xref: /kernel/linux/linux-5.10/drivers/rtc/class.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * RTC subsystem, base class
4 *
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * class skeleton from drivers/hwmon/hwmon.c
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/rtc.h>
16#include <linux/kdev_t.h>
17#include <linux/idr.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20
21#include "rtc-core.h"
22
23static DEFINE_IDA(rtc_ida);
24struct class *rtc_class;
25
26static void rtc_device_release(struct device *dev)
27{
28	struct rtc_device *rtc = to_rtc_device(dev);
29	struct timerqueue_head *head = &rtc->timerqueue;
30	struct timerqueue_node *node;
31
32	mutex_lock(&rtc->ops_lock);
33	while ((node = timerqueue_getnext(head)))
34		timerqueue_del(head, node);
35	mutex_unlock(&rtc->ops_lock);
36
37	cancel_work_sync(&rtc->irqwork);
38
39	ida_simple_remove(&rtc_ida, rtc->id);
40	kfree(rtc);
41}
42
43#ifdef CONFIG_RTC_HCTOSYS_DEVICE
44/* Result of the last RTC to system clock attempt. */
45int rtc_hctosys_ret = -ENODEV;
46
47/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
48 * whether it stores the most close value or the value with partial
49 * seconds truncated. However, it is important that we use it to store
50 * the truncated value. This is because otherwise it is necessary,
51 * in an rtc sync function, to read both xtime.tv_sec and
52 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
53 * of >32bits is not possible. So storing the most close value would
54 * slow down the sync API. So here we have the truncated value and
55 * the best guess is to add 0.5s.
56 */
57
58static void rtc_hctosys(struct rtc_device *rtc)
59{
60	int err;
61	struct rtc_time tm;
62	struct timespec64 tv64 = {
63		.tv_nsec = NSEC_PER_SEC >> 1,
64	};
65
66	err = rtc_read_time(rtc, &tm);
67	if (err) {
68		dev_err(rtc->dev.parent,
69			"hctosys: unable to read the hardware clock\n");
70		goto err_read;
71	}
72
73	tv64.tv_sec = rtc_tm_to_time64(&tm);
74
75#if BITS_PER_LONG == 32
76	if (tv64.tv_sec > INT_MAX) {
77		err = -ERANGE;
78		goto err_read;
79	}
80#endif
81
82	err = do_settimeofday64(&tv64);
83
84	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
85		 &tm, (long long)tv64.tv_sec);
86
87err_read:
88	rtc_hctosys_ret = err;
89}
90#endif
91
92#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
93/*
94 * On suspend(), measure the delta between one RTC and the
95 * system's wall clock; restore it on resume().
96 */
97
98static struct timespec64 old_rtc, old_system, old_delta;
99
100static int rtc_suspend(struct device *dev)
101{
102	struct rtc_device	*rtc = to_rtc_device(dev);
103	struct rtc_time		tm;
104	struct timespec64	delta, delta_delta;
105	int err;
106
107	if (timekeeping_rtc_skipsuspend())
108		return 0;
109
110	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
111		return 0;
112
113	/* snapshot the current RTC and system time at suspend*/
114	err = rtc_read_time(rtc, &tm);
115	if (err < 0) {
116		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
117		return 0;
118	}
119
120	ktime_get_real_ts64(&old_system);
121	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
122
123	/*
124	 * To avoid drift caused by repeated suspend/resumes,
125	 * which each can add ~1 second drift error,
126	 * try to compensate so the difference in system time
127	 * and rtc time stays close to constant.
128	 */
129	delta = timespec64_sub(old_system, old_rtc);
130	delta_delta = timespec64_sub(delta, old_delta);
131	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
132		/*
133		 * if delta_delta is too large, assume time correction
134		 * has occurred and set old_delta to the current delta.
135		 */
136		old_delta = delta;
137	} else {
138		/* Otherwise try to adjust old_system to compensate */
139		old_system = timespec64_sub(old_system, delta_delta);
140	}
141
142	return 0;
143}
144
145static int rtc_resume(struct device *dev)
146{
147	struct rtc_device	*rtc = to_rtc_device(dev);
148	struct rtc_time		tm;
149	struct timespec64	new_system, new_rtc;
150	struct timespec64	sleep_time;
151	int err;
152
153	if (timekeeping_rtc_skipresume())
154		return 0;
155
156	rtc_hctosys_ret = -ENODEV;
157	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
158		return 0;
159
160	/* snapshot the current rtc and system time at resume */
161	ktime_get_real_ts64(&new_system);
162	err = rtc_read_time(rtc, &tm);
163	if (err < 0) {
164		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
165		return 0;
166	}
167
168	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
169	new_rtc.tv_nsec = 0;
170
171	if (new_rtc.tv_sec < old_rtc.tv_sec) {
172		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
173		return 0;
174	}
175
176	/* calculate the RTC time delta (sleep time)*/
177	sleep_time = timespec64_sub(new_rtc, old_rtc);
178
179	/*
180	 * Since these RTC suspend/resume handlers are not called
181	 * at the very end of suspend or the start of resume,
182	 * some run-time may pass on either sides of the sleep time
183	 * so subtract kernel run-time between rtc_suspend to rtc_resume
184	 * to keep things accurate.
