1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 4 * 5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 6 * Copyright (C) 2006 David Brownell (convert to new framework) 7 */ 8 9/* 10 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 11 * That defined the register interface now provided by all PCs, some 12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 13 * integrate an MC146818 clone in their southbridge, and boards use 14 * that instead of discrete clones like the DS12887 or M48T86. There 15 * are also clones that connect using the LPC bus. 16 * 17 * That register API is also used directly by various other drivers 18 * (notably for integrated NVRAM), infrastructure (x86 has code to 19 * bypass the RTC framework, directly reading the RTC during boot 20 * and updating minutes/seconds for systems using NTP synch) and 21 * utilities (like userspace 'hwclock', if no /dev node exists). 22 * 23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 24 * interrupts disabled, holding the global rtc_lock, to exclude those 25 * other drivers and utilities on correctly configured systems. 26 */ 27 28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30#include <linux/kernel.h> 31#include <linux/module.h> 32#include <linux/init.h> 33#include <linux/interrupt.h> 34#include <linux/spinlock.h> 35#include <linux/platform_device.h> 36#include <linux/log2.h> 37#include <linux/pm.h> 38#include <linux/of.h> 39#include <linux/of_platform.h> 40#ifdef CONFIG_X86 41#include <asm/i8259.h> 42#include <asm/processor.h> 43#include <linux/dmi.h> 44#endif 45 46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 47#include <linux/mc146818rtc.h> 48 49#ifdef CONFIG_ACPI 50/* 51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event 52 * 53 * If cleared, ACPI SCI is only used to wake up the system from suspend 54 * 55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup 56 */ 57 58static bool use_acpi_alarm; 59module_param(use_acpi_alarm, bool, 0444); 60 61static inline int cmos_use_acpi_alarm(void) 62{ 63 return use_acpi_alarm; 64} 65#else /* !CONFIG_ACPI */ 66 67static inline int cmos_use_acpi_alarm(void) 68{ 69 return 0; 70} 71#endif 72 73struct cmos_rtc { 74 struct rtc_device *rtc; 75 struct device *dev; 76 int irq; 77 struct resource *iomem; 78 time64_t alarm_expires; 79 80 void (*wake_on)(struct device *); 81 void (*wake_off)(struct device *); 82 83 u8 enabled_wake; 84 u8 suspend_ctrl; 85 86 /* newer hardware extends the original register set */ 87 u8 day_alrm; 88 u8 mon_alrm; 89 u8 century; 90 91 struct rtc_wkalrm saved_wkalrm; 92}; 93 94/* both platform and pnp busses use negative numbers for invalid irqs */ 95#define is_valid_irq(n) ((n) > 0) 96 97static const char driver_name[] = "rtc_cmos"; 98 99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 102 */ 103#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 104 105static inline int is_intr(u8 rtc_intr) 106{ 107 if (!(rtc_intr & RTC_IRQF)) 108 return 0; 109 return rtc_intr & RTC_IRQMASK; 110} 111 112/*----------------------------------------------------------------*/ 113 114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 116 * used in a broken "legacy replacement" mode. The breakage includes 117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 118 * other (better) use. 119 * 120 * When that broken mode is in use, platform glue provides a partial 121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 122 * want to use HPET for anything except those IRQs though... 123 */ 124#ifdef CONFIG_HPET_EMULATE_RTC 125#include <asm/hpet.h> 126#else 127 128static inline int is_hpet_enabled(void) 129{ 130 return 0; 131} 132 133static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 134{ 135 return 0; 136} 137 138static inline int hpet_set_rtc_irq_bit(unsigned long mask) 139{ 140 return 0; 141} 142 143static inline int 144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 145{ 146 return 0; 147} 148 149static inline int hpet_set_periodic_freq(unsigned long freq) 150{ 151 return 0; 152} 153 154static inline int hpet_rtc_dropped_irq(void) 155{ 156 return 0; 157} 158 159static inline int hpet_rtc_timer_init(void) 160{ 161 return 0; 162} 163 164extern irq_handler_t hpet_rtc_interrupt; 165 166static inline int hpet_register_irq_handler(irq_handler_t handler) 167{ 168 return 0; 169} 170 171static inline int hpet_unregister_irq_handler(irq_handler_t handler) 172{ 173 return 0; 174} 175 176#endif 177 178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ 179static inline int use_hpet_alarm(void) 180{ 181 return is_hpet_enabled() && !cmos_use_acpi_alarm(); 182} 183 184/*----------------------------------------------------------------*/ 185 186#ifdef RTC_PORT 187 188/* Most newer x86 systems have two register banks, the first used 189 * for RTC and NVRAM and the second only for NVRAM. Caller must 190 * own rtc_lock ... and we won't worry about access during NMI. 191 */ 192#define can_bank2 true 193 194static inline unsigned char cmos_read_bank2(unsigned char addr) 195{ 196 outb(addr, RTC_PORT(2)); 197 return inb(RTC_PORT(3)); 198} 199 200static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 201{ 202 outb(addr, RTC_PORT(2)); 203 outb(val, RTC_PORT(3)); 204} 205 206#else 207 208#define can_bank2 false 209 210static inline unsigned char cmos_read_bank2(unsigned char addr) 211{ 212 return 0; 213} 214 215static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 216{ 217} 218 219#endif 220 221/*----------------------------------------------------------------*/ 222 223static int cmos_read_time(struct device *dev, struct rtc_time *t) 224{ 225 int ret; 226 227 /* 228 * If pm_trace abused the RTC for storage, set the timespec to 0, 229 * which tells the caller that this RTC value is unusable. 