xref: /kernel/linux/linux-5.10/drivers/rtc/rtc-cmos.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9/*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86.  There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
36#include <linux/log2.h>
37#include <linux/pm.h>
38#include <linux/of.h>
39#include <linux/of_platform.h>
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
42#include <asm/processor.h>
43#include <linux/dmi.h>
44#endif
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47#include <linux/mc146818rtc.h>
48
49#ifdef CONFIG_ACPI
50/*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
61static inline int cmos_use_acpi_alarm(void)
62{
63	return use_acpi_alarm;
64}
65#else /* !CONFIG_ACPI */
66
67static inline int cmos_use_acpi_alarm(void)
68{
69	return 0;
70}
71#endif
72
73struct cmos_rtc {
74	struct rtc_device	*rtc;
75	struct device		*dev;
76	int			irq;
77	struct resource		*iomem;
78	time64_t		alarm_expires;
79
80	void			(*wake_on)(struct device *);
81	void			(*wake_off)(struct device *);
82
83	u8			enabled_wake;
84	u8			suspend_ctrl;
85
86	/* newer hardware extends the original register set */
87	u8			day_alrm;
88	u8			mon_alrm;
89	u8			century;
90
91	struct rtc_wkalrm	saved_wkalrm;
92};
93
94/* both platform and pnp busses use negative numbers for invalid irqs */
95#define is_valid_irq(n)		((n) > 0)
96
97static const char driver_name[] = "rtc_cmos";
98
99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107	if (!(rtc_intr & RTC_IRQF))
108		return 0;
109	return rtc_intr & RTC_IRQMASK;
110}
111
112/*----------------------------------------------------------------*/
113
114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode.  The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130	return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135	return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140	return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146	return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151	return 0;
152}
153
154static inline int hpet_rtc_dropped_irq(void)
155{
156	return 0;
157}
158
159static inline int hpet_rtc_timer_init(void)
160{
161	return 0;
162}
163
164extern irq_handler_t hpet_rtc_interrupt;
165
166static inline int hpet_register_irq_handler(irq_handler_t handler)
167{
168	return 0;
169}
170
171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172{
173	return 0;
174}
175
176#endif
177
178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179static inline int use_hpet_alarm(void)
180{
181	return is_hpet_enabled() && !cmos_use_acpi_alarm();
182}
183
184/*----------------------------------------------------------------*/
185
186#ifdef RTC_PORT
187
188/* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM.  Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192#define can_bank2	true
193
194static inline unsigned char cmos_read_bank2(unsigned char addr)
195{
196	outb(addr, RTC_PORT(2));
197	return inb(RTC_PORT(3));
198}
199
200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201{
202	outb(addr, RTC_PORT(2));
203	outb(val, RTC_PORT(3));
204}
205
206#else
207
208#define can_bank2	false
209
210static inline unsigned char cmos_read_bank2(unsigned char addr)
211{
212	return 0;
213}
214
215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216{
217}
218
219#endif
220
221/*----------------------------------------------------------------*/
222
223static int cmos_read_time(struct device *dev, struct rtc_time *t)
224{
225	int ret;
226
227	/*
228	 * If pm_trace abused the RTC for storage, set the timespec to 0,
229	 * which tells the caller that this RTC value is unusable.
230	 */
231	if (!pm_trace_rtc_valid())
232		return -EIO;
233
234	ret = mc146818_get_time(t);
235	if (ret < 0) {
236		dev_err_ratelimited(dev, "unable to read current time\n");
237		return ret;
238	}
239
240	return 0;
241}
242
243static int cmos_set_time(struct device *dev, struct rtc_time *t)
244{
245	/* NOTE: this ignores the issue whereby updating the seconds
246	 * takes effect exactly 500ms after we write the register.
247	 * (Also queueing and other delays before we get this far.)
248	 */
249	return mc146818_set_time(t);
250}
251
252struct cmos_read_alarm_callback_param {
253	struct cmos_rtc *cmos;
254	struct rtc_time *time;
255	unsigned char	rtc_control;
256};
257
258static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259				     void *param_in)
260{
261	struct cmos_read_alarm_callback_param *p =
262		(struct cmos_read_alarm_callback_param *)param_in;
263	struct rtc_time *time = p->time;
264
265	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268
269	if (p->cmos->day_alrm) {
270		/* ignore upper bits on readback per ACPI spec */
271		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272		if (!time->tm_mday)
273			time->tm_mday = -1;
274
275		if (p->cmos->mon_alrm) {
276			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277			if (!time->tm_mon)
278				time->tm_mon = -1;
279		}
280	}
281
282	p->rtc_control = CMOS_READ(RTC_CONTROL);
283}
284
285static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286{
287	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
288	struct cmos_read_alarm_callback_param p = {
289		.cmos = cmos,
290		.time = &t->time,
291	};
292
293	/* This not only a rtc_op, but also called directly */
294	if (!is_valid_irq(cmos->irq))
295		return -ETIMEDOUT;
296
297	/* Basic alarms only support hour, minute, and seconds fields.
298	 * Some also support day and month, for alarms up to a year in
299	 * the future.
300	 */
301
302	/* Some Intel chipsets disconnect the alarm registers when the clock
303	 * update is in progress - during this time reads return bogus values
304	 * and writes may fail silently. See for example "7th Generation Intel®
305	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306	 * 27.7.1
307	 *
308	 * Use the mc146818_avoid_UIP() function to avoid this.