185	 */
186	sleep_time = timespec64_sub(sleep_time,
187				    timespec64_sub(new_system, old_system));
188
189	if (sleep_time.tv_sec >= 0)
190		timekeeping_inject_sleeptime64(&sleep_time);
191	rtc_hctosys_ret = 0;
192	return 0;
193}
194
195static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
196#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
197#else
198#define RTC_CLASS_DEV_PM_OPS	NULL
199#endif
200
201/* Ensure the caller will set the id before releasing the device */
202static struct rtc_device *rtc_allocate_device(void)
203{
204	struct rtc_device *rtc;
205
206	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
207	if (!rtc)
208		return NULL;
209
210	device_initialize(&rtc->dev);
211
212	/* Drivers can revise this default after allocating the device. */
213	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
214
215	rtc->irq_freq = 1;
216	rtc->max_user_freq = 64;
217	rtc->dev.class = rtc_class;
218	rtc->dev.groups = rtc_get_dev_attribute_groups();
219	rtc->dev.release = rtc_device_release;
220
221	mutex_init(&rtc->ops_lock);
222	spin_lock_init(&rtc->irq_lock);
223	init_waitqueue_head(&rtc->irq_queue);
224
225	/* Init timerqueue */
226	timerqueue_init_head(&rtc->timerqueue);
227	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
228	/* Init aie timer */
229	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
230	/* Init uie timer */
231	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
232	/* Init pie timer */
233	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
234	rtc->pie_timer.function = rtc_pie_update_irq;
235	rtc->pie_enabled = 0;
236
237	return rtc;
238}
239
240static int rtc_device_get_id(struct device *dev)
241{
242	int of_id = -1, id = -1;
243
244	if (dev->of_node)
245		of_id = of_alias_get_id(dev->of_node, "rtc");
246	else if (dev->parent && dev->parent->of_node)
247		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
248
249	if (of_id >= 0) {
250		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
251		if (id < 0)
252			dev_warn(dev, "/aliases ID %d not available\n", of_id);
253	}
254
255	if (id < 0)
256		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
257
258	return id;
259}
260
261static void rtc_device_get_offset(struct rtc_device *rtc)
262{
263	time64_t range_secs;
264	u32 start_year;
265	int ret;
266
267	/*
268	 * If RTC driver did not implement the range of RTC hardware device,
269	 * then we can not expand the RTC range by adding or subtracting one
270	 * offset.
271	 */
272	if (rtc->range_min == rtc->range_max)
273		return;
274
275	ret = device_property_read_u32(rtc->dev.parent, "start-year",
276				       &start_year);
277	if (!ret) {
278		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
279		rtc->set_start_time = true;
280	}
281
282	/*
283	 * If user did not implement the start time for RTC driver, then no
284	 * need to expand the RTC range.
285	 */
286	if (!rtc->set_start_time)
287		return;
288
289	range_secs = rtc->range_max - rtc->range_min + 1;
290
291	/*
292	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
293	 * supported by RTC hardware or the maximum seconds of new expanded
294	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
295	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
296	 * RTC hardware will be mapped to start_secs by adding one offset, so
297	 * the offset seconds calculation formula should be:
298	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
299	 *
300	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
301	 * supported by RTC hardware, then there is one region is overlapped
302	 * between the original RTC hardware range and the new expanded range,
303	 * and this overlapped region do not need to be mapped into the new
304	 * expanded range due to it is valid for RTC device. So the minimum
305	 * seconds of RTC hardware (rtc->range_min) should be mapped to
306	 * rtc->range_max + 1, then the offset seconds formula should be:
307	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
308	 *
309	 * If the start_secs is less than the minimum seconds (rtc->range_min),
310	 * which is similar to case 2. So the start_secs should be mapped to
311	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
312	 * offset seconds formula should be:
313	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
314	 *
315	 * Otherwise the offset seconds should be 0.
