1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI K3 R5F (MCU) Remote Processor driver
4 *
5 * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/
6 *	Suman Anna <s-anna@ti.com>
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/err.h>
11#include <linux/interrupt.h>
12#include <linux/kernel.h>
13#include <linux/mailbox_client.h>
14#include <linux/module.h>
15#include <linux/of_address.h>
16#include <linux/of_device.h>
17#include <linux/of_reserved_mem.h>
18#include <linux/omap-mailbox.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/remoteproc.h>
22#include <linux/reset.h>
23#include <linux/slab.h>
24
25#include "omap_remoteproc.h"
26#include "remoteproc_internal.h"
27#include "ti_sci_proc.h"
28
29/* This address can either be for ATCM or BTCM with the other at address 0x0 */
30#define K3_R5_TCM_DEV_ADDR	0x41010000
31
32/* R5 TI-SCI Processor Configuration Flags */
33#define PROC_BOOT_CFG_FLAG_R5_DBG_EN			0x00000001
34#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN			0x00000002
35#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP			0x00000100
36#define PROC_BOOT_CFG_FLAG_R5_TEINIT			0x00000200
37#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN			0x00000400
38#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE		0x00000800
39#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN			0x00001000
40#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN			0x00002000
41
42/* R5 TI-SCI Processor Control Flags */
43#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT		0x00000001
44
45/* R5 TI-SCI Processor Status Flags */
46#define PROC_BOOT_STATUS_FLAG_R5_WFE			0x00000001
47#define PROC_BOOT_STATUS_FLAG_R5_WFI			0x00000002
48#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED		0x00000004
49#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED	0x00000100
50
51/**
52 * struct k3_r5_mem - internal memory structure
53 * @cpu_addr: MPU virtual address of the memory region
54 * @bus_addr: Bus address used to access the memory region
55 * @dev_addr: Device address from remoteproc view
56 * @size: Size of the memory region
57 */
58struct k3_r5_mem {
59	void __iomem *cpu_addr;
60	phys_addr_t bus_addr;
61	u32 dev_addr;
62	size_t size;
63};
64
65enum cluster_mode {
66	CLUSTER_MODE_SPLIT = 0,
67	CLUSTER_MODE_LOCKSTEP,
68};
69
70/**
71 * struct k3_r5_cluster - K3 R5F Cluster structure
72 * @dev: cached device pointer
73 * @mode: Mode to configure the Cluster - Split or LockStep
74 * @cores: list of R5 cores within the cluster
75 */
76struct k3_r5_cluster {
77	struct device *dev;
78	enum cluster_mode mode;
79	struct list_head cores;
80};
81
82/**
83 * struct k3_r5_core - K3 R5 core structure
84 * @elem: linked list item
85 * @dev: cached device pointer
86 * @rproc: rproc handle representing this core
87 * @mem: internal memory regions data
88 * @sram: on-chip SRAM memory regions data
89 * @num_mems: number of internal memory regions
90 * @num_sram: number of on-chip SRAM memory regions
91 * @reset: reset control handle
92 * @tsp: TI-SCI processor control handle
93 * @ti_sci: TI-SCI handle
94 * @ti_sci_id: TI-SCI device identifier
95 * @atcm_enable: flag to control ATCM enablement
96 * @btcm_enable: flag to control BTCM enablement
97 * @loczrama: flag to dictate which TCM is at device address 0x0
98 */
99struct k3_r5_core {
100	struct list_head elem;
101	struct device *dev;
102	struct rproc *rproc;
103	struct k3_r5_mem *mem;
104	struct k3_r5_mem *sram;
105	int num_mems;
106	int num_sram;
107	struct reset_control *reset;
108	struct ti_sci_proc *tsp;
109	const struct ti_sci_handle *ti_sci;
110	u32 ti_sci_id;
111	u32 atcm_enable;
112	u32 btcm_enable;
113	u32 loczrama;
114};
115
116/**
117 * struct k3_r5_rproc - K3 remote processor state
118 * @dev: cached device pointer
119 * @cluster: cached pointer to parent cluster structure
120 * @mbox: mailbox channel handle
121 * @client: mailbox client to request the mailbox channel
122 * @rproc: rproc handle
123 * @core: cached pointer to r5 core structure being used
124 * @rmem: reserved memory regions data
125 * @num_rmems: number of reserved memory regions
126 */
127struct k3_r5_rproc {
128	struct device *dev;
129	struct k3_r5_cluster *cluster;
130	struct mbox_chan *mbox;
131	struct mbox_client client;
132	struct rproc *rproc;
133	struct k3_r5_core *core;
134	struct k3_r5_mem *rmem;
135	int num_rmems;
136};
137
138/**
139 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
140 * @client: mailbox client pointer used for requesting the mailbox channel
141 * @data: mailbox payload
142 *
143 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
144 * message is received. Usually, the mailbox payload simply contains
145 * the index of the virtqueue that is kicked by the remote processor,
146 * and we let remoteproc core handle it.