309	 */
310	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
311		return -EIO;
312
313	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314		if (((unsigned)t->time.tm_sec) < 0x60)
315			t->time.tm_sec = bcd2bin(t->time.tm_sec);
316		else
317			t->time.tm_sec = -1;
318		if (((unsigned)t->time.tm_min) < 0x60)
319			t->time.tm_min = bcd2bin(t->time.tm_min);
320		else
321			t->time.tm_min = -1;
322		if (((unsigned)t->time.tm_hour) < 0x24)
323			t->time.tm_hour = bcd2bin(t->time.tm_hour);
324		else
325			t->time.tm_hour = -1;
326
327		if (cmos->day_alrm) {
328			if (((unsigned)t->time.tm_mday) <= 0x31)
329				t->time.tm_mday = bcd2bin(t->time.tm_mday);
330			else
331				t->time.tm_mday = -1;
332
333			if (cmos->mon_alrm) {
334				if (((unsigned)t->time.tm_mon) <= 0x12)
335					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336				else
337					t->time.tm_mon = -1;
338			}
339		}
340	}
341
342	t->enabled = !!(p.rtc_control & RTC_AIE);
343	t->pending = 0;
344
345	return 0;
346}
347
348static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349{
350	unsigned char	rtc_intr;
351
352	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353	 * allegedly some older rtcs need that to handle irqs properly
354	 */
355	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356
357	if (use_hpet_alarm())
358		return;
359
360	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361	if (is_intr(rtc_intr))
362		rtc_update_irq(cmos->rtc, 1, rtc_intr);
363}
364
365static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366{
367	unsigned char	rtc_control;
368
369	/* flush any pending IRQ status, notably for update irqs,
370	 * before we enable new IRQs
371	 */
372	rtc_control = CMOS_READ(RTC_CONTROL);
373	cmos_checkintr(cmos, rtc_control);
374
375	rtc_control |= mask;
376	CMOS_WRITE(rtc_control, RTC_CONTROL);
377	if (use_hpet_alarm())
378		hpet_set_rtc_irq_bit(mask);
379
380	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381		if (cmos->wake_on)
382			cmos->wake_on(cmos->dev);
383	}
384
385	cmos_checkintr(cmos, rtc_control);
386}
387
388static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389{
390	unsigned char	rtc_control;
391
392	rtc_control = CMOS_READ(RTC_CONTROL);
393	rtc_control &= ~mask;
394	CMOS_WRITE(rtc_control, RTC_CONTROL);
395	if (use_hpet_alarm())
396		hpet_mask_rtc_irq_bit(mask);
397
398	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399		if (cmos->wake_off)
400			cmos->wake_off(cmos->dev);
401	}
402
403	cmos_checkintr(cmos, rtc_control);
404}
405
406static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407{
408	struct cmos_rtc *cmos = dev_get_drvdata(dev);
409	struct rtc_time now;
410
411	cmos_read_time(dev, &now);
412
413	if (!cmos->day_alrm) {
414		time64_t t_max_date;
415		time64_t t_alrm;
416
417		t_max_date = rtc_tm_to_time64(&now);
418		t_max_date += 24 * 60 * 60 - 1;
419		t_alrm = rtc_tm_to_time64(&t->time);
420		if (t_alrm > t_max_date) {
421			dev_err(dev,
422				"Alarms can be up to one day in the future\n");
423			return -EINVAL;
424		}
425	} else if (!cmos->mon_alrm) {
426		struct rtc_time max_date = now;
427		time64_t t_max_date;
428		time64_t t_alrm;
429		int max_mday;
430
431		if (max_date.tm_mon == 11) {
432			max_date.tm_mon = 0;
433			max_date.tm_year += 1;
434		} else {
435			max_date.tm_mon += 1;
436		}
437		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438		if (max_date.tm_mday > max_mday)
439			max_date.tm_mday = max_mday;
440
441		t_max_date = rtc_tm_to_time64(&max_date);
442		t_max_date -= 1;
443		t_alrm = rtc_tm_to_time64(&t->time);
444		if (t_alrm > t_max_date) {
445			dev_err(dev,
446				"Alarms can be up to one month in the future\n");
447			return -EINVAL;
448		}
449	} else {
450		struct rtc_time max_date = now;
451		time64_t t_max_date;
452		time64_t t_alrm;
453		int max_mday;
454
455		max_date.tm_year += 1;
456		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457		if (max_date.tm_mday > max_mday)
458			max_date.tm_mday = max_mday;
459
460		t_max_date = rtc_tm_to_time64(&max_date);
461		t_max_date -= 1;
462		t_alrm = rtc_tm_to_time64(&t->time);
463		if (t_alrm > t_max_date) {
464			dev_err(dev,
465				"Alarms can be up to one year in the future\n");
466			return -EINVAL;
467		}
468	}
469
470	return 0;
471}
472
473struct cmos_set_alarm_callback_param {
474	struct cmos_rtc *cmos;
475	unsigned char mon, mday, hrs, min, sec;
476	struct rtc_wkalrm *t;
477};
478
479/* Note: this function may be executed by mc146818_avoid_UIP() more then
480 *	 once
481 */
482static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483				    void *param_in)
484{
485	struct cmos_set_alarm_callback_param *p =
486		(struct cmos_set_alarm_callback_param *)param_in;
487
488	/* next rtc irq must not be from previous alarm setting */
489	cmos_irq_disable(p->cmos, RTC_AIE);
490
491	/* update alarm */
492	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495
496	/* the system may support an "enhanced" alarm */
497	if (p->cmos->day_alrm) {
498		CMOS_WRITE(p->mday, p->cmos->day_alrm);
499		if (p->cmos->mon_alrm)
500			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501	}
502
503	if (use_hpet_alarm()) {
504		/*
505		 * FIXME the HPET alarm glue currently ignores day_alrm
506		 * and mon_alrm ...
