1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Aic94xx SAS/SATA driver hardware interface.
4 *
5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 */
8
9#include <linux/pci.h>
10#include <linux/slab.h>
11#include <linux/delay.h>
12#include <linux/module.h>
13#include <linux/firmware.h>
14
15#include "aic94xx.h"
16#include "aic94xx_reg.h"
17#include "aic94xx_hwi.h"
18#include "aic94xx_seq.h"
19#include "aic94xx_dump.h"
20
21u32 MBAR0_SWB_SIZE;
22
23/* ---------- Initialization ---------- */
24
25static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
26{
27	/* adapter came with a sas address */
28	if (asd_ha->hw_prof.sas_addr[0])
29		return 0;
30
31	return sas_request_addr(asd_ha->sas_ha.core.shost,
32				asd_ha->hw_prof.sas_addr);
33}
34
35static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
36{
37	int i;
38
39	for (i = 0; i < ASD_MAX_PHYS; i++) {
40		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
41			continue;
42		/* Set a phy's address only if it has none.
43		 */
44		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
45			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
46		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
47		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
48	}
49}
50
51/* ---------- PHY initialization ---------- */
52
53static void asd_init_phy_identify(struct asd_phy *phy)
54{
55	phy->identify_frame = phy->id_frm_tok->vaddr;
56
57	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
58
59	phy->identify_frame->dev_type = SAS_END_DEVICE;
60	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
61		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
62	if (phy->sas_phy.role & PHY_ROLE_TARGET)
63		phy->identify_frame->target_bits = phy->sas_phy.tproto;
64	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
65	       SAS_ADDR_SIZE);
66	phy->identify_frame->phy_id = phy->sas_phy.id;
67}
68
69static int asd_init_phy(struct asd_phy *phy)
70{
71	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
72	struct asd_sas_phy *sas_phy = &phy->sas_phy;
73
74	sas_phy->enabled = 1;
75	sas_phy->class = SAS;
76	sas_phy->iproto = SAS_PROTOCOL_ALL;
77	sas_phy->tproto = 0;
78	sas_phy->type = PHY_TYPE_PHYSICAL;
79	sas_phy->role = PHY_ROLE_INITIATOR;
80	sas_phy->oob_mode = OOB_NOT_CONNECTED;
81	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
82
83	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
84					     sizeof(*phy->identify_frame),
85					     GFP_KERNEL);
86	if (!phy->id_frm_tok) {
87		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
88		return -ENOMEM;
89	} else
90		asd_init_phy_identify(phy);
91
92	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
93
94	return 0;
95}
96
97static void asd_init_ports(struct asd_ha_struct *asd_ha)
98{
99	int i;
100
101	spin_lock_init(&asd_ha->asd_ports_lock);
102	for (i = 0; i < ASD_MAX_PHYS; i++) {
103		struct asd_port *asd_port = &asd_ha->asd_ports[i];
104
105		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
106		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
107		asd_port->phy_mask = 0;
108		asd_port->num_phys = 0;
109	}
110}
111
112static int asd_init_phys(struct asd_ha_struct *asd_ha)
113{
114	u8 i;
115	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
116
117	for (i = 0; i < ASD_MAX_PHYS; i++) {
118		struct asd_phy *phy = &asd_ha->phys[i];
119
120		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
121		phy->asd_port = NULL;
122
123		phy->sas_phy.enabled = 0;
124		phy->sas_phy.id = i;
125		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
126		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
127		phy->sas_phy.ha = &asd_ha->sas_ha;
128		phy->sas_phy.lldd_phy = phy;
129	}
130
131	/* Now enable and initialize only the enabled phys. */
132	for_each_phy(phy_mask, phy_mask, i) {
133		int err = asd_init_phy(&asd_ha->phys[i]);
134		if (err)
135			return err;
136	}
137
138	return 0;
139}
140
141/* ---------- Sliding windows ---------- */
142
143static int asd_init_sw(struct asd_ha_struct *asd_ha)
144{
145	struct pci_dev *pcidev = asd_ha->pcidev;
146	int err;
147	u32 v;
148
149	/* Unlock MBARs */
150	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
151	if (err) {
152		asd_printk("couldn't access conf. space of %s\n",
153			   pci_name(pcidev));
154		goto Err;
155	}
156	if (v)
157		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
158	if (err) {
159		asd_printk("couldn't write to MBAR_KEY of %s\n",
160			   pci_name(pcidev));
161		goto Err;
162	}
163
164	/* Set sliding windows A, B and C to point to proper internal
165	 * memory regions.
166	 */
167	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
168	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
169			       REG_BASE_ADDR_CSEQCIO);
170	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
171	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
172	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
173	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
174	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
175	if (!asd_ha->iospace) {
176		/* MBAR1 will point to OCM (On Chip Memory) */
177		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
178		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
179	}
180	spin_lock_init(&asd_ha->iolock);
181Err:
182	return err;
183}
184
185/* ---------- SCB initialization ---------- */
186
187/**
188 * asd_init_scbs - manually allocate the first SCB.