147 *
148 * In addition to virtqueue indices, we also have some out-of-band values
149 * that indicate different events. Those values are deliberately very
150 * large so they don't coincide with virtqueue indices.
151 */
152static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
153{
154	struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
155						client);
156	struct device *dev = kproc->rproc->dev.parent;
157	const char *name = kproc->rproc->name;
158	u32 msg = omap_mbox_message(data);
159
160	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
161
162	switch (msg) {
163	case RP_MBOX_CRASH:
164		/*
165		 * remoteproc detected an exception, but error recovery is not
166		 * supported. So, just log this for now
167		 */
168		dev_err(dev, "K3 R5F rproc %s crashed\n", name);
169		break;
170	case RP_MBOX_ECHO_REPLY:
171		dev_info(dev, "received echo reply from %s\n", name);
172		break;
173	default:
174		/* silently handle all other valid messages */
175		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
176			return;
177		if (msg > kproc->rproc->max_notifyid) {
178			dev_dbg(dev, "dropping unknown message 0x%x", msg);
179			return;
180		}
181		/* msg contains the index of the triggered vring */
182		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
183			dev_dbg(dev, "no message was found in vqid %d\n", msg);
184	}
185}
186
187/* kick a virtqueue */
188static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
189{
190	struct k3_r5_rproc *kproc = rproc->priv;
191	struct device *dev = rproc->dev.parent;
192	mbox_msg_t msg = (mbox_msg_t)vqid;
193	int ret;
194
195	/* send the index of the triggered virtqueue in the mailbox payload */
196	ret = mbox_send_message(kproc->mbox, (void *)msg);
197	if (ret < 0)
198		dev_err(dev, "failed to send mailbox message, status = %d\n",
199			ret);
200}
201
202static int k3_r5_split_reset(struct k3_r5_core *core)
203{
204	int ret;
205
206	ret = reset_control_assert(core->reset);
207	if (ret) {
208		dev_err(core->dev, "local-reset assert failed, ret = %d\n",
209			ret);
210		return ret;
211	}
212
213	ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
214						   core->ti_sci_id);
215	if (ret) {
216		dev_err(core->dev, "module-reset assert failed, ret = %d\n",
217			ret);
218		if (reset_control_deassert(core->reset))
219			dev_warn(core->dev, "local-reset deassert back failed\n");
220	}
221
222	return ret;
223}
224
225static int k3_r5_split_release(struct k3_r5_core *core)
226{
227	int ret;
228
229	ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
230						   core->ti_sci_id);
231	if (ret) {
232		dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
233			ret);
234		return ret;
235	}
236
237	ret = reset_control_deassert(core->reset);
238	if (ret) {
239		dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
240			ret);
241		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
242							 core->ti_sci_id))
243			dev_warn(core->dev, "module-reset assert back failed\n");
244	}
245
246	return ret;
247}
248
249static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
250{
251	struct k3_r5_core *core;
252	int ret;
253
254	/* assert local reset on all applicable cores */
255	list_for_each_entry(core, &cluster->cores, elem) {
256		ret = reset_control_assert(core->reset);
257		if (ret) {
258			dev_err(core->dev, "local-reset assert failed, ret = %d\n",
259				ret);
260			core = list_prev_entry(core, elem);
261			goto unroll_local_reset;
262		}
263	}
264
265	/* disable PSC modules on all applicable cores */
266	list_for_each_entry(core, &cluster->cores, elem) {
267		ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
268							   core->ti_sci_id);
269		if (ret) {
270			dev_err(core->dev, "module-reset assert failed, ret = %d\n",
271				ret);
272			goto unroll_module_reset;
273		}
274	}
275
276	return 0;
277
278unroll_module_reset:
279	list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
280		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
281							 core->ti_sci_id))
282			dev_warn(core->dev, "module-reset assert back failed\n");
283	}
284	core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
285unroll_local_reset:
286	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
287		if (reset_control_deassert(core->reset))
288			dev_warn(core->dev, "local-reset deassert back failed\n");
289	}
290
291	return ret;
292}
293
294static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
295{
296	struct k3_r5_core *core;
297	int ret;
298
299	/* enable PSC modules on all applicable cores */
300	list_for_each_entry_reverse(core, &cluster->cores, elem) {
301		ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
302							   core->ti_sci_id);
303		if (ret) {
304			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
305				ret);
306			core = list_next_entry(core, elem);
307			goto unroll_module_reset;
308		}
309	}
310
311	/* deassert local reset on all applicable cores */
312	list_for_each_entry_reverse(core, &cluster->cores, elem) {
313		ret = reset_control_deassert(core->reset);
314		if (ret) {
315			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
316				ret);
317			goto unroll_local_reset;
318		}
319	}
320
321	return 0;
322
323unroll_local_reset:
324	list_for_each_entry_continue(core, &cluster->cores, elem) {
325		if (reset_control_assert(core->reset))
326			dev_warn(core->dev, "local-reset assert back failed\n");
327	}
328	core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
329unroll_module_reset:
330	list_for_each_entry_from(core, &cluster->cores, elem) {
331		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
332							 core->ti_sci_id))
333			dev_warn(core->dev, "module-reset assert back failed\n");
334	}
335
336	return ret;
337}
338
339static inline int k3_r5_core_halt(struct k3_r5_core *core)
340{
341	return ti_sci_proc_set_control(core->tsp,
342				       PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
343}
344
345static inline int k3_r5_core_run(struct k3_r5_core *core)
346{
347	return ti_sci_proc_set_control(core->tsp,
348				       0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
349}
350
351/*
352 * The R5F cores have controls for both a reset and a halt/run. The code
353 * execution from DDR requires the initial boot-strapping code to be run
354 * from the internal TCMs. This function is used to release the resets on
355 * applicable cores to allow loading into the TCMs. The .prepare() ops is
356 * invoked by remoteproc core before any firmware loading, and is followed
357 * by the .start() ops after loading to actually let the R5 cores run.