507		 */
508		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509				    p->t->time.tm_sec);
510	}
511
512	if (p->t->enabled)
513		cmos_irq_enable(p->cmos, RTC_AIE);
514}
515
516static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517{
518	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
519	struct cmos_set_alarm_callback_param p = {
520		.cmos = cmos,
521		.t = t
522	};
523	unsigned char rtc_control;
524	int ret;
525
526	/* This not only a rtc_op, but also called directly */
527	if (!is_valid_irq(cmos->irq))
528		return -EIO;
529
530	ret = cmos_validate_alarm(dev, t);
531	if (ret < 0)
532		return ret;
533
534	p.mon = t->time.tm_mon + 1;
535	p.mday = t->time.tm_mday;
536	p.hrs = t->time.tm_hour;
537	p.min = t->time.tm_min;
538	p.sec = t->time.tm_sec;
539
540	spin_lock_irq(&rtc_lock);
541	rtc_control = CMOS_READ(RTC_CONTROL);
542	spin_unlock_irq(&rtc_lock);
543
544	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545		/* Writing 0xff means "don't care" or "match all".  */
546		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551	}
552
553	/*
554	 * Some Intel chipsets disconnect the alarm registers when the clock
555	 * update is in progress - during this time writes fail silently.
556	 *
557	 * Use mc146818_avoid_UIP() to avoid this.
558	 */
559	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
560		return -ETIMEDOUT;
561
562	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563
564	return 0;
565}
566
567static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568{
569	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
570	unsigned long	flags;
571
572	spin_lock_irqsave(&rtc_lock, flags);
573
574	if (enabled)
575		cmos_irq_enable(cmos, RTC_AIE);
576	else
577		cmos_irq_disable(cmos, RTC_AIE);
578
579	spin_unlock_irqrestore(&rtc_lock, flags);
580	return 0;
581}
582
583#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584
585static int cmos_procfs(struct device *dev, struct seq_file *seq)
586{
587	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
588	unsigned char	rtc_control, valid;
589
590	spin_lock_irq(&rtc_lock);
591	rtc_control = CMOS_READ(RTC_CONTROL);
592	valid = CMOS_READ(RTC_VALID);
593	spin_unlock_irq(&rtc_lock);
594
595	/* NOTE:  at least ICH6 reports battery status using a different
596	 * (non-RTC) bit; and SQWE is ignored on many current systems.
597	 */
598	seq_printf(seq,
599		   "periodic_IRQ\t: %s\n"
600		   "update_IRQ\t: %s\n"
601		   "HPET_emulated\t: %s\n"
602		   // "square_wave\t: %s\n"
603		   "BCD\t\t: %s\n"
604		   "DST_enable\t: %s\n"
605		   "periodic_freq\t: %d\n"
606		   "batt_status\t: %s\n",
607		   (rtc_control & RTC_PIE) ? "yes" : "no",
608		   (rtc_control & RTC_UIE) ? "yes" : "no",
609		   use_hpet_alarm() ? "yes" : "no",
610		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
611		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
613		   cmos->rtc->irq_freq,
614		   (valid & RTC_VRT) ? "okay" : "dead");
615
616	return 0;
617}
618
619#else
620#define	cmos_procfs	NULL
621#endif
622
623static const struct rtc_class_ops cmos_rtc_ops = {
624	.read_time		= cmos_read_time,
625	.set_time		= cmos_set_time,
626	.read_alarm		= cmos_read_alarm,
627	.set_alarm		= cmos_set_alarm,
628	.proc			= cmos_procfs,
629	.alarm_irq_enable	= cmos_alarm_irq_enable,
630};
631
632static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
633	.read_time		= cmos_read_time,
634	.set_time		= cmos_set_time,
635	.proc			= cmos_procfs,
636};
637
638/*----------------------------------------------------------------*/
639
640/*
641 * All these chips have at least 64 bytes of address space, shared by
642 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
643 * by boot firmware.  Modern chips have 128 or 256 bytes.
644 */
645
646#define NVRAM_OFFSET	(RTC_REG_D + 1)
647
648static int cmos_nvram_read(void *priv, unsigned int off, void *val,
649			   size_t count)
650{
651	unsigned char *buf = val;
652	int	retval;
653
654	off += NVRAM_OFFSET;
655	spin_lock_irq(&rtc_lock);
656	for (retval = 0; count; count--, off++, retval++) {
657		if (off < 128)
658			*buf++ = CMOS_READ(off);
659		else if (can_bank2)
660			*buf++ = cmos_read_bank2(off);
661		else
662			break;
663	}
664	spin_unlock_irq(&rtc_lock);
665
666	return retval;
667}
668
669static int cmos_nvram_write(void *priv, unsigned int off, void *val,
670			    size_t count)
671{
672	struct cmos_rtc	*cmos = priv;
673	unsigned char	*buf = val;
674	int		retval;
675
676	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
677	 * checksum on part of the NVRAM data.  That's currently ignored
678	 * here.  If userspace is smart enough to know what fields of
679	 * NVRAM to update, updating checksums is also part of its job.
