1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
5 * Copyright(c) 2008 Mike Christie
6 *
7 * Maintained at www.Open-FCoE.org
8 */
9
10/*
11 * Fibre Channel exchange and sequence handling.
12 */
13
14#include <linux/timer.h>
15#include <linux/slab.h>
16#include <linux/err.h>
17#include <linux/export.h>
18#include <linux/log2.h>
19
20#include <scsi/fc/fc_fc2.h>
21
22#include <scsi/libfc.h>
23#include <scsi/fc_encode.h>
24
25#include "fc_libfc.h"
26
27u16	fc_cpu_mask;		/* cpu mask for possible cpus */
28EXPORT_SYMBOL(fc_cpu_mask);
29static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
30static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
31static struct workqueue_struct *fc_exch_workqueue;
32
33/*
34 * Structure and function definitions for managing Fibre Channel Exchanges
35 * and Sequences.
36 *
37 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
38 *
39 * fc_exch_mgr holds the exchange state for an N port
40 *
41 * fc_exch holds state for one exchange and links to its active sequence.
42 *
43 * fc_seq holds the state for an individual sequence.
44 */
45
46/**
47 * struct fc_exch_pool - Per cpu exchange pool
48 * @next_index:	  Next possible free exchange index
49 * @total_exches: Total allocated exchanges
50 * @lock:	  Exch pool lock
51 * @ex_list:	  List of exchanges
52 * @left:	  Cache of free slot in exch array
53 * @right:	  Cache of free slot in exch array
54 *
55 * This structure manages per cpu exchanges in array of exchange pointers.
56 * This array is allocated followed by struct fc_exch_pool memory for
57 * assigned range of exchanges to per cpu pool.
58 */
59struct fc_exch_pool {
60	spinlock_t	 lock;
61	struct list_head ex_list;
62	u16		 next_index;
63	u16		 total_exches;
64
65	u16		 left;
66	u16		 right;
67} ____cacheline_aligned_in_smp;
68
69/**
70 * struct fc_exch_mgr - The Exchange Manager (EM).
71 * @class:	    Default class for new sequences
72 * @kref:	    Reference counter
73 * @min_xid:	    Minimum exchange ID
74 * @max_xid:	    Maximum exchange ID
75 * @ep_pool:	    Reserved exchange pointers
76 * @pool_max_index: Max exch array index in exch pool
77 * @pool:	    Per cpu exch pool
78 * @lport:	    Local exchange port
79 * @stats:	    Statistics structure
80 *
81 * This structure is the center for creating exchanges and sequences.
82 * It manages the allocation of exchange IDs.
83 */
84struct fc_exch_mgr {
85	struct fc_exch_pool __percpu *pool;
86	mempool_t	*ep_pool;
87	struct fc_lport	*lport;
88	enum fc_class	class;
89	struct kref	kref;
90	u16		min_xid;
91	u16		max_xid;
92	u16		pool_max_index;
93
94	struct {
95		atomic_t no_free_exch;
96		atomic_t no_free_exch_xid;
97		atomic_t xid_not_found;
98		atomic_t xid_busy;
99		atomic_t seq_not_found;
100		atomic_t non_bls_resp;
101	} stats;
102};
103
104/**
105 * struct fc_exch_mgr_anchor - primary structure for list of EMs
106 * @ema_list: Exchange Manager Anchor list
107 * @mp:	      Exchange Manager associated with this anchor
108 * @match:    Routine to determine if this anchor's EM should be used
109 *
110 * When walking the list of anchors the match routine will be called
111 * for each anchor to determine if that EM should be used. The last
112 * anchor in the list will always match to handle any exchanges not
113 * handled by other EMs. The non-default EMs would be added to the
114 * anchor list by HW that provides offloads.
115 */
116struct fc_exch_mgr_anchor {
117	struct list_head ema_list;
118	struct fc_exch_mgr *mp;
119	bool (*match)(struct fc_frame *);
120};
121
122static void fc_exch_rrq(struct fc_exch *);
123static void fc_seq_ls_acc(struct fc_frame *);
124static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
125			  enum fc_els_rjt_explan);
126static void fc_exch_els_rec(struct fc_frame *);
127static void fc_exch_els_rrq(struct fc_frame *);
128
129/*
130 * Internal implementation notes.
131 *
132 * The exchange manager is one by default in libfc but LLD may choose
133 * to have one per CPU. The sequence manager is one per exchange manager
134 * and currently never separated.
135 *
136 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
137 * assigned by the Sequence Initiator that shall be unique for a specific
138 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
139 * qualified by exchange ID, which one might think it would be.
140 * In practice this limits the number of open sequences and exchanges to 256
141 * per session.	 For most targets we could treat this limit as per exchange.
142 *
143 * The exchange and its sequence are freed when the last sequence is received.
144 * It's possible for the remote port to leave an exchange open without
145 * sending any sequences.
146 *
147 * Notes on reference counts:
148 *
149 * Exchanges are reference counted and exchange gets freed when the reference
150 * count becomes zero.
151 *
152 * Timeouts:
153 * Sequences are timed out for E_D_TOV and R_A_TOV.
154 *
155 * Sequence event handling:
156 *
157 * The following events may occur on initiator sequences:
158 *
159 *	Send.
160 *	    For now, the whole thing is sent.
161 *	Receive ACK
162 *	    This applies only to class F.
163 *	    The sequence is marked complete.
164 *	ULP completion.
165 *	    The upper layer calls fc_exch_done() when done
166 *	    with exchange and sequence tuple.
167 *	RX-inferred completion.
168 *	    When we receive the next sequence on the same exchange, we can
169 *	    retire the previous sequence ID.  (XXX not implemented).
170 *	Timeout.
171 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
172 *	    E_D_TOV causes abort and calls upper layer response handler
173 *	    with FC_EX_TIMEOUT error.
174 *	Receive RJT
175 *	    XXX defer.
176 *	Send ABTS
177 *	    On timeout.
178 *
179 * The following events may occur on recipient sequences:
180 *
181 *	Receive
182 *	    Allocate sequence for first frame received.
183 *	    Hold during receive handler.
184 *	    Release when final frame received.
185 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
186 *	Receive ABTS
187 *	    Deallocate sequence
188 *	Send RJT
189 *	    Deallocate
190 *
191 * For now, we neglect conditions where only part of a sequence was
192 * received or transmitted, or where out-of-order receipt is detected.
193 */
194
195/*
196 * Locking notes:
197 *
198 * The EM code run in a per-CPU worker thread.
199 *
200 * To protect against concurrency between a worker thread code and timers,
201 * sequence allocation and deallocation must be locked.
202 *  - exchange refcnt can be done atomicly without locks.
203 *  - sequence allocation must be locked by exch lock.
204 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
205 *    EM pool lock must be taken before the ex_lock.
206 */
207
208/*
209 * opcode names for debugging.
210 */
211static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
212
213/**
214 * fc_exch_name_lookup() - Lookup name by opcode
215 * @op:	       Opcode to be looked up
216 * @table:     Opcode/name table
217 * @max_index: Index not to be exceeded
218 *
219 * This routine is used to determine a human-readable string identifying
220 * a R_CTL opcode.
221 */
222static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
223					      unsigned int max_index)
224{
225	const char *name = NULL;
226
227	if (op < max_index)
228		name = table[op];
229	if (!name)
230		name = "unknown";
231	return name;
232}
233
234/**
235 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
236 * @op: The opcode to be looked up
237 */
238static const char *fc_exch_rctl_name(unsigned int op)
239{
240	return fc_exch_name_lookup(op, fc_exch_rctl_names,
241				   ARRAY_SIZE(fc_exch_rctl_names));
242}
243
244/**
245 * fc_exch_hold() - Increment an exchange's reference count
246 * @ep: Echange to be held
247 */
248static inline void fc_exch_hold(struct fc_exch *ep)
249{
250	atomic_inc(&ep->ex_refcnt);
251}
252
253/**
254 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
255 *			 and determine SOF and EOF.
256 * @ep:	   The exchange to that will use the header
257 * @fp:	   The frame whose header is to be modified
258 * @f_ctl: F_CTL bits that will be used for the frame header
259 *
260 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
261 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
262 */
263static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
264			      u32 f_ctl)
265{
266	struct fc_frame_header *fh = fc_frame_header_get(fp);
267	u16 fill;
268
269	fr_sof(fp) = ep->class;
270	if (ep->seq.cnt)
271		fr_sof(fp) = fc_sof_normal(ep->class);
272
273	if (f_ctl & FC_FC_END_SEQ) {
274		fr_eof(fp) = FC_EOF_T;
275		if (fc_sof_needs_ack(ep->class))
276			fr_eof(fp) = FC_EOF_N;
277		/*
278		 * From F_CTL.
279		 * The number of fill bytes to make the length a 4-byte
280		 * multiple is the low order 2-bits of the f_ctl.
281		 * The fill itself will have been cleared by the frame
282		 * allocation.
283		 * After this, the length will be even, as expected by
284		 * the transport.
285		 */
286		fill = fr_len(fp) & 3;
287		if (fill) {
288			fill = 4 - fill;
289			/* TODO, this may be a problem with fragmented skb */
290			skb_put(fp_skb(fp), fill);
291			hton24(fh->fh_f_ctl, f_ctl | fill);
292		}
293	} else {
294		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
295		fr_eof(fp) = FC_EOF_N;
296	}
297
298	/* Initialize remaining fh fields from fc_fill_fc_hdr */
299	fh->fh_ox_id = htons(ep->oxid);
300	fh->fh_rx_id = htons(ep->rxid);
301	fh->fh_seq_id = ep->seq.id;
302	fh->fh_seq_cnt = htons(ep->seq.cnt);
303}
304
305/**
306 * fc_exch_release() - Decrement an exchange's reference count
307 * @ep: Exchange to be released
308 *
309 * If the reference count reaches zero and the exchange is complete,
310 * it is freed.
311 */
312static void fc_exch_release(struct fc_exch *ep)
313{
314	struct fc_exch_mgr *mp;
315
316	if (atomic_dec_and_test(&ep->ex_refcnt)) {
317		mp = ep->em;
318		if (ep->destructor)
319			ep->destructor(&ep->seq, ep->arg);
320		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
321		mempool_free(ep, mp->ep_pool);
322	}
323}
324
325/**
326 * fc_exch_timer_cancel() - cancel exch timer
327 * @ep:		The exchange whose timer to be canceled
328 */
329static inline void fc_exch_timer_cancel(struct fc_exch *ep)
330{
331	if (cancel_delayed_work(&ep->timeout_work)) {
332		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
333		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
334	}
335}
336
337/**
338 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
339 *				the exchange lock held
340 * @ep:		The exchange whose timer will start
341 * @timer_msec: The timeout period
342 *
343 * Used for upper level protocols to time out the exchange.