358 */
359static int k3_r5_rproc_prepare(struct rproc *rproc)
360{
361	struct k3_r5_rproc *kproc = rproc->priv;
362	struct k3_r5_cluster *cluster = kproc->cluster;
363	struct k3_r5_core *core = kproc->core;
364	struct device *dev = kproc->dev;
365	int ret;
366
367	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
368		k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
369	if (ret) {
370		dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
371			ret);
372		return ret;
373	}
374
375	/*
376	 * Zero out both TCMs unconditionally (access from v8 Arm core is not
377	 * affected by ATCM & BTCM enable configuration values) so that ECC
378	 * can be effective on all TCM addresses.
379	 */
380	dev_dbg(dev, "zeroing out ATCM memory\n");
381	memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
382
383	dev_dbg(dev, "zeroing out BTCM memory\n");
384	memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
385
386	return 0;
387}
388
389/*
390 * This function implements the .unprepare() ops and performs the complimentary
391 * operations to that of the .prepare() ops. The function is used to assert the
392 * resets on all applicable cores for the rproc device (depending on LockStep
393 * or Split mode). This completes the second portion of powering down the R5F
394 * cores. The cores themselves are only halted in the .stop() ops, and the
395 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
396 * stopped.
397 */
398static int k3_r5_rproc_unprepare(struct rproc *rproc)
399{
400	struct k3_r5_rproc *kproc = rproc->priv;
401	struct k3_r5_cluster *cluster = kproc->cluster;
402	struct k3_r5_core *core = kproc->core;
403	struct device *dev = kproc->dev;
404	int ret;
405
406	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
407		k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
408	if (ret)
409		dev_err(dev, "unable to disable cores, ret = %d\n", ret);
410
411	return ret;
412}
413
414/*
415 * The R5F start sequence includes two different operations
416 * 1. Configure the boot vector for R5F core(s)
417 * 2. Unhalt/Run the R5F core(s)
418 *
419 * The sequence is different between LockStep and Split modes. The LockStep
420 * mode requires the boot vector to be configured only for Core0, and then
421 * unhalt both the cores to start the execution - Core1 needs to be unhalted
422 * first followed by Core0. The Split-mode requires that Core0 to be maintained
423 * always in a higher power state that Core1 (implying Core1 needs to be started
424 * always only after Core0 is started).
425 */
426static int k3_r5_rproc_start(struct rproc *rproc)
427{
428	struct k3_r5_rproc *kproc = rproc->priv;
429	struct k3_r5_cluster *cluster = kproc->cluster;
430	struct mbox_client *client = &kproc->client;
431	struct device *dev = kproc->dev;
432	struct k3_r5_core *core;
433	u32 boot_addr;
434	int ret;
435
436	client->dev = dev;
437	client->tx_done = NULL;
438	client->rx_callback = k3_r5_rproc_mbox_callback;
439	client->tx_block = false;
440	client->knows_txdone = false;
441
442	kproc->mbox = mbox_request_channel(client, 0);
443	if (IS_ERR(kproc->mbox)) {
444		ret = -EBUSY;
445		dev_err(dev, "mbox_request_channel failed: %ld\n",
446			PTR_ERR(kproc->mbox));
447		return ret;
448	}
449
450	/*
451	 * Ping the remote processor, this is only for sanity-sake for now;
452	 * there is no functional effect whatsoever.
453	 *
454	 * Note that the reply will _not_ arrive immediately: this message
455	 * will wait in the mailbox fifo until the remote processor is booted.