680	 */
681	off += NVRAM_OFFSET;
682	spin_lock_irq(&rtc_lock);
683	for (retval = 0; count; count--, off++, retval++) {
684		/* don't trash RTC registers */
685		if (off == cmos->day_alrm
686				|| off == cmos->mon_alrm
687				|| off == cmos->century)
688			buf++;
689		else if (off < 128)
690			CMOS_WRITE(*buf++, off);
691		else if (can_bank2)
692			cmos_write_bank2(*buf++, off);
693		else
694			break;
695	}
696	spin_unlock_irq(&rtc_lock);
697
698	return retval;
699}
700
701/*----------------------------------------------------------------*/
702
703static struct cmos_rtc	cmos_rtc;
704
705static irqreturn_t cmos_interrupt(int irq, void *p)
706{
707	u8		irqstat;
708	u8		rtc_control;
709
710	spin_lock(&rtc_lock);
711
712	/* When the HPET interrupt handler calls us, the interrupt
713	 * status is passed as arg1 instead of the irq number.  But
714	 * always clear irq status, even when HPET is in the way.
715	 *
716	 * Note that HPET and RTC are almost certainly out of phase,
717	 * giving different IRQ status ...
718	 */
719	irqstat = CMOS_READ(RTC_INTR_FLAGS);
720	rtc_control = CMOS_READ(RTC_CONTROL);
721	if (use_hpet_alarm())
722		irqstat = (unsigned long)irq & 0xF0;
723
724	/* If we were suspended, RTC_CONTROL may not be accurate since the
725	 * bios may have cleared it.
726	 */
727	if (!cmos_rtc.suspend_ctrl)
728		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
729	else
730		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
731
732	/* All Linux RTC alarms should be treated as if they were oneshot.
733	 * Similar code may be needed in system wakeup paths, in case the
734	 * alarm woke the system.
735	 */
736	if (irqstat & RTC_AIE) {
737		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
738		rtc_control &= ~RTC_AIE;
739		CMOS_WRITE(rtc_control, RTC_CONTROL);
740		if (use_hpet_alarm())
741			hpet_mask_rtc_irq_bit(RTC_AIE);
742		CMOS_READ(RTC_INTR_FLAGS);
743	}
744	spin_unlock(&rtc_lock);
745
746	if (is_intr(irqstat)) {
747		rtc_update_irq(p, 1, irqstat);
748		return IRQ_HANDLED;
749	} else
750		return IRQ_NONE;
751}
752
753#ifdef	CONFIG_ACPI
754
755#include <linux/acpi.h>
756
757static u32 rtc_handler(void *context)
758{
759	struct device *dev = context;
760	struct cmos_rtc *cmos = dev_get_drvdata(dev);
761	unsigned char rtc_control = 0;
762	unsigned char rtc_intr;
763	unsigned long flags;
764
765
766	/*
767	 * Always update rtc irq when ACPI is used as RTC Alarm.
768	 * Or else, ACPI SCI is enabled during suspend/resume only,
769	 * update rtc irq in that case.
770	 */
771	if (cmos_use_acpi_alarm())
772		cmos_interrupt(0, (void *)cmos->rtc);
773	else {
774		/* Fix me: can we use cmos_interrupt() here as well? */
775		spin_lock_irqsave(&rtc_lock, flags);
776		if (cmos_rtc.suspend_ctrl)
777			rtc_control = CMOS_READ(RTC_CONTROL);
778		if (rtc_control & RTC_AIE) {
779			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
780			CMOS_WRITE(rtc_control, RTC_CONTROL);
781			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
782			rtc_update_irq(cmos->rtc, 1, rtc_intr);
783		}
784		spin_unlock_irqrestore(&rtc_lock, flags);
785	}
786
787	pm_wakeup_hard_event(dev);
788	acpi_clear_event(ACPI_EVENT_RTC);
789	acpi_disable_event(ACPI_EVENT_RTC, 0);
790	return ACPI_INTERRUPT_HANDLED;
791}
792
793static void acpi_rtc_event_setup(struct device *dev)
794{
795	if (acpi_disabled)
796		return;
797
798	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
799	/*
800	 * After the RTC handler is installed, the Fixed_RTC event should
801	 * be disabled. Only when the RTC alarm is set will it be enabled.