344 * The timer is cancelled when it fires or when the exchange completes.
345 */
346static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
347					    unsigned int timer_msec)
348{
349	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
350		return;
351
352	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
353
354	fc_exch_hold(ep);		/* hold for timer */
355	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
356				msecs_to_jiffies(timer_msec))) {
357		FC_EXCH_DBG(ep, "Exchange already queued\n");
358		fc_exch_release(ep);
359	}
360}
361
362/**
363 * fc_exch_timer_set() - Lock the exchange and set the timer
364 * @ep:		The exchange whose timer will start
365 * @timer_msec: The timeout period
366 */
367static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
368{
369	spin_lock_bh(&ep->ex_lock);
370	fc_exch_timer_set_locked(ep, timer_msec);
371	spin_unlock_bh(&ep->ex_lock);
372}
373
374/**
375 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
376 * @ep: The exchange that is complete
377 *
378 * Note: May sleep if invoked from outside a response handler.
379 */
380static int fc_exch_done_locked(struct fc_exch *ep)
381{
382	int rc = 1;
383
384	/*
385	 * We must check for completion in case there are two threads
386	 * tyring to complete this. But the rrq code will reuse the
387	 * ep, and in that case we only clear the resp and set it as
388	 * complete, so it can be reused by the timer to send the rrq.
389	 */
390	if (ep->state & FC_EX_DONE)
391		return rc;
392	ep->esb_stat |= ESB_ST_COMPLETE;
393
394	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
395		ep->state |= FC_EX_DONE;
396		fc_exch_timer_cancel(ep);
397		rc = 0;
398	}
399	return rc;
400}
401
402static struct fc_exch fc_quarantine_exch;
403
404/**
405 * fc_exch_ptr_get() - Return an exchange from an exchange pool
406 * @pool:  Exchange Pool to get an exchange from
407 * @index: Index of the exchange within the pool
408 *
409 * Use the index to get an exchange from within an exchange pool. exches
410 * will point to an array of exchange pointers. The index will select
411 * the exchange within the array.
412 */
413static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
414					      u16 index)
415{
416	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
417	return exches[index];
418}
419
420/**
421 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
422 * @pool:  The pool to assign the exchange to
423 * @index: The index in the pool where the exchange will be assigned
424 * @ep:	   The exchange to assign to the pool
425 */
426static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
427				   struct fc_exch *ep)
428{
429	((struct fc_exch **)(pool + 1))[index] = ep;
430}
431
432/**
433 * fc_exch_delete() - Delete an exchange
434 * @ep: The exchange to be deleted
435 */
436static void fc_exch_delete(struct fc_exch *ep)
437{
438	struct fc_exch_pool *pool;
439	u16 index;
440
441	pool = ep->pool;
442	spin_lock_bh(&pool->lock);
443	WARN_ON(pool->total_exches <= 0);
444	pool->total_exches--;
445
446	/* update cache of free slot */
447	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
448	if (!(ep->state & FC_EX_QUARANTINE)) {
449		if (pool->left == FC_XID_UNKNOWN)
450			pool->left = index;
451		else if (pool->right == FC_XID_UNKNOWN)
452			pool->right = index;
453		else
454			pool->next_index = index;
455		fc_exch_ptr_set(pool, index, NULL);
456	} else {
457		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
458	}
459	list_del(&ep->ex_list);
460	spin_unlock_bh(&pool->lock);
461	fc_exch_release(ep);	/* drop hold for exch in mp */
462}
463
464static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
465			      struct fc_frame *fp)
466{
467	struct fc_exch *ep;
468	struct fc_frame_header *fh = fc_frame_header_get(fp);
469	int error = -ENXIO;
470	u32 f_ctl;
471	u8 fh_type = fh->fh_type;
472
473	ep = fc_seq_exch(sp);
474
475	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
476		fc_frame_free(fp);
477		goto out;
478	}
479
480	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
481
482	f_ctl = ntoh24(fh->fh_f_ctl);
483	fc_exch_setup_hdr(ep, fp, f_ctl);
484	fr_encaps(fp) = ep->encaps;
485
486	/*
487	 * update sequence count if this frame is carrying
488	 * multiple FC frames when sequence offload is enabled
489	 * by LLD.
490	 */
491	if (fr_max_payload(fp))
492		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
493					fr_max_payload(fp));
494	else
495		sp->cnt++;
496
497	/*
498	 * Send the frame.
499	 */
500	error = lport->tt.frame_send(lport, fp);
501
502	if (fh_type == FC_TYPE_BLS)
503		goto out;
504
505	/*
506	 * Update the exchange and sequence flags,
507	 * assuming all frames for the sequence have been sent.
508	 * We can only be called to send once for each sequence.
509	 */
510	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
511	if (f_ctl & FC_FC_SEQ_INIT)
512		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
513out:
514	return error;
515}
516
517/**
518 * fc_seq_send() - Send a frame using existing sequence/exchange pair
519 * @lport: The local port that the exchange will be sent on
520 * @sp:	   The sequence to be sent
521 * @fp:	   The frame to be sent on the exchange
522 *
523 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
524 * or indirectly by calling libfc_function_template.frame_send().
525 */
526int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
527{
528	struct fc_exch *ep;
529	int error;
530	ep = fc_seq_exch(sp);
531	spin_lock_bh(&ep->ex_lock);
532	error = fc_seq_send_locked(lport, sp, fp);
533	spin_unlock_bh(&ep->ex_lock);
534	return error;
535}
536EXPORT_SYMBOL(fc_seq_send);
537
538/**
539 * fc_seq_alloc() - Allocate a sequence for a given exchange
540 * @ep:	    The exchange to allocate a new sequence for
541 * @seq_id: The sequence ID to be used
542 *
543 * We don't support multiple originated sequences on the same exchange.
544 * By implication, any previously originated sequence on this exchange
545 * is complete, and we reallocate the same sequence.
546 */
547static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
548{
549	struct fc_seq *sp;
550
551	sp = &ep->seq;
552	sp->ssb_stat = 0;
553	sp->cnt = 0;
554	sp->id = seq_id;
555	return sp;
556}
557
558/**
559 * fc_seq_start_next_locked() - Allocate a new sequence on the same
560 *				exchange as the supplied sequence
561 * @sp: The sequence/exchange to get a new sequence for
562 */
563static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
564{
565	struct fc_exch *ep = fc_seq_exch(sp);
566
567	sp = fc_seq_alloc(ep, ep->seq_id++);
568	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
569		    ep->f_ctl, sp->id);
570	return sp;
571}
572
573/**
574 * fc_seq_start_next() - Lock the exchange and get a new sequence
575 *			 for a given sequence/exchange pair
576 * @sp: The sequence/exchange to get a new exchange for
577 */
578struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
579{
580	struct fc_exch *ep = fc_seq_exch(sp);
581
582	spin_lock_bh(&ep->ex_lock);
583	sp = fc_seq_start_next_locked(sp);
584	spin_unlock_bh(&ep->ex_lock);
585
586	return sp;
587}
588EXPORT_SYMBOL(fc_seq_start_next);
589
590/*
591 * Set the response handler for the exchange associated with a sequence.
592 *
593 * Note: May sleep if invoked from outside a response handler.
594 */
595void fc_seq_set_resp(struct fc_seq *sp,
596		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
597		     void *arg)
598{
599	struct fc_exch *ep = fc_seq_exch(sp);
600	DEFINE_WAIT(wait);
601
602	spin_lock_bh(&ep->ex_lock);
603	while (ep->resp_active && ep->resp_task != current) {
604		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
605		spin_unlock_bh(&ep->ex_lock);
606
607		schedule();
608
609		spin_lock_bh(&ep->ex_lock);
610	}
611	finish_wait(&ep->resp_wq, &wait);
612	ep->resp = resp;
613	ep->arg = arg;
614	spin_unlock_bh(&ep->ex_lock);
615}
616EXPORT_SYMBOL(fc_seq_set_resp);
617
618/**
619 * fc_exch_abort_locked() - Abort an exchange
620 * @ep:	The exchange to be aborted
621 * @timer_msec: The period of time to wait before aborting
622 *
623 * Abort an exchange and sequence. Generally called because of a
624 * exchange timeout or an abort from the upper layer.
625 *
626 * A timer_msec can be specified for abort timeout, if non-zero
627 * timer_msec value is specified then exchange resp handler
628 * will be called with timeout error if no response to abort.
629 *
630 * Locking notes:  Called with exch lock held
631 *
632 * Return value: 0 on success else error code
633 */
634static int fc_exch_abort_locked(struct fc_exch *ep,
635				unsigned int timer_msec)
636{
637	struct fc_seq *sp;
638	struct fc_frame *fp;
639	int error;
640
641	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
642	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
643	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
644		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
645			    ep->esb_stat, ep->state);
646		return -ENXIO;
647	}
648
649	/*
650	 * Send the abort on a new sequence if possible.
651	 */
652	sp = fc_seq_start_next_locked(&ep->seq);
653	if (!sp)
654		return -ENOMEM;
655
656	if (timer_msec)
657		fc_exch_timer_set_locked(ep, timer_msec);
658
659	if (ep->sid) {
660		/*
661		 * Send an abort for the sequence that timed out.
662		 */
663		fp = fc_frame_alloc(ep->lp, 0);
664		if (fp) {
665			ep->esb_stat |= ESB_ST_SEQ_INIT;
666			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
667				       FC_TYPE_BLS, FC_FC_END_SEQ |
668				       FC_FC_SEQ_INIT, 0);
669			error = fc_seq_send_locked(ep->lp, sp, fp);
670		} else {
671			error = -ENOBUFS;
672		}
673	} else {
674		/*
675		 * If not logged into the fabric, don't send ABTS but leave
676		 * sequence active until next timeout.
677		 */
678		error = 0;
679	}
680	ep->esb_stat |= ESB_ST_ABNORMAL;
681	return error;
682}
683
684/**
685 * fc_seq_exch_abort() - Abort an exchange and sequence
686 * @req_sp:	The sequence to be aborted
687 * @timer_msec: The period of time to wait before aborting
688 *
689 * Generally called because of a timeout or an abort from the upper layer.
690 *
691 * Return value: 0 on success else error code
692 */
693int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
694{
695	struct fc_exch *ep;
696	int error;
697
698	ep = fc_seq_exch(req_sp);
699	spin_lock_bh(&ep->ex_lock);
700	error = fc_exch_abort_locked(ep, timer_msec);
701	spin_unlock_bh(&ep->ex_lock);
702	return error;
703}
704
705/**
706 * fc_invoke_resp() - invoke ep->resp()
707 * @ep:	   The exchange to be operated on
708 * @fp:	   The frame pointer to pass through to ->resp()
709 * @sp:	   The sequence pointer to pass through to ->resp()
710 *
711 * Notes:
712 * It is assumed that after initialization finished (this means the
713 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
714 * modified only via fc_seq_set_resp(). This guarantees that none of these
715 * two variables changes if ep->resp_active > 0.
