* These IO's already have an XRI and a mapped sgl. */ 10172 sglq = NULL; 10173 else { 10174 /* 10175 * This is a continuation of a commandi,(CX) so this 10176 * sglq is on the active list 10177 */ 10178 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10179 if (!sglq) 10180 return IOCB_ERROR; 10181 } 10182 10183 if (sglq) { 10184 piocb->sli4_lxritag = sglq->sli4_lxritag; 10185 piocb->sli4_xritag = sglq->sli4_xritag; 10186 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10187 return IOCB_ERROR; 10188 } 10189 10190 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10191 return IOCB_ERROR; 10192 10193 if (lpfc_sli4_wq_put(wq, &wqe)) 10194 return IOCB_ERROR; 10195 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10196 10197 return 0; 10198} 10199 10200/* 10201 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10202 * 10203 * This routine wraps the actual lockless version for issusing IOCB function 10204 * pointer from the lpfc_hba struct. 10205 * 10206 * Return codes: 10207 * IOCB_ERROR - Error 10208 * IOCB_SUCCESS - Success 10209 * IOCB_BUSY - Busy 10210 **/ 10211int 10212__lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10213 struct lpfc_iocbq *piocb, uint32_t flag) 10214{ 10215 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10216} 10217 10218/** 10219 * lpfc_sli_api_table_setup - Set up sli api function jump table 10220 * @phba: The hba struct for which this call is being executed. 10221 * @dev_grp: The HBA PCI-Device group number. 10222 * 10223 * This routine sets up the SLI interface API function jump table in @phba 10224 * struct. 10225 * Returns: 0 - success, -ENODEV - failure. 10226 **/ 10227int 10228lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10229{ 10230 10231 switch (dev_grp) { 10232 case LPFC_PCI_DEV_LP: 10233 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10234 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10235 break; 10236 case LPFC_PCI_DEV_OC: 10237 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10238 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10239 break; 10240 default: 10241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10242 "1419 Invalid HBA PCI-device group: 0x%x\n", 10243 dev_grp); 10244 return -ENODEV; 10245 break; 10246 } 10247 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10248 return 0; 10249} 10250 10251/** 10252 * lpfc_sli4_calc_ring - Calculates which ring to use 10253 * @phba: Pointer to HBA context object. 10254 * @piocb: Pointer to command iocb. 10255 * 10256 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10257 * hba_wqidx, thus we need to calculate the corresponding ring. 10258 * Since ABORTS must go on the same WQ of the command they are 10259 * aborting, we use command's hba_wqidx. 10260 */ 10261struct lpfc_sli_ring * 10262lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10263{ 10264 struct lpfc_io_buf *lpfc_cmd; 10265 10266 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10267 if (unlikely(!phba->sli4_hba.hdwq)) 10268 return NULL; 10269 /* 10270 * for abort iocb hba_wqidx should already 10271 * be setup based on what work queue we used. 10272 */ 10273 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10274 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10275 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10276 } 10277 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10278 } else { 10279 if (unlikely(!phba->sli4_hba.els_wq)) 10280 return NULL; 10281 piocb->hba_wqidx = 0; 10282 return phba->sli4_hba.els_wq->pring; 10283 } 10284} 10285 10286/** 10287 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10288 * @phba: Pointer to HBA context object. 10289 * @ring_number: Ring number 10290 * @piocb: Pointer to command iocb. 10291 * @flag: Flag indicating if this command can be put into txq. 10292 * 10293 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10294 * function. This function gets the hbalock and calls 10295 * __lpfc_sli_issue_iocb function and will return the error returned 10296 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10297 * functions which do not hold hbalock. 10298 **/ 10299int 10300lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10301 struct lpfc_iocbq *piocb, uint32_t flag) 10302{ 10303 struct lpfc_sli_ring *pring; 10304 struct lpfc_queue *eq; 10305 unsigned long iflags; 10306 int rc; 10307 10308 if (phba->sli_rev == LPFC_SLI_REV4) { 10309 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10310 10311 pring = lpfc_sli4_calc_ring(phba, piocb); 10312 if (unlikely(pring == NULL)) 10313 return IOCB_ERROR; 10314 10315 spin_lock_irqsave(&pring->ring_lock, iflags); 10316 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10317 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10318 10319 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10320 } else { 10321 /* For now, SLI2/3 will still use hbalock */ 10322 spin_lock_irqsave(&phba->hbalock, iflags); 10323 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10324 spin_unlock_irqrestore(&phba->hbalock, iflags); 10325 } 10326 return rc; 10327} 10328 10329/** 10330 * lpfc_extra_ring_setup - Extra ring setup function 10331 * @phba: Pointer to HBA context object. 10332 * 10333 * This function is called while driver attaches with the 10334 * HBA to setup the extra ring. The extra ring is used 10335 * only when driver needs to support target mode functionality 10336 * or IP over FC functionalities. 10337 * 10338 * This function is called with no lock held. SLI3 only. 10339 **/ 10340static int 10341lpfc_extra_ring_setup( struct lpfc_hba *phba) 10342{ 10343 struct lpfc_sli *psli; 10344 struct lpfc_sli_ring *pring; 10345 10346 psli = &phba->sli; 10347 10348 /* Adjust cmd/rsp ring iocb entries more evenly */ 10349 10350 /* Take some away from the FCP ring */ 10351 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10352 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10353 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10354 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10355 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10356 10357 /* and give them to the extra ring */ 10358 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10359 10360 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10361 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10362 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10363 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10364 10365 /* Setup default profile for this ring */ 10366 pring->iotag_max = 4096; 10367 pring->num_mask = 1; 10368 pring->prt[0].profile = 0; /* Mask 0 */ 10369 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10370 pring->prt[0].type = phba->cfg_multi_ring_type; 10371 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10372 return 0; 10373} 10374 10375static void 10376lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 10377 struct lpfc_nodelist *ndlp) 10378{ 10379 unsigned long iflags; 10380 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 10381 10382 spin_lock_irqsave(&phba->hbalock, iflags); 10383 if (!list_empty(&evtp->evt_listp)) { 10384 spin_unlock_irqrestore(&phba->hbalock, iflags); 10385 return; 10386 } 10387 10388 /* Incrementing the reference count until the queued work is done. */ 10389 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 10390 if (!evtp->evt_arg1) { 10391 spin_unlock_irqrestore(&phba->hbalock, iflags); 10392 return; 10393 } 10394 evtp->evt = LPFC_EVT_RECOVER_PORT; 10395 list_add_tail(&evtp->evt_listp, &phba->work_list); 10396 spin_unlock_irqrestore(&phba->hbalock, iflags); 10397 10398 lpfc_worker_wake_up(phba); 10399} 10400 10401/* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10402 * @phba: Pointer to HBA context object. 10403 * @iocbq: Pointer to iocb object. 10404 * 10405 * The async_event handler calls this routine when it receives 10406 * an ASYNC_STATUS_CN event from the port. The port generates 10407 * this event when an Abort Sequence request to an rport fails 10408 * twice in succession. The abort could be originated by the 10409 * driver or by the port. The ABTS could have been for an ELS 10410 * or FCP IO. The port only generates this event when an ABTS 10411 * fails to complete after one retry. 10412 */ 10413static void 10414lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10415 struct lpfc_iocbq *iocbq) 10416{ 10417 struct lpfc_nodelist *ndlp = NULL; 10418 uint16_t rpi = 0, vpi = 0; 10419 struct lpfc_vport *vport = NULL; 10420 10421 /* The rpi in the ulpContext is vport-sensitive. */ 10422 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10423 rpi = iocbq->iocb.ulpContext; 10424 10425 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10426 "3092 Port generated ABTS async event " 10427 "on vpi %d rpi %d status 0x%x\n", 10428 vpi, rpi, iocbq->iocb.ulpStatus); 10429 10430 vport = lpfc_find_vport_by_vpid(phba, vpi); 10431 if (!vport) 10432 goto err_exit; 10433 ndlp = lpfc_findnode_rpi(vport, rpi); 10434 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10435 goto err_exit; 10436 10437 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10438 lpfc_sli_abts_recover_port(vport, ndlp); 10439 return; 10440 10441 err_exit: 10442 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10443 "3095 Event Context not found, no " 10444 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10445 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10446 vpi, rpi); 10447} 10448 10449/* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10450 * @phba: pointer to HBA context object. 10451 * @ndlp: nodelist pointer for the impacted rport. 10452 * @axri: pointer to the wcqe containing the failed exchange. 10453 * 10454 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10455 * port. The port generates this event when an abort exchange request to an 10456 * rport fails twice in succession with no reply. The abort could be originated 10457 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10458 */ 10459void 10460lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10461 struct lpfc_nodelist *ndlp, 10462 struct sli4_wcqe_xri_aborted *axri) 10463{ 10464 uint32_t ext_status = 0; 10465 10466 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10467 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10468 "3115 Node Context not found, driver " 10469 "ignoring abts err event\n"); 10470 return; 10471 } 10472 10473 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10474 "3116 Port generated FCP XRI ABORT event on " 10475 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10476 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10477 bf_get(lpfc_wcqe_xa_xri, axri), 10478 bf_get(lpfc_wcqe_xa_status, axri), 10479 axri->parameter); 10480 10481 /* 10482 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10483 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10484 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10485 */ 10486 ext_status = axri->parameter & IOERR_PARAM_MASK; 10487 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10488 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10489 lpfc_sli_post_recovery_event(phba, ndlp); 10490} 10491 10492/** 10493 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10494 * @phba: Pointer to HBA context object. 10495 * @pring: Pointer to driver SLI ring object. 10496 * @iocbq: Pointer to iocb object. 10497 * 10498 * This function is called by the slow ring event handler 10499 * function when there is an ASYNC event iocb in the ring. 10500 * This function is called with no lock held. 10501 * Currently this function handles only temperature related 10502 * ASYNC events. The function decodes the temperature sensor 10503 * event message and posts events for the management applications. 10504 **/ 10505static void 10506lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10507 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10508{ 10509 IOCB_t *icmd; 10510 uint16_t evt_code; 10511 struct temp_event temp_event_data; 10512 struct Scsi_Host *shost; 10513 uint32_t *iocb_w; 10514 10515 icmd = &iocbq->iocb; 10516 evt_code = icmd->un.asyncstat.evt_code; 10517 10518 switch (evt_code) { 10519 case ASYNC_TEMP_WARN: 10520 case ASYNC_TEMP_SAFE: 10521 temp_event_data.data = (uint32_t) icmd->ulpContext; 10522 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10523 if (evt_code == ASYNC_TEMP_WARN) { 10524 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10526 "0347 Adapter is very hot, please take " 10527 "corrective action. temperature : %d Celsius\n", 10528 (uint32_t) icmd->ulpContext); 10529 } else { 10530 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10531 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10532 "0340 Adapter temperature is OK now. " 10533 "temperature : %d Celsius\n", 10534 (uint32_t) icmd->ulpContext); 10535 } 10536 10537 /* Send temperature change event to applications */ 10538 shost = lpfc_shost_from_vport(phba->pport); 10539 fc_host_post_vendor_event(shost, fc_get_event_number(), 10540 sizeof(temp_event_data), (char *) &temp_event_data, 10541 LPFC_NL_VENDOR_ID); 10542 break; 10543 case ASYNC_STATUS_CN: 10544 lpfc_sli_abts_err_handler(phba, iocbq); 10545 break; 10546 default: 10547 iocb_w = (uint32_t *) icmd; 10548 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10549 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10550 " evt_code 0x%x\n" 10551 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10552 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10553 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10554 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10555 pring->ringno, icmd->un.asyncstat.evt_code, 10556 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10557 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10558 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10559 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10560 10561 break; 10562 } 10563} 10564 10565 10566/** 10567 * lpfc_sli4_setup - SLI ring setup function 10568 * @phba: Pointer to HBA context object. 10569 * 10570 * lpfc_sli_setup sets up rings of the SLI interface with 10571 * number of iocbs per ring and iotags. This function is 10572 * called while driver attach to the HBA and before the 10573 * interrupts are enabled. So there is no need for locking. 10574 * 10575 * This function always returns 0. 10576 **/ 10577int 10578lpfc_sli4_setup(struct lpfc_hba *phba) 10579{ 10580 struct lpfc_sli_ring *pring; 10581 10582 pring = phba->sli4_hba.els_wq->pring; 10583 pring->num_mask = LPFC_MAX_RING_MASK; 10584 pring->prt[0].profile = 0; /* Mask 0 */ 10585 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10586 pring->prt[0].type = FC_TYPE_ELS; 10587 pring->prt[0].lpfc_sli_rcv_unsol_event = 10588 lpfc_els_unsol_event; 10589 pring->prt[1].profile = 0; /* Mask 1 */ 10590 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10591 pring->prt[1].type = FC_TYPE_ELS; 10592 pring->prt[1].lpfc_sli_rcv_unsol_event = 10593 lpfc_els_unsol_event; 10594 pring->prt[2].profile = 0; /* Mask 2 */ 10595 /* NameServer Inquiry */ 10596 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10597 /* NameServer */ 10598 pring->prt[2].type = FC_TYPE_CT; 10599 pring->prt[2].lpfc_sli_rcv_unsol_event = 10600 lpfc_ct_unsol_event; 10601 pring->prt[3].profile = 0; /* Mask 3 */ 10602 /* NameServer response */ 10603 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10604 /* NameServer */ 10605 pring->prt[3].type = FC_TYPE_CT; 10606 pring->prt[3].lpfc_sli_rcv_unsol_event = 10607 lpfc_ct_unsol_event; 10608 return 0; 10609} 10610 10611/** 10612 * lpfc_sli_setup - SLI ring setup function 10613 * @phba: Pointer to HBA context object. 10614 * 10615 * lpfc_sli_setup sets up rings of the SLI interface with 10616 * number of iocbs per ring and iotags. This function is 10617 * called while driver attach to the HBA and before the 10618 * interrupts are enabled. So there is no need for locking. 10619 * 10620 * This function always returns 0. SLI3 only. 10621 **/ 10622int 10623lpfc_sli_setup(struct lpfc_hba *phba) 10624{ 10625 int i, totiocbsize = 0; 10626 struct lpfc_sli *psli = &phba->sli; 10627 struct lpfc_sli_ring *pring; 10628 10629 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10630 psli->sli_flag = 0; 10631 10632 psli->iocbq_lookup = NULL; 10633 psli->iocbq_lookup_len = 0; 10634 psli->last_iotag = 0; 10635 10636 for (i = 0; i < psli->num_rings; i++) { 10637 pring = &psli->sli3_ring[i]; 10638 switch (i) { 10639 case LPFC_FCP_RING: /* ring 0 - FCP */ 10640 /* numCiocb and numRiocb are used in config_port */ 10641 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10642 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10643 pring->sli.sli3.numCiocb += 10644 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10645 pring->sli.sli3.numRiocb += 10646 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10647 pring->sli.sli3.numCiocb += 10648 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10649 pring->sli.sli3.numRiocb += 10650 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10651 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10652 SLI3_IOCB_CMD_SIZE : 10653 SLI2_IOCB_CMD_SIZE; 10654 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10655 SLI3_IOCB_RSP_SIZE : 10656 SLI2_IOCB_RSP_SIZE; 10657 pring->iotag_ctr = 0; 10658 pring->iotag_max = 10659 (phba->cfg_hba_queue_depth * 2); 10660 pring->fast_iotag = pring->iotag_max; 10661 pring->num_mask = 0; 10662 break; 10663 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10664 /* numCiocb and numRiocb are used in config_port */ 10665 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10666 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10667 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10668 SLI3_IOCB_CMD_SIZE : 10669 SLI2_IOCB_CMD_SIZE; 10670 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10671 SLI3_IOCB_RSP_SIZE : 10672 SLI2_IOCB_RSP_SIZE; 10673 pring->iotag_max = phba->cfg_hba_queue_depth; 10674 pring->num_mask = 0; 10675 break; 10676 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10677 /* numCiocb and numRiocb are used in config_port */ 10678 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10679 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10680 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10681 SLI3_IOCB_CMD_SIZE : 10682 SLI2_IOCB_CMD_SIZE; 10683 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10684 SLI3_IOCB_RSP_SIZE : 10685 SLI2_IOCB_RSP_SIZE; 10686 pring->fast_iotag = 0; 10687 pring->iotag_ctr = 0; 10688 pring->iotag_max = 4096; 10689 pring->lpfc_sli_rcv_async_status = 10690 lpfc_sli_async_event_handler; 10691 pring->num_mask = LPFC_MAX_RING_MASK; 10692 pring->prt[0].profile = 0; /* Mask 0 */ 10693 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10694 pring->prt[0].type = FC_TYPE_ELS; 10695 pring->prt[0].lpfc_sli_rcv_unsol_event = 10696 lpfc_els_unsol_event; 10697 pring->prt[1].profile = 0; /* Mask 1 */ 10698 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10699 pring->prt[1].type = FC_TYPE_ELS; 10700 pring->prt[1].lpfc_sli_rcv_unsol_event = 10701 lpfc_els_unsol_event; 10702 pring->prt[2].profile = 0; /* Mask 2 */ 10703 /* NameServer Inquiry */ 10704 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10705 /* NameServer */ 10706 pring->prt[2].type = FC_TYPE_CT; 10707 pring->prt[2].lpfc_sli_rcv_unsol_event = 10708 lpfc_ct_unsol_event; 10709 pring->prt[3].profile = 0; /* Mask 3 */ 10710 /* NameServer response */ 10711 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10712 /* NameServer */ 10713 pring->prt[3].type = FC_TYPE_CT; 10714 pring->prt[3].lpfc_sli_rcv_unsol_event = 10715 lpfc_ct_unsol_event; 10716 break; 10717 } 10718 totiocbsize += (pring->sli.sli3.numCiocb * 10719 pring->sli.sli3.sizeCiocb) + 10720 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10721 } 10722 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10723 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10724 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10725 "SLI2 SLIM Data: x%x x%lx\n", 10726 phba->brd_no, totiocbsize, 10727 (unsigned long) MAX_SLIM_IOCB_SIZE); 10728 } 10729 if (phba->cfg_multi_ring_support == 2) 10730 lpfc_extra_ring_setup(phba); 10731 10732 return 0; 10733} 10734 10735/** 10736 * lpfc_sli4_queue_init - Queue initialization function 10737 * @phba: Pointer to HBA context object. 10738 * 10739 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10740 * ring. This function also initializes ring indices of each ring. 10741 * This function is called during the initialization of the SLI 10742 * interface of an HBA. 10743 * This function is called with no lock held and always returns 10744 * 1. 10745 **/ 10746void 10747lpfc_sli4_queue_init(struct lpfc_hba *phba) 10748{ 10749 struct lpfc_sli *psli; 10750 struct lpfc_sli_ring *pring; 10751 int i; 10752 10753 psli = &phba->sli; 10754 spin_lock_irq(&phba->hbalock); 10755 INIT_LIST_HEAD(&psli->mboxq); 10756 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10757 /* Initialize list headers for txq and txcmplq as double linked lists */ 10758 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10759 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10760 pring->flag = 0; 10761 pring->ringno = LPFC_FCP_RING; 10762 pring->txcmplq_cnt = 0; 10763 INIT_LIST_HEAD(&pring->txq); 10764 INIT_LIST_HEAD(&pring->txcmplq); 10765 INIT_LIST_HEAD(&pring->iocb_continueq); 10766 spin_lock_init(&pring->ring_lock); 10767 } 10768 pring = phba->sli4_hba.els_wq->pring; 10769 pring->flag = 0; 10770 pring->ringno = LPFC_ELS_RING; 10771 pring->txcmplq_cnt = 0; 10772 INIT_LIST_HEAD(&pring->txq); 10773 INIT_LIST_HEAD(&pring->txcmplq); 10774 INIT_LIST_HEAD(&pring->iocb_continueq); 10775 spin_lock_init(&pring->ring_lock); 10776 10777 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10778 pring = phba->sli4_hba.nvmels_wq->pring; 10779 pring->flag = 0; 10780 pring->ringno = LPFC_ELS_RING; 10781 pring->txcmplq_cnt = 0; 10782 INIT_LIST_HEAD(&pring->txq); 10783 INIT_LIST_HEAD(&pring->txcmplq); 10784 INIT_LIST_HEAD(&pring->iocb_continueq); 10785 spin_lock_init(&pring->ring_lock); 10786 } 10787 10788 spin_unlock_irq(&phba->hbalock); 10789} 10790 10791/** 10792 * lpfc_sli_queue_init - Queue initialization function 10793 * @phba: Pointer to HBA context object. 10794 * 10795 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10796 * ring. This function also initializes ring indices of each ring. 10797 * This function is called during the initialization of the SLI 10798 * interface of an HBA. 10799 * This function is called with no lock held and always returns 10800 * 1. 10801 **/ 10802void 10803lpfc_sli_queue_init(struct lpfc_hba *phba) 10804{ 10805 struct lpfc_sli *psli; 10806 struct lpfc_sli_ring *pring; 10807 int i; 10808 10809 psli = &phba->sli; 10810 spin_lock_irq(&phba->hbalock); 10811 INIT_LIST_HEAD(&psli->mboxq); 10812 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10813 /* Initialize list headers for txq and txcmplq as double linked lists */ 10814 for (i = 0; i < psli->num_rings; i++) { 10815 pring = &psli->sli3_ring[i]; 10816 pring->ringno = i; 10817 pring->sli.sli3.next_cmdidx = 0; 10818 pring->sli.sli3.local_getidx = 0; 10819 pring->sli.sli3.cmdidx = 0; 10820 INIT_LIST_HEAD(&pring->iocb_continueq); 10821 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10822 INIT_LIST_HEAD(&pring->postbufq); 10823 pring->flag = 0; 10824 INIT_LIST_HEAD(&pring->txq); 10825 INIT_LIST_HEAD(&pring->txcmplq); 10826 spin_lock_init(&pring->ring_lock); 10827 } 10828 spin_unlock_irq(&phba->hbalock); 10829} 10830 10831/** 10832 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10833 * @phba: Pointer to HBA context object. 10834 * 10835 * This routine flushes the mailbox command subsystem. It will unconditionally 10836 * flush all the mailbox commands in the three possible stages in the mailbox 10837 * command sub-system: pending mailbox command queue; the outstanding mailbox 10838 * command; and completed mailbox command queue. It is caller's responsibility 10839 * to make sure that the driver is in the proper state to flush the mailbox 10840 * command sub-system. Namely, the posting of mailbox commands into the 10841 * pending mailbox command queue from the various clients must be stopped; 10842 * either the HBA is in a state that it will never works on the outstanding 10843 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10844 * mailbox command has been completed. 10845 **/ 10846static void 10847lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10848{ 10849 LIST_HEAD(completions); 10850 struct lpfc_sli *psli = &phba->sli; 10851 LPFC_MBOXQ_t *pmb; 10852 unsigned long iflag; 10853 10854 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10855 local_bh_disable(); 10856 10857 /* Flush all the mailbox commands in the mbox system */ 10858 spin_lock_irqsave(&phba->hbalock, iflag); 10859 10860 /* The pending mailbox command queue */ 10861 list_splice_init(&phba->sli.mboxq, &completions); 10862 /* The outstanding active mailbox command */ 10863 if (psli->mbox_active) { 10864 list_add_tail(&psli->mbox_active->list, &completions); 10865 psli->mbox_active = NULL; 10866 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10867 } 10868 /* The completed mailbox command queue */ 10869 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10870 spin_unlock_irqrestore(&phba->hbalock, iflag); 10871 10872 /* Enable softirqs again, done with phba->hbalock */ 10873 local_bh_enable(); 10874 10875 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10876 while (!list_empty(&completions)) { 10877 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10878 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10879 if (pmb->mbox_cmpl) 10880 pmb->mbox_cmpl(phba, pmb); 10881 } 10882} 10883 10884/** 10885 * lpfc_sli_host_down - Vport cleanup function 10886 * @vport: Pointer to virtual port object. 10887 * 10888 * lpfc_sli_host_down is called to clean up the resources 10889 * associated with a vport before destroying virtual 10890 * port data structures. 10891 * This function does following operations: 10892 * - Free discovery resources associated with this virtual 10893 * port. 10894 * - Free iocbs associated with this virtual port in 10895 * the txq. 10896 * - Send abort for all iocb commands associated with this 10897 * vport in txcmplq. 10898 * 10899 * This function is called with no lock held and always returns 1. 10900 **/ 10901int 10902lpfc_sli_host_down(struct lpfc_vport *vport) 10903{ 10904 LIST_HEAD(completions); 10905 struct lpfc_hba *phba = vport->phba; 10906 struct lpfc_sli *psli = &phba->sli; 10907 struct lpfc_queue *qp = NULL; 10908 struct lpfc_sli_ring *pring; 10909 struct lpfc_iocbq *iocb, *next_iocb; 10910 int i; 10911 unsigned long flags = 0; 10912 uint16_t prev_pring_flag; 10913 10914 lpfc_cleanup_discovery_resources(vport); 10915 10916 spin_lock_irqsave(&phba->hbalock, flags); 10917 10918 /* 10919 * Error everything on the txq since these iocbs 10920 * have not been given to the FW yet. 10921 * Also issue ABTS for everything on the txcmplq 10922 */ 10923 if (phba->sli_rev != LPFC_SLI_REV4) { 10924 for (i = 0; i < psli->num_rings; i++) { 10925 pring = &psli->sli3_ring[i]; 10926 prev_pring_flag = pring->flag; 10927 /* Only slow rings */ 10928 if (pring->ringno == LPFC_ELS_RING) { 10929 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10930 /* Set the lpfc data pending flag */ 10931 set_bit(LPFC_DATA_READY, &phba->data_flags); 10932 } 10933 list_for_each_entry_safe(iocb, next_iocb, 10934 &pring->txq, list) { 10935 if (iocb->vport != vport) 10936 continue; 10937 list_move_tail(&iocb->list, &completions); 10938 } 10939 list_for_each_entry_safe(iocb, next_iocb, 10940 &pring->txcmplq, list) { 10941 if (iocb->vport != vport) 10942 continue; 10943 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10944 } 10945 pring->flag = prev_pring_flag; 10946 } 10947 } else { 10948 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10949 pring = qp->pring; 10950 if (!pring) 10951 continue; 10952 if (pring == phba->sli4_hba.els_wq->pring) { 10953 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10954 /* Set the lpfc data pending flag */ 10955 set_bit(LPFC_DATA_READY, &phba->data_flags); 10956 } 10957 prev_pring_flag = pring->flag; 10958 spin_lock(&pring->ring_lock); 10959 list_for_each_entry_safe(iocb, next_iocb, 10960 &pring->txq, list) { 10961 if (iocb->vport != vport) 10962 continue; 10963 list_move_tail(&iocb->list, &completions); 10964 } 10965 spin_unlock(&pring->ring_lock); 10966 list_for_each_entry_safe(iocb, next_iocb, 10967 &pring->txcmplq, list) { 10968 if (iocb->vport != vport) 10969 continue; 10970 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10971 } 10972 pring->flag = prev_pring_flag; 10973 } 10974 } 10975 spin_unlock_irqrestore(&phba->hbalock, flags); 10976 10977 /* Cancel all the IOCBs from the completions list */ 10978 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10979 IOERR_SLI_DOWN); 10980 return 1; 10981} 10982 10983/** 10984 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10985 * @phba: Pointer to HBA context object. 10986 * 10987 * This function cleans up all iocb, buffers, mailbox commands 10988 * while shutting down the HBA. This function is called with no 10989 * lock held and always returns 1. 10990 * This function does the following to cleanup driver resources: 10991 * - Free discovery resources for each virtual port 10992 * - Cleanup any pending fabric iocbs 10993 * - Iterate through the iocb txq and free each entry 10994 * in the list. 10995 * - Free up any buffer posted to the HBA 10996 * - Free mailbox commands in the mailbox queue. 10997 **/ 10998int 10999lpfc_sli_hba_down(struct lpfc_hba *phba) 11000{ 11001 LIST_HEAD(completions); 11002 struct lpfc_sli *psli = &phba->sli; 11003 struct lpfc_queue *qp = NULL; 11004 struct lpfc_sli_ring *pring; 11005 struct lpfc_dmabuf *buf_ptr; 11006 unsigned long flags = 0; 11007 int i; 11008 11009 /* Shutdown the mailbox command sub-system */ 11010 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11011 11012 lpfc_hba_down_prep(phba); 11013 11014 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11015 local_bh_disable(); 11016 11017 lpfc_fabric_abort_hba(phba); 11018 11019 spin_lock_irqsave(&phba->hbalock, flags); 11020 11021 /* 11022 * Error everything on the txq since these iocbs 11023 * have not been given to the FW yet. 11024 */ 11025 if (phba->sli_rev != LPFC_SLI_REV4) { 11026 for (i = 0; i < psli->num_rings; i++) { 11027 pring = &psli->sli3_ring[i]; 11028 /* Only slow rings */ 11029 if (pring->ringno == LPFC_ELS_RING) { 11030 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11031 /* Set the lpfc data pending flag */ 11032 set_bit(LPFC_DATA_READY, &phba->data_flags); 11033 } 11034 list_splice_init(&pring->txq, &completions); 11035 } 11036 } else { 11037 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11038 pring = qp->pring; 11039 if (!pring) 11040 continue; 11041 spin_lock(&pring->ring_lock); 11042 list_splice_init(&pring->txq, &completions); 11043 spin_unlock(&pring->ring_lock); 11044 if (pring == phba->sli4_hba.els_wq->pring) { 11045 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11046 /* Set the lpfc data pending flag */ 11047 set_bit(LPFC_DATA_READY, &phba->data_flags); 11048 } 11049 } 11050 } 11051 spin_unlock_irqrestore(&phba->hbalock, flags); 11052 11053 /* Cancel all the IOCBs from the completions list */ 11054 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11055 IOERR_SLI_DOWN); 11056 11057 spin_lock_irqsave(&phba->hbalock, flags); 11058 list_splice_init(&phba->elsbuf, &completions); 11059 phba->elsbuf_cnt = 0; 11060 phba->elsbuf_prev_cnt = 0; 11061 spin_unlock_irqrestore(&phba->hbalock, flags); 11062 11063 while (!list_empty(&completions)) { 11064 list_remove_head(&completions, buf_ptr, 11065 struct lpfc_dmabuf, list); 11066 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11067 kfree(buf_ptr); 11068 } 11069 11070 /* Enable softirqs again, done with phba->hbalock */ 11071 local_bh_enable(); 11072 11073 /* Return any active mbox cmds */ 11074 del_timer_sync(&psli->mbox_tmo); 11075 11076 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11077 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11078 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11079 11080 return 1; 11081} 11082 11083/** 11084 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11085 * @srcp: Source memory pointer. 11086 * @destp: Destination memory pointer. 11087 * @cnt: Number of words required to be copied. 11088 * 11089 * This function is used for copying data between driver memory 11090 * and the SLI memory. This function also changes the endianness 11091 * of each word if native endianness is different from SLI 11092 * endianness. This function can be called with or without 11093 * lock. 11094 **/ 11095void 11096lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11097{ 11098 uint32_t *src = srcp; 11099 uint32_t *dest = destp; 11100 uint32_t ldata; 11101 int i; 11102 11103 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11104 ldata = *src; 11105 ldata = le32_to_cpu(ldata); 11106 *dest = ldata; 11107 src++; 11108 dest++; 11109 } 11110} 11111 11112 11113/** 11114 * lpfc_sli_bemem_bcopy - SLI memory copy function 11115 * @srcp: Source memory pointer. 11116 * @destp: Destination memory pointer. 11117 * @cnt: Number of words required to be copied. 11118 * 11119 * This function is used for copying data between a data structure 11120 * with big endian representation to local endianness. 11121 * This function can be called with or without lock. 11122 **/ 11123void 11124lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11125{ 11126 uint32_t *src = srcp; 11127 uint32_t *dest = destp; 11128 uint32_t ldata; 11129 int i; 11130 11131 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11132 ldata = *src; 11133 ldata = be32_to_cpu(ldata); 11134 *dest = ldata; 11135 src++; 11136 dest++; 11137 } 11138} 11139 11140/** 11141 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11142 * @phba: Pointer to HBA context object. 11143 * @pring: Pointer to driver SLI ring object. 11144 * @mp: Pointer to driver buffer object. 11145 * 11146 * This function is called with no lock held. 11147 * It always return zero after adding the buffer to the postbufq 11148 * buffer list. 11149 **/ 11150int 11151lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11152 struct lpfc_dmabuf *mp) 11153{ 11154 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11155 later */ 11156 spin_lock_irq(&phba->hbalock); 11157 list_add_tail(&mp->list, &pring->postbufq); 11158 pring->postbufq_cnt++; 11159 spin_unlock_irq(&phba->hbalock); 11160 return 0; 11161} 11162 11163/** 11164 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11165 * @phba: Pointer to HBA context object. 11166 * 11167 * When HBQ is enabled, buffers are searched based on tags. This function 11168 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11169 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11170 * does not conflict with tags of buffer posted for unsolicited events. 11171 * The function returns the allocated tag. The function is called with 11172 * no locks held. 11173 **/ 11174uint32_t 11175lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11176{ 11177 spin_lock_irq(&phba->hbalock); 11178 phba->buffer_tag_count++; 11179 /* 11180 * Always set the QUE_BUFTAG_BIT to distiguish between 11181 * a tag assigned by HBQ. 11182 */ 11183 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11184 spin_unlock_irq(&phba->hbalock); 11185 return phba->buffer_tag_count; 11186} 11187 11188/** 11189 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11190 * @phba: Pointer to HBA context object. 11191 * @pring: Pointer to driver SLI ring object. 11192 * @tag: Buffer tag. 11193 * 11194 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11195 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11196 * iocb is posted to the response ring with the tag of the buffer. 11197 * This function searches the pring->postbufq list using the tag 11198 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11199 * iocb. If the buffer is found then lpfc_dmabuf object of the 11200 * buffer is returned to the caller else NULL is returned. 11201 * This function is called with no lock held. 11202 **/ 11203struct lpfc_dmabuf * 11204lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11205 uint32_t tag) 11206{ 11207 struct lpfc_dmabuf *mp, *next_mp; 11208 struct list_head *slp = &pring->postbufq; 11209 11210 /* Search postbufq, from the beginning, looking for a match on tag */ 11211 spin_lock_irq(&phba->hbalock); 11212 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11213 if (mp->buffer_tag == tag) { 11214 list_del_init(&mp->list); 11215 pring->postbufq_cnt--; 11216 spin_unlock_irq(&phba->hbalock); 11217 return mp; 11218 } 11219 } 11220 11221 spin_unlock_irq(&phba->hbalock); 11222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11223 "0402 Cannot find virtual addr for buffer tag on " 11224 "ring %d Data x%lx x%px x%px x%x\n", 11225 pring->ringno, (unsigned long) tag, 11226 slp->next, slp->prev, pring->postbufq_cnt); 11227 11228 return NULL; 11229} 11230 11231/** 11232 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11233 * @phba: Pointer to HBA context object. 11234 * @pring: Pointer to driver SLI ring object. 11235 * @phys: DMA address of the buffer. 11236 * 11237 * This function searches the buffer list using the dma_address 11238 * of unsolicited event to find the driver's lpfc_dmabuf object 11239 * corresponding to the dma_address. The function returns the 11240 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11241 * This function is called by the ct and els unsolicited event 11242 * handlers to get the buffer associated with the unsolicited 11243 * event. 11244 * 11245 * This function is called with no lock held. 11246 **/ 11247struct lpfc_dmabuf * 11248lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11249 dma_addr_t phys) 11250{ 11251 struct lpfc_dmabuf *mp, *next_mp; 11252 struct list_head *slp = &pring->postbufq; 11253 11254 /* Search postbufq, from the beginning, looking for a match on phys */ 11255 spin_lock_irq(&phba->hbalock); 11256 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11257 if (mp->phys == phys) { 11258 list_del_init(&mp->list); 11259 pring->postbufq_cnt--; 11260 spin_unlock_irq(&phba->hbalock); 11261 return mp; 11262 } 11263 } 11264 11265 spin_unlock_irq(&phba->hbalock); 11266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11267 "0410 Cannot find virtual addr for mapped buf on " 11268 "ring %d Data x%llx x%px x%px x%x\n", 11269 pring->ringno, (unsigned long long)phys, 11270 slp->next, slp->prev, pring->postbufq_cnt); 11271 return NULL; 11272} 11273 11274/** 11275 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11276 * @phba: Pointer to HBA context object. 11277 * @cmdiocb: Pointer to driver command iocb object. 11278 * @rspiocb: Pointer to driver response iocb object. 11279 * 11280 * This function is the completion handler for the abort iocbs for 11281 * ELS commands. This function is called from the ELS ring event 11282 * handler with no lock held. This function frees memory resources 11283 * associated with the abort iocb. 11284 **/ 11285static void 11286lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11287 struct lpfc_iocbq *rspiocb) 11288{ 11289 IOCB_t *irsp = &rspiocb->iocb; 11290 uint16_t abort_iotag, abort_context; 11291 struct lpfc_iocbq *abort_iocb = NULL; 11292 11293 if (irsp->ulpStatus) { 11294 11295 /* 11296 * Assume that the port already completed and returned, or 11297 * will return the iocb. Just Log the message. 11298 */ 11299 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11300 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11301 11302 spin_lock_irq(&phba->hbalock); 11303 if (phba->sli_rev < LPFC_SLI_REV4) { 11304 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11305 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11306 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11307 spin_unlock_irq(&phba->hbalock); 11308 goto release_iocb; 11309 } 11310 if (abort_iotag != 0 && 11311 abort_iotag <= phba->sli.last_iotag) 11312 abort_iocb = 11313 phba->sli.iocbq_lookup[abort_iotag]; 11314 } else 11315 /* For sli4 the abort_tag is the XRI, 11316 * so the abort routine puts the iotag of the iocb 11317 * being aborted in the context field of the abort 11318 * IOCB. 11319 */ 11320 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11321 11322 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11323 "0327 Cannot abort els iocb x%px " 11324 "with tag %x context %x, abort status %x, " 11325 "abort code %x\n", 11326 abort_iocb, abort_iotag, abort_context, 11327 irsp->ulpStatus, irsp->un.ulpWord[4]); 11328 11329 spin_unlock_irq(&phba->hbalock); 11330 } 11331release_iocb: 11332 lpfc_sli_release_iocbq(phba, cmdiocb); 11333 return; 11334} 11335 11336/** 11337 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11338 * @phba: Pointer to HBA context object. 11339 * @cmdiocb: Pointer to driver command iocb object. 11340 * @rspiocb: Pointer to driver response iocb object. 11341 * 11342 * The function is called from SLI ring event handler with no 11343 * lock held. This function is the completion handler for ELS commands 11344 * which are aborted. The function frees memory resources used for 11345 * the aborted ELS commands. 11346 **/ 11347static void 11348lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11349 struct lpfc_iocbq *rspiocb) 11350{ 11351 IOCB_t *irsp = &rspiocb->iocb; 11352 11353 /* ELS cmd tag <ulpIoTag> completes */ 11354 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11355 "0139 Ignoring ELS cmd tag x%x completion Data: " 11356 "x%x x%x x%x\n", 11357 irsp->ulpIoTag, irsp->ulpStatus, 11358 irsp->un.ulpWord[4], irsp->ulpTimeout); 11359 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11360 lpfc_ct_free_iocb(phba, cmdiocb); 11361 else 11362 lpfc_els_free_iocb(phba, cmdiocb); 11363 return; 11364} 11365 11366/** 11367 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11368 * @phba: Pointer to HBA context object. 11369 * @pring: Pointer to driver SLI ring object. 11370 * @cmdiocb: Pointer to driver command iocb object. 11371 * 11372 * This function issues an abort iocb for the provided command iocb down to 11373 * the port. Other than the case the outstanding command iocb is an abort 11374 * request, this function issues abort out unconditionally. This function is 11375 * called with hbalock held. The function returns 0 when it fails due to 11376 * memory allocation failure or when the command iocb is an abort request. 11377 * The hbalock is asserted held in the code path calling this routine. 11378 **/ 11379static int 11380lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11381 struct lpfc_iocbq *cmdiocb) 11382{ 11383 struct lpfc_vport *vport = cmdiocb->vport; 11384 struct lpfc_iocbq *abtsiocbp; 11385 IOCB_t *icmd = NULL; 11386 IOCB_t *iabt = NULL; 11387 int retval; 11388 unsigned long iflags; 11389 struct lpfc_nodelist *ndlp; 11390 11391 /* 11392 * There are certain command types we don't want to abort. And we 11393 * don't want to abort commands that are already in the process of 11394 * being aborted. 11395 */ 11396 icmd = &cmdiocb->iocb; 11397 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11398 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11399 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11400 return 0; 11401 11402 /* issue ABTS for this IOCB based on iotag */ 11403 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11404 if (abtsiocbp == NULL) 11405 return 0; 11406 11407 /* This signals the response to set the correct status 11408 * before calling the completion handler 11409 */ 11410 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11411 11412 iabt = &abtsiocbp->iocb; 11413 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11414 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11415 if (phba->sli_rev == LPFC_SLI_REV4) { 11416 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11417 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11418 } else { 11419 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11420 if (pring->ringno == LPFC_ELS_RING) { 11421 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11422 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11423 } 11424 } 11425 iabt->ulpLe = 1; 11426 iabt->ulpClass = icmd->ulpClass; 11427 11428 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11429 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11430 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11431 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11432 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11433 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11434 11435 if (phba->link_state >= LPFC_LINK_UP) 11436 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11437 else 11438 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11439 11440 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11441 abtsiocbp->vport = vport; 11442 11443 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11444 "0339 Abort xri x%x, original iotag x%x, " 11445 "abort cmd iotag x%x\n", 11446 iabt->un.acxri.abortIoTag, 11447 iabt->un.acxri.abortContextTag, 11448 abtsiocbp->iotag); 11449 11450 if (phba->sli_rev == LPFC_SLI_REV4) { 11451 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11452 if (unlikely(pring == NULL)) 11453 return 0; 11454 /* Note: both hbalock and ring_lock need to be set here */ 11455 spin_lock_irqsave(&pring->ring_lock, iflags); 11456 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11457 abtsiocbp, 0); 11458 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11459 } else { 11460 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11461 abtsiocbp, 0); 11462 } 11463 11464 if (retval) 11465 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11466 11467 /* 11468 * Caller to this routine should check for IOCB_ERROR 11469 * and handle it properly. This routine no longer removes 11470 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11471 */ 11472 return retval; 11473} 11474 11475/** 11476 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11477 * @phba: Pointer to HBA context object. 11478 * @pring: Pointer to driver SLI ring object. 11479 * @cmdiocb: Pointer to driver command iocb object. 11480 * 11481 * This function issues an abort iocb for the provided command iocb. In case 11482 * of unloading, the abort iocb will not be issued to commands on the ELS 11483 * ring. Instead, the callback function shall be changed to those commands 11484 * so that nothing happens when them finishes. This function is called with 11485 * hbalock held. The function returns 0 when the command iocb is an abort 11486 * request. 11487 **/ 11488int 11489lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11490 struct lpfc_iocbq *cmdiocb) 11491{ 11492 struct lpfc_vport *vport = cmdiocb->vport; 11493 int retval = IOCB_ERROR; 11494 IOCB_t *icmd = NULL; 11495 11496 lockdep_assert_held(&phba->hbalock); 11497 11498 /* 11499 * There are certain command types we don't want to abort. And we 11500 * don't want to abort commands that are already in the process of 11501 * being aborted. 11502 */ 11503 icmd = &cmdiocb->iocb; 11504 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11505 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11506 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11507 return 0; 11508 11509 if (!pring) { 11510 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11511 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11512 else 11513 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11514 goto abort_iotag_exit; 11515 } 11516 11517 /* 11518 * If we're unloading, don't abort iocb on the ELS ring, but change 11519 * the callback so that nothing happens when it finishes. 11520 */ 11521 if ((vport->load_flag & FC_UNLOADING) && 11522 (pring->ringno == LPFC_ELS_RING)) { 11523 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11524 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11525 else 11526 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11527 goto abort_iotag_exit; 11528 } 11529 11530 /* Now, we try to issue the abort to the cmdiocb out */ 11531 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11532 11533abort_iotag_exit: 11534 /* 11535 * Caller to this routine should check for IOCB_ERROR 11536 * and handle it properly. This routine no longer removes 11537 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11538 */ 11539 return retval; 11540} 11541 11542/** 11543 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11544 * @phba: pointer to lpfc HBA data structure. 