456	 */
457	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
458	if (ret < 0) {
459		dev_err(dev, "mbox_send_message failed: %d\n", ret);
460		goto put_mbox;
461	}
462
463	boot_addr = rproc->bootaddr;
464	/* TODO: add boot_addr sanity checking */
465	dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
466
467	/* boot vector need not be programmed for Core1 in LockStep mode */
468	core = kproc->core;
469	ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
470	if (ret)
471		goto put_mbox;
472
473	/* unhalt/run all applicable cores */
474	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
475		list_for_each_entry_reverse(core, &cluster->cores, elem) {
476			ret = k3_r5_core_run(core);
477			if (ret)
478				goto unroll_core_run;
479		}
480	} else {
481		ret = k3_r5_core_run(core);
482		if (ret)
483			goto put_mbox;
484	}
485
486	return 0;
487
488unroll_core_run:
489	list_for_each_entry_continue(core, &cluster->cores, elem) {
490		if (k3_r5_core_halt(core))
491			dev_warn(core->dev, "core halt back failed\n");
492	}
493put_mbox:
494	mbox_free_channel(kproc->mbox);
495	return ret;
496}
497
498/*
499 * The R5F stop function includes the following operations
500 * 1. Halt R5F core(s)
501 *
502 * The sequence is different between LockStep and Split modes, and the order
503 * of cores the operations are performed are also in general reverse to that
504 * of the start function. The LockStep mode requires each operation to be
505 * performed first on Core0 followed by Core1. The Split-mode requires that
506 * Core0 to be maintained always in a higher power state that Core1 (implying
507 * Core1 needs to be stopped first before Core0).
508 *
509 * Note that the R5F halt operation in general is not effective when the R5F
510 * core is running, but is needed to make sure the core won't run after
511 * deasserting the reset the subsequent time. The asserting of reset can
512 * be done here, but is preferred to be done in the .unprepare() ops - this
513 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
514 * and .unprepare() ops, and also balances them well between sysfs 'state'
515 * flow and device bind/unbind or module removal.
516 */
517static int k3_r5_rproc_stop(struct rproc *rproc)
518{
519	struct k3_r5_rproc *kproc = rproc->priv;
520	struct k3_r5_cluster *cluster = kproc->cluster;
521	struct k3_r5_core *core = kproc->core;
522	int ret;
523
524	/* halt all applicable cores */
525	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
526		list_for_each_entry(core, &cluster->cores, elem) {
527			ret = k3_r5_core_halt(core);
528			if (ret) {
529				core = list_prev_entry(core, elem);
530				goto unroll_core_halt;
531			}
532		}
533	} else {
534		ret = k3_r5_core_halt(core);
535		if (ret)
536			goto out;
537	}
538
539	mbox_free_channel(kproc->mbox);
540
541	return 0;
542
543unroll_core_halt:
544	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
545		if (k3_r5_core_run(core))
546			dev_warn(core->dev, "core run back failed\n");
547	}
548out:
549	return ret;
550}
551
552/*
553 * Internal Memory translation helper
554 *
555 * Custom function implementing the rproc .da_to_va ops to provide address
556 * translation (device address to kernel virtual address) for internal RAMs
557 * present in a DSP or IPU device). The translated addresses can be used
558 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
559 */
560static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
561{
562	struct k3_r5_rproc *kproc = rproc->priv;
563	struct k3_r5_core *core = kproc->core;
564	void __iomem *va = NULL;
565	phys_addr_t bus_addr;
566	u32 dev_addr, offset;
567	size_t size;
568	int i;
569
570	if (len == 0)
571		return NULL;
572
573	/* handle both R5 and SoC views of ATCM and BTCM */
574	for (i = 0; i < core->num_mems; i++) {
575		bus_addr = core->mem[i].bus_addr;
576		dev_addr = core->mem[i].dev_addr;
577		size = core->mem[i].size;
578
579		/* handle R5-view addresses of TCMs */
580		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
581			offset = da - dev_addr;
582			va = core->mem[i].cpu_addr + offset;
583			return (__force void *)va;
584		}
585
586		/* handle SoC-view addresses of TCMs */
587		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
588			offset = da - bus_addr;
589			va = core->mem[i].cpu_addr + offset;
590			return (__force void *)va;
591		}
592	}
593
594	/* handle any SRAM regions using SoC-view addresses */
595	for (i = 0; i < core->num_sram; i++) {
596		dev_addr = core->sram[i].dev_addr;
597		size = core->sram[i].size;
598
599		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
600			offset = da - dev_addr;
601			va = core->sram[i].cpu_addr + offset;
602			return (__force void *)va;
603		}
604	}
605
606	/* handle static DDR reserved memory regions */
607	for (i = 0; i < kproc->num_rmems; i++) {
608		dev_addr = kproc->rmem[i].dev_addr;
609		size = kproc->rmem[i].size;
610
611		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
612			offset = da - dev_addr;
613			va = kproc->rmem[i].cpu_addr + offset;
614			return (__force void *)va;
615		}
616	}
617
618	return NULL;
619}
620
621static const struct rproc_ops k3_r5_rproc_ops = {
622	.prepare	= k3_r5_rproc_prepare,
623	.unprepare	= k3_r5_rproc_unprepare,
624	.start		= k3_r5_rproc_start,
625	.stop		= k3_r5_rproc_stop,
626	.kick		= k3_r5_rproc_kick,
627	.da_to_va	= k3_r5_rproc_da_to_va,
628};
629
630/*
631 * Internal R5F Core configuration
632 *
633 * Each R5FSS has a cluster-level setting for configuring the processor
634 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
635 * oriented Split mode. Each R5F core has a number of settings to either
636 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
637 * address 0x0. These settings need to be configured before the resets for the
638 * corresponding core are released. These settings are all protected and managed
639 * by the System Processor.