802	 */
803	acpi_clear_event(ACPI_EVENT_RTC);
804	acpi_disable_event(ACPI_EVENT_RTC, 0);
805}
806
807static void acpi_rtc_event_cleanup(void)
808{
809	if (acpi_disabled)
810		return;
811
812	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
813}
814
815static void rtc_wake_on(struct device *dev)
816{
817	acpi_clear_event(ACPI_EVENT_RTC);
818	acpi_enable_event(ACPI_EVENT_RTC, 0);
819}
820
821static void rtc_wake_off(struct device *dev)
822{
823	acpi_disable_event(ACPI_EVENT_RTC, 0);
824}
825
826#ifdef CONFIG_X86
827/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
828static void use_acpi_alarm_quirks(void)
829{
830	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
831		return;
832
833	if (!is_hpet_enabled())
834		return;
835
836	if (dmi_get_bios_year() < 2015)
837		return;
838
839	use_acpi_alarm = true;
840}
841#else
842static inline void use_acpi_alarm_quirks(void) { }
843#endif
844
845static void acpi_cmos_wake_setup(struct device *dev)
846{
847	if (acpi_disabled)
848		return;
849
850	use_acpi_alarm_quirks();
851
852	cmos_rtc.wake_on = rtc_wake_on;
853	cmos_rtc.wake_off = rtc_wake_off;
854
855	/* ACPI tables bug workaround. */
856	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
857		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
858			acpi_gbl_FADT.month_alarm);
859		acpi_gbl_FADT.month_alarm = 0;
860	}
861
862	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
863	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
864	cmos_rtc.century = acpi_gbl_FADT.century;
865
866	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
867		dev_info(dev, "RTC can wake from S4\n");
868
869	/* RTC always wakes from S1/S2/S3, and often S4/STD */
870	device_init_wakeup(dev, 1);
871}
872
873static void cmos_check_acpi_rtc_status(struct device *dev,
874					      unsigned char *rtc_control)
875{
876	struct cmos_rtc *cmos = dev_get_drvdata(dev);
877	acpi_event_status rtc_status;
878	acpi_status status;
879
880	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
881		return;
882
883	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
884	if (ACPI_FAILURE(status)) {
885		dev_err(dev, "Could not get RTC status\n");
886	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
887		unsigned char mask;
888		*rtc_control &= ~RTC_AIE;
889		CMOS_WRITE(*rtc_control, RTC_CONTROL);
890		mask = CMOS_READ(RTC_INTR_FLAGS);
891		rtc_update_irq(cmos->rtc, 1, mask);
892	}
893}
894
895#else /* !CONFIG_ACPI */
896
897static inline void acpi_rtc_event_setup(struct device *dev)
898{
899}
900
901static inline void acpi_rtc_event_cleanup(void)
902{
903}
904
905static inline void acpi_cmos_wake_setup(struct device *dev)
906{
907}
908
909static inline void cmos_check_acpi_rtc_status(struct device *dev,
910					      unsigned char *rtc_control)
911{
912}
913#endif /* CONFIG_ACPI */
914
915#ifdef	CONFIG_PNP
916#define	INITSECTION
917
918#else
919#define	INITSECTION	__init
920#endif
921
922static int INITSECTION
923cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
924{
925	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
926	int				retval = 0;
927	unsigned char			rtc_control;
928	unsigned			address_space;
929	u32				flags = 0;
930	struct nvmem_config nvmem_cfg = {
931		.name = "cmos_nvram",
932		.word_size = 1,
933		.stride = 1,
934		.reg_read = cmos_nvram_read,
935		.reg_write = cmos_nvram_write,
936		.priv = &cmos_rtc,
937	};
938
939	/* there can be only one ... */
940	if (cmos_rtc.dev)
941		return -EBUSY;
942
943	if (!ports)
944		return -ENODEV;
945
946	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
947	 *
948	 * REVISIT non-x86 systems may instead use memory space resources
949	 * (needing ioremap etc), not i/o space resources like this ...
950	 */
951	if (RTC_IOMAPPED)
952		ports = request_region(ports->start, resource_size(ports),
953				       driver_name);
954	else
955		ports = request_mem_region(ports->start, resource_size(ports),
956					   driver_name);
957	if (!ports) {
958		dev_dbg(dev, "i/o registers already in use\n");
959		return -EBUSY;
960	}
961
962	cmos_rtc.irq = rtc_irq;
963	cmos_rtc.iomem = ports;
964
965	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
966	 * driver did, but don't reject unknown configs.   Old hardware
967	 * won't address 128 bytes.  Newer chips have multiple banks,
968	 * though they may not be listed in one I/O resource.
969	 */
970#if	defined(CONFIG_ATARI)
971	address_space = 64;
972#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
973			|| defined(__sparc__) || defined(__mips__) \
974			|| defined(__powerpc__)
975	address_space = 128;
976#else
977#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
978	address_space = 128;
979#endif
980	if (can_bank2 && ports->end > (ports->start + 1))
981		address_space = 256;
982
983	/* For ACPI systems extension info comes from the FADT.  On others,
984	 * board specific setup provides it as appropriate.  Systems where
985	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
986	 * some almost-clones) can provide hooks to make that behave.
987	 *
988	 * Note that ACPI doesn't preclude putting these registers into
989	 * "extended" areas of the chip, including some that we won't yet
990	 * expect CMOS_READ and friends to handle.
991	 */
992	if (info) {
993		if (info->flags)
994			flags = info->flags;
995		if (info->address_space)
996			address_space = info->address_space;
997
998		cmos_rtc.day_alrm = info->rtc_day_alarm;
999		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1000		cmos_rtc.century = info->rtc_century;
1001
1002		if (info->wake_on && info->wake_off) {
1003			cmos_rtc.wake_on = info->wake_on;
1004			cmos_rtc.wake_off = info->wake_off;
1005		}
1006	} else {
1007		acpi_cmos_wake_setup(dev);
1008	}
1009
1010	if (cmos_rtc.day_alrm >= 128)
1011		cmos_rtc.day_alrm = 0;
1012
1013	if (cmos_rtc.mon_alrm >= 128)
1014		cmos_rtc.mon_alrm = 0;
1015
1016	if (cmos_rtc.century >= 128)
1017		cmos_rtc.century = 0;
1018
1019	cmos_rtc.dev = dev;
1020	dev_set_drvdata(dev, &cmos_rtc);
1021
1022	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1023	if (IS_ERR(cmos_rtc.rtc)) {
1024		retval = PTR_ERR(cmos_rtc.rtc);
1025		goto cleanup0;
1026	}
1027
1028	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1029
1030	if (!mc146818_does_rtc_work()) {
1031		dev_warn(dev, "broken or not accessible\n");
1032		retval = -ENXIO;
1033		goto cleanup1;
1034	}
1035
1036	spin_lock_irq(&rtc_lock);
1037
1038	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1039		/* force periodic irq to CMOS reset default of 1024Hz;
1040		 *
1041		 * REVISIT it's been reported that at least one x86_64 ALI
1042		 * mobo doesn't use 32KHz here ... for portability we might
1043		 * need to do something about other clock frequencies.