11545 * 11546 * This routine will abort all pending and outstanding iocbs to an HBA. 11547 **/ 11548void 11549lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11550{ 11551 struct lpfc_sli *psli = &phba->sli; 11552 struct lpfc_sli_ring *pring; 11553 struct lpfc_queue *qp = NULL; 11554 int i; 11555 11556 if (phba->sli_rev != LPFC_SLI_REV4) { 11557 for (i = 0; i < psli->num_rings; i++) { 11558 pring = &psli->sli3_ring[i]; 11559 lpfc_sli_abort_iocb_ring(phba, pring); 11560 } 11561 return; 11562 } 11563 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11564 pring = qp->pring; 11565 if (!pring) 11566 continue; 11567 lpfc_sli_abort_iocb_ring(phba, pring); 11568 } 11569} 11570 11571/** 11572 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11573 * @iocbq: Pointer to driver iocb object. 11574 * @vport: Pointer to driver virtual port object. 11575 * @tgt_id: SCSI ID of the target. 11576 * @lun_id: LUN ID of the scsi device. 11577 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11578 * 11579 * This function acts as an iocb filter for functions which abort or count 11580 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11581 * 0 if the filtering criteria is met for the given iocb and will return 11582 * 1 if the filtering criteria is not met. 11583 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11584 * given iocb is for the SCSI device specified by vport, tgt_id and 11585 * lun_id parameter. 11586 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11587 * given iocb is for the SCSI target specified by vport and tgt_id 11588 * parameters. 11589 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11590 * given iocb is for the SCSI host associated with the given vport. 11591 * This function is called with no locks held. 11592 **/ 11593static int 11594lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11595 uint16_t tgt_id, uint64_t lun_id, 11596 lpfc_ctx_cmd ctx_cmd) 11597{ 11598 struct lpfc_io_buf *lpfc_cmd; 11599 IOCB_t *icmd = NULL; 11600 int rc = 1; 11601 11602 if (iocbq->vport != vport) 11603 return rc; 11604 11605 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11606 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 11607 iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11608 return rc; 11609 11610 icmd = &iocbq->iocb; 11611 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11612 icmd->ulpCommand == CMD_CLOSE_XRI_CN) 11613 return rc; 11614 11615 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11616 11617 if (lpfc_cmd->pCmd == NULL) 11618 return rc; 11619 11620 switch (ctx_cmd) { 11621 case LPFC_CTX_LUN: 11622 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11623 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11624 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11625 rc = 0; 11626 break; 11627 case LPFC_CTX_TGT: 11628 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11629 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11630 rc = 0; 11631 break; 11632 case LPFC_CTX_HOST: 11633 rc = 0; 11634 break; 11635 default: 11636 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11637 __func__, ctx_cmd); 11638 break; 11639 } 11640 11641 return rc; 11642} 11643 11644/** 11645 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11646 * @vport: Pointer to virtual port. 11647 * @tgt_id: SCSI ID of the target. 11648 * @lun_id: LUN ID of the scsi device. 11649 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11650 * 11651 * This function returns number of FCP commands pending for the vport. 11652 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11653 * commands pending on the vport associated with SCSI device specified 11654 * by tgt_id and lun_id parameters. 11655 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11656 * commands pending on the vport associated with SCSI target specified 11657 * by tgt_id parameter. 11658 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11659 * commands pending on the vport. 11660 * This function returns the number of iocbs which satisfy the filter. 11661 * This function is called without any lock held. 11662 **/ 11663int 11664lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11665 lpfc_ctx_cmd ctx_cmd) 11666{ 11667 struct lpfc_hba *phba = vport->phba; 11668 struct lpfc_iocbq *iocbq; 11669 int sum, i; 11670 11671 spin_lock_irq(&phba->hbalock); 11672 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11673 iocbq = phba->sli.iocbq_lookup[i]; 11674 11675 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11676 ctx_cmd) == 0) 11677 sum++; 11678 } 11679 spin_unlock_irq(&phba->hbalock); 11680 11681 return sum; 11682} 11683 11684/** 11685 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11686 * @phba: Pointer to HBA context object 11687 * @cmdiocb: Pointer to command iocb object. 11688 * @rspiocb: Pointer to response iocb object. 11689 * 11690 * This function is called when an aborted FCP iocb completes. This 11691 * function is called by the ring event handler with no lock held. 11692 * This function frees the iocb. 11693 **/ 11694void 11695lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11696 struct lpfc_iocbq *rspiocb) 11697{ 11698 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11699 "3096 ABORT_XRI_CN completing on rpi x%x " 11700 "original iotag x%x, abort cmd iotag x%x " 11701 "status 0x%x, reason 0x%x\n", 11702 cmdiocb->iocb.un.acxri.abortContextTag, 11703 cmdiocb->iocb.un.acxri.abortIoTag, 11704 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11705 rspiocb->iocb.un.ulpWord[4]); 11706 lpfc_sli_release_iocbq(phba, cmdiocb); 11707 return; 11708} 11709 11710/** 11711 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11712 * @vport: Pointer to virtual port. 11713 * @pring: Pointer to driver SLI ring object. 11714 * @tgt_id: SCSI ID of the target. 11715 * @lun_id: LUN ID of the scsi device. 11716 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11717 * 11718 * This function sends an abort command for every SCSI command 11719 * associated with the given virtual port pending on the ring 11720 * filtered by lpfc_sli_validate_fcp_iocb function. 11721 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11722 * FCP iocbs associated with lun specified by tgt_id and lun_id 11723 * parameters 11724 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11725 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11726 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11727 * FCP iocbs associated with virtual port. 11728 * This function returns number of iocbs it failed to abort. 11729 * This function is called with no locks held. 11730 **/ 11731int 11732lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11733 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11734{ 11735 struct lpfc_hba *phba = vport->phba; 11736 struct lpfc_iocbq *iocbq; 11737 struct lpfc_iocbq *abtsiocb; 11738 struct lpfc_sli_ring *pring_s4; 11739 IOCB_t *cmd = NULL; 11740 int errcnt = 0, ret_val = 0; 11741 int i; 11742 11743 /* all I/Os are in process of being flushed */ 11744 if (phba->hba_flag & HBA_IOQ_FLUSH) 11745 return errcnt; 11746 11747 for (i = 1; i <= phba->sli.last_iotag; i++) { 11748 iocbq = phba->sli.iocbq_lookup[i]; 11749 11750 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11751 abort_cmd) != 0) 11752 continue; 11753 11754 /* 11755 * If the iocbq is already being aborted, don't take a second 11756 * action, but do count it. 11757 */ 11758 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11759 continue; 11760 11761 /* issue ABTS for this IOCB based on iotag */ 11762 abtsiocb = lpfc_sli_get_iocbq(phba); 11763 if (abtsiocb == NULL) { 11764 errcnt++; 11765 continue; 11766 } 11767 11768 /* indicate the IO is being aborted by the driver. */ 11769 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11770 11771 cmd = &iocbq->iocb; 11772 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11773 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11774 if (phba->sli_rev == LPFC_SLI_REV4) 11775 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11776 else 11777 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11778 abtsiocb->iocb.ulpLe = 1; 11779 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11780 abtsiocb->vport = vport; 11781 11782 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11783 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11784 if (iocbq->iocb_flag & LPFC_IO_FCP) 11785 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11786 if (iocbq->iocb_flag & LPFC_IO_FOF) 11787 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11788 11789 if (lpfc_is_link_up(phba)) 11790 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11791 else 11792 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11793 11794 /* Setup callback routine and issue the command. */ 11795 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11796 if (phba->sli_rev == LPFC_SLI_REV4) { 11797 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11798 if (!pring_s4) 11799 continue; 11800 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11801 abtsiocb, 0); 11802 } else 11803 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11804 abtsiocb, 0); 11805 if (ret_val == IOCB_ERROR) { 11806 lpfc_sli_release_iocbq(phba, abtsiocb); 11807 errcnt++; 11808 continue; 11809 } 11810 } 11811 11812 return errcnt; 11813} 11814 11815/** 11816 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11817 * @vport: Pointer to virtual port. 11818 * @pring: Pointer to driver SLI ring object. 11819 * @tgt_id: SCSI ID of the target. 11820 * @lun_id: LUN ID of the scsi device. 11821 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11822 * 11823 * This function sends an abort command for every SCSI command 11824 * associated with the given virtual port pending on the ring 11825 * filtered by lpfc_sli_validate_fcp_iocb function. 11826 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11827 * FCP iocbs associated with lun specified by tgt_id and lun_id 11828 * parameters 11829 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11830 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11831 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11832 * FCP iocbs associated with virtual port. 11833 * This function returns number of iocbs it aborted . 11834 * This function is called with no locks held right after a taskmgmt 11835 * command is sent. 11836 **/ 11837int 11838lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11839 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11840{ 11841 struct lpfc_hba *phba = vport->phba; 11842 struct lpfc_io_buf *lpfc_cmd; 11843 struct lpfc_iocbq *abtsiocbq; 11844 struct lpfc_nodelist *ndlp; 11845 struct lpfc_iocbq *iocbq; 11846 IOCB_t *icmd; 11847 int sum, i, ret_val; 11848 unsigned long iflags; 11849 struct lpfc_sli_ring *pring_s4 = NULL; 11850 11851 spin_lock_irqsave(&phba->hbalock, iflags); 11852 11853 /* all I/Os are in process of being flushed */ 11854 if (phba->hba_flag & HBA_IOQ_FLUSH) { 11855 spin_unlock_irqrestore(&phba->hbalock, iflags); 11856 return 0; 11857 } 11858 sum = 0; 11859 11860 for (i = 1; i <= phba->sli.last_iotag; i++) { 11861 iocbq = phba->sli.iocbq_lookup[i]; 11862 11863 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11864 cmd) != 0) 11865 continue; 11866 11867 /* Guard against IO completion being called at same time */ 11868 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11869 spin_lock(&lpfc_cmd->buf_lock); 11870 11871 if (!lpfc_cmd->pCmd) { 11872 spin_unlock(&lpfc_cmd->buf_lock); 11873 continue; 11874 } 11875 11876 if (phba->sli_rev == LPFC_SLI_REV4) { 11877 pring_s4 = 11878 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 11879 if (!pring_s4) { 11880 spin_unlock(&lpfc_cmd->buf_lock); 11881 continue; 11882 } 11883 /* Note: both hbalock and ring_lock must be set here */ 11884 spin_lock(&pring_s4->ring_lock); 11885 } 11886 11887 /* 11888 * If the iocbq is already being aborted, don't take a second 11889 * action, but do count it. 11890 */ 11891 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 11892 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 11893 if (phba->sli_rev == LPFC_SLI_REV4) 11894 spin_unlock(&pring_s4->ring_lock); 11895 spin_unlock(&lpfc_cmd->buf_lock); 11896 continue; 11897 } 11898 11899 /* issue ABTS for this IOCB based on iotag */ 11900 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11901 if (!abtsiocbq) { 11902 if (phba->sli_rev == LPFC_SLI_REV4) 11903 spin_unlock(&pring_s4->ring_lock); 11904 spin_unlock(&lpfc_cmd->buf_lock); 11905 continue; 11906 } 11907 11908 icmd = &iocbq->iocb; 11909 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11910 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11911 if (phba->sli_rev == LPFC_SLI_REV4) 11912 abtsiocbq->iocb.un.acxri.abortIoTag = 11913 iocbq->sli4_xritag; 11914 else 11915 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11916 abtsiocbq->iocb.ulpLe = 1; 11917 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11918 abtsiocbq->vport = vport; 11919 11920 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11921 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11922 if (iocbq->iocb_flag & LPFC_IO_FCP) 11923 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11924 if (iocbq->iocb_flag & LPFC_IO_FOF) 11925 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11926 11927 ndlp = lpfc_cmd->rdata->pnode; 11928 11929 if (lpfc_is_link_up(phba) && 11930 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11931 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11932 else 11933 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11934 11935 /* Setup callback routine and issue the command. */ 11936 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11937 11938 /* 11939 * Indicate the IO is being aborted by the driver and set 11940 * the caller's flag into the aborted IO. 11941 */ 11942 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11943 11944 if (phba->sli_rev == LPFC_SLI_REV4) { 11945 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11946 abtsiocbq, 0); 11947 spin_unlock(&pring_s4->ring_lock); 11948 } else { 11949 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11950 abtsiocbq, 0); 11951 } 11952 11953 spin_unlock(&lpfc_cmd->buf_lock); 11954 11955 if (ret_val == IOCB_ERROR) 11956 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11957 else 11958 sum++; 11959 } 11960 spin_unlock_irqrestore(&phba->hbalock, iflags); 11961 return sum; 11962} 11963 11964/** 11965 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11966 * @phba: Pointer to HBA context object. 11967 * @cmdiocbq: Pointer to command iocb. 11968 * @rspiocbq: Pointer to response iocb. 11969 * 11970 * This function is the completion handler for iocbs issued using 11971 * lpfc_sli_issue_iocb_wait function. This function is called by the 11972 * ring event handler function without any lock held. This function 11973 * can be called from both worker thread context and interrupt 11974 * context. This function also can be called from other thread which 11975 * cleans up the SLI layer objects. 11976 * This function copy the contents of the response iocb to the 11977 * response iocb memory object provided by the caller of 11978 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11979 * sleeps for the iocb completion. 11980 **/ 11981static void 11982lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11983 struct lpfc_iocbq *cmdiocbq, 11984 struct lpfc_iocbq *rspiocbq) 11985{ 11986 wait_queue_head_t *pdone_q; 11987 unsigned long iflags; 11988 struct lpfc_io_buf *lpfc_cmd; 11989 11990 spin_lock_irqsave(&phba->hbalock, iflags); 11991 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11992 11993 /* 11994 * A time out has occurred for the iocb. If a time out 11995 * completion handler has been supplied, call it. Otherwise, 11996 * just free the iocbq. 11997 */ 11998 11999 spin_unlock_irqrestore(&phba->hbalock, iflags); 12000 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12001 cmdiocbq->wait_iocb_cmpl = NULL; 12002 if (cmdiocbq->iocb_cmpl) 12003 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12004 else 12005 lpfc_sli_release_iocbq(phba, cmdiocbq); 12006 return; 12007 } 12008 12009 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12010 if (cmdiocbq->context2 && rspiocbq) 12011 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12012 &rspiocbq->iocb, sizeof(IOCB_t)); 12013 12014 /* Set the exchange busy flag for task management commands */ 12015 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12016 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12017 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12018 cur_iocbq); 12019 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12020 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12021 else 12022 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12023 } 12024 12025 pdone_q = cmdiocbq->context_un.wait_queue; 12026 if (pdone_q) 12027 wake_up(pdone_q); 12028 spin_unlock_irqrestore(&phba->hbalock, iflags); 12029 return; 12030} 12031 12032/** 12033 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12034 * @phba: Pointer to HBA context object.. 12035 * @piocbq: Pointer to command iocb. 12036 * @flag: Flag to test. 12037 * 12038 * This routine grabs the hbalock and then test the iocb_flag to 12039 * see if the passed in flag is set. 12040 * Returns: 12041 * 1 if flag is set. 12042 * 0 if flag is not set. 12043 **/ 12044static int 12045lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12046 struct lpfc_iocbq *piocbq, uint32_t flag) 12047{ 12048 unsigned long iflags; 12049 int ret; 12050 12051 spin_lock_irqsave(&phba->hbalock, iflags); 12052 ret = piocbq->iocb_flag & flag; 12053 spin_unlock_irqrestore(&phba->hbalock, iflags); 12054 return ret; 12055 12056} 12057 12058/** 12059 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12060 * @phba: Pointer to HBA context object.. 12061 * @ring_number: Ring number 12062 * @piocb: Pointer to command iocb. 12063 * @prspiocbq: Pointer to response iocb. 12064 * @timeout: Timeout in number of seconds. 12065 * 12066 * This function issues the iocb to firmware and waits for the 12067 * iocb to complete. The iocb_cmpl field of the shall be used 12068 * to handle iocbs which time out. If the field is NULL, the 12069 * function shall free the iocbq structure. If more clean up is 12070 * needed, the caller is expected to provide a completion function 12071 * that will provide the needed clean up. If the iocb command is 12072 * not completed within timeout seconds, the function will either 12073 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12074 * completion function set in the iocb_cmpl field and then return 12075 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12076 * resources if this function returns IOCB_TIMEDOUT. 12077 * The function waits for the iocb completion using an 12078 * non-interruptible wait. 12079 * This function will sleep while waiting for iocb completion. 12080 * So, this function should not be called from any context which 12081 * does not allow sleeping. Due to the same reason, this function 12082 * cannot be called with interrupt disabled. 12083 * This function assumes that the iocb completions occur while 12084 * this function sleep. So, this function cannot be called from 12085 * the thread which process iocb completion for this ring. 12086 * This function clears the iocb_flag of the iocb object before 12087 * issuing the iocb and the iocb completion handler sets this 12088 * flag and wakes this thread when the iocb completes. 12089 * The contents of the response iocb will be copied to prspiocbq 12090 * by the completion handler when the command completes. 12091 * This function returns IOCB_SUCCESS when success. 12092 * This function is called with no lock held. 12093 **/ 12094int 12095lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12096 uint32_t ring_number, 12097 struct lpfc_iocbq *piocb, 12098 struct lpfc_iocbq *prspiocbq, 12099 uint32_t timeout) 12100{ 12101 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12102 long timeleft, timeout_req = 0; 12103 int retval = IOCB_SUCCESS; 12104 uint32_t creg_val; 12105 struct lpfc_iocbq *iocb; 12106 int txq_cnt = 0; 12107 int txcmplq_cnt = 0; 12108 struct lpfc_sli_ring *pring; 12109 unsigned long iflags; 12110 bool iocb_completed = true; 12111 12112 if (phba->sli_rev >= LPFC_SLI_REV4) 12113 pring = lpfc_sli4_calc_ring(phba, piocb); 12114 else 12115 pring = &phba->sli.sli3_ring[ring_number]; 12116 /* 12117 * If the caller has provided a response iocbq buffer, then context2 12118 * is NULL or its an error. 12119 */ 12120 if (prspiocbq) { 12121 if (piocb->context2) 12122 return IOCB_ERROR; 12123 piocb->context2 = prspiocbq; 12124 } 12125 12126 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12127 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12128 piocb->context_un.wait_queue = &done_q; 12129 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12130 12131 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12132 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12133 return IOCB_ERROR; 12134 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12135 writel(creg_val, phba->HCregaddr); 12136 readl(phba->HCregaddr); /* flush */ 12137 } 12138 12139 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12140 SLI_IOCB_RET_IOCB); 12141 if (retval == IOCB_SUCCESS) { 12142 timeout_req = msecs_to_jiffies(timeout * 1000); 12143 timeleft = wait_event_timeout(done_q, 12144 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12145 timeout_req); 12146 spin_lock_irqsave(&phba->hbalock, iflags); 12147 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12148 12149 /* 12150 * IOCB timed out. Inform the wake iocb wait 12151 * completion function and set local status 12152 */ 12153 12154 iocb_completed = false; 12155 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12156 } 12157 spin_unlock_irqrestore(&phba->hbalock, iflags); 12158 if (iocb_completed) { 12159 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12160 "0331 IOCB wake signaled\n"); 12161 /* Note: we are not indicating if the IOCB has a success 12162 * status or not - that's for the caller to check. 12163 * IOCB_SUCCESS means just that the command was sent and 12164 * completed. Not that it completed successfully. 12165 * */ 12166 } else if (timeleft == 0) { 12167 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12168 "0338 IOCB wait timeout error - no " 12169 "wake response Data x%x\n", timeout); 12170 retval = IOCB_TIMEDOUT; 12171 } else { 12172 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12173 "0330 IOCB wake NOT set, " 12174 "Data x%x x%lx\n", 12175 timeout, (timeleft / jiffies)); 12176 retval = IOCB_TIMEDOUT; 12177 } 12178 } else if (retval == IOCB_BUSY) { 12179 if (phba->cfg_log_verbose & LOG_SLI) { 12180 list_for_each_entry(iocb, &pring->txq, list) { 12181 txq_cnt++; 12182 } 12183 list_for_each_entry(iocb, &pring->txcmplq, list) { 12184 txcmplq_cnt++; 12185 } 12186 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12187 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12188 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12189 } 12190 return retval; 12191 } else { 12192 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12193 "0332 IOCB wait issue failed, Data x%x\n", 12194 retval); 12195 retval = IOCB_ERROR; 12196 } 12197 12198 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12199 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12200 return IOCB_ERROR; 12201 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12202 writel(creg_val, phba->HCregaddr); 12203 readl(phba->HCregaddr); /* flush */ 12204 } 12205 12206 if (prspiocbq) 12207 piocb->context2 = NULL; 12208 12209 piocb->context_un.wait_queue = NULL; 12210 piocb->iocb_cmpl = NULL; 12211 return retval; 12212} 12213 12214/** 12215 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12216 * @phba: Pointer to HBA context object. 12217 * @pmboxq: Pointer to driver mailbox object. 12218 * @timeout: Timeout in number of seconds. 12219 * 12220 * This function issues the mailbox to firmware and waits for the 12221 * mailbox command to complete. If the mailbox command is not 12222 * completed within timeout seconds, it returns MBX_TIMEOUT. 12223 * The function waits for the mailbox completion using an 12224 * interruptible wait. If the thread is woken up due to a 12225 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12226 * should not free the mailbox resources, if this function returns 12227 * MBX_TIMEOUT. 12228 * This function will sleep while waiting for mailbox completion. 12229 * So, this function should not be called from any context which 12230 * does not allow sleeping. Due to the same reason, this function 12231 * cannot be called with interrupt disabled. 12232 * This function assumes that the mailbox completion occurs while 12233 * this function sleep. So, this function cannot be called from 12234 * the worker thread which processes mailbox completion. 12235 * This function is called in the context of HBA management 12236 * applications. 12237 * This function returns MBX_SUCCESS when successful. 12238 * This function is called with no lock held. 12239 **/ 12240int 12241lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12242 uint32_t timeout) 12243{ 12244 struct completion mbox_done; 12245 int retval; 12246 unsigned long flag; 12247 12248 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12249 /* setup wake call as IOCB callback */ 12250 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12251 12252 /* setup context3 field to pass wait_queue pointer to wake function */ 12253 init_completion(&mbox_done); 12254 pmboxq->context3 = &mbox_done; 12255 /* now issue the command */ 12256 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12257 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12258 wait_for_completion_timeout(&mbox_done, 12259 msecs_to_jiffies(timeout * 1000)); 12260 12261 spin_lock_irqsave(&phba->hbalock, flag); 12262 pmboxq->context3 = NULL; 12263 /* 12264 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12265 * else do not free the resources. 12266 */ 12267 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12268 retval = MBX_SUCCESS; 12269 } else { 12270 retval = MBX_TIMEOUT; 12271 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12272 } 12273 spin_unlock_irqrestore(&phba->hbalock, flag); 12274 } 12275 return retval; 12276} 12277 12278/** 12279 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12280 * @phba: Pointer to HBA context. 12281 * @mbx_action: Mailbox shutdown options. 12282 * 12283 * This function is called to shutdown the driver's mailbox sub-system. 12284 * It first marks the mailbox sub-system is in a block state to prevent 12285 * the asynchronous mailbox command from issued off the pending mailbox 12286 * command queue. If the mailbox command sub-system shutdown is due to 12287 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12288 * the mailbox sub-system flush routine to forcefully bring down the 12289 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12290 * as with offline or HBA function reset), this routine will wait for the 12291 * outstanding mailbox command to complete before invoking the mailbox 12292 * sub-system flush routine to gracefully bring down mailbox sub-system. 12293 **/ 12294void 12295lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12296{ 12297 struct lpfc_sli *psli = &phba->sli; 12298 unsigned long timeout; 12299 12300 if (mbx_action == LPFC_MBX_NO_WAIT) { 12301 /* delay 100ms for port state */ 12302 msleep(100); 12303 lpfc_sli_mbox_sys_flush(phba); 12304 return; 12305 } 12306 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12307 12308 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12309 local_bh_disable(); 12310 12311 spin_lock_irq(&phba->hbalock); 12312 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12313 12314 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12315 /* Determine how long we might wait for the active mailbox 12316 * command to be gracefully completed by firmware. 12317 */ 12318 if (phba->sli.mbox_active) 12319 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12320 phba->sli.mbox_active) * 12321 1000) + jiffies; 12322 spin_unlock_irq(&phba->hbalock); 12323 12324 /* Enable softirqs again, done with phba->hbalock */ 12325 local_bh_enable(); 12326 12327 while (phba->sli.mbox_active) { 12328 /* Check active mailbox complete status every 2ms */ 12329 msleep(2); 12330 if (time_after(jiffies, timeout)) 12331 /* Timeout, let the mailbox flush routine to 12332 * forcefully release active mailbox command 12333 */ 12334 break; 12335 } 12336 } else { 12337 spin_unlock_irq(&phba->hbalock); 12338 12339 /* Enable softirqs again, done with phba->hbalock */ 12340 local_bh_enable(); 12341 } 12342 12343 lpfc_sli_mbox_sys_flush(phba); 12344} 12345 12346/** 12347 * lpfc_sli_eratt_read - read sli-3 error attention events 12348 * @phba: Pointer to HBA context. 12349 * 12350 * This function is called to read the SLI3 device error attention registers 12351 * for possible error attention events. The caller must hold the hostlock 12352 * with spin_lock_irq(). 12353 * 12354 * This function returns 1 when there is Error Attention in the Host Attention 12355 * Register and returns 0 otherwise. 12356 **/ 12357static int 12358lpfc_sli_eratt_read(struct lpfc_hba *phba) 12359{ 12360 uint32_t ha_copy; 12361 12362 /* Read chip Host Attention (HA) register */ 12363 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12364 goto unplug_err; 12365 12366 if (ha_copy & HA_ERATT) { 12367 /* Read host status register to retrieve error event */ 12368 if (lpfc_sli_read_hs(phba)) 12369 goto unplug_err; 12370 12371 /* Check if there is a deferred error condition is active */ 12372 if ((HS_FFER1 & phba->work_hs) && 12373 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12374 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12375 phba->hba_flag |= DEFER_ERATT; 12376 /* Clear all interrupt enable conditions */ 12377 writel(0, phba->HCregaddr); 12378 readl(phba->HCregaddr); 12379 } 12380 12381 /* Set the driver HA work bitmap */ 12382 phba->work_ha |= HA_ERATT; 12383 /* Indicate polling handles this ERATT */ 12384 phba->hba_flag |= HBA_ERATT_HANDLED; 12385 return 1; 12386 } 12387 return 0; 12388 12389unplug_err: 12390 /* Set the driver HS work bitmap */ 12391 phba->work_hs |= UNPLUG_ERR; 12392 /* Set the driver HA work bitmap */ 12393 phba->work_ha |= HA_ERATT; 12394 /* Indicate polling handles this ERATT */ 12395 phba->hba_flag |= HBA_ERATT_HANDLED; 12396 return 1; 12397} 12398 12399/** 12400 * lpfc_sli4_eratt_read - read sli-4 error attention events 12401 * @phba: Pointer to HBA context. 12402 * 12403 * This function is called to read the SLI4 device error attention registers 12404 * for possible error attention events. The caller must hold the hostlock 12405 * with spin_lock_irq(). 12406 * 12407 * This function returns 1 when there is Error Attention in the Host Attention 12408 * Register and returns 0 otherwise. 12409 **/ 12410static int 12411lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12412{ 12413 uint32_t uerr_sta_hi, uerr_sta_lo; 12414 uint32_t if_type, portsmphr; 12415 struct lpfc_register portstat_reg; 12416 u32 logmask; 12417 12418 /* 12419 * For now, use the SLI4 device internal unrecoverable error 12420 * registers for error attention. This can be changed later. 12421 */ 12422 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12423 switch (if_type) { 12424 case LPFC_SLI_INTF_IF_TYPE_0: 12425 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12426 &uerr_sta_lo) || 12427 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12428 &uerr_sta_hi)) { 12429 phba->work_hs |= UNPLUG_ERR; 12430 phba->work_ha |= HA_ERATT; 12431 phba->hba_flag |= HBA_ERATT_HANDLED; 12432 return 1; 12433 } 12434 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12435 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12437 "1423 HBA Unrecoverable error: " 12438 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12439 "ue_mask_lo_reg=0x%x, " 12440 "ue_mask_hi_reg=0x%x\n", 12441 uerr_sta_lo, uerr_sta_hi, 12442 phba->sli4_hba.ue_mask_lo, 12443 phba->sli4_hba.ue_mask_hi); 12444 phba->work_status[0] = uerr_sta_lo; 12445 phba->work_status[1] = uerr_sta_hi; 12446 phba->work_ha |= HA_ERATT; 12447 phba->hba_flag |= HBA_ERATT_HANDLED; 12448 return 1; 12449 } 12450 break; 12451 case LPFC_SLI_INTF_IF_TYPE_2: 12452 case LPFC_SLI_INTF_IF_TYPE_6: 12453 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12454 &portstat_reg.word0) || 12455 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12456 &portsmphr)){ 12457 phba->work_hs |= UNPLUG_ERR; 12458 phba->work_ha |= HA_ERATT; 12459 phba->hba_flag |= HBA_ERATT_HANDLED; 12460 return 1; 12461 } 12462 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12463 phba->work_status[0] = 12464 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12465 phba->work_status[1] = 12466 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12467 logmask = LOG_TRACE_EVENT; 12468 if (phba->work_status[0] == 12469 SLIPORT_ERR1_REG_ERR_CODE_2 && 12470 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 12471 logmask = LOG_SLI; 12472 lpfc_printf_log(phba, KERN_ERR, logmask, 12473 "2885 Port Status Event: " 12474 "port status reg 0x%x, " 12475 "port smphr reg 0x%x, " 12476 "error 1=0x%x, error 2=0x%x\n", 12477 portstat_reg.word0, 12478 portsmphr, 12479 phba->work_status[0], 12480 phba->work_status[1]); 12481 phba->work_ha |= HA_ERATT; 12482 phba->hba_flag |= HBA_ERATT_HANDLED; 12483 return 1; 12484 } 12485 break; 12486 case LPFC_SLI_INTF_IF_TYPE_1: 12487 default: 12488 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12489 "2886 HBA Error Attention on unsupported " 12490 "if type %d.", if_type); 12491 return 1; 12492 } 12493 12494 return 0; 12495} 12496 12497/** 12498 * lpfc_sli_check_eratt - check error attention events 12499 * @phba: Pointer to HBA context. 12500 * 12501 * This function is called from timer soft interrupt context to check HBA's 12502 * error attention register bit for error attention events. 12503 * 12504 * This function returns 1 when there is Error Attention in the Host Attention 12505 * Register and returns 0 otherwise. 12506 **/ 12507int 12508lpfc_sli_check_eratt(struct lpfc_hba *phba) 12509{ 12510 uint32_t ha_copy; 12511 12512 /* If somebody is waiting to handle an eratt, don't process it 12513 * here. The brdkill function will do this. 12514 */ 12515 if (phba->link_flag & LS_IGNORE_ERATT) 12516 return 0; 12517 12518 /* Check if interrupt handler handles this ERATT */ 12519 spin_lock_irq(&phba->hbalock); 12520 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12521 /* Interrupt handler has handled ERATT */ 12522 spin_unlock_irq(&phba->hbalock); 12523 return 0; 12524 } 12525 12526 /* 12527 * If there is deferred error attention, do not check for error 12528 * attention 12529 */ 12530 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12531 spin_unlock_irq(&phba->hbalock); 12532 return 0; 12533 } 12534 12535 /* If PCI channel is offline, don't process it */ 12536 if (unlikely(pci_channel_offline(phba->pcidev))) { 12537 spin_unlock_irq(&phba->hbalock); 12538 return 0; 12539 } 12540 12541 switch (phba->sli_rev) { 12542 case LPFC_SLI_REV2: 12543 case LPFC_SLI_REV3: 12544 /* Read chip Host Attention (HA) register */ 12545 ha_copy = lpfc_sli_eratt_read(phba); 12546 break; 12547 case LPFC_SLI_REV4: 12548 /* Read device Uncoverable Error (UERR) registers */ 12549 ha_copy = lpfc_sli4_eratt_read(phba); 12550 break; 12551 default: 12552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12553 "0299 Invalid SLI revision (%d)\n", 12554 phba->sli_rev); 12555 ha_copy = 0; 12556 break; 12557 } 12558 spin_unlock_irq(&phba->hbalock); 12559 12560 return ha_copy; 12561} 12562 12563/** 12564 * lpfc_intr_state_check - Check device state for interrupt handling 12565 * @phba: Pointer to HBA context. 12566 * 12567 * This inline routine checks whether a device or its PCI slot is in a state 12568 * that the interrupt should be handled. 12569 * 12570 * This function returns 0 if the device or the PCI slot is in a state that 12571 * interrupt should be handled, otherwise -EIO. 12572 */ 12573static inline int 12574lpfc_intr_state_check(struct lpfc_hba *phba) 12575{ 12576 /* If the pci channel is offline, ignore all the interrupts */ 12577 if (unlikely(pci_channel_offline(phba->pcidev))) 12578 return -EIO; 12579 12580 /* Update device level interrupt statistics */ 12581 phba->sli.slistat.sli_intr++; 12582 12583 /* Ignore all interrupts during initialization. */ 12584 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12585 return -EIO; 12586 12587 return 0; 12588} 12589 12590/** 12591 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12592 * @irq: Interrupt number. 12593 * @dev_id: The device context pointer. 12594 * 12595 * This function is directly called from the PCI layer as an interrupt 12596 * service routine when device with SLI-3 interface spec is enabled with 12597 * MSI-X multi-message interrupt mode and there are slow-path events in 12598 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12599 * interrupt mode, this function is called as part of the device-level 12600 * interrupt handler. When the PCI slot is in error recovery or the HBA 12601 * is undergoing initialization, the interrupt handler will not process 12602 * the interrupt. The link attention and ELS ring attention events are 12603 * handled by the worker thread. The interrupt handler signals the worker 12604 * thread and returns for these events. This function is called without 12605 * any lock held. It gets the hbalock to access and update SLI data 12606 * structures. 12607 * 12608 * This function returns IRQ_HANDLED when interrupt is handled else it 12609 * returns IRQ_NONE. 12610 **/ 12611irqreturn_t 12612lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12613{ 12614 struct lpfc_hba *phba; 12615 uint32_t ha_copy, hc_copy; 12616 uint32_t work_ha_copy; 12617 unsigned long status; 12618 unsigned long iflag; 12619 uint32_t control; 12620 12621 MAILBOX_t *mbox, *pmbox; 12622 struct lpfc_vport *vport; 12623 struct lpfc_nodelist *ndlp; 12624 struct lpfc_dmabuf *mp; 12625 LPFC_MBOXQ_t *pmb; 12626 int rc; 12627 12628 /* 12629 * Get the driver's phba structure from the dev_id and 12630 * assume the HBA is not interrupting. 12631 */ 12632 phba = (struct lpfc_hba *)dev_id; 12633 12634 if (unlikely(!phba)) 12635 return IRQ_NONE; 12636 12637 /* 12638 * Stuff needs to be attented to when this function is invoked as an 12639 * individual interrupt handler in MSI-X multi-message interrupt mode 12640 */ 12641 if (phba->intr_type == MSIX) { 12642 /* Check device state for handling interrupt */ 12643 if (lpfc_intr_state_check(phba)) 12644 return IRQ_NONE; 12645 /* Need to read HA REG for slow-path events */ 12646 spin_lock_irqsave(&phba->hbalock, iflag); 12647 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12648 goto unplug_error; 12649 /* If somebody is waiting to handle an eratt don't process it 12650 * here. The brdkill function will do this. 12651 */ 12652 if (phba->link_flag & LS_IGNORE_ERATT) 12653 ha_copy &= ~HA_ERATT; 12654 /* Check the need for handling ERATT in interrupt handler */ 12655 if (ha_copy & HA_ERATT) { 12656 if (phba->hba_flag & HBA_ERATT_HANDLED) 12657 /* ERATT polling has handled ERATT */ 12658 ha_copy &= ~HA_ERATT; 12659 else 12660 /* Indicate interrupt handler handles ERATT */ 12661 phba->hba_flag |= HBA_ERATT_HANDLED; 12662 } 12663 12664 /* 12665 * If there is deferred error attention, do not check for any 12666 * interrupt. 12667 */ 12668 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12669 spin_unlock_irqrestore(&phba->hbalock, iflag); 12670 return IRQ_NONE; 12671 } 12672 12673 /* Clear up only attention source related to slow-path */ 12674 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12675 goto unplug_error; 12676 12677 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12678 HC_LAINT_ENA | HC_ERINT_ENA), 12679 phba->HCregaddr); 12680 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12681 phba->HAregaddr); 12682 writel(hc_copy, phba->HCregaddr); 12683 readl(phba->HAregaddr); /* flush */ 12684 spin_unlock_irqrestore(&phba->hbalock, iflag); 12685 } else 12686 ha_copy = phba->ha_copy; 12687 12688 work_ha_copy = ha_copy & phba->work_ha_mask; 12689 12690 if (work_ha_copy) { 12691 if (work_ha_copy & HA_LATT) { 12692 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12693 /* 12694 * Turn off Link Attention interrupts 12695 * until CLEAR_LA done 12696 */ 12697 spin_lock_irqsave(&phba->hbalock, iflag); 12698 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12699 if (lpfc_readl(phba->HCregaddr, &control)) 12700 goto unplug_error; 12701 control &= ~HC_LAINT_ENA; 12702 writel(control, phba->HCregaddr); 12703 readl(phba->HCregaddr); /* flush */ 12704 spin_unlock_irqrestore(&phba->hbalock, iflag); 12705 } 12706 else 12707 work_ha_copy &= ~HA_LATT; 12708 } 12709 12710 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12711 /* 12712 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12713 * the only slow ring. 12714 */ 12715 status = (work_ha_copy & 12716 (HA_RXMASK << (4*LPFC_ELS_RING))); 12717 status >>= (4*LPFC_ELS_RING); 12718 if (status & HA_RXMASK) { 12719 spin_lock_irqsave(&phba->hbalock, iflag); 12720 if (lpfc_readl(phba->HCregaddr, &control)) 12721 goto unplug_error; 12722 12723 lpfc_debugfs_slow_ring_trc(phba, 12724 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12725 control, status, 12726 (uint32_t)phba->sli.slistat.sli_intr); 12727 12728 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12729 lpfc_debugfs_slow_ring_trc(phba, 12730 "ISR Disable ring:" 12731 "pwork:x%x hawork:x%x wait:x%x", 12732 phba->work_ha, work_ha_copy, 12733 (uint32_t)((unsigned long) 12734 &phba->work_waitq)); 12735 12736 control &= 12737 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12738 writel(control, phba->HCregaddr); 12739 readl(phba->HCregaddr); /* flush */ 12740 } 12741 else { 12742 lpfc_debugfs_slow_ring_trc(phba, 12743 "ISR slow ring: pwork:" 12744 "x%x hawork:x%x wait:x%x", 12745 phba->work_ha, work_ha_copy, 12746 (uint32_t)((unsigned long) 12747 &phba->work_waitq)); 12748 } 12749 spin_unlock_irqrestore(&phba->hbalock, iflag); 12750 } 12751 } 12752 spin_lock_irqsave(&phba->hbalock, iflag); 12753 if (work_ha_copy & HA_ERATT) { 12754 if (lpfc_sli_read_hs(phba)) 12755 goto unplug_error; 12756 /* 12757 * Check if there is a deferred error condition 12758 * is active 12759 */ 12760 if ((HS_FFER1 & phba->work_hs) && 12761 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12762 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12763 phba->work_hs)) { 12764 phba->hba_flag |= DEFER_ERATT; 12765 /* Clear all interrupt enable conditions */ 12766 writel(0, phba->HCregaddr); 12767 readl(phba->HCregaddr); 12768 } 12769 } 12770 12771 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12772 pmb = phba->sli.mbox_active; 12773 pmbox = &pmb->u.mb; 12774 mbox = phba->mbox; 12775 vport = pmb->vport; 12776 12777 /* First check out the status word */ 12778 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12779 if (pmbox->mbxOwner != OWN_HOST) { 12780 spin_unlock_irqrestore(&phba->hbalock, iflag); 12781 /* 12782 * Stray Mailbox Interrupt, mbxCommand <cmd> 12783 * mbxStatus <status> 12784 */ 12785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12786 "(%d):0304 Stray Mailbox " 12787 "Interrupt mbxCommand x%x " 12788 "mbxStatus x%x\n", 12789 (vport ? vport->vpi : 0), 12790 pmbox->mbxCommand, 12791 pmbox->mbxStatus); 12792 /* clear mailbox attention bit */ 12793 work_ha_copy &= ~HA_MBATT; 12794 } else { 12795 phba->sli.mbox_active = NULL; 12796 spin_unlock_irqrestore(&phba->hbalock, iflag); 12797 phba->last_completion_time = jiffies; 12798 del_timer(&phba->sli.mbox_tmo); 12799 if (pmb->mbox_cmpl) { 12800 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12801 MAILBOX_CMD_SIZE); 12802 if (pmb->out_ext_byte_len && 12803 pmb->ctx_buf) 12804 lpfc_sli_pcimem_bcopy( 12805 phba->mbox_ext, 12806 pmb->ctx_buf, 12807 pmb->out_ext_byte_len); 12808 } 12809 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12810 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12811 12812 lpfc_debugfs_disc_trc(vport, 12813 LPFC_DISC_TRC_MBOX_VPORT, 12814 "MBOX dflt rpi: : " 12815 "status:x%x rpi:x%x", 12816 (uint32_t)pmbox->mbxStatus, 12817 pmbox->un.varWords[0], 0); 12818 12819 if (!pmbox->mbxStatus) { 12820 mp = (struct lpfc_dmabuf *) 12821 (pmb->ctx_buf); 12822 ndlp = (struct lpfc_nodelist *) 12823 pmb->ctx_ndlp; 12824 12825 /* Reg_LOGIN of dflt RPI was 12826 * successful. new lets get 12827 * rid of the RPI using the 12828 * same mbox buffer. 12829 */ 12830 lpfc_unreg_login(phba, 12831 vport->vpi, 12832 pmbox->un.varWords[0], 12833 pmb); 12834 pmb->mbox_cmpl = 12835 lpfc_mbx_cmpl_dflt_rpi; 12836 pmb->ctx_buf = mp; 12837 pmb->ctx_ndlp = ndlp; 12838 pmb->vport = vport; 12839 rc = lpfc_sli_issue_mbox(phba, 12840 pmb, 12841 MBX_NOWAIT); 12842 if (rc != MBX_BUSY) 12843 lpfc_printf_log(phba, 12844 KERN_ERR, 12845 LOG_TRACE_EVENT, 12846 "0350 rc should have" 12847 "been MBX_BUSY\n"); 12848 if (rc != MBX_NOT_FINISHED) 12849 goto send_current_mbox; 12850 } 12851 } 12852 spin_lock_irqsave( 12853 &phba->pport->work_port_lock, 12854 iflag); 12855 phba->pport->work_port_events &= 12856 ~WORKER_MBOX_TMO; 12857 spin_unlock_irqrestore( 12858 &phba->pport->work_port_lock, 12859 iflag); 12860 lpfc_mbox_cmpl_put(phba, pmb); 12861 } 12862 } else 12863 spin_unlock_irqrestore(&phba->hbalock, iflag); 12864 12865 if ((work_ha_copy & HA_MBATT) && 12866 (phba->sli.mbox_active == NULL)) { 12867send_current_mbox: 12868 /* Process next mailbox command if there is one */ 12869 do { 12870 rc = lpfc_sli_issue_mbox(phba, NULL, 12871 MBX_NOWAIT); 12872 } while (rc == MBX_NOT_FINISHED); 12873 if (rc != MBX_SUCCESS) 12874 lpfc_printf_log(phba, KERN_ERR, 12875 LOG_TRACE_EVENT, 12876 "0349 rc should be " 12877 "MBX_SUCCESS\n"); 12878 } 12879 12880 spin_lock_irqsave(&phba->hbalock, iflag); 12881 phba->work_ha |= work_ha_copy; 12882 spin_unlock_irqrestore(&phba->hbalock, iflag); 12883 lpfc_worker_wake_up(phba); 12884 } 12885 return IRQ_HANDLED; 12886unplug_error: 12887 spin_unlock_irqrestore(&phba->hbalock, iflag); 12888 return IRQ_HANDLED; 12889 12890} /* lpfc_sli_sp_intr_handler */ 12891 12892/** 12893 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12894 * @irq: Interrupt number. 12895 * @dev_id: The device context pointer. 12896 * 12897 * This function is directly called from the PCI layer as an interrupt 12898 * service routine when device with SLI-3 interface spec is enabled with 12899 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12900 * ring event in the HBA. However, when the device is enabled with either 12901 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12902 * device-level interrupt handler. When the PCI slot is in error recovery 12903 * or the HBA is undergoing initialization, the interrupt handler will not 12904 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12905 * the intrrupt context. This function is called without any lock held. 12906 * It gets the hbalock to access and update SLI data structures. 12907 * 12908 * This function returns IRQ_HANDLED when interrupt is handled else it 12909 * returns IRQ_NONE. 12910 **/ 12911irqreturn_t 12912lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12913{ 12914 struct lpfc_hba *phba; 12915 uint32_t ha_copy; 12916 unsigned long status; 12917 unsigned long iflag; 12918 struct lpfc_sli_ring *pring; 12919 12920 /* Get the driver's phba structure from the dev_id and 12921 * assume the HBA is not interrupting. 12922 */ 12923 phba = (struct lpfc_hba *) dev_id; 12924 12925 if (unlikely(!phba)) 12926 return IRQ_NONE; 12927 12928 /* 12929 * Stuff needs to be attented to when this function is invoked as an 12930 * individual interrupt handler in MSI-X multi-message interrupt mode 12931 */ 12932 if (phba->intr_type == MSIX) { 12933 /* Check device state for handling interrupt */ 12934 if (lpfc_intr_state_check(phba)) 12935 return IRQ_NONE; 12936 /* Need to read HA REG for FCP ring and other ring events */ 12937 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12938 return IRQ_HANDLED; 12939 /* Clear up only attention source related to fast-path */ 12940 spin_lock_irqsave(&phba->hbalock, iflag); 12941 /* 12942 * If there is deferred error attention, do not check for 12943 * any interrupt. 12944 */ 12945 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12946 spin_unlock_irqrestore(&phba->hbalock, iflag); 12947 return IRQ_NONE; 12948 } 12949 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12950 phba->HAregaddr); 12951 readl(phba->HAregaddr); /* flush */ 12952 spin_unlock_irqrestore(&phba->hbalock, iflag); 12953 } else 12954 ha_copy = phba->ha_copy; 12955 12956 /* 12957 * Process all events on FCP ring. Take the optimized path for FCP IO. 12958 */ 12959 ha_copy &= ~(phba->work_ha_mask); 12960 12961 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12962 status >>= (4*LPFC_FCP_RING); 12963 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12964 if (status & HA_RXMASK) 12965 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12966 12967 if (phba->cfg_multi_ring_support == 2) { 12968 /* 12969 * Process all events on extra ring. Take the optimized path 12970 * for extra ring IO. 12971 */ 12972 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12973 status >>= (4*LPFC_EXTRA_RING); 12974 if (status & HA_RXMASK) { 12975 lpfc_sli_handle_fast_ring_event(phba, 12976 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12977 status); 12978 } 12979 } 12980 return IRQ_HANDLED; 12981} /* lpfc_sli_fp_intr_handler */ 12982 12983/** 12984 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12985 * @irq: Interrupt number. 