230 */ 231 if (!pm_trace_rtc_valid()) 232 return -EIO; 233 234 ret = mc146818_get_time(t); 235 if (ret < 0) { 236 dev_err_ratelimited(dev, "unable to read current time\n"); 237 return ret; 238 } 239 240 return 0; 241} 242 243static int cmos_set_time(struct device *dev, struct rtc_time *t) 244{ 245 /* NOTE: this ignores the issue whereby updating the seconds 246 * takes effect exactly 500ms after we write the register. 247 * (Also queueing and other delays before we get this far.) 248 */ 249 return mc146818_set_time(t); 250} 251 252struct cmos_read_alarm_callback_param { 253 struct cmos_rtc *cmos; 254 struct rtc_time *time; 255 unsigned char rtc_control; 256}; 257 258static void cmos_read_alarm_callback(unsigned char __always_unused seconds, 259 void *param_in) 260{ 261 struct cmos_read_alarm_callback_param *p = 262 (struct cmos_read_alarm_callback_param *)param_in; 263 struct rtc_time *time = p->time; 264 265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM); 267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM); 268 269 if (p->cmos->day_alrm) { 270 /* ignore upper bits on readback per ACPI spec */ 271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f; 272 if (!time->tm_mday) 273 time->tm_mday = -1; 274 275 if (p->cmos->mon_alrm) { 276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm); 277 if (!time->tm_mon) 278 time->tm_mon = -1; 279 } 280 } 281 282 p->rtc_control = CMOS_READ(RTC_CONTROL); 283} 284 285static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 286{ 287 struct cmos_rtc *cmos = dev_get_drvdata(dev); 288 struct cmos_read_alarm_callback_param p = { 289 .cmos = cmos, 290 .time = &t->time, 291 }; 292 293 /* This not only a rtc_op, but also called directly */ 294 if (!is_valid_irq(cmos->irq)) 295 return -ETIMEDOUT; 296 297 /* Basic alarms only support hour, minute, and seconds fields. 298 * Some also support day and month, for alarms up to a year in 299 * the future. 300 */ 301 302 /* Some Intel chipsets disconnect the alarm registers when the clock 303 * update is in progress - during this time reads return bogus values 304 * and writes may fail silently. See for example "7th Generation Intel® 305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section 306 * 27.7.1 307 * 308 * Use the mc146818_avoid_UIP() function to avoid this. 309 */ 310 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p)) 311 return -EIO; 312 313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 314 if (((unsigned)t->time.tm_sec) < 0x60) 315 t->time.tm_sec = bcd2bin(t->time.tm_sec); 316 else 317 t->time.tm_sec = -1; 318 if (((unsigned)t->time.tm_min) < 0x60) 319 t->time.tm_min = bcd2bin(t->time.tm_min); 320 else 321 t->time.tm_min = -1; 322 if (((unsigned)t->time.tm_hour) < 0x24) 323 t->time.tm_hour = bcd2bin(t->time.tm_hour); 324 else 325 t->time.tm_hour = -1; 326 327 if (cmos->day_alrm) { 328 if (((unsigned)t->time.tm_mday) <= 0x31) 329 t->time.tm_mday = bcd2bin(t->time.tm_mday); 330 else 331 t->time.tm_mday = -1; 332 333 if (cmos->mon_alrm) { 334 if (((unsigned)t->time.tm_mon) <= 0x12) 335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 336 else 337 t->time.tm_mon = -1; 338 } 339 } 340 } 341 342 t->enabled = !!(p.rtc_control & RTC_AIE); 343 t->pending = 0; 344 345 return 0; 346} 347 348static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 349{ 350 unsigned char rtc_intr; 351 352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 353 * allegedly some older rtcs need that to handle irqs properly 354 */ 355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 356 357 if (use_hpet_alarm()) 358 return; 359 360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 361 if (is_intr(rtc_intr)) 362 rtc_update_irq(cmos->rtc, 1, rtc_intr); 363} 364 365static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 366{ 367 unsigned char rtc_control; 368 369 /* flush any pending IRQ status, notably for update irqs, 370 * before we enable new IRQs 371 */ 372 rtc_control = CMOS_READ(RTC_CONTROL); 373 cmos_checkintr(cmos, rtc_control); 374 375 rtc_control |= mask; 376 CMOS_WRITE(rtc_control, RTC_CONTROL); 377 if (use_hpet_alarm()) 378 hpet_set_rtc_irq_bit(mask); 379 380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 381 if (cmos->wake_on) 382 cmos->wake_on(cmos->dev); 383 } 384 385 cmos_checkintr(cmos, rtc_control); 386} 387 388static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 389{ 390 unsigned char rtc_control; 391 392 rtc_control = CMOS_READ(RTC_CONTROL); 393 rtc_control &= ~mask; 394 CMOS_WRITE(rtc_control, RTC_CONTROL); 395 if (use_hpet_alarm()) 396 hpet_mask_rtc_irq_bit(mask); 397 398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 399 if (cmos->wake_off) 400 cmos->wake_off(cmos->dev); 401 } 402 403 cmos_checkintr(cmos, rtc_control); 404} 405 406static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) 407{ 408 struct cmos_rtc *cmos = dev_get_drvdata(dev); 409 struct rtc_time now; 410 411 cmos_read_time(dev, &now); 412 413 if (!cmos->day_alrm) { 