1044		 */
1045		cmos_rtc.rtc->irq_freq = 1024;
1046		if (use_hpet_alarm())
1047			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1048		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1049	}
1050
1051	/* disable irqs */
1052	if (is_valid_irq(rtc_irq))
1053		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1054
1055	rtc_control = CMOS_READ(RTC_CONTROL);
1056
1057	spin_unlock_irq(&rtc_lock);
1058
1059	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1060		dev_warn(dev, "only 24-hr supported\n");
1061		retval = -ENXIO;
1062		goto cleanup1;
1063	}
1064
1065	if (use_hpet_alarm())
1066		hpet_rtc_timer_init();
1067
1068	if (is_valid_irq(rtc_irq)) {
1069		irq_handler_t rtc_cmos_int_handler;
1070
1071		if (use_hpet_alarm()) {
1072			rtc_cmos_int_handler = hpet_rtc_interrupt;
1073			retval = hpet_register_irq_handler(cmos_interrupt);
1074			if (retval) {
1075				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1076				dev_warn(dev, "hpet_register_irq_handler "
1077						" failed in rtc_init().");
1078				goto cleanup1;
1079			}
1080		} else
1081			rtc_cmos_int_handler = cmos_interrupt;
1082
1083		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1084				0, dev_name(&cmos_rtc.rtc->dev),
1085				cmos_rtc.rtc);
1086		if (retval < 0) {
1087			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1088			goto cleanup1;
1089		}
1090
1091		cmos_rtc.rtc->ops = &cmos_rtc_ops;
1092	} else {
1093		cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
1094	}
1095
1096	cmos_rtc.rtc->nvram_old_abi = true;
1097	retval = rtc_register_device(cmos_rtc.rtc);
1098	if (retval)
1099		goto cleanup2;
1100
1101	/* export at least the first block of NVRAM */
1102	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1103	if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
1104		dev_err(dev, "nvmem registration failed\n");
1105
1106	/*
1107	 * Everything has gone well so far, so by default register a handler for
1108	 * the ACPI RTC fixed event.
1109	 */
1110	if (!info)
1111		acpi_rtc_event_setup(dev);
1112
1113	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1114		 !is_valid_irq(rtc_irq) ? "no alarms" :
1115		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1116		 cmos_rtc.day_alrm ? "alarms up to one month" :
1117		 "alarms up to one day",
1118		 cmos_rtc.century ? ", y3k" : "",
1119		 nvmem_cfg.size,
1120		 use_hpet_alarm() ? ", hpet irqs" : "");
1121
1122	return 0;
1123
1124cleanup2:
1125	if (is_valid_irq(rtc_irq))
1126		free_irq(rtc_irq, cmos_rtc.rtc);
1127cleanup1:
1128	cmos_rtc.dev = NULL;
1129cleanup0:
1130	if (RTC_IOMAPPED)
1131		release_region(ports->start, resource_size(ports));
1132	else
1133		release_mem_region(ports->start, resource_size(ports));
1134	return retval;
1135}
1136
1137static void cmos_do_shutdown(int rtc_irq)
1138{
1139	spin_lock_irq(&rtc_lock);
1140	if (is_valid_irq(rtc_irq))
1141		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1142	spin_unlock_irq(&rtc_lock);
1143}
1144
1145static void cmos_do_remove(struct device *dev)
1146{
1147	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1148	struct resource *ports;
1149
1150	cmos_do_shutdown(cmos->irq);
1151
1152	if (is_valid_irq(cmos->irq)) {
1153		free_irq(cmos->irq, cmos->rtc);
1154		if (use_hpet_alarm())
1155			hpet_unregister_irq_handler(cmos_interrupt);
1156	}
1157
1158	if (!dev_get_platdata(dev))
1159		acpi_rtc_event_cleanup();
1160
1161	cmos->rtc = NULL;
1162
1163	ports = cmos->iomem;
1164	if (RTC_IOMAPPED)
1165		release_region(ports->start, resource_size(ports));
1166	else
1167		release_mem_region(ports->start, resource_size(ports));
1168	cmos->iomem = NULL;
1169
1170	cmos->dev = NULL;
1171}
1172
1173static int cmos_aie_poweroff(struct device *dev)
1174{
1175	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1176	struct rtc_time now;
1177	time64_t t_now;
1178	int retval = 0;
1179	unsigned char rtc_control;
1180
1181	if (!cmos->alarm_expires)
1182		return -EINVAL;
1183
1184	spin_lock_irq(&rtc_lock);
1185	rtc_control = CMOS_READ(RTC_CONTROL);
1186	spin_unlock_irq(&rtc_lock);
1187
1188	/* We only care about the situation where AIE is disabled. */
1189	if (rtc_control & RTC_AIE)
1190		return -EBUSY;
1191
1192	cmos_read_time(dev, &now);
1193	t_now = rtc_tm_to_time64(&now);
1194
1195	/*
1196	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1197	 * automatically right after shutdown on some buggy boxes.
1198	 * This automatic rebooting issue won't happen when the alarm
1199	 * time is larger than now+1 seconds.
1200	 *
1201	 * If the alarm time is equal to now+1 seconds, the issue can be
1202	 * prevented by cancelling the alarm.