640 *
641 * This function is used to pre-configure these settings for each R5F core, and
642 * the configuration is all done through various ti_sci_proc functions that
643 * communicate with the System Processor. The function also ensures that both
644 * the cores are halted before the .prepare() step.
645 *
646 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
647 * once (in LockStep mode) or twice (in Split mode). Support for LockStep-mode
648 * is dictated by an eFUSE register bit, and the config settings retrieved from
649 * DT are adjusted accordingly as per the permitted cluster mode. All cluster
650 * level settings like Cluster mode and TEINIT (exception handling state
651 * dictating ARM or Thumb mode) can only be set and retrieved using Core0.
652 *
653 * The function behavior is different based on the cluster mode. The R5F cores
654 * are configured independently as per their individual settings in Split mode.
655 * They are identically configured in LockStep mode using the primary Core0
656 * settings. However, some individual settings cannot be set in LockStep mode.
657 * This is overcome by switching to Split-mode initially and then programming
658 * both the cores with the same settings, before reconfiguing again for
659 * LockStep mode.
660 */
661static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
662{
663	struct k3_r5_cluster *cluster = kproc->cluster;
664	struct device *dev = kproc->dev;
665	struct k3_r5_core *core0, *core, *temp;
666	u32 ctrl = 0, cfg = 0, stat = 0;
667	u32 set_cfg = 0, clr_cfg = 0;
668	u64 boot_vec = 0;
669	bool lockstep_en;
670	int ret;
671
672	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
673	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? core0 : kproc->core;
674
675	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
676				     &stat);
677	if (ret < 0)
678		return ret;
679
680	dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
681		boot_vec, cfg, ctrl, stat);
682
683	lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
684	if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
685		dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
686		cluster->mode = CLUSTER_MODE_SPLIT;
687	}
688
689	/* always enable ARM mode and set boot vector to 0 */
690	boot_vec = 0x0;
691	if (core == core0) {
692		clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
693		/*
694		 * LockStep configuration bit is Read-only on Split-mode _only_
695		 * devices and system firmware will NACK any requests with the
696		 * bit configured, so program it only on permitted devices
697		 */
698		if (lockstep_en)
699			clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
700	}
701
702	if (core->atcm_enable)
703		set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
704	else
705		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
706
707	if (core->btcm_enable)
708		set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
709	else
710		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
711
712	if (core->loczrama)
713		set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
714	else
715		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
716
717	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
718		/*
719		 * work around system firmware limitations to make sure both
720		 * cores are programmed symmetrically in LockStep. LockStep
721		 * and TEINIT config is only allowed with Core0.
722		 */
723		list_for_each_entry(temp, &cluster->cores, elem) {
724			ret = k3_r5_core_halt(temp);
725			if (ret)
726				goto out;
727
728			if (temp != core) {
729				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
730				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
731			}
732			ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
733						     set_cfg, clr_cfg);
734			if (ret)
735				goto out;
736		}
737
738		set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
739		clr_cfg = 0;
740		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
741					     set_cfg, clr_cfg);
742	} else {
743		ret = k3_r5_core_halt(core);
744		if (ret)
745			goto out;
746
747		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
748					     set_cfg, clr_cfg);
749	}
750
751out:
752	return ret;
753}
754
755static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
756{
757	struct device *dev = kproc->dev;
758	struct device_node *np = dev_of_node(dev);
759	struct device_node *rmem_np;
760	struct reserved_mem *rmem;
761	int num_rmems;
762	int ret, i;
763
764	num_rmems = of_property_count_elems_of_size(np, "memory-region",
765						    sizeof(phandle));
766	if (num_rmems <= 0) {
767		dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
768			num_rmems);
769		return -EINVAL;
770	}
771	if (num_rmems < 2) {
772		dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
773			num_rmems);
774		return -EINVAL;
775	}
776
777	/* use reserved memory region 0 for vring DMA allocations */
778	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
779	if (ret) {
780		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
781			ret);
782		return ret;
783	}
784
785	num_rmems--;
786	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
787	if (!kproc->rmem) {
788		ret = -ENOMEM;
789		goto release_rmem;
790	}
791
792	/* use remaining reserved memory regions for static carveouts */
793	for (i = 0; i < num_rmems; i++) {
794		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
795		if (!rmem_np) {
796			ret = -EINVAL;
797			goto unmap_rmem;
798		}
799
800		rmem = of_reserved_mem_lookup(rmem_np);
801		if (!rmem) {
802			of_node_put(rmem_np);
803			ret = -EINVAL;
804			goto unmap_rmem;
805		}
806		of_node_put(rmem_np);
807
808		kproc->rmem[i].bus_addr = rmem->base;
809		/*
810		 * R5Fs do not have an MMU, but have a Region Address Translator
