18c2ecf20Sopenharmony_ci/*
28c2ecf20Sopenharmony_ci * Interface for the 93C66/56/46/26/06 serial eeprom parts.
38c2ecf20Sopenharmony_ci *
48c2ecf20Sopenharmony_ci * Copyright (c) 1995, 1996 Daniel M. Eischen
58c2ecf20Sopenharmony_ci * All rights reserved.
68c2ecf20Sopenharmony_ci *
78c2ecf20Sopenharmony_ci * Redistribution and use in source and binary forms, with or without
88c2ecf20Sopenharmony_ci * modification, are permitted provided that the following conditions
98c2ecf20Sopenharmony_ci * are met:
108c2ecf20Sopenharmony_ci * 1. Redistributions of source code must retain the above copyright
118c2ecf20Sopenharmony_ci *    notice, this list of conditions, and the following disclaimer,
128c2ecf20Sopenharmony_ci *    without modification.
138c2ecf20Sopenharmony_ci * 2. The name of the author may not be used to endorse or promote products
148c2ecf20Sopenharmony_ci *    derived from this software without specific prior written permission.
158c2ecf20Sopenharmony_ci *
168c2ecf20Sopenharmony_ci * Alternatively, this software may be distributed under the terms of the
178c2ecf20Sopenharmony_ci * GNU General Public License ("GPL").
188c2ecf20Sopenharmony_ci *
198c2ecf20Sopenharmony_ci * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
208c2ecf20Sopenharmony_ci * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
218c2ecf20Sopenharmony_ci * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
228c2ecf20Sopenharmony_ci * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
238c2ecf20Sopenharmony_ci * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
248c2ecf20Sopenharmony_ci * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
258c2ecf20Sopenharmony_ci * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
268c2ecf20Sopenharmony_ci * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
278c2ecf20Sopenharmony_ci * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
288c2ecf20Sopenharmony_ci * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
298c2ecf20Sopenharmony_ci * SUCH DAMAGE.
308c2ecf20Sopenharmony_ci *
318c2ecf20Sopenharmony_ci * $Id: //depot/aic7xxx/aic7xxx/aic7xxx_93cx6.c#19 $
328c2ecf20Sopenharmony_ci */
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci/*
358c2ecf20Sopenharmony_ci *   The instruction set of the 93C66/56/46/26/06 chips are as follows:
368c2ecf20Sopenharmony_ci *
378c2ecf20Sopenharmony_ci *               Start  OP	    *
388c2ecf20Sopenharmony_ci *     Function   Bit  Code  Address**  Data     Description
398c2ecf20Sopenharmony_ci *     -------------------------------------------------------------------
408c2ecf20Sopenharmony_ci *     READ        1    10   A5 - A0             Reads data stored in memory,
418c2ecf20Sopenharmony_ci *                                               starting at specified address
428c2ecf20Sopenharmony_ci *     EWEN        1    00   11XXXX              Write enable must precede
438c2ecf20Sopenharmony_ci *                                               all programming modes
448c2ecf20Sopenharmony_ci *     ERASE       1    11   A5 - A0             Erase register A5A4A3A2A1A0
458c2ecf20Sopenharmony_ci *     WRITE       1    01   A5 - A0   D15 - D0  Writes register
468c2ecf20Sopenharmony_ci *     ERAL        1    00   10XXXX              Erase all registers
478c2ecf20Sopenharmony_ci *     WRAL        1    00   01XXXX    D15 - D0  Writes to all registers
488c2ecf20Sopenharmony_ci *     EWDS        1    00   00XXXX              Disables all programming
498c2ecf20Sopenharmony_ci *                                               instructions
508c2ecf20Sopenharmony_ci *     *Note: A value of X for address is a don't care condition.
518c2ecf20Sopenharmony_ci *    **Note: There are 8 address bits for the 93C56/66 chips unlike
528c2ecf20Sopenharmony_ci *	      the 93C46/26/06 chips which have 6 address bits.
538c2ecf20Sopenharmony_ci *
548c2ecf20Sopenharmony_ci *   The 93C46 has a four wire interface: clock, chip select, data in, and
558c2ecf20Sopenharmony_ci *   data out.  In order to perform one of the above functions, you need
568c2ecf20Sopenharmony_ci *   to enable the chip select for a clock period (typically a minimum of
578c2ecf20Sopenharmony_ci *   1 usec, with the clock high and low a minimum of 750 and 250 nsec
588c2ecf20Sopenharmony_ci *   respectively).  While the chip select remains high, you can clock in
598c2ecf20Sopenharmony_ci *   the instructions (above) starting with the start bit, followed by the
608c2ecf20Sopenharmony_ci *   OP code, Address, and Data (if needed).  For the READ instruction, the
618c2ecf20Sopenharmony_ci *   requested 16-bit register contents is read from the data out line but
628c2ecf20Sopenharmony_ci *   is preceded by an initial zero (leading 0, followed by 16-bits, MSB
638c2ecf20Sopenharmony_ci *   first).  The clock cycling from low to high initiates the next data
648c2ecf20Sopenharmony_ci *   bit to be sent from the chip.