189 * @asd_ha: pointer to host adapter structure
190 *
191 * This allocates the very first SCB which would be sent to the
192 * sequencer for execution.  Its bus address is written to
193 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
194 * the _next_ scb to be DMA-ed to the host adapter is read from the last
195 * SCB DMA-ed to the host adapter, we have to always stay one step
196 * ahead of the sequencer and keep one SCB already allocated.
197 */
198static int asd_init_scbs(struct asd_ha_struct *asd_ha)
199{
200	struct asd_seq_data *seq = &asd_ha->seq;
201	int bitmap_bytes;
202
203	/* allocate the index array and bitmap */
204	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
205	asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
206					     sizeof(void *),
207					     GFP_KERNEL);
208	if (!asd_ha->seq.tc_index_array)
209		return -ENOMEM;
210
211	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
212	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
213	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
214	if (!asd_ha->seq.tc_index_bitmap) {
215		kfree(asd_ha->seq.tc_index_array);
216		asd_ha->seq.tc_index_array = NULL;
217		return -ENOMEM;
218	}
219
220	spin_lock_init(&seq->tc_index_lock);
221
222	seq->next_scb.size = sizeof(struct scb);
223	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
224					     &seq->next_scb.dma_handle);
225	if (!seq->next_scb.vaddr) {
226		kfree(asd_ha->seq.tc_index_bitmap);
227		kfree(asd_ha->seq.tc_index_array);
228		asd_ha->seq.tc_index_bitmap = NULL;
229		asd_ha->seq.tc_index_array = NULL;
230		return -ENOMEM;
231	}
232
233	seq->pending = 0;
234	spin_lock_init(&seq->pend_q_lock);
235	INIT_LIST_HEAD(&seq->pend_q);
236
237	return 0;
238}
239
240static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
241{
242	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
243	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
244	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
245		    asd_ha->hw_prof.max_scbs,
246		    asd_ha->hw_prof.max_ddbs);
247}
248
249/* ---------- Done List initialization ---------- */
250
251static void asd_dl_tasklet_handler(unsigned long);
252
253static int asd_init_dl(struct asd_ha_struct *asd_ha)
254{
255	asd_ha->seq.actual_dl
256		= asd_alloc_coherent(asd_ha,
257			     ASD_DL_SIZE * sizeof(struct done_list_struct),
258				     GFP_KERNEL);
259	if (!asd_ha->seq.actual_dl)
260		return -ENOMEM;
261	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
262	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
263	asd_ha->seq.dl_next = 0;
264	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
265		     (unsigned long) asd_ha);
266
267	return 0;
268}
269
270/* ---------- EDB and ESCB init ---------- */
271
272static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
273{
274	struct asd_seq_data *seq = &asd_ha->seq;
275	int i;
276
277	seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
278				     gfp_flags);
279	if (!seq->edb_arr)
280		return -ENOMEM;
281
282	for (i = 0; i < seq->num_edbs; i++) {
283		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
284						     gfp_flags);
285		if (!seq->edb_arr[i])
286			goto Err_unroll;
287		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
288	}
289
290	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
291
292	return 0;
293
294Err_unroll:
295	for (i-- ; i >= 0; i--)
296		asd_free_coherent(asd_ha, seq->edb_arr[i]);
297	kfree(seq->edb_arr);
298	seq->edb_arr = NULL;
299
300	return -ENOMEM;
301}
302
303static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
304			   gfp_t gfp_flags)
305{
306	struct asd_seq_data *seq = &asd_ha->seq;
307	struct asd_ascb *escb;
308	int i, escbs;
309
310	seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
311				      gfp_flags);
312	if (!seq->escb_arr)
313		return -ENOMEM;
314
315	escbs = seq->num_escbs;
316	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
317	if (!escb) {
318		asd_printk("couldn't allocate list of escbs\n");
319		goto Err;
320	}
321	seq->num_escbs -= escbs;  /* subtract what was not allocated */
322	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
323
324	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
325							       struct asd_ascb,
326							       list)) {
327		seq->escb_arr[i] = escb;
328		escb->scb->header.opcode = EMPTY_SCB;
329	}
330
331	return 0;
332Err:
333	kfree(seq->escb_arr);
334	seq->escb_arr = NULL;
335	return -ENOMEM;
336
337}
338
339static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
340{
341	struct asd_seq_data *seq = &asd_ha->seq;
342	int i, k, z = 0;
343
344	for (i = 0; i < seq->num_escbs; i++) {
345		struct asd_ascb *ascb = seq->escb_arr[i];
346		struct empty_scb *escb = &ascb->scb->escb;
347
348		ascb->edb_index = z;
349
350		escb->num_valid = ASD_EDBS_PER_SCB;
351
352		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
353			struct sg_el *eb = &escb->eb[k];
354			struct asd_dma_tok *edb = seq->edb_arr[z++];
355
356			memset(eb, 0, sizeof(*eb));
357			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
358			eb->size = cpu_to_le32(((u32) edb->size));
359		}
360	}
361}
362
363/**
364 * asd_init_escbs -- allocate and initialize empty scbs
365 * @asd_ha: pointer to host adapter structure
366 *
367 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
368 * They transport sense data, etc.