12986 * @dev_id: The device context pointer. 12987 * 12988 * This function is the HBA device-level interrupt handler to device with 12989 * SLI-3 interface spec, called from the PCI layer when either MSI or 12990 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12991 * requires driver attention. This function invokes the slow-path interrupt 12992 * attention handling function and fast-path interrupt attention handling 12993 * function in turn to process the relevant HBA attention events. This 12994 * function is called without any lock held. It gets the hbalock to access 12995 * and update SLI data structures. 12996 * 12997 * This function returns IRQ_HANDLED when interrupt is handled, else it 12998 * returns IRQ_NONE. 12999 **/ 13000irqreturn_t 13001lpfc_sli_intr_handler(int irq, void *dev_id) 13002{ 13003 struct lpfc_hba *phba; 13004 irqreturn_t sp_irq_rc, fp_irq_rc; 13005 unsigned long status1, status2; 13006 uint32_t hc_copy; 13007 13008 /* 13009 * Get the driver's phba structure from the dev_id and 13010 * assume the HBA is not interrupting. 13011 */ 13012 phba = (struct lpfc_hba *) dev_id; 13013 13014 if (unlikely(!phba)) 13015 return IRQ_NONE; 13016 13017 /* Check device state for handling interrupt */ 13018 if (lpfc_intr_state_check(phba)) 13019 return IRQ_NONE; 13020 13021 spin_lock(&phba->hbalock); 13022 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13023 spin_unlock(&phba->hbalock); 13024 return IRQ_HANDLED; 13025 } 13026 13027 if (unlikely(!phba->ha_copy)) { 13028 spin_unlock(&phba->hbalock); 13029 return IRQ_NONE; 13030 } else if (phba->ha_copy & HA_ERATT) { 13031 if (phba->hba_flag & HBA_ERATT_HANDLED) 13032 /* ERATT polling has handled ERATT */ 13033 phba->ha_copy &= ~HA_ERATT; 13034 else 13035 /* Indicate interrupt handler handles ERATT */ 13036 phba->hba_flag |= HBA_ERATT_HANDLED; 13037 } 13038 13039 /* 13040 * If there is deferred error attention, do not check for any interrupt. 13041 */ 13042 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13043 spin_unlock(&phba->hbalock); 13044 return IRQ_NONE; 13045 } 13046 13047 /* Clear attention sources except link and error attentions */ 13048 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13049 spin_unlock(&phba->hbalock); 13050 return IRQ_HANDLED; 13051 } 13052 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13053 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13054 phba->HCregaddr); 13055 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13056 writel(hc_copy, phba->HCregaddr); 13057 readl(phba->HAregaddr); /* flush */ 13058 spin_unlock(&phba->hbalock); 13059 13060 /* 13061 * Invokes slow-path host attention interrupt handling as appropriate. 13062 */ 13063 13064 /* status of events with mailbox and link attention */ 13065 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13066 13067 /* status of events with ELS ring */ 13068 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13069 status2 >>= (4*LPFC_ELS_RING); 13070 13071 if (status1 || (status2 & HA_RXMASK)) 13072 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13073 else 13074 sp_irq_rc = IRQ_NONE; 13075 13076 /* 13077 * Invoke fast-path host attention interrupt handling as appropriate. 13078 */ 13079 13080 /* status of events with FCP ring */ 13081 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13082 status1 >>= (4*LPFC_FCP_RING); 13083 13084 /* status of events with extra ring */ 13085 if (phba->cfg_multi_ring_support == 2) { 13086 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13087 status2 >>= (4*LPFC_EXTRA_RING); 13088 } else 13089 status2 = 0; 13090 13091 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13092 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13093 else 13094 fp_irq_rc = IRQ_NONE; 13095 13096 /* Return device-level interrupt handling status */ 13097 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13098} /* lpfc_sli_intr_handler */ 13099 13100/** 13101 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13102 * @phba: pointer to lpfc hba data structure. 13103 * 13104 * This routine is invoked by the worker thread to process all the pending 13105 * SLI4 els abort xri events. 13106 **/ 13107void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13108{ 13109 struct lpfc_cq_event *cq_event; 13110 unsigned long iflags; 13111 13112 /* First, declare the els xri abort event has been handled */ 13113 spin_lock_irqsave(&phba->hbalock, iflags); 13114 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13115 spin_unlock_irqrestore(&phba->hbalock, iflags); 13116 13117 /* Now, handle all the els xri abort events */ 13118 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13119 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13120 /* Get the first event from the head of the event queue */ 13121 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13122 cq_event, struct lpfc_cq_event, list); 13123 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13124 iflags); 13125 /* Notify aborted XRI for ELS work queue */ 13126 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13127 13128 /* Free the event processed back to the free pool */ 13129 lpfc_sli4_cq_event_release(phba, cq_event); 13130 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13131 iflags); 13132 } 13133 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13134} 13135 13136/** 13137 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13138 * @phba: pointer to lpfc hba data structure 13139 * @pIocbIn: pointer to the rspiocbq 13140 * @pIocbOut: pointer to the cmdiocbq 13141 * @wcqe: pointer to the complete wcqe 13142 * 13143 * This routine transfers the fields of a command iocbq to a response iocbq 13144 * by copying all the IOCB fields from command iocbq and transferring the 13145 * completion status information from the complete wcqe. 13146 **/ 13147static void 13148lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13149 struct lpfc_iocbq *pIocbIn, 13150 struct lpfc_iocbq *pIocbOut, 13151 struct lpfc_wcqe_complete *wcqe) 13152{ 13153 int numBdes, i; 13154 unsigned long iflags; 13155 uint32_t status, max_response; 13156 struct lpfc_dmabuf *dmabuf; 13157 struct ulp_bde64 *bpl, bde; 13158 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13159 13160 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13161 sizeof(struct lpfc_iocbq) - offset); 13162 /* Map WCQE parameters into irspiocb parameters */ 13163 status = bf_get(lpfc_wcqe_c_status, wcqe); 13164 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13165 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13166 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13167 pIocbIn->iocb.un.fcpi.fcpi_parm = 13168 pIocbOut->iocb.un.fcpi.fcpi_parm - 13169 wcqe->total_data_placed; 13170 else 13171 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13172 else { 13173 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13174 switch (pIocbOut->iocb.ulpCommand) { 13175 case CMD_ELS_REQUEST64_CR: 13176 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13177 bpl = (struct ulp_bde64 *)dmabuf->virt; 13178 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13179 max_response = bde.tus.f.bdeSize; 13180 break; 13181 case CMD_GEN_REQUEST64_CR: 13182 max_response = 0; 13183 if (!pIocbOut->context3) 13184 break; 13185 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13186 sizeof(struct ulp_bde64); 13187 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13188 bpl = (struct ulp_bde64 *)dmabuf->virt; 13189 for (i = 0; i < numBdes; i++) { 13190 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13191 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13192 max_response += bde.tus.f.bdeSize; 13193 } 13194 break; 13195 default: 13196 max_response = wcqe->total_data_placed; 13197 break; 13198 } 13199 if (max_response < wcqe->total_data_placed) 13200 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13201 else 13202 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13203 wcqe->total_data_placed; 13204 } 13205 13206 /* Convert BG errors for completion status */ 13207 if (status == CQE_STATUS_DI_ERROR) { 13208 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13209 13210 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13211 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13212 else 13213 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13214 13215 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13216 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13217 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13218 BGS_GUARD_ERR_MASK; 13219 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13220 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13221 BGS_APPTAG_ERR_MASK; 13222 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13223 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13224 BGS_REFTAG_ERR_MASK; 13225 13226 /* Check to see if there was any good data before the error */ 13227 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13228 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13229 BGS_HI_WATER_MARK_PRESENT_MASK; 13230 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13231 wcqe->total_data_placed; 13232 } 13233 13234 /* 13235 * Set ALL the error bits to indicate we don't know what 13236 * type of error it is. 13237 */ 13238 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13239 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13240 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13241 BGS_GUARD_ERR_MASK); 13242 } 13243 13244 /* Pick up HBA exchange busy condition */ 13245 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13246 spin_lock_irqsave(&phba->hbalock, iflags); 13247 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13248 spin_unlock_irqrestore(&phba->hbalock, iflags); 13249 } 13250} 13251 13252/** 13253 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13254 * @phba: Pointer to HBA context object. 13255 * @irspiocbq: Pointer to work-queue completion queue entry. 13256 * 13257 * This routine handles an ELS work-queue completion event and construct 13258 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13259 * discovery engine to handle. 13260 * 13261 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13262 **/ 13263static struct lpfc_iocbq * 13264lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13265 struct lpfc_iocbq *irspiocbq) 13266{ 13267 struct lpfc_sli_ring *pring; 13268 struct lpfc_iocbq *cmdiocbq; 13269 struct lpfc_wcqe_complete *wcqe; 13270 unsigned long iflags; 13271 13272 pring = lpfc_phba_elsring(phba); 13273 if (unlikely(!pring)) 13274 return NULL; 13275 13276 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13277 pring->stats.iocb_event++; 13278 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13279 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13280 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13281 if (unlikely(!cmdiocbq)) { 13282 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13283 "0386 ELS complete with no corresponding " 13284 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13285 wcqe->word0, wcqe->total_data_placed, 13286 wcqe->parameter, wcqe->word3); 13287 lpfc_sli_release_iocbq(phba, irspiocbq); 13288 return NULL; 13289 } 13290 13291 spin_lock_irqsave(&pring->ring_lock, iflags); 13292 /* Put the iocb back on the txcmplq */ 13293 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13294 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13295 13296 /* Fake the irspiocbq and copy necessary response information */ 13297 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13298 13299 return irspiocbq; 13300} 13301 13302inline struct lpfc_cq_event * 13303lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13304{ 13305 struct lpfc_cq_event *cq_event; 13306 13307 /* Allocate a new internal CQ_EVENT entry */ 13308 cq_event = lpfc_sli4_cq_event_alloc(phba); 13309 if (!cq_event) { 13310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13311 "0602 Failed to alloc CQ_EVENT entry\n"); 13312 return NULL; 13313 } 13314 13315 /* Move the CQE into the event */ 13316 memcpy(&cq_event->cqe, entry, size); 13317 return cq_event; 13318} 13319 13320/** 13321 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13322 * @phba: Pointer to HBA context object. 13323 * @mcqe: Pointer to mailbox completion queue entry. 13324 * 13325 * This routine process a mailbox completion queue entry with asynchronous 13326 * event. 13327 * 13328 * Return: true if work posted to worker thread, otherwise false. 13329 **/ 13330static bool 13331lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13332{ 13333 struct lpfc_cq_event *cq_event; 13334 unsigned long iflags; 13335 13336 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13337 "0392 Async Event: word0:x%x, word1:x%x, " 13338 "word2:x%x, word3:x%x\n", mcqe->word0, 13339 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13340 13341 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13342 if (!cq_event) 13343 return false; 13344 13345 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13346 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13347 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13348 13349 /* Set the async event flag */ 13350 spin_lock_irqsave(&phba->hbalock, iflags); 13351 phba->hba_flag |= ASYNC_EVENT; 13352 spin_unlock_irqrestore(&phba->hbalock, iflags); 13353 13354 return true; 13355} 13356 13357/** 13358 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13359 * @phba: Pointer to HBA context object. 13360 * @mcqe: Pointer to mailbox completion queue entry. 13361 * 13362 * This routine process a mailbox completion queue entry with mailbox 13363 * completion event. 13364 * 13365 * Return: true if work posted to worker thread, otherwise false. 13366 **/ 13367static bool 13368lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13369{ 13370 uint32_t mcqe_status; 13371 MAILBOX_t *mbox, *pmbox; 13372 struct lpfc_mqe *mqe; 13373 struct lpfc_vport *vport; 13374 struct lpfc_nodelist *ndlp; 13375 struct lpfc_dmabuf *mp; 13376 unsigned long iflags; 13377 LPFC_MBOXQ_t *pmb; 13378 bool workposted = false; 13379 int rc; 13380 13381 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13382 if (!bf_get(lpfc_trailer_completed, mcqe)) 13383 goto out_no_mqe_complete; 13384 13385 /* Get the reference to the active mbox command */ 13386 spin_lock_irqsave(&phba->hbalock, iflags); 13387 pmb = phba->sli.mbox_active; 13388 if (unlikely(!pmb)) { 13389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13390 "1832 No pending MBOX command to handle\n"); 13391 spin_unlock_irqrestore(&phba->hbalock, iflags); 13392 goto out_no_mqe_complete; 13393 } 13394 spin_unlock_irqrestore(&phba->hbalock, iflags); 13395 mqe = &pmb->u.mqe; 13396 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13397 mbox = phba->mbox; 13398 vport = pmb->vport; 13399 13400 /* Reset heartbeat timer */ 13401 phba->last_completion_time = jiffies; 13402 del_timer(&phba->sli.mbox_tmo); 13403 13404 /* Move mbox data to caller's mailbox region, do endian swapping */ 13405 if (pmb->mbox_cmpl && mbox) 13406 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13407 13408 /* 13409 * For mcqe errors, conditionally move a modified error code to 13410 * the mbox so that the error will not be missed. 13411 */ 13412 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13413 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13414 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13415 bf_set(lpfc_mqe_status, mqe, 13416 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13417 } 13418 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13419 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13420 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13421 "MBOX dflt rpi: status:x%x rpi:x%x", 13422 mcqe_status, 13423 pmbox->un.varWords[0], 0); 13424 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13425 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13426 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13427 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13428 * RID of the PPI using the same mbox buffer. 13429 */ 13430 lpfc_unreg_login(phba, vport->vpi, 13431 pmbox->un.varWords[0], pmb); 13432 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13433 pmb->ctx_buf = mp; 13434 pmb->ctx_ndlp = ndlp; 13435 pmb->vport = vport; 13436 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13437 if (rc != MBX_BUSY) 13438 lpfc_printf_log(phba, KERN_ERR, 13439 LOG_TRACE_EVENT, 13440 "0385 rc should " 13441 "have been MBX_BUSY\n"); 13442 if (rc != MBX_NOT_FINISHED) 13443 goto send_current_mbox; 13444 } 13445 } 13446 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13447 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13448 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13449 13450 /* There is mailbox completion work to do */ 13451 spin_lock_irqsave(&phba->hbalock, iflags); 13452 __lpfc_mbox_cmpl_put(phba, pmb); 13453 phba->work_ha |= HA_MBATT; 13454 spin_unlock_irqrestore(&phba->hbalock, iflags); 13455 workposted = true; 13456 13457send_current_mbox: 13458 spin_lock_irqsave(&phba->hbalock, iflags); 13459 /* Release the mailbox command posting token */ 13460 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13461 /* Setting active mailbox pointer need to be in sync to flag clear */ 13462 phba->sli.mbox_active = NULL; 13463 if (bf_get(lpfc_trailer_consumed, mcqe)) 13464 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13465 spin_unlock_irqrestore(&phba->hbalock, iflags); 13466 /* Wake up worker thread to post the next pending mailbox command */ 13467 lpfc_worker_wake_up(phba); 13468 return workposted; 13469 13470out_no_mqe_complete: 13471 spin_lock_irqsave(&phba->hbalock, iflags); 13472 if (bf_get(lpfc_trailer_consumed, mcqe)) 13473 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13474 spin_unlock_irqrestore(&phba->hbalock, iflags); 13475 return false; 13476} 13477 13478/** 13479 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13480 * @phba: Pointer to HBA context object. 13481 * @cq: Pointer to associated CQ 13482 * @cqe: Pointer to mailbox completion queue entry. 13483 * 13484 * This routine process a mailbox completion queue entry, it invokes the 13485 * proper mailbox complete handling or asynchronous event handling routine 13486 * according to the MCQE's async bit. 13487 * 13488 * Return: true if work posted to worker thread, otherwise false. 13489 **/ 13490static bool 13491lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13492 struct lpfc_cqe *cqe) 13493{ 13494 struct lpfc_mcqe mcqe; 13495 bool workposted; 13496 13497 cq->CQ_mbox++; 13498 13499 /* Copy the mailbox MCQE and convert endian order as needed */ 13500 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13501 13502 /* Invoke the proper event handling routine */ 13503 if (!bf_get(lpfc_trailer_async, &mcqe)) 13504 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13505 else 13506 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13507 return workposted; 13508} 13509 13510/** 13511 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13512 * @phba: Pointer to HBA context object. 13513 * @cq: Pointer to associated CQ 13514 * @wcqe: Pointer to work-queue completion queue entry. 13515 * 13516 * This routine handles an ELS work-queue completion event. 13517 * 13518 * Return: true if work posted to worker thread, otherwise false. 13519 **/ 13520static bool 13521lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13522 struct lpfc_wcqe_complete *wcqe) 13523{ 13524 struct lpfc_iocbq *irspiocbq; 13525 unsigned long iflags; 13526 struct lpfc_sli_ring *pring = cq->pring; 13527 int txq_cnt = 0; 13528 int txcmplq_cnt = 0; 13529 13530 /* Check for response status */ 13531 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13532 /* Log the error status */ 13533 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13534 "0357 ELS CQE error: status=x%x: " 13535 "CQE: %08x %08x %08x %08x\n", 13536 bf_get(lpfc_wcqe_c_status, wcqe), 13537 wcqe->word0, wcqe->total_data_placed, 13538 wcqe->parameter, wcqe->word3); 13539 } 13540 13541 /* Get an irspiocbq for later ELS response processing use */ 13542 irspiocbq = lpfc_sli_get_iocbq(phba); 13543 if (!irspiocbq) { 13544 if (!list_empty(&pring->txq)) 13545 txq_cnt++; 13546 if (!list_empty(&pring->txcmplq)) 13547 txcmplq_cnt++; 13548 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13549 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13550 "els_txcmplq_cnt=%d\n", 13551 txq_cnt, phba->iocb_cnt, 13552 txcmplq_cnt); 13553 return false; 13554 } 13555 13556 /* Save off the slow-path queue event for work thread to process */ 13557 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13558 spin_lock_irqsave(&phba->hbalock, iflags); 13559 list_add_tail(&irspiocbq->cq_event.list, 13560 &phba->sli4_hba.sp_queue_event); 13561 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13562 spin_unlock_irqrestore(&phba->hbalock, iflags); 13563 13564 return true; 13565} 13566 13567/** 13568 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13569 * @phba: Pointer to HBA context object. 13570 * @wcqe: Pointer to work-queue completion queue entry. 13571 * 13572 * This routine handles slow-path WQ entry consumed event by invoking the 13573 * proper WQ release routine to the slow-path WQ. 13574 **/ 13575static void 13576lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13577 struct lpfc_wcqe_release *wcqe) 13578{ 13579 /* sanity check on queue memory */ 13580 if (unlikely(!phba->sli4_hba.els_wq)) 13581 return; 13582 /* Check for the slow-path ELS work queue */ 13583 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13584 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13585 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13586 else 13587 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13588 "2579 Slow-path wqe consume event carries " 13589 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13590 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13591 phba->sli4_hba.els_wq->queue_id); 13592} 13593 13594/** 13595 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13596 * @phba: Pointer to HBA context object. 13597 * @cq: Pointer to a WQ completion queue. 13598 * @wcqe: Pointer to work-queue completion queue entry. 13599 * 13600 * This routine handles an XRI abort event. 13601 * 13602 * Return: true if work posted to worker thread, otherwise false. 13603 **/ 13604static bool 13605lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13606 struct lpfc_queue *cq, 13607 struct sli4_wcqe_xri_aborted *wcqe) 13608{ 13609 bool workposted = false; 13610 struct lpfc_cq_event *cq_event; 13611 unsigned long iflags; 13612 13613 switch (cq->subtype) { 13614 case LPFC_IO: 13615 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13616 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13617 /* Notify aborted XRI for NVME work queue */ 13618 if (phba->nvmet_support) 13619 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13620 } 13621 workposted = false; 13622 break; 13623 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13624 case LPFC_ELS: 13625 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 13626 if (!cq_event) { 13627 workposted = false; 13628 break; 13629 } 13630 cq_event->hdwq = cq->hdwq; 13631 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13632 iflags); 13633 list_add_tail(&cq_event->list, 13634 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13635 /* Set the els xri abort event flag */ 13636 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13637 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13638 iflags); 13639 workposted = true; 13640 break; 13641 default: 13642 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13643 "0603 Invalid CQ subtype %d: " 13644 "%08x %08x %08x %08x\n", 13645 cq->subtype, wcqe->word0, wcqe->parameter, 13646 wcqe->word2, wcqe->word3); 13647 workposted = false; 13648 break; 13649 } 13650 return workposted; 13651} 13652 13653#define FC_RCTL_MDS_DIAGS 0xF4 13654 13655/** 13656 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13657 * @phba: Pointer to HBA context object. 13658 * @rcqe: Pointer to receive-queue completion queue entry. 13659 * 13660 * This routine process a receive-queue completion queue entry. 13661 * 13662 * Return: true if work posted to worker thread, otherwise false. 13663 **/ 13664static bool 13665lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13666{ 13667 bool workposted = false; 13668 struct fc_frame_header *fc_hdr; 13669 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13670 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13671 struct lpfc_nvmet_tgtport *tgtp; 13672 struct hbq_dmabuf *dma_buf; 13673 uint32_t status, rq_id; 13674 unsigned long iflags; 13675 13676 /* sanity check on queue memory */ 13677 if (unlikely(!hrq) || unlikely(!drq)) 13678 return workposted; 13679 13680 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13681 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13682 else 13683 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13684 if (rq_id != hrq->queue_id) 13685 goto out; 13686 13687 status = bf_get(lpfc_rcqe_status, rcqe); 13688 switch (status) { 13689 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13691 "2537 Receive Frame Truncated!!\n"); 13692 fallthrough; 13693 case FC_STATUS_RQ_SUCCESS: 13694 spin_lock_irqsave(&phba->hbalock, iflags); 13695 lpfc_sli4_rq_release(hrq, drq); 13696 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13697 if (!dma_buf) { 13698 hrq->RQ_no_buf_found++; 13699 spin_unlock_irqrestore(&phba->hbalock, iflags); 13700 goto out; 13701 } 13702 hrq->RQ_rcv_buf++; 13703 hrq->RQ_buf_posted--; 13704 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13705 13706 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13707 13708 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13709 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13710 spin_unlock_irqrestore(&phba->hbalock, iflags); 13711 /* Handle MDS Loopback frames */ 13712 if (!(phba->pport->load_flag & FC_UNLOADING)) 13713 lpfc_sli4_handle_mds_loopback(phba->pport, 13714 dma_buf); 13715 else 13716 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13717 break; 13718 } 13719 13720 /* save off the frame for the work thread to process */ 13721 list_add_tail(&dma_buf->cq_event.list, 13722 &phba->sli4_hba.sp_queue_event); 13723 /* Frame received */ 13724 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13725 spin_unlock_irqrestore(&phba->hbalock, iflags); 13726 workposted = true; 13727 break; 13728 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13729 if (phba->nvmet_support) { 13730 tgtp = phba->targetport->private; 13731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13732 "6402 RQE Error x%x, posted %d err_cnt " 13733 "%d: %x %x %x\n", 13734 status, hrq->RQ_buf_posted, 13735 hrq->RQ_no_posted_buf, 13736 atomic_read(&tgtp->rcv_fcp_cmd_in), 13737 atomic_read(&tgtp->rcv_fcp_cmd_out), 13738 atomic_read(&tgtp->xmt_fcp_release)); 13739 } 13740 fallthrough; 13741 13742 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13743 hrq->RQ_no_posted_buf++; 13744 /* Post more buffers if possible */ 13745 spin_lock_irqsave(&phba->hbalock, iflags); 13746 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13747 spin_unlock_irqrestore(&phba->hbalock, iflags); 13748 workposted = true; 13749 break; 13750 } 13751out: 13752 return workposted; 13753} 13754 13755/** 13756 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13757 * @phba: Pointer to HBA context object. 13758 * @cq: Pointer to the completion queue. 13759 * @cqe: Pointer to a completion queue entry. 13760 * 13761 * This routine process a slow-path work-queue or receive queue completion queue 13762 * entry. 13763 * 13764 * Return: true if work posted to worker thread, otherwise false. 13765 **/ 13766static bool 13767lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13768 struct lpfc_cqe *cqe) 13769{ 13770 struct lpfc_cqe cqevt; 13771 bool workposted = false; 13772 13773 /* Copy the work queue CQE and convert endian order if needed */ 13774 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13775 13776 /* Check and process for different type of WCQE and dispatch */ 13777 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13778 case CQE_CODE_COMPL_WQE: 13779 /* Process the WQ/RQ complete event */ 13780 phba->last_completion_time = jiffies; 13781 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13782 (struct lpfc_wcqe_complete *)&cqevt); 13783 break; 13784 case CQE_CODE_RELEASE_WQE: 13785 /* Process the WQ release event */ 13786 lpfc_sli4_sp_handle_rel_wcqe(phba, 13787 (struct lpfc_wcqe_release *)&cqevt); 13788 break; 13789 case CQE_CODE_XRI_ABORTED: 13790 /* Process the WQ XRI abort event */ 13791 phba->last_completion_time = jiffies; 13792 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13793 (struct sli4_wcqe_xri_aborted *)&cqevt); 13794 break; 13795 case CQE_CODE_RECEIVE: 13796 case CQE_CODE_RECEIVE_V1: 13797 /* Process the RQ event */ 13798 phba->last_completion_time = jiffies; 13799 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13800 (struct lpfc_rcqe *)&cqevt); 13801 break; 13802 default: 13803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13804 "0388 Not a valid WCQE code: x%x\n", 13805 bf_get(lpfc_cqe_code, &cqevt)); 13806 break; 13807 } 13808 return workposted; 13809} 13810 13811/** 13812 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13813 * @phba: Pointer to HBA context object. 13814 * @eqe: Pointer to fast-path event queue entry. 13815 * @speq: Pointer to slow-path event queue. 13816 * 13817 * This routine process a event queue entry from the slow-path event queue. 13818 * It will check the MajorCode and MinorCode to determine this is for a 13819 * completion event on a completion queue, if not, an error shall be logged 13820 * and just return. Otherwise, it will get to the corresponding completion 13821 * queue and process all the entries on that completion queue, rearm the 13822 * completion queue, and then return. 13823 * 13824 **/ 13825static void 13826lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13827 struct lpfc_queue *speq) 13828{ 13829 struct lpfc_queue *cq = NULL, *childq; 13830 uint16_t cqid; 13831 int ret = 0; 13832 13833 /* Get the reference to the corresponding CQ */ 13834 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13835 13836 list_for_each_entry(childq, &speq->child_list, list) { 13837 if (childq->queue_id == cqid) { 13838 cq = childq; 13839 break; 13840 } 13841 } 13842 if (unlikely(!cq)) { 13843 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13844 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13845 "0365 Slow-path CQ identifier " 13846 "(%d) does not exist\n", cqid); 13847 return; 13848 } 13849 13850 /* Save EQ associated with this CQ */ 13851 cq->assoc_qp = speq; 13852 13853 if (is_kdump_kernel()) 13854 ret = queue_work(phba->wq, &cq->spwork); 13855 else 13856 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 13857 13858 if (!ret) 13859 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13860 "0390 Cannot schedule queue work " 13861 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13862 cqid, cq->queue_id, raw_smp_processor_id()); 13863} 13864 13865/** 13866 * __lpfc_sli4_process_cq - Process elements of a CQ 13867 * @phba: Pointer to HBA context object. 13868 * @cq: Pointer to CQ to be processed 13869 * @handler: Routine to process each cqe 13870 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 13871 * @poll_mode: Polling mode we were called from 13872 * 13873 * This routine processes completion queue entries in a CQ. While a valid 13874 * queue element is found, the handler is called. During processing checks 13875 * are made for periodic doorbell writes to let the hardware know of 13876 * element consumption. 13877 * 13878 * If the max limit on cqes to process is hit, or there are no more valid 13879 * entries, the loop stops. If we processed a sufficient number of elements, 13880 * meaning there is sufficient load, rather than rearming and generating 13881 * another interrupt, a cq rescheduling delay will be set. A delay of 0 13882 * indicates no rescheduling. 13883 * 13884 * Returns True if work scheduled, False otherwise. 13885 **/ 13886static bool 13887__lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 13888 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 13889 struct lpfc_cqe *), unsigned long *delay, 13890 enum lpfc_poll_mode poll_mode) 13891{ 13892 struct lpfc_cqe *cqe; 13893 bool workposted = false; 13894 int count = 0, consumed = 0; 13895 bool arm = true; 13896 13897 /* default - no reschedule */ 13898 *delay = 0; 13899 13900 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 13901 goto rearm_and_exit; 13902 13903 /* Process all the entries to the CQ */ 13904 cq->q_flag = 0; 13905 cqe = lpfc_sli4_cq_get(cq); 13906 while (cqe) { 13907 workposted |= handler(phba, cq, cqe); 13908 __lpfc_sli4_consume_cqe(phba, cq, cqe); 13909 13910 consumed++; 13911 if (!(++count % cq->max_proc_limit)) 13912 break; 13913 13914 if (!(count % cq->notify_interval)) { 13915 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13916 LPFC_QUEUE_NOARM); 13917 consumed = 0; 13918 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 13919 } 13920 13921 if (count == LPFC_NVMET_CQ_NOTIFY) 13922 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 13923 13924 cqe = lpfc_sli4_cq_get(cq); 13925 } 13926 if (count >= phba->cfg_cq_poll_threshold) { 13927 *delay = 1; 13928 arm = false; 13929 } 13930 13931 /* Note: complete the irq_poll softirq before rearming CQ */ 13932 if (poll_mode == LPFC_IRQ_POLL) 13933 irq_poll_complete(&cq->iop); 13934 13935 /* Track the max number of CQEs processed in 1 EQ */ 13936 if (count > cq->CQ_max_cqe) 13937 cq->CQ_max_cqe = count; 13938 13939 cq->assoc_qp->EQ_cqe_cnt += count; 13940 13941 /* Catch the no cq entry condition */ 13942 if (unlikely(count == 0)) 13943 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13944 "0369 No entry from completion queue " 13945 "qid=%d\n", cq->queue_id); 13946 13947 xchg(&cq->queue_claimed, 0); 13948 13949rearm_and_exit: 13950 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13951 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 13952 13953 return workposted; 13954} 13955 13956/** 13957 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13958 * @cq: pointer to CQ to process 13959 * 13960 * This routine calls the cq processing routine with a handler specific 13961 * to the type of queue bound to it. 13962 * 13963 * The CQ routine returns two values: the first is the calling status, 13964 * which indicates whether work was queued to the background discovery 13965 * thread. If true, the routine should wakeup the discovery thread; 13966 * the second is the delay parameter. If non-zero, rather than rearming 13967 * the CQ and yet another interrupt, the CQ handler should be queued so 13968 * that it is processed in a subsequent polling action. The value of 13969 * the delay indicates when to reschedule it. 13970 **/ 13971static void 13972__lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 13973{ 13974 struct lpfc_hba *phba = cq->phba; 13975 unsigned long delay; 13976 bool workposted = false; 13977 int ret = 0; 13978 13979 /* Process and rearm the CQ */ 13980 switch (cq->type) { 13981 case LPFC_MCQ: 13982 workposted |= __lpfc_sli4_process_cq(phba, cq, 13983 lpfc_sli4_sp_handle_mcqe, 13984 &delay, LPFC_QUEUE_WORK); 13985 break; 13986 case LPFC_WCQ: 13987 if (cq->subtype == LPFC_IO) 13988 workposted |= __lpfc_sli4_process_cq(phba, cq, 13989 lpfc_sli4_fp_handle_cqe, 13990 &delay, LPFC_QUEUE_WORK); 13991 else 13992 workposted |= __lpfc_sli4_process_cq(phba, cq, 13993 lpfc_sli4_sp_handle_cqe, 13994 &delay, LPFC_QUEUE_WORK); 13995 break; 13996 default: 13997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13998 "0370 Invalid completion queue type (%d)\n", 13999 cq->type); 14000 return; 14001 } 14002 14003 if (delay) { 14004 if (is_kdump_kernel()) 14005 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14006 delay); 14007 else 14008 ret = queue_delayed_work_on(cq->chann, phba->wq, 14009 &cq->sched_spwork, delay); 14010 if (!ret) 14011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14012 "0394 Cannot schedule queue work " 14013 "for cqid=%d on CPU %d\n", 14014 cq->queue_id, cq->chann); 14015 } 14016 14017 /* wake up worker thread if there are works to be done */ 14018 if (workposted) 14019 lpfc_worker_wake_up(phba); 14020} 14021 14022/** 14023 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14024 * interrupt 14025 * @work: pointer to work element 14026 * 14027 * translates from the work handler and calls the slow-path handler. 14028 **/ 14029static void 14030lpfc_sli4_sp_process_cq(struct work_struct *work) 14031{ 14032 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14033 14034 __lpfc_sli4_sp_process_cq(cq); 14035} 14036 14037/** 14038 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14039 * @work: pointer to work element 14040 * 14041 * translates from the work handler and calls the slow-path handler. 14042 **/ 14043static void 14044lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14045{ 14046 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14047 struct lpfc_queue, sched_spwork); 14048 14049 __lpfc_sli4_sp_process_cq(cq); 14050} 14051 14052/** 14053 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14054 * @phba: Pointer to HBA context object. 14055 * @cq: Pointer to associated CQ 14056 * @wcqe: Pointer to work-queue completion queue entry. 14057 * 14058 * This routine process a fast-path work queue completion entry from fast-path 14059 * event queue for FCP command response completion. 14060 **/ 14061static void 14062lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14063 struct lpfc_wcqe_complete *wcqe) 14064{ 14065 struct lpfc_sli_ring *pring = cq->pring; 14066 struct lpfc_iocbq *cmdiocbq; 14067 struct lpfc_iocbq irspiocbq; 14068 unsigned long iflags; 14069 14070 /* Check for response status */ 14071 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14072 /* If resource errors reported from HBA, reduce queue 14073 * depth of the SCSI device. 14074 */ 14075 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14076 IOSTAT_LOCAL_REJECT)) && 14077 ((wcqe->parameter & IOERR_PARAM_MASK) == 14078 IOERR_NO_RESOURCES)) 14079 phba->lpfc_rampdown_queue_depth(phba); 14080 14081 /* Log the cmpl status */ 14082 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14083 "0373 FCP CQE cmpl: status=x%x: " 14084 "CQE: %08x %08x %08x %08x\n", 14085 bf_get(lpfc_wcqe_c_status, wcqe), 14086 wcqe->word0, wcqe->total_data_placed, 14087 wcqe->parameter, wcqe->word3); 14088 } 14089 14090 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14091 spin_lock_irqsave(&pring->ring_lock, iflags); 14092 pring->stats.iocb_event++; 14093 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14094 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14095 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14096 if (unlikely(!cmdiocbq)) { 14097 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14098 "0374 FCP complete with no corresponding " 14099 "cmdiocb: iotag (%d)\n", 14100 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14101 return; 14102 } 14103#ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14104 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14105#endif 14106 if (cmdiocbq->iocb_cmpl == NULL) { 14107 if (cmdiocbq->wqe_cmpl) { 14108 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14109 spin_lock_irqsave(&phba->hbalock, iflags); 14110 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14111 spin_unlock_irqrestore(&phba->hbalock, iflags); 14112 } 14113 14114 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14115 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14116 return; 14117 } 14118 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14119 "0375 FCP cmdiocb not callback function " 14120 "iotag: (%d)\n", 14121 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14122 return; 14123 } 14124 14125 /* Fake the irspiocb and copy necessary response information */ 14126 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14127 14128 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14129 spin_lock_irqsave(&phba->hbalock, iflags); 14130 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14131 spin_unlock_irqrestore(&phba->hbalock, iflags); 14132 } 14133 14134 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14135 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14136} 14137 14138/** 14139 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14140 * @phba: Pointer to HBA context object. 14141 * @cq: Pointer to completion queue. 14142 * @wcqe: Pointer to work-queue completion queue entry. 14143 * 14144 * This routine handles an fast-path WQ entry consumed event by invoking the 14145 * proper WQ release routine to the slow-path WQ. 14146 **/ 14147static void 14148lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14149 struct lpfc_wcqe_release *wcqe) 14150{ 14151 struct lpfc_queue *childwq; 14152 bool wqid_matched = false; 14153 uint16_t hba_wqid; 14154 14155 /* Check for fast-path FCP work queue release */ 14156 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14157 list_for_each_entry(childwq, &cq->child_list, list) { 14158 if (childwq->queue_id == hba_wqid) { 14159 lpfc_sli4_wq_release(childwq, 14160 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14161 if (childwq->q_flag & HBA_NVMET_WQFULL) 14162 lpfc_nvmet_wqfull_process(phba, childwq); 14163 wqid_matched = true; 14164 break; 14165 } 14166 } 14167 /* Report warning log message if no match found */ 14168 if (wqid_matched != true) 14169 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14170 "2580 Fast-path wqe consume event carries " 14171 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14172} 14173 14174/** 14175 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14176 * @phba: Pointer to HBA context object. 14177 * @cq: Pointer to completion queue. 14178 * @rcqe: Pointer to receive-queue completion queue entry. 14179 * 14180 * This routine process a receive-queue completion queue entry. 14181 * 14182 * Return: true if work posted to worker thread, otherwise false. 14183 **/ 14184static bool 14185lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14186 struct lpfc_rcqe *rcqe) 14187{ 14188 bool workposted = false; 14189 struct lpfc_queue *hrq; 14190 struct lpfc_queue *drq; 14191 struct rqb_dmabuf *dma_buf; 14192 struct fc_frame_header *fc_hdr; 14193 struct lpfc_nvmet_tgtport *tgtp; 14194 uint32_t status, rq_id; 14195 unsigned long iflags; 14196 uint32_t fctl, idx; 14197 14198 if ((phba->nvmet_support == 0) || 14199 (phba->sli4_hba.nvmet_cqset == NULL)) 14200 return workposted; 14201 14202 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14203 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14204 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14205 14206 /* sanity check on queue memory */ 14207 if (unlikely(!hrq) || unlikely(!drq)) 14208 return workposted; 14209 14210 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14211 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14212 else 14213 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14214 14215 if ((phba->nvmet_support == 0) || 14216 (rq_id != hrq->queue_id)) 14217 return workposted; 14218 14219 status = bf_get(lpfc_rcqe_status, rcqe); 14220 switch (status) { 14221 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14223 "6126 Receive Frame Truncated!!\n"); 14224 fallthrough; 14225 case FC_STATUS_RQ_SUCCESS: 14226 spin_lock_irqsave(&phba->hbalock, iflags); 14227 lpfc_sli4_rq_release(hrq, drq); 14228 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14229 if (!dma_buf) { 14230 hrq->RQ_no_buf_found++; 14231 spin_unlock_irqrestore(&phba->hbalock, iflags); 14232 goto out; 14233 } 14234 spin_unlock_irqrestore(&phba->hbalock, iflags); 14235 hrq->RQ_rcv_buf++; 14236 hrq->RQ_buf_posted--; 14237 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14238 14239 /* Just some basic sanity checks on FCP Command frame */ 14240 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14241 fc_hdr->fh_f_ctl[1] << 8 | 14242 fc_hdr->fh_f_ctl[2]); 14243 if (((fctl & 14244 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14245 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14246 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14247 goto drop; 14248 14249 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14250 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14251 lpfc_nvmet_unsol_fcp_event( 14252 phba, idx, dma_buf, cq->isr_timestamp, 14253 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14254 return false; 14255 } 14256drop: 14257 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14258 break; 14259 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14260 if (phba->nvmet_support) { 14261 tgtp = phba->targetport->private; 14262 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14263 "6401 RQE Error x%x, posted %d err_cnt " 14264 "%d: %x %x %x\n", 14265 status, hrq->RQ_buf_posted, 14266 hrq->RQ_no_posted_buf, 14267 atomic_read(&tgtp->rcv_fcp_cmd_in), 14268 atomic_read(&tgtp->rcv_fcp_cmd_out), 14269 atomic_read(&tgtp->xmt_fcp_release)); 14270 } 14271 fallthrough; 14272 14273 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14274 hrq->RQ_no_posted_buf++; 14275 /* Post more buffers if possible */ 14276 break; 14277 } 14278out: 14279 return workposted; 14280} 14281 14282/** 14283 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14284 * @phba: adapter with cq 14285 * @cq: Pointer to the completion queue. 14286 * @cqe: Pointer to fast-path completion queue entry. 14287 * 14288 * This routine process a fast-path work queue completion entry from fast-path 14289 * event queue for FCP command response completion. 14290 * 14291 * Return: true if work posted to worker thread, otherwise false. 14292 **/ 14293static bool 14294lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14295 struct lpfc_cqe *cqe) 14296{ 14297 struct lpfc_wcqe_release wcqe; 14298 bool workposted = false; 14299 14300 /* Copy the work queue CQE and convert endian order if needed */ 14301 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14302 14303 /* Check and process for different type of WCQE and dispatch */ 14304 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14305 case CQE_CODE_COMPL_WQE: 14306 case CQE_CODE_NVME_ERSP: 14307 cq->CQ_wq++; 14308 /* Process the WQ complete event */ 14309 phba->last_completion_time = jiffies; 14310 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14311 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14312 (struct lpfc_wcqe_complete *)&wcqe); 14313 break; 14314 case CQE_CODE_RELEASE_WQE: 14315 cq->CQ_release_wqe++; 14316 /* Process the WQ release event */ 14317 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14318 (struct lpfc_wcqe_release *)&wcqe); 14319 break; 14320 case CQE_CODE_XRI_ABORTED: 14321 cq->CQ_xri_aborted++; 14322 /* Process the WQ XRI abort event */ 14323 phba->last_completion_time = jiffies; 14324 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14325 (struct sli4_wcqe_xri_aborted *)&wcqe); 14326 break; 14327 case CQE_CODE_RECEIVE_V1: 14328 case CQE_CODE_RECEIVE: 14329 phba->last_completion_time = jiffies; 14330 if (cq->subtype == LPFC_NVMET) { 14331 workposted = lpfc_sli4_nvmet_handle_rcqe( 14332 phba, cq, (struct lpfc_rcqe *)&wcqe); 14333 } 14334 break; 14335 default: 14336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14337 "0144 Not a valid CQE code: x%x\n", 14338 bf_get(lpfc_wcqe_c_code, &wcqe)); 14339 break; 14340 } 14341 return workposted; 14342} 14343 14344/** 14345 * lpfc_sli4_sched_cq_work - Schedules cq work 14346 * @phba: Pointer to HBA context object. 