658c2ecf20Sopenharmony_ci */
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci#include "aic7xxx_osm.h"
688c2ecf20Sopenharmony_ci#include "aic7xxx_inline.h"
698c2ecf20Sopenharmony_ci#include "aic7xxx_93cx6.h"
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_ci/*
728c2ecf20Sopenharmony_ci * Right now, we only have to read the SEEPROM.  But we make it easier to
738c2ecf20Sopenharmony_ci * add other 93Cx6 functions.
748c2ecf20Sopenharmony_ci */
758c2ecf20Sopenharmony_cistruct seeprom_cmd {
768c2ecf20Sopenharmony_ci  	uint8_t len;
778c2ecf20Sopenharmony_ci 	uint8_t bits[11];
788c2ecf20Sopenharmony_ci};
798c2ecf20Sopenharmony_ci
808c2ecf20Sopenharmony_ci/* Short opcodes for the c46 */
818c2ecf20Sopenharmony_cistatic const struct seeprom_cmd seeprom_ewen = {9, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
828c2ecf20Sopenharmony_cistatic const struct seeprom_cmd seeprom_ewds = {9, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
838c2ecf20Sopenharmony_ci
848c2ecf20Sopenharmony_ci/* Long opcodes for the C56/C66 */
858c2ecf20Sopenharmony_cistatic const struct seeprom_cmd seeprom_long_ewen = {11, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
868c2ecf20Sopenharmony_cistatic const struct seeprom_cmd seeprom_long_ewds = {11, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
878c2ecf20Sopenharmony_ci
888c2ecf20Sopenharmony_ci/* Common opcodes */
898c2ecf20Sopenharmony_cistatic const struct seeprom_cmd seeprom_write = {3, {1, 0, 1}};
908c2ecf20Sopenharmony_cistatic const struct seeprom_cmd seeprom_read  = {3, {1, 1, 0}};
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_ci/*
938c2ecf20Sopenharmony_ci * Wait for the SEERDY to go high; about 800 ns.
948c2ecf20Sopenharmony_ci */
958c2ecf20Sopenharmony_ci#define CLOCK_PULSE(sd, rdy)				\
968c2ecf20Sopenharmony_ci	while ((SEEPROM_STATUS_INB(sd) & rdy) == 0) {	\
978c2ecf20Sopenharmony_ci		;  /* Do nothing */			\
988c2ecf20Sopenharmony_ci	}						\
998c2ecf20Sopenharmony_ci	(void)SEEPROM_INB(sd);	/* Clear clock */
1008c2ecf20Sopenharmony_ci
1018c2ecf20Sopenharmony_ci/*
1028c2ecf20Sopenharmony_ci * Send a START condition and the given command
1038c2ecf20Sopenharmony_ci */
1048c2ecf20Sopenharmony_cistatic void
1058c2ecf20Sopenharmony_cisend_seeprom_cmd(struct seeprom_descriptor *sd, const struct seeprom_cmd *cmd)
1068c2ecf20Sopenharmony_ci{
1078c2ecf20Sopenharmony_ci	uint8_t temp;
1088c2ecf20Sopenharmony_ci	int i = 0;
1098c2ecf20Sopenharmony_ci
1108c2ecf20Sopenharmony_ci	/* Send chip select for one clock cycle. */
1118c2ecf20Sopenharmony_ci	temp = sd->sd_MS ^ sd->sd_CS;
1128c2ecf20Sopenharmony_ci	SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
1138c2ecf20Sopenharmony_ci	CLOCK_PULSE(sd, sd->sd_RDY);
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci	for (i = 0; i < cmd->len; i++) {
1168c2ecf20Sopenharmony_ci		if (cmd->bits[i] != 0)
1178c2ecf20Sopenharmony_ci			temp ^= sd->sd_DO;
1188c2ecf20Sopenharmony_ci		SEEPROM_OUTB(sd, temp);
1198c2ecf20Sopenharmony_ci		CLOCK_PULSE(sd, sd->sd_RDY);
1208c2ecf20Sopenharmony_ci		SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
1218c2ecf20Sopenharmony_ci		CLOCK_PULSE(sd, sd->sd_RDY);
1228c2ecf20Sopenharmony_ci		if (cmd->bits[i] != 0)
1238c2ecf20Sopenharmony_ci			temp ^= sd->sd_DO;
1248c2ecf20Sopenharmony_ci	}
1258c2ecf20Sopenharmony_ci}
1268c2ecf20Sopenharmony_ci
1278c2ecf20Sopenharmony_ci/*
1288c2ecf20Sopenharmony_ci * Clear CS put the chip in the reset state, where it can wait for new commands.