414 time64_t t_max_date; 415 time64_t t_alrm; 416 417 t_max_date = rtc_tm_to_time64(&now); 418 t_max_date += 24 * 60 * 60 - 1; 419 t_alrm = rtc_tm_to_time64(&t->time); 420 if (t_alrm > t_max_date) { 421 dev_err(dev, 422 "Alarms can be up to one day in the future\n"); 423 return -EINVAL; 424 } 425 } else if (!cmos->mon_alrm) { 426 struct rtc_time max_date = now; 427 time64_t t_max_date; 428 time64_t t_alrm; 429 int max_mday; 430 431 if (max_date.tm_mon == 11) { 432 max_date.tm_mon = 0; 433 max_date.tm_year += 1; 434 } else { 435 max_date.tm_mon += 1; 436 } 437 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 438 if (max_date.tm_mday > max_mday) 439 max_date.tm_mday = max_mday; 440 441 t_max_date = rtc_tm_to_time64(&max_date); 442 t_max_date -= 1; 443 t_alrm = rtc_tm_to_time64(&t->time); 444 if (t_alrm > t_max_date) { 445 dev_err(dev, 446 "Alarms can be up to one month in the future\n"); 447 return -EINVAL; 448 } 449 } else { 450 struct rtc_time max_date = now; 451 time64_t t_max_date; 452 time64_t t_alrm; 453 int max_mday; 454 455 max_date.tm_year += 1; 456 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 457 if (max_date.tm_mday > max_mday) 458 max_date.tm_mday = max_mday; 459 460 t_max_date = rtc_tm_to_time64(&max_date); 461 t_max_date -= 1; 462 t_alrm = rtc_tm_to_time64(&t->time); 463 if (t_alrm > t_max_date) { 464 dev_err(dev, 465 "Alarms can be up to one year in the future\n"); 466 return -EINVAL; 467 } 468 } 469 470 return 0; 471} 472 473struct cmos_set_alarm_callback_param { 474 struct cmos_rtc *cmos; 475 unsigned char mon, mday, hrs, min, sec; 476 struct rtc_wkalrm *t; 477}; 478 479/* Note: this function may be executed by mc146818_avoid_UIP() more then 480 * once 481 */ 482static void cmos_set_alarm_callback(unsigned char __always_unused seconds, 483 void *param_in) 484{ 485 struct cmos_set_alarm_callback_param *p = 486 (struct cmos_set_alarm_callback_param *)param_in; 487 488 /* next rtc irq must not be from previous alarm setting */ 489 cmos_irq_disable(p->cmos, RTC_AIE); 490 491 /* update alarm */ 492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM); 493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM); 494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM); 495 496 /* the system may support an "enhanced" alarm */ 497 if (p->cmos->day_alrm) { 498 CMOS_WRITE(p->mday, p->cmos->day_alrm); 499 if (p->cmos->mon_alrm) 500 CMOS_WRITE(p->mon, p->cmos->mon_alrm); 501 } 502 503 if (use_hpet_alarm()) { 504 /* 505 * FIXME the HPET alarm glue currently ignores day_alrm 506 * and mon_alrm ... 507 */ 508 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min, 509 p->t->time.tm_sec); 510 } 511 512 if (p->t->enabled) 513 cmos_irq_enable(p->cmos, RTC_AIE); 514} 515 516static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 517{ 518 struct cmos_rtc *cmos = dev_get_drvdata(dev); 519 struct cmos_set_alarm_callback_param p = { 520 .cmos = cmos, 521 .t = t 522 }; 523 unsigned char rtc_control; 524 int ret; 525 526 /* This not only a rtc_op, but also called directly */ 527 if (!is_valid_irq(cmos->irq)) 528 return -EIO; 529 530 ret = cmos_validate_alarm(dev, t); 531 if (ret < 0) 532 return ret; 533 534 p.mon = t->time.tm_mon + 1; 535 p.mday = t->time.tm_mday; 536 p.hrs = t->time.tm_hour; 537 p.min = t->time.tm_min; 538 p.sec = t->time.tm_sec; 539 540 spin_lock_irq(&rtc_lock); 541 rtc_control = CMOS_READ(RTC_CONTROL); 542 spin_unlock_irq(&rtc_lock); 543 544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 545 /* Writing 0xff means "don't care" or "match all". */ 546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff; 547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff; 548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff; 549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff; 550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff; 551 } 552 553 /* 554 * Some Intel chipsets disconnect the alarm registers when the clock 555 * update is in progress - during this time writes fail silently. 556 * 557 * Use mc146818_avoid_UIP() to avoid this. 558 */ 559 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p)) 560 return -ETIMEDOUT; 561 562 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 563 564 return 0; 565} 566 567static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 568{ 569 struct cmos_rtc *cmos = dev_get_drvdata(dev); 570 unsigned long flags; 571 572 spin_lock_irqsave(&rtc_lock, flags); 573 574 if (enabled) 575 cmos_irq_enable(cmos, RTC_AIE); 576 else 577 cmos_irq_disable(cmos, RTC_AIE); 578 579 spin_unlock_irqrestore(&rtc_lock, flags); 580 return 0; 581} 582 583#if IS_ENABLED(CONFIG_RTC_INTF_PROC) 584 585static int cmos_procfs(struct device *dev, struct seq_file *seq) 586{ 587 struct cmos_rtc *cmos = dev_get_drvdata(dev); 588 unsigned char rtc_control, valid; 589 590 spin_lock_irq(&rtc_lock); 591 rtc_control = CMOS_READ(RTC_CONTROL); 592 valid = CMOS_READ(RTC_VALID); 593 spin_unlock_irq(&rtc_lock); 594 595 /* NOTE: at least ICH6 reports battery status using a different 596 * (non-RTC) bit; and SQWE is ignored on many current systems. 