369 */
370static int asd_init_escbs(struct asd_ha_struct *asd_ha)
371{
372	struct asd_seq_data *seq = &asd_ha->seq;
373	int err = 0;
374
375	/* Allocate two empty data buffers (edb) per sequencer. */
376	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
377
378	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
379	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
380
381	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
382	if (err) {
383		asd_printk("couldn't allocate edbs\n");
384		return err;
385	}
386
387	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
388	if (err) {
389		asd_printk("couldn't allocate escbs\n");
390		return err;
391	}
392
393	asd_assign_edbs2escbs(asd_ha);
394	/* In order to insure that normal SCBs do not overfill sequencer
395	 * memory and leave no space for escbs (halting condition),
396	 * we increment pending here by the number of escbs.  However,
397	 * escbs are never pending.
398	 */
399	seq->pending   = seq->num_escbs;
400	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
401
402	return 0;
403}
404
405/* ---------- HW initialization ---------- */
406
407/**
408 * asd_chip_hardrst -- hard reset the chip
409 * @asd_ha: pointer to host adapter structure
410 *
411 * This takes 16 cycles and is synchronous to CFCLK, which runs
412 * at 200 MHz, so this should take at most 80 nanoseconds.
413 */
414int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
415{
416	int i;
417	int count = 100;
418	u32 reg;
419
420	for (i = 0 ; i < 4 ; i++) {
421		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
422	}
423
424	do {
425		udelay(1);
426		reg = asd_read_reg_dword(asd_ha, CHIMINT);
427		if (reg & HARDRSTDET) {
428			asd_write_reg_dword(asd_ha, CHIMINT,
429					    HARDRSTDET|PORRSTDET);
430			return 0;
431		}
432	} while (--count > 0);
433
434	return -ENODEV;
435}
436
437/**
438 * asd_init_chip -- initialize the chip
439 * @asd_ha: pointer to host adapter structure
440 *
441 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
442 * microcode and starts the sequencers.  The caller has to explicitly
443 * enable HA interrupts with asd_enable_ints(asd_ha).
444 */
445static int asd_init_chip(struct asd_ha_struct *asd_ha)
446{
447	int err;
448
449	err = asd_chip_hardrst(asd_ha);
450	if (err) {
451		asd_printk("couldn't hard reset %s\n",
452			    pci_name(asd_ha->pcidev));
453		goto out;
454	}
455
456	asd_disable_ints(asd_ha);
457
458	err = asd_init_seqs(asd_ha);
459	if (err) {
460		asd_printk("couldn't init seqs for %s\n",
461			   pci_name(asd_ha->pcidev));
462		goto out;
463	}
464
465	err = asd_start_seqs(asd_ha);
466	if (err) {
467		asd_printk("couldn't start seqs for %s\n",
468			   pci_name(asd_ha->pcidev));
469		goto out;
470	}
471out:
472	return err;
473}
474
475#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
476
477static int max_devs = 0;
478module_param_named(max_devs, max_devs, int, S_IRUGO);
479MODULE_PARM_DESC(max_devs, "\n"
480	"\tMaximum number of SAS devices to support (not LUs).\n"
481	"\tDefault: 2176, Maximum: 65663.\n");
482
483static int max_cmnds = 0;
484module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
485MODULE_PARM_DESC(max_cmnds, "\n"
486	"\tMaximum number of commands queuable.\n"
487	"\tDefault: 512, Maximum: 66047.\n");
488
489static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
490{
491	unsigned long dma_addr = OCM_BASE_ADDR;
492	u32 d;
493
494	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
495	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
496	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
497	d |= 4;
498	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
499	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
500}
501
502static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
503{
504	dma_addr_t dma_handle;
505	unsigned long dma_addr;
506	u32 d;
507	int size;
508
509	asd_extend_devctx_ocm(asd_ha);
510
511	asd_ha->hw_prof.ddb_ext = NULL;
512	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
513		max_devs = asd_ha->hw_prof.max_ddbs;
514		return 0;
515	}
516
517	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
518
519	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
520	if (!asd_ha->hw_prof.ddb_ext) {
521		asd_printk("couldn't allocate memory for %d devices\n",
522			   max_devs);
523		max_devs = asd_ha->hw_prof.max_ddbs;
524		return -ENOMEM;
525	}
526	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
527	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
528	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
529	dma_handle = (dma_addr_t) dma_addr;
530	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
531	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
532	d &= ~4;
533	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
534
535	asd_ha->hw_prof.max_ddbs = max_devs;
536
537	return 0;
538}
539
540static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
541{
542	dma_addr_t dma_handle;
543	unsigned long dma_addr;
544	u32 d;
545	int size;
546
547	asd_ha->hw_prof.scb_ext = NULL;
548	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
549		max_cmnds = asd_ha->hw_prof.max_scbs;
550		return 0;
551	}
552
553	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
554
555	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
556	if (!asd_ha->hw_prof.scb_ext) {
557		asd_printk("couldn't allocate memory for %d commands\n",
558			   max_cmnds);
559		max_cmnds = asd_ha->hw_prof.max_scbs;
560		return -ENOMEM;
561	}
562	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
563	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
564	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
565	dma_handle = (dma_addr_t) dma_addr;
566	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
567	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
568	d &= ~1;
569	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
570
571	asd_ha->hw_prof.max_scbs = max_cmnds;
572
573	return 0;
574}
575
576/**
577 * asd_init_ctxmem -- initialize context memory
578 * @asd_ha: pointer to host adapter structure
579 *
580 * This function sets the maximum number of SCBs and
581 * DDBs which can be used by the sequencer.  This is normally
582 * 512 and 128 respectively.  If support for more SCBs or more DDBs
583 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
584 * initialized here to extend context memory to point to host memory,
585 * thus allowing unlimited support for SCBs and DDBs -- only limited
586 * by host memory.