14347 * @cq: Pointer to CQ 14348 * @cqid: CQ ID 14349 * 14350 * This routine checks the poll mode of the CQ corresponding to 14351 * cq->chann, then either schedules a softirq or queue_work to complete 14352 * cq work. 14353 * 14354 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14355 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14356 * 14357 **/ 14358static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14359 struct lpfc_queue *cq, uint16_t cqid) 14360{ 14361 int ret = 0; 14362 14363 switch (cq->poll_mode) { 14364 case LPFC_IRQ_POLL: 14365 irq_poll_sched(&cq->iop); 14366 break; 14367 case LPFC_QUEUE_WORK: 14368 default: 14369 if (is_kdump_kernel()) 14370 ret = queue_work(phba->wq, &cq->irqwork); 14371 else 14372 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14373 if (!ret) 14374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14375 "0383 Cannot schedule queue work " 14376 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14377 cqid, cq->queue_id, 14378 raw_smp_processor_id()); 14379 } 14380} 14381 14382/** 14383 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14384 * @phba: Pointer to HBA context object. 14385 * @eq: Pointer to the queue structure. 14386 * @eqe: Pointer to fast-path event queue entry. 14387 * 14388 * This routine process a event queue entry from the fast-path event queue. 14389 * It will check the MajorCode and MinorCode to determine this is for a 14390 * completion event on a completion queue, if not, an error shall be logged 14391 * and just return. Otherwise, it will get to the corresponding completion 14392 * queue and process all the entries on the completion queue, rearm the 14393 * completion queue, and then return. 14394 **/ 14395static void 14396lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14397 struct lpfc_eqe *eqe) 14398{ 14399 struct lpfc_queue *cq = NULL; 14400 uint32_t qidx = eq->hdwq; 14401 uint16_t cqid, id; 14402 14403 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14405 "0366 Not a valid completion " 14406 "event: majorcode=x%x, minorcode=x%x\n", 14407 bf_get_le32(lpfc_eqe_major_code, eqe), 14408 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14409 return; 14410 } 14411 14412 /* Get the reference to the corresponding CQ */ 14413 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14414 14415 /* Use the fast lookup method first */ 14416 if (cqid <= phba->sli4_hba.cq_max) { 14417 cq = phba->sli4_hba.cq_lookup[cqid]; 14418 if (cq) 14419 goto work_cq; 14420 } 14421 14422 /* Next check for NVMET completion */ 14423 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14424 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14425 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14426 /* Process NVMET unsol rcv */ 14427 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14428 goto process_cq; 14429 } 14430 } 14431 14432 if (phba->sli4_hba.nvmels_cq && 14433 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14434 /* Process NVME unsol rcv */ 14435 cq = phba->sli4_hba.nvmels_cq; 14436 } 14437 14438 /* Otherwise this is a Slow path event */ 14439 if (cq == NULL) { 14440 lpfc_sli4_sp_handle_eqe(phba, eqe, 14441 phba->sli4_hba.hdwq[qidx].hba_eq); 14442 return; 14443 } 14444 14445process_cq: 14446 if (unlikely(cqid != cq->queue_id)) { 14447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14448 "0368 Miss-matched fast-path completion " 14449 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14450 cqid, cq->queue_id); 14451 return; 14452 } 14453 14454work_cq: 14455#if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14456 if (phba->ktime_on) 14457 cq->isr_timestamp = ktime_get_ns(); 14458 else 14459 cq->isr_timestamp = 0; 14460#endif 14461 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14462} 14463 14464/** 14465 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14466 * @cq: Pointer to CQ to be processed 14467 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14468 * 14469 * This routine calls the cq processing routine with the handler for 14470 * fast path CQEs. 14471 * 14472 * The CQ routine returns two values: the first is the calling status, 14473 * which indicates whether work was queued to the background discovery 14474 * thread. If true, the routine should wakeup the discovery thread; 14475 * the second is the delay parameter. If non-zero, rather than rearming 14476 * the CQ and yet another interrupt, the CQ handler should be queued so 14477 * that it is processed in a subsequent polling action. The value of 14478 * the delay indicates when to reschedule it. 14479 **/ 14480static void 14481__lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14482 enum lpfc_poll_mode poll_mode) 14483{ 14484 struct lpfc_hba *phba = cq->phba; 14485 unsigned long delay; 14486 bool workposted = false; 14487 int ret = 0; 14488 14489 /* process and rearm the CQ */ 14490 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14491 &delay, poll_mode); 14492 14493 if (delay) { 14494 if (is_kdump_kernel()) 14495 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14496 delay); 14497 else 14498 ret = queue_delayed_work_on(cq->chann, phba->wq, 14499 &cq->sched_irqwork, delay); 14500 if (!ret) 14501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14502 "0367 Cannot schedule queue work " 14503 "for cqid=%d on CPU %d\n", 14504 cq->queue_id, cq->chann); 14505 } 14506 14507 /* wake up worker thread if there are works to be done */ 14508 if (workposted) 14509 lpfc_worker_wake_up(phba); 14510} 14511 14512/** 14513 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14514 * interrupt 14515 * @work: pointer to work element 14516 * 14517 * translates from the work handler and calls the fast-path handler. 14518 **/ 14519static void 14520lpfc_sli4_hba_process_cq(struct work_struct *work) 14521{ 14522 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14523 14524 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14525} 14526 14527/** 14528 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer 14529 * @work: pointer to work element 14530 * 14531 * translates from the work handler and calls the fast-path handler. 14532 **/ 14533static void 14534lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14535{ 14536 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14537 struct lpfc_queue, sched_irqwork); 14538 14539 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14540} 14541 14542/** 14543 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14544 * @irq: Interrupt number. 14545 * @dev_id: The device context pointer. 14546 * 14547 * This function is directly called from the PCI layer as an interrupt 14548 * service routine when device with SLI-4 interface spec is enabled with 14549 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14550 * ring event in the HBA. However, when the device is enabled with either 14551 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14552 * device-level interrupt handler. When the PCI slot is in error recovery 14553 * or the HBA is undergoing initialization, the interrupt handler will not 14554 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14555 * the intrrupt context. This function is called without any lock held. 14556 * It gets the hbalock to access and update SLI data structures. Note that, 14557 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14558 * equal to that of FCP CQ index. 14559 * 14560 * The link attention and ELS ring attention events are handled 14561 * by the worker thread. The interrupt handler signals the worker thread 14562 * and returns for these events. This function is called without any lock 14563 * held. It gets the hbalock to access and update SLI data structures. 14564 * 14565 * This function returns IRQ_HANDLED when interrupt is handled else it 14566 * returns IRQ_NONE. 14567 **/ 14568irqreturn_t 14569lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14570{ 14571 struct lpfc_hba *phba; 14572 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14573 struct lpfc_queue *fpeq; 14574 unsigned long iflag; 14575 int ecount = 0; 14576 int hba_eqidx; 14577 struct lpfc_eq_intr_info *eqi; 14578 14579 /* Get the driver's phba structure from the dev_id */ 14580 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14581 phba = hba_eq_hdl->phba; 14582 hba_eqidx = hba_eq_hdl->idx; 14583 14584 if (unlikely(!phba)) 14585 return IRQ_NONE; 14586 if (unlikely(!phba->sli4_hba.hdwq)) 14587 return IRQ_NONE; 14588 14589 /* Get to the EQ struct associated with this vector */ 14590 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14591 if (unlikely(!fpeq)) 14592 return IRQ_NONE; 14593 14594 /* Check device state for handling interrupt */ 14595 if (unlikely(lpfc_intr_state_check(phba))) { 14596 /* Check again for link_state with lock held */ 14597 spin_lock_irqsave(&phba->hbalock, iflag); 14598 if (phba->link_state < LPFC_LINK_DOWN) 14599 /* Flush, clear interrupt, and rearm the EQ */ 14600 lpfc_sli4_eqcq_flush(phba, fpeq); 14601 spin_unlock_irqrestore(&phba->hbalock, iflag); 14602 return IRQ_NONE; 14603 } 14604 14605 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14606 eqi->icnt++; 14607 14608 fpeq->last_cpu = raw_smp_processor_id(); 14609 14610 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14611 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14612 phba->cfg_auto_imax && 14613 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14614 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14615 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14616 14617 /* process and rearm the EQ */ 14618 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14619 14620 if (unlikely(ecount == 0)) { 14621 fpeq->EQ_no_entry++; 14622 if (phba->intr_type == MSIX) 14623 /* MSI-X treated interrupt served as no EQ share INT */ 14624 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14625 "0358 MSI-X interrupt with no EQE\n"); 14626 else 14627 /* Non MSI-X treated on interrupt as EQ share INT */ 14628 return IRQ_NONE; 14629 } 14630 14631 return IRQ_HANDLED; 14632} /* lpfc_sli4_fp_intr_handler */ 14633 14634/** 14635 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14636 * @irq: Interrupt number. 14637 * @dev_id: The device context pointer. 14638 * 14639 * This function is the device-level interrupt handler to device with SLI-4 14640 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14641 * interrupt mode is enabled and there is an event in the HBA which requires 14642 * driver attention. This function invokes the slow-path interrupt attention 14643 * handling function and fast-path interrupt attention handling function in 14644 * turn to process the relevant HBA attention events. This function is called 14645 * without any lock held. It gets the hbalock to access and update SLI data 14646 * structures. 14647 * 14648 * This function returns IRQ_HANDLED when interrupt is handled, else it 14649 * returns IRQ_NONE. 14650 **/ 14651irqreturn_t 14652lpfc_sli4_intr_handler(int irq, void *dev_id) 14653{ 14654 struct lpfc_hba *phba; 14655 irqreturn_t hba_irq_rc; 14656 bool hba_handled = false; 14657 int qidx; 14658 14659 /* Get the driver's phba structure from the dev_id */ 14660 phba = (struct lpfc_hba *)dev_id; 14661 14662 if (unlikely(!phba)) 14663 return IRQ_NONE; 14664 14665 /* 14666 * Invoke fast-path host attention interrupt handling as appropriate. 14667 */ 14668 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14669 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14670 &phba->sli4_hba.hba_eq_hdl[qidx]); 14671 if (hba_irq_rc == IRQ_HANDLED) 14672 hba_handled |= true; 14673 } 14674 14675 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14676} /* lpfc_sli4_intr_handler */ 14677 14678void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14679{ 14680 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14681 struct lpfc_queue *eq; 14682 int i = 0; 14683 14684 rcu_read_lock(); 14685 14686 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14687 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14688 if (!list_empty(&phba->poll_list)) 14689 mod_timer(&phba->cpuhp_poll_timer, 14690 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14691 14692 rcu_read_unlock(); 14693} 14694 14695inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14696{ 14697 struct lpfc_hba *phba = eq->phba; 14698 int i = 0; 14699 14700 /* 14701 * Unlocking an irq is one of the entry point to check 14702 * for re-schedule, but we are good for io submission 14703 * path as midlayer does a get_cpu to glue us in. Flush 14704 * out the invalidate queue so we can see the updated 14705 * value for flag. 14706 */ 14707 smp_rmb(); 14708 14709 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14710 /* We will not likely get the completion for the caller 14711 * during this iteration but i guess that's fine. 14712 * Future io's coming on this eq should be able to 14713 * pick it up. As for the case of single io's, they 14714 * will be handled through a sched from polling timer 14715 * function which is currently triggered every 1msec. 14716 */ 14717 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14718 14719 return i; 14720} 14721 14722static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14723{ 14724 struct lpfc_hba *phba = eq->phba; 14725 14726 /* kickstart slowpath processing if needed */ 14727 if (list_empty(&phba->poll_list)) 14728 mod_timer(&phba->cpuhp_poll_timer, 14729 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14730 14731 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14732 synchronize_rcu(); 14733} 14734 14735static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14736{ 14737 struct lpfc_hba *phba = eq->phba; 14738 14739 /* Disable slowpath processing for this eq. Kick start the eq 14740 * by RE-ARMING the eq's ASAP 14741 */ 14742 list_del_rcu(&eq->_poll_list); 14743 synchronize_rcu(); 14744 14745 if (list_empty(&phba->poll_list)) 14746 del_timer_sync(&phba->cpuhp_poll_timer); 14747} 14748 14749void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14750{ 14751 struct lpfc_queue *eq, *next; 14752 14753 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14754 list_del(&eq->_poll_list); 14755 14756 INIT_LIST_HEAD(&phba->poll_list); 14757 synchronize_rcu(); 14758} 14759 14760static inline void 14761__lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14762{ 14763 if (mode == eq->mode) 14764 return; 14765 /* 14766 * currently this function is only called during a hotplug 14767 * event and the cpu on which this function is executing 14768 * is going offline. By now the hotplug has instructed 14769 * the scheduler to remove this cpu from cpu active mask. 14770 * So we don't need to work about being put aside by the 14771 * scheduler for a high priority process. Yes, the inte- 14772 * rrupts could come but they are known to retire ASAP. 14773 */ 14774 14775 /* Disable polling in the fastpath */ 14776 WRITE_ONCE(eq->mode, mode); 14777 /* flush out the store buffer */ 14778 smp_wmb(); 14779 14780 /* 14781 * Add this eq to the polling list and start polling. For 14782 * a grace period both interrupt handler and poller will 14783 * try to process the eq _but_ that's fine. We have a 14784 * synchronization mechanism in place (queue_claimed) to 14785 * deal with it. This is just a draining phase for int- 14786 * errupt handler (not eq's) as we have guranteed through 14787 * barrier that all the CPUs have seen the new CQ_POLLED 14788 * state. which will effectively disable the REARMING of 14789 * the EQ. The whole idea is eq's die off eventually as 14790 * we are not rearming EQ's anymore. 14791 */ 14792 mode ? lpfc_sli4_add_to_poll_list(eq) : 14793 lpfc_sli4_remove_from_poll_list(eq); 14794} 14795 14796void lpfc_sli4_start_polling(struct lpfc_queue *eq) 14797{ 14798 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 14799} 14800 14801void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 14802{ 14803 struct lpfc_hba *phba = eq->phba; 14804 14805 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 14806 14807 /* Kick start for the pending io's in h/w. 14808 * Once we switch back to interrupt processing on a eq 14809 * the io path completion will only arm eq's when it 14810 * receives a completion. But since eq's are in disa- 14811 * rmed state it doesn't receive a completion. This 14812 * creates a deadlock scenaro. 14813 */ 14814 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 14815} 14816 14817/** 14818 * lpfc_sli4_queue_free - free a queue structure and associated memory 14819 * @queue: The queue structure to free. 14820 * 14821 * This function frees a queue structure and the DMAable memory used for 14822 * the host resident queue. This function must be called after destroying the 14823 * queue on the HBA. 14824 **/ 14825void 14826lpfc_sli4_queue_free(struct lpfc_queue *queue) 14827{ 14828 struct lpfc_dmabuf *dmabuf; 14829 14830 if (!queue) 14831 return; 14832 14833 if (!list_empty(&queue->wq_list)) 14834 list_del(&queue->wq_list); 14835 14836 while (!list_empty(&queue->page_list)) { 14837 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14838 list); 14839 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14840 dmabuf->virt, dmabuf->phys); 14841 kfree(dmabuf); 14842 } 14843 if (queue->rqbp) { 14844 lpfc_free_rq_buffer(queue->phba, queue); 14845 kfree(queue->rqbp); 14846 } 14847 14848 if (!list_empty(&queue->cpu_list)) 14849 list_del(&queue->cpu_list); 14850 14851 kfree(queue); 14852 return; 14853} 14854 14855/** 14856 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14857 * @phba: The HBA that this queue is being created on. 14858 * @page_size: The size of a queue page 14859 * @entry_size: The size of each queue entry for this queue. 14860 * @entry_count: The number of entries that this queue will handle. 14861 * @cpu: The cpu that will primarily utilize this queue. 14862 * 14863 * This function allocates a queue structure and the DMAable memory used for 14864 * the host resident queue. This function must be called before creating the 14865 * queue on the HBA. 14866 **/ 14867struct lpfc_queue * 14868lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14869 uint32_t entry_size, uint32_t entry_count, int cpu) 14870{ 14871 struct lpfc_queue *queue; 14872 struct lpfc_dmabuf *dmabuf; 14873 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14874 uint16_t x, pgcnt; 14875 14876 if (!phba->sli4_hba.pc_sli4_params.supported) 14877 hw_page_size = page_size; 14878 14879 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 14880 14881 /* If needed, Adjust page count to match the max the adapter supports */ 14882 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 14883 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 14884 14885 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 14886 GFP_KERNEL, cpu_to_node(cpu)); 14887 if (!queue) 14888 return NULL; 14889 14890 INIT_LIST_HEAD(&queue->list); 14891 INIT_LIST_HEAD(&queue->_poll_list); 14892 INIT_LIST_HEAD(&queue->wq_list); 14893 INIT_LIST_HEAD(&queue->wqfull_list); 14894 INIT_LIST_HEAD(&queue->page_list); 14895 INIT_LIST_HEAD(&queue->child_list); 14896 INIT_LIST_HEAD(&queue->cpu_list); 14897 14898 /* Set queue parameters now. If the system cannot provide memory 14899 * resources, the free routine needs to know what was allocated. 14900 */ 14901 queue->page_count = pgcnt; 14902 queue->q_pgs = (void **)&queue[1]; 14903 queue->entry_cnt_per_pg = hw_page_size / entry_size; 14904 queue->entry_size = entry_size; 14905 queue->entry_count = entry_count; 14906 queue->page_size = hw_page_size; 14907 queue->phba = phba; 14908 14909 for (x = 0; x < queue->page_count; x++) { 14910 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 14911 dev_to_node(&phba->pcidev->dev)); 14912 if (!dmabuf) 14913 goto out_fail; 14914 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14915 hw_page_size, &dmabuf->phys, 14916 GFP_KERNEL); 14917 if (!dmabuf->virt) { 14918 kfree(dmabuf); 14919 goto out_fail; 14920 } 14921 dmabuf->buffer_tag = x; 14922 list_add_tail(&dmabuf->list, &queue->page_list); 14923 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 14924 queue->q_pgs[x] = dmabuf->virt; 14925 } 14926 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14927 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14928 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 14929 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 14930 14931 /* notify_interval will be set during q creation */ 14932 14933 return queue; 14934out_fail: 14935 lpfc_sli4_queue_free(queue); 14936 return NULL; 14937} 14938 14939/** 14940 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14941 * @phba: HBA structure that indicates port to create a queue on. 14942 * @pci_barset: PCI BAR set flag. 14943 * 14944 * This function shall perform iomap of the specified PCI BAR address to host 14945 * memory address if not already done so and return it. The returned host 14946 * memory address can be NULL. 14947 */ 14948static void __iomem * 14949lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14950{ 14951 if (!phba->pcidev) 14952 return NULL; 14953 14954 switch (pci_barset) { 14955 case WQ_PCI_BAR_0_AND_1: 14956 return phba->pci_bar0_memmap_p; 14957 case WQ_PCI_BAR_2_AND_3: 14958 return phba->pci_bar2_memmap_p; 14959 case WQ_PCI_BAR_4_AND_5: 14960 return phba->pci_bar4_memmap_p; 14961 default: 14962 break; 14963 } 14964 return NULL; 14965} 14966 14967/** 14968 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 14969 * @phba: HBA structure that EQs are on. 14970 * @startq: The starting EQ index to modify 14971 * @numq: The number of EQs (consecutive indexes) to modify 14972 * @usdelay: amount of delay 14973 * 14974 * This function revises the EQ delay on 1 or more EQs. The EQ delay 14975 * is set either by writing to a register (if supported by the SLI Port) 14976 * or by mailbox command. The mailbox command allows several EQs to be 14977 * updated at once. 14978 * 14979 * The @phba struct is used to send a mailbox command to HBA. The @startq 14980 * is used to get the starting EQ index to change. The @numq value is 14981 * used to specify how many consecutive EQ indexes, starting at EQ index, 14982 * are to be changed. This function is asynchronous and will wait for any 14983 * mailbox commands to finish before returning. 14984 * 14985 * On success this function will return a zero. If unable to allocate 14986 * enough memory this function will return -ENOMEM. If a mailbox command 14987 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 14988 * have had their delay multipler changed. 14989 **/ 14990void 14991lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14992 uint32_t numq, uint32_t usdelay) 14993{ 14994 struct lpfc_mbx_modify_eq_delay *eq_delay; 14995 LPFC_MBOXQ_t *mbox; 14996 struct lpfc_queue *eq; 14997 int cnt = 0, rc, length; 14998 uint32_t shdr_status, shdr_add_status; 14999 uint32_t dmult; 15000 int qidx; 15001 union lpfc_sli4_cfg_shdr *shdr; 15002 15003 if (startq >= phba->cfg_irq_chann) 15004 return; 15005 15006 if (usdelay > 0xFFFF) { 15007 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15008 "6429 usdelay %d too large. Scaled down to " 15009 "0xFFFF.\n", usdelay); 15010 usdelay = 0xFFFF; 15011 } 15012 15013 /* set values by EQ_DELAY register if supported */ 15014 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15015 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15016 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15017 if (!eq) 15018 continue; 15019 15020 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15021 15022 if (++cnt >= numq) 15023 break; 15024 } 15025 return; 15026 } 15027 15028 /* Otherwise, set values by mailbox cmd */ 15029 15030 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15031 if (!mbox) { 15032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15033 "6428 Failed allocating mailbox cmd buffer." 15034 " EQ delay was not set.\n"); 15035 return; 15036 } 15037 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15038 sizeof(struct lpfc_sli4_cfg_mhdr)); 15039 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15040 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15041 length, LPFC_SLI4_MBX_EMBED); 15042 eq_delay = &mbox->u.mqe.un.eq_delay; 15043 15044 /* Calculate delay multiper from maximum interrupt per second */ 15045 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15046 if (dmult) 15047 dmult--; 15048 if (dmult > LPFC_DMULT_MAX) 15049 dmult = LPFC_DMULT_MAX; 15050 15051 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15052 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15053 if (!eq) 15054 continue; 15055 eq->q_mode = usdelay; 15056 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15057 eq_delay->u.request.eq[cnt].phase = 0; 15058 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15059 15060 if (++cnt >= numq) 15061 break; 15062 } 15063 eq_delay->u.request.num_eq = cnt; 15064 15065 mbox->vport = phba->pport; 15066 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15067 mbox->ctx_buf = NULL; 15068 mbox->ctx_ndlp = NULL; 15069 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15070 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15071 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15072 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15073 if (shdr_status || shdr_add_status || rc) { 15074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15075 "2512 MODIFY_EQ_DELAY mailbox failed with " 15076 "status x%x add_status x%x, mbx status x%x\n", 15077 shdr_status, shdr_add_status, rc); 15078 } 15079 mempool_free(mbox, phba->mbox_mem_pool); 15080 return; 15081} 15082 15083/** 15084 * lpfc_eq_create - Create an Event Queue on the HBA 15085 * @phba: HBA structure that indicates port to create a queue on. 15086 * @eq: The queue structure to use to create the event queue. 15087 * @imax: The maximum interrupt per second limit. 15088 * 15089 * This function creates an event queue, as detailed in @eq, on a port, 15090 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15091 * 15092 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15093 * is used to get the entry count and entry size that are necessary to 15094 * determine the number of pages to allocate and use for this queue. This 15095 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15096 * event queue. This function is asynchronous and will wait for the mailbox 15097 * command to finish before continuing. 15098 * 15099 * On success this function will return a zero. If unable to allocate enough 15100 * memory this function will return -ENOMEM. If the queue create mailbox command 15101 * fails this function will return -ENXIO. 15102 **/ 15103int 15104lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15105{ 15106 struct lpfc_mbx_eq_create *eq_create; 15107 LPFC_MBOXQ_t *mbox; 15108 int rc, length, status = 0; 15109 struct lpfc_dmabuf *dmabuf; 15110 uint32_t shdr_status, shdr_add_status; 15111 union lpfc_sli4_cfg_shdr *shdr; 15112 uint16_t dmult; 15113 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15114 15115 /* sanity check on queue memory */ 15116 if (!eq) 15117 return -ENODEV; 15118 if (!phba->sli4_hba.pc_sli4_params.supported) 15119 hw_page_size = SLI4_PAGE_SIZE; 15120 15121 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15122 if (!mbox) 15123 return -ENOMEM; 15124 length = (sizeof(struct lpfc_mbx_eq_create) - 15125 sizeof(struct lpfc_sli4_cfg_mhdr)); 15126 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15127 LPFC_MBOX_OPCODE_EQ_CREATE, 15128 length, LPFC_SLI4_MBX_EMBED); 15129 eq_create = &mbox->u.mqe.un.eq_create; 15130 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15131 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15132 eq->page_count); 15133 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15134 LPFC_EQE_SIZE); 15135 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15136 15137 /* Use version 2 of CREATE_EQ if eqav is set */ 15138 if (phba->sli4_hba.pc_sli4_params.eqav) { 15139 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15140 LPFC_Q_CREATE_VERSION_2); 15141 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15142 phba->sli4_hba.pc_sli4_params.eqav); 15143 } 15144 15145 /* don't setup delay multiplier using EQ_CREATE */ 15146 dmult = 0; 15147 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15148 dmult); 15149 switch (eq->entry_count) { 15150 default: 15151 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15152 "0360 Unsupported EQ count. (%d)\n", 15153 eq->entry_count); 15154 if (eq->entry_count < 256) { 15155 status = -EINVAL; 15156 goto out; 15157 } 15158 fallthrough; /* otherwise default to smallest count */ 15159 case 256: 15160 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15161 LPFC_EQ_CNT_256); 15162 break; 15163 case 512: 15164 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15165 LPFC_EQ_CNT_512); 15166 break; 15167 case 1024: 15168 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15169 LPFC_EQ_CNT_1024); 15170 break; 15171 case 2048: 15172 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15173 LPFC_EQ_CNT_2048); 15174 break; 15175 case 4096: 15176 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15177 LPFC_EQ_CNT_4096); 15178 break; 15179 } 15180 list_for_each_entry(dmabuf, &eq->page_list, list) { 15181 memset(dmabuf->virt, 0, hw_page_size); 15182 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15183 putPaddrLow(dmabuf->phys); 15184 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15185 putPaddrHigh(dmabuf->phys); 15186 } 15187 mbox->vport = phba->pport; 15188 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15189 mbox->ctx_buf = NULL; 15190 mbox->ctx_ndlp = NULL; 15191 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15192 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15193 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15194 if (shdr_status || shdr_add_status || rc) { 15195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15196 "2500 EQ_CREATE mailbox failed with " 15197 "status x%x add_status x%x, mbx status x%x\n", 15198 shdr_status, shdr_add_status, rc); 15199 status = -ENXIO; 15200 } 15201 eq->type = LPFC_EQ; 15202 eq->subtype = LPFC_NONE; 15203 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15204 if (eq->queue_id == 0xFFFF) 15205 status = -ENXIO; 15206 eq->host_index = 0; 15207 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15208 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15209out: 15210 mempool_free(mbox, phba->mbox_mem_pool); 15211 return status; 15212} 15213 15214static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15215{ 15216 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15217 15218 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15219 15220 return 1; 15221} 15222 15223/** 15224 * lpfc_cq_create - Create a Completion Queue on the HBA 15225 * @phba: HBA structure that indicates port to create a queue on. 15226 * @cq: The queue structure to use to create the completion queue. 15227 * @eq: The event queue to bind this completion queue to. 15228 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15229 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15230 * 15231 * This function creates a completion queue, as detailed in @wq, on a port, 15232 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15233 * 15234 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15235 * is used to get the entry count and entry size that are necessary to 15236 * determine the number of pages to allocate and use for this queue. The @eq 15237 * is used to indicate which event queue to bind this completion queue to. This 15238 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15239 * completion queue. This function is asynchronous and will wait for the mailbox 15240 * command to finish before continuing. 15241 * 15242 * On success this function will return a zero. If unable to allocate enough 15243 * memory this function will return -ENOMEM. If the queue create mailbox command 15244 * fails this function will return -ENXIO. 15245 **/ 15246int 15247lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15248 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15249{ 15250 struct lpfc_mbx_cq_create *cq_create; 15251 struct lpfc_dmabuf *dmabuf; 15252 LPFC_MBOXQ_t *mbox; 15253 int rc, length, status = 0; 15254 uint32_t shdr_status, shdr_add_status; 15255 union lpfc_sli4_cfg_shdr *shdr; 15256 15257 /* sanity check on queue memory */ 15258 if (!cq || !eq) 15259 return -ENODEV; 15260 15261 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15262 if (!mbox) 15263 return -ENOMEM; 15264 length = (sizeof(struct lpfc_mbx_cq_create) - 15265 sizeof(struct lpfc_sli4_cfg_mhdr)); 15266 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15267 LPFC_MBOX_OPCODE_CQ_CREATE, 15268 length, LPFC_SLI4_MBX_EMBED); 15269 cq_create = &mbox->u.mqe.un.cq_create; 15270 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15271 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15272 cq->page_count); 15273 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15274 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15275 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15276 phba->sli4_hba.pc_sli4_params.cqv); 15277 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15278 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15279 (cq->page_size / SLI4_PAGE_SIZE)); 15280 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15281 eq->queue_id); 15282 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15283 phba->sli4_hba.pc_sli4_params.cqav); 15284 } else { 15285 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15286 eq->queue_id); 15287 } 15288 switch (cq->entry_count) { 15289 case 2048: 15290 case 4096: 15291 if (phba->sli4_hba.pc_sli4_params.cqv == 15292 LPFC_Q_CREATE_VERSION_2) { 15293 cq_create->u.request.context.lpfc_cq_context_count = 15294 cq->entry_count; 15295 bf_set(lpfc_cq_context_count, 15296 &cq_create->u.request.context, 15297 LPFC_CQ_CNT_WORD7); 15298 break; 15299 } 15300 fallthrough; 15301 default: 15302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15303 "0361 Unsupported CQ count: " 15304 "entry cnt %d sz %d pg cnt %d\n", 15305 cq->entry_count, cq->entry_size, 15306 cq->page_count); 15307 if (cq->entry_count < 256) { 15308 status = -EINVAL; 15309 goto out; 15310 } 15311 fallthrough; /* otherwise default to smallest count */ 15312 case 256: 15313 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15314 LPFC_CQ_CNT_256); 15315 break; 15316 case 512: 15317 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15318 LPFC_CQ_CNT_512); 15319 break; 15320 case 1024: 15321 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15322 LPFC_CQ_CNT_1024); 15323 break; 15324 } 15325 list_for_each_entry(dmabuf, &cq->page_list, list) { 15326 memset(dmabuf->virt, 0, cq->page_size); 15327 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15328 putPaddrLow(dmabuf->phys); 15329 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15330 putPaddrHigh(dmabuf->phys); 15331 } 15332 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15333 15334 /* The IOCTL status is embedded in the mailbox subheader. */ 15335 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15336 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15337 if (shdr_status || shdr_add_status || rc) { 15338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15339 "2501 CQ_CREATE mailbox failed with " 15340 "status x%x add_status x%x, mbx status x%x\n", 15341 shdr_status, shdr_add_status, rc); 15342 status = -ENXIO; 15343 goto out; 15344 } 15345 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15346 if (cq->queue_id == 0xFFFF) { 15347 status = -ENXIO; 15348 goto out; 15349 } 15350 /* link the cq onto the parent eq child list */ 15351 list_add_tail(&cq->list, &eq->child_list); 15352 /* Set up completion queue's type and subtype */ 15353 cq->type = type; 15354 cq->subtype = subtype; 15355 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15356 cq->assoc_qid = eq->queue_id; 15357 cq->assoc_qp = eq; 15358 cq->host_index = 0; 15359 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15360 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15361 15362 if (cq->queue_id > phba->sli4_hba.cq_max) 15363 phba->sli4_hba.cq_max = cq->queue_id; 15364 15365 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15366out: 15367 mempool_free(mbox, phba->mbox_mem_pool); 15368 return status; 15369} 15370 15371/** 15372 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15373 * @phba: HBA structure that indicates port to create a queue on. 15374 * @cqp: The queue structure array to use to create the completion queues. 15375 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15376 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15377 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15378 * 15379 * This function creates a set of completion queue, s to support MRQ 15380 * as detailed in @cqp, on a port, 15381 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15382 * 15383 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15384 * is used to get the entry count and entry size that are necessary to 15385 * determine the number of pages to allocate and use for this queue. The @eq 15386 * is used to indicate which event queue to bind this completion queue to. This 15387 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15388 * completion queue. This function is asynchronous and will wait for the mailbox 15389 * command to finish before continuing. 15390 * 15391 * On success this function will return a zero. If unable to allocate enough 15392 * memory this function will return -ENOMEM. If the queue create mailbox command 15393 * fails this function will return -ENXIO. 15394 **/ 15395int 15396lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15397 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15398 uint32_t subtype) 15399{ 15400 struct lpfc_queue *cq; 15401 struct lpfc_queue *eq; 15402 struct lpfc_mbx_cq_create_set *cq_set; 15403 struct lpfc_dmabuf *dmabuf; 15404 LPFC_MBOXQ_t *mbox; 15405 int rc, length, alloclen, status = 0; 15406 int cnt, idx, numcq, page_idx = 0; 15407 uint32_t shdr_status, shdr_add_status; 15408 union lpfc_sli4_cfg_shdr *shdr; 15409 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15410 15411 /* sanity check on queue memory */ 15412 numcq = phba->cfg_nvmet_mrq; 15413 if (!cqp || !hdwq || !numcq) 15414 return -ENODEV; 15415 15416 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15417 if (!mbox) 15418 return -ENOMEM; 15419 15420 length = sizeof(struct lpfc_mbx_cq_create_set); 15421 length += ((numcq * cqp[0]->page_count) * 15422 sizeof(struct dma_address)); 15423 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15424 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15425 LPFC_SLI4_MBX_NEMBED); 15426 if (alloclen < length) { 15427 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15428 "3098 Allocated DMA memory size (%d) is " 15429 "less than the requested DMA memory size " 15430 "(%d)\n", alloclen, length); 15431 status = -ENOMEM; 15432 goto out; 15433 } 15434 cq_set = mbox->sge_array->addr[0]; 15435 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15436 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15437 15438 for (idx = 0; idx < numcq; idx++) { 15439 cq = cqp[idx]; 15440 eq = hdwq[idx].hba_eq; 15441 if (!cq || !eq) { 15442 status = -ENOMEM; 15443 goto out; 15444 } 15445 if (!phba->sli4_hba.pc_sli4_params.supported) 15446 hw_page_size = cq->page_size; 15447 15448 switch (idx) { 15449 case 0: 15450 bf_set(lpfc_mbx_cq_create_set_page_size, 15451 &cq_set->u.request, 15452 (hw_page_size / SLI4_PAGE_SIZE)); 15453 bf_set(lpfc_mbx_cq_create_set_num_pages, 15454 &cq_set->u.request, cq->page_count); 15455 bf_set(lpfc_mbx_cq_create_set_evt, 15456 &cq_set->u.request, 1); 15457 bf_set(lpfc_mbx_cq_create_set_valid, 15458 &cq_set->u.request, 1); 15459 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15460 &cq_set->u.request, 0); 15461 bf_set(lpfc_mbx_cq_create_set_num_cq, 15462 &cq_set->u.request, numcq); 15463 bf_set(lpfc_mbx_cq_create_set_autovalid, 15464 &cq_set->u.request, 15465 phba->sli4_hba.pc_sli4_params.cqav); 15466 switch (cq->entry_count) { 15467 case 2048: 15468 case 4096: 15469 if (phba->sli4_hba.pc_sli4_params.cqv == 15470 LPFC_Q_CREATE_VERSION_2) { 15471 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15472 &cq_set->u.request, 15473 cq->entry_count); 15474 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15475 &cq_set->u.request, 15476 LPFC_CQ_CNT_WORD7); 15477 break; 15478 } 15479 fallthrough; 15480 default: 15481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15482 "3118 Bad CQ count. (%d)\n", 15483 cq->entry_count); 15484 if (cq->entry_count < 256) { 15485 status = -EINVAL; 15486 goto out; 15487 } 15488 fallthrough; /* otherwise default to smallest */ 15489 case 256: 15490 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15491 &cq_set->u.request, LPFC_CQ_CNT_256); 15492 break; 15493 case 512: 15494 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15495 &cq_set->u.request, LPFC_CQ_CNT_512); 15496 break; 15497 case 1024: 15498 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15499 &cq_set->u.request, LPFC_CQ_CNT_1024); 15500 break; 15501 } 15502 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15503 &cq_set->u.request, eq->queue_id); 15504 break; 15505 case 1: 15506 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15507 &cq_set->u.request, eq->queue_id); 15508 break; 15509 case 2: 15510 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15511 &cq_set->u.request, eq->queue_id); 15512 break; 15513 case 3: 15514 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15515 &cq_set->u.request, eq->queue_id); 15516 break; 15517 case 4: 15518 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15519 &cq_set->u.request, eq->queue_id); 15520 break; 15521 case 5: 15522 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15523 &cq_set->u.request, eq->queue_id); 15524 break; 15525 case 6: 15526 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15527 &cq_set->u.request, eq->queue_id); 15528 break; 15529 case 7: 15530 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15531 &cq_set->u.request, eq->queue_id); 15532 break; 15533 case 8: 15534 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15535 &cq_set->u.request, eq->queue_id); 15536 break; 15537 case 9: 15538 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15539 &cq_set->u.request, eq->queue_id); 15540 break; 15541 case 10: 15542 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15543 &cq_set->u.request, eq->queue_id); 15544 break; 15545 case 11: 15546 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15547 &cq_set->u.request, eq->queue_id); 15548 break; 15549 case 12: 15550 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15551 &cq_set->u.request, eq->queue_id); 15552 break; 15553 case 13: 15554 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15555 &cq_set->u.request, eq->queue_id); 15556 break; 15557 case 14: 15558 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15559 &cq_set->u.request, eq->queue_id); 15560 break; 15561 case 15: 15562 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15563 &cq_set->u.request, eq->queue_id); 15564 break; 15565 } 15566 15567 /* link the cq onto the parent eq child list */ 15568 list_add_tail(&cq->list, &eq->child_list); 15569 /* Set up completion queue's type and subtype */ 15570 cq->type = type; 15571 cq->subtype = subtype; 15572 cq->assoc_qid = eq->queue_id; 15573 cq->assoc_qp = eq; 15574 cq->host_index = 0; 15575 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15576 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15577 cq->entry_count); 15578 cq->chann = idx; 15579 15580 rc = 0; 15581 list_for_each_entry(dmabuf, &cq->page_list, list) { 15582 memset(dmabuf->virt, 0, hw_page_size); 15583 cnt = page_idx + dmabuf->buffer_tag; 15584 cq_set->u.request.page[cnt].addr_lo = 15585 putPaddrLow(dmabuf->phys); 15586 cq_set->u.request.page[cnt].addr_hi = 15587 putPaddrHigh(dmabuf->phys); 15588 rc++; 15589 } 15590 page_idx += rc; 15591 } 15592 15593 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15594 15595 /* The IOCTL status is embedded in the mailbox subheader. */ 15596 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15597 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15598 if (shdr_status || shdr_add_status || rc) { 15599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15600 "3119 CQ_CREATE_SET mailbox failed with " 15601 "status x%x add_status x%x, mbx status x%x\n", 15602 shdr_status, shdr_add_status, rc); 15603 status = -ENXIO; 15604 goto out; 15605 } 15606 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15607 if (rc == 0xFFFF) { 15608 status = -ENXIO; 15609 goto out; 15610 } 15611 15612 for (idx = 0; idx < numcq; idx++) { 15613 cq = cqp[idx]; 15614 cq->queue_id = rc + idx; 15615 if (cq->queue_id > phba->sli4_hba.cq_max) 15616 phba->sli4_hba.cq_max = cq->queue_id; 15617 } 15618 15619out: 15620 lpfc_sli4_mbox_cmd_free(phba, mbox); 15621 return status; 15622} 15623 15624/** 15625 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15626 * @phba: HBA structure that indicates port to create a queue on. 15627 * @mq: The queue structure to use to create the mailbox queue. 15628 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15629 * @cq: The completion queue to associate with this cq. 15630 * 15631 * This function provides failback (fb) functionality when the 15632 * mq_create_ext fails on older FW generations. It's purpose is identical 15633 * to mq_create_ext otherwise. 15634 * 15635 * This routine cannot fail as all attributes were previously accessed and 15636 * initialized in mq_create_ext. 15637 **/ 15638static void 15639lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15640 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15641{ 15642 struct lpfc_mbx_mq_create *mq_create; 15643 struct lpfc_dmabuf *dmabuf; 15644 int length; 15645 15646 length = (sizeof(struct lpfc_mbx_mq_create) - 15647 sizeof(struct lpfc_sli4_cfg_mhdr)); 15648 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15649 LPFC_MBOX_OPCODE_MQ_CREATE, 15650 length, LPFC_SLI4_MBX_EMBED); 15651 mq_create = &mbox->u.mqe.un.mq_create; 15652 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15653 mq->page_count); 15654 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15655 cq->queue_id); 15656 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15657 switch (mq->entry_count) { 15658 case 16: 15659 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15660 LPFC_MQ_RING_SIZE_16); 15661 break; 15662 case 32: 15663 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15664 LPFC_MQ_RING_SIZE_32); 15665 break; 15666 case 64: 15667 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15668 LPFC_MQ_RING_SIZE_64); 15669 break; 15670 case 128: 15671 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15672 LPFC_MQ_RING_SIZE_128); 15673 break; 15674 } 15675 list_for_each_entry(dmabuf, &mq->page_list, list) { 15676 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15677 putPaddrLow(dmabuf->phys); 15678 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15679 putPaddrHigh(dmabuf->phys); 15680 } 15681} 15682 15683/** 15684 * lpfc_mq_create - Create a mailbox Queue on the HBA 15685 * @phba: HBA structure that indicates port to create a queue on. 15686 * @mq: The queue structure to use to create the mailbox queue. 15687 * @cq: The completion queue to associate with this cq. 15688 * @subtype: The queue's subtype. 15689 * 15690 * This function creates a mailbox queue, as detailed in @mq, on a port, 15691 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15692 * 15693 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15694 * is used to get the entry count and entry size that are necessary to 15695 * determine the number of pages to allocate and use for this queue. This 15696 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15697 * mailbox queue. This function is asynchronous and will wait for the mailbox 15698 * command to finish before continuing. 15699 * 15700 * On success this function will return a zero. If unable to allocate enough 15701 * memory this function will return -ENOMEM. If the queue create mailbox command 15702 * fails this function will return -ENXIO. 