1298c2ecf20Sopenharmony_ci */
1308c2ecf20Sopenharmony_cistatic void
1318c2ecf20Sopenharmony_cireset_seeprom(struct seeprom_descriptor *sd)
1328c2ecf20Sopenharmony_ci{
1338c2ecf20Sopenharmony_ci	uint8_t temp;
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci	temp = sd->sd_MS;
1368c2ecf20Sopenharmony_ci	SEEPROM_OUTB(sd, temp);
1378c2ecf20Sopenharmony_ci	CLOCK_PULSE(sd, sd->sd_RDY);
1388c2ecf20Sopenharmony_ci	SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
1398c2ecf20Sopenharmony_ci	CLOCK_PULSE(sd, sd->sd_RDY);
1408c2ecf20Sopenharmony_ci	SEEPROM_OUTB(sd, temp);
1418c2ecf20Sopenharmony_ci	CLOCK_PULSE(sd, sd->sd_RDY);
1428c2ecf20Sopenharmony_ci}
1438c2ecf20Sopenharmony_ci
1448c2ecf20Sopenharmony_ci/*
1458c2ecf20Sopenharmony_ci * Read the serial EEPROM and returns 1 if successful and 0 if
1468c2ecf20Sopenharmony_ci * not successful.
1478c2ecf20Sopenharmony_ci */
1488c2ecf20Sopenharmony_ciint
1498c2ecf20Sopenharmony_ciahc_read_seeprom(struct seeprom_descriptor *sd, uint16_t *buf,
1508c2ecf20Sopenharmony_ci		 u_int start_addr, u_int count)
1518c2ecf20Sopenharmony_ci{
1528c2ecf20Sopenharmony_ci	int i = 0;
1538c2ecf20Sopenharmony_ci	u_int k = 0;
1548c2ecf20Sopenharmony_ci	uint16_t v;
1558c2ecf20Sopenharmony_ci	uint8_t temp;
1568c2ecf20Sopenharmony_ci
1578c2ecf20Sopenharmony_ci	/*
1588c2ecf20Sopenharmony_ci	 * Read the requested registers of the seeprom.  The loop
1598c2ecf20Sopenharmony_ci	 * will range from 0 to count-1.
1608c2ecf20Sopenharmony_ci	 */
1618c2ecf20Sopenharmony_ci	for (k = start_addr; k < count + start_addr; k++) {
1628c2ecf20Sopenharmony_ci		/*
1638c2ecf20Sopenharmony_ci		 * Now we're ready to send the read command followed by the
1648c2ecf20Sopenharmony_ci		 * address of the 16-bit register we want to read.
1658c2ecf20Sopenharmony_ci		 */
1668c2ecf20Sopenharmony_ci		send_seeprom_cmd(sd, &seeprom_read);
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci		/* Send the 6 or 8 bit address (MSB first, LSB last). */
1698c2ecf20Sopenharmony_ci		temp = sd->sd_MS ^ sd->sd_CS;
1708c2ecf20Sopenharmony_ci		for (i = (sd->sd_chip - 1); i >= 0; i--) {
1718c2ecf20Sopenharmony_ci			if ((k & (1 << i)) != 0)
1728c2ecf20Sopenharmony_ci				temp ^= sd->sd_DO;
1738c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp);
1748c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
1758c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
1768c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
1778c2ecf20Sopenharmony_ci			if ((k & (1 << i)) != 0)
1788c2ecf20Sopenharmony_ci				temp ^= sd->sd_DO;
1798c2ecf20Sopenharmony_ci		}
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci		/*
1828c2ecf20Sopenharmony_ci		 * Now read the 16 bit register.  An initial 0 precedes the
1838c2ecf20Sopenharmony_ci		 * register contents which begins with bit 15 (MSB) and ends
1848c2ecf20Sopenharmony_ci		 * with bit 0 (LSB).  The initial 0 will be shifted off the
1858c2ecf20Sopenharmony_ci		 * top of our word as we let the loop run from 0 to 16.