811		 * (RAT) module that provides a fixed entry translation between
812		 * the 32-bit processor addresses to 64-bit bus addresses. The
813		 * RAT is programmable only by the R5F cores. Support for RAT
814		 * is currently not supported, so 64-bit address regions are not
815		 * supported. The absence of MMUs implies that the R5F device
816		 * addresses/supported memory regions are restricted to 32-bit
817		 * bus addresses, and are identical
818		 */
819		kproc->rmem[i].dev_addr = (u32)rmem->base;
820		kproc->rmem[i].size = rmem->size;
821		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
822		if (!kproc->rmem[i].cpu_addr) {
823			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
824				i + 1, &rmem->base, &rmem->size);
825			ret = -ENOMEM;
826			goto unmap_rmem;
827		}
828
829		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
830			i + 1, &kproc->rmem[i].bus_addr,
831			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
832			kproc->rmem[i].dev_addr);
833	}
834	kproc->num_rmems = num_rmems;
835
836	return 0;
837
838unmap_rmem:
839	for (i--; i >= 0; i--)
840		iounmap(kproc->rmem[i].cpu_addr);
841	kfree(kproc->rmem);
842release_rmem:
843	of_reserved_mem_device_release(dev);
844	return ret;
845}
846
847static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
848{
849	int i;
850
851	for (i = 0; i < kproc->num_rmems; i++)
852		iounmap(kproc->rmem[i].cpu_addr);
853	kfree(kproc->rmem);
854
855	of_reserved_mem_device_release(kproc->dev);
856}
857
858static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
859{
860	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
861	struct device *dev = &pdev->dev;
862	struct k3_r5_rproc *kproc;
863	struct k3_r5_core *core, *core1;
864	struct device *cdev;
865	const char *fw_name;
866	struct rproc *rproc;
867	int ret;
868
869	core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
870	list_for_each_entry(core, &cluster->cores, elem) {
871		cdev = core->dev;
872		ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
873		if (ret) {
874			dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
875				ret);
876			goto out;
877		}
878
879		rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
880				    fw_name, sizeof(*kproc));
881		if (!rproc) {
882			ret = -ENOMEM;
883			goto out;
884		}
885
886		/* K3 R5s have a Region Address Translator (RAT) but no MMU */
887		rproc->has_iommu = false;
888		/* error recovery is not supported at present */
889		rproc->recovery_disabled = true;
890
891		kproc = rproc->priv;
892		kproc->cluster = cluster;
893		kproc->core = core;
894		kproc->dev = cdev;
895		kproc->rproc = rproc;
896		core->rproc = rproc;
897
898		ret = k3_r5_rproc_configure(kproc);
899		if (ret) {
900			dev_err(dev, "initial configure failed, ret = %d\n",
901				ret);
902			goto err_config;
903		}
904
905		ret = k3_r5_reserved_mem_init(kproc);
906		if (ret) {
907			dev_err(dev, "reserved memory init failed, ret = %d\n",
908				ret);
909			goto err_config;
910		}
911
912		ret = rproc_add(rproc);
913		if (ret) {
914			dev_err(dev, "rproc_add failed, ret = %d\n", ret);
915			goto err_add;
916		}
917
918		/* create only one rproc in lockstep mode */
919		if (cluster->mode == CLUSTER_MODE_LOCKSTEP)
920			break;
921	}
922
923	return 0;
924
925err_split:
926	rproc_del(rproc);
927err_add:
928	k3_r5_reserved_mem_exit(kproc);
929err_config:
930	rproc_free(rproc);
931	core->rproc = NULL;
932out:
933	/* undo core0 upon any failures on core1 in split-mode */
934	if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
935		core = list_prev_entry(core, elem);
936		rproc = core->rproc;
937		kproc = rproc->priv;
938		goto err_split;
939	}
940	return ret;
941}
942
943static int k3_r5_cluster_rproc_exit(struct platform_device *pdev)
944{
945	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
946	struct k3_r5_rproc *kproc;
947	struct k3_r5_core *core;
948	struct rproc *rproc;
949
950	/*
951	 * lockstep mode has only one rproc associated with first core, whereas
952	 * split-mode has two rprocs associated with each core, and requires
953	 * that core1 be powered down first
954	 */
955	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
956		list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
957		list_last_entry(&cluster->cores, struct k3_r5_core, elem);
958
959	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
960		rproc = core->rproc;
961		kproc = rproc->priv;
962
963		rproc_del(rproc);
964
965		k3_r5_reserved_mem_exit(kproc);
966
967		rproc_free(rproc);
968		core->rproc = NULL;
969	}
970
971	return 0;
972}
973
974static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
975					       struct k3_r5_core *core)
976{
977	static const char * const mem_names[] = {"atcm", "btcm"};
978	struct device *dev = &pdev->dev;
979	struct resource *res;
980	int num_mems;
981	int i;
982
983	num_mems = ARRAY_SIZE(mem_names);
984	core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
985	if (!core->mem)
986		return -ENOMEM;
987
988	for (i = 0; i < num_mems; i++) {
989		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
990						   mem_names[i]);
991		if (!res) {
992			dev_err(dev, "found no memory resource for %s\n",
993				mem_names[i]);
994			return -EINVAL;
995		}
996		if (!devm_request_mem_region(dev, res->start,
997					     resource_size(res),
998					     dev_name(dev))) {
999			dev_err(dev, "could not request %s region for resource\n",
1000				mem_names[i]);
1001			return -EBUSY;
1002		}
1003
1004		/*
1005		 * TCMs are designed in general to support RAM-like backing
1006		 * memories. So, map these as Normal Non-Cached memories. This
1007		 * also avoids/fixes any potential alignment faults due to
1008		 * unaligned data accesses when using memcpy() or memset()
1009		 * functions (normally seen with device type memory).