716 *
717 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
718 * this function is invoked, the first spin_lock_bh() call in this function
719 * will wait until fc_seq_set_resp() has finished modifying these variables.
720 *
721 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
722 * ep->resp() won't be invoked after fc_exch_done() has returned.
723 *
724 * The response handler itself may invoke fc_exch_done(), which will clear the
725 * ep->resp pointer.
726 *
727 * Return value:
728 * Returns true if and only if ep->resp has been invoked.
729 */
730static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
731			   struct fc_frame *fp)
732{
733	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
734	void *arg;
735	bool res = false;
736
737	spin_lock_bh(&ep->ex_lock);
738	ep->resp_active++;
739	if (ep->resp_task != current)
740		ep->resp_task = !ep->resp_task ? current : NULL;
741	resp = ep->resp;
742	arg = ep->arg;
743	spin_unlock_bh(&ep->ex_lock);
744
745	if (resp) {
746		resp(sp, fp, arg);
747		res = true;
748	}
749
750	spin_lock_bh(&ep->ex_lock);
751	if (--ep->resp_active == 0)
752		ep->resp_task = NULL;
753	spin_unlock_bh(&ep->ex_lock);
754
755	if (ep->resp_active == 0)
756		wake_up(&ep->resp_wq);
757
758	return res;
759}
760
761/**
762 * fc_exch_timeout() - Handle exchange timer expiration
763 * @work: The work_struct identifying the exchange that timed out
764 */
765static void fc_exch_timeout(struct work_struct *work)
766{
767	struct fc_exch *ep = container_of(work, struct fc_exch,
768					  timeout_work.work);
769	struct fc_seq *sp = &ep->seq;
770	u32 e_stat;
771	int rc = 1;
772
773	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
774
775	spin_lock_bh(&ep->ex_lock);
776	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
777		goto unlock;
778
779	e_stat = ep->esb_stat;
780	if (e_stat & ESB_ST_COMPLETE) {
781		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
782		spin_unlock_bh(&ep->ex_lock);
783		if (e_stat & ESB_ST_REC_QUAL)
784			fc_exch_rrq(ep);
785		goto done;
786	} else {
787		if (e_stat & ESB_ST_ABNORMAL)
788			rc = fc_exch_done_locked(ep);
789		spin_unlock_bh(&ep->ex_lock);
790		if (!rc)
791			fc_exch_delete(ep);
792		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
793		fc_seq_set_resp(sp, NULL, ep->arg);
794		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
795		goto done;
796	}
797unlock:
798	spin_unlock_bh(&ep->ex_lock);
799done:
800	/*
801	 * This release matches the hold taken when the timer was set.
802	 */
803	fc_exch_release(ep);
804}
805
806/**
807 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
808 * @lport: The local port that the exchange is for
809 * @mp:	   The exchange manager that will allocate the exchange
810 *
811 * Returns pointer to allocated fc_exch with exch lock held.
812 */
813static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
814					struct fc_exch_mgr *mp)
815{
816	struct fc_exch *ep;
817	unsigned int cpu;
818	u16 index;
819	struct fc_exch_pool *pool;
820
821	/* allocate memory for exchange */
822	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
823	if (!ep) {
824		atomic_inc(&mp->stats.no_free_exch);
825		goto out;
826	}
827	memset(ep, 0, sizeof(*ep));
828
829	cpu = get_cpu();
830	pool = per_cpu_ptr(mp->pool, cpu);
831	spin_lock_bh(&pool->lock);
832	put_cpu();
833
834	/* peek cache of free slot */
835	if (pool->left != FC_XID_UNKNOWN) {
836		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
837			index = pool->left;
838			pool->left = FC_XID_UNKNOWN;
839			goto hit;
840		}
841	}
842	if (pool->right != FC_XID_UNKNOWN) {
843		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
844			index = pool->right;
845			pool->right = FC_XID_UNKNOWN;
846			goto hit;
847		}
848	}
849
850	index = pool->next_index;
851	/* allocate new exch from pool */
852	while (fc_exch_ptr_get(pool, index)) {
853		index = index == mp->pool_max_index ? 0 : index + 1;
854		if (index == pool->next_index)
855			goto err;
856	}
857	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
858hit:
859	fc_exch_hold(ep);	/* hold for exch in mp */
860	spin_lock_init(&ep->ex_lock);
861	/*
862	 * Hold exch lock for caller to prevent fc_exch_reset()
863	 * from releasing exch	while fc_exch_alloc() caller is
864	 * still working on exch.
865	 */
866	spin_lock_bh(&ep->ex_lock);
867
868	fc_exch_ptr_set(pool, index, ep);
869	list_add_tail(&ep->ex_list, &pool->ex_list);
870	fc_seq_alloc(ep, ep->seq_id++);
871	pool->total_exches++;
872	spin_unlock_bh(&pool->lock);
873
874	/*
875	 *  update exchange
876	 */
877	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
878	ep->em = mp;
879	ep->pool = pool;
880	ep->lp = lport;
881	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
882	ep->rxid = FC_XID_UNKNOWN;
883	ep->class = mp->class;
884	ep->resp_active = 0;
885	init_waitqueue_head(&ep->resp_wq);
886	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
887out:
888	return ep;
889err:
890	spin_unlock_bh(&pool->lock);
891	atomic_inc(&mp->stats.no_free_exch_xid);
892	mempool_free(ep, mp->ep_pool);
893	return NULL;
894}
895
896/**
897 * fc_exch_alloc() - Allocate an exchange from an EM on a
898 *		     local port's list of EMs.
899 * @lport: The local port that will own the exchange
900 * @fp:	   The FC frame that the exchange will be for
901 *
902 * This function walks the list of exchange manager(EM)
903 * anchors to select an EM for a new exchange allocation. The
904 * EM is selected when a NULL match function pointer is encountered
905 * or when a call to a match function returns true.
906 */
907static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
908				     struct fc_frame *fp)
909{
910	struct fc_exch_mgr_anchor *ema;
911	struct fc_exch *ep;
912
913	list_for_each_entry(ema, &lport->ema_list, ema_list) {
914		if (!ema->match || ema->match(fp)) {
915			ep = fc_exch_em_alloc(lport, ema->mp);
916			if (ep)
917				return ep;
918		}
919	}
920	return NULL;
921}
922
923/**
924 * fc_exch_find() - Lookup and hold an exchange
925 * @mp:	 The exchange manager to lookup the exchange from
926 * @xid: The XID of the exchange to look up
927 */
928static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
929{
930	struct fc_lport *lport = mp->lport;
931	struct fc_exch_pool *pool;
932	struct fc_exch *ep = NULL;
933	u16 cpu = xid & fc_cpu_mask;
934
935	if (xid == FC_XID_UNKNOWN)
936		return NULL;
937
938	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
939		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
940		       lport->host->host_no, lport->port_id, xid, cpu);
941		return NULL;
942	}
943
944	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
945		pool = per_cpu_ptr(mp->pool, cpu);
946		spin_lock_bh(&pool->lock);
947		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
948		if (ep == &fc_quarantine_exch) {
949			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
950			ep = NULL;
951		}
952		if (ep) {
953			WARN_ON(ep->xid != xid);
954			fc_exch_hold(ep);
955		}
956		spin_unlock_bh(&pool->lock);
957	}
958	return ep;
959}
960
961
962/**
963 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
964 *		    the memory allocated for the related objects may be freed.
965 * @sp: The sequence that has completed
966 *
967 * Note: May sleep if invoked from outside a response handler.
968 */
969void fc_exch_done(struct fc_seq *sp)
970{
971	struct fc_exch *ep = fc_seq_exch(sp);
972	int rc;
973
974	spin_lock_bh(&ep->ex_lock);
975	rc = fc_exch_done_locked(ep);
976	spin_unlock_bh(&ep->ex_lock);
977
978	fc_seq_set_resp(sp, NULL, ep->arg);
979	if (!rc)
980		fc_exch_delete(ep);
981}
982EXPORT_SYMBOL(fc_exch_done);
983
984/**
985 * fc_exch_resp() - Allocate a new exchange for a response frame
986 * @lport: The local port that the exchange was for
987 * @mp:	   The exchange manager to allocate the exchange from
988 * @fp:	   The response frame
989 *
990 * Sets the responder ID in the frame header.
991 */
992static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
993				    struct fc_exch_mgr *mp,
994				    struct fc_frame *fp)
995{
996	struct fc_exch *ep;
997	struct fc_frame_header *fh;
998
999	ep = fc_exch_alloc(lport, fp);
1000	if (ep) {
1001		ep->class = fc_frame_class(fp);
1002
1003		/*
1004		 * Set EX_CTX indicating we're responding on this exchange.
1005		 */
1006		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1007		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1008		fh = fc_frame_header_get(fp);
1009		ep->sid = ntoh24(fh->fh_d_id);
1010		ep->did = ntoh24(fh->fh_s_id);
1011		ep->oid = ep->did;
1012
1013		/*
1014		 * Allocated exchange has placed the XID in the
1015		 * originator field. Move it to the responder field,
1016		 * and set the originator XID from the frame.
1017		 */
1018		ep->rxid = ep->xid;
1019		ep->oxid = ntohs(fh->fh_ox_id);
1020		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1021		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1022			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1023
1024		fc_exch_hold(ep);	/* hold for caller */
1025		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1026	}
1027	return ep;
1028}
1029
1030/**
1031 * fc_seq_lookup_recip() - Find a sequence where the other end
1032 *			   originated the sequence
1033 * @lport: The local port that the frame was sent to
1034 * @mp:	   The Exchange Manager to lookup the exchange from
1035 * @fp:	   The frame associated with the sequence we're looking for
1036 *
1037 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1038 * on the ep that should be released by the caller.
1039 */
1040static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1041						 struct fc_exch_mgr *mp,
1042						 struct fc_frame *fp)
1043{
1044	struct fc_frame_header *fh = fc_frame_header_get(fp);
1045	struct fc_exch *ep = NULL;
1046	struct fc_seq *sp = NULL;
1047	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1048	u32 f_ctl;
1049	u16 xid;
1050
1051	f_ctl = ntoh24(fh->fh_f_ctl);
1052	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1053
1054	/*
1055	 * Lookup or create the exchange if we will be creating the sequence.