597 */ 598 seq_printf(seq, 599 "periodic_IRQ\t: %s\n" 600 "update_IRQ\t: %s\n" 601 "HPET_emulated\t: %s\n" 602 // "square_wave\t: %s\n" 603 "BCD\t\t: %s\n" 604 "DST_enable\t: %s\n" 605 "periodic_freq\t: %d\n" 606 "batt_status\t: %s\n", 607 (rtc_control & RTC_PIE) ? "yes" : "no", 608 (rtc_control & RTC_UIE) ? "yes" : "no", 609 use_hpet_alarm() ? "yes" : "no", 610 // (rtc_control & RTC_SQWE) ? "yes" : "no", 611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 612 (rtc_control & RTC_DST_EN) ? "yes" : "no", 613 cmos->rtc->irq_freq, 614 (valid & RTC_VRT) ? "okay" : "dead"); 615 616 return 0; 617} 618 619#else 620#define cmos_procfs NULL 621#endif 622 623static const struct rtc_class_ops cmos_rtc_ops = { 624 .read_time = cmos_read_time, 625 .set_time = cmos_set_time, 626 .read_alarm = cmos_read_alarm, 627 .set_alarm = cmos_set_alarm, 628 .proc = cmos_procfs, 629 .alarm_irq_enable = cmos_alarm_irq_enable, 630}; 631 632static const struct rtc_class_ops cmos_rtc_ops_no_alarm = { 633 .read_time = cmos_read_time, 634 .set_time = cmos_set_time, 635 .proc = cmos_procfs, 636}; 637 638/*----------------------------------------------------------------*/ 639 640/* 641 * All these chips have at least 64 bytes of address space, shared by 642 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 643 * by boot firmware. Modern chips have 128 or 256 bytes. 644 */ 645 646#define NVRAM_OFFSET (RTC_REG_D + 1) 647 648static int cmos_nvram_read(void *priv, unsigned int off, void *val, 649 size_t count) 650{ 651 unsigned char *buf = val; 652 int retval; 653 654 off += NVRAM_OFFSET; 655 spin_lock_irq(&rtc_lock); 656 for (retval = 0; count; count--, off++, retval++) { 657 if (off < 128) 658 *buf++ = CMOS_READ(off); 659 else if (can_bank2) 660 *buf++ = cmos_read_bank2(off); 661 else 662 break; 663 } 664 spin_unlock_irq(&rtc_lock); 665 666 return retval; 667} 668 669static int cmos_nvram_write(void *priv, unsigned int off, void *val, 670 size_t count) 671{ 672 struct cmos_rtc *cmos = priv; 673 unsigned char *buf = val; 674 int retval; 675 676 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 677 * checksum on part of the NVRAM data. That's currently ignored 678 * here. If userspace is smart enough to know what fields of 679 * NVRAM to update, updating checksums is also part of its job. 680 */ 681 off += NVRAM_OFFSET; 682 spin_lock_irq(&rtc_lock); 683 for (retval = 0; count; count--, off++, retval++) { 684 /* don't trash RTC registers */ 685 if (off == cmos->day_alrm 686 || off == cmos->mon_alrm 687 || off == cmos->century) 688 buf++; 689 else if (off < 128) 690 CMOS_WRITE(*buf++, off); 691 else if (can_bank2) 692 cmos_write_bank2(*buf++, off); 693 else 694 break; 695 } 696 spin_unlock_irq(&rtc_lock); 697 698 return retval; 699} 700 701/*----------------------------------------------------------------*/ 702 703static struct cmos_rtc cmos_rtc; 704 705static irqreturn_t cmos_interrupt(int irq, void *p) 706{ 707 u8 irqstat; 708 u8 rtc_control; 709 710 spin_lock(&rtc_lock); 711 712 /* When the HPET interrupt handler calls us, the interrupt 713 * status is passed as arg1 instead of the irq number. But 714 * always clear irq status, even when HPET is in the way. 715 * 716 * Note that HPET and RTC are almost certainly out of phase, 717 * giving different IRQ status ... 718 */ 719 irqstat = CMOS_READ(RTC_INTR_FLAGS); 720 rtc_control = CMOS_READ(RTC_CONTROL); 721 if (use_hpet_alarm()) 722 irqstat = (unsigned long)irq & 0xF0; 723 724 /* If we were suspended, RTC_CONTROL may not be accurate since the 725 * bios may have cleared it. 726 */ 727 if (!cmos_rtc.suspend_ctrl) 728 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 729 else 730 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 731 732 /* All Linux RTC alarms should be treated as if they were oneshot. 733 * Similar code may be needed in system wakeup paths, in case the 734 * alarm woke the system. 735 */ 736 if (irqstat & RTC_AIE) { 737 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 738 rtc_control &= ~RTC_AIE; 739 CMOS_WRITE(rtc_control, RTC_CONTROL); 740 if (use_hpet_alarm()) 741 hpet_mask_rtc_irq_bit(RTC_AIE); 742 CMOS_READ(RTC_INTR_FLAGS); 743 } 744 spin_unlock(&rtc_lock); 745 746 if (is_intr(irqstat)) { 747 rtc_update_irq(p, 1, irqstat); 748 return IRQ_HANDLED; 749 } else 750 return IRQ_NONE; 751} 752 753#ifdef CONFIG_ACPI 754 755#include <linux/acpi.h> 756 757static u32 rtc_handler(void *context) 758{ 759 struct device *dev = context; 760 struct cmos_rtc *cmos = dev_get_drvdata(dev); 761 unsigned char rtc_control = 0; 762 unsigned char rtc_intr; 763 unsigned long flags; 764 765 766 /* 767 * Always update rtc irq when ACPI is used as RTC Alarm. 768 * Or else, ACPI SCI is enabled during suspend/resume only, 769 * update rtc irq in that case. 770 */ 771 if (cmos_use_acpi_alarm()) 772 cmos_interrupt(0, (void *)cmos->rtc); 773 else { 774 /* Fix me: can we use cmos_interrupt() here as well? */ 775 spin_lock_irqsave(&rtc_lock, flags); 776 if (cmos_rtc.suspend_ctrl) 777 rtc_control = CMOS_READ(RTC_CONTROL); 778 if (rtc_control & RTC_AIE) { 779 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 780 CMOS_WRITE(rtc_control, RTC_CONTROL); 781 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 782 rtc_update_irq(cmos->rtc, 1, rtc_intr); 783 } 784 spin_unlock_irqrestore(&rtc_lock, flags); 785 } 786 787 pm_wakeup_hard_event(dev); 788 acpi_clear_event(ACPI_EVENT_RTC); 789 acpi_disable_event(ACPI_EVENT_RTC, 0); 790 return ACPI_INTERRUPT_HANDLED; 791} 792 793static void acpi_rtc_event_setup(struct device *dev) 794{ 795 if (acpi_disabled) 796 return; 797 798 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 799 /* 800 * After the RTC handler is installed, the Fixed_RTC event should 801 * be disabled. Only when the RTC alarm is set will it be enabled. 