587 */
588static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
589{
590	int bitmap_bytes;
591
592	asd_get_max_scb_ddb(asd_ha);
593	asd_extend_devctx(asd_ha);
594	asd_extend_cmdctx(asd_ha);
595
596	/* The kernel wants bitmaps to be unsigned long sized. */
597	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
598	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
599	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
600	if (!asd_ha->hw_prof.ddb_bitmap)
601		return -ENOMEM;
602	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
603
604	return 0;
605}
606
607int asd_init_hw(struct asd_ha_struct *asd_ha)
608{
609	int err;
610	u32 v;
611
612	err = asd_init_sw(asd_ha);
613	if (err)
614		return err;
615
616	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
617	if (err) {
618		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
619			   pci_name(asd_ha->pcidev));
620		return err;
621	}
622	err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
623					v | SC_TMR_DIS);
624	if (err) {
625		asd_printk("couldn't disable split completion timer of %s\n",
626			   pci_name(asd_ha->pcidev));
627		return err;
628	}
629
630	err = asd_read_ocm(asd_ha);
631	if (err) {
632		asd_printk("couldn't read ocm(%d)\n", err);
633		/* While suspicios, it is not an error that we
634		 * couldn't read the OCM. */
635	}
636
637	err = asd_read_flash(asd_ha);
638	if (err) {
639		asd_printk("couldn't read flash(%d)\n", err);
640		/* While suspicios, it is not an error that we
641		 * couldn't read FLASH memory.
642		 */
643	}
644
645	asd_init_ctxmem(asd_ha);
646
647	if (asd_get_user_sas_addr(asd_ha)) {
648		asd_printk("No SAS Address provided for %s\n",
649			   pci_name(asd_ha->pcidev));
650		err = -ENODEV;
651		goto Out;
652	}
653
654	asd_propagate_sas_addr(asd_ha);
655
656	err = asd_init_phys(asd_ha);
657	if (err) {
658		asd_printk("couldn't initialize phys for %s\n",
659			    pci_name(asd_ha->pcidev));
660		goto Out;
661	}
662
663	asd_init_ports(asd_ha);
664
665	err = asd_init_scbs(asd_ha);
666	if (err) {
667		asd_printk("couldn't initialize scbs for %s\n",
668			    pci_name(asd_ha->pcidev));
669		goto Out;
670	}
671
672	err = asd_init_dl(asd_ha);
673	if (err) {
674		asd_printk("couldn't initialize the done list:%d\n",
675			    err);
676		goto Out;
677	}
678
679	err = asd_init_escbs(asd_ha);
680	if (err) {
681		asd_printk("couldn't initialize escbs\n");
682		goto Out;
683	}
684
685	err = asd_init_chip(asd_ha);
686	if (err) {
687		asd_printk("couldn't init the chip\n");
688		goto Out;
689	}
690Out:
691	return err;
692}
693
694/* ---------- Chip reset ---------- */
695
696/**
697 * asd_chip_reset -- reset the host adapter, etc
698 * @asd_ha: pointer to host adapter structure of interest
699 *
700 * Called from the ISR.  Hard reset the chip.  Let everything
701 * timeout.  This should be no different than hot-unplugging the
702 * host adapter.  Once everything times out we'll init the chip with
703 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
704 * XXX finish.