1056	 */
1057	if (f_ctl & FC_FC_EX_CTX) {
1058		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1059		ep = fc_exch_find(mp, xid);
1060		if (!ep) {
1061			atomic_inc(&mp->stats.xid_not_found);
1062			reject = FC_RJT_OX_ID;
1063			goto out;
1064		}
1065		if (ep->rxid == FC_XID_UNKNOWN)
1066			ep->rxid = ntohs(fh->fh_rx_id);
1067		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1068			reject = FC_RJT_OX_ID;
1069			goto rel;
1070		}
1071	} else {
1072		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1073
1074		/*
1075		 * Special case for MDS issuing an ELS TEST with a
1076		 * bad rxid of 0.
1077		 * XXX take this out once we do the proper reject.
1078		 */
1079		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1080		    fc_frame_payload_op(fp) == ELS_TEST) {
1081			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1082			xid = FC_XID_UNKNOWN;
1083		}
1084
1085		/*
1086		 * new sequence - find the exchange
1087		 */
1088		ep = fc_exch_find(mp, xid);
1089		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1090			if (ep) {
1091				atomic_inc(&mp->stats.xid_busy);
1092				reject = FC_RJT_RX_ID;
1093				goto rel;
1094			}
1095			ep = fc_exch_resp(lport, mp, fp);
1096			if (!ep) {
1097				reject = FC_RJT_EXCH_EST;	/* XXX */
1098				goto out;
1099			}
1100			xid = ep->xid;	/* get our XID */
1101		} else if (!ep) {
1102			atomic_inc(&mp->stats.xid_not_found);
1103			reject = FC_RJT_RX_ID;	/* XID not found */
1104			goto out;
1105		}
1106	}
1107
1108	spin_lock_bh(&ep->ex_lock);
1109	/*
1110	 * At this point, we have the exchange held.
1111	 * Find or create the sequence.
1112	 */
1113	if (fc_sof_is_init(fr_sof(fp))) {
1114		sp = &ep->seq;
1115		sp->ssb_stat |= SSB_ST_RESP;
1116		sp->id = fh->fh_seq_id;
1117	} else {
1118		sp = &ep->seq;
1119		if (sp->id != fh->fh_seq_id) {
1120			atomic_inc(&mp->stats.seq_not_found);
1121			if (f_ctl & FC_FC_END_SEQ) {
1122				/*
1123				 * Update sequence_id based on incoming last
1124				 * frame of sequence exchange. This is needed
1125				 * for FC target where DDP has been used
1126				 * on target where, stack is indicated only
1127				 * about last frame's (payload _header) header.
1128				 * Whereas "seq_id" which is part of
1129				 * frame_header is allocated by initiator
1130				 * which is totally different from "seq_id"
1131				 * allocated when XFER_RDY was sent by target.
1132				 * To avoid false -ve which results into not
1133				 * sending RSP, hence write request on other
1134				 * end never finishes.
1135				 */
1136				sp->ssb_stat |= SSB_ST_RESP;
1137				sp->id = fh->fh_seq_id;
1138			} else {
1139				spin_unlock_bh(&ep->ex_lock);
1140
1141				/* sequence/exch should exist */
1142				reject = FC_RJT_SEQ_ID;
1143				goto rel;
1144			}
1145		}
1146	}
1147	WARN_ON(ep != fc_seq_exch(sp));
1148
1149	if (f_ctl & FC_FC_SEQ_INIT)
1150		ep->esb_stat |= ESB_ST_SEQ_INIT;
1151	spin_unlock_bh(&ep->ex_lock);
1152
1153	fr_seq(fp) = sp;
1154out:
1155	return reject;
1156rel:
1157	fc_exch_done(&ep->seq);
1158	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1159	return reject;
1160}
1161
1162/**
1163 * fc_seq_lookup_orig() - Find a sequence where this end
1164 *			  originated the sequence
1165 * @mp:	   The Exchange Manager to lookup the exchange from
1166 * @fp:	   The frame associated with the sequence we're looking for
1167 *
1168 * Does not hold the sequence for the caller.
1169 */
1170static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1171					 struct fc_frame *fp)
1172{
1173	struct fc_frame_header *fh = fc_frame_header_get(fp);
1174	struct fc_exch *ep;
1175	struct fc_seq *sp = NULL;
1176	u32 f_ctl;
1177	u16 xid;
1178
1179	f_ctl = ntoh24(fh->fh_f_ctl);
1180	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1181	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1182	ep = fc_exch_find(mp, xid);
1183	if (!ep)
1184		return NULL;
1185	if (ep->seq.id == fh->fh_seq_id) {
1186		/*
1187		 * Save the RX_ID if we didn't previously know it.
1188		 */
1189		sp = &ep->seq;
1190		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1191		    ep->rxid == FC_XID_UNKNOWN) {
1192			ep->rxid = ntohs(fh->fh_rx_id);
1193		}
1194	}
1195	fc_exch_release(ep);
1196	return sp;
1197}
1198
1199/**
1200 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1201 * @ep:	     The exchange to set the addresses for
1202 * @orig_id: The originator's ID
1203 * @resp_id: The responder's ID
1204 *
1205 * Note this must be done before the first sequence of the exchange is sent.
1206 */
1207static void fc_exch_set_addr(struct fc_exch *ep,
1208			     u32 orig_id, u32 resp_id)
1209{
1210	ep->oid = orig_id;
1211	if (ep->esb_stat & ESB_ST_RESP) {
1212		ep->sid = resp_id;
1213		ep->did = orig_id;
1214	} else {
1215		ep->sid = orig_id;
1216		ep->did = resp_id;
1217	}
1218}
1219
1220/**
1221 * fc_seq_els_rsp_send() - Send an ELS response using information from
1222 *			   the existing sequence/exchange.
1223 * @fp:	      The received frame
1224 * @els_cmd:  The ELS command to be sent
1225 * @els_data: The ELS data to be sent
1226 *
1227 * The received frame is not freed.
1228 */
1229void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1230			 struct fc_seq_els_data *els_data)
1231{
1232	switch (els_cmd) {
1233	case ELS_LS_RJT:
1234		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1235		break;
1236	case ELS_LS_ACC:
1237		fc_seq_ls_acc(fp);
1238		break;
1239	case ELS_RRQ:
1240		fc_exch_els_rrq(fp);
1241		break;
1242	case ELS_REC:
1243		fc_exch_els_rec(fp);
1244		break;
1245	default:
1246		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1247	}
1248}
1249EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1250
1251/**
1252 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1253 * @sp:	     The sequence that is to be sent
1254 * @fp:	     The frame that will be sent on the sequence
1255 * @rctl:    The R_CTL information to be sent
1256 * @fh_type: The frame header type
1257 */
1258static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1259			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1260{
1261	u32 f_ctl;
1262	struct fc_exch *ep = fc_seq_exch(sp);
1263
1264	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1265	f_ctl |= ep->f_ctl;
1266	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1267	fc_seq_send_locked(ep->lp, sp, fp);
1268}
1269
1270/**
1271 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1272 * @sp:	   The sequence to send the ACK on
1273 * @rx_fp: The received frame that is being acknoledged
1274 *
1275 * Send ACK_1 (or equiv.) indicating we received something.
1276 */
1277static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1278{
1279	struct fc_frame *fp;
1280	struct fc_frame_header *rx_fh;
1281	struct fc_frame_header *fh;
1282	struct fc_exch *ep = fc_seq_exch(sp);
1283	struct fc_lport *lport = ep->lp;
1284	unsigned int f_ctl;
1285
1286	/*
1287	 * Don't send ACKs for class 3.
1288	 */
1289	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1290		fp = fc_frame_alloc(lport, 0);
1291		if (!fp) {
1292			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1293			return;
1294		}
1295
1296		fh = fc_frame_header_get(fp);
1297		fh->fh_r_ctl = FC_RCTL_ACK_1;
1298		fh->fh_type = FC_TYPE_BLS;
1299
1300		/*
1301		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1302		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1303		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1304		 * Last ACK uses bits 7-6 (continue sequence),
1305		 * bits 5-4 are meaningful (what kind of ACK to use).
1306		 */
1307		rx_fh = fc_frame_header_get(rx_fp);
1308		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1309		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1310			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1311			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1312			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1313		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1314		hton24(fh->fh_f_ctl, f_ctl);
1315
1316		fc_exch_setup_hdr(ep, fp, f_ctl);
1317		fh->fh_seq_id = rx_fh->fh_seq_id;
1318		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1319		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1320
1321		fr_sof(fp) = fr_sof(rx_fp);
1322		if (f_ctl & FC_FC_END_SEQ)
1323			fr_eof(fp) = FC_EOF_T;
1324		else
1325			fr_eof(fp) = FC_EOF_N;
1326
1327		lport->tt.frame_send(lport, fp);
1328	}
1329}
1330
1331/**
1332 * fc_exch_send_ba_rjt() - Send BLS Reject
1333 * @rx_fp:  The frame being rejected
1334 * @reason: The reason the frame is being rejected
1335 * @explan: The explanation for the rejection
1336 *
1337 * This is for rejecting BA_ABTS only.
1338 */
1339static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1340				enum fc_ba_rjt_reason reason,
1341				enum fc_ba_rjt_explan explan)
1342{
1343	struct fc_frame *fp;
1344	struct fc_frame_header *rx_fh;
1345	struct fc_frame_header *fh;
1346	struct fc_ba_rjt *rp;
1347	struct fc_seq *sp;
1348	struct fc_lport *lport;
1349	unsigned int f_ctl;
1350
1351	lport = fr_dev(rx_fp);
1352	sp = fr_seq(rx_fp);
1353	fp = fc_frame_alloc(lport, sizeof(*rp));
1354	if (!fp) {
1355		FC_EXCH_DBG(fc_seq_exch(sp),
1356			     "Drop BA_RJT request, out of memory\n");
1357		return;
1358	}
1359	fh = fc_frame_header_get(fp);
1360	rx_fh = fc_frame_header_get(rx_fp);
1361
1362	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1363
1364	rp = fc_frame_payload_get(fp, sizeof(*rp));
1365	rp->br_reason = reason;
1366	rp->br_explan = explan;
1367
1368	/*
1369	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1370	 */
1371	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1372	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1373	fh->fh_ox_id = rx_fh->fh_ox_id;
1374	fh->fh_rx_id = rx_fh->fh_rx_id;
1375	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1376	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1377	fh->fh_type = FC_TYPE_BLS;
1378
1379	/*
1380	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1381	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1382	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1383	 * Last ACK uses bits 7-6 (continue sequence),
1384	 * bits 5-4 are meaningful (what kind of ACK to use).
1385	 * Always set LAST_SEQ, END_SEQ.