1010		 */
1011		core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1012							resource_size(res));
1013		if (!core->mem[i].cpu_addr) {
1014			dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1015			return -ENOMEM;
1016		}
1017		core->mem[i].bus_addr = res->start;
1018
1019		/*
1020		 * TODO:
1021		 * The R5F cores can place ATCM & BTCM anywhere in its address
1022		 * based on the corresponding Region Registers in the System
1023		 * Control coprocessor. For now, place ATCM and BTCM at
1024		 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1025		 * SoCs) based on loczrama setting
1026		 */
1027		if (!strcmp(mem_names[i], "atcm")) {
1028			core->mem[i].dev_addr = core->loczrama ?
1029							0 : K3_R5_TCM_DEV_ADDR;
1030		} else {
1031			core->mem[i].dev_addr = core->loczrama ?
1032							K3_R5_TCM_DEV_ADDR : 0;
1033		}
1034		core->mem[i].size = resource_size(res);
1035
1036		dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1037			mem_names[i], &core->mem[i].bus_addr,
1038			core->mem[i].size, core->mem[i].cpu_addr,
1039			core->mem[i].dev_addr);
1040	}
1041	core->num_mems = num_mems;
1042
1043	return 0;
1044}
1045
1046static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1047					   struct k3_r5_core *core)
1048{
1049	struct device_node *np = pdev->dev.of_node;
1050	struct device *dev = &pdev->dev;
1051	struct device_node *sram_np;
1052	struct resource res;
1053	int num_sram;
1054	int i, ret;
1055
1056	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1057	if (num_sram <= 0) {
1058		dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1059			num_sram);
1060		return 0;
1061	}
1062
1063	core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1064	if (!core->sram)
1065		return -ENOMEM;
1066
1067	for (i = 0; i < num_sram; i++) {
1068		sram_np = of_parse_phandle(np, "sram", i);
1069		if (!sram_np)
1070			return -EINVAL;
1071
1072		if (!of_device_is_available(sram_np)) {
1073			of_node_put(sram_np);
1074			return -EINVAL;
1075		}
1076
1077		ret = of_address_to_resource(sram_np, 0, &res);
1078		of_node_put(sram_np);
1079		if (ret)
1080			return -EINVAL;
1081
1082		core->sram[i].bus_addr = res.start;
1083		core->sram[i].dev_addr = res.start;
1084		core->sram[i].size = resource_size(&res);
1085		core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1086							 resource_size(&res));
1087		if (!core->sram[i].cpu_addr) {
1088			dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1089				i, &res.start);
1090			return -ENOMEM;
1091		}
1092
1093		dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1094			i, &core->sram[i].bus_addr,
1095			core->sram[i].size, core->sram[i].cpu_addr,
1096			core->sram[i].dev_addr);
1097	}
1098	core->num_sram = num_sram;
1099
1100	return 0;
1101}
1102
1103static
1104struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1105					  const struct ti_sci_handle *sci)
1106{
1107	struct ti_sci_proc *tsp;
1108	u32 temp[2];
1109	int ret;
1110
1111	ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1112					 temp, 2);
1113	if (ret < 0)
1114		return ERR_PTR(ret);
1115
1116	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1117	if (!tsp)
1118		return ERR_PTR(-ENOMEM);
1119
1120	tsp->dev = dev;
1121	tsp->sci = sci;
1122	tsp->ops = &sci->ops.proc_ops;
1123	tsp->proc_id = temp[0];
1124	tsp->host_id = temp[1];
1125
1126	return tsp;
1127}
1128
1129static int k3_r5_core_of_init(struct platform_device *pdev)
1130{
1131	struct device *dev = &pdev->dev;
1132	struct device_node *np = dev_of_node(dev);
1133	struct k3_r5_core *core;
1134	int ret;
1135
1136	if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1137		return -ENOMEM;
1138
1139	core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1140	if (!core) {
1141		ret = -ENOMEM;
1142		goto err;
1143	}
1144
1145	core->dev = dev;
1146	/*
1147	 * Use SoC Power-on-Reset values as default if no DT properties are
1148	 * used to dictate the TCM configurations
1149	 */
1150	core->atcm_enable = 0;
1151	core->btcm_enable = 1;
1152	core->loczrama = 1;
1153
1154	ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1155	if (ret < 0 && ret != -EINVAL) {
1156		dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1157			ret);
1158		goto err;
1159	}
1160
1161	ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1162	if (ret < 0 && ret != -EINVAL) {
1163		dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1164			ret);
1165		goto err;
1166	}
1167
1168	ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1169	if (ret < 0 && ret != -EINVAL) {
1170		dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1171		goto err;