705 */
706static void asd_chip_reset(struct asd_ha_struct *asd_ha)
707{
708	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
709	asd_chip_hardrst(asd_ha);
710}
711
712/* ---------- Done List Routines ---------- */
713
714static void asd_dl_tasklet_handler(unsigned long data)
715{
716	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
717	struct asd_seq_data *seq = &asd_ha->seq;
718	unsigned long flags;
719
720	while (1) {
721		struct done_list_struct *dl = &seq->dl[seq->dl_next];
722		struct asd_ascb *ascb;
723
724		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
725			break;
726
727		/* find the aSCB */
728		spin_lock_irqsave(&seq->tc_index_lock, flags);
729		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
730		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
731		if (unlikely(!ascb)) {
732			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
733			goto next_1;
734		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
735			goto out;
736		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
737			goto next_1;
738		}
739		spin_lock_irqsave(&seq->pend_q_lock, flags);
740		list_del_init(&ascb->list);
741		seq->pending--;
742		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
743	out:
744		ascb->tasklet_complete(ascb, dl);
745
746	next_1:
747		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
748		if (!seq->dl_next)
749			seq->dl_toggle ^= DL_TOGGLE_MASK;
750	}
751}
752
753/* ---------- Interrupt Service Routines ---------- */
754
755/**
756 * asd_process_donelist_isr -- schedule processing of done list entries
757 * @asd_ha: pointer to host adapter structure
758 */
759static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
760{
761	tasklet_schedule(&asd_ha->seq.dl_tasklet);
762}
763
764/**
765 * asd_com_sas_isr -- process device communication interrupt (COMINT)
766 * @asd_ha: pointer to host adapter structure
767 */
768static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
769{
770	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
771
772	/* clear COMSTAT int */
773	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
774
775	if (comstat & CSBUFPERR) {
776		asd_printk("%s: command/status buffer dma parity error\n",
777			   pci_name(asd_ha->pcidev));
778	} else if (comstat & CSERR) {
779		int i;
780		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
781		dmaerr &= 0xFF;
782		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
783			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
784			   pci_name(asd_ha->pcidev),
785			   dmaerr,
786			   asd_read_reg_dword(asd_ha, CSDMAADR),
787			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
788		asd_printk("CSBUFFER:\n");
789		for (i = 0; i < 8; i++) {
790			asd_printk("%08x %08x %08x %08x\n",
791				   asd_read_reg_dword(asd_ha, CSBUFFER),
792				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
793				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
794				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
795		}
796		asd_dump_seq_state(asd_ha, 0);
797	} else if (comstat & OVLYERR) {
798		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
799		dmaerr = (dmaerr >> 8) & 0xFF;
800		asd_printk("%s: overlay dma error:0x%x\n",
801			   pci_name(asd_ha->pcidev),
802			   dmaerr);
803	}
804	asd_chip_reset(asd_ha);
805}
806
807static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
808{
809	static const char *halt_code[256] = {
810		"UNEXPECTED_INTERRUPT0",
811		"UNEXPECTED_INTERRUPT1",
812		"UNEXPECTED_INTERRUPT2",
813		"UNEXPECTED_INTERRUPT3",
814		"UNEXPECTED_INTERRUPT4",
815		"UNEXPECTED_INTERRUPT5",
816		"UNEXPECTED_INTERRUPT6",
817		"UNEXPECTED_INTERRUPT7",
818		"UNEXPECTED_INTERRUPT8",
819		"UNEXPECTED_INTERRUPT9",
820		"UNEXPECTED_INTERRUPT10",
821		[11 ... 19] = "unknown[11,19]",
822		"NO_FREE_SCB_AVAILABLE",
823		"INVALID_SCB_OPCODE",
824		"INVALID_MBX_OPCODE",
825		"INVALID_ATA_STATE",
826		"ATA_QUEUE_FULL",
827		"ATA_TAG_TABLE_FAULT",
828		"ATA_TAG_MASK_FAULT",
829		"BAD_LINK_QUEUE_STATE",
830		"DMA2CHIM_QUEUE_ERROR",
831		"EMPTY_SCB_LIST_FULL",
832		"unknown[30]",
833		"IN_USE_SCB_ON_FREE_LIST",
834		"BAD_OPEN_WAIT_STATE",
835		"INVALID_STP_AFFILIATION",
836		"unknown[34]",
837		"EXEC_QUEUE_ERROR",
838		"TOO_MANY_EMPTIES_NEEDED",
839		"EMPTY_REQ_QUEUE_ERROR",
840		"Q_MONIRTT_MGMT_ERROR",
841		"TARGET_MODE_FLOW_ERROR",
842		"DEVICE_QUEUE_NOT_FOUND",
843		"START_IRTT_TIMER_ERROR",
844		"ABORT_TASK_ILLEGAL_REQ",
845		[43 ... 255] = "unknown[43,255]"
846	};
847
848	if (dchstatus & CSEQINT) {
849		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
850
851		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
852			asd_printk("%s: CSEQ arp2int:0x%x\n",
853				   pci_name(asd_ha->pcidev),
854				   arp2int);
855		} else if (arp2int & ARP2HALTC)
856			asd_printk("%s: CSEQ halted: %s\n",
857				   pci_name(asd_ha->pcidev),
858				   halt_code[(arp2int>>16)&0xFF]);
859		else
860			asd_printk("%s: CARP2INT:0x%x\n",
861				   pci_name(asd_ha->pcidev),
862				   arp2int);
863	}
864	if (dchstatus & LSEQINT_MASK) {
865		int lseq;
866		u8  lseq_mask = dchstatus & LSEQINT_MASK;
867
868		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
869			u32 arp2int = asd_read_reg_dword(asd_ha,
870							 LmARP2INT(lseq));
871			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
872				       | ARP2CIOPERR)) {
873				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
874					   pci_name(asd_ha->pcidev),
875					   lseq, arp2int);
876				/* XXX we should only do lseq reset */
877			} else if (arp2int & ARP2HALTC)
878				asd_printk("%s: LSEQ%d halted: %s\n",
879					   pci_name(asd_ha->pcidev),
880					   lseq,halt_code[(arp2int>>16)&0xFF]);
881			else
882				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
883					   pci_name(asd_ha->pcidev), lseq,
884					   arp2int);
885		}
886	}
887	asd_chip_reset(asd_ha);
888}
889
890/**
891 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