1386	 */
1387	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1388	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1389		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1390		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1391	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1392	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1393	f_ctl &= ~FC_FC_FIRST_SEQ;
1394	hton24(fh->fh_f_ctl, f_ctl);
1395
1396	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1397	fr_eof(fp) = FC_EOF_T;
1398	if (fc_sof_needs_ack(fr_sof(fp)))
1399		fr_eof(fp) = FC_EOF_N;
1400
1401	lport->tt.frame_send(lport, fp);
1402}
1403
1404/**
1405 * fc_exch_recv_abts() - Handle an incoming ABTS
1406 * @ep:	   The exchange the abort was on
1407 * @rx_fp: The ABTS frame
1408 *
1409 * This would be for target mode usually, but could be due to lost
1410 * FCP transfer ready, confirm or RRQ. We always handle this as an
1411 * exchange abort, ignoring the parameter.
1412 */
1413static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1414{
1415	struct fc_frame *fp;
1416	struct fc_ba_acc *ap;
1417	struct fc_frame_header *fh;
1418	struct fc_seq *sp;
1419
1420	if (!ep)
1421		goto reject;
1422
1423	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1424	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1425	if (!fp) {
1426		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1427		goto free;
1428	}
1429
1430	spin_lock_bh(&ep->ex_lock);
1431	if (ep->esb_stat & ESB_ST_COMPLETE) {
1432		spin_unlock_bh(&ep->ex_lock);
1433		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1434		fc_frame_free(fp);
1435		goto reject;
1436	}
1437	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1438		ep->esb_stat |= ESB_ST_REC_QUAL;
1439		fc_exch_hold(ep);		/* hold for REC_QUAL */
1440	}
1441	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1442	fh = fc_frame_header_get(fp);
1443	ap = fc_frame_payload_get(fp, sizeof(*ap));
1444	memset(ap, 0, sizeof(*ap));
1445	sp = &ep->seq;
1446	ap->ba_high_seq_cnt = htons(0xffff);
1447	if (sp->ssb_stat & SSB_ST_RESP) {
1448		ap->ba_seq_id = sp->id;
1449		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1450		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1451		ap->ba_low_seq_cnt = htons(sp->cnt);
1452	}
1453	sp = fc_seq_start_next_locked(sp);
1454	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1455	ep->esb_stat |= ESB_ST_ABNORMAL;
1456	spin_unlock_bh(&ep->ex_lock);
1457
1458free:
1459	fc_frame_free(rx_fp);
1460	return;
1461
1462reject:
1463	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1464	goto free;
1465}
1466
1467/**
1468 * fc_seq_assign() - Assign exchange and sequence for incoming request
1469 * @lport: The local port that received the request
1470 * @fp:    The request frame
1471 *
1472 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1473 * A reference will be held on the exchange/sequence for the caller, which
1474 * must call fc_seq_release().
1475 */
1476struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1477{
1478	struct fc_exch_mgr_anchor *ema;
1479
1480	WARN_ON(lport != fr_dev(fp));
1481	WARN_ON(fr_seq(fp));
1482	fr_seq(fp) = NULL;
1483
1484	list_for_each_entry(ema, &lport->ema_list, ema_list)
1485		if ((!ema->match || ema->match(fp)) &&
1486		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1487			break;
1488	return fr_seq(fp);
1489}
1490EXPORT_SYMBOL(fc_seq_assign);
1491
1492/**
1493 * fc_seq_release() - Release the hold
1494 * @sp:    The sequence.
1495 */
1496void fc_seq_release(struct fc_seq *sp)
1497{
1498	fc_exch_release(fc_seq_exch(sp));
1499}
1500EXPORT_SYMBOL(fc_seq_release);
1501
1502/**
1503 * fc_exch_recv_req() - Handler for an incoming request
1504 * @lport: The local port that received the request
1505 * @mp:	   The EM that the exchange is on
1506 * @fp:	   The request frame
1507 *
1508 * This is used when the other end is originating the exchange
1509 * and the sequence.
1510 */
1511static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1512			     struct fc_frame *fp)
1513{
1514	struct fc_frame_header *fh = fc_frame_header_get(fp);
1515	struct fc_seq *sp = NULL;
1516	struct fc_exch *ep = NULL;
1517	enum fc_pf_rjt_reason reject;
1518
1519	/* We can have the wrong fc_lport at this point with NPIV, which is a
1520	 * problem now that we know a new exchange needs to be allocated
1521	 */
1522	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1523	if (!lport) {
1524		fc_frame_free(fp);
1525		return;
1526	}
1527	fr_dev(fp) = lport;
1528
1529	BUG_ON(fr_seq(fp));		/* XXX remove later */
1530
1531	/*
1532	 * If the RX_ID is 0xffff, don't allocate an exchange.
1533	 * The upper-level protocol may request one later, if needed.
1534	 */
1535	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1536		return fc_lport_recv(lport, fp);
1537
1538	reject = fc_seq_lookup_recip(lport, mp, fp);
1539	if (reject == FC_RJT_NONE) {
1540		sp = fr_seq(fp);	/* sequence will be held */
1541		ep = fc_seq_exch(sp);
1542		fc_seq_send_ack(sp, fp);
1543		ep->encaps = fr_encaps(fp);
1544
1545		/*
1546		 * Call the receive function.
1547		 *
1548		 * The receive function may allocate a new sequence
1549		 * over the old one, so we shouldn't change the
1550		 * sequence after this.
1551		 *
1552		 * The frame will be freed by the receive function.
1553		 * If new exch resp handler is valid then call that
1554		 * first.
1555		 */
1556		if (!fc_invoke_resp(ep, sp, fp))
1557			fc_lport_recv(lport, fp);
1558		fc_exch_release(ep);	/* release from lookup */
1559	} else {
1560		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1561			     reject);
1562		fc_frame_free(fp);
1563	}
1564}
1565
1566/**
1567 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1568 *			     end is the originator of the sequence that is a
1569 *			     response to our initial exchange
1570 * @mp: The EM that the exchange is on
1571 * @fp: The response frame
1572 */
1573static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1574{
1575	struct fc_frame_header *fh = fc_frame_header_get(fp);
1576	struct fc_seq *sp;
1577	struct fc_exch *ep;
1578	enum fc_sof sof;
1579	u32 f_ctl;
1580	int rc;
1581
1582	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1583	if (!ep) {
1584		atomic_inc(&mp->stats.xid_not_found);
1585		goto out;
1586	}
1587	if (ep->esb_stat & ESB_ST_COMPLETE) {
1588		atomic_inc(&mp->stats.xid_not_found);
1589		goto rel;
1590	}
1591	if (ep->rxid == FC_XID_UNKNOWN)
1592		ep->rxid = ntohs(fh->fh_rx_id);
1593	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1594		atomic_inc(&mp->stats.xid_not_found);
1595		goto rel;
1596	}
1597	if (ep->did != ntoh24(fh->fh_s_id) &&
1598	    ep->did != FC_FID_FLOGI) {
1599		atomic_inc(&mp->stats.xid_not_found);
1600		goto rel;
1601	}
1602	sof = fr_sof(fp);
1603	sp = &ep->seq;
1604	if (fc_sof_is_init(sof)) {
1605		sp->ssb_stat |= SSB_ST_RESP;
1606		sp->id = fh->fh_seq_id;
1607	}
1608
1609	f_ctl = ntoh24(fh->fh_f_ctl);
1610	fr_seq(fp) = sp;
1611
1612	spin_lock_bh(&ep->ex_lock);
1613	if (f_ctl & FC_FC_SEQ_INIT)
1614		ep->esb_stat |= ESB_ST_SEQ_INIT;
1615	spin_unlock_bh(&ep->ex_lock);
1616
1617	if (fc_sof_needs_ack(sof))
1618		fc_seq_send_ack(sp, fp);
1619
1620	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1621	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1622	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1623		spin_lock_bh(&ep->ex_lock);
1624		rc = fc_exch_done_locked(ep);
1625		WARN_ON(fc_seq_exch(sp) != ep);
1626		spin_unlock_bh(&ep->ex_lock);
1627		if (!rc) {
1628			fc_exch_delete(ep);
1629		} else {
1630			FC_EXCH_DBG(ep, "ep is completed already,"
1631					"hence skip calling the resp\n");
1632			goto skip_resp;
1633		}
1634	}
1635
1636	/*
1637	 * Call the receive function.
1638	 * The sequence is held (has a refcnt) for us,
1639	 * but not for the receive function.
1640	 *
1641	 * The receive function may allocate a new sequence
1642	 * over the old one, so we shouldn't change the
1643	 * sequence after this.
1644	 *
1645	 * The frame will be freed by the receive function.
1646	 * If new exch resp handler is valid then call that
1647	 * first.
1648	 */
1649	if (!fc_invoke_resp(ep, sp, fp))
1650		fc_frame_free(fp);
1651
1652skip_resp:
1653	fc_exch_release(ep);
1654	return;
1655rel:
1656	fc_exch_release(ep);
1657out:
1658	fc_frame_free(fp);
1659}
1660
1661/**
1662 * fc_exch_recv_resp() - Handler for a sequence where other end is
1663 *			 responding to our sequence
1664 * @mp: The EM that the exchange is on
1665 * @fp: The response frame
1666 */
1667static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1668{
1669	struct fc_seq *sp;
1670
1671	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1672
1673	if (!sp)
1674		atomic_inc(&mp->stats.xid_not_found);
1675	else
1676		atomic_inc(&mp->stats.non_bls_resp);
1677
1678	fc_frame_free(fp);
1679}
1680
1681/**
1682 * fc_exch_abts_resp() - Handler for a response to an ABT
1683 * @ep: The exchange that the frame is on
1684 * @fp: The response frame
1685 *
1686 * This response would be to an ABTS cancelling an exchange or sequence.
1687 * The response can be either BA_ACC or BA_RJT
1688 */
1689static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1690{
1691	struct fc_frame_header *fh;
1692	struct fc_ba_acc *ap;
1693	struct fc_seq *sp;
1694	u16 low;
1695	u16 high;
1696	int rc = 1, has_rec = 0;
1697
1698	fh = fc_frame_header_get(fp);
1699	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1700		    fc_exch_rctl_name(fh->fh_r_ctl));
1701
1702	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1703		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1704		fc_exch_release(ep);	/* release from pending timer hold */
1705		return;
1706	}
1707
1708	spin_lock_bh(&ep->ex_lock);
1709	switch (fh->fh_r_ctl) {
1710	case FC_RCTL_BA_ACC:
1711		ap = fc_frame_payload_get(fp, sizeof(*ap));
1712		if (!ap)
1713			break;
1714
1715		/*
1716		 * Decide whether to establish a Recovery Qualifier.
1717		 * We do this if there is a non-empty SEQ_CNT range and
1718		 * SEQ_ID is the same as the one we aborted.