15703 **/ 15704int32_t 15705lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15706 struct lpfc_queue *cq, uint32_t subtype) 15707{ 15708 struct lpfc_mbx_mq_create *mq_create; 15709 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15710 struct lpfc_dmabuf *dmabuf; 15711 LPFC_MBOXQ_t *mbox; 15712 int rc, length, status = 0; 15713 uint32_t shdr_status, shdr_add_status; 15714 union lpfc_sli4_cfg_shdr *shdr; 15715 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15716 15717 /* sanity check on queue memory */ 15718 if (!mq || !cq) 15719 return -ENODEV; 15720 if (!phba->sli4_hba.pc_sli4_params.supported) 15721 hw_page_size = SLI4_PAGE_SIZE; 15722 15723 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15724 if (!mbox) 15725 return -ENOMEM; 15726 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15727 sizeof(struct lpfc_sli4_cfg_mhdr)); 15728 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15729 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15730 length, LPFC_SLI4_MBX_EMBED); 15731 15732 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15733 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15734 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15735 &mq_create_ext->u.request, mq->page_count); 15736 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15737 &mq_create_ext->u.request, 1); 15738 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15739 &mq_create_ext->u.request, 1); 15740 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15741 &mq_create_ext->u.request, 1); 15742 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15743 &mq_create_ext->u.request, 1); 15744 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15745 &mq_create_ext->u.request, 1); 15746 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15747 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15748 phba->sli4_hba.pc_sli4_params.mqv); 15749 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15750 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15751 cq->queue_id); 15752 else 15753 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15754 cq->queue_id); 15755 switch (mq->entry_count) { 15756 default: 15757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15758 "0362 Unsupported MQ count. (%d)\n", 15759 mq->entry_count); 15760 if (mq->entry_count < 16) { 15761 status = -EINVAL; 15762 goto out; 15763 } 15764 fallthrough; /* otherwise default to smallest count */ 15765 case 16: 15766 bf_set(lpfc_mq_context_ring_size, 15767 &mq_create_ext->u.request.context, 15768 LPFC_MQ_RING_SIZE_16); 15769 break; 15770 case 32: 15771 bf_set(lpfc_mq_context_ring_size, 15772 &mq_create_ext->u.request.context, 15773 LPFC_MQ_RING_SIZE_32); 15774 break; 15775 case 64: 15776 bf_set(lpfc_mq_context_ring_size, 15777 &mq_create_ext->u.request.context, 15778 LPFC_MQ_RING_SIZE_64); 15779 break; 15780 case 128: 15781 bf_set(lpfc_mq_context_ring_size, 15782 &mq_create_ext->u.request.context, 15783 LPFC_MQ_RING_SIZE_128); 15784 break; 15785 } 15786 list_for_each_entry(dmabuf, &mq->page_list, list) { 15787 memset(dmabuf->virt, 0, hw_page_size); 15788 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15789 putPaddrLow(dmabuf->phys); 15790 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15791 putPaddrHigh(dmabuf->phys); 15792 } 15793 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15794 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15795 &mq_create_ext->u.response); 15796 if (rc != MBX_SUCCESS) { 15797 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15798 "2795 MQ_CREATE_EXT failed with " 15799 "status x%x. Failback to MQ_CREATE.\n", 15800 rc); 15801 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15802 mq_create = &mbox->u.mqe.un.mq_create; 15803 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15804 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15805 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15806 &mq_create->u.response); 15807 } 15808 15809 /* The IOCTL status is embedded in the mailbox subheader. */ 15810 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15811 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15812 if (shdr_status || shdr_add_status || rc) { 15813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15814 "2502 MQ_CREATE mailbox failed with " 15815 "status x%x add_status x%x, mbx status x%x\n", 15816 shdr_status, shdr_add_status, rc); 15817 status = -ENXIO; 15818 goto out; 15819 } 15820 if (mq->queue_id == 0xFFFF) { 15821 status = -ENXIO; 15822 goto out; 15823 } 15824 mq->type = LPFC_MQ; 15825 mq->assoc_qid = cq->queue_id; 15826 mq->subtype = subtype; 15827 mq->host_index = 0; 15828 mq->hba_index = 0; 15829 15830 /* link the mq onto the parent cq child list */ 15831 list_add_tail(&mq->list, &cq->child_list); 15832out: 15833 mempool_free(mbox, phba->mbox_mem_pool); 15834 return status; 15835} 15836 15837/** 15838 * lpfc_wq_create - Create a Work Queue on the HBA 15839 * @phba: HBA structure that indicates port to create a queue on. 15840 * @wq: The queue structure to use to create the work queue. 15841 * @cq: The completion queue to bind this work queue to. 15842 * @subtype: The subtype of the work queue indicating its functionality. 15843 * 15844 * This function creates a work queue, as detailed in @wq, on a port, described 15845 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15846 * 15847 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15848 * is used to get the entry count and entry size that are necessary to 15849 * determine the number of pages to allocate and use for this queue. The @cq 15850 * is used to indicate which completion queue to bind this work queue to. This 15851 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15852 * work queue. This function is asynchronous and will wait for the mailbox 15853 * command to finish before continuing. 15854 * 15855 * On success this function will return a zero. If unable to allocate enough 15856 * memory this function will return -ENOMEM. If the queue create mailbox command 15857 * fails this function will return -ENXIO. 15858 **/ 15859int 15860lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15861 struct lpfc_queue *cq, uint32_t subtype) 15862{ 15863 struct lpfc_mbx_wq_create *wq_create; 15864 struct lpfc_dmabuf *dmabuf; 15865 LPFC_MBOXQ_t *mbox; 15866 int rc, length, status = 0; 15867 uint32_t shdr_status, shdr_add_status; 15868 union lpfc_sli4_cfg_shdr *shdr; 15869 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15870 struct dma_address *page; 15871 void __iomem *bar_memmap_p; 15872 uint32_t db_offset; 15873 uint16_t pci_barset; 15874 uint8_t dpp_barset; 15875 uint32_t dpp_offset; 15876 uint8_t wq_create_version; 15877#ifdef CONFIG_X86 15878 unsigned long pg_addr; 15879#endif 15880 15881 /* sanity check on queue memory */ 15882 if (!wq || !cq) 15883 return -ENODEV; 15884 if (!phba->sli4_hba.pc_sli4_params.supported) 15885 hw_page_size = wq->page_size; 15886 15887 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15888 if (!mbox) 15889 return -ENOMEM; 15890 length = (sizeof(struct lpfc_mbx_wq_create) - 15891 sizeof(struct lpfc_sli4_cfg_mhdr)); 15892 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15893 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15894 length, LPFC_SLI4_MBX_EMBED); 15895 wq_create = &mbox->u.mqe.un.wq_create; 15896 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15897 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15898 wq->page_count); 15899 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15900 cq->queue_id); 15901 15902 /* wqv is the earliest version supported, NOT the latest */ 15903 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15904 phba->sli4_hba.pc_sli4_params.wqv); 15905 15906 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15907 (wq->page_size > SLI4_PAGE_SIZE)) 15908 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15909 else 15910 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15911 15912 15913 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15914 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15915 else 15916 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15917 15918 switch (wq_create_version) { 15919 case LPFC_Q_CREATE_VERSION_1: 15920 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15921 wq->entry_count); 15922 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15923 LPFC_Q_CREATE_VERSION_1); 15924 15925 switch (wq->entry_size) { 15926 default: 15927 case 64: 15928 bf_set(lpfc_mbx_wq_create_wqe_size, 15929 &wq_create->u.request_1, 15930 LPFC_WQ_WQE_SIZE_64); 15931 break; 15932 case 128: 15933 bf_set(lpfc_mbx_wq_create_wqe_size, 15934 &wq_create->u.request_1, 15935 LPFC_WQ_WQE_SIZE_128); 15936 break; 15937 } 15938 /* Request DPP by default */ 15939 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15940 bf_set(lpfc_mbx_wq_create_page_size, 15941 &wq_create->u.request_1, 15942 (wq->page_size / SLI4_PAGE_SIZE)); 15943 page = wq_create->u.request_1.page; 15944 break; 15945 default: 15946 page = wq_create->u.request.page; 15947 break; 15948 } 15949 15950 list_for_each_entry(dmabuf, &wq->page_list, list) { 15951 memset(dmabuf->virt, 0, hw_page_size); 15952 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15953 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15954 } 15955 15956 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15957 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15958 15959 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15960 /* The IOCTL status is embedded in the mailbox subheader. */ 15961 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15962 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15963 if (shdr_status || shdr_add_status || rc) { 15964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15965 "2503 WQ_CREATE mailbox failed with " 15966 "status x%x add_status x%x, mbx status x%x\n", 15967 shdr_status, shdr_add_status, rc); 15968 status = -ENXIO; 15969 goto out; 15970 } 15971 15972 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15973 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15974 &wq_create->u.response); 15975 else 15976 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15977 &wq_create->u.response_1); 15978 15979 if (wq->queue_id == 0xFFFF) { 15980 status = -ENXIO; 15981 goto out; 15982 } 15983 15984 wq->db_format = LPFC_DB_LIST_FORMAT; 15985 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15986 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15987 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15988 &wq_create->u.response); 15989 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15990 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15992 "3265 WQ[%d] doorbell format " 15993 "not supported: x%x\n", 15994 wq->queue_id, wq->db_format); 15995 status = -EINVAL; 15996 goto out; 15997 } 15998 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15999 &wq_create->u.response); 16000 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16001 pci_barset); 16002 if (!bar_memmap_p) { 16003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16004 "3263 WQ[%d] failed to memmap " 16005 "pci barset:x%x\n", 16006 wq->queue_id, pci_barset); 16007 status = -ENOMEM; 16008 goto out; 16009 } 16010 db_offset = wq_create->u.response.doorbell_offset; 16011 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16012 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16014 "3252 WQ[%d] doorbell offset " 16015 "not supported: x%x\n", 16016 wq->queue_id, db_offset); 16017 status = -EINVAL; 16018 goto out; 16019 } 16020 wq->db_regaddr = bar_memmap_p + db_offset; 16021 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16022 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16023 "format:x%x\n", wq->queue_id, 16024 pci_barset, db_offset, wq->db_format); 16025 } else 16026 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16027 } else { 16028 /* Check if DPP was honored by the firmware */ 16029 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16030 &wq_create->u.response_1); 16031 if (wq->dpp_enable) { 16032 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16033 &wq_create->u.response_1); 16034 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16035 pci_barset); 16036 if (!bar_memmap_p) { 16037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16038 "3267 WQ[%d] failed to memmap " 16039 "pci barset:x%x\n", 16040 wq->queue_id, pci_barset); 16041 status = -ENOMEM; 16042 goto out; 16043 } 16044 db_offset = wq_create->u.response_1.doorbell_offset; 16045 wq->db_regaddr = bar_memmap_p + db_offset; 16046 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16047 &wq_create->u.response_1); 16048 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16049 &wq_create->u.response_1); 16050 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16051 dpp_barset); 16052 if (!bar_memmap_p) { 16053 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16054 "3268 WQ[%d] failed to memmap " 16055 "pci barset:x%x\n", 16056 wq->queue_id, dpp_barset); 16057 status = -ENOMEM; 16058 goto out; 16059 } 16060 dpp_offset = wq_create->u.response_1.dpp_offset; 16061 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16062 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16063 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16064 "dpp_id:x%x dpp_barset:x%x " 16065 "dpp_offset:x%x\n", 16066 wq->queue_id, pci_barset, db_offset, 16067 wq->dpp_id, dpp_barset, dpp_offset); 16068 16069#ifdef CONFIG_X86 16070 /* Enable combined writes for DPP aperture */ 16071 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16072 rc = set_memory_wc(pg_addr, 1); 16073 if (rc) { 16074 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16075 "3272 Cannot setup Combined " 16076 "Write on WQ[%d] - disable DPP\n", 16077 wq->queue_id); 16078 phba->cfg_enable_dpp = 0; 16079 } 16080#else 16081 phba->cfg_enable_dpp = 0; 16082#endif 16083 } else 16084 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16085 } 16086 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16087 if (wq->pring == NULL) { 16088 status = -ENOMEM; 16089 goto out; 16090 } 16091 wq->type = LPFC_WQ; 16092 wq->assoc_qid = cq->queue_id; 16093 wq->subtype = subtype; 16094 wq->host_index = 0; 16095 wq->hba_index = 0; 16096 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16097 16098 /* link the wq onto the parent cq child list */ 16099 list_add_tail(&wq->list, &cq->child_list); 16100out: 16101 mempool_free(mbox, phba->mbox_mem_pool); 16102 return status; 16103} 16104 16105/** 16106 * lpfc_rq_create - Create a Receive Queue on the HBA 16107 * @phba: HBA structure that indicates port to create a queue on. 16108 * @hrq: The queue structure to use to create the header receive queue. 16109 * @drq: The queue structure to use to create the data receive queue. 16110 * @cq: The completion queue to bind this work queue to. 16111 * @subtype: The subtype of the work queue indicating its functionality. 16112 * 16113 * This function creates a receive buffer queue pair , as detailed in @hrq and 16114 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16115 * to the HBA. 16116 * 16117 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16118 * struct is used to get the entry count that is necessary to determine the 16119 * number of pages to use for this queue. The @cq is used to indicate which 16120 * completion queue to bind received buffers that are posted to these queues to. 16121 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16122 * receive queue pair. This function is asynchronous and will wait for the 16123 * mailbox command to finish before continuing. 16124 * 16125 * On success this function will return a zero. If unable to allocate enough 16126 * memory this function will return -ENOMEM. If the queue create mailbox command 16127 * fails this function will return -ENXIO. 16128 **/ 16129int 16130lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16131 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16132{ 16133 struct lpfc_mbx_rq_create *rq_create; 16134 struct lpfc_dmabuf *dmabuf; 16135 LPFC_MBOXQ_t *mbox; 16136 int rc, length, status = 0; 16137 uint32_t shdr_status, shdr_add_status; 16138 union lpfc_sli4_cfg_shdr *shdr; 16139 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16140 void __iomem *bar_memmap_p; 16141 uint32_t db_offset; 16142 uint16_t pci_barset; 16143 16144 /* sanity check on queue memory */ 16145 if (!hrq || !drq || !cq) 16146 return -ENODEV; 16147 if (!phba->sli4_hba.pc_sli4_params.supported) 16148 hw_page_size = SLI4_PAGE_SIZE; 16149 16150 if (hrq->entry_count != drq->entry_count) 16151 return -EINVAL; 16152 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16153 if (!mbox) 16154 return -ENOMEM; 16155 length = (sizeof(struct lpfc_mbx_rq_create) - 16156 sizeof(struct lpfc_sli4_cfg_mhdr)); 16157 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16158 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16159 length, LPFC_SLI4_MBX_EMBED); 16160 rq_create = &mbox->u.mqe.un.rq_create; 16161 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16162 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16163 phba->sli4_hba.pc_sli4_params.rqv); 16164 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16165 bf_set(lpfc_rq_context_rqe_count_1, 16166 &rq_create->u.request.context, 16167 hrq->entry_count); 16168 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16169 bf_set(lpfc_rq_context_rqe_size, 16170 &rq_create->u.request.context, 16171 LPFC_RQE_SIZE_8); 16172 bf_set(lpfc_rq_context_page_size, 16173 &rq_create->u.request.context, 16174 LPFC_RQ_PAGE_SIZE_4096); 16175 } else { 16176 switch (hrq->entry_count) { 16177 default: 16178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16179 "2535 Unsupported RQ count. (%d)\n", 16180 hrq->entry_count); 16181 if (hrq->entry_count < 512) { 16182 status = -EINVAL; 16183 goto out; 16184 } 16185 fallthrough; /* otherwise default to smallest count */ 16186 case 512: 16187 bf_set(lpfc_rq_context_rqe_count, 16188 &rq_create->u.request.context, 16189 LPFC_RQ_RING_SIZE_512); 16190 break; 16191 case 1024: 16192 bf_set(lpfc_rq_context_rqe_count, 16193 &rq_create->u.request.context, 16194 LPFC_RQ_RING_SIZE_1024); 16195 break; 16196 case 2048: 16197 bf_set(lpfc_rq_context_rqe_count, 16198 &rq_create->u.request.context, 16199 LPFC_RQ_RING_SIZE_2048); 16200 break; 16201 case 4096: 16202 bf_set(lpfc_rq_context_rqe_count, 16203 &rq_create->u.request.context, 16204 LPFC_RQ_RING_SIZE_4096); 16205 break; 16206 } 16207 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16208 LPFC_HDR_BUF_SIZE); 16209 } 16210 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16211 cq->queue_id); 16212 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16213 hrq->page_count); 16214 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16215 memset(dmabuf->virt, 0, hw_page_size); 16216 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16217 putPaddrLow(dmabuf->phys); 16218 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16219 putPaddrHigh(dmabuf->phys); 16220 } 16221 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16222 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16223 16224 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16225 /* The IOCTL status is embedded in the mailbox subheader. */ 16226 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16227 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16228 if (shdr_status || shdr_add_status || rc) { 16229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16230 "2504 RQ_CREATE mailbox failed with " 16231 "status x%x add_status x%x, mbx status x%x\n", 16232 shdr_status, shdr_add_status, rc); 16233 status = -ENXIO; 16234 goto out; 16235 } 16236 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16237 if (hrq->queue_id == 0xFFFF) { 16238 status = -ENXIO; 16239 goto out; 16240 } 16241 16242 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16243 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16244 &rq_create->u.response); 16245 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16246 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16248 "3262 RQ [%d] doorbell format not " 16249 "supported: x%x\n", hrq->queue_id, 16250 hrq->db_format); 16251 status = -EINVAL; 16252 goto out; 16253 } 16254 16255 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16256 &rq_create->u.response); 16257 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16258 if (!bar_memmap_p) { 16259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16260 "3269 RQ[%d] failed to memmap pci " 16261 "barset:x%x\n", hrq->queue_id, 16262 pci_barset); 16263 status = -ENOMEM; 16264 goto out; 16265 } 16266 16267 db_offset = rq_create->u.response.doorbell_offset; 16268 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16269 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16271 "3270 RQ[%d] doorbell offset not " 16272 "supported: x%x\n", hrq->queue_id, 16273 db_offset); 16274 status = -EINVAL; 16275 goto out; 16276 } 16277 hrq->db_regaddr = bar_memmap_p + db_offset; 16278 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16279 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16280 "format:x%x\n", hrq->queue_id, pci_barset, 16281 db_offset, hrq->db_format); 16282 } else { 16283 hrq->db_format = LPFC_DB_RING_FORMAT; 16284 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16285 } 16286 hrq->type = LPFC_HRQ; 16287 hrq->assoc_qid = cq->queue_id; 16288 hrq->subtype = subtype; 16289 hrq->host_index = 0; 16290 hrq->hba_index = 0; 16291 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16292 16293 /* now create the data queue */ 16294 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16295 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16296 length, LPFC_SLI4_MBX_EMBED); 16297 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16298 phba->sli4_hba.pc_sli4_params.rqv); 16299 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16300 bf_set(lpfc_rq_context_rqe_count_1, 16301 &rq_create->u.request.context, hrq->entry_count); 16302 if (subtype == LPFC_NVMET) 16303 rq_create->u.request.context.buffer_size = 16304 LPFC_NVMET_DATA_BUF_SIZE; 16305 else 16306 rq_create->u.request.context.buffer_size = 16307 LPFC_DATA_BUF_SIZE; 16308 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16309 LPFC_RQE_SIZE_8); 16310 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16311 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16312 } else { 16313 switch (drq->entry_count) { 16314 default: 16315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16316 "2536 Unsupported RQ count. (%d)\n", 16317 drq->entry_count); 16318 if (drq->entry_count < 512) { 16319 status = -EINVAL; 16320 goto out; 16321 } 16322 fallthrough; /* otherwise default to smallest count */ 16323 case 512: 16324 bf_set(lpfc_rq_context_rqe_count, 16325 &rq_create->u.request.context, 16326 LPFC_RQ_RING_SIZE_512); 16327 break; 16328 case 1024: 16329 bf_set(lpfc_rq_context_rqe_count, 16330 &rq_create->u.request.context, 16331 LPFC_RQ_RING_SIZE_1024); 16332 break; 16333 case 2048: 16334 bf_set(lpfc_rq_context_rqe_count, 16335 &rq_create->u.request.context, 16336 LPFC_RQ_RING_SIZE_2048); 16337 break; 16338 case 4096: 16339 bf_set(lpfc_rq_context_rqe_count, 16340 &rq_create->u.request.context, 16341 LPFC_RQ_RING_SIZE_4096); 16342 break; 16343 } 16344 if (subtype == LPFC_NVMET) 16345 bf_set(lpfc_rq_context_buf_size, 16346 &rq_create->u.request.context, 16347 LPFC_NVMET_DATA_BUF_SIZE); 16348 else 16349 bf_set(lpfc_rq_context_buf_size, 16350 &rq_create->u.request.context, 16351 LPFC_DATA_BUF_SIZE); 16352 } 16353 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16354 cq->queue_id); 16355 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16356 drq->page_count); 16357 list_for_each_entry(dmabuf, &drq->page_list, list) { 16358 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16359 putPaddrLow(dmabuf->phys); 16360 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16361 putPaddrHigh(dmabuf->phys); 16362 } 16363 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16364 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16365 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16366 /* The IOCTL status is embedded in the mailbox subheader. */ 16367 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16368 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16369 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16370 if (shdr_status || shdr_add_status || rc) { 16371 status = -ENXIO; 16372 goto out; 16373 } 16374 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16375 if (drq->queue_id == 0xFFFF) { 16376 status = -ENXIO; 16377 goto out; 16378 } 16379 drq->type = LPFC_DRQ; 16380 drq->assoc_qid = cq->queue_id; 16381 drq->subtype = subtype; 16382 drq->host_index = 0; 16383 drq->hba_index = 0; 16384 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16385 16386 /* link the header and data RQs onto the parent cq child list */ 16387 list_add_tail(&hrq->list, &cq->child_list); 16388 list_add_tail(&drq->list, &cq->child_list); 16389 16390out: 16391 mempool_free(mbox, phba->mbox_mem_pool); 16392 return status; 16393} 16394 16395/** 16396 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16397 * @phba: HBA structure that indicates port to create a queue on. 16398 * @hrqp: The queue structure array to use to create the header receive queues. 16399 * @drqp: The queue structure array to use to create the data receive queues. 16400 * @cqp: The completion queue array to bind these receive queues to. 16401 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16402 * 16403 * This function creates a receive buffer queue pair , as detailed in @hrq and 16404 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16405 * to the HBA. 16406 * 16407 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16408 * struct is used to get the entry count that is necessary to determine the 16409 * number of pages to use for this queue. The @cq is used to indicate which 16410 * completion queue to bind received buffers that are posted to these queues to. 16411 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16412 * receive queue pair. This function is asynchronous and will wait for the 16413 * mailbox command to finish before continuing. 16414 * 16415 * On success this function will return a zero. If unable to allocate enough 16416 * memory this function will return -ENOMEM. If the queue create mailbox command 16417 * fails this function will return -ENXIO. 16418 **/ 16419int 16420lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16421 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16422 uint32_t subtype) 16423{ 16424 struct lpfc_queue *hrq, *drq, *cq; 16425 struct lpfc_mbx_rq_create_v2 *rq_create; 16426 struct lpfc_dmabuf *dmabuf; 16427 LPFC_MBOXQ_t *mbox; 16428 int rc, length, alloclen, status = 0; 16429 int cnt, idx, numrq, page_idx = 0; 16430 uint32_t shdr_status, shdr_add_status; 16431 union lpfc_sli4_cfg_shdr *shdr; 16432 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16433 16434 numrq = phba->cfg_nvmet_mrq; 16435 /* sanity check on array memory */ 16436 if (!hrqp || !drqp || !cqp || !numrq) 16437 return -ENODEV; 16438 if (!phba->sli4_hba.pc_sli4_params.supported) 16439 hw_page_size = SLI4_PAGE_SIZE; 16440 16441 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16442 if (!mbox) 16443 return -ENOMEM; 16444 16445 length = sizeof(struct lpfc_mbx_rq_create_v2); 16446 length += ((2 * numrq * hrqp[0]->page_count) * 16447 sizeof(struct dma_address)); 16448 16449 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16450 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16451 LPFC_SLI4_MBX_NEMBED); 16452 if (alloclen < length) { 16453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16454 "3099 Allocated DMA memory size (%d) is " 16455 "less than the requested DMA memory size " 16456 "(%d)\n", alloclen, length); 16457 status = -ENOMEM; 16458 goto out; 16459 } 16460 16461 16462 16463 rq_create = mbox->sge_array->addr[0]; 16464 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16465 16466 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16467 cnt = 0; 16468 16469 for (idx = 0; idx < numrq; idx++) { 16470 hrq = hrqp[idx]; 16471 drq = drqp[idx]; 16472 cq = cqp[idx]; 16473 16474 /* sanity check on queue memory */ 16475 if (!hrq || !drq || !cq) { 16476 status = -ENODEV; 16477 goto out; 16478 } 16479 16480 if (hrq->entry_count != drq->entry_count) { 16481 status = -EINVAL; 16482 goto out; 16483 } 16484 16485 if (idx == 0) { 16486 bf_set(lpfc_mbx_rq_create_num_pages, 16487 &rq_create->u.request, 16488 hrq->page_count); 16489 bf_set(lpfc_mbx_rq_create_rq_cnt, 16490 &rq_create->u.request, (numrq * 2)); 16491 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16492 1); 16493 bf_set(lpfc_rq_context_base_cq, 16494 &rq_create->u.request.context, 16495 cq->queue_id); 16496 bf_set(lpfc_rq_context_data_size, 16497 &rq_create->u.request.context, 16498 LPFC_NVMET_DATA_BUF_SIZE); 16499 bf_set(lpfc_rq_context_hdr_size, 16500 &rq_create->u.request.context, 16501 LPFC_HDR_BUF_SIZE); 16502 bf_set(lpfc_rq_context_rqe_count_1, 16503 &rq_create->u.request.context, 16504 hrq->entry_count); 16505 bf_set(lpfc_rq_context_rqe_size, 16506 &rq_create->u.request.context, 16507 LPFC_RQE_SIZE_8); 16508 bf_set(lpfc_rq_context_page_size, 16509 &rq_create->u.request.context, 16510 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16511 } 16512 rc = 0; 16513 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16514 memset(dmabuf->virt, 0, hw_page_size); 16515 cnt = page_idx + dmabuf->buffer_tag; 16516 rq_create->u.request.page[cnt].addr_lo = 16517 putPaddrLow(dmabuf->phys); 16518 rq_create->u.request.page[cnt].addr_hi = 16519 putPaddrHigh(dmabuf->phys); 16520 rc++; 16521 } 16522 page_idx += rc; 16523 16524 rc = 0; 16525 list_for_each_entry(dmabuf, &drq->page_list, list) { 16526 memset(dmabuf->virt, 0, hw_page_size); 16527 cnt = page_idx + dmabuf->buffer_tag; 16528 rq_create->u.request.page[cnt].addr_lo = 16529 putPaddrLow(dmabuf->phys); 16530 rq_create->u.request.page[cnt].addr_hi = 16531 putPaddrHigh(dmabuf->phys); 16532 rc++; 16533 } 16534 page_idx += rc; 16535 16536 hrq->db_format = LPFC_DB_RING_FORMAT; 16537 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16538 hrq->type = LPFC_HRQ; 16539 hrq->assoc_qid = cq->queue_id; 16540 hrq->subtype = subtype; 16541 hrq->host_index = 0; 16542 hrq->hba_index = 0; 16543 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16544 16545 drq->db_format = LPFC_DB_RING_FORMAT; 16546 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16547 drq->type = LPFC_DRQ; 16548 drq->assoc_qid = cq->queue_id; 16549 drq->subtype = subtype; 16550 drq->host_index = 0; 16551 drq->hba_index = 0; 16552 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16553 16554 list_add_tail(&hrq->list, &cq->child_list); 16555 list_add_tail(&drq->list, &cq->child_list); 16556 } 16557 16558 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16559 /* The IOCTL status is embedded in the mailbox subheader. */ 16560 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16561 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16562 if (shdr_status || shdr_add_status || rc) { 16563 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16564 "3120 RQ_CREATE mailbox failed with " 16565 "status x%x add_status x%x, mbx status x%x\n", 16566 shdr_status, shdr_add_status, rc); 16567 status = -ENXIO; 16568 goto out; 16569 } 16570 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16571 if (rc == 0xFFFF) { 16572 status = -ENXIO; 16573 goto out; 16574 } 16575 16576 /* Initialize all RQs with associated queue id */ 16577 for (idx = 0; idx < numrq; idx++) { 16578 hrq = hrqp[idx]; 16579 hrq->queue_id = rc + (2 * idx); 16580 drq = drqp[idx]; 16581 drq->queue_id = rc + (2 * idx) + 1; 16582 } 16583 16584out: 16585 lpfc_sli4_mbox_cmd_free(phba, mbox); 16586 return status; 16587} 16588 16589/** 16590 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16591 * @phba: HBA structure that indicates port to destroy a queue on. 16592 * @eq: The queue structure associated with the queue to destroy. 16593 * 16594 * This function destroys a queue, as detailed in @eq by sending an mailbox 16595 * command, specific to the type of queue, to the HBA. 16596 * 16597 * The @eq struct is used to get the queue ID of the queue to destroy. 16598 * 16599 * On success this function will return a zero. If the queue destroy mailbox 16600 * command fails this function will return -ENXIO. 16601 **/ 16602int 16603lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16604{ 16605 LPFC_MBOXQ_t *mbox; 16606 int rc, length, status = 0; 16607 uint32_t shdr_status, shdr_add_status; 16608 union lpfc_sli4_cfg_shdr *shdr; 16609 16610 /* sanity check on queue memory */ 16611 if (!eq) 16612 return -ENODEV; 16613 16614 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16615 if (!mbox) 16616 return -ENOMEM; 16617 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16618 sizeof(struct lpfc_sli4_cfg_mhdr)); 16619 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16620 LPFC_MBOX_OPCODE_EQ_DESTROY, 16621 length, LPFC_SLI4_MBX_EMBED); 16622 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16623 eq->queue_id); 16624 mbox->vport = eq->phba->pport; 16625 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16626 16627 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16628 /* The IOCTL status is embedded in the mailbox subheader. */ 16629 shdr = (union lpfc_sli4_cfg_shdr *) 16630 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16631 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16632 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16633 if (shdr_status || shdr_add_status || rc) { 16634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16635 "2505 EQ_DESTROY mailbox failed with " 16636 "status x%x add_status x%x, mbx status x%x\n", 16637 shdr_status, shdr_add_status, rc); 16638 status = -ENXIO; 16639 } 16640 16641 /* Remove eq from any list */ 16642 list_del_init(&eq->list); 16643 mempool_free(mbox, eq->phba->mbox_mem_pool); 16644 return status; 16645} 16646 16647/** 16648 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16649 * @phba: HBA structure that indicates port to destroy a queue on. 16650 * @cq: The queue structure associated with the queue to destroy. 16651 * 16652 * This function destroys a queue, as detailed in @cq by sending an mailbox 16653 * command, specific to the type of queue, to the HBA. 16654 * 16655 * The @cq struct is used to get the queue ID of the queue to destroy. 16656 * 16657 * On success this function will return a zero. If the queue destroy mailbox 16658 * command fails this function will return -ENXIO. 16659 **/ 16660int 16661lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16662{ 16663 LPFC_MBOXQ_t *mbox; 16664 int rc, length, status = 0; 16665 uint32_t shdr_status, shdr_add_status; 16666 union lpfc_sli4_cfg_shdr *shdr; 16667 16668 /* sanity check on queue memory */ 16669 if (!cq) 16670 return -ENODEV; 16671 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16672 if (!mbox) 16673 return -ENOMEM; 16674 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16675 sizeof(struct lpfc_sli4_cfg_mhdr)); 16676 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16677 LPFC_MBOX_OPCODE_CQ_DESTROY, 16678 length, LPFC_SLI4_MBX_EMBED); 16679 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16680 cq->queue_id); 16681 mbox->vport = cq->phba->pport; 16682 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16683 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16684 /* The IOCTL status is embedded in the mailbox subheader. */ 16685 shdr = (union lpfc_sli4_cfg_shdr *) 16686 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16687 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16688 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16689 if (shdr_status || shdr_add_status || rc) { 16690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16691 "2506 CQ_DESTROY mailbox failed with " 16692 "status x%x add_status x%x, mbx status x%x\n", 16693 shdr_status, shdr_add_status, rc); 16694 status = -ENXIO; 16695 } 16696 /* Remove cq from any list */ 16697 list_del_init(&cq->list); 16698 mempool_free(mbox, cq->phba->mbox_mem_pool); 16699 return status; 16700} 16701 16702/** 16703 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16704 * @phba: HBA structure that indicates port to destroy a queue on. 16705 * @mq: The queue structure associated with the queue to destroy. 16706 * 16707 * This function destroys a queue, as detailed in @mq by sending an mailbox 16708 * command, specific to the type of queue, to the HBA. 16709 * 16710 * The @mq struct is used to get the queue ID of the queue to destroy. 16711 * 16712 * On success this function will return a zero. If the queue destroy mailbox 16713 * command fails this function will return -ENXIO. 16714 **/ 16715int 16716lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16717{ 16718 LPFC_MBOXQ_t *mbox; 16719 int rc, length, status = 0; 16720 uint32_t shdr_status, shdr_add_status; 16721 union lpfc_sli4_cfg_shdr *shdr; 16722 16723 /* sanity check on queue memory */ 16724 if (!mq) 16725 return -ENODEV; 16726 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16727 if (!mbox) 16728 return -ENOMEM; 16729 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16730 sizeof(struct lpfc_sli4_cfg_mhdr)); 16731 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16732 LPFC_MBOX_OPCODE_MQ_DESTROY, 16733 length, LPFC_SLI4_MBX_EMBED); 16734 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16735 mq->queue_id); 16736 mbox->vport = mq->phba->pport; 16737 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16738 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16739 /* The IOCTL status is embedded in the mailbox subheader. */ 16740 shdr = (union lpfc_sli4_cfg_shdr *) 16741 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16742 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16743 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16744 if (shdr_status || shdr_add_status || rc) { 16745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16746 "2507 MQ_DESTROY mailbox failed with " 16747 "status x%x add_status x%x, mbx status x%x\n", 16748 shdr_status, shdr_add_status, rc); 16749 status = -ENXIO; 16750 } 16751 /* Remove mq from any list */ 16752 list_del_init(&mq->list); 16753 mempool_free(mbox, mq->phba->mbox_mem_pool); 16754 return status; 16755} 16756 16757/** 16758 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16759 * @phba: HBA structure that indicates port to destroy a queue on. 16760 * @wq: The queue structure associated with the queue to destroy. 16761 * 16762 * This function destroys a queue, as detailed in @wq by sending an mailbox 16763 * command, specific to the type of queue, to the HBA. 16764 * 16765 * The @wq struct is used to get the queue ID of the queue to destroy. 16766 * 16767 * On success this function will return a zero. If the queue destroy mailbox 16768 * command fails this function will return -ENXIO. 16769 **/ 16770int 16771lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16772{ 16773 LPFC_MBOXQ_t *mbox; 16774 int rc, length, status = 0; 16775 uint32_t shdr_status, shdr_add_status; 16776 union lpfc_sli4_cfg_shdr *shdr; 16777 16778 /* sanity check on queue memory */ 16779 if (!wq) 16780 return -ENODEV; 16781 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16782 if (!mbox) 16783 return -ENOMEM; 16784 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16785 sizeof(struct lpfc_sli4_cfg_mhdr)); 16786 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16787 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16788 length, LPFC_SLI4_MBX_EMBED); 16789 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16790 wq->queue_id); 16791 mbox->vport = wq->phba->pport; 16792 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16793 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16794 shdr = (union lpfc_sli4_cfg_shdr *) 16795 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16796 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16797 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16798 if (shdr_status || shdr_add_status || rc) { 16799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16800 "2508 WQ_DESTROY mailbox failed with " 16801 "status x%x add_status x%x, mbx status x%x\n", 16802 shdr_status, shdr_add_status, rc); 16803 status = -ENXIO; 16804 } 16805 /* Remove wq from any list */ 16806 list_del_init(&wq->list); 16807 kfree(wq->pring); 16808 wq->pring = NULL; 16809 mempool_free(mbox, wq->phba->mbox_mem_pool); 16810 return status; 16811} 16812 16813/** 16814 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16815 * @phba: HBA structure that indicates port to destroy a queue on. 16816 * @hrq: The queue structure associated with the queue to destroy. 16817 * @drq: The queue structure associated with the queue to destroy. 16818 * 16819 * This function destroys a queue, as detailed in @rq by sending an mailbox 16820 * command, specific to the type of queue, to the HBA. 16821 * 16822 * The @rq struct is used to get the queue ID of the queue to destroy. 16823 * 16824 * On success this function will return a zero. If the queue destroy mailbox 16825 * command fails this function will return -ENXIO. 16826 **/ 16827int 16828lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16829 struct lpfc_queue *drq) 16830{ 16831 LPFC_MBOXQ_t *mbox; 16832 int rc, length, status = 0; 16833 uint32_t shdr_status, shdr_add_status; 16834 union lpfc_sli4_cfg_shdr *shdr; 16835 16836 /* sanity check on queue memory */ 16837 if (!hrq || !drq) 16838 return -ENODEV; 16839 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16840 if (!mbox) 16841 return -ENOMEM; 16842 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16843 sizeof(struct lpfc_sli4_cfg_mhdr)); 16844 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16845 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16846 length, LPFC_SLI4_MBX_EMBED); 16847 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16848 hrq->queue_id); 16849 mbox->vport = hrq->phba->pport; 16850 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16851 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16852 /* The IOCTL status is embedded in the mailbox subheader. */ 16853 shdr = (union lpfc_sli4_cfg_shdr *) 16854 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16855 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16856 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16857 if (shdr_status || shdr_add_status || rc) { 16858 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16859 "2509 RQ_DESTROY mailbox failed with " 16860 "status x%x add_status x%x, mbx status x%x\n", 16861 shdr_status, shdr_add_status, rc); 16862 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16863 return -ENXIO; 16864 } 16865 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16866 drq->queue_id); 16867 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16868 shdr = (union lpfc_sli4_cfg_shdr *) 16869 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16870 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16871 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16872 if (shdr_status || shdr_add_status || rc) { 16873 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16874 "2510 RQ_DESTROY mailbox failed with " 16875 "status x%x add_status x%x, mbx status x%x\n", 16876 shdr_status, shdr_add_status, rc); 16877 status = -ENXIO; 16878 } 16879 list_del_init(&hrq->list); 16880 list_del_init(&drq->list); 16881 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16882 return status; 16883} 16884 16885/** 16886 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16887 * @phba: The virtual port for which this call being executed. 16888 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16889 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16890 * @xritag: the xritag that ties this io to the SGL pages. 16891 * 16892 * This routine will post the sgl pages for the IO that has the xritag 16893 * that is in the iocbq structure. The xritag is assigned during iocbq 16894 * creation and persists for as long as the driver is loaded. 16895 * if the caller has fewer than 256 scatter gather segments to map then 16896 * pdma_phys_addr1 should be 0. 16897 * If the caller needs to map more than 256 scatter gather segment then 16898 * pdma_phys_addr1 should be a valid physical address. 16899 * physical address for SGLs must be 64 byte aligned. 16900 * If you are going to map 2 SGL's then the first one must have 256 entries 16901 * the second sgl can have between 1 and 256 entries. 16902 * 16903 * Return codes: 16904 * 0 - Success 16905 * -ENXIO, -ENOMEM - Failure 16906 **/ 16907int 16908lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16909 dma_addr_t pdma_phys_addr0, 16910 dma_addr_t pdma_phys_addr1, 16911 uint16_t xritag) 16912{ 16913 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16914 LPFC_MBOXQ_t *mbox; 16915 int rc; 16916 uint32_t shdr_status, shdr_add_status; 16917 uint32_t mbox_tmo; 16918 union lpfc_sli4_cfg_shdr *shdr; 16919 16920 if (xritag == NO_XRI) { 16921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16922 "0364 Invalid param:\n"); 16923 return -EINVAL; 16924 } 16925 16926 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16927 if (!mbox) 16928 return -ENOMEM; 16929 16930 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16931 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16932 sizeof(struct lpfc_mbx_post_sgl_pages) - 16933 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16934 16935 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16936 &mbox->u.mqe.un.post_sgl_pages; 16937 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16938 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16939 16940 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16941 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16942 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16943 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16944 16945 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16946 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16947 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16948 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16949 if (!phba->sli4_hba.intr_enable) 16950 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16951 else { 16952 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16953 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16954 } 16955 /* The IOCTL status is embedded in the mailbox subheader. */ 16956 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16957 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16958 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16959 if (!phba->sli4_hba.intr_enable) 16960 mempool_free(mbox, phba->mbox_mem_pool); 16961 else if (rc != MBX_TIMEOUT) 16962 mempool_free(mbox, phba->mbox_mem_pool); 16963 if (shdr_status || shdr_add_status || rc) { 16964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16965 "2511 POST_SGL mailbox failed with " 16966 "status x%x add_status x%x, mbx status x%x\n", 16967 shdr_status, shdr_add_status, rc); 16968 } 16969 return 0; 16970} 16971 16972/** 16973 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16974 * @phba: pointer to lpfc hba data structure. 16975 * 16976 * This routine is invoked to post rpi header templates to the 16977 * HBA consistent with the SLI-4 interface spec. This routine 16978 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16979 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16980 * 16981 * Returns 16982 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16983 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16984 **/ 16985static uint16_t 16986lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16987{ 16988 unsigned long xri; 16989 16990 /* 16991 * Fetch the next logical xri. Because this index is logical, 16992 * the driver starts at 0 each time. 16993 */ 16994 spin_lock_irq(&phba->hbalock); 16995 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16996 phba->sli4_hba.max_cfg_param.max_xri, 0); 16997 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16998 spin_unlock_irq(&phba->hbalock); 16999 return NO_XRI; 17000 } else { 17001 set_bit(xri, phba->sli4_hba.xri_bmask); 17002 phba->sli4_hba.max_cfg_param.xri_used++; 17003 } 17004 spin_unlock_irq(&phba->hbalock); 17005 return xri; 17006} 17007 17008/** 17009 * lpfc_sli4_free_xri - Release an xri for reuse. 17010 * @phba: pointer to lpfc hba data structure. 17011 * @xri: xri to release. 17012 * 17013 * This routine is invoked to release an xri to the pool of 17014 * available rpis maintained by the driver. 17015 **/ 17016static void 17017__lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17018{ 17019 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17020 phba->sli4_hba.max_cfg_param.xri_used--; 17021 } 17022} 17023 17024/** 17025 * lpfc_sli4_free_xri - Release an xri for reuse. 17026 * @phba: pointer to lpfc hba data structure. 17027 * @xri: xri to release. 17028 * 17029 * This routine is invoked to release an xri to the pool of 17030 * available rpis maintained by the driver. 17031 **/ 17032void 17033lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17034{ 17035 spin_lock_irq(&phba->hbalock); 17036 __lpfc_sli4_free_xri(phba, xri); 17037 spin_unlock_irq(&phba->hbalock); 17038} 17039 17040/** 17041 * lpfc_sli4_next_xritag - Get an xritag for the io 17042 * @phba: Pointer to HBA context object. 17043 * 17044 * This function gets an xritag for the iocb. If there is no unused xritag 17045 * it will return 0xffff. 17046 * The function returns the allocated xritag if successful, else returns zero. 17047 * Zero is not a valid xritag. 