802 */ 803 acpi_clear_event(ACPI_EVENT_RTC); 804 acpi_disable_event(ACPI_EVENT_RTC, 0); 805} 806 807static void acpi_rtc_event_cleanup(void) 808{ 809 if (acpi_disabled) 810 return; 811 812 acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler); 813} 814 815static void rtc_wake_on(struct device *dev) 816{ 817 acpi_clear_event(ACPI_EVENT_RTC); 818 acpi_enable_event(ACPI_EVENT_RTC, 0); 819} 820 821static void rtc_wake_off(struct device *dev) 822{ 823 acpi_disable_event(ACPI_EVENT_RTC, 0); 824} 825 826#ifdef CONFIG_X86 827/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */ 828static void use_acpi_alarm_quirks(void) 829{ 830 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 831 return; 832 833 if (!is_hpet_enabled()) 834 return; 835 836 if (dmi_get_bios_year() < 2015) 837 return; 838 839 use_acpi_alarm = true; 840} 841#else 842static inline void use_acpi_alarm_quirks(void) { } 843#endif 844 845static void acpi_cmos_wake_setup(struct device *dev) 846{ 847 if (acpi_disabled) 848 return; 849 850 use_acpi_alarm_quirks(); 851 852 cmos_rtc.wake_on = rtc_wake_on; 853 cmos_rtc.wake_off = rtc_wake_off; 854 855 /* ACPI tables bug workaround. */ 856 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 857 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 858 acpi_gbl_FADT.month_alarm); 859 acpi_gbl_FADT.month_alarm = 0; 860 } 861 862 cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm; 863 cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm; 864 cmos_rtc.century = acpi_gbl_FADT.century; 865 866 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 867 dev_info(dev, "RTC can wake from S4\n"); 868 869 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 870 device_init_wakeup(dev, 1); 871} 872 873static void cmos_check_acpi_rtc_status(struct device *dev, 874 unsigned char *rtc_control) 875{ 876 struct cmos_rtc *cmos = dev_get_drvdata(dev); 877 acpi_event_status rtc_status; 878 acpi_status status; 879 880 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 881 return; 882 883 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 884 if (ACPI_FAILURE(status)) { 885 dev_err(dev, "Could not get RTC status\n"); 886 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 887 unsigned char mask; 888 *rtc_control &= ~RTC_AIE; 889 CMOS_WRITE(*rtc_control, RTC_CONTROL); 890 mask = CMOS_READ(RTC_INTR_FLAGS); 891 rtc_update_irq(cmos->rtc, 1, mask); 892 } 893} 894 895#else /* !CONFIG_ACPI */ 896 897static inline void acpi_rtc_event_setup(struct device *dev) 898{ 899} 900 901static inline void acpi_rtc_event_cleanup(void) 902{ 903} 904 905static inline void acpi_cmos_wake_setup(struct device *dev) 906{ 907} 908 909static inline void cmos_check_acpi_rtc_status(struct device *dev, 910 unsigned char *rtc_control) 911{ 912} 913#endif /* CONFIG_ACPI */ 914 915#ifdef CONFIG_PNP 916#define INITSECTION 917 918#else 919#define INITSECTION __init 920#endif 921 922static int INITSECTION 923cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 924{ 925 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 926 int retval = 0; 927 unsigned char rtc_control; 928 unsigned address_space; 929 u32 flags = 0; 930 struct nvmem_config nvmem_cfg = { 931 .name = "cmos_nvram", 932 .word_size = 1, 933 .stride = 1, 934 .reg_read = cmos_nvram_read, 935 .reg_write = cmos_nvram_write, 936 .priv = &cmos_rtc, 937 }; 938 939 /* there can be only one ... */ 940 if (cmos_rtc.dev) 941 return -EBUSY; 942 943 if (!ports) 944 return -ENODEV; 945 946 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 947 * 948 * REVISIT non-x86 systems may instead use memory space resources 949 * (needing ioremap etc), not i/o space resources like this ... 950 */ 951 if (RTC_IOMAPPED) 952 ports = request_region(ports->start, resource_size(ports), 953 driver_name); 954 else 955 ports = request_mem_region(ports->start, resource_size(ports), 956 driver_name); 957 if (!ports) { 958 dev_dbg(dev, "i/o registers already in use\n"); 959 return -EBUSY; 960 } 961 962 cmos_rtc.irq = rtc_irq; 963 cmos_rtc.iomem = ports; 964 965 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 966 * driver did, but don't reject unknown configs. Old hardware 967 * won't address 128 bytes. Newer chips have multiple banks, 968 * though they may not be listed in one I/O resource. 969 */ 970#if defined(CONFIG_ATARI) 971 address_space = 64; 972#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 973 || defined(__sparc__) || defined(__mips__) \ 974 || defined(__powerpc__) 975 address_space = 128; 976#else 977#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 978 address_space = 128; 979#endif 980 if (can_bank2 && ports->end > (ports->start + 1)) 981 address_space = 256; 982 983 /* For ACPI systems extension info comes from the FADT. On others, 984 * board specific setup provides it as appropriate. Systems where 985 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 986 * some almost-clones) can provide hooks to make that behave. 987 * 988 * Note that ACPI doesn't preclude putting these registers into 989 * "extended" areas of the chip, including some that we won't yet 990 * expect CMOS_READ and friends to handle. 