1203	 */
1204	if (cmos->alarm_expires == t_now + 1) {
1205		struct rtc_wkalrm alarm;
1206
1207		/* Cancel the AIE timer by configuring the past time. */
1208		rtc_time64_to_tm(t_now - 1, &alarm.time);
1209		alarm.enabled = 0;
1210		retval = cmos_set_alarm(dev, &alarm);
1211	} else if (cmos->alarm_expires > t_now + 1) {
1212		retval = -EBUSY;
1213	}
1214
1215	return retval;
1216}
1217
1218static int cmos_suspend(struct device *dev)
1219{
1220	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1221	unsigned char	tmp;
1222
1223	/* only the alarm might be a wakeup event source */
1224	spin_lock_irq(&rtc_lock);
1225	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1226	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1227		unsigned char	mask;
1228
1229		if (device_may_wakeup(dev))
1230			mask = RTC_IRQMASK & ~RTC_AIE;
1231		else
1232			mask = RTC_IRQMASK;
1233		tmp &= ~mask;
1234		CMOS_WRITE(tmp, RTC_CONTROL);
1235		if (use_hpet_alarm())
1236			hpet_mask_rtc_irq_bit(mask);
1237		cmos_checkintr(cmos, tmp);
1238	}
1239	spin_unlock_irq(&rtc_lock);
1240
1241	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1242		cmos->enabled_wake = 1;
1243		if (cmos->wake_on)
1244			cmos->wake_on(dev);
1245		else
1246			enable_irq_wake(cmos->irq);
1247	}
1248
1249	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1250	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1251
1252	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1253			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1254			tmp);
1255
1256	return 0;
1257}
1258
1259/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1260 * after a detour through G3 "mechanical off", although the ACPI spec
1261 * says wakeup should only work from G1/S4 "hibernate".  To most users,
1262 * distinctions between S4 and S5 are pointless.  So when the hardware
1263 * allows, don't draw that distinction.
1264 */
1265static inline int cmos_poweroff(struct device *dev)
1266{
1267	if (!IS_ENABLED(CONFIG_PM))
1268		return -ENOSYS;
1269
1270	return cmos_suspend(dev);
1271}
1272
1273static void cmos_check_wkalrm(struct device *dev)
1274{
1275	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1276	struct rtc_wkalrm current_alarm;
1277	time64_t t_now;
1278	time64_t t_current_expires;
1279	time64_t t_saved_expires;
1280	struct rtc_time now;
1281
1282	/* Check if we have RTC Alarm armed */
1283	if (!(cmos->suspend_ctrl & RTC_AIE))
1284		return;
1285
1286	cmos_read_time(dev, &now);
1287	t_now = rtc_tm_to_time64(&now);
1288
1289	/*
1290	 * ACPI RTC wake event is cleared after resume from STR,
1291	 * ACK the rtc irq here
1292	 */
1293	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1294		local_irq_disable();
1295		cmos_interrupt(0, (void *)cmos->rtc);
1296		local_irq_enable();
1297		return;
1298	}
1299
1300	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1301	cmos_read_alarm(dev, &current_alarm);
1302	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1303	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1304	if (t_current_expires != t_saved_expires ||
1305	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1306		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1307	}
1308}
1309
1310static int __maybe_unused cmos_resume(struct device *dev)
1311{
1312	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1313	unsigned char tmp;
1314
1315	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1316		if (cmos->wake_off)
1317			cmos->wake_off(dev);
1318		else
1319			disable_irq_wake(cmos->irq);
1320		cmos->enabled_wake = 0;
1321	}
1322
1323	/* The BIOS might have changed the alarm, restore it */
1324	cmos_check_wkalrm(dev);
1325
1326	spin_lock_irq(&rtc_lock);
1327	tmp = cmos->suspend_ctrl;
1328	cmos->suspend_ctrl = 0;
1329	/* re-enable any irqs previously active */
1330	if (tmp & RTC_IRQMASK) {
1331		unsigned char	mask;
1332
1333		if (device_may_wakeup(dev) && use_hpet_alarm())
1334			hpet_rtc_timer_init();
1335
1336		do {
1337			CMOS_WRITE(tmp, RTC_CONTROL);
1338			if (use_hpet_alarm())
1339				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1340
1341			mask = CMOS_READ(RTC_INTR_FLAGS);
1342			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1343			if (!use_hpet_alarm() || !is_intr(mask))
1344				break;
1345
1346			/* force one-shot behavior if HPET blocked
1347			 * the wake alarm's irq
1348			 */
1349			rtc_update_irq(cmos->rtc, 1, mask);
1350			tmp &= ~RTC_AIE;
1351			hpet_mask_rtc_irq_bit(RTC_AIE);
1352		} while (mask & RTC_AIE);
1353
1354		if (tmp & RTC_AIE)
1355			cmos_check_acpi_rtc_status(dev, &tmp);
1356	}
1357	spin_unlock_irq(&rtc_lock);
1358
1359	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1360
1361	return 0;
1362}
1363
1364static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1365
1366/*----------------------------------------------------------------*/
1367
1368/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1369 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1370 * probably list them in similar PNPBIOS tables; so PNP is more common.
1371 *
1372 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1373 * predate even PNPBIOS should set up platform_bus devices.
1374 */
1375
1376#ifdef	CONFIG_PNP
1377
1378#include <linux/pnp.h>
1379
1380static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1381{
1382	int irq;
1383
1384	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1385		irq = 0;
1386#ifdef CONFIG_X86
1387		/* Some machines contain a PNP entry for the RTC, but
1388		 * don't define the IRQ. It should always be safe to
1389		 * hardcode it on systems with a legacy PIC.