17048 * The caller is not required to hold any lock. 17049 **/ 17050uint16_t 17051lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17052{ 17053 uint16_t xri_index; 17054 17055 xri_index = lpfc_sli4_alloc_xri(phba); 17056 if (xri_index == NO_XRI) 17057 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17058 "2004 Failed to allocate XRI.last XRITAG is %d" 17059 " Max XRI is %d, Used XRI is %d\n", 17060 xri_index, 17061 phba->sli4_hba.max_cfg_param.max_xri, 17062 phba->sli4_hba.max_cfg_param.xri_used); 17063 return xri_index; 17064} 17065 17066/** 17067 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17068 * @phba: pointer to lpfc hba data structure. 17069 * @post_sgl_list: pointer to els sgl entry list. 17070 * @post_cnt: number of els sgl entries on the list. 17071 * 17072 * This routine is invoked to post a block of driver's sgl pages to the 17073 * HBA using non-embedded mailbox command. No Lock is held. This routine 17074 * is only called when the driver is loading and after all IO has been 17075 * stopped. 17076 **/ 17077static int 17078lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17079 struct list_head *post_sgl_list, 17080 int post_cnt) 17081{ 17082 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17083 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17084 struct sgl_page_pairs *sgl_pg_pairs; 17085 void *viraddr; 17086 LPFC_MBOXQ_t *mbox; 17087 uint32_t reqlen, alloclen, pg_pairs; 17088 uint32_t mbox_tmo; 17089 uint16_t xritag_start = 0; 17090 int rc = 0; 17091 uint32_t shdr_status, shdr_add_status; 17092 union lpfc_sli4_cfg_shdr *shdr; 17093 17094 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17095 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17096 if (reqlen > SLI4_PAGE_SIZE) { 17097 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17098 "2559 Block sgl registration required DMA " 17099 "size (%d) great than a page\n", reqlen); 17100 return -ENOMEM; 17101 } 17102 17103 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17104 if (!mbox) 17105 return -ENOMEM; 17106 17107 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17108 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17109 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17110 LPFC_SLI4_MBX_NEMBED); 17111 17112 if (alloclen < reqlen) { 17113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17114 "0285 Allocated DMA memory size (%d) is " 17115 "less than the requested DMA memory " 17116 "size (%d)\n", alloclen, reqlen); 17117 lpfc_sli4_mbox_cmd_free(phba, mbox); 17118 return -ENOMEM; 17119 } 17120 /* Set up the SGL pages in the non-embedded DMA pages */ 17121 viraddr = mbox->sge_array->addr[0]; 17122 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17123 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17124 17125 pg_pairs = 0; 17126 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17127 /* Set up the sge entry */ 17128 sgl_pg_pairs->sgl_pg0_addr_lo = 17129 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17130 sgl_pg_pairs->sgl_pg0_addr_hi = 17131 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17132 sgl_pg_pairs->sgl_pg1_addr_lo = 17133 cpu_to_le32(putPaddrLow(0)); 17134 sgl_pg_pairs->sgl_pg1_addr_hi = 17135 cpu_to_le32(putPaddrHigh(0)); 17136 17137 /* Keep the first xritag on the list */ 17138 if (pg_pairs == 0) 17139 xritag_start = sglq_entry->sli4_xritag; 17140 sgl_pg_pairs++; 17141 pg_pairs++; 17142 } 17143 17144 /* Complete initialization and perform endian conversion. */ 17145 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17146 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17147 sgl->word0 = cpu_to_le32(sgl->word0); 17148 17149 if (!phba->sli4_hba.intr_enable) 17150 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17151 else { 17152 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17153 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17154 } 17155 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17156 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17157 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17158 if (!phba->sli4_hba.intr_enable) 17159 lpfc_sli4_mbox_cmd_free(phba, mbox); 17160 else if (rc != MBX_TIMEOUT) 17161 lpfc_sli4_mbox_cmd_free(phba, mbox); 17162 if (shdr_status || shdr_add_status || rc) { 17163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17164 "2513 POST_SGL_BLOCK mailbox command failed " 17165 "status x%x add_status x%x mbx status x%x\n", 17166 shdr_status, shdr_add_status, rc); 17167 rc = -ENXIO; 17168 } 17169 return rc; 17170} 17171 17172/** 17173 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17174 * @phba: pointer to lpfc hba data structure. 17175 * @nblist: pointer to nvme buffer list. 17176 * @count: number of scsi buffers on the list. 17177 * 17178 * This routine is invoked to post a block of @count scsi sgl pages from a 17179 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17180 * No Lock is held. 17181 * 17182 **/ 17183static int 17184lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17185 int count) 17186{ 17187 struct lpfc_io_buf *lpfc_ncmd; 17188 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17189 struct sgl_page_pairs *sgl_pg_pairs; 17190 void *viraddr; 17191 LPFC_MBOXQ_t *mbox; 17192 uint32_t reqlen, alloclen, pg_pairs; 17193 uint32_t mbox_tmo; 17194 uint16_t xritag_start = 0; 17195 int rc = 0; 17196 uint32_t shdr_status, shdr_add_status; 17197 dma_addr_t pdma_phys_bpl1; 17198 union lpfc_sli4_cfg_shdr *shdr; 17199 17200 /* Calculate the requested length of the dma memory */ 17201 reqlen = count * sizeof(struct sgl_page_pairs) + 17202 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17203 if (reqlen > SLI4_PAGE_SIZE) { 17204 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17205 "6118 Block sgl registration required DMA " 17206 "size (%d) great than a page\n", reqlen); 17207 return -ENOMEM; 17208 } 17209 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17210 if (!mbox) { 17211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17212 "6119 Failed to allocate mbox cmd memory\n"); 17213 return -ENOMEM; 17214 } 17215 17216 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17217 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17218 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17219 reqlen, LPFC_SLI4_MBX_NEMBED); 17220 17221 if (alloclen < reqlen) { 17222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17223 "6120 Allocated DMA memory size (%d) is " 17224 "less than the requested DMA memory " 17225 "size (%d)\n", alloclen, reqlen); 17226 lpfc_sli4_mbox_cmd_free(phba, mbox); 17227 return -ENOMEM; 17228 } 17229 17230 /* Get the first SGE entry from the non-embedded DMA memory */ 17231 viraddr = mbox->sge_array->addr[0]; 17232 17233 /* Set up the SGL pages in the non-embedded DMA pages */ 17234 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17235 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17236 17237 pg_pairs = 0; 17238 list_for_each_entry(lpfc_ncmd, nblist, list) { 17239 /* Set up the sge entry */ 17240 sgl_pg_pairs->sgl_pg0_addr_lo = 17241 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17242 sgl_pg_pairs->sgl_pg0_addr_hi = 17243 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17244 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17245 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17246 SGL_PAGE_SIZE; 17247 else 17248 pdma_phys_bpl1 = 0; 17249 sgl_pg_pairs->sgl_pg1_addr_lo = 17250 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17251 sgl_pg_pairs->sgl_pg1_addr_hi = 17252 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17253 /* Keep the first xritag on the list */ 17254 if (pg_pairs == 0) 17255 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17256 sgl_pg_pairs++; 17257 pg_pairs++; 17258 } 17259 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17260 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17261 /* Perform endian conversion if necessary */ 17262 sgl->word0 = cpu_to_le32(sgl->word0); 17263 17264 if (!phba->sli4_hba.intr_enable) { 17265 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17266 } else { 17267 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17268 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17269 } 17270 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17271 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17272 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17273 if (!phba->sli4_hba.intr_enable) 17274 lpfc_sli4_mbox_cmd_free(phba, mbox); 17275 else if (rc != MBX_TIMEOUT) 17276 lpfc_sli4_mbox_cmd_free(phba, mbox); 17277 if (shdr_status || shdr_add_status || rc) { 17278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17279 "6125 POST_SGL_BLOCK mailbox command failed " 17280 "status x%x add_status x%x mbx status x%x\n", 17281 shdr_status, shdr_add_status, rc); 17282 rc = -ENXIO; 17283 } 17284 return rc; 17285} 17286 17287/** 17288 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17289 * @phba: pointer to lpfc hba data structure. 17290 * @post_nblist: pointer to the nvme buffer list. 17291 * @sb_count: number of nvme buffers. 17292 * 17293 * This routine walks a list of nvme buffers that was passed in. It attempts 17294 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17295 * uses the non-embedded SGL block post mailbox commands to post to the port. 17296 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17297 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17298 * must be local list, thus no lock is needed when manipulate the list. 17299 * 17300 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17301 **/ 17302int 17303lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17304 struct list_head *post_nblist, int sb_count) 17305{ 17306 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17307 int status, sgl_size; 17308 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17309 dma_addr_t pdma_phys_sgl1; 17310 int last_xritag = NO_XRI; 17311 int cur_xritag; 17312 LIST_HEAD(prep_nblist); 17313 LIST_HEAD(blck_nblist); 17314 LIST_HEAD(nvme_nblist); 17315 17316 /* sanity check */ 17317 if (sb_count <= 0) 17318 return -EINVAL; 17319 17320 sgl_size = phba->cfg_sg_dma_buf_size; 17321 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17322 list_del_init(&lpfc_ncmd->list); 17323 block_cnt++; 17324 if ((last_xritag != NO_XRI) && 17325 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17326 /* a hole in xri block, form a sgl posting block */ 17327 list_splice_init(&prep_nblist, &blck_nblist); 17328 post_cnt = block_cnt - 1; 17329 /* prepare list for next posting block */ 17330 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17331 block_cnt = 1; 17332 } else { 17333 /* prepare list for next posting block */ 17334 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17335 /* enough sgls for non-embed sgl mbox command */ 17336 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17337 list_splice_init(&prep_nblist, &blck_nblist); 17338 post_cnt = block_cnt; 17339 block_cnt = 0; 17340 } 17341 } 17342 num_posting++; 17343 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17344 17345 /* end of repost sgl list condition for NVME buffers */ 17346 if (num_posting == sb_count) { 17347 if (post_cnt == 0) { 17348 /* last sgl posting block */ 17349 list_splice_init(&prep_nblist, &blck_nblist); 17350 post_cnt = block_cnt; 17351 } else if (block_cnt == 1) { 17352 /* last single sgl with non-contiguous xri */ 17353 if (sgl_size > SGL_PAGE_SIZE) 17354 pdma_phys_sgl1 = 17355 lpfc_ncmd->dma_phys_sgl + 17356 SGL_PAGE_SIZE; 17357 else 17358 pdma_phys_sgl1 = 0; 17359 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17360 status = lpfc_sli4_post_sgl( 17361 phba, lpfc_ncmd->dma_phys_sgl, 17362 pdma_phys_sgl1, cur_xritag); 17363 if (status) { 17364 /* Post error. Buffer unavailable. */ 17365 lpfc_ncmd->flags |= 17366 LPFC_SBUF_NOT_POSTED; 17367 } else { 17368 /* Post success. Bffer available. */ 17369 lpfc_ncmd->flags &= 17370 ~LPFC_SBUF_NOT_POSTED; 17371 lpfc_ncmd->status = IOSTAT_SUCCESS; 17372 num_posted++; 17373 } 17374 /* success, put on NVME buffer sgl list */ 17375 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17376 } 17377 } 17378 17379 /* continue until a nembed page worth of sgls */ 17380 if (post_cnt == 0) 17381 continue; 17382 17383 /* post block of NVME buffer list sgls */ 17384 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17385 post_cnt); 17386 17387 /* don't reset xirtag due to hole in xri block */ 17388 if (block_cnt == 0) 17389 last_xritag = NO_XRI; 17390 17391 /* reset NVME buffer post count for next round of posting */ 17392 post_cnt = 0; 17393 17394 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17395 while (!list_empty(&blck_nblist)) { 17396 list_remove_head(&blck_nblist, lpfc_ncmd, 17397 struct lpfc_io_buf, list); 17398 if (status) { 17399 /* Post error. Mark buffer unavailable. */ 17400 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17401 } else { 17402 /* Post success, Mark buffer available. */ 17403 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17404 lpfc_ncmd->status = IOSTAT_SUCCESS; 17405 num_posted++; 17406 } 17407 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17408 } 17409 } 17410 /* Push NVME buffers with sgl posted to the available list */ 17411 lpfc_io_buf_replenish(phba, &nvme_nblist); 17412 17413 return num_posted; 17414} 17415 17416/** 17417 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17418 * @phba: pointer to lpfc_hba struct that the frame was received on 17419 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17420 * 17421 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17422 * valid type of frame that the LPFC driver will handle. This function will 17423 * return a zero if the frame is a valid frame or a non zero value when the 17424 * frame does not pass the check. 17425 **/ 17426static int 17427lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17428{ 17429 /* make rctl_names static to save stack space */ 17430 struct fc_vft_header *fc_vft_hdr; 17431 uint32_t *header = (uint32_t *) fc_hdr; 17432 17433#define FC_RCTL_MDS_DIAGS 0xF4 17434 17435 switch (fc_hdr->fh_r_ctl) { 17436 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17437 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17438 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17439 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17440 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17441 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17442 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17443 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17444 case FC_RCTL_ELS_REQ: /* extended link services request */ 17445 case FC_RCTL_ELS_REP: /* extended link services reply */ 17446 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17447 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17448 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17449 case FC_RCTL_BA_RMC: /* remove connection */ 17450 case FC_RCTL_BA_ACC: /* basic accept */ 17451 case FC_RCTL_BA_RJT: /* basic reject */ 17452 case FC_RCTL_BA_PRMT: 17453 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17454 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17455 case FC_RCTL_P_RJT: /* port reject */ 17456 case FC_RCTL_F_RJT: /* fabric reject */ 17457 case FC_RCTL_P_BSY: /* port busy */ 17458 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17459 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17460 case FC_RCTL_LCR: /* link credit reset */ 17461 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17462 case FC_RCTL_END: /* end */ 17463 break; 17464 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17465 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17466 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17467 return lpfc_fc_frame_check(phba, fc_hdr); 17468 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17469 default: 17470 goto drop; 17471 } 17472 17473 switch (fc_hdr->fh_type) { 17474 case FC_TYPE_BLS: 17475 case FC_TYPE_ELS: 17476 case FC_TYPE_FCP: 17477 case FC_TYPE_CT: 17478 case FC_TYPE_NVME: 17479 break; 17480 case FC_TYPE_IP: 17481 case FC_TYPE_ILS: 17482 default: 17483 goto drop; 17484 } 17485 17486 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17487 "2538 Received frame rctl:x%x, type:x%x, " 17488 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17489 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17490 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17491 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17492 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17493 be32_to_cpu(header[6])); 17494 return 0; 17495drop: 17496 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17497 "2539 Dropped frame rctl:x%x type:x%x\n", 17498 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17499 return 1; 17500} 17501 17502/** 17503 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17504 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17505 * 17506 * This function processes the FC header to retrieve the VFI from the VF 17507 * header, if one exists. This function will return the VFI if one exists 17508 * or 0 if no VSAN Header exists. 17509 **/ 17510static uint32_t 17511lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17512{ 17513 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17514 17515 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17516 return 0; 17517 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17518} 17519 17520/** 17521 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17522 * @phba: Pointer to the HBA structure to search for the vport on 17523 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17524 * @fcfi: The FC Fabric ID that the frame came from 17525 * @did: Destination ID to match against 17526 * 17527 * This function searches the @phba for a vport that matches the content of the 17528 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17529 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17530 * returns the matching vport pointer or NULL if unable to match frame to a 17531 * vport. 17532 **/ 17533static struct lpfc_vport * 17534lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17535 uint16_t fcfi, uint32_t did) 17536{ 17537 struct lpfc_vport **vports; 17538 struct lpfc_vport *vport = NULL; 17539 int i; 17540 17541 if (did == Fabric_DID) 17542 return phba->pport; 17543 if ((phba->pport->fc_flag & FC_PT2PT) && 17544 !(phba->link_state == LPFC_HBA_READY)) 17545 return phba->pport; 17546 17547 vports = lpfc_create_vport_work_array(phba); 17548 if (vports != NULL) { 17549 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17550 if (phba->fcf.fcfi == fcfi && 17551 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17552 vports[i]->fc_myDID == did) { 17553 vport = vports[i]; 17554 break; 17555 } 17556 } 17557 } 17558 lpfc_destroy_vport_work_array(phba, vports); 17559 return vport; 17560} 17561 17562/** 17563 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17564 * @vport: The vport to work on. 17565 * 17566 * This function updates the receive sequence time stamp for this vport. The 17567 * receive sequence time stamp indicates the time that the last frame of the 17568 * the sequence that has been idle for the longest amount of time was received. 17569 * the driver uses this time stamp to indicate if any received sequences have 17570 * timed out. 17571 **/ 17572static void 17573lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17574{ 17575 struct lpfc_dmabuf *h_buf; 17576 struct hbq_dmabuf *dmabuf = NULL; 17577 17578 /* get the oldest sequence on the rcv list */ 17579 h_buf = list_get_first(&vport->rcv_buffer_list, 17580 struct lpfc_dmabuf, list); 17581 if (!h_buf) 17582 return; 17583 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17584 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17585} 17586 17587/** 17588 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17589 * @vport: The vport that the received sequences were sent to. 17590 * 17591 * This function cleans up all outstanding received sequences. This is called 17592 * by the driver when a link event or user action invalidates all the received 17593 * sequences. 17594 **/ 17595void 17596lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17597{ 17598 struct lpfc_dmabuf *h_buf, *hnext; 17599 struct lpfc_dmabuf *d_buf, *dnext; 17600 struct hbq_dmabuf *dmabuf = NULL; 17601 17602 /* start with the oldest sequence on the rcv list */ 17603 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17604 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17605 list_del_init(&dmabuf->hbuf.list); 17606 list_for_each_entry_safe(d_buf, dnext, 17607 &dmabuf->dbuf.list, list) { 17608 list_del_init(&d_buf->list); 17609 lpfc_in_buf_free(vport->phba, d_buf); 17610 } 17611 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17612 } 17613} 17614 17615/** 17616 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17617 * @vport: The vport that the received sequences were sent to. 17618 * 17619 * This function determines whether any received sequences have timed out by 17620 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17621 * indicates that there is at least one timed out sequence this routine will 17622 * go through the received sequences one at a time from most inactive to most 17623 * active to determine which ones need to be cleaned up. Once it has determined 17624 * that a sequence needs to be cleaned up it will simply free up the resources 17625 * without sending an abort. 17626 **/ 17627void 17628lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17629{ 17630 struct lpfc_dmabuf *h_buf, *hnext; 17631 struct lpfc_dmabuf *d_buf, *dnext; 17632 struct hbq_dmabuf *dmabuf = NULL; 17633 unsigned long timeout; 17634 int abort_count = 0; 17635 17636 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17637 vport->rcv_buffer_time_stamp); 17638 if (list_empty(&vport->rcv_buffer_list) || 17639 time_before(jiffies, timeout)) 17640 return; 17641 /* start with the oldest sequence on the rcv list */ 17642 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17643 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17644 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17645 dmabuf->time_stamp); 17646 if (time_before(jiffies, timeout)) 17647 break; 17648 abort_count++; 17649 list_del_init(&dmabuf->hbuf.list); 17650 list_for_each_entry_safe(d_buf, dnext, 17651 &dmabuf->dbuf.list, list) { 17652 list_del_init(&d_buf->list); 17653 lpfc_in_buf_free(vport->phba, d_buf); 17654 } 17655 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17656 } 17657 if (abort_count) 17658 lpfc_update_rcv_time_stamp(vport); 17659} 17660 17661/** 17662 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17663 * @vport: pointer to a vitural port 17664 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17665 * 17666 * This function searches through the existing incomplete sequences that have 17667 * been sent to this @vport. If the frame matches one of the incomplete 17668 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17669 * make up that sequence. If no sequence is found that matches this frame then 17670 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17671 * This function returns a pointer to the first dmabuf in the sequence list that 17672 * the frame was linked to. 17673 **/ 17674static struct hbq_dmabuf * 17675lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17676{ 17677 struct fc_frame_header *new_hdr; 17678 struct fc_frame_header *temp_hdr; 17679 struct lpfc_dmabuf *d_buf; 17680 struct lpfc_dmabuf *h_buf; 17681 struct hbq_dmabuf *seq_dmabuf = NULL; 17682 struct hbq_dmabuf *temp_dmabuf = NULL; 17683 uint8_t found = 0; 17684 17685 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17686 dmabuf->time_stamp = jiffies; 17687 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17688 17689 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17690 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17691 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17692 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17693 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17694 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17695 continue; 17696 /* found a pending sequence that matches this frame */ 17697 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17698 break; 17699 } 17700 if (!seq_dmabuf) { 17701 /* 17702 * This indicates first frame received for this sequence. 17703 * Queue the buffer on the vport's rcv_buffer_list. 17704 */ 17705 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17706 lpfc_update_rcv_time_stamp(vport); 17707 return dmabuf; 17708 } 17709 temp_hdr = seq_dmabuf->hbuf.virt; 17710 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17711 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17712 list_del_init(&seq_dmabuf->hbuf.list); 17713 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17714 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17715 lpfc_update_rcv_time_stamp(vport); 17716 return dmabuf; 17717 } 17718 /* move this sequence to the tail to indicate a young sequence */ 17719 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17720 seq_dmabuf->time_stamp = jiffies; 17721 lpfc_update_rcv_time_stamp(vport); 17722 if (list_empty(&seq_dmabuf->dbuf.list)) { 17723 temp_hdr = dmabuf->hbuf.virt; 17724 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17725 return seq_dmabuf; 17726 } 17727 /* find the correct place in the sequence to insert this frame */ 17728 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17729 while (!found) { 17730 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17731 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17732 /* 17733 * If the frame's sequence count is greater than the frame on 17734 * the list then insert the frame right after this frame 17735 */ 17736 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17737 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17738 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17739 found = 1; 17740 break; 17741 } 17742 17743 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17744 break; 17745 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17746 } 17747 17748 if (found) 17749 return seq_dmabuf; 17750 return NULL; 17751} 17752 17753/** 17754 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17755 * @vport: pointer to a vitural port 17756 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17757 * 17758 * This function tries to abort from the partially assembed sequence, described 17759 * by the information from basic abbort @dmabuf. It checks to see whether such 17760 * partially assembled sequence held by the driver. If so, it shall free up all 17761 * the frames from the partially assembled sequence. 17762 * 17763 * Return 17764 * true -- if there is matching partially assembled sequence present and all 17765 * the frames freed with the sequence; 17766 * false -- if there is no matching partially assembled sequence present so 17767 * nothing got aborted in the lower layer driver 17768 **/ 17769static bool 17770lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17771 struct hbq_dmabuf *dmabuf) 17772{ 17773 struct fc_frame_header *new_hdr; 17774 struct fc_frame_header *temp_hdr; 17775 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17776 struct hbq_dmabuf *seq_dmabuf = NULL; 17777 17778 /* Use the hdr_buf to find the sequence that matches this frame */ 17779 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17780 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17781 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17782 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17783 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17784 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17785 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17786 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17787 continue; 17788 /* found a pending sequence that matches this frame */ 17789 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17790 break; 17791 } 17792 17793 /* Free up all the frames from the partially assembled sequence */ 17794 if (seq_dmabuf) { 17795 list_for_each_entry_safe(d_buf, n_buf, 17796 &seq_dmabuf->dbuf.list, list) { 17797 list_del_init(&d_buf->list); 17798 lpfc_in_buf_free(vport->phba, d_buf); 17799 } 17800 return true; 17801 } 17802 return false; 17803} 17804 17805/** 17806 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17807 * @vport: pointer to a vitural port 17808 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17809 * 17810 * This function tries to abort from the assembed sequence from upper level 17811 * protocol, described by the information from basic abbort @dmabuf. It 17812 * checks to see whether such pending context exists at upper level protocol. 17813 * If so, it shall clean up the pending context. 17814 * 17815 * Return 17816 * true -- if there is matching pending context of the sequence cleaned 17817 * at ulp; 17818 * false -- if there is no matching pending context of the sequence present 17819 * at ulp. 17820 **/ 17821static bool 17822lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17823{ 17824 struct lpfc_hba *phba = vport->phba; 17825 int handled; 17826 17827 /* Accepting abort at ulp with SLI4 only */ 17828 if (phba->sli_rev < LPFC_SLI_REV4) 17829 return false; 17830 17831 /* Register all caring upper level protocols to attend abort */ 17832 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17833 if (handled) 17834 return true; 17835 17836 return false; 17837} 17838 17839/** 17840 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17841 * @phba: Pointer to HBA context object. 17842 * @cmd_iocbq: pointer to the command iocbq structure. 17843 * @rsp_iocbq: pointer to the response iocbq structure. 17844 * 17845 * This function handles the sequence abort response iocb command complete 17846 * event. It properly releases the memory allocated to the sequence abort 17847 * accept iocb. 17848 **/ 17849static void 17850lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17851 struct lpfc_iocbq *cmd_iocbq, 17852 struct lpfc_iocbq *rsp_iocbq) 17853{ 17854 struct lpfc_nodelist *ndlp; 17855 17856 if (cmd_iocbq) { 17857 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17858 lpfc_nlp_put(ndlp); 17859 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17860 } 17861 17862 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17863 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17865 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17866 rsp_iocbq->iocb.ulpStatus, 17867 rsp_iocbq->iocb.un.ulpWord[4]); 17868} 17869 17870/** 17871 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17872 * @phba: Pointer to HBA context object. 17873 * @xri: xri id in transaction. 17874 * 17875 * This function validates the xri maps to the known range of XRIs allocated an 17876 * used by the driver. 17877 **/ 17878uint16_t 17879lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17880 uint16_t xri) 17881{ 17882 uint16_t i; 17883 17884 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17885 if (xri == phba->sli4_hba.xri_ids[i]) 17886 return i; 17887 } 17888 return NO_XRI; 17889} 17890 17891/** 17892 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17893 * @vport: pointer to a vitural port. 17894 * @fc_hdr: pointer to a FC frame header. 17895 * @aborted: was the partially assembled receive sequence successfully aborted 17896 * 17897 * This function sends a basic response to a previous unsol sequence abort 17898 * event after aborting the sequence handling. 17899 **/ 17900void 17901lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17902 struct fc_frame_header *fc_hdr, bool aborted) 17903{ 17904 struct lpfc_hba *phba = vport->phba; 17905 struct lpfc_iocbq *ctiocb = NULL; 17906 struct lpfc_nodelist *ndlp; 17907 uint16_t oxid, rxid, xri, lxri; 17908 uint32_t sid, fctl; 17909 IOCB_t *icmd; 17910 int rc; 17911 17912 if (!lpfc_is_link_up(phba)) 17913 return; 17914 17915 sid = sli4_sid_from_fc_hdr(fc_hdr); 17916 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17917 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17918 17919 ndlp = lpfc_findnode_did(vport, sid); 17920 if (!ndlp) { 17921 ndlp = lpfc_nlp_init(vport, sid); 17922 if (!ndlp) { 17923 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17924 "1268 Failed to allocate ndlp for " 17925 "oxid:x%x SID:x%x\n", oxid, sid); 17926 return; 17927 } 17928 /* Put ndlp onto pport node list */ 17929 lpfc_enqueue_node(vport, ndlp); 17930 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17931 /* re-setup ndlp without removing from node list */ 17932 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17933 if (!ndlp) { 17934 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17935 "3275 Failed to active ndlp found " 17936 "for oxid:x%x SID:x%x\n", oxid, sid); 17937 return; 17938 } 17939 } 17940 17941 /* Allocate buffer for rsp iocb */ 17942 ctiocb = lpfc_sli_get_iocbq(phba); 17943 if (!ctiocb) 17944 return; 17945 17946 /* Extract the F_CTL field from FC_HDR */ 17947 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17948 17949 icmd = &ctiocb->iocb; 17950 icmd->un.xseq64.bdl.bdeSize = 0; 17951 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17952 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17953 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17954 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17955 17956 /* Fill in the rest of iocb fields */ 17957 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17958 icmd->ulpBdeCount = 0; 17959 icmd->ulpLe = 1; 17960 icmd->ulpClass = CLASS3; 17961 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17962 ctiocb->context1 = lpfc_nlp_get(ndlp); 17963 17964 ctiocb->vport = phba->pport; 17965 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17966 ctiocb->sli4_lxritag = NO_XRI; 17967 ctiocb->sli4_xritag = NO_XRI; 17968 17969 if (fctl & FC_FC_EX_CTX) 17970 /* Exchange responder sent the abort so we 17971 * own the oxid. 17972 */ 17973 xri = oxid; 17974 else 17975 xri = rxid; 17976 lxri = lpfc_sli4_xri_inrange(phba, xri); 17977 if (lxri != NO_XRI) 17978 lpfc_set_rrq_active(phba, ndlp, lxri, 17979 (xri == oxid) ? rxid : oxid, 0); 17980 /* For BA_ABTS from exchange responder, if the logical xri with 17981 * the oxid maps to the FCP XRI range, the port no longer has 17982 * that exchange context, send a BLS_RJT. Override the IOCB for 17983 * a BA_RJT. 17984 */ 17985 if ((fctl & FC_FC_EX_CTX) && 17986 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17987 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17988 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17989 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17990 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17991 } 17992 17993 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17994 * the driver no longer has that exchange, send a BLS_RJT. Override 17995 * the IOCB for a BA_RJT. 17996 */ 17997 if (aborted == false) { 17998 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17999 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18000 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18001 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18002 } 18003 18004 if (fctl & FC_FC_EX_CTX) { 18005 /* ABTS sent by responder to CT exchange, construction 18006 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18007 * field and RX_ID from ABTS for RX_ID field. 18008 */ 18009 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18010 } else { 18011 /* ABTS sent by initiator to CT exchange, construction 18012 * of BA_ACC will need to allocate a new XRI as for the 18013 * XRI_TAG field. 18014 */ 18015 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18016 } 18017 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18018 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18019 18020 /* Xmit CT abts response on exchange <xid> */ 18021 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18022 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18023 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18024 18025 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18026 if (rc == IOCB_ERROR) { 18027 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18028 "2925 Failed to issue CT ABTS RSP x%x on " 18029 "xri x%x, Data x%x\n", 18030 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18031 phba->link_state); 18032 lpfc_nlp_put(ndlp); 18033 ctiocb->context1 = NULL; 18034 lpfc_sli_release_iocbq(phba, ctiocb); 18035 } 18036} 18037 18038/** 18039 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18040 * @vport: Pointer to the vport on which this sequence was received 18041 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18042 * 18043 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18044 * receive sequence is only partially assembed by the driver, it shall abort 18045 * the partially assembled frames for the sequence. Otherwise, if the 18046 * unsolicited receive sequence has been completely assembled and passed to 18047 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18048 * unsolicited sequence has been aborted. After that, it will issue a basic 18049 * accept to accept the abort. 18050 **/ 18051static void 18052lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18053 struct hbq_dmabuf *dmabuf) 18054{ 18055 struct lpfc_hba *phba = vport->phba; 18056 struct fc_frame_header fc_hdr; 18057 uint32_t fctl; 18058 bool aborted; 18059 18060 /* Make a copy of fc_hdr before the dmabuf being released */ 18061 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18062 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18063 18064 if (fctl & FC_FC_EX_CTX) { 18065 /* ABTS by responder to exchange, no cleanup needed */ 18066 aborted = true; 18067 } else { 18068 /* ABTS by initiator to exchange, need to do cleanup */ 18069 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18070 if (aborted == false) 18071 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18072 } 18073 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18074 18075 if (phba->nvmet_support) { 18076 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18077 return; 18078 } 18079 18080 /* Respond with BA_ACC or BA_RJT accordingly */ 18081 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18082} 18083 18084/** 18085 * lpfc_seq_complete - Indicates if a sequence is complete 18086 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18087 * 18088 * This function checks the sequence, starting with the frame described by 18089 * @dmabuf, to see if all the frames associated with this sequence are present. 18090 * the frames associated with this sequence are linked to the @dmabuf using the 18091 * dbuf list. This function looks for two major things. 1) That the first frame 18092 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18093 * set. 3) That there are no holes in the sequence count. The function will 18094 * return 1 when the sequence is complete, otherwise it will return 0. 18095 **/ 18096static int 18097lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18098{ 18099 struct fc_frame_header *hdr; 18100 struct lpfc_dmabuf *d_buf; 18101 struct hbq_dmabuf *seq_dmabuf; 18102 uint32_t fctl; 18103 int seq_count = 0; 18104 18105 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18106 /* make sure first fame of sequence has a sequence count of zero */ 18107 if (hdr->fh_seq_cnt != seq_count) 18108 return 0; 18109 fctl = (hdr->fh_f_ctl[0] << 16 | 18110 hdr->fh_f_ctl[1] << 8 | 18111 hdr->fh_f_ctl[2]); 18112 /* If last frame of sequence we can return success. */ 18113 if (fctl & FC_FC_END_SEQ) 18114 return 1; 18115 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18116 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18117 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18118 /* If there is a hole in the sequence count then fail. */ 18119 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18120 return 0; 18121 fctl = (hdr->fh_f_ctl[0] << 16 | 18122 hdr->fh_f_ctl[1] << 8 | 18123 hdr->fh_f_ctl[2]); 18124 /* If last frame of sequence we can return success. */ 18125 if (fctl & FC_FC_END_SEQ) 18126 return 1; 18127 } 18128 return 0; 18129} 18130 18131/** 18132 * lpfc_prep_seq - Prep sequence for ULP processing 18133 * @vport: Pointer to the vport on which this sequence was received 18134 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18135 * 18136 * This function takes a sequence, described by a list of frames, and creates 18137 * a list of iocbq structures to describe the sequence. This iocbq list will be 18138 * used to issue to the generic unsolicited sequence handler. This routine 18139 * returns a pointer to the first iocbq in the list. If the function is unable 18140 * to allocate an iocbq then it throw out the received frames that were not 18141 * able to be described and return a pointer to the first iocbq. If unable to 18142 * allocate any iocbqs (including the first) this function will return NULL. 18143 **/ 18144static struct lpfc_iocbq * 18145lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18146{ 18147 struct hbq_dmabuf *hbq_buf; 18148 struct lpfc_dmabuf *d_buf, *n_buf; 18149 struct lpfc_iocbq *first_iocbq, *iocbq; 18150 struct fc_frame_header *fc_hdr; 18151 uint32_t sid; 18152 uint32_t len, tot_len; 18153 struct ulp_bde64 *pbde; 18154 18155 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18156 /* remove from receive buffer list */ 18157 list_del_init(&seq_dmabuf->hbuf.list); 18158 lpfc_update_rcv_time_stamp(vport); 18159 /* get the Remote Port's SID */ 18160 sid = sli4_sid_from_fc_hdr(fc_hdr); 18161 tot_len = 0; 18162 /* Get an iocbq struct to fill in. */ 18163 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18164 if (first_iocbq) { 18165 /* Initialize the first IOCB. */ 18166 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18167 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18168 first_iocbq->vport = vport; 18169 18170 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18171 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18172 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18173 first_iocbq->iocb.un.rcvels.parmRo = 18174 sli4_did_from_fc_hdr(fc_hdr); 18175 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18176 } else 18177 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18178 first_iocbq->iocb.ulpContext = NO_XRI; 18179 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18180 be16_to_cpu(fc_hdr->fh_ox_id); 18181 /* iocbq is prepped for internal consumption. Physical vpi. */ 18182 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18183 vport->phba->vpi_ids[vport->vpi]; 18184 /* put the first buffer into the first IOCBq */ 18185 tot_len = bf_get(lpfc_rcqe_length, 18186 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18187 18188 first_iocbq->context2 = &seq_dmabuf->dbuf; 18189 first_iocbq->context3 = NULL; 18190 first_iocbq->iocb.ulpBdeCount = 1; 18191 if (tot_len > LPFC_DATA_BUF_SIZE) 18192 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18193 LPFC_DATA_BUF_SIZE; 18194 else 18195 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18196 18197 first_iocbq->iocb.un.rcvels.remoteID = sid; 18198 18199 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18200 } 18201 iocbq = first_iocbq; 18202 /* 18203 * Each IOCBq can have two Buffers assigned, so go through the list 18204 * of buffers for this sequence and save two buffers in each IOCBq 18205 */ 18206 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18207 if (!iocbq) { 18208 lpfc_in_buf_free(vport->phba, d_buf); 18209 continue; 18210 } 18211 if (!iocbq->context3) { 18212 iocbq->context3 = d_buf; 18213 iocbq->iocb.ulpBdeCount++; 18214 /* We need to get the size out of the right CQE */ 18215 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18216 len = bf_get(lpfc_rcqe_length, 18217 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18218 pbde = (struct ulp_bde64 *) 18219 &iocbq->iocb.unsli3.sli3Words[4]; 18220 if (len > LPFC_DATA_BUF_SIZE) 18221 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18222 else 18223 pbde->tus.f.bdeSize = len; 18224 18225 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18226 tot_len += len; 18227 } else { 18228 iocbq = lpfc_sli_get_iocbq(vport->phba); 18229 if (!iocbq) { 18230 if (first_iocbq) { 18231 first_iocbq->iocb.ulpStatus = 18232 IOSTAT_FCP_RSP_ERROR; 18233 first_iocbq->iocb.un.ulpWord[4] = 18234 IOERR_NO_RESOURCES; 18235 } 18236 lpfc_in_buf_free(vport->phba, d_buf); 18237 continue; 18238 } 18239 /* We need to get the size out of the right CQE */ 18240 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18241 len = bf_get(lpfc_rcqe_length, 18242 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18243 iocbq->context2 = d_buf; 18244 iocbq->context3 = NULL; 18245 iocbq->iocb.ulpBdeCount = 1; 18246 if (len > LPFC_DATA_BUF_SIZE) 18247 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18248 LPFC_DATA_BUF_SIZE; 18249 else 18250 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18251 18252 tot_len += len; 18253 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18254 18255 iocbq->iocb.un.rcvels.remoteID = sid; 18256 list_add_tail(&iocbq->list, &first_iocbq->list); 18257 } 18258 } 18259 /* Free the sequence's header buffer */ 18260 if (!first_iocbq) 18261 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18262 18263 return first_iocbq; 18264} 18265 18266static void 18267lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18268 struct hbq_dmabuf *seq_dmabuf) 18269{ 18270 struct fc_frame_header *fc_hdr; 18271 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18272 struct lpfc_hba *phba = vport->phba; 18273 18274 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18275 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18276 if (!iocbq) { 18277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18278 "2707 Ring %d handler: Failed to allocate " 18279 "iocb Rctl x%x Type x%x received\n", 18280 LPFC_ELS_RING, 18281 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18282 return; 18283 } 18284 if (!lpfc_complete_unsol_iocb(phba, 18285 phba->sli4_hba.els_wq->pring, 18286 iocbq, fc_hdr->fh_r_ctl, 18287 fc_hdr->fh_type)) { 18288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18289 "2540 Ring %d handler: unexpected Rctl " 18290 "x%x Type x%x received\n", 18291 LPFC_ELS_RING, 18292 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18293 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 18294 } 18295 18296 /* Free iocb created in lpfc_prep_seq */ 18297 list_for_each_entry_safe(curr_iocb, next_iocb, 18298 &iocbq->list, list) { 18299 list_del_init(&curr_iocb->list); 18300 lpfc_sli_release_iocbq(phba, curr_iocb); 18301 } 18302 lpfc_sli_release_iocbq(phba, iocbq); 18303} 18304 18305static void 18306lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18307 struct lpfc_iocbq *rspiocb) 18308{ 18309 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18310 18311 if (pcmd && pcmd->virt) 18312 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18313 kfree(pcmd); 18314 lpfc_sli_release_iocbq(phba, cmdiocb); 18315 lpfc_drain_txq(phba); 18316} 18317 18318static void 18319lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18320 struct hbq_dmabuf *dmabuf) 18321{ 18322 struct fc_frame_header *fc_hdr; 18323 struct lpfc_hba *phba = vport->phba; 18324 struct lpfc_iocbq *iocbq = NULL; 18325 union lpfc_wqe *wqe; 18326 struct lpfc_dmabuf *pcmd = NULL; 18327 uint32_t frame_len; 18328 int rc; 18329 unsigned long iflags; 18330 18331 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18332 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18333 18334 /* Send the received frame back */ 18335 iocbq = lpfc_sli_get_iocbq(phba); 18336 if (!iocbq) { 18337 /* Queue cq event and wakeup worker thread to process it */ 18338 spin_lock_irqsave(&phba->hbalock, iflags); 18339 list_add_tail(&dmabuf->cq_event.list, 18340 &phba->sli4_hba.sp_queue_event); 18341 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18342 spin_unlock_irqrestore(&phba->hbalock, iflags); 18343 lpfc_worker_wake_up(phba); 18344 return; 18345 } 18346 18347 /* Allocate buffer for command payload */ 18348 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18349 if (pcmd) 18350 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18351 &pcmd->phys); 18352 if (!pcmd || !pcmd->virt) 18353 goto exit; 18354 18355 INIT_LIST_HEAD(&pcmd->list); 18356 18357 /* copyin the payload */ 18358 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18359 18360 /* fill in BDE's for command */ 18361 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18362 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18363 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18364 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18365 18366 iocbq->context2 = pcmd; 18367 iocbq->vport = vport; 18368 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18369 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18370 18371 /* 18372 * Setup rest of the iocb as though it were a WQE 18373 * Build the SEND_FRAME WQE 18374 */ 18375 wqe = (union lpfc_wqe *)&iocbq->iocb; 18376 18377 wqe->send_frame.frame_len = frame_len; 18378 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18379 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18380 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18381 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18382 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18383 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18384 18385 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18386 iocbq->iocb.ulpLe = 1; 18387 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18388 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18389 if (rc == IOCB_ERROR) 18390 goto exit; 18391 18392 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18393 return; 18394 18395exit: 18396 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18397 "2023 Unable to process MDS loopback frame\n"); 18398 if (pcmd && pcmd->virt) 18399 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18400 kfree(pcmd); 18401 if (iocbq) 18402 lpfc_sli_release_iocbq(phba, iocbq); 18403 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18404} 18405 18406/** 18407 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18408 * @phba: Pointer to HBA context object. 