991 */ 992 if (info) { 993 if (info->flags) 994 flags = info->flags; 995 if (info->address_space) 996 address_space = info->address_space; 997 998 cmos_rtc.day_alrm = info->rtc_day_alarm; 999 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 1000 cmos_rtc.century = info->rtc_century; 1001 1002 if (info->wake_on && info->wake_off) { 1003 cmos_rtc.wake_on = info->wake_on; 1004 cmos_rtc.wake_off = info->wake_off; 1005 } 1006 } else { 1007 acpi_cmos_wake_setup(dev); 1008 } 1009 1010 if (cmos_rtc.day_alrm >= 128) 1011 cmos_rtc.day_alrm = 0; 1012 1013 if (cmos_rtc.mon_alrm >= 128) 1014 cmos_rtc.mon_alrm = 0; 1015 1016 if (cmos_rtc.century >= 128) 1017 cmos_rtc.century = 0; 1018 1019 cmos_rtc.dev = dev; 1020 dev_set_drvdata(dev, &cmos_rtc); 1021 1022 cmos_rtc.rtc = devm_rtc_allocate_device(dev); 1023 if (IS_ERR(cmos_rtc.rtc)) { 1024 retval = PTR_ERR(cmos_rtc.rtc); 1025 goto cleanup0; 1026 } 1027 1028 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 1029 1030 if (!mc146818_does_rtc_work()) { 1031 dev_warn(dev, "broken or not accessible\n"); 1032 retval = -ENXIO; 1033 goto cleanup1; 1034 } 1035 1036 spin_lock_irq(&rtc_lock); 1037 1038 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 1039 /* force periodic irq to CMOS reset default of 1024Hz; 1040 * 1041 * REVISIT it's been reported that at least one x86_64 ALI 1042 * mobo doesn't use 32KHz here ... for portability we might 1043 * need to do something about other clock frequencies. 1044 */ 1045 cmos_rtc.rtc->irq_freq = 1024; 1046 if (use_hpet_alarm()) 1047 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 1048 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 1049 } 1050 1051 /* disable irqs */ 1052 if (is_valid_irq(rtc_irq)) 1053 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 1054 1055 rtc_control = CMOS_READ(RTC_CONTROL); 1056 1057 spin_unlock_irq(&rtc_lock); 1058 1059 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 1060 dev_warn(dev, "only 24-hr supported\n"); 1061 retval = -ENXIO; 1062 goto cleanup1; 1063 } 1064 1065 if (use_hpet_alarm()) 1066 hpet_rtc_timer_init(); 1067 1068 if (is_valid_irq(rtc_irq)) { 1069 irq_handler_t rtc_cmos_int_handler; 1070 1071 if (use_hpet_alarm()) { 1072 rtc_cmos_int_handler = hpet_rtc_interrupt; 1073 retval = hpet_register_irq_handler(cmos_interrupt); 1074 if (retval) { 1075 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 1076 dev_warn(dev, "hpet_register_irq_handler " 1077 " failed in rtc_init()."); 1078 goto cleanup1; 1079 } 1080 } else 1081 rtc_cmos_int_handler = cmos_interrupt; 1082 1083 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 1084 0, dev_name(&cmos_rtc.rtc->dev), 1085 cmos_rtc.rtc); 1086 if (retval < 0) { 1087 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 1088 goto cleanup1; 1089 } 1090 1091 cmos_rtc.rtc->ops = &cmos_rtc_ops; 1092 } else { 1093 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm; 1094 } 1095 1096 cmos_rtc.rtc->nvram_old_abi = true; 1097 retval = rtc_register_device(cmos_rtc.rtc); 1098 if (retval) 1099 goto cleanup2; 1100 1101 /* export at least the first block of NVRAM */ 1102 nvmem_cfg.size = address_space - NVRAM_OFFSET; 1103 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg)) 1104 dev_err(dev, "nvmem registration failed\n"); 1105 1106 /* 1107 * Everything has gone well so far, so by default register a handler for 1108 * the ACPI RTC fixed event. 1109 */ 1110 if (!info) 1111 acpi_rtc_event_setup(dev); 1112 1113 dev_info(dev, "%s%s, %d bytes nvram%s\n", 1114 !is_valid_irq(rtc_irq) ? "no alarms" : 1115 cmos_rtc.mon_alrm ? "alarms up to one year" : 1116 cmos_rtc.day_alrm ? "alarms up to one month" : 1117 "alarms up to one day", 1118 cmos_rtc.century ? ", y3k" : "", 1119 nvmem_cfg.size, 1120 use_hpet_alarm() ? ", hpet irqs" : ""); 1121 1122 return 0; 1123 1124cleanup2: 1125 if (is_valid_irq(rtc_irq)) 1126 free_irq(rtc_irq, cmos_rtc.rtc); 1127cleanup1: 1128 cmos_rtc.dev = NULL; 1129cleanup0: 1130 if (RTC_IOMAPPED) 1131 release_region(ports->start, resource_size(ports)); 1132 else 1133 release_mem_region(ports->start, resource_size(ports)); 1134 return retval; 1135} 1136 1137static void cmos_do_shutdown(int rtc_irq) 1138{ 1139 spin_lock_irq(&rtc_lock); 1140 if (is_valid_irq(rtc_irq)) 1141 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 1142 spin_unlock_irq(&rtc_lock); 1143} 1144 1145static void cmos_do_remove(struct device *dev) 1146{ 1147 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1148 struct resource *ports; 1149 1150 cmos_do_shutdown(cmos->irq); 1151 1152 if (is_valid_irq(cmos->irq)) { 1153 free_irq(cmos->irq, cmos->rtc); 1154 if (use_hpet_alarm()) 1155 hpet_unregister_irq_handler(cmos_interrupt); 1156 } 1157 1158 if (!dev_get_platdata(dev)) 1159 acpi_rtc_event_cleanup(); 1160 1161 cmos->rtc = NULL; 1162 1163 ports = cmos->iomem; 1164 if (RTC_IOMAPPED) 1165 release_region(ports->start, resource_size(ports)); 1166 else 1167 release_mem_region(ports->start, resource_size(ports)); 1168 cmos->iomem = NULL; 1169 1170 cmos->dev = NULL; 1171} 1172 1173static int cmos_aie_poweroff(struct device *dev) 1174{ 1175 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1176 struct rtc_time now; 1177 time64_t t_now; 1178 int retval = 0; 1179 unsigned char rtc_control; 1180 1181 if (!cmos->alarm_expires) 1182 return -EINVAL; 1183 1184 spin_lock_irq(&rtc_lock); 1185 rtc_control = CMOS_READ(RTC_CONTROL); 1186 spin_unlock_irq(&rtc_lock); 1187 1188 /* We only care about the situation where AIE is disabled. */ 1189 if (rtc_control & RTC_AIE) 1190 return -EBUSY; 1191 1192 cmos_read_time(dev, &now); 1193 t_now = rtc_tm_to_time64(&now); 1194 1195 /* 1196 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 1197 * automatically right after shutdown on some buggy boxes. 