892 * @asd_ha: pointer to host adapter structure
893 */
894static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
895{
896	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
897
898	if (dchstatus & CFIFTOERR) {
899		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
900		asd_chip_reset(asd_ha);
901	} else
902		asd_arp2_err(asd_ha, dchstatus);
903}
904
905/**
906 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
907 * @asd_ha: pointer to host adapter structure
908 */
909static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
910{
911	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
912
913	if (!(stat0r & ASIERR)) {
914		asd_printk("hmm, EXSI interrupted but no error?\n");
915		return;
916	}
917
918	if (stat0r & ASIFMTERR) {
919		asd_printk("ASI SEEPROM format error for %s\n",
920			   pci_name(asd_ha->pcidev));
921	} else if (stat0r & ASISEECHKERR) {
922		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
923		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
924			   stat1r & CHECKSUM_MASK,
925			   pci_name(asd_ha->pcidev));
926	} else {
927		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
928
929		if (!(statr & CPI2ASIMSTERR_MASK)) {
930			ASD_DPRINTK("hmm, ASIERR?\n");
931			return;
932		} else {
933			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
934			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
935
936			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
937				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
938				   "master id: 0x%x, master err: 0x%x\n",
939				   pci_name(asd_ha->pcidev),
940				   addr, data,
941				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
942				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
943				   (statr & CPI2ASITARGERR_MASK) >> 8,
944				   (statr & CPI2ASITARGMID_MASK) >> 4,
945				   (statr & CPI2ASIMSTERR_MASK));
946		}
947	}
948	asd_chip_reset(asd_ha);
949}
950
951/**
952 * asd_hst_pcix_isr -- process host interface interrupts
953 * @asd_ha: pointer to host adapter structure
954 *
955 * Asserted on PCIX errors: target abort, etc.
956 */
957static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
958{
959	u16 status;
960	u32 pcix_status;
961	u32 ecc_status;
962
963	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
964	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
965	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
966
967	if (status & PCI_STATUS_DETECTED_PARITY)
968		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
969	else if (status & PCI_STATUS_REC_MASTER_ABORT)
970		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
971	else if (status & PCI_STATUS_REC_TARGET_ABORT)
972		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
973	else if (status & PCI_STATUS_PARITY)
974		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
975	else if (pcix_status & RCV_SCE) {
976		asd_printk("received split completion error for %s\n",
977			   pci_name(asd_ha->pcidev));
978		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
979		/* XXX: Abort task? */
980		return;
981	} else if (pcix_status & UNEXP_SC) {
982		asd_printk("unexpected split completion for %s\n",
983			   pci_name(asd_ha->pcidev));
984		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
985		/* ignore */
986		return;
987	} else if (pcix_status & SC_DISCARD)
988		asd_printk("split completion discarded for %s\n",
989			   pci_name(asd_ha->pcidev));
990	else if (ecc_status & UNCOR_ECCERR)
991		asd_printk("uncorrectable ECC error for %s\n",
992			   pci_name(asd_ha->pcidev));
993	asd_chip_reset(asd_ha);
994}
995
996/**
997 * asd_hw_isr -- host adapter interrupt service routine
998 * @irq: ignored
999 * @dev_id: pointer to host adapter structure
1000 *
1001 * The ISR processes done list entries and level 3 error handling.
1002 */
1003irqreturn_t asd_hw_isr(int irq, void *dev_id)
1004{
1005	struct asd_ha_struct *asd_ha = dev_id;
1006	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1007
1008	if (!chimint)
1009		return IRQ_NONE;
1010
1011	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1012	(void) asd_read_reg_dword(asd_ha, CHIMINT);
1013
1014	if (chimint & DLAVAIL)
1015		asd_process_donelist_isr(asd_ha);
1016	if (chimint & COMINT)
1017		asd_com_sas_isr(asd_ha);
1018	if (chimint & DEVINT)
1019		asd_dch_sas_isr(asd_ha);
1020	if (chimint & INITERR)
1021		asd_rbi_exsi_isr(asd_ha);
1022	if (chimint & HOSTERR)
1023		asd_hst_pcix_isr(asd_ha);
1024
1025	return IRQ_HANDLED;
1026}
1027
1028/* ---------- SCB handling ---------- */
1029
1030static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1031				       gfp_t gfp_flags)
1032{
1033	extern struct kmem_cache *asd_ascb_cache;
1034	struct asd_seq_data *seq = &asd_ha->seq;
1035	struct asd_ascb *ascb;
1036	unsigned long flags;
1037
1038	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1039
1040	if (ascb) {
1041		ascb->dma_scb.size = sizeof(struct scb);
1042		ascb->dma_scb.vaddr = dma_pool_zalloc(asd_ha->scb_pool,
1043						     gfp_flags,
1044						    &ascb->dma_scb.dma_handle);
1045		if (!ascb->dma_scb.vaddr) {
1046			kmem_cache_free(asd_ascb_cache, ascb);
1047			return NULL;
1048		}
1049		asd_init_ascb(asd_ha, ascb);
1050
1051		spin_lock_irqsave(&seq->tc_index_lock, flags);
1052		ascb->tc_index = asd_tc_index_get(seq, ascb);
1053		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1054		if (ascb->tc_index == -1)
1055			goto undo;
1056
1057		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1058	}
1059
1060	return ascb;
1061undo:
1062	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1063		      ascb->dma_scb.dma_handle);
1064	kmem_cache_free(asd_ascb_cache, ascb);
1065	ASD_DPRINTK("no index for ascb\n");
1066	return NULL;
1067}
1068
1069/**
1070 * asd_ascb_alloc_list -- allocate a list of aSCBs
1071 * @asd_ha: pointer to host adapter structure
1072 * @num: pointer to integer number of aSCBs
1073 * @gfp_flags: GFP_ flags.