18409 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18410 * 18411 * This function is called with no lock held. This function processes all 18412 * the received buffers and gives it to upper layers when a received buffer 18413 * indicates that it is the final frame in the sequence. The interrupt 18414 * service routine processes received buffers at interrupt contexts. 18415 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18416 * appropriate receive function when the final frame in a sequence is received. 18417 **/ 18418void 18419lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18420 struct hbq_dmabuf *dmabuf) 18421{ 18422 struct hbq_dmabuf *seq_dmabuf; 18423 struct fc_frame_header *fc_hdr; 18424 struct lpfc_vport *vport; 18425 uint32_t fcfi; 18426 uint32_t did; 18427 18428 /* Process each received buffer */ 18429 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18430 18431 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18432 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18433 vport = phba->pport; 18434 /* Handle MDS Loopback frames */ 18435 if (!(phba->pport->load_flag & FC_UNLOADING)) 18436 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18437 else 18438 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18439 return; 18440 } 18441 18442 /* check to see if this a valid type of frame */ 18443 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18444 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18445 return; 18446 } 18447 18448 if ((bf_get(lpfc_cqe_code, 18449 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18450 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18451 &dmabuf->cq_event.cqe.rcqe_cmpl); 18452 else 18453 fcfi = bf_get(lpfc_rcqe_fcf_id, 18454 &dmabuf->cq_event.cqe.rcqe_cmpl); 18455 18456 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18457 vport = phba->pport; 18458 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18459 "2023 MDS Loopback %d bytes\n", 18460 bf_get(lpfc_rcqe_length, 18461 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18462 /* Handle MDS Loopback frames */ 18463 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18464 return; 18465 } 18466 18467 /* d_id this frame is directed to */ 18468 did = sli4_did_from_fc_hdr(fc_hdr); 18469 18470 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18471 if (!vport) { 18472 /* throw out the frame */ 18473 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18474 return; 18475 } 18476 18477 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18478 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18479 (did != Fabric_DID)) { 18480 /* 18481 * Throw out the frame if we are not pt2pt. 18482 * The pt2pt protocol allows for discovery frames 18483 * to be received without a registered VPI. 18484 */ 18485 if (!(vport->fc_flag & FC_PT2PT) || 18486 (phba->link_state == LPFC_HBA_READY)) { 18487 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18488 return; 18489 } 18490 } 18491 18492 /* Handle the basic abort sequence (BA_ABTS) event */ 18493 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18494 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18495 return; 18496 } 18497 18498 /* Link this frame */ 18499 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18500 if (!seq_dmabuf) { 18501 /* unable to add frame to vport - throw it out */ 18502 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18503 return; 18504 } 18505 /* If not last frame in sequence continue processing frames. */ 18506 if (!lpfc_seq_complete(seq_dmabuf)) 18507 return; 18508 18509 /* Send the complete sequence to the upper layer protocol */ 18510 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18511} 18512 18513/** 18514 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18515 * @phba: pointer to lpfc hba data structure. 18516 * 18517 * This routine is invoked to post rpi header templates to the 18518 * HBA consistent with the SLI-4 interface spec. This routine 18519 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18520 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18521 * 18522 * This routine does not require any locks. It's usage is expected 18523 * to be driver load or reset recovery when the driver is 18524 * sequential. 18525 * 18526 * Return codes 18527 * 0 - successful 18528 * -EIO - The mailbox failed to complete successfully. 18529 * When this error occurs, the driver is not guaranteed 18530 * to have any rpi regions posted to the device and 18531 * must either attempt to repost the regions or take a 18532 * fatal error. 18533 **/ 18534int 18535lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18536{ 18537 struct lpfc_rpi_hdr *rpi_page; 18538 uint32_t rc = 0; 18539 uint16_t lrpi = 0; 18540 18541 /* SLI4 ports that support extents do not require RPI headers. */ 18542 if (!phba->sli4_hba.rpi_hdrs_in_use) 18543 goto exit; 18544 if (phba->sli4_hba.extents_in_use) 18545 return -EIO; 18546 18547 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18548 /* 18549 * Assign the rpi headers a physical rpi only if the driver 18550 * has not initialized those resources. A port reset only 18551 * needs the headers posted. 18552 */ 18553 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18554 LPFC_RPI_RSRC_RDY) 18555 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18556 18557 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18558 if (rc != MBX_SUCCESS) { 18559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18560 "2008 Error %d posting all rpi " 18561 "headers\n", rc); 18562 rc = -EIO; 18563 break; 18564 } 18565 } 18566 18567 exit: 18568 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18569 LPFC_RPI_RSRC_RDY); 18570 return rc; 18571} 18572 18573/** 18574 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18575 * @phba: pointer to lpfc hba data structure. 18576 * @rpi_page: pointer to the rpi memory region. 18577 * 18578 * This routine is invoked to post a single rpi header to the 18579 * HBA consistent with the SLI-4 interface spec. This memory region 18580 * maps up to 64 rpi context regions. 18581 * 18582 * Return codes 18583 * 0 - successful 18584 * -ENOMEM - No available memory 18585 * -EIO - The mailbox failed to complete successfully. 18586 **/ 18587int 18588lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18589{ 18590 LPFC_MBOXQ_t *mboxq; 18591 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18592 uint32_t rc = 0; 18593 uint32_t shdr_status, shdr_add_status; 18594 union lpfc_sli4_cfg_shdr *shdr; 18595 18596 /* SLI4 ports that support extents do not require RPI headers. */ 18597 if (!phba->sli4_hba.rpi_hdrs_in_use) 18598 return rc; 18599 if (phba->sli4_hba.extents_in_use) 18600 return -EIO; 18601 18602 /* The port is notified of the header region via a mailbox command. */ 18603 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18604 if (!mboxq) { 18605 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18606 "2001 Unable to allocate memory for issuing " 18607 "SLI_CONFIG_SPECIAL mailbox command\n"); 18608 return -ENOMEM; 18609 } 18610 18611 /* Post all rpi memory regions to the port. */ 18612 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18613 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18614 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18615 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18616 sizeof(struct lpfc_sli4_cfg_mhdr), 18617 LPFC_SLI4_MBX_EMBED); 18618 18619 18620 /* Post the physical rpi to the port for this rpi header. */ 18621 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18622 rpi_page->start_rpi); 18623 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18624 hdr_tmpl, rpi_page->page_count); 18625 18626 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18627 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18628 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18629 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18630 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18631 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18632 mempool_free(mboxq, phba->mbox_mem_pool); 18633 if (shdr_status || shdr_add_status || rc) { 18634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18635 "2514 POST_RPI_HDR mailbox failed with " 18636 "status x%x add_status x%x, mbx status x%x\n", 18637 shdr_status, shdr_add_status, rc); 18638 rc = -ENXIO; 18639 } else { 18640 /* 18641 * The next_rpi stores the next logical module-64 rpi value used 18642 * to post physical rpis in subsequent rpi postings. 18643 */ 18644 spin_lock_irq(&phba->hbalock); 18645 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18646 spin_unlock_irq(&phba->hbalock); 18647 } 18648 return rc; 18649} 18650 18651/** 18652 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18653 * @phba: pointer to lpfc hba data structure. 18654 * 18655 * This routine is invoked to post rpi header templates to the 18656 * HBA consistent with the SLI-4 interface spec. This routine 18657 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18658 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18659 * 18660 * Returns 18661 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18662 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18663 **/ 18664int 18665lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18666{ 18667 unsigned long rpi; 18668 uint16_t max_rpi, rpi_limit; 18669 uint16_t rpi_remaining, lrpi = 0; 18670 struct lpfc_rpi_hdr *rpi_hdr; 18671 unsigned long iflag; 18672 18673 /* 18674 * Fetch the next logical rpi. Because this index is logical, 18675 * the driver starts at 0 each time. 18676 */ 18677 spin_lock_irqsave(&phba->hbalock, iflag); 18678 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18679 rpi_limit = phba->sli4_hba.next_rpi; 18680 18681 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18682 if (rpi >= rpi_limit) 18683 rpi = LPFC_RPI_ALLOC_ERROR; 18684 else { 18685 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18686 phba->sli4_hba.max_cfg_param.rpi_used++; 18687 phba->sli4_hba.rpi_count++; 18688 } 18689 lpfc_printf_log(phba, KERN_INFO, 18690 LOG_NODE | LOG_DISCOVERY, 18691 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18692 (int) rpi, max_rpi, rpi_limit); 18693 18694 /* 18695 * Don't try to allocate more rpi header regions if the device limit 18696 * has been exhausted. 18697 */ 18698 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18699 (phba->sli4_hba.rpi_count >= max_rpi)) { 18700 spin_unlock_irqrestore(&phba->hbalock, iflag); 18701 return rpi; 18702 } 18703 18704 /* 18705 * RPI header postings are not required for SLI4 ports capable of 18706 * extents. 18707 */ 18708 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18709 spin_unlock_irqrestore(&phba->hbalock, iflag); 18710 return rpi; 18711 } 18712 18713 /* 18714 * If the driver is running low on rpi resources, allocate another 18715 * page now. Note that the next_rpi value is used because 18716 * it represents how many are actually in use whereas max_rpi notes 18717 * how many are supported max by the device. 18718 */ 18719 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18720 spin_unlock_irqrestore(&phba->hbalock, iflag); 18721 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18722 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18723 if (!rpi_hdr) { 18724 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18725 "2002 Error Could not grow rpi " 18726 "count\n"); 18727 } else { 18728 lrpi = rpi_hdr->start_rpi; 18729 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18730 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18731 } 18732 } 18733 18734 return rpi; 18735} 18736 18737/** 18738 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18739 * @phba: pointer to lpfc hba data structure. 18740 * @rpi: rpi to free 18741 * 18742 * This routine is invoked to release an rpi to the pool of 18743 * available rpis maintained by the driver. 18744 **/ 18745static void 18746__lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18747{ 18748 /* 18749 * if the rpi value indicates a prior unreg has already 18750 * been done, skip the unreg. 18751 */ 18752 if (rpi == LPFC_RPI_ALLOC_ERROR) 18753 return; 18754 18755 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18756 phba->sli4_hba.rpi_count--; 18757 phba->sli4_hba.max_cfg_param.rpi_used--; 18758 } else { 18759 lpfc_printf_log(phba, KERN_INFO, 18760 LOG_NODE | LOG_DISCOVERY, 18761 "2016 rpi %x not inuse\n", 18762 rpi); 18763 } 18764} 18765 18766/** 18767 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18768 * @phba: pointer to lpfc hba data structure. 18769 * @rpi: rpi to free 18770 * 18771 * This routine is invoked to release an rpi to the pool of 18772 * available rpis maintained by the driver. 18773 **/ 18774void 18775lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18776{ 18777 spin_lock_irq(&phba->hbalock); 18778 __lpfc_sli4_free_rpi(phba, rpi); 18779 spin_unlock_irq(&phba->hbalock); 18780} 18781 18782/** 18783 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18784 * @phba: pointer to lpfc hba data structure. 18785 * 18786 * This routine is invoked to remove the memory region that 18787 * provided rpi via a bitmask. 18788 **/ 18789void 18790lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18791{ 18792 kfree(phba->sli4_hba.rpi_bmask); 18793 kfree(phba->sli4_hba.rpi_ids); 18794 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18795} 18796 18797/** 18798 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18799 * @ndlp: pointer to lpfc nodelist data structure. 18800 * @cmpl: completion call-back. 18801 * @arg: data to load as MBox 'caller buffer information' 18802 * 18803 * This routine is invoked to remove the memory region that 18804 * provided rpi via a bitmask. 18805 **/ 18806int 18807lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18808 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18809{ 18810 LPFC_MBOXQ_t *mboxq; 18811 struct lpfc_hba *phba = ndlp->phba; 18812 int rc; 18813 18814 /* The port is notified of the header region via a mailbox command. */ 18815 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18816 if (!mboxq) 18817 return -ENOMEM; 18818 18819 /* Post all rpi memory regions to the port. */ 18820 lpfc_resume_rpi(mboxq, ndlp); 18821 if (cmpl) { 18822 mboxq->mbox_cmpl = cmpl; 18823 mboxq->ctx_buf = arg; 18824 mboxq->ctx_ndlp = ndlp; 18825 } else 18826 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18827 mboxq->vport = ndlp->vport; 18828 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18829 if (rc == MBX_NOT_FINISHED) { 18830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18831 "2010 Resume RPI Mailbox failed " 18832 "status %d, mbxStatus x%x\n", rc, 18833 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18834 mempool_free(mboxq, phba->mbox_mem_pool); 18835 return -EIO; 18836 } 18837 return 0; 18838} 18839 18840/** 18841 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18842 * @vport: Pointer to the vport for which the vpi is being initialized 18843 * 18844 * This routine is invoked to activate a vpi with the port. 18845 * 18846 * Returns: 18847 * 0 success 18848 * -Evalue otherwise 18849 **/ 18850int 18851lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18852{ 18853 LPFC_MBOXQ_t *mboxq; 18854 int rc = 0; 18855 int retval = MBX_SUCCESS; 18856 uint32_t mbox_tmo; 18857 struct lpfc_hba *phba = vport->phba; 18858 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18859 if (!mboxq) 18860 return -ENOMEM; 18861 lpfc_init_vpi(phba, mboxq, vport->vpi); 18862 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18863 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18864 if (rc != MBX_SUCCESS) { 18865 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18866 "2022 INIT VPI Mailbox failed " 18867 "status %d, mbxStatus x%x\n", rc, 18868 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18869 retval = -EIO; 18870 } 18871 if (rc != MBX_TIMEOUT) 18872 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18873 18874 return retval; 18875} 18876 18877/** 18878 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18879 * @phba: pointer to lpfc hba data structure. 18880 * @mboxq: Pointer to mailbox object. 18881 * 18882 * This routine is invoked to manually add a single FCF record. The caller 18883 * must pass a completely initialized FCF_Record. This routine takes 18884 * care of the nonembedded mailbox operations. 18885 **/ 18886static void 18887lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18888{ 18889 void *virt_addr; 18890 union lpfc_sli4_cfg_shdr *shdr; 18891 uint32_t shdr_status, shdr_add_status; 18892 18893 virt_addr = mboxq->sge_array->addr[0]; 18894 /* The IOCTL status is embedded in the mailbox subheader. */ 18895 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18898 18899 if ((shdr_status || shdr_add_status) && 18900 (shdr_status != STATUS_FCF_IN_USE)) 18901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18902 "2558 ADD_FCF_RECORD mailbox failed with " 18903 "status x%x add_status x%x\n", 18904 shdr_status, shdr_add_status); 18905 18906 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18907} 18908 18909/** 18910 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18911 * @phba: pointer to lpfc hba data structure. 18912 * @fcf_record: pointer to the initialized fcf record to add. 18913 * 18914 * This routine is invoked to manually add a single FCF record. The caller 18915 * must pass a completely initialized FCF_Record. This routine takes 18916 * care of the nonembedded mailbox operations. 18917 **/ 18918int 18919lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18920{ 18921 int rc = 0; 18922 LPFC_MBOXQ_t *mboxq; 18923 uint8_t *bytep; 18924 void *virt_addr; 18925 struct lpfc_mbx_sge sge; 18926 uint32_t alloc_len, req_len; 18927 uint32_t fcfindex; 18928 18929 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18930 if (!mboxq) { 18931 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18932 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18933 return -ENOMEM; 18934 } 18935 18936 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18937 sizeof(uint32_t); 18938 18939 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18940 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18941 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18942 req_len, LPFC_SLI4_MBX_NEMBED); 18943 if (alloc_len < req_len) { 18944 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18945 "2523 Allocated DMA memory size (x%x) is " 18946 "less than the requested DMA memory " 18947 "size (x%x)\n", alloc_len, req_len); 18948 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18949 return -ENOMEM; 18950 } 18951 18952 /* 18953 * Get the first SGE entry from the non-embedded DMA memory. This 18954 * routine only uses a single SGE. 18955 */ 18956 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18957 virt_addr = mboxq->sge_array->addr[0]; 18958 /* 18959 * Configure the FCF record for FCFI 0. This is the driver's 18960 * hardcoded default and gets used in nonFIP mode. 18961 */ 18962 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18963 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18964 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18965 18966 /* 18967 * Copy the fcf_index and the FCF Record Data. The data starts after 18968 * the FCoE header plus word10. The data copy needs to be endian 18969 * correct. 18970 */ 18971 bytep += sizeof(uint32_t); 18972 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18973 mboxq->vport = phba->pport; 18974 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18975 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18976 if (rc == MBX_NOT_FINISHED) { 18977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18978 "2515 ADD_FCF_RECORD mailbox failed with " 18979 "status 0x%x\n", rc); 18980 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18981 rc = -EIO; 18982 } else 18983 rc = 0; 18984 18985 return rc; 18986} 18987 18988/** 18989 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18990 * @phba: pointer to lpfc hba data structure. 18991 * @fcf_record: pointer to the fcf record to write the default data. 18992 * @fcf_index: FCF table entry index. 18993 * 18994 * This routine is invoked to build the driver's default FCF record. The 18995 * values used are hardcoded. This routine handles memory initialization. 18996 * 18997 **/ 18998void 18999lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19000 struct fcf_record *fcf_record, 19001 uint16_t fcf_index) 19002{ 19003 memset(fcf_record, 0, sizeof(struct fcf_record)); 19004 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19005 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19006 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19007 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19008 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19009 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19010 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19011 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19012 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19013 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19014 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19015 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19016 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19017 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19018 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19019 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19020 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19021 /* Set the VLAN bit map */ 19022 if (phba->valid_vlan) { 19023 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19024 = 1 << (phba->vlan_id % 8); 19025 } 19026} 19027 19028/** 19029 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19030 * @phba: pointer to lpfc hba data structure. 19031 * @fcf_index: FCF table entry offset. 19032 * 19033 * This routine is invoked to scan the entire FCF table by reading FCF 19034 * record and processing it one at a time starting from the @fcf_index 19035 * for initial FCF discovery or fast FCF failover rediscovery. 19036 * 19037 * Return 0 if the mailbox command is submitted successfully, none 0 19038 * otherwise. 19039 **/ 19040int 19041lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19042{ 19043 int rc = 0, error; 19044 LPFC_MBOXQ_t *mboxq; 19045 19046 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19047 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19048 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19049 if (!mboxq) { 19050 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19051 "2000 Failed to allocate mbox for " 19052 "READ_FCF cmd\n"); 19053 error = -ENOMEM; 19054 goto fail_fcf_scan; 19055 } 19056 /* Construct the read FCF record mailbox command */ 19057 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19058 if (rc) { 19059 error = -EINVAL; 19060 goto fail_fcf_scan; 19061 } 19062 /* Issue the mailbox command asynchronously */ 19063 mboxq->vport = phba->pport; 19064 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19065 19066 spin_lock_irq(&phba->hbalock); 19067 phba->hba_flag |= FCF_TS_INPROG; 19068 spin_unlock_irq(&phba->hbalock); 19069 19070 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19071 if (rc == MBX_NOT_FINISHED) 19072 error = -EIO; 19073 else { 19074 /* Reset eligible FCF count for new scan */ 19075 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19076 phba->fcf.eligible_fcf_cnt = 0; 19077 error = 0; 19078 } 19079fail_fcf_scan: 19080 if (error) { 19081 if (mboxq) 19082 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19083 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19084 spin_lock_irq(&phba->hbalock); 19085 phba->hba_flag &= ~FCF_TS_INPROG; 19086 spin_unlock_irq(&phba->hbalock); 19087 } 19088 return error; 19089} 19090 19091/** 19092 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19093 * @phba: pointer to lpfc hba data structure. 19094 * @fcf_index: FCF table entry offset. 19095 * 19096 * This routine is invoked to read an FCF record indicated by @fcf_index 19097 * and to use it for FLOGI roundrobin FCF failover. 19098 * 19099 * Return 0 if the mailbox command is submitted successfully, none 0 19100 * otherwise. 19101 **/ 19102int 19103lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19104{ 19105 int rc = 0, error; 19106 LPFC_MBOXQ_t *mboxq; 19107 19108 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19109 if (!mboxq) { 19110 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19111 "2763 Failed to allocate mbox for " 19112 "READ_FCF cmd\n"); 19113 error = -ENOMEM; 19114 goto fail_fcf_read; 19115 } 19116 /* Construct the read FCF record mailbox command */ 19117 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19118 if (rc) { 19119 error = -EINVAL; 19120 goto fail_fcf_read; 19121 } 19122 /* Issue the mailbox command asynchronously */ 19123 mboxq->vport = phba->pport; 19124 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19125 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19126 if (rc == MBX_NOT_FINISHED) 19127 error = -EIO; 19128 else 19129 error = 0; 19130 19131fail_fcf_read: 19132 if (error && mboxq) 19133 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19134 return error; 19135} 19136 19137/** 19138 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19139 * @phba: pointer to lpfc hba data structure. 19140 * @fcf_index: FCF table entry offset. 19141 * 19142 * This routine is invoked to read an FCF record indicated by @fcf_index to 19143 * determine whether it's eligible for FLOGI roundrobin failover list. 19144 * 19145 * Return 0 if the mailbox command is submitted successfully, none 0 19146 * otherwise. 19147 **/ 19148int 19149lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19150{ 19151 int rc = 0, error; 19152 LPFC_MBOXQ_t *mboxq; 19153 19154 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19155 if (!mboxq) { 19156 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19157 "2758 Failed to allocate mbox for " 19158 "READ_FCF cmd\n"); 19159 error = -ENOMEM; 19160 goto fail_fcf_read; 19161 } 19162 /* Construct the read FCF record mailbox command */ 19163 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19164 if (rc) { 19165 error = -EINVAL; 19166 goto fail_fcf_read; 19167 } 19168 /* Issue the mailbox command asynchronously */ 19169 mboxq->vport = phba->pport; 19170 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19171 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19172 if (rc == MBX_NOT_FINISHED) 19173 error = -EIO; 19174 else 19175 error = 0; 19176 19177fail_fcf_read: 19178 if (error && mboxq) 19179 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19180 return error; 19181} 19182 19183/** 19184 * lpfc_check_next_fcf_pri_level 19185 * @phba: pointer to the lpfc_hba struct for this port. 19186 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19187 * routine when the rr_bmask is empty. The FCF indecies are put into the 19188 * rr_bmask based on their priority level. Starting from the highest priority 19189 * to the lowest. The most likely FCF candidate will be in the highest 19190 * priority group. When this routine is called it searches the fcf_pri list for 19191 * next lowest priority group and repopulates the rr_bmask with only those 19192 * fcf_indexes. 19193 * returns: 19194 * 1=success 0=failure 19195 **/ 19196static int 19197lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19198{ 19199 uint16_t next_fcf_pri; 19200 uint16_t last_index; 19201 struct lpfc_fcf_pri *fcf_pri; 19202 int rc; 19203 int ret = 0; 19204 19205 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19206 LPFC_SLI4_FCF_TBL_INDX_MAX); 19207 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19208 "3060 Last IDX %d\n", last_index); 19209 19210 /* Verify the priority list has 2 or more entries */ 19211 spin_lock_irq(&phba->hbalock); 19212 if (list_empty(&phba->fcf.fcf_pri_list) || 19213 list_is_singular(&phba->fcf.fcf_pri_list)) { 19214 spin_unlock_irq(&phba->hbalock); 19215 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19216 "3061 Last IDX %d\n", last_index); 19217 return 0; /* Empty rr list */ 19218 } 19219 spin_unlock_irq(&phba->hbalock); 19220 19221 next_fcf_pri = 0; 19222 /* 19223 * Clear the rr_bmask and set all of the bits that are at this 19224 * priority. 19225 */ 19226 memset(phba->fcf.fcf_rr_bmask, 0, 19227 sizeof(*phba->fcf.fcf_rr_bmask)); 19228 spin_lock_irq(&phba->hbalock); 19229 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19230 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19231 continue; 19232 /* 19233 * the 1st priority that has not FLOGI failed 19234 * will be the highest. 19235 */ 19236 if (!next_fcf_pri) 19237 next_fcf_pri = fcf_pri->fcf_rec.priority; 19238 spin_unlock_irq(&phba->hbalock); 19239 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19240 rc = lpfc_sli4_fcf_rr_index_set(phba, 19241 fcf_pri->fcf_rec.fcf_index); 19242 if (rc) 19243 return 0; 19244 } 19245 spin_lock_irq(&phba->hbalock); 19246 } 19247 /* 19248 * if next_fcf_pri was not set above and the list is not empty then 19249 * we have failed flogis on all of them. So reset flogi failed 19250 * and start at the beginning. 19251 */ 19252 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19253 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19254 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19255 /* 19256 * the 1st priority that has not FLOGI failed 19257 * will be the highest. 19258 */ 19259 if (!next_fcf_pri) 19260 next_fcf_pri = fcf_pri->fcf_rec.priority; 19261 spin_unlock_irq(&phba->hbalock); 19262 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19263 rc = lpfc_sli4_fcf_rr_index_set(phba, 19264 fcf_pri->fcf_rec.fcf_index); 19265 if (rc) 19266 return 0; 19267 } 19268 spin_lock_irq(&phba->hbalock); 19269 } 19270 } else 19271 ret = 1; 19272 spin_unlock_irq(&phba->hbalock); 19273 19274 return ret; 19275} 19276/** 19277 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19278 * @phba: pointer to lpfc hba data structure. 19279 * 19280 * This routine is to get the next eligible FCF record index in a round 19281 * robin fashion. If the next eligible FCF record index equals to the 19282 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19283 * shall be returned, otherwise, the next eligible FCF record's index 19284 * shall be returned. 19285 **/ 19286uint16_t 19287lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19288{ 19289 uint16_t next_fcf_index; 19290 19291initial_priority: 19292 /* Search start from next bit of currently registered FCF index */ 19293 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19294 19295next_priority: 19296 /* Determine the next fcf index to check */ 19297 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19298 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19299 LPFC_SLI4_FCF_TBL_INDX_MAX, 19300 next_fcf_index); 19301 19302 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19303 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19304 /* 19305 * If we have wrapped then we need to clear the bits that 19306 * have been tested so that we can detect when we should 19307 * change the priority level. 19308 */ 19309 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19310 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19311 } 19312 19313 19314 /* Check roundrobin failover list empty condition */ 19315 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19316 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19317 /* 19318 * If next fcf index is not found check if there are lower 19319 * Priority level fcf's in the fcf_priority list. 19320 * Set up the rr_bmask with all of the avaiable fcf bits 19321 * at that level and continue the selection process. 19322 */ 19323 if (lpfc_check_next_fcf_pri_level(phba)) 19324 goto initial_priority; 19325 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19326 "2844 No roundrobin failover FCF available\n"); 19327 19328 return LPFC_FCOE_FCF_NEXT_NONE; 19329 } 19330 19331 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19332 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19333 LPFC_FCF_FLOGI_FAILED) { 19334 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19335 return LPFC_FCOE_FCF_NEXT_NONE; 19336 19337 goto next_priority; 19338 } 19339 19340 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19341 "2845 Get next roundrobin failover FCF (x%x)\n", 19342 next_fcf_index); 19343 19344 return next_fcf_index; 19345} 19346 19347/** 19348 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19349 * @phba: pointer to lpfc hba data structure. 19350 * @fcf_index: index into the FCF table to 'set' 19351 * 19352 * This routine sets the FCF record index in to the eligible bmask for 19353 * roundrobin failover search. It checks to make sure that the index 19354 * does not go beyond the range of the driver allocated bmask dimension 19355 * before setting the bit. 19356 * 19357 * Returns 0 if the index bit successfully set, otherwise, it returns 19358 * -EINVAL. 19359 **/ 19360int 19361lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19362{ 19363 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19364 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19365 "2610 FCF (x%x) reached driver's book " 19366 "keeping dimension:x%x\n", 19367 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19368 return -EINVAL; 19369 } 19370 /* Set the eligible FCF record index bmask */ 19371 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19372 19373 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19374 "2790 Set FCF (x%x) to roundrobin FCF failover " 19375 "bmask\n", fcf_index); 19376 19377 return 0; 19378} 19379 19380/** 19381 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19382 * @phba: pointer to lpfc hba data structure. 19383 * @fcf_index: index into the FCF table to 'clear' 19384 * 19385 * This routine clears the FCF record index from the eligible bmask for 19386 * roundrobin failover search. It checks to make sure that the index 19387 * does not go beyond the range of the driver allocated bmask dimension 19388 * before clearing the bit. 19389 **/ 19390void 19391lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19392{ 19393 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19394 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19395 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19396 "2762 FCF (x%x) reached driver's book " 19397 "keeping dimension:x%x\n", 19398 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19399 return; 19400 } 19401 /* Clear the eligible FCF record index bmask */ 19402 spin_lock_irq(&phba->hbalock); 19403 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19404 list) { 19405 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19406 list_del_init(&fcf_pri->list); 19407 break; 19408 } 19409 } 19410 spin_unlock_irq(&phba->hbalock); 19411 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19412 19413 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19414 "2791 Clear FCF (x%x) from roundrobin failover " 19415 "bmask\n", fcf_index); 19416} 19417 19418/** 19419 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19420 * @phba: pointer to lpfc hba data structure. 19421 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19422 * 19423 * This routine is the completion routine for the rediscover FCF table mailbox 19424 * command. If the mailbox command returned failure, it will try to stop the 19425 * FCF rediscover wait timer. 19426 **/ 19427static void 19428lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19429{ 19430 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19431 uint32_t shdr_status, shdr_add_status; 19432 19433 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19434 19435 shdr_status = bf_get(lpfc_mbox_hdr_status, 19436 &redisc_fcf->header.cfg_shdr.response); 19437 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19438 &redisc_fcf->header.cfg_shdr.response); 19439 if (shdr_status || shdr_add_status) { 19440 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19441 "2746 Requesting for FCF rediscovery failed " 19442 "status x%x add_status x%x\n", 19443 shdr_status, shdr_add_status); 19444 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19445 spin_lock_irq(&phba->hbalock); 19446 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19447 spin_unlock_irq(&phba->hbalock); 19448 /* 19449 * CVL event triggered FCF rediscover request failed, 19450 * last resort to re-try current registered FCF entry. 19451 */ 19452 lpfc_retry_pport_discovery(phba); 19453 } else { 19454 spin_lock_irq(&phba->hbalock); 19455 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19456 spin_unlock_irq(&phba->hbalock); 19457 /* 19458 * DEAD FCF event triggered FCF rediscover request 19459 * failed, last resort to fail over as a link down 19460 * to FCF registration. 19461 */ 19462 lpfc_sli4_fcf_dead_failthrough(phba); 19463 } 19464 } else { 19465 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19466 "2775 Start FCF rediscover quiescent timer\n"); 19467 /* 19468 * Start FCF rediscovery wait timer for pending FCF 19469 * before rescan FCF record table. 19470 */ 19471 lpfc_fcf_redisc_wait_start_timer(phba); 19472 } 19473 19474 mempool_free(mbox, phba->mbox_mem_pool); 19475} 19476 19477/** 19478 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19479 * @phba: pointer to lpfc hba data structure. 19480 * 19481 * This routine is invoked to request for rediscovery of the entire FCF table 19482 * by the port. 19483 **/ 19484int 19485lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19486{ 19487 LPFC_MBOXQ_t *mbox; 19488 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19489 int rc, length; 19490 19491 /* Cancel retry delay timers to all vports before FCF rediscover */ 19492 lpfc_cancel_all_vport_retry_delay_timer(phba); 19493 19494 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19495 if (!mbox) { 19496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19497 "2745 Failed to allocate mbox for " 19498 "requesting FCF rediscover.\n"); 19499 return -ENOMEM; 19500 } 19501 19502 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19503 sizeof(struct lpfc_sli4_cfg_mhdr)); 19504 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19505 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19506 length, LPFC_SLI4_MBX_EMBED); 19507 19508 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19509 /* Set count to 0 for invalidating the entire FCF database */ 19510 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19511 19512 /* Issue the mailbox command asynchronously */ 19513 mbox->vport = phba->pport; 19514 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19515 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19516 19517 if (rc == MBX_NOT_FINISHED) { 19518 mempool_free(mbox, phba->mbox_mem_pool); 19519 return -EIO; 19520 } 19521 return 0; 19522} 19523 19524/** 19525 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19526 * @phba: pointer to lpfc hba data structure. 19527 * 19528 * This function is the failover routine as a last resort to the FCF DEAD 19529 * event when driver failed to perform fast FCF failover. 19530 **/ 19531void 19532lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19533{ 19534 uint32_t link_state; 19535 19536 /* 19537 * Last resort as FCF DEAD event failover will treat this as 19538 * a link down, but save the link state because we don't want 19539 * it to be changed to Link Down unless it is already down. 19540 */ 19541 link_state = phba->link_state; 19542 lpfc_linkdown(phba); 19543 phba->link_state = link_state; 19544 19545 /* Unregister FCF if no devices connected to it */ 19546 lpfc_unregister_unused_fcf(phba); 19547} 19548 19549/** 19550 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19551 * @phba: pointer to lpfc hba data structure. 19552 * @rgn23_data: pointer to configure region 23 data. 19553 * 19554 * This function gets SLI3 port configure region 23 data through memory dump 19555 * mailbox command. When it successfully retrieves data, the size of the data 19556 * will be returned, otherwise, 0 will be returned. 19557 **/ 19558static uint32_t 19559lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19560{ 19561 LPFC_MBOXQ_t *pmb = NULL; 19562 MAILBOX_t *mb; 19563 uint32_t offset = 0; 19564 int i, rc; 19565 19566 if (!rgn23_data) 19567 return 0; 19568 19569 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19570 if (!pmb) { 19571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19572 "2600 failed to allocate mailbox memory\n"); 19573 return 0; 19574 } 19575 mb = &pmb->u.mb; 19576 19577 do { 19578 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19579 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19580 19581 if (rc != MBX_SUCCESS) { 19582 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19583 "2601 failed to read config " 19584 "region 23, rc 0x%x Status 0x%x\n", 19585 rc, mb->mbxStatus); 19586 mb->un.varDmp.word_cnt = 0; 19587 } 19588 /* 19589 * dump mem may return a zero when finished or we got a 19590 * mailbox error, either way we are done. 19591 */ 19592 if (mb->un.varDmp.word_cnt == 0) 19593 break; 19594 19595 i = mb->un.varDmp.word_cnt * sizeof(uint32_t); 19596 if (offset + i > DMP_RGN23_SIZE) 19597 i = DMP_RGN23_SIZE - offset; 19598 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19599 rgn23_data + offset, i); 19600 offset += i; 19601 } while (offset < DMP_RGN23_SIZE); 19602 19603 mempool_free(pmb, phba->mbox_mem_pool); 19604 return offset; 19605} 19606 19607/** 19608 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19609 * @phba: pointer to lpfc hba data structure. 19610 * @rgn23_data: pointer to configure region 23 data. 19611 * 19612 * This function gets SLI4 port configure region 23 data through memory dump 19613 * mailbox command. When it successfully retrieves data, the size of the data 19614 * will be returned, otherwise, 0 will be returned. 19615 **/ 19616static uint32_t 19617lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19618{ 19619 LPFC_MBOXQ_t *mboxq = NULL; 19620 struct lpfc_dmabuf *mp = NULL; 19621 struct lpfc_mqe *mqe; 19622 uint32_t data_length = 0; 19623 int rc; 19624 19625 if (!rgn23_data) 19626 return 0; 19627 19628 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19629 if (!mboxq) { 19630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19631 "3105 failed to allocate mailbox memory\n"); 19632 return 0; 19633 } 19634 19635 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19636 goto out; 19637 mqe = &mboxq->u.mqe; 19638 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19639 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19640 if (rc) 19641 goto out; 19642 data_length = mqe->un.mb_words[5]; 19643 if (data_length == 0) 19644 goto out; 19645 if (data_length > DMP_RGN23_SIZE) { 19646 data_length = 0; 19647 goto out; 19648 } 19649 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19650out: 19651 mempool_free(mboxq, phba->mbox_mem_pool); 19652 if (mp) { 19653 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19654 kfree(mp); 19655 } 19656 return data_length; 19657} 19658 19659/** 19660 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19661 * @phba: pointer to lpfc hba data structure. 19662 * 19663 * This function read region 23 and parse TLV for port status to 19664 * decide if the user disaled the port. If the TLV indicates the 19665 * port is disabled, the hba_flag is set accordingly. 19666 **/ 19667void 19668lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19669{ 19670 uint8_t *rgn23_data = NULL; 19671 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19672 uint32_t offset = 0; 19673 19674 /* Get adapter Region 23 data */ 19675 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19676 if (!rgn23_data) 19677 goto out; 19678 19679 if (phba->sli_rev < LPFC_SLI_REV4) 19680 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19681 else { 19682 if_type = bf_get(lpfc_sli_intf_if_type, 19683 &phba->sli4_hba.sli_intf); 19684 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19685 goto out; 19686 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19687 } 19688 19689 if (!data_size) 19690 goto out; 19691 19692 /* Check the region signature first */ 19693 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19695 "2619 Config region 23 has bad signature\n"); 19696 goto out; 19697 } 19698 offset += 4; 19699 19700 /* Check the data structure version */ 19701 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19703 "2620 Config region 23 has bad version\n"); 19704 goto out; 19705 } 19706 offset += 4; 19707 19708 /* Parse TLV entries in the region */ 19709 while (offset < data_size) { 19710 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19711 break; 19712 /* 19713 * If the TLV is not driver specific TLV or driver id is 19714 * not linux driver id, skip the record. 19715 */ 19716 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19717 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19718 (rgn23_data[offset + 3] != 0)) { 19719 offset += rgn23_data[offset + 1] * 4 + 4; 19720 continue; 19721 } 19722 19723 /* Driver found a driver specific TLV in the config region */ 19724 sub_tlv_len = rgn23_data[offset + 1] * 4; 19725 offset += 4; 19726 tlv_offset = 0; 19727 19728 /* 19729 * Search for configured port state sub-TLV. 19730 */ 19731 while ((offset < data_size) && 19732 (tlv_offset < sub_tlv_len)) { 19733 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19734 offset += 4; 19735 tlv_offset += 4; 19736 break; 19737 } 19738 if (rgn23_data[offset] != PORT_STE_TYPE) { 19739 offset += rgn23_data[offset + 1] * 4 + 4; 19740 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19741 continue; 19742 } 19743 19744 /* This HBA contains PORT_STE configured */ 19745 if (!rgn23_data[offset + 2]) 19746 phba->hba_flag |= LINK_DISABLED; 19747 19748 goto out; 19749 } 19750 } 19751 19752out: 19753 kfree(rgn23_data); 19754 return; 19755} 19756 19757/** 19758 * lpfc_wr_object - write an object to the firmware 19759 * @phba: HBA structure that indicates port to create a queue on. 19760 * @dmabuf_list: list of dmabufs to write to the port. 19761 * @size: the total byte value of the objects to write to the port. 19762 * @offset: the current offset to be used to start the transfer. 19763 * 19764 * This routine will create a wr_object mailbox command to send to the port. 19765 * the mailbox command will be constructed using the dma buffers described in 19766 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19767 * BDEs that the imbedded mailbox can support. The @offset variable will be 19768 * used to indicate the starting offset of the transfer and will also return 19769 * the offset after the write object mailbox has completed. @size is used to 19770 * determine the end of the object and whether the eof bit should be set. 19771 * 19772 * Return 0 is successful and offset will contain the the new offset to use 19773 * for the next write. 19774 * Return negative value for error cases. 