1390		 */
1391		if (nr_legacy_irqs())
1392			irq = RTC_IRQ;
1393#endif
1394	} else {
1395		irq = pnp_irq(pnp, 0);
1396	}
1397
1398	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1399}
1400
1401static void cmos_pnp_remove(struct pnp_dev *pnp)
1402{
1403	cmos_do_remove(&pnp->dev);
1404}
1405
1406static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1407{
1408	struct device *dev = &pnp->dev;
1409	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1410
1411	if (system_state == SYSTEM_POWER_OFF) {
1412		int retval = cmos_poweroff(dev);
1413
1414		if (cmos_aie_poweroff(dev) < 0 && !retval)
1415			return;
1416	}
1417
1418	cmos_do_shutdown(cmos->irq);
1419}
1420
1421static const struct pnp_device_id rtc_ids[] = {
1422	{ .id = "PNP0b00", },
1423	{ .id = "PNP0b01", },
1424	{ .id = "PNP0b02", },
1425	{ },
1426};
1427MODULE_DEVICE_TABLE(pnp, rtc_ids);
1428
1429static struct pnp_driver cmos_pnp_driver = {
1430	.name		= driver_name,
1431	.id_table	= rtc_ids,
1432	.probe		= cmos_pnp_probe,
1433	.remove		= cmos_pnp_remove,
1434	.shutdown	= cmos_pnp_shutdown,
1435
1436	/* flag ensures resume() gets called, and stops syslog spam */
1437	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1438	.driver		= {
1439			.pm = &cmos_pm_ops,
1440	},
1441};
1442
1443#endif	/* CONFIG_PNP */
1444
1445#ifdef CONFIG_OF
1446static const struct of_device_id of_cmos_match[] = {
1447	{
1448		.compatible = "motorola,mc146818",
1449	},
1450	{ },
1451};
1452MODULE_DEVICE_TABLE(of, of_cmos_match);
1453
1454static __init void cmos_of_init(struct platform_device *pdev)
1455{
1456	struct device_node *node = pdev->dev.of_node;
1457	const __be32 *val;
1458
1459	if (!node)
1460		return;
1461
1462	val = of_get_property(node, "ctrl-reg", NULL);
1463	if (val)
1464		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1465
1466	val = of_get_property(node, "freq-reg", NULL);
1467	if (val)
1468		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1469}
1470#else
1471static inline void cmos_of_init(struct platform_device *pdev) {}
1472#endif
1473/*----------------------------------------------------------------*/
1474
1475/* Platform setup should have set up an RTC device, when PNP is
1476 * unavailable ... this could happen even on (older) PCs.
1477 */
1478
1479static int __init cmos_platform_probe(struct platform_device *pdev)
1480{
1481	struct resource *resource;
1482	int irq;
1483
1484	cmos_of_init(pdev);
1485
1486	if (RTC_IOMAPPED)
1487		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1488	else
1489		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1490	irq = platform_get_irq(pdev, 0);
1491	if (irq < 0)
1492		irq = -1;
1493
1494	return cmos_do_probe(&pdev->dev, resource, irq);
1495}
1496
1497static int cmos_platform_remove(struct platform_device *pdev)
1498{
1499	cmos_do_remove(&pdev->dev);
1500	return 0;
1501}
1502
1503static void cmos_platform_shutdown(struct platform_device *pdev)
1504{
1505	struct device *dev = &pdev->dev;
1506	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1507
1508	if (system_state == SYSTEM_POWER_OFF) {
1509		int retval = cmos_poweroff(dev);
1510
1511		if (cmos_aie_poweroff(dev) < 0 && !retval)
1512			return;
1513	}
1514
1515	cmos_do_shutdown(cmos->irq);
1516}
1517
1518/* work with hotplug and coldplug */
1519MODULE_ALIAS("platform:rtc_cmos");
1520
1521static struct platform_driver cmos_platform_driver = {
1522	.remove		= cmos_platform_remove,
1523	.shutdown	= cmos_platform_shutdown,
1524	.driver = {
1525		.name		= driver_name,
1526		.pm		= &cmos_pm_ops,
1527		.of_match_table = of_match_ptr(of_cmos_match),
1528	}
1529};
1530
1531#ifdef CONFIG_PNP
1532static bool pnp_driver_registered;
1533#endif
1534static bool platform_driver_registered;
1535
1536static int __init cmos_init(void)
1537{
1538	int retval = 0;
1539
1540#ifdef	CONFIG_PNP
1541	retval = pnp_register_driver(&cmos_pnp_driver);
1542	if (retval == 0)
1543		pnp_driver_registered = true;
1544#endif
1545
1546	if (!cmos_rtc.dev) {
1547		retval = platform_driver_probe(&cmos_platform_driver,
1548					       cmos_platform_probe);
1549		if (retval == 0)
1550			platform_driver_registered = true;
1551	}
1552
1553	if (retval == 0)
1554		return 0;
1555
1556#ifdef	CONFIG_PNP
1557	if (pnp_driver_registered)
1558		pnp_unregister_driver(&cmos_pnp_driver);
1559#endif
1560	return retval;
1561}
1562module_init(cmos_init);
1563
1564static void __exit cmos_exit(void)
1565{
1566#ifdef	CONFIG_PNP
1567	if (pnp_driver_registered)
1568		pnp_unregister_driver(&cmos_pnp_driver);
1569#endif
1570	if (platform_driver_registered)
1571		platform_driver_unregister(&cmos_platform_driver);
1572}
1573module_exit(cmos_exit);
1574
1575
1576MODULE_AUTHOR("David Brownell");
1577MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1578MODULE_LICENSE("GPL");
1579