1719		 */
1720		low = ntohs(ap->ba_low_seq_cnt);
1721		high = ntohs(ap->ba_high_seq_cnt);
1722		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1723		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1724		     ap->ba_seq_id == ep->seq_id) && low != high) {
1725			ep->esb_stat |= ESB_ST_REC_QUAL;
1726			fc_exch_hold(ep);  /* hold for recovery qualifier */
1727			has_rec = 1;
1728		}
1729		break;
1730	case FC_RCTL_BA_RJT:
1731		break;
1732	default:
1733		break;
1734	}
1735
1736	/* do we need to do some other checks here. Can we reuse more of
1737	 * fc_exch_recv_seq_resp
1738	 */
1739	sp = &ep->seq;
1740	/*
1741	 * do we want to check END_SEQ as well as LAST_SEQ here?
1742	 */
1743	if (ep->fh_type != FC_TYPE_FCP &&
1744	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1745		rc = fc_exch_done_locked(ep);
1746	spin_unlock_bh(&ep->ex_lock);
1747
1748	fc_exch_hold(ep);
1749	if (!rc)
1750		fc_exch_delete(ep);
1751	if (!fc_invoke_resp(ep, sp, fp))
1752		fc_frame_free(fp);
1753	if (has_rec)
1754		fc_exch_timer_set(ep, ep->r_a_tov);
1755	fc_exch_release(ep);
1756}
1757
1758/**
1759 * fc_exch_recv_bls() - Handler for a BLS sequence
1760 * @mp: The EM that the exchange is on
1761 * @fp: The request frame
1762 *
1763 * The BLS frame is always a sequence initiated by the remote side.
1764 * We may be either the originator or recipient of the exchange.
1765 */
1766static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1767{
1768	struct fc_frame_header *fh;
1769	struct fc_exch *ep;
1770	u32 f_ctl;
1771
1772	fh = fc_frame_header_get(fp);
1773	f_ctl = ntoh24(fh->fh_f_ctl);
1774	fr_seq(fp) = NULL;
1775
1776	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1777			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1778	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1779		spin_lock_bh(&ep->ex_lock);
1780		ep->esb_stat |= ESB_ST_SEQ_INIT;
1781		spin_unlock_bh(&ep->ex_lock);
1782	}
1783	if (f_ctl & FC_FC_SEQ_CTX) {
1784		/*
1785		 * A response to a sequence we initiated.
1786		 * This should only be ACKs for class 2 or F.
1787		 */
1788		switch (fh->fh_r_ctl) {
1789		case FC_RCTL_ACK_1:
1790		case FC_RCTL_ACK_0:
1791			break;
1792		default:
1793			if (ep)
1794				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1795					    fh->fh_r_ctl,
1796					    fc_exch_rctl_name(fh->fh_r_ctl));
1797			break;
1798		}
1799		fc_frame_free(fp);
1800	} else {
1801		switch (fh->fh_r_ctl) {
1802		case FC_RCTL_BA_RJT:
1803		case FC_RCTL_BA_ACC:
1804			if (ep)
1805				fc_exch_abts_resp(ep, fp);
1806			else
1807				fc_frame_free(fp);
1808			break;
1809		case FC_RCTL_BA_ABTS:
1810			if (ep)
1811				fc_exch_recv_abts(ep, fp);
1812			else
1813				fc_frame_free(fp);
1814			break;
1815		default:			/* ignore junk */
1816			fc_frame_free(fp);
1817			break;
1818		}
1819	}
1820	if (ep)
1821		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1822}
1823
1824/**
1825 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1826 * @rx_fp: The received frame, not freed here.
1827 *
1828 * If this fails due to allocation or transmit congestion, assume the
1829 * originator will repeat the sequence.
1830 */
1831static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1832{
1833	struct fc_lport *lport;
1834	struct fc_els_ls_acc *acc;
1835	struct fc_frame *fp;
1836	struct fc_seq *sp;
1837
1838	lport = fr_dev(rx_fp);
1839	sp = fr_seq(rx_fp);
1840	fp = fc_frame_alloc(lport, sizeof(*acc));
1841	if (!fp) {
1842		FC_EXCH_DBG(fc_seq_exch(sp),
1843			    "exch: drop LS_ACC, out of memory\n");
1844		return;
1845	}
1846	acc = fc_frame_payload_get(fp, sizeof(*acc));
1847	memset(acc, 0, sizeof(*acc));
1848	acc->la_cmd = ELS_LS_ACC;
1849	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1850	lport->tt.frame_send(lport, fp);
1851}
1852
1853/**
1854 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1855 * @rx_fp: The received frame, not freed here.
1856 * @reason: The reason the sequence is being rejected
1857 * @explan: The explanation for the rejection
1858 *
1859 * If this fails due to allocation or transmit congestion, assume the
1860 * originator will repeat the sequence.
1861 */
1862static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1863			  enum fc_els_rjt_explan explan)
1864{
1865	struct fc_lport *lport;
1866	struct fc_els_ls_rjt *rjt;
1867	struct fc_frame *fp;
1868	struct fc_seq *sp;
1869
1870	lport = fr_dev(rx_fp);
1871	sp = fr_seq(rx_fp);
1872	fp = fc_frame_alloc(lport, sizeof(*rjt));
1873	if (!fp) {
1874		FC_EXCH_DBG(fc_seq_exch(sp),
1875			    "exch: drop LS_ACC, out of memory\n");
1876		return;
1877	}
1878	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1879	memset(rjt, 0, sizeof(*rjt));
1880	rjt->er_cmd = ELS_LS_RJT;
1881	rjt->er_reason = reason;
1882	rjt->er_explan = explan;
1883	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1884	lport->tt.frame_send(lport, fp);
1885}
1886
1887/**
1888 * fc_exch_reset() - Reset an exchange
1889 * @ep: The exchange to be reset
1890 *
1891 * Note: May sleep if invoked from outside a response handler.
1892 */
1893static void fc_exch_reset(struct fc_exch *ep)
1894{
1895	struct fc_seq *sp;
1896	int rc = 1;
1897
1898	spin_lock_bh(&ep->ex_lock);
1899	ep->state |= FC_EX_RST_CLEANUP;
1900	fc_exch_timer_cancel(ep);
1901	if (ep->esb_stat & ESB_ST_REC_QUAL)
1902		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1903	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1904	sp = &ep->seq;
1905	rc = fc_exch_done_locked(ep);
1906	spin_unlock_bh(&ep->ex_lock);
1907
1908	fc_exch_hold(ep);
1909
1910	if (!rc) {
1911		fc_exch_delete(ep);
1912	} else {
1913		FC_EXCH_DBG(ep, "ep is completed already,"
1914				"hence skip calling the resp\n");
1915		goto skip_resp;
1916	}
1917
1918	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1919skip_resp:
1920	fc_seq_set_resp(sp, NULL, ep->arg);
1921	fc_exch_release(ep);
1922}
1923
1924/**
1925 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1926 * @lport: The local port that the exchange pool is on
1927 * @pool:  The exchange pool to be reset
1928 * @sid:   The source ID
1929 * @did:   The destination ID
1930 *
1931 * Resets a per cpu exches pool, releasing all of its sequences
1932 * and exchanges. If sid is non-zero then reset only exchanges
1933 * we sourced from the local port's FID. If did is non-zero then
1934 * only reset exchanges destined for the local port's FID.
1935 */
1936static void fc_exch_pool_reset(struct fc_lport *lport,
1937			       struct fc_exch_pool *pool,
1938			       u32 sid, u32 did)
1939{
1940	struct fc_exch *ep;
1941	struct fc_exch *next;
1942
1943	spin_lock_bh(&pool->lock);
1944restart:
1945	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1946		if ((lport == ep->lp) &&
1947		    (sid == 0 || sid == ep->sid) &&
1948		    (did == 0 || did == ep->did)) {
1949			fc_exch_hold(ep);
1950			spin_unlock_bh(&pool->lock);
1951
1952			fc_exch_reset(ep);
1953
1954			fc_exch_release(ep);
1955			spin_lock_bh(&pool->lock);
1956
1957			/*
1958			 * must restart loop incase while lock
1959			 * was down multiple eps were released.
1960			 */
1961			goto restart;
1962		}
1963	}
1964	pool->next_index = 0;
1965	pool->left = FC_XID_UNKNOWN;
1966	pool->right = FC_XID_UNKNOWN;
1967	spin_unlock_bh(&pool->lock);
1968}
1969
1970/**
1971 * fc_exch_mgr_reset() - Reset all EMs of a local port
1972 * @lport: The local port whose EMs are to be reset
1973 * @sid:   The source ID
1974 * @did:   The destination ID
1975 *
1976 * Reset all EMs associated with a given local port. Release all
1977 * sequences and exchanges. If sid is non-zero then reset only the
1978 * exchanges sent from the local port's FID. If did is non-zero then
1979 * reset only exchanges destined for the local port's FID.
1980 */
1981void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1982{
1983	struct fc_exch_mgr_anchor *ema;
1984	unsigned int cpu;
1985
1986	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1987		for_each_possible_cpu(cpu)
1988			fc_exch_pool_reset(lport,
1989					   per_cpu_ptr(ema->mp->pool, cpu),
1990					   sid, did);
1991	}
1992}
1993EXPORT_SYMBOL(fc_exch_mgr_reset);
1994
1995/**
1996 * fc_exch_lookup() - find an exchange
1997 * @lport: The local port
1998 * @xid: The exchange ID
1999 *
2000 * Returns exchange pointer with hold for caller, or NULL if not found.
2001 */
2002static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
2003{
2004	struct fc_exch_mgr_anchor *ema;
2005
2006	list_for_each_entry(ema, &lport->ema_list, ema_list)
2007		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2008			return fc_exch_find(ema->mp, xid);
2009	return NULL;
2010}
2011
2012/**
2013 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2014 * @rfp: The REC frame, not freed here.
2015 *
2016 * Note that the requesting port may be different than the S_ID in the request.