1198 * This automatic rebooting issue won't happen when the alarm 1199 * time is larger than now+1 seconds. 1200 * 1201 * If the alarm time is equal to now+1 seconds, the issue can be 1202 * prevented by cancelling the alarm. 1203 */ 1204 if (cmos->alarm_expires == t_now + 1) { 1205 struct rtc_wkalrm alarm; 1206 1207 /* Cancel the AIE timer by configuring the past time. */ 1208 rtc_time64_to_tm(t_now - 1, &alarm.time); 1209 alarm.enabled = 0; 1210 retval = cmos_set_alarm(dev, &alarm); 1211 } else if (cmos->alarm_expires > t_now + 1) { 1212 retval = -EBUSY; 1213 } 1214 1215 return retval; 1216} 1217 1218static int cmos_suspend(struct device *dev) 1219{ 1220 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1221 unsigned char tmp; 1222 1223 /* only the alarm might be a wakeup event source */ 1224 spin_lock_irq(&rtc_lock); 1225 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 1226 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 1227 unsigned char mask; 1228 1229 if (device_may_wakeup(dev)) 1230 mask = RTC_IRQMASK & ~RTC_AIE; 1231 else 1232 mask = RTC_IRQMASK; 1233 tmp &= ~mask; 1234 CMOS_WRITE(tmp, RTC_CONTROL); 1235 if (use_hpet_alarm()) 1236 hpet_mask_rtc_irq_bit(mask); 1237 cmos_checkintr(cmos, tmp); 1238 } 1239 spin_unlock_irq(&rtc_lock); 1240 1241 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) { 1242 cmos->enabled_wake = 1; 1243 if (cmos->wake_on) 1244 cmos->wake_on(dev); 1245 else 1246 enable_irq_wake(cmos->irq); 1247 } 1248 1249 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm)); 1250 cmos_read_alarm(dev, &cmos->saved_wkalrm); 1251 1252 dev_dbg(dev, "suspend%s, ctrl %02x\n", 1253 (tmp & RTC_AIE) ? ", alarm may wake" : "", 1254 tmp); 1255 1256 return 0; 1257} 1258 1259/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 1260 * after a detour through G3 "mechanical off", although the ACPI spec 1261 * says wakeup should only work from G1/S4 "hibernate". To most users, 1262 * distinctions between S4 and S5 are pointless. So when the hardware 1263 * allows, don't draw that distinction. 1264 */ 1265static inline int cmos_poweroff(struct device *dev) 1266{ 1267 if (!IS_ENABLED(CONFIG_PM)) 1268 return -ENOSYS; 1269 1270 return cmos_suspend(dev); 1271} 1272 1273static void cmos_check_wkalrm(struct device *dev) 1274{ 1275 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1276 struct rtc_wkalrm current_alarm; 1277 time64_t t_now; 1278 time64_t t_current_expires; 1279 time64_t t_saved_expires; 1280 struct rtc_time now; 1281 1282 /* Check if we have RTC Alarm armed */ 1283 if (!(cmos->suspend_ctrl & RTC_AIE)) 1284 return; 1285 1286 cmos_read_time(dev, &now); 1287 t_now = rtc_tm_to_time64(&now); 1288 1289 /* 1290 * ACPI RTC wake event is cleared after resume from STR, 1291 * ACK the rtc irq here 1292 */ 1293 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) { 1294 local_irq_disable(); 1295 cmos_interrupt(0, (void *)cmos->rtc); 1296 local_irq_enable(); 1297 return; 1298 } 1299 1300 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm)); 1301 cmos_read_alarm(dev, ¤t_alarm); 1302 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 1303 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 1304 if (t_current_expires != t_saved_expires || 1305 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 1306 cmos_set_alarm(dev, &cmos->saved_wkalrm); 1307 } 1308} 1309 1310static int __maybe_unused cmos_resume(struct device *dev) 1311{ 1312 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1313 unsigned char tmp; 1314 1315 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) { 1316 if (cmos->wake_off) 1317 cmos->wake_off(dev); 1318 else 1319 disable_irq_wake(cmos->irq); 1320 cmos->enabled_wake = 0; 1321 } 1322 1323 /* The BIOS might have changed the alarm, restore it */ 1324 cmos_check_wkalrm(dev); 1325 1326 spin_lock_irq(&rtc_lock); 1327 tmp = cmos->suspend_ctrl; 1328 cmos->suspend_ctrl = 0; 1329 /* re-enable any irqs previously active */ 1330 if (tmp & RTC_IRQMASK) { 1331 unsigned char mask; 1332 1333 if (device_may_wakeup(dev) && use_hpet_alarm()) 1334 hpet_rtc_timer_init(); 1335 1336 do { 1337 CMOS_WRITE(tmp, RTC_CONTROL); 1338 if (use_hpet_alarm()) 1339 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 1340 1341 mask = CMOS_READ(RTC_INTR_FLAGS); 1342 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 1343 if (!use_hpet_alarm() || !is_intr(mask)) 1344 break; 1345 1346 /* force one-shot behavior if HPET blocked 1347 * the wake alarm's irq 1348 */ 1349 rtc_update_irq(cmos->rtc, 1, mask); 1350 tmp &= ~RTC_AIE; 1351 hpet_mask_rtc_irq_bit(RTC_AIE); 1352 } while (mask & RTC_AIE); 1353 1354 if (tmp & RTC_AIE) 1355 cmos_check_acpi_rtc_status(dev, &tmp); 1356 } 1357 spin_unlock_irq(&rtc_lock); 1358 1359 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 1360 1361 return 0; 1362} 1363 1364static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 1365 1366/*----------------------------------------------------------------*/ 1367 1368/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 1369 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 1370 * probably list them in similar PNPBIOS tables; so PNP is more common. 