1074 *
1075 * This is the only function which is used to allocate aSCBs.
1076 * It can allocate one or many. If more than one, then they form
1077 * a linked list in two ways: by their list field of the ascb struct
1078 * and by the next_scb field of the scb_header.
1079 *
1080 * Returns NULL if no memory was available, else pointer to a list
1081 * of ascbs.  When this function returns, @num would be the number
1082 * of SCBs which were not able to be allocated, 0 if all requested
1083 * were able to be allocated.
1084 */
1085struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1086				     *asd_ha, int *num,
1087				     gfp_t gfp_flags)
1088{
1089	struct asd_ascb *first = NULL;
1090
1091	for ( ; *num > 0; --*num) {
1092		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1093
1094		if (!ascb)
1095			break;
1096		else if (!first)
1097			first = ascb;
1098		else {
1099			struct asd_ascb *last = list_entry(first->list.prev,
1100							   struct asd_ascb,
1101							   list);
1102			list_add_tail(&ascb->list, &first->list);
1103			last->scb->header.next_scb =
1104				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1105		}
1106	}
1107
1108	return first;
1109}
1110
1111/**
1112 * asd_swap_head_scb -- swap the head scb
1113 * @asd_ha: pointer to host adapter structure
1114 * @ascb: pointer to the head of an ascb list
1115 *
1116 * The sequencer knows the DMA address of the next SCB to be DMAed to
1117 * the host adapter, from initialization or from the last list DMAed.
1118 * seq->next_scb keeps the address of this SCB.  The sequencer will
1119 * DMA to the host adapter this list of SCBs.  But the head (first
1120 * element) of this list is not known to the sequencer.  Here we swap
1121 * the head of the list with the known SCB (memcpy()).
1122 * Only one memcpy() is required per list so it is in our interest
1123 * to keep the list of SCB as long as possible so that the ratio
1124 * of number of memcpy calls to the number of SCB DMA-ed is as small
1125 * as possible.
1126 *
1127 * LOCKING: called with the pending list lock held.
1128 */
1129static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1130			      struct asd_ascb *ascb)
1131{
1132	struct asd_seq_data *seq = &asd_ha->seq;
1133	struct asd_ascb *last = list_entry(ascb->list.prev,
1134					   struct asd_ascb,
1135					   list);
1136	struct asd_dma_tok t = ascb->dma_scb;
1137
1138	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1139	ascb->dma_scb = seq->next_scb;
1140	ascb->scb = ascb->dma_scb.vaddr;
1141	seq->next_scb = t;
1142	last->scb->header.next_scb =
1143		cpu_to_le64(((u64)seq->next_scb.dma_handle));
1144}
1145
1146/**
1147 * asd_start_timers -- (add and) start timers of SCBs
1148 * @list: pointer to struct list_head of the scbs
1149 *
1150 * If an SCB in the @list has no timer function, assign the default
1151 * one,  then start the timer of the SCB.  This function is
1152 * intended to be called from asd_post_ascb_list(), just prior to
1153 * posting the SCBs to the sequencer.
1154 */
1155static void asd_start_scb_timers(struct list_head *list)
1156{
1157	struct asd_ascb *ascb;
1158	list_for_each_entry(ascb, list, list) {
1159		if (!ascb->uldd_timer) {
1160			ascb->timer.function = asd_ascb_timedout;
1161			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1162			add_timer(&ascb->timer);
1163		}
1164	}
1165}
1166
1167/**
1168 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1169 * @asd_ha: pointer to a host adapter structure
1170 * @ascb: pointer to the first aSCB in the list
1171 * @num: number of aSCBs in the list (to be posted)
1172 *
1173 * See queueing comment in asd_post_escb_list().
1174 *
1175 * Additional note on queuing: In order to minimize the ratio of memcpy()
1176 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1177 * in one go.
1178 * Two cases are possible:
1179 *    A) can_queue >= num,
1180 *    B) can_queue < num.
1181 * Case A: we can send the whole batch at once.  Increment "pending"
1182 * in the beginning of this function, when it is checked, in order to
1183 * eliminate races when this function is called by multiple processes.
1184 * Case B: should never happen.