2017 */
2018static void fc_exch_els_rec(struct fc_frame *rfp)
2019{
2020	struct fc_lport *lport;
2021	struct fc_frame *fp;
2022	struct fc_exch *ep;
2023	struct fc_els_rec *rp;
2024	struct fc_els_rec_acc *acc;
2025	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2026	enum fc_els_rjt_explan explan;
2027	u32 sid;
2028	u16 xid, rxid, oxid;
2029
2030	lport = fr_dev(rfp);
2031	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2032	explan = ELS_EXPL_INV_LEN;
2033	if (!rp)
2034		goto reject;
2035	sid = ntoh24(rp->rec_s_id);
2036	rxid = ntohs(rp->rec_rx_id);
2037	oxid = ntohs(rp->rec_ox_id);
2038
2039	explan = ELS_EXPL_OXID_RXID;
2040	if (sid == fc_host_port_id(lport->host))
2041		xid = oxid;
2042	else
2043		xid = rxid;
2044	if (xid == FC_XID_UNKNOWN) {
2045		FC_LPORT_DBG(lport,
2046			     "REC request from %x: invalid rxid %x oxid %x\n",
2047			     sid, rxid, oxid);
2048		goto reject;
2049	}
2050	ep = fc_exch_lookup(lport, xid);
2051	if (!ep) {
2052		FC_LPORT_DBG(lport,
2053			     "REC request from %x: rxid %x oxid %x not found\n",
2054			     sid, rxid, oxid);
2055		goto reject;
2056	}
2057	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2058		    sid, rxid, oxid);
2059	if (ep->oid != sid || oxid != ep->oxid)
2060		goto rel;
2061	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2062		goto rel;
2063	fp = fc_frame_alloc(lport, sizeof(*acc));
2064	if (!fp) {
2065		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2066		goto out;
2067	}
2068
2069	acc = fc_frame_payload_get(fp, sizeof(*acc));
2070	memset(acc, 0, sizeof(*acc));
2071	acc->reca_cmd = ELS_LS_ACC;
2072	acc->reca_ox_id = rp->rec_ox_id;
2073	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2074	acc->reca_rx_id = htons(ep->rxid);
2075	if (ep->sid == ep->oid)
2076		hton24(acc->reca_rfid, ep->did);
2077	else
2078		hton24(acc->reca_rfid, ep->sid);
2079	acc->reca_fc4value = htonl(ep->seq.rec_data);
2080	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2081						 ESB_ST_SEQ_INIT |
2082						 ESB_ST_COMPLETE));
2083	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2084	lport->tt.frame_send(lport, fp);
2085out:
2086	fc_exch_release(ep);
2087	return;
2088
2089rel:
2090	fc_exch_release(ep);
2091reject:
2092	fc_seq_ls_rjt(rfp, reason, explan);
2093}
2094
2095/**
2096 * fc_exch_rrq_resp() - Handler for RRQ responses
2097 * @sp:	 The sequence that the RRQ is on
2098 * @fp:	 The RRQ frame
2099 * @arg: The exchange that the RRQ is on
2100 *
2101 * TODO: fix error handler.
2102 */
2103static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2104{
2105	struct fc_exch *aborted_ep = arg;
2106	unsigned int op;
2107
2108	if (IS_ERR(fp)) {
2109		int err = PTR_ERR(fp);
2110
2111		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2112			goto cleanup;
2113		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2114			    "frame error %d\n", err);
2115		return;
2116	}
2117
2118	op = fc_frame_payload_op(fp);
2119	fc_frame_free(fp);
2120
2121	switch (op) {
2122	case ELS_LS_RJT:
2123		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2124		fallthrough;
2125	case ELS_LS_ACC:
2126		goto cleanup;
2127	default:
2128		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2129			    op);
2130		return;
2131	}
2132
2133cleanup:
2134	fc_exch_done(&aborted_ep->seq);
2135	/* drop hold for rec qual */
2136	fc_exch_release(aborted_ep);
2137}
2138
2139
2140/**
2141 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2142 * @lport:	The local port to send the frame on
2143 * @fp:		The frame to be sent
2144 * @resp:	The response handler for this request
2145 * @destructor: The destructor for the exchange
2146 * @arg:	The argument to be passed to the response handler
2147 * @timer_msec: The timeout period for the exchange
2148 *
2149 * The exchange response handler is set in this routine to resp()
2150 * function pointer. It can be called in two scenarios: if a timeout
2151 * occurs or if a response frame is received for the exchange. The
2152 * fc_frame pointer in response handler will also indicate timeout
2153 * as error using IS_ERR related macros.
2154 *
2155 * The exchange destructor handler is also set in this routine.
2156 * The destructor handler is invoked by EM layer when exchange
2157 * is about to free, this can be used by caller to free its
2158 * resources along with exchange free.
2159 *
2160 * The arg is passed back to resp and destructor handler.
2161 *
2162 * The timeout value (in msec) for an exchange is set if non zero
2163 * timer_msec argument is specified. The timer is canceled when
2164 * it fires or when the exchange is done. The exchange timeout handler
2165 * is registered by EM layer.
2166 *
2167 * The frame pointer with some of the header's fields must be
2168 * filled before calling this routine, those fields are:
2169 *
2170 * - routing control
2171 * - FC port did
2172 * - FC port sid
2173 * - FC header type
2174 * - frame control
2175 * - parameter or relative offset
2176 */
2177struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2178				struct fc_frame *fp,
2179				void (*resp)(struct fc_seq *,
2180					     struct fc_frame *fp,
2181					     void *arg),
2182				void (*destructor)(struct fc_seq *, void *),
2183				void *arg, u32 timer_msec)
2184{
2185	struct fc_exch *ep;
2186	struct fc_seq *sp = NULL;
2187	struct fc_frame_header *fh;
2188	struct fc_fcp_pkt *fsp = NULL;
2189	int rc = 1;
2190
2191	ep = fc_exch_alloc(lport, fp);
2192	if (!ep) {
2193		fc_frame_free(fp);
2194		return NULL;
2195	}
2196	ep->esb_stat |= ESB_ST_SEQ_INIT;
2197	fh = fc_frame_header_get(fp);
2198	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2199	ep->resp = resp;
2200	ep->destructor = destructor;
2201	ep->arg = arg;
2202	ep->r_a_tov = lport->r_a_tov;
2203	ep->lp = lport;
2204	sp = &ep->seq;
2205
2206	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2207	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2208	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2209	sp->cnt++;
2210
2211	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2212		fsp = fr_fsp(fp);
2213		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2214	}
2215
2216	if (unlikely(lport->tt.frame_send(lport, fp)))
2217		goto err;
2218
2219	if (timer_msec)
2220		fc_exch_timer_set_locked(ep, timer_msec);
2221	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2222
2223	if (ep->f_ctl & FC_FC_SEQ_INIT)
2224		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2225	spin_unlock_bh(&ep->ex_lock);
2226	return sp;
2227err:
2228	if (fsp)
2229		fc_fcp_ddp_done(fsp);
2230	rc = fc_exch_done_locked(ep);
2231	spin_unlock_bh(&ep->ex_lock);
2232	if (!rc)
2233		fc_exch_delete(ep);
2234	return NULL;
2235}
2236EXPORT_SYMBOL(fc_exch_seq_send);
2237
2238/**
2239 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2240 * @ep: The exchange to send the RRQ on
2241 *
2242 * This tells the remote port to stop blocking the use of
2243 * the exchange and the seq_cnt range.
2244 */
2245static void fc_exch_rrq(struct fc_exch *ep)
2246{
2247	struct fc_lport *lport;
2248	struct fc_els_rrq *rrq;
2249	struct fc_frame *fp;
2250	u32 did;
2251
2252	lport = ep->lp;
2253
2254	fp = fc_frame_alloc(lport, sizeof(*rrq));
2255	if (!fp)
2256		goto retry;
2257
2258	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2259	memset(rrq, 0, sizeof(*rrq));
2260	rrq->rrq_cmd = ELS_RRQ;
2261	hton24(rrq->rrq_s_id, ep->sid);
2262	rrq->rrq_ox_id = htons(ep->oxid);
2263	rrq->rrq_rx_id = htons(ep->rxid);
2264
2265	did = ep->did;
2266	if (ep->esb_stat & ESB_ST_RESP)
2267		did = ep->sid;
2268
2269	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2270		       lport->port_id, FC_TYPE_ELS,
2271		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2272
2273	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2274			     lport->e_d_tov))
2275		return;
2276
2277retry:
2278	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2279	spin_lock_bh(&ep->ex_lock);
2280	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2281		spin_unlock_bh(&ep->ex_lock);
2282		/* drop hold for rec qual */
2283		fc_exch_release(ep);
2284		return;
2285	}
2286	ep->esb_stat |= ESB_ST_REC_QUAL;
2287	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2288	spin_unlock_bh(&ep->ex_lock);
2289}
2290
2291/**
2292 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2293 * @fp: The RRQ frame, not freed here.
2294 */
2295static void fc_exch_els_rrq(struct fc_frame *fp)
2296{
2297	struct fc_lport *lport;
2298	struct fc_exch *ep = NULL;	/* request or subject exchange */
2299	struct fc_els_rrq *rp;
2300	u32 sid;
2301	u16 xid;
2302	enum fc_els_rjt_explan explan;
2303
2304	lport = fr_dev(fp);
2305	rp = fc_frame_payload_get(fp, sizeof(*rp));
2306	explan = ELS_EXPL_INV_LEN;
2307	if (!rp)
2308		goto reject;
2309
2310	/*
2311	 * lookup subject exchange.
2312	 */
2313	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2314	xid = fc_host_port_id(lport->host) == sid ?
2315			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2316	ep = fc_exch_lookup(lport, xid);
2317	explan = ELS_EXPL_OXID_RXID;
2318	if (!ep)
2319		goto reject;
2320	spin_lock_bh(&ep->ex_lock);
2321	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2322		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2323	if (ep->oxid != ntohs(rp->rrq_ox_id))
2324		goto unlock_reject;
2325	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2326	    ep->rxid != FC_XID_UNKNOWN)
2327		goto unlock_reject;
2328	explan = ELS_EXPL_SID;
2329	if (ep->sid != sid)
2330		goto unlock_reject;
2331
2332	/*
2333	 * Clear Recovery Qualifier state, and cancel timer if complete.
2334	 */
2335	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2336		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2337		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2338	}
2339	if (ep->esb_stat & ESB_ST_COMPLETE)
2340		fc_exch_timer_cancel(ep);
2341
2342	spin_unlock_bh(&ep->ex_lock);
2343
2344	/*
2345	 * Send LS_ACC.