1868c2ecf20Sopenharmony_ci		 */
1878c2ecf20Sopenharmony_ci		v = 0;
1888c2ecf20Sopenharmony_ci		for (i = 16; i >= 0; i--) {
1898c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp);
1908c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
1918c2ecf20Sopenharmony_ci			v <<= 1;
1928c2ecf20Sopenharmony_ci			if (SEEPROM_DATA_INB(sd) & sd->sd_DI)
1938c2ecf20Sopenharmony_ci				v |= 1;
1948c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
1958c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
1968c2ecf20Sopenharmony_ci		}
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci		buf[k - start_addr] = v;
1998c2ecf20Sopenharmony_ci
2008c2ecf20Sopenharmony_ci		/* Reset the chip select for the next command cycle. */
2018c2ecf20Sopenharmony_ci		reset_seeprom(sd);
2028c2ecf20Sopenharmony_ci	}
2038c2ecf20Sopenharmony_ci#ifdef AHC_DUMP_EEPROM
2048c2ecf20Sopenharmony_ci	printk("\nSerial EEPROM:\n\t");
2058c2ecf20Sopenharmony_ci	for (k = 0; k < count; k = k + 1) {
2068c2ecf20Sopenharmony_ci		if (((k % 8) == 0) && (k != 0)) {
2078c2ecf20Sopenharmony_ci			printk(KERN_CONT "\n\t");
2088c2ecf20Sopenharmony_ci		}
2098c2ecf20Sopenharmony_ci		printk(KERN_CONT " 0x%x", buf[k]);
2108c2ecf20Sopenharmony_ci	}
2118c2ecf20Sopenharmony_ci	printk(KERN_CONT "\n");
2128c2ecf20Sopenharmony_ci#endif
2138c2ecf20Sopenharmony_ci	return (1);
2148c2ecf20Sopenharmony_ci}
2158c2ecf20Sopenharmony_ci
2168c2ecf20Sopenharmony_ci/*
2178c2ecf20Sopenharmony_ci * Write the serial EEPROM and return 1 if successful and 0 if
2188c2ecf20Sopenharmony_ci * not successful.
2198c2ecf20Sopenharmony_ci */
2208c2ecf20Sopenharmony_ciint
2218c2ecf20Sopenharmony_ciahc_write_seeprom(struct seeprom_descriptor *sd, uint16_t *buf,
2228c2ecf20Sopenharmony_ci		  u_int start_addr, u_int count)
2238c2ecf20Sopenharmony_ci{
2248c2ecf20Sopenharmony_ci	const struct seeprom_cmd *ewen, *ewds;
2258c2ecf20Sopenharmony_ci	uint16_t v;
2268c2ecf20Sopenharmony_ci	uint8_t temp;
2278c2ecf20Sopenharmony_ci	int i, k;
2288c2ecf20Sopenharmony_ci
2298c2ecf20Sopenharmony_ci	/* Place the chip into write-enable mode */
2308c2ecf20Sopenharmony_ci	if (sd->sd_chip == C46) {
2318c2ecf20Sopenharmony_ci		ewen = &seeprom_ewen;
2328c2ecf20Sopenharmony_ci		ewds = &seeprom_ewds;
2338c2ecf20Sopenharmony_ci	} else if (sd->sd_chip == C56_66) {
2348c2ecf20Sopenharmony_ci		ewen = &seeprom_long_ewen;
2358c2ecf20Sopenharmony_ci		ewds = &seeprom_long_ewds;
2368c2ecf20Sopenharmony_ci	} else {
2378c2ecf20Sopenharmony_ci		printk("ahc_write_seeprom: unsupported seeprom type %d\n",
2388c2ecf20Sopenharmony_ci		       sd->sd_chip);
2398c2ecf20Sopenharmony_ci		return (0);
2408c2ecf20Sopenharmony_ci	}
2418c2ecf20Sopenharmony_ci
2428c2ecf20Sopenharmony_ci	send_seeprom_cmd(sd, ewen);
2438c2ecf20Sopenharmony_ci	reset_seeprom(sd);
2448c2ecf20Sopenharmony_ci
2458c2ecf20Sopenharmony_ci	/* Write all requested data out to the seeprom. */
2468c2ecf20Sopenharmony_ci	temp = sd->sd_MS ^ sd->sd_CS;
2478c2ecf20Sopenharmony_ci	for (k = start_addr; k < count + start_addr; k++) {
2488c2ecf20Sopenharmony_ci		/* Send the write command */
2498c2ecf20Sopenharmony_ci		send_seeprom_cmd(sd, &seeprom_write);
2508c2ecf20Sopenharmony_ci
2518c2ecf20Sopenharmony_ci		/* Send the 6 or 8 bit address (MSB first). */