19775 **/ 19776int 19777lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19778 uint32_t size, uint32_t *offset) 19779{ 19780 struct lpfc_mbx_wr_object *wr_object; 19781 LPFC_MBOXQ_t *mbox; 19782 int rc = 0, i = 0; 19783 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 19784 uint32_t mbox_tmo; 19785 struct lpfc_dmabuf *dmabuf; 19786 uint32_t written = 0; 19787 bool check_change_status = false; 19788 19789 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19790 if (!mbox) 19791 return -ENOMEM; 19792 19793 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19794 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19795 sizeof(struct lpfc_mbx_wr_object) - 19796 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19797 19798 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19799 wr_object->u.request.write_offset = *offset; 19800 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19801 wr_object->u.request.object_name[0] = 19802 cpu_to_le32(wr_object->u.request.object_name[0]); 19803 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19804 list_for_each_entry(dmabuf, dmabuf_list, list) { 19805 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19806 break; 19807 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19808 wr_object->u.request.bde[i].addrHigh = 19809 putPaddrHigh(dmabuf->phys); 19810 if (written + SLI4_PAGE_SIZE >= size) { 19811 wr_object->u.request.bde[i].tus.f.bdeSize = 19812 (size - written); 19813 written += (size - written); 19814 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19815 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19816 check_change_status = true; 19817 } else { 19818 wr_object->u.request.bde[i].tus.f.bdeSize = 19819 SLI4_PAGE_SIZE; 19820 written += SLI4_PAGE_SIZE; 19821 } 19822 i++; 19823 } 19824 wr_object->u.request.bde_count = i; 19825 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19826 if (!phba->sli4_hba.intr_enable) 19827 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19828 else { 19829 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19830 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19831 } 19832 /* The IOCTL status is embedded in the mailbox subheader. */ 19833 shdr_status = bf_get(lpfc_mbox_hdr_status, 19834 &wr_object->header.cfg_shdr.response); 19835 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19836 &wr_object->header.cfg_shdr.response); 19837 if (check_change_status) { 19838 shdr_change_status = bf_get(lpfc_wr_object_change_status, 19839 &wr_object->u.response); 19840 19841 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 19842 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 19843 shdr_csf = bf_get(lpfc_wr_object_csf, 19844 &wr_object->u.response); 19845 if (shdr_csf) 19846 shdr_change_status = 19847 LPFC_CHANGE_STATUS_PCI_RESET; 19848 } 19849 19850 switch (shdr_change_status) { 19851 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 19852 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19853 "3198 Firmware write complete: System " 19854 "reboot required to instantiate\n"); 19855 break; 19856 case (LPFC_CHANGE_STATUS_FW_RESET): 19857 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19858 "3199 Firmware write complete: Firmware" 19859 " reset required to instantiate\n"); 19860 break; 19861 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 19862 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19863 "3200 Firmware write complete: Port " 19864 "Migration or PCI Reset required to " 19865 "instantiate\n"); 19866 break; 19867 case (LPFC_CHANGE_STATUS_PCI_RESET): 19868 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19869 "3201 Firmware write complete: PCI " 19870 "Reset required to instantiate\n"); 19871 break; 19872 default: 19873 break; 19874 } 19875 } 19876 if (!phba->sli4_hba.intr_enable) 19877 mempool_free(mbox, phba->mbox_mem_pool); 19878 else if (rc != MBX_TIMEOUT) 19879 mempool_free(mbox, phba->mbox_mem_pool); 19880 if (shdr_status || shdr_add_status || rc) { 19881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19882 "3025 Write Object mailbox failed with " 19883 "status x%x add_status x%x, mbx status x%x\n", 19884 shdr_status, shdr_add_status, rc); 19885 rc = -ENXIO; 19886 *offset = shdr_add_status; 19887 } else 19888 *offset += wr_object->u.response.actual_write_length; 19889 return rc; 19890} 19891 19892/** 19893 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19894 * @vport: pointer to vport data structure. 19895 * 19896 * This function iterate through the mailboxq and clean up all REG_LOGIN 19897 * and REG_VPI mailbox commands associated with the vport. This function 19898 * is called when driver want to restart discovery of the vport due to 19899 * a Clear Virtual Link event. 19900 **/ 19901void 19902lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19903{ 19904 struct lpfc_hba *phba = vport->phba; 19905 LPFC_MBOXQ_t *mb, *nextmb; 19906 struct lpfc_dmabuf *mp; 19907 struct lpfc_nodelist *ndlp; 19908 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19909 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19910 LIST_HEAD(mbox_cmd_list); 19911 uint8_t restart_loop; 19912 19913 /* Clean up internally queued mailbox commands with the vport */ 19914 spin_lock_irq(&phba->hbalock); 19915 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19916 if (mb->vport != vport) 19917 continue; 19918 19919 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19920 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19921 continue; 19922 19923 list_del(&mb->list); 19924 list_add_tail(&mb->list, &mbox_cmd_list); 19925 } 19926 /* Clean up active mailbox command with the vport */ 19927 mb = phba->sli.mbox_active; 19928 if (mb && (mb->vport == vport)) { 19929 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19930 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19931 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19932 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19933 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19934 /* Put reference count for delayed processing */ 19935 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19936 /* Unregister the RPI when mailbox complete */ 19937 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19938 } 19939 } 19940 /* Cleanup any mailbox completions which are not yet processed */ 19941 do { 19942 restart_loop = 0; 19943 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19944 /* 19945 * If this mailox is already processed or it is 19946 * for another vport ignore it. 19947 */ 19948 if ((mb->vport != vport) || 19949 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19950 continue; 19951 19952 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19953 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19954 continue; 19955 19956 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19957 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19958 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19959 /* Unregister the RPI when mailbox complete */ 19960 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19961 restart_loop = 1; 19962 spin_unlock_irq(&phba->hbalock); 19963 spin_lock(shost->host_lock); 19964 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19965 spin_unlock(shost->host_lock); 19966 spin_lock_irq(&phba->hbalock); 19967 break; 19968 } 19969 } 19970 } while (restart_loop); 19971 19972 spin_unlock_irq(&phba->hbalock); 19973 19974 /* Release the cleaned-up mailbox commands */ 19975 while (!list_empty(&mbox_cmd_list)) { 19976 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19977 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19978 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 19979 if (mp) { 19980 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19981 kfree(mp); 19982 } 19983 mb->ctx_buf = NULL; 19984 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19985 mb->ctx_ndlp = NULL; 19986 if (ndlp) { 19987 spin_lock(shost->host_lock); 19988 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19989 spin_unlock(shost->host_lock); 19990 lpfc_nlp_put(ndlp); 19991 } 19992 } 19993 mempool_free(mb, phba->mbox_mem_pool); 19994 } 19995 19996 /* Release the ndlp with the cleaned-up active mailbox command */ 19997 if (act_mbx_ndlp) { 19998 spin_lock(shost->host_lock); 19999 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20000 spin_unlock(shost->host_lock); 20001 lpfc_nlp_put(act_mbx_ndlp); 20002 } 20003} 20004 20005/** 20006 * lpfc_drain_txq - Drain the txq 20007 * @phba: Pointer to HBA context object. 20008 * 20009 * This function attempt to submit IOCBs on the txq 20010 * to the adapter. For SLI4 adapters, the txq contains 20011 * ELS IOCBs that have been deferred because the there 20012 * are no SGLs. This congestion can occur with large 20013 * vport counts during node discovery. 20014 **/ 20015 20016uint32_t 20017lpfc_drain_txq(struct lpfc_hba *phba) 20018{ 20019 LIST_HEAD(completions); 20020 struct lpfc_sli_ring *pring; 20021 struct lpfc_iocbq *piocbq = NULL; 20022 unsigned long iflags = 0; 20023 char *fail_msg = NULL; 20024 struct lpfc_sglq *sglq; 20025 union lpfc_wqe128 wqe; 20026 uint32_t txq_cnt = 0; 20027 struct lpfc_queue *wq; 20028 20029 if (phba->link_flag & LS_MDS_LOOPBACK) { 20030 /* MDS WQE are posted only to first WQ*/ 20031 wq = phba->sli4_hba.hdwq[0].io_wq; 20032 if (unlikely(!wq)) 20033 return 0; 20034 pring = wq->pring; 20035 } else { 20036 wq = phba->sli4_hba.els_wq; 20037 if (unlikely(!wq)) 20038 return 0; 20039 pring = lpfc_phba_elsring(phba); 20040 } 20041 20042 if (unlikely(!pring) || list_empty(&pring->txq)) 20043 return 0; 20044 20045 spin_lock_irqsave(&pring->ring_lock, iflags); 20046 list_for_each_entry(piocbq, &pring->txq, list) { 20047 txq_cnt++; 20048 } 20049 20050 if (txq_cnt > pring->txq_max) 20051 pring->txq_max = txq_cnt; 20052 20053 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20054 20055 while (!list_empty(&pring->txq)) { 20056 spin_lock_irqsave(&pring->ring_lock, iflags); 20057 20058 piocbq = lpfc_sli_ringtx_get(phba, pring); 20059 if (!piocbq) { 20060 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20061 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20062 "2823 txq empty and txq_cnt is %d\n ", 20063 txq_cnt); 20064 break; 20065 } 20066 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 20067 if (!sglq) { 20068 __lpfc_sli_ringtx_put(phba, pring, piocbq); 20069 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20070 break; 20071 } 20072 txq_cnt--; 20073 20074 /* The xri and iocb resources secured, 20075 * attempt to issue request 20076 */ 20077 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20078 piocbq->sli4_xritag = sglq->sli4_xritag; 20079 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20080 fail_msg = "to convert bpl to sgl"; 20081 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20082 fail_msg = "to convert iocb to wqe"; 20083 else if (lpfc_sli4_wq_put(wq, &wqe)) 20084 fail_msg = " - Wq is full"; 20085 else 20086 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20087 20088 if (fail_msg) { 20089 /* Failed means we can't issue and need to cancel */ 20090 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20091 "2822 IOCB failed %s iotag 0x%x " 20092 "xri 0x%x\n", 20093 fail_msg, 20094 piocbq->iotag, piocbq->sli4_xritag); 20095 list_add_tail(&piocbq->list, &completions); 20096 fail_msg = NULL; 20097 } 20098 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20099 } 20100 20101 /* Cancel all the IOCBs that cannot be issued */ 20102 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20103 IOERR_SLI_ABORTED); 20104 20105 return txq_cnt; 20106} 20107 20108/** 20109 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20110 * @phba: Pointer to HBA context object. 20111 * @pwqeq: Pointer to command WQE. 20112 * @sglq: Pointer to the scatter gather queue object. 20113 * 20114 * This routine converts the bpl or bde that is in the WQE 20115 * to a sgl list for the sli4 hardware. The physical address 20116 * of the bpl/bde is converted back to a virtual address. 20117 * If the WQE contains a BPL then the list of BDE's is 20118 * converted to sli4_sge's. If the WQE contains a single 20119 * BDE then it is converted to a single sli_sge. 20120 * The WQE is still in cpu endianness so the contents of 20121 * the bpl can be used without byte swapping. 20122 * 20123 * Returns valid XRI = Success, NO_XRI = Failure. 20124 */ 20125static uint16_t 20126lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20127 struct lpfc_sglq *sglq) 20128{ 20129 uint16_t xritag = NO_XRI; 20130 struct ulp_bde64 *bpl = NULL; 20131 struct ulp_bde64 bde; 20132 struct sli4_sge *sgl = NULL; 20133 struct lpfc_dmabuf *dmabuf; 20134 union lpfc_wqe128 *wqe; 20135 int numBdes = 0; 20136 int i = 0; 20137 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20138 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20139 uint32_t cmd; 20140 20141 if (!pwqeq || !sglq) 20142 return xritag; 20143 20144 sgl = (struct sli4_sge *)sglq->sgl; 20145 wqe = &pwqeq->wqe; 20146 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20147 20148 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20149 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20150 return sglq->sli4_xritag; 20151 numBdes = pwqeq->rsvd2; 20152 if (numBdes) { 20153 /* The addrHigh and addrLow fields within the WQE 20154 * have not been byteswapped yet so there is no 20155 * need to swap them back. 20156 */ 20157 if (pwqeq->context3) 20158 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20159 else 20160 return xritag; 20161 20162 bpl = (struct ulp_bde64 *)dmabuf->virt; 20163 if (!bpl) 20164 return xritag; 20165 20166 for (i = 0; i < numBdes; i++) { 20167 /* Should already be byte swapped. */ 20168 sgl->addr_hi = bpl->addrHigh; 20169 sgl->addr_lo = bpl->addrLow; 20170 20171 sgl->word2 = le32_to_cpu(sgl->word2); 20172 if ((i+1) == numBdes) 20173 bf_set(lpfc_sli4_sge_last, sgl, 1); 20174 else 20175 bf_set(lpfc_sli4_sge_last, sgl, 0); 20176 /* swap the size field back to the cpu so we 20177 * can assign it to the sgl. 20178 */ 20179 bde.tus.w = le32_to_cpu(bpl->tus.w); 20180 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20181 /* The offsets in the sgl need to be accumulated 20182 * separately for the request and reply lists. 20183 * The request is always first, the reply follows. 20184 */ 20185 switch (cmd) { 20186 case CMD_GEN_REQUEST64_WQE: 20187 /* add up the reply sg entries */ 20188 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20189 inbound++; 20190 /* first inbound? reset the offset */ 20191 if (inbound == 1) 20192 offset = 0; 20193 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20194 bf_set(lpfc_sli4_sge_type, sgl, 20195 LPFC_SGE_TYPE_DATA); 20196 offset += bde.tus.f.bdeSize; 20197 break; 20198 case CMD_FCP_TRSP64_WQE: 20199 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20200 bf_set(lpfc_sli4_sge_type, sgl, 20201 LPFC_SGE_TYPE_DATA); 20202 break; 20203 case CMD_FCP_TSEND64_WQE: 20204 case CMD_FCP_TRECEIVE64_WQE: 20205 bf_set(lpfc_sli4_sge_type, sgl, 20206 bpl->tus.f.bdeFlags); 20207 if (i < 3) 20208 offset = 0; 20209 else 20210 offset += bde.tus.f.bdeSize; 20211 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20212 break; 20213 } 20214 sgl->word2 = cpu_to_le32(sgl->word2); 20215 bpl++; 20216 sgl++; 20217 } 20218 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20219 /* The addrHigh and addrLow fields of the BDE have not 20220 * been byteswapped yet so they need to be swapped 20221 * before putting them in the sgl. 20222 */ 20223 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20224 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20225 sgl->word2 = le32_to_cpu(sgl->word2); 20226 bf_set(lpfc_sli4_sge_last, sgl, 1); 20227 sgl->word2 = cpu_to_le32(sgl->word2); 20228 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20229 } 20230 return sglq->sli4_xritag; 20231} 20232 20233/** 20234 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20235 * @phba: Pointer to HBA context object. 20236 * @qp: Pointer to HDW queue. 20237 * @pwqe: Pointer to command WQE. 20238 **/ 20239int 20240lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20241 struct lpfc_iocbq *pwqe) 20242{ 20243 union lpfc_wqe128 *wqe = &pwqe->wqe; 20244 struct lpfc_async_xchg_ctx *ctxp; 20245 struct lpfc_queue *wq; 20246 struct lpfc_sglq *sglq; 20247 struct lpfc_sli_ring *pring; 20248 unsigned long iflags; 20249 uint32_t ret = 0; 20250 20251 /* NVME_LS and NVME_LS ABTS requests. */ 20252 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20253 pring = phba->sli4_hba.nvmels_wq->pring; 20254 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20255 qp, wq_access); 20256 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20257 if (!sglq) { 20258 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20259 return WQE_BUSY; 20260 } 20261 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20262 pwqe->sli4_xritag = sglq->sli4_xritag; 20263 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20264 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20265 return WQE_ERROR; 20266 } 20267 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20268 pwqe->sli4_xritag); 20269 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20270 if (ret) { 20271 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20272 return ret; 20273 } 20274 20275 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20276 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20277 20278 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20279 return 0; 20280 } 20281 20282 /* NVME_FCREQ and NVME_ABTS requests */ 20283 if (pwqe->iocb_flag & LPFC_IO_NVME) { 20284 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20285 wq = qp->io_wq; 20286 pring = wq->pring; 20287 20288 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20289 20290 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20291 qp, wq_access); 20292 ret = lpfc_sli4_wq_put(wq, wqe); 20293 if (ret) { 20294 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20295 return ret; 20296 } 20297 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20298 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20299 20300 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20301 return 0; 20302 } 20303 20304 /* NVMET requests */ 20305 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20306 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20307 wq = qp->io_wq; 20308 pring = wq->pring; 20309 20310 ctxp = pwqe->context2; 20311 sglq = ctxp->ctxbuf->sglq; 20312 if (pwqe->sli4_xritag == NO_XRI) { 20313 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20314 pwqe->sli4_xritag = sglq->sli4_xritag; 20315 } 20316 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20317 pwqe->sli4_xritag); 20318 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20319 20320 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20321 qp, wq_access); 20322 ret = lpfc_sli4_wq_put(wq, wqe); 20323 if (ret) { 20324 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20325 return ret; 20326 } 20327 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20328 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20329 20330 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20331 return 0; 20332 } 20333 return WQE_ERROR; 20334} 20335 20336#ifdef LPFC_MXP_STAT 20337/** 20338 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20339 * @phba: pointer to lpfc hba data structure. 20340 * @hwqid: belong to which HWQ. 20341 * 20342 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20343 * 15 seconds after a test case is running. 20344 * 20345 * The user should call lpfc_debugfs_multixripools_write before running a test 20346 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20347 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20348 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20349 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20350 **/ 20351void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20352{ 20353 struct lpfc_sli4_hdw_queue *qp; 20354 struct lpfc_multixri_pool *multixri_pool; 20355 struct lpfc_pvt_pool *pvt_pool; 20356 struct lpfc_pbl_pool *pbl_pool; 20357 u32 txcmplq_cnt; 20358 20359 qp = &phba->sli4_hba.hdwq[hwqid]; 20360 multixri_pool = qp->p_multixri_pool; 20361 if (!multixri_pool) 20362 return; 20363 20364 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20365 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20366 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20367 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20368 20369 multixri_pool->stat_pbl_count = pbl_pool->count; 20370 multixri_pool->stat_pvt_count = pvt_pool->count; 20371 multixri_pool->stat_busy_count = txcmplq_cnt; 20372 } 20373 20374 multixri_pool->stat_snapshot_taken++; 20375} 20376#endif 20377 20378/** 20379 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20380 * @phba: pointer to lpfc hba data structure. 20381 * @hwqid: belong to which HWQ. 20382 * 20383 * This routine moves some XRIs from private to public pool when private pool 20384 * is not busy. 20385 **/ 20386void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20387{ 20388 struct lpfc_multixri_pool *multixri_pool; 20389 u32 io_req_count; 20390 u32 prev_io_req_count; 20391 20392 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20393 if (!multixri_pool) 20394 return; 20395 io_req_count = multixri_pool->io_req_count; 20396 prev_io_req_count = multixri_pool->prev_io_req_count; 20397 20398 if (prev_io_req_count != io_req_count) { 20399 /* Private pool is busy */ 20400 multixri_pool->prev_io_req_count = io_req_count; 20401 } else { 20402 /* Private pool is not busy. 20403 * Move XRIs from private to public pool. 20404 */ 20405 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20406 } 20407} 20408 20409/** 20410 * lpfc_adjust_high_watermark - Adjust high watermark 20411 * @phba: pointer to lpfc hba data structure. 20412 * @hwqid: belong to which HWQ. 20413 * 20414 * This routine sets high watermark as number of outstanding XRIs, 20415 * but make sure the new value is between xri_limit/2 and xri_limit. 20416 **/ 20417void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20418{ 20419 u32 new_watermark; 20420 u32 watermark_max; 20421 u32 watermark_min; 20422 u32 xri_limit; 20423 u32 txcmplq_cnt; 20424 u32 abts_io_bufs; 20425 struct lpfc_multixri_pool *multixri_pool; 20426 struct lpfc_sli4_hdw_queue *qp; 20427 20428 qp = &phba->sli4_hba.hdwq[hwqid]; 20429 multixri_pool = qp->p_multixri_pool; 20430 if (!multixri_pool) 20431 return; 20432 xri_limit = multixri_pool->xri_limit; 20433 20434 watermark_max = xri_limit; 20435 watermark_min = xri_limit / 2; 20436 20437 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20438 abts_io_bufs = qp->abts_scsi_io_bufs; 20439 abts_io_bufs += qp->abts_nvme_io_bufs; 20440 20441 new_watermark = txcmplq_cnt + abts_io_bufs; 20442 new_watermark = min(watermark_max, new_watermark); 20443 new_watermark = max(watermark_min, new_watermark); 20444 multixri_pool->pvt_pool.high_watermark = new_watermark; 20445 20446#ifdef LPFC_MXP_STAT 20447 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20448 new_watermark); 20449#endif 20450} 20451 20452/** 20453 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20454 * @phba: pointer to lpfc hba data structure. 20455 * @hwqid: belong to which HWQ. 20456 * 20457 * This routine is called from hearbeat timer when pvt_pool is idle. 20458 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20459 * The first step moves (all - low_watermark) amount of XRIs. 20460 * The second step moves the rest of XRIs. 20461 **/ 20462void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20463{ 20464 struct lpfc_pbl_pool *pbl_pool; 20465 struct lpfc_pvt_pool *pvt_pool; 20466 struct lpfc_sli4_hdw_queue *qp; 20467 struct lpfc_io_buf *lpfc_ncmd; 20468 struct lpfc_io_buf *lpfc_ncmd_next; 20469 unsigned long iflag; 20470 struct list_head tmp_list; 20471 u32 tmp_count; 20472 20473 qp = &phba->sli4_hba.hdwq[hwqid]; 20474 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20475 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20476 tmp_count = 0; 20477 20478 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20479 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20480 20481 if (pvt_pool->count > pvt_pool->low_watermark) { 20482 /* Step 1: move (all - low_watermark) from pvt_pool 20483 * to pbl_pool 20484 */ 20485 20486 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20487 INIT_LIST_HEAD(&tmp_list); 20488 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20489 &pvt_pool->list, list) { 20490 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20491 tmp_count++; 20492 if (tmp_count >= pvt_pool->low_watermark) 20493 break; 20494 } 20495 20496 /* Move all bufs from pvt_pool to pbl_pool */ 20497 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20498 20499 /* Move all bufs from tmp_list to pvt_pool */ 20500 list_splice(&tmp_list, &pvt_pool->list); 20501 20502 pbl_pool->count += (pvt_pool->count - tmp_count); 20503 pvt_pool->count = tmp_count; 20504 } else { 20505 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20506 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20507 pbl_pool->count += pvt_pool->count; 20508 pvt_pool->count = 0; 20509 } 20510 20511 spin_unlock(&pvt_pool->lock); 20512 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20513} 20514 20515/** 20516 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20517 * @phba: pointer to lpfc hba data structure 20518 * @qp: pointer to HDW queue 20519 * @pbl_pool: specified public free XRI pool 20520 * @pvt_pool: specified private free XRI pool 20521 * @count: number of XRIs to move 20522 * 20523 * This routine tries to move some free common bufs from the specified pbl_pool 20524 * to the specified pvt_pool. It might move less than count XRIs if there's not 20525 * enough in public pool. 20526 * 20527 * Return: 20528 * true - if XRIs are successfully moved from the specified pbl_pool to the 20529 * specified pvt_pool 20530 * false - if the specified pbl_pool is empty or locked by someone else 20531 **/ 20532static bool 20533_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20534 struct lpfc_pbl_pool *pbl_pool, 20535 struct lpfc_pvt_pool *pvt_pool, u32 count) 20536{ 20537 struct lpfc_io_buf *lpfc_ncmd; 20538 struct lpfc_io_buf *lpfc_ncmd_next; 20539 unsigned long iflag; 20540 int ret; 20541 20542 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20543 if (ret) { 20544 if (pbl_pool->count) { 20545 /* Move a batch of XRIs from public to private pool */ 20546 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20547 list_for_each_entry_safe(lpfc_ncmd, 20548 lpfc_ncmd_next, 20549 &pbl_pool->list, 20550 list) { 20551 list_move_tail(&lpfc_ncmd->list, 20552 &pvt_pool->list); 20553 pvt_pool->count++; 20554 pbl_pool->count--; 20555 count--; 20556 if (count == 0) 20557 break; 20558 } 20559 20560 spin_unlock(&pvt_pool->lock); 20561 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20562 return true; 20563 } 20564 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20565 } 20566 20567 return false; 20568} 20569 20570/** 20571 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20572 * @phba: pointer to lpfc hba data structure. 20573 * @hwqid: belong to which HWQ. 20574 * @count: number of XRIs to move 20575 * 20576 * This routine tries to find some free common bufs in one of public pools with 20577 * Round Robin method. The search always starts from local hwqid, then the next 20578 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20579 * a batch of free common bufs are moved to private pool on hwqid. 20580 * It might move less than count XRIs if there's not enough in public pool. 20581 **/ 20582void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20583{ 20584 struct lpfc_multixri_pool *multixri_pool; 20585 struct lpfc_multixri_pool *next_multixri_pool; 20586 struct lpfc_pvt_pool *pvt_pool; 20587 struct lpfc_pbl_pool *pbl_pool; 20588 struct lpfc_sli4_hdw_queue *qp; 20589 u32 next_hwqid; 20590 u32 hwq_count; 20591 int ret; 20592 20593 qp = &phba->sli4_hba.hdwq[hwqid]; 20594 multixri_pool = qp->p_multixri_pool; 20595 pvt_pool = &multixri_pool->pvt_pool; 20596 pbl_pool = &multixri_pool->pbl_pool; 20597 20598 /* Check if local pbl_pool is available */ 20599 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20600 if (ret) { 20601#ifdef LPFC_MXP_STAT 20602 multixri_pool->local_pbl_hit_count++; 20603#endif 20604 return; 20605 } 20606 20607 hwq_count = phba->cfg_hdw_queue; 20608 20609 /* Get the next hwqid which was found last time */ 20610 next_hwqid = multixri_pool->rrb_next_hwqid; 20611 20612 do { 20613 /* Go to next hwq */ 20614 next_hwqid = (next_hwqid + 1) % hwq_count; 20615 20616 next_multixri_pool = 20617 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20618 pbl_pool = &next_multixri_pool->pbl_pool; 20619 20620 /* Check if the public free xri pool is available */ 20621 ret = _lpfc_move_xri_pbl_to_pvt( 20622 phba, qp, pbl_pool, pvt_pool, count); 20623 20624 /* Exit while-loop if success or all hwqid are checked */ 20625 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20626 20627 /* Starting point for the next time */ 20628 multixri_pool->rrb_next_hwqid = next_hwqid; 20629 20630 if (!ret) { 20631 /* stats: all public pools are empty*/ 20632 multixri_pool->pbl_empty_count++; 20633 } 20634 20635#ifdef LPFC_MXP_STAT 20636 if (ret) { 20637 if (next_hwqid == hwqid) 20638 multixri_pool->local_pbl_hit_count++; 20639 else 20640 multixri_pool->other_pbl_hit_count++; 20641 } 20642#endif 20643} 20644 20645/** 20646 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20647 * @phba: pointer to lpfc hba data structure. 20648 * @hwqid: belong to which HWQ. 20649 * 20650 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20651 * low watermark. 20652 **/ 20653void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20654{ 20655 struct lpfc_multixri_pool *multixri_pool; 20656 struct lpfc_pvt_pool *pvt_pool; 20657 20658 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20659 pvt_pool = &multixri_pool->pvt_pool; 20660 20661 if (pvt_pool->count < pvt_pool->low_watermark) 20662 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20663} 20664 20665/** 20666 * lpfc_release_io_buf - Return one IO buf back to free pool 20667 * @phba: pointer to lpfc hba data structure. 20668 * @lpfc_ncmd: IO buf to be returned. 20669 * @qp: belong to which HWQ. 20670 * 20671 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20672 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20673 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20674 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20675 * lpfc_io_buf_list_put. 20676 **/ 20677void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20678 struct lpfc_sli4_hdw_queue *qp) 20679{ 20680 unsigned long iflag; 20681 struct lpfc_pbl_pool *pbl_pool; 20682 struct lpfc_pvt_pool *pvt_pool; 20683 struct lpfc_epd_pool *epd_pool; 20684 u32 txcmplq_cnt; 20685 u32 xri_owned; 20686 u32 xri_limit; 20687 u32 abts_io_bufs; 20688 20689 /* MUST zero fields if buffer is reused by another protocol */ 20690 lpfc_ncmd->nvmeCmd = NULL; 20691 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20692 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20693 20694 if (phba->cfg_xpsgl && !phba->nvmet_support && 20695 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20696 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20697 20698 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20699 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20700 20701 if (phba->cfg_xri_rebalancing) { 20702 if (lpfc_ncmd->expedite) { 20703 /* Return to expedite pool */ 20704 epd_pool = &phba->epd_pool; 20705 spin_lock_irqsave(&epd_pool->lock, iflag); 20706 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20707 epd_pool->count++; 20708 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20709 return; 20710 } 20711 20712 /* Avoid invalid access if an IO sneaks in and is being rejected 20713 * just _after_ xri pools are destroyed in lpfc_offline. 20714 * Nothing much can be done at this point. 20715 */ 20716 if (!qp->p_multixri_pool) 20717 return; 20718 20719 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20720 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20721 20722 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20723 abts_io_bufs = qp->abts_scsi_io_bufs; 20724 abts_io_bufs += qp->abts_nvme_io_bufs; 20725 20726 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 20727 xri_limit = qp->p_multixri_pool->xri_limit; 20728 20729#ifdef LPFC_MXP_STAT 20730 if (xri_owned <= xri_limit) 20731 qp->p_multixri_pool->below_limit_count++; 20732 else 20733 qp->p_multixri_pool->above_limit_count++; 20734#endif 20735 20736 /* XRI goes to either public or private free xri pool 20737 * based on watermark and xri_limit 20738 */ 20739 if ((pvt_pool->count < pvt_pool->low_watermark) || 20740 (xri_owned < xri_limit && 20741 pvt_pool->count < pvt_pool->high_watermark)) { 20742 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 20743 qp, free_pvt_pool); 20744 list_add_tail(&lpfc_ncmd->list, 20745 &pvt_pool->list); 20746 pvt_pool->count++; 20747 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20748 } else { 20749 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 20750 qp, free_pub_pool); 20751 list_add_tail(&lpfc_ncmd->list, 20752 &pbl_pool->list); 20753 pbl_pool->count++; 20754 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20755 } 20756 } else { 20757 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 20758 qp, free_xri); 20759 list_add_tail(&lpfc_ncmd->list, 20760 &qp->lpfc_io_buf_list_put); 20761 qp->put_io_bufs++; 20762 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 20763 iflag); 20764 } 20765} 20766 20767/** 20768 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 20769 * @phba: pointer to lpfc hba data structure. 20770 * @qp: pointer to HDW queue 20771 * @pvt_pool: pointer to private pool data structure. 20772 * @ndlp: pointer to lpfc nodelist data structure. 20773 * 20774 * This routine tries to get one free IO buf from private pool. 20775 * 20776 * Return: 20777 * pointer to one free IO buf - if private pool is not empty 20778 * NULL - if private pool is empty 20779 **/ 20780static struct lpfc_io_buf * 20781lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 20782 struct lpfc_sli4_hdw_queue *qp, 20783 struct lpfc_pvt_pool *pvt_pool, 20784 struct lpfc_nodelist *ndlp) 20785{ 20786 struct lpfc_io_buf *lpfc_ncmd; 20787 struct lpfc_io_buf *lpfc_ncmd_next; 20788 unsigned long iflag; 20789 20790 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 20791 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20792 &pvt_pool->list, list) { 20793 if (lpfc_test_rrq_active( 20794 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 20795 continue; 20796 list_del(&lpfc_ncmd->list); 20797 pvt_pool->count--; 20798 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20799 return lpfc_ncmd; 20800 } 20801 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20802 20803 return NULL; 20804} 20805 20806/** 20807 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 20808 * @phba: pointer to lpfc hba data structure. 20809 * 20810 * This routine tries to get one free IO buf from expedite pool. 20811 * 20812 * Return: 20813 * pointer to one free IO buf - if expedite pool is not empty 20814 * NULL - if expedite pool is empty 20815 **/ 20816static struct lpfc_io_buf * 20817lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 20818{ 20819 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 20820 struct lpfc_io_buf *lpfc_ncmd_next; 20821 unsigned long iflag; 20822 struct lpfc_epd_pool *epd_pool; 20823 20824 epd_pool = &phba->epd_pool; 20825 20826 spin_lock_irqsave(&epd_pool->lock, iflag); 20827 if (epd_pool->count > 0) { 20828 list_for_each_entry_safe(iter, lpfc_ncmd_next, 20829 &epd_pool->list, list) { 20830 list_del(&iter->list); 20831 epd_pool->count--; 20832 lpfc_ncmd = iter; 20833 break; 20834 } 20835 } 20836 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20837 20838 return lpfc_ncmd; 20839} 20840 20841/** 20842 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 20843 * @phba: pointer to lpfc hba data structure. 20844 * @ndlp: pointer to lpfc nodelist data structure. 20845 * @hwqid: belong to which HWQ 20846 * @expedite: 1 means this request is urgent. 20847 * 20848 * This routine will do the following actions and then return a pointer to 20849 * one free IO buf. 20850 * 20851 * 1. If private free xri count is empty, move some XRIs from public to 20852 * private pool. 20853 * 2. Get one XRI from private free xri pool. 20854 * 3. If we fail to get one from pvt_pool and this is an expedite request, 20855 * get one free xri from expedite pool. 20856 * 20857 * Note: ndlp is only used on SCSI side for RRQ testing. 20858 * The caller should pass NULL for ndlp on NVME side. 20859 * 20860 * Return: 20861 * pointer to one free IO buf - if private pool is not empty 20862 * NULL - if private pool is empty 20863 **/ 20864static struct lpfc_io_buf * 20865lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 20866 struct lpfc_nodelist *ndlp, 20867 int hwqid, int expedite) 20868{ 20869 struct lpfc_sli4_hdw_queue *qp; 20870 struct lpfc_multixri_pool *multixri_pool; 20871 struct lpfc_pvt_pool *pvt_pool; 20872 struct lpfc_io_buf *lpfc_ncmd; 20873 20874 qp = &phba->sli4_hba.hdwq[hwqid]; 20875 lpfc_ncmd = NULL; 20876 multixri_pool = qp->p_multixri_pool; 20877 pvt_pool = &multixri_pool->pvt_pool; 20878 multixri_pool->io_req_count++; 20879 20880 /* If pvt_pool is empty, move some XRIs from public to private pool */ 20881 if (pvt_pool->count == 0) 20882 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20883 20884 /* Get one XRI from private free xri pool */ 20885 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 20886 20887 if (lpfc_ncmd) { 20888 lpfc_ncmd->hdwq = qp; 20889 lpfc_ncmd->hdwq_no = hwqid; 20890 } else if (expedite) { 20891 /* If we fail to get one from pvt_pool and this is an expedite 20892 * request, get one free xri from expedite pool. 20893 */ 20894 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 20895 } 20896 20897 return lpfc_ncmd; 20898} 20899 20900static inline struct lpfc_io_buf * 20901lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 20902{ 20903 struct lpfc_sli4_hdw_queue *qp; 20904 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 20905 20906 qp = &phba->sli4_hba.hdwq[idx]; 20907 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 20908 &qp->lpfc_io_buf_list_get, list) { 20909 if (lpfc_test_rrq_active(phba, ndlp, 20910 lpfc_cmd->cur_iocbq.sli4_lxritag)) 20911 continue; 20912 20913 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 20914 continue; 20915 20916 list_del_init(&lpfc_cmd->list); 20917 qp->get_io_bufs--; 20918 lpfc_cmd->hdwq = qp; 20919 lpfc_cmd->hdwq_no = idx; 20920 return lpfc_cmd; 20921 } 20922 return NULL; 20923} 20924 20925/** 20926 * lpfc_get_io_buf - Get one IO buffer from free pool 20927 * @phba: The HBA for which this call is being executed. 20928 * @ndlp: pointer to lpfc nodelist data structure. 20929 * @hwqid: belong to which HWQ 20930 * @expedite: 1 means this request is urgent. 20931 * 20932 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 20933 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 20934 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 20935 * 20936 * Note: ndlp is only used on SCSI side for RRQ testing. 20937 * The caller should pass NULL for ndlp on NVME side. 20938 * 20939 * Return codes: 20940 * NULL - Error 20941 * Pointer to lpfc_io_buf - Success 20942 **/ 20943struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 20944 struct lpfc_nodelist *ndlp, 20945 u32 hwqid, int expedite) 20946{ 20947 struct lpfc_sli4_hdw_queue *qp; 20948 unsigned long iflag; 20949 struct lpfc_io_buf *lpfc_cmd; 20950 20951 qp = &phba->sli4_hba.hdwq[hwqid]; 20952 lpfc_cmd = NULL; 20953 20954 if (phba->cfg_xri_rebalancing) 20955 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 20956 phba, ndlp, hwqid, expedite); 20957 else { 20958 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 20959 qp, alloc_xri_get); 20960 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 20961 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20962 if (!lpfc_cmd) { 20963 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 20964 qp, alloc_xri_put); 20965 list_splice(&qp->lpfc_io_buf_list_put, 20966 &qp->lpfc_io_buf_list_get); 20967 qp->get_io_bufs += qp->put_io_bufs; 20968 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 20969 qp->put_io_bufs = 0; 20970 spin_unlock(&qp->io_buf_list_put_lock); 20971 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 20972 expedite) 20973 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20974 } 20975 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 20976 } 20977 20978 return lpfc_cmd; 20979} 20980 20981/** 20982 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 20983 * @phba: The HBA for which this call is being executed. 20984 * @lpfc_buf: IO buf structure to append the SGL chunk 20985 * 20986 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 20987 * and will allocate an SGL chunk if the pool is empty. 20988 * 20989 * Return codes: 20990 * NULL - Error 20991 * Pointer to sli4_hybrid_sgl - Success 20992 **/ 20993struct sli4_hybrid_sgl * 20994lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20995{ 20996 struct sli4_hybrid_sgl *list_entry = NULL; 20997 struct sli4_hybrid_sgl *tmp = NULL; 20998 struct sli4_hybrid_sgl *allocated_sgl = NULL; 20999 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21000 struct list_head *buf_list = &hdwq->sgl_list; 21001 unsigned long iflags; 21002 21003 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21004 21005 if (likely(!list_empty(buf_list))) { 21006 /* break off 1 chunk from the sgl_list */ 21007 list_for_each_entry_safe(list_entry, tmp, 21008 buf_list, list_node) { 21009 list_move_tail(&list_entry->list_node, 21010 &lpfc_buf->dma_sgl_xtra_list); 21011 break; 21012 } 21013 } else { 21014 /* allocate more */ 21015 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21016 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21017 cpu_to_node(hdwq->io_wq->chann)); 21018 if (!tmp) { 21019 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21020 "8353 error kmalloc memory for HDWQ " 21021 "%d %s\n", 21022 lpfc_buf->hdwq_no, __func__); 21023 return NULL; 21024 } 21025 21026 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21027 GFP_ATOMIC, &tmp->dma_phys_sgl); 21028 if (!tmp->dma_sgl) { 21029 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21030 "8354 error pool_alloc memory for HDWQ " 21031 "%d %s\n", 21032 lpfc_buf->hdwq_no, __func__); 21033 kfree(tmp); 21034 return NULL; 21035 } 21036 21037 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21038 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21039 } 21040 21041 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21042 struct sli4_hybrid_sgl, 21043 list_node); 21044 21045 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21046 21047 return allocated_sgl; 21048} 21049 21050/** 21051 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21052 * @phba: The HBA for which this call is being executed. 21053 * @lpfc_buf: IO buf structure with the SGL chunk 21054 * 21055 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21056 * 21057 * Return codes: 21058 * 0 - Success 21059 * -EINVAL - Error 21060 **/ 21061int 21062lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21063{ 21064 int rc = 0; 21065 struct sli4_hybrid_sgl *list_entry = NULL; 21066 struct sli4_hybrid_sgl *tmp = NULL; 21067 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21068 struct list_head *buf_list = &hdwq->sgl_list; 21069 unsigned long iflags; 21070 21071 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21072 21073 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21074 list_for_each_entry_safe(list_entry, tmp, 21075 &lpfc_buf->dma_sgl_xtra_list, 21076 list_node) { 21077 list_move_tail(&list_entry->list_node, 21078 buf_list); 21079 } 21080 } else { 21081 rc = -EINVAL; 21082 } 21083 21084 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21085 return rc; 21086} 21087 21088/** 21089 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21090 * @phba: phba object 21091 * @hdwq: hdwq to cleanup sgl buff resources on 21092 * 21093 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21094 * 21095 * Return codes: 21096 * None 21097 **/ 21098void 21099lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21100 struct lpfc_sli4_hdw_queue *hdwq) 21101{ 21102 struct list_head *buf_list = &hdwq->sgl_list; 21103 struct sli4_hybrid_sgl *list_entry = NULL; 21104 struct sli4_hybrid_sgl *tmp = NULL; 21105 unsigned long iflags; 21106 21107 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21108 21109 /* Free sgl pool */ 21110 list_for_each_entry_safe(list_entry, tmp, 21111 buf_list, list_node) { 21112 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21113 list_entry->dma_sgl, 21114 list_entry->dma_phys_sgl); 21115 list_del(&list_entry->list_node); 21116 kfree(list_entry); 21117 } 21118 21119 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21120} 21121 21122/** 21123 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21124 * @phba: The HBA for which this call is being executed. 21125 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21126 * 21127 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21128 * and will allocate an CMD/RSP buffer if the pool is empty. 21129 * 21130 * Return codes: 21131 * NULL - Error 21132 * Pointer to fcp_cmd_rsp_buf - Success 21133 **/ 21134struct fcp_cmd_rsp_buf * 21135lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21136 struct lpfc_io_buf *lpfc_buf) 21137{ 21138 struct fcp_cmd_rsp_buf *list_entry = NULL; 21139 struct fcp_cmd_rsp_buf *tmp = NULL; 21140 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21141 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21142 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21143 unsigned long iflags; 21144 21145 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21146 21147 if (likely(!list_empty(buf_list))) { 21148 /* break off 1 chunk from the list */ 21149 list_for_each_entry_safe(list_entry, tmp, 21150 buf_list, 21151 list_node) { 21152 list_move_tail(&list_entry->list_node, 21153 &lpfc_buf->dma_cmd_rsp_list); 21154 break; 21155 } 21156 } else { 21157 /* allocate more */ 21158 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21159 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21160 cpu_to_node(hdwq->io_wq->chann)); 21161 if (!tmp) { 21162 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21163 "8355 error kmalloc memory for HDWQ " 21164 "%d %s\n", 21165 lpfc_buf->hdwq_no, __func__); 21166 return NULL; 21167 } 21168 21169 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21170 GFP_ATOMIC, 21171 &tmp->fcp_cmd_rsp_dma_handle); 21172 21173 if (!tmp->fcp_cmnd) { 21174 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21175 "8356 error pool_alloc memory for HDWQ " 21176 "%d %s\n", 21177 lpfc_buf->hdwq_no, __func__); 21178 kfree(tmp); 21179 return NULL; 21180 } 21181 21182 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21183 sizeof(struct fcp_cmnd)); 21184 21185 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21186 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21187 } 21188 21189 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21190 struct fcp_cmd_rsp_buf, 21191 list_node); 21192 21193 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21194 21195 return allocated_buf; 21196} 21197 21198/** 21199 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21200 * @phba: The HBA for which this call is being executed. 21201 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21202 * 21203 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21204 * 21205 * Return codes: 21206 * 0 - Success 21207 * -EINVAL - Error 21208 **/ 21209int 21210lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21211 struct lpfc_io_buf *lpfc_buf) 21212{ 21213 int rc = 0; 21214 struct fcp_cmd_rsp_buf *list_entry = NULL; 21215 struct fcp_cmd_rsp_buf *tmp = NULL; 21216 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21217 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21218 unsigned long iflags; 21219 21220 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21221 21222 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21223 list_for_each_entry_safe(list_entry, tmp, 21224 &lpfc_buf->dma_cmd_rsp_list, 21225 list_node) { 21226 list_move_tail(&list_entry->list_node, 21227 buf_list); 21228 } 21229 } else { 21230 rc = -EINVAL; 21231 } 21232 21233 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21234 return rc; 21235} 21236 21237/** 21238 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21239 * @phba: phba object 21240 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21241 * 21242 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21243 * 21244 * Return codes: 21245 * None 21246 **/ 21247void 21248lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21249 struct lpfc_sli4_hdw_queue *hdwq) 21250{ 21251 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21252 struct fcp_cmd_rsp_buf *list_entry = NULL; 21253 struct fcp_cmd_rsp_buf *tmp = NULL; 21254 unsigned long iflags; 21255 21256 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21257 21258 /* Free cmd_rsp buf pool */ 21259 list_for_each_entry_safe(list_entry, tmp, 21260 buf_list, 21261 list_node) { 21262 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21263 list_entry->fcp_cmnd, 21264 list_entry->fcp_cmd_rsp_dma_handle); 21265 list_del(&list_entry->list_node); 21266 kfree(list_entry); 21267 } 21268 21269 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21270} 21271