1172	}
1173
1174	core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1175	if (IS_ERR(core->ti_sci)) {
1176		ret = PTR_ERR(core->ti_sci);
1177		if (ret != -EPROBE_DEFER) {
1178			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1179				ret);
1180		}
1181		core->ti_sci = NULL;
1182		goto err;
1183	}
1184
1185	ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1186	if (ret) {
1187		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1188		goto err;
1189	}
1190
1191	core->reset = devm_reset_control_get_exclusive(dev, NULL);
1192	if (IS_ERR_OR_NULL(core->reset)) {
1193		ret = PTR_ERR_OR_ZERO(core->reset);
1194		if (!ret)
1195			ret = -ENODEV;
1196		if (ret != -EPROBE_DEFER) {
1197			dev_err(dev, "failed to get reset handle, ret = %d\n",
1198				ret);
1199		}
1200		goto err;
1201	}
1202
1203	core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1204	if (IS_ERR(core->tsp)) {
1205		ret = PTR_ERR(core->tsp);
1206		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1207			ret);
1208		goto err;
1209	}
1210
1211	ret = k3_r5_core_of_get_internal_memories(pdev, core);
1212	if (ret) {
1213		dev_err(dev, "failed to get internal memories, ret = %d\n",
1214			ret);
1215		goto err;
1216	}
1217
1218	ret = k3_r5_core_of_get_sram_memories(pdev, core);
1219	if (ret) {
1220		dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1221		goto err;
1222	}
1223
1224	ret = ti_sci_proc_request(core->tsp);
1225	if (ret < 0) {
1226		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1227		goto err;
1228	}
1229
1230	platform_set_drvdata(pdev, core);
1231	devres_close_group(dev, k3_r5_core_of_init);
1232
1233	return 0;
1234
1235err:
1236	devres_release_group(dev, k3_r5_core_of_init);
1237	return ret;
1238}
1239
1240/*
1241 * free the resources explicitly since driver model is not being used
1242 * for the child R5F devices
1243 */
1244static void k3_r5_core_of_exit(struct platform_device *pdev)
1245{
1246	struct k3_r5_core *core = platform_get_drvdata(pdev);
1247	struct device *dev = &pdev->dev;
1248	int ret;
1249
1250	ret = ti_sci_proc_release(core->tsp);
1251	if (ret)
1252		dev_err(dev, "failed to release proc, ret = %d\n", ret);
1253
1254	platform_set_drvdata(pdev, NULL);
1255	devres_release_group(dev, k3_r5_core_of_init);
1256}
1257
1258static void k3_r5_cluster_of_exit(struct platform_device *pdev)
1259{
1260	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1261	struct platform_device *cpdev;
1262	struct k3_r5_core *core, *temp;
1263
1264	list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1265		list_del(&core->elem);
1266		cpdev = to_platform_device(core->dev);
1267		k3_r5_core_of_exit(cpdev);
1268	}
1269}
1270
1271static int k3_r5_cluster_of_init(struct platform_device *pdev)
1272{
1273	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1274	struct device *dev = &pdev->dev;
1275	struct device_node *np = dev_of_node(dev);
1276	struct platform_device *cpdev;
1277	struct device_node *child;
1278	struct k3_r5_core *core;
1279	int ret;
1280
1281	for_each_available_child_of_node(np, child) {
1282		cpdev = of_find_device_by_node(child);
1283		if (!cpdev) {
1284			ret = -ENODEV;
1285			dev_err(dev, "could not get R5 core platform device\n");
1286			of_node_put(child);
1287			goto fail;
1288		}
1289
1290		ret = k3_r5_core_of_init(cpdev);
1291		if (ret) {
1292			dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1293				ret);
1294			put_device(&cpdev->dev);
1295			of_node_put(child);
1296			goto fail;
1297		}
1298
1299		core = platform_get_drvdata(cpdev);
1300		put_device(&cpdev->dev);
1301		list_add_tail(&core->elem, &cluster->cores);
1302	}
1303
1304	return 0;
1305
1306fail:
1307	k3_r5_cluster_of_exit(pdev);
1308	return ret;
1309}
1310
1311static int k3_r5_probe(struct platform_device *pdev)
1312{
1313	struct device *dev = &pdev->dev;
1314	struct device_node *np = dev_of_node(dev);
1315	struct k3_r5_cluster *cluster;
1316	int ret;
1317	int num_cores;
1318
1319	cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1320	if (!cluster)
1321		return -ENOMEM;
1322
1323	cluster->dev = dev;
1324	cluster->mode = CLUSTER_MODE_LOCKSTEP;
1325	INIT_LIST_HEAD(&cluster->cores);
1326
1327	ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1328	if (ret < 0 && ret != -EINVAL) {
1329		dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1330			ret);
1331		return ret;
1332	}
1333
1334	num_cores = of_get_available_child_count(np);
1335	if (num_cores != 2) {
1336		dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
1337			num_cores);
1338		return -ENODEV;
1339	}
1340
1341	platform_set_