2528c2ecf20Sopenharmony_ci		for (i = (sd->sd_chip - 1); i >= 0; i--) {
2538c2ecf20Sopenharmony_ci			if ((k & (1 << i)) != 0)
2548c2ecf20Sopenharmony_ci				temp ^= sd->sd_DO;
2558c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp);
2568c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
2578c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
2588c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
2598c2ecf20Sopenharmony_ci			if ((k & (1 << i)) != 0)
2608c2ecf20Sopenharmony_ci				temp ^= sd->sd_DO;
2618c2ecf20Sopenharmony_ci		}
2628c2ecf20Sopenharmony_ci
2638c2ecf20Sopenharmony_ci		/* Write the 16 bit value, MSB first */
2648c2ecf20Sopenharmony_ci		v = buf[k - start_addr];
2658c2ecf20Sopenharmony_ci		for (i = 15; i >= 0; i--) {
2668c2ecf20Sopenharmony_ci			if ((v & (1 << i)) != 0)
2678c2ecf20Sopenharmony_ci				temp ^= sd->sd_DO;
2688c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp);
2698c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
2708c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
2718c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
2728c2ecf20Sopenharmony_ci			if ((v & (1 << i)) != 0)
2738c2ecf20Sopenharmony_ci				temp ^= sd->sd_DO;
2748c2ecf20Sopenharmony_ci		}
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci		/* Wait for the chip to complete the write */
2778c2ecf20Sopenharmony_ci		temp = sd->sd_MS;
2788c2ecf20Sopenharmony_ci		SEEPROM_OUTB(sd, temp);
2798c2ecf20Sopenharmony_ci		CLOCK_PULSE(sd, sd->sd_RDY);
2808c2ecf20Sopenharmony_ci		temp = sd->sd_MS ^ sd->sd_CS;
2818c2ecf20Sopenharmony_ci		do {
2828c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp);
2838c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
2848c2ecf20Sopenharmony_ci			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
2858c2ecf20Sopenharmony_ci			CLOCK_PULSE(sd, sd->sd_RDY);
2868c2ecf20Sopenharmony_ci		} while ((SEEPROM_DATA_INB(sd) & sd->sd_DI) == 0);
2878c2ecf20Sopenharmony_ci
2888c2ecf20Sopenharmony_ci		reset_seeprom(sd);
2898c2ecf20Sopenharmony_ci	}
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci	/* Put the chip back into write-protect mode */
2928c2ecf20Sopenharmony_ci	send_seeprom_cmd(sd, ewds);
2938c2ecf20Sopenharmony_ci	reset_seeprom(sd);
2948c2ecf20Sopenharmony_ci
2958c2ecf20Sopenharmony_ci	return (1);
2968c2ecf20Sopenharmony_ci}
2978c2ecf20Sopenharmony_ci
2988c2ecf20Sopenharmony_ciint
2998c2ecf20Sopenharmony_ciahc_verify_cksum(struct seeprom_config *sc)
3008c2ecf20Sopenharmony_ci{
3018c2ecf20Sopenharmony_ci	int i;
3028c2ecf20Sopenharmony_ci	int maxaddr;
3038c2ecf20Sopenharmony_ci	uint32_t checksum;
3048c2ecf20Sopenharmony_ci	uint16_t *scarray;
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_ci	maxaddr = (sizeof(*sc)/2) - 1;
3078c2ecf20Sopenharmony_ci	checksum = 0;
3088c2ecf20Sopenharmony_ci	scarray = (uint16_t *)sc;
3098c2ecf20Sopenharmony_ci
3108c2ecf20Sopenharmony_ci	for (i = 0; i < maxaddr; i++)
3118c2ecf20Sopenharmony_ci		checksum = checksum + scarray[i];
3128c2ecf20Sopenharmony_ci	if (checksum == 0
3138c2ecf20Sopenharmony_ci	 || (checksum & 0xFFFF) != sc->checksum) {
3148c2ecf20Sopenharmony_ci		return (0);
3158c2ecf20Sopenharmony_ci	} else {
3168c2ecf20Sopenharmony_ci		return(1);
3178c2ecf20Sopenharmony_ci	}
3188c2ecf20Sopenharmony_ci}
319