1185 */
1186int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1187		       int num)
1188{
1189	unsigned long flags;
1190	LIST_HEAD(list);
1191	int can_queue;
1192
1193	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1194	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1195	if (can_queue >= num)
1196		asd_ha->seq.pending += num;
1197	else
1198		can_queue = 0;
1199
1200	if (!can_queue) {
1201		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1202		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1203		return -SAS_QUEUE_FULL;
1204	}
1205
1206	asd_swap_head_scb(asd_ha, ascb);
1207
1208	__list_add(&list, ascb->list.prev, &ascb->list);
1209
1210	asd_start_scb_timers(&list);
1211
1212	asd_ha->seq.scbpro += num;
1213	list_splice_init(&list, asd_ha->seq.pend_q.prev);
1214	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1215	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1216
1217	return 0;
1218}
1219
1220/**
1221 * asd_post_escb_list -- post a list of 1 or more empty scb
1222 * @asd_ha: pointer to a host adapter structure
1223 * @ascb: pointer to the first empty SCB in the list
1224 * @num: number of aSCBs in the list (to be posted)
1225 *
1226 * This is essentially the same as asd_post_ascb_list, but we do not
1227 * increment pending, add those to the pending list or get indexes.
1228 * See asd_init_escbs() and asd_init_post_escbs().
1229 *
1230 * Since sending a list of ascbs is a superset of sending a single
1231 * ascb, this function exists to generalize this.  More specifically,
1232 * when sending a list of those, we want to do only a _single_
1233 * memcpy() at swap head, as opposed to for each ascb sent (in the
1234 * case of sending them one by one).  That is, we want to minimize the
1235 * ratio of memcpy() operations to the number of ascbs sent.  The same
1236 * logic applies to asd_post_ascb_list().
1237 */
1238int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1239		       int num)
1240{
1241	unsigned long flags;
1242
1243	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1244	asd_swap_head_scb(asd_ha, ascb);
1245	asd_ha->seq.scbpro += num;
1246	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1247	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1248
1249	return 0;
1250}
1251
1252/* ---------- LED ---------- */
1253
1254/**
1255 * asd_turn_led -- turn on/off an LED
1256 * @asd_ha: pointer to host adapter structure
1257 * @phy_id: the PHY id whose LED we want to manupulate
1258 * @op: 1 to turn on, 0 to turn off
1259 */
1260void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1261{
1262	if (phy_id < ASD_MAX_PHYS) {
1263		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1264		if (op)
1265			v |= LEDPOL;
1266		else
1267			v &= ~LEDPOL;
1268		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1269	}
1270}
1271
1272/**
1273 * asd_control_led -- enable/disable an LED on the board
1274 * @asd_ha: pointer to host adapter structure
1275 * @phy_id: integer, the phy id
1276 * @op: integer, 1 to enable, 0 to disable the LED
1277 *
1278 * First we output enable the LED, then we set the source
1279 * to be an external module.
1280 */
1281void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1282{
1283	if (phy_id < ASD_MAX_PHYS) {
1284		u32 v;
1285
1286		v = asd_read_reg_dword(asd_ha, GPIOOER);
1287		if (op)
1288			v |= (1 << phy_id);
1289		else
1290			v &= ~(1 << phy_id);
1291		asd_write_reg_dword(asd_ha, GPIOOER, v);
1292
1293		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1294		if (op)
1295			v |= (1 << phy_id);
1296		else
1297			v &= ~(1 << phy_id);
1298		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1299	}
1300}
1301
1302/* ---------- PHY enable ---------- */
1303
1304static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1305{
1306	struct asd_phy *phy = &asd_ha->phys[phy_id];
1307
1308	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1309	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1310			   HOTPLUG_DELAY_TIMEOUT);
1311
1312	/* Get defaults from manuf. sector */
1313	/* XXX we need defaults for those in case MS is broken. */
1314	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1315			   phy->phy_desc->phy_control_0);
1316	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1317			   phy->phy_desc->phy_control_1);
1318	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1319			   phy->phy_desc->phy_control_2);
1320	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1321			   phy->phy_desc->phy_control_3);
1322
1323	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1324			    ASD_COMINIT_TIMEOUT);
1325
1326	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1327			   phy->id_frm_tok->dma_handle);
1328
1329	asd_control_led(asd_ha, phy_id, 1);
1330
1331	return 0;
1332}
1333
1334int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1335{
1336	u8  phy_m;
1337	u8  i;
1338	int num = 0, k;
1339	struct asd_ascb *ascb;
1340	struct asd_ascb *ascb_list;
1341
1342	if (!phy_mask) {
1343		asd_printk("%s called with phy_mask of 0!?\n", __func__);
1344		return 0;
1345	}
1346
1347	for_each_phy(phy_mask, phy_m, i) {
1348		num++;
1349		asd_enable_phy(asd_ha, i);
1350	}
1351
1352	k = num;
1353	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1354	if (!ascb_list) {
1355		asd_printk("no memory for control phy ascb list\n");
1356		return -ENOMEM;
1357	}
1358	num -= k;
1359
1360	ascb = ascb_list;
1361	for_each_phy(phy_mask, phy_m, i) {
1362		asd_build_control_phy(ascb, i, ENABLE_PHY);
1363		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1364	}
1365	ASD_DPRINTK("posting %d control phy scbs\n", num);
1366	k = asd_post_ascb_list(asd_ha, ascb_list, num);
1367	if (k)
1368		asd_ascb_free_list(ascb_list);
1369
1370	return k;
1371}
1372