316	 */
317	if (rtc->start_secs > rtc->range_max ||
318	    rtc->start_secs + range_secs - 1 < rtc->range_min)
319		rtc->offset_secs = rtc->start_secs - rtc->range_min;
320	else if (rtc->start_secs > rtc->range_min)
321		rtc->offset_secs = range_secs;
322	else if (rtc->start_secs < rtc->range_min)
323		rtc->offset_secs = -range_secs;
324	else
325		rtc->offset_secs = 0;
326}
327
328/**
329 * rtc_device_unregister - removes the previously registered RTC class device
330 *
331 * @rtc: the RTC class device to destroy
332 */
333static void rtc_device_unregister(struct rtc_device *rtc)
334{
335	mutex_lock(&rtc->ops_lock);
336	/*
337	 * Remove innards of this RTC, then disable it, before
338	 * letting any rtc_class_open() users access it again
339	 */
340	rtc_proc_del_device(rtc);
341	cdev_device_del(&rtc->char_dev, &rtc->dev);
342	rtc->ops = NULL;
343	mutex_unlock(&rtc->ops_lock);
344	put_device(&rtc->dev);
345}
346
347static void devm_rtc_release_device(struct device *dev, void *res)
348{
349	struct rtc_device *rtc = *(struct rtc_device **)res;
350
351	rtc_nvmem_unregister(rtc);
352
353	if (rtc->registered)
354		rtc_device_unregister(rtc);
355	else
356		put_device(&rtc->dev);
357}
358
359struct rtc_device *devm_rtc_allocate_device(struct device *dev)
360{
361	struct rtc_device **ptr, *rtc;
362	int id, err;
363
364	id = rtc_device_get_id(dev);
365	if (id < 0)
366		return ERR_PTR(id);
367
368	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
369	if (!ptr) {
370		err = -ENOMEM;
371		goto exit_ida;
372	}
373
374	rtc = rtc_allocate_device();
375	if (!rtc) {
376		err = -ENOMEM;
377		goto exit_devres;
378	}
379
380	*ptr = rtc;
381	devres_add(dev, ptr);
382
383	rtc->id = id;
384	rtc->dev.parent = dev;
385	dev_set_name(&rtc->dev, "rtc%d", id);
386
387	return rtc;
388
389exit_devres:
390	devres_free(ptr);
391exit_ida:
392	ida_simple_remove(&rtc_ida, id);
393	return ERR_PTR(err);
394}
395EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
396
397int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
398{
399	struct rtc_wkalrm alrm;
400	int err;
401
402	if (!rtc->ops) {
403		dev_dbg(&rtc->dev, "no ops set\n");
404		return -EINVAL;
405	}
406
407	rtc->owner = owner;
408	rtc_device_get_offset(rtc);
409
410	/* Check to see if there is an ALARM already set in hw */
411	err = __rtc_read_alarm(rtc, &alrm);
412	if (!err && !rtc_valid_tm(&alrm.time))
413		rtc_initialize_alarm(rtc, &alrm);
414
415	rtc_dev_prepare(rtc);
416
417	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
418	if (err)
419		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
420			 MAJOR(rtc->dev.devt), rtc->id);
421	else
422		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
423			MAJOR(rtc->dev.devt), rtc->id);
424
425	rtc_proc_add_device(rtc);
426
427	rtc->registered = true;
428	dev_info(rtc->dev.parent, "registered as %s\n",
429		 dev_name(&rtc->dev));
430
431#ifdef CONFIG_RTC_HCTOSYS_DEVICE
432	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
433		rtc_hctosys(rtc);
434#endif
435
436	return 0;
437}
438EXPORT_SYMBOL_GPL(__rtc_register_device);
439
440/**
441 * devm_rtc_device_register - resource managed rtc_device_register()
442 * @dev: the device to register
443 * @name: the name of the device (unused)
444 * @ops: the rtc operations structure
445 * @owner: the module owner
446 *
447 * @return a struct rtc on success, or an ERR_PTR on error
448 *
449 * Managed rtc_device_register(). The rtc_device returned from this function
450 * are automatically freed on driver detach.
451 * This function is deprecated, use devm_rtc_allocate_device and
452 * rtc_register_device instead
453 */
454struct rtc_device *devm_rtc_device_register(struct device *dev,
455					    const char *name,
456					    const struct rtc_class_ops *ops,
457					    struct module *owner)
458{
459	struct rtc_device *rtc;
460	int err;
461
462	rtc = devm_rtc_allocate_device(dev);
463	if (IS_ERR(rtc))
464		return rtc;
465
466	rtc->ops = ops;
467
468	err = __rtc_register_device(owner, rtc);
469	if (err)
470		return ERR_PTR(err);
471
472	return rtc;
473}
474EXPORT_SYMBOL_GPL(devm_rtc_device_register);
475
476static int __init rtc_init(void)
477{
478	rtc_class = class_create(THIS_MODULE, "rtc");
479	if (IS_ERR(rtc_class)) {
480		pr_err("couldn't create class\n");
481		return PTR_ERR(rtc_class);
482	}
483	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
484	rtc_dev_init();
485	return 0;
486}
487subsys_initcall(rtc_init);
488