1371 * 1372 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 1373 * predate even PNPBIOS should set up platform_bus devices. 1374 */ 1375 1376#ifdef CONFIG_PNP 1377 1378#include <linux/pnp.h> 1379 1380static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1381{ 1382 int irq; 1383 1384 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { 1385 irq = 0; 1386#ifdef CONFIG_X86 1387 /* Some machines contain a PNP entry for the RTC, but 1388 * don't define the IRQ. It should always be safe to 1389 * hardcode it on systems with a legacy PIC. 1390 */ 1391 if (nr_legacy_irqs()) 1392 irq = RTC_IRQ; 1393#endif 1394 } else { 1395 irq = pnp_irq(pnp, 0); 1396 } 1397 1398 return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); 1399} 1400 1401static void cmos_pnp_remove(struct pnp_dev *pnp) 1402{ 1403 cmos_do_remove(&pnp->dev); 1404} 1405 1406static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1407{ 1408 struct device *dev = &pnp->dev; 1409 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1410 1411 if (system_state == SYSTEM_POWER_OFF) { 1412 int retval = cmos_poweroff(dev); 1413 1414 if (cmos_aie_poweroff(dev) < 0 && !retval) 1415 return; 1416 } 1417 1418 cmos_do_shutdown(cmos->irq); 1419} 1420 1421static const struct pnp_device_id rtc_ids[] = { 1422 { .id = "PNP0b00", }, 1423 { .id = "PNP0b01", }, 1424 { .id = "PNP0b02", }, 1425 { }, 1426}; 1427MODULE_DEVICE_TABLE(pnp, rtc_ids); 1428 1429static struct pnp_driver cmos_pnp_driver = { 1430 .name = driver_name, 1431 .id_table = rtc_ids, 1432 .probe = cmos_pnp_probe, 1433 .remove = cmos_pnp_remove, 1434 .shutdown = cmos_pnp_shutdown, 1435 1436 /* flag ensures resume() gets called, and stops syslog spam */ 1437 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1438 .driver = { 1439 .pm = &cmos_pm_ops, 1440 }, 1441}; 1442 1443#endif /* CONFIG_PNP */ 1444 1445#ifdef CONFIG_OF 1446static const struct of_device_id of_cmos_match[] = { 1447 { 1448 .compatible = "motorola,mc146818", 1449 }, 1450 { }, 1451}; 1452MODULE_DEVICE_TABLE(of, of_cmos_match); 1453 1454static __init void cmos_of_init(struct platform_device *pdev) 1455{ 1456 struct device_node *node = pdev->dev.of_node; 1457 const __be32 *val; 1458 1459 if (!node) 1460 return; 1461 1462 val = of_get_property(node, "ctrl-reg", NULL); 1463 if (val) 1464 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1465 1466 val = of_get_property(node, "freq-reg", NULL); 1467 if (val) 1468 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1469} 1470#else 1471static inline void cmos_of_init(struct platform_device *pdev) {} 1472#endif 1473/*----------------------------------------------------------------*/ 1474 1475/* Platform setup should have set up an RTC device, when PNP is 1476 * unavailable ... this could happen even on (older) PCs. 1477 */ 1478 1479static int __init cmos_platform_probe(struct platform_device *pdev) 1480{ 1481 struct resource *resource; 1482 int irq; 1483 1484 cmos_of_init(pdev); 1485 1486 if (RTC_IOMAPPED) 1487 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1488 else 1489 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1490 irq = platform_get_irq(pdev, 0); 1491 if (irq < 0) 1492 irq = -1; 1493 1494 return cmos_do_probe(&pdev->dev, resource, irq); 1495} 1496 1497static int cmos_platform_remove(struct platform_device *pdev) 1498{ 1499 cmos_do_remove(&pdev->dev); 1500 return 0; 1501} 1502 1503static void cmos_platform_shutdown(struct platform_device *pdev) 1504{ 1505 struct device *dev = &pdev->dev; 1506 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1507 1508 if (system_state == SYSTEM_POWER_OFF) { 1509 int retval = cmos_poweroff(dev); 1510 1511 if (cmos_aie_poweroff(dev) < 0 && !retval) 1512 return; 1513 } 1514 1515 cmos_do_shutdown(cmos->irq); 1516} 1517 1518/* work with hotplug and coldplug */ 1519MODULE_ALIAS("platform:rtc_cmos"); 1520 1521static struct platform_driver cmos_platform_driver = { 1522 .remove = cmos_platform_remove, 1523 .shutdown = cmos_platform_shutdown, 1524 .driver = { 1525 .name = driver_name, 1526 .pm = &cmos_pm_ops, 1527 .of_match_table = of_match_ptr(of_cmos_match), 1528 } 1529}; 1530 1531#ifdef CONFIG_PNP 1532static bool pnp_driver_registered; 1533#endif 1534static bool platform_driver_registered; 1535 1536static int __init cmos_init(void) 1537{ 1538 int retval = 0; 1539 1540#ifdef CONFIG_PNP 1541 retval = pnp_register_driver(&cmos_pnp_driver); 1542 if (retval == 0) 1543 pnp_driver_registered = true; 1544#endif 1545 1546 if (!cmos_rtc.dev) { 1547 retval = platform_driver_probe(&cmos_platform_driver, 1548 cmos_platform_probe); 1549 if (retval == 0) 1550 platform_driver_registered = true; 1551 } 1552 1553 if (retval == 0) 1554 return 0; 1555 1556#ifdef CONFIG_PNP 1557 if (pnp_driver_registered) 1558 pnp_unregister_driver(&cmos_pnp_driver); 1559#endif 1560 return retval; 1561} 1562module_init(cmos_init); 1563 1564static void __exit cmos_exit(void) 1565{ 1566#ifdef CONFIG_PNP 1567 if (pnp_driver_registered) 1568 pnp_unregister_driver(&cmos_pnp_driver); 1569#endif 1570 if (platform_driver_registered) 1571 platform_driver_unregister(&cmos_platform_driver); 1572} 1573module_exit(cmos_exit); 1574 1575 1576MODULE_AUTHOR("David Brownell"); 1577MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1578MODULE_LICENSE("GPL"); 1579