2346	 */
2347	fc_seq_ls_acc(fp);
2348	goto out;
2349
2350unlock_reject:
2351	spin_unlock_bh(&ep->ex_lock);
2352reject:
2353	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2354out:
2355	if (ep)
2356		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2357}
2358
2359/**
2360 * fc_exch_update_stats() - update exches stats to lport
2361 * @lport: The local port to update exchange manager stats
2362 */
2363void fc_exch_update_stats(struct fc_lport *lport)
2364{
2365	struct fc_host_statistics *st;
2366	struct fc_exch_mgr_anchor *ema;
2367	struct fc_exch_mgr *mp;
2368
2369	st = &lport->host_stats;
2370
2371	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2372		mp = ema->mp;
2373		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2374		st->fc_no_free_exch_xid +=
2375				atomic_read(&mp->stats.no_free_exch_xid);
2376		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2377		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2378		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2379		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2380	}
2381}
2382EXPORT_SYMBOL(fc_exch_update_stats);
2383
2384/**
2385 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2386 * @lport: The local port to add the exchange manager to
2387 * @mp:	   The exchange manager to be added to the local port
2388 * @match: The match routine that indicates when this EM should be used
2389 */
2390struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2391					   struct fc_exch_mgr *mp,
2392					   bool (*match)(struct fc_frame *))
2393{
2394	struct fc_exch_mgr_anchor *ema;
2395
2396	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2397	if (!ema)
2398		return ema;
2399
2400	ema->mp = mp;
2401	ema->match = match;
2402	/* add EM anchor to EM anchors list */
2403	list_add_tail(&ema->ema_list, &lport->ema_list);
2404	kref_get(&mp->kref);
2405	return ema;
2406}
2407EXPORT_SYMBOL(fc_exch_mgr_add);
2408
2409/**
2410 * fc_exch_mgr_destroy() - Destroy an exchange manager
2411 * @kref: The reference to the EM to be destroyed
2412 */
2413static void fc_exch_mgr_destroy(struct kref *kref)
2414{
2415	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2416
2417	mempool_destroy(mp->ep_pool);
2418	free_percpu(mp->pool);
2419	kfree(mp);
2420}
2421
2422/**
2423 * fc_exch_mgr_del() - Delete an EM from a local port's list
2424 * @ema: The exchange manager anchor identifying the EM to be deleted
2425 */
2426void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2427{
2428	/* remove EM anchor from EM anchors list */
2429	list_del(&ema->ema_list);
2430	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2431	kfree(ema);
2432}
2433EXPORT_SYMBOL(fc_exch_mgr_del);
2434
2435/**
2436 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2437 * @src: Source lport to clone exchange managers from
2438 * @dst: New lport that takes references to all the exchange managers
2439 */
2440int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2441{
2442	struct fc_exch_mgr_anchor *ema, *tmp;
2443
2444	list_for_each_entry(ema, &src->ema_list, ema_list) {
2445		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2446			goto err;
2447	}
2448	return 0;
2449err:
2450	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2451		fc_exch_mgr_del(ema);
2452	return -ENOMEM;
2453}
2454EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2455
2456/**
2457 * fc_exch_mgr_alloc() - Allocate an exchange manager
2458 * @lport:   The local port that the new EM will be associated with
2459 * @class:   The default FC class for new exchanges
2460 * @min_xid: The minimum XID for exchanges from the new EM
2461 * @max_xid: The maximum XID for exchanges from the new EM
2462 * @match:   The match routine for the new EM
2463 */
2464struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2465				      enum fc_class class,
2466				      u16 min_xid, u16 max_xid,
2467				      bool (*match)(struct fc_frame *))
2468{
2469	struct fc_exch_mgr *mp;
2470	u16 pool_exch_range;
2471	size_t pool_size;
2472	unsigned int cpu;
2473	struct fc_exch_pool *pool;
2474
2475	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2476	    (min_xid & fc_cpu_mask) != 0) {
2477		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2478			     min_xid, max_xid);
2479		return NULL;
2480	}
2481
2482	/*
2483	 * allocate memory for EM
2484	 */
2485	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2486	if (!mp)
2487		return NULL;
2488
2489	mp->class = class;
2490	mp->lport = lport;
2491	/* adjust em exch xid range for offload */
2492	mp->min_xid = min_xid;
2493
2494       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2495	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2496		sizeof(struct fc_exch *);
2497	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2498		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2499			min_xid - 1;
2500	} else {
2501		mp->max_xid = max_xid;
2502		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2503			(fc_cpu_mask + 1);
2504	}
2505
2506	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2507	if (!mp->ep_pool)
2508		goto free_mp;
2509
2510	/*
2511	 * Setup per cpu exch pool with entire exchange id range equally
2512	 * divided across all cpus. The exch pointers array memory is
2513	 * allocated for exch range per pool.
2514	 */
2515	mp->pool_max_index = pool_exch_range - 1;
2516
2517	/*
2518	 * Allocate and initialize per cpu exch pool
2519	 */
2520	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2521	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2522	if (!mp->pool)
2523		goto free_mempool;
2524	for_each_possible_cpu(cpu) {
2525		pool = per_cpu_ptr(mp->pool, cpu);
2526		pool->next_index = 0;
2527		pool->left = FC_XID_UNKNOWN;
2528		pool->right = FC_XID_UNKNOWN;
2529		spin_lock_init(&pool->lock);
2530		INIT_LIST_HEAD(&pool->ex_list);
2531	}
2532
2533	kref_init(&mp->kref);
2534	if (!fc_exch_mgr_add(lport, mp, match)) {
2535		free_percpu(mp->pool);
2536		goto free_mempool;
2537	}
2538
2539	/*
2540	 * Above kref_init() sets mp->kref to 1 and then
2541	 * call to fc_exch_mgr_add incremented mp->kref again,
2542	 * so adjust that extra increment.
2543	 */
2544	kref_put(&mp->kref, fc_exch_mgr_destroy);
2545	return mp;
2546
2547free_mempool:
2548	mempool_destroy(mp->ep_pool);
2549free_mp:
2550	kfree(mp);
2551	return NULL;
2552}
2553EXPORT_SYMBOL(fc_exch_mgr_alloc);
2554
2555/**
2556 * fc_exch_mgr_free() - Free all exchange managers on a local port
2557 * @lport: The local port whose EMs are to be freed
2558 */
2559void fc_exch_mgr_free(struct fc_lport *lport)
2560{
2561	struct fc_exch_mgr_anchor *ema, *next;
2562
2563	flush_workqueue(fc_exch_workqueue);
2564	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2565		fc_exch_mgr_del(ema);
2566}
2567EXPORT_SYMBOL(fc_exch_mgr_free);
2568
2569/**
2570 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2571 * upon 'xid'.
2572 * @f_ctl: f_ctl
2573 * @lport: The local port the frame was received on
2574 * @fh: The received frame header
2575 */
2576static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2577					      struct fc_lport *lport,
2578					      struct fc_frame_header *fh)
2579{
2580	struct fc_exch_mgr_anchor *ema;
2581	u16 xid;
2582
2583	if (f_ctl & FC_FC_EX_CTX)
2584		xid = ntohs(fh->fh_ox_id);
2585	else {
2586		xid = ntohs(fh->fh_rx_id);
2587		if (xid == FC_XID_UNKNOWN)
2588			return list_entry(lport->ema_list.prev,
2589					  typeof(*ema), ema_list);
2590	}
2591
2592	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2593		if ((xid >= ema->mp->min_xid) &&
2594		    (xid <= ema->mp->max_xid))
2595			return ema;
2596	}
2597	return NULL;
2598}
2599/**
2600 * fc_exch_recv() - Handler for received frames
2601 * @lport: The local port the frame was received on
2602 * @fp:	The received frame
2603 */
2604void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2605{
2606	struct fc_frame_header *fh = fc_frame_header_get(fp);
2607	struct fc_exch_mgr_anchor *ema;
2608	u32 f_ctl;
2609
2610	/* lport lock ? */
2611	if (!lport || lport->state == LPORT_ST_DISABLED) {
2612		FC_LIBFC_DBG("Receiving frames for an lport that "
2613			     "has not been initialized correctly\n");
2614		fc_frame_free(fp);
2615		return;
2616	}
2617
2618	f_ctl = ntoh24(fh->fh_f_ctl);
2619	ema = fc_find_ema(f_ctl, lport, fh);
2620	if (!ema) {
2621		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2622				    "fc_ctl <0x%x>, xid <0x%x>\n",
2623				     f_ctl,
2624				     (f_ctl & FC_FC_EX_CTX) ?
2625				     ntohs(fh->fh_ox_id) :
2626				     ntohs(fh->fh_rx_id));
2627		fc_frame_free(fp);
2628		return;
2629	}
2630
2631	/*
2632	 * If frame is marked invalid, just drop it.
2633	 */
2634	switch (fr_eof(fp)) {
2635	case FC_EOF_T:
2636		if (f_ctl & FC_FC_END_SEQ)
2637			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2638		fallthrough;
2639	case FC_EOF_N:
2640		if (fh->fh_type == FC_TYPE_BLS)
2641			fc_exch_recv_bls(ema->mp, fp);
2642		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2643			 FC_FC_EX_CTX)
2644			fc_exch_recv_seq_resp(ema->mp, fp);
2645		else if (f_ctl & FC_FC_SEQ_CTX)
2646			fc_exch_recv_resp(ema->mp, fp);
2647		else	/* no EX_CTX and no SEQ_CTX */
2648			fc_exch_recv_req(lport, ema->mp, fp);
2649		break;
2650	default:
2651		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2652			     fr_eof(fp));
2653		fc_frame_free(fp);
2654	}
2655}
2656EXPORT_SYMBOL(fc_exch_recv);
2657
2658/**
2659 * fc_exch_init() - Initialize the exchange layer for a local port
2660 * @lport: The local port to initialize the exchange layer for
2661 */
2662int fc_exch_init(struct fc_lport *lport)
2663{
2664	if (!lport->tt.exch_mgr_reset)
2665		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2666
2667	return 0;
2668}
2669EXPORT_SYMBOL(fc_exch_init);
2670
2671/**
2672 * fc_setup_exch_mgr() - Setup an exchange manager
2673 */
2674int fc_setup_exch_mgr(void)
2675{
2676	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2677					 0, SLAB_HWCACHE_ALIGN, NULL);
2678	if (!fc_em_cachep)
2679		return -ENOMEM;
2680
2681	/*
2682	 * Initialize fc_cpu_mask and fc_cpu_order. The
2683	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2684	 * to order of 2's * power and order is stored
2685	 * in fc_cpu_order as this is later required in
2686	 * mapping between an exch id and exch array index
2687	 * in per cpu exch pool.
2688	 *
2689	 * This round up is required to align fc_cpu_mask
2690	 * to exchange id's lower bits such that all incoming
2691	 * frames of an exchange gets delivered to the same
2692	 * cpu on which exchange originated by simple bitwise
2693	 * AND operation between fc_cpu_mask and exchange id.
2694	 */
2695	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2696	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2697
2698	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2699	if (!fc_exch_workqueue)
2700		goto err;
2701	return 0;
2702err:
2703	kmem_cache_destroy(fc_em_cachep);
2704	return -ENOMEM;
2705}
2706
2707/**
2708 * fc_destroy_exch_mgr() - Destroy an exchange manager
2709 */
2710void fc_destroy_exch_mgr(void)
2711{
2712	destroy_workqueue(fc_exch_workqueue);
2713	kmem_cache_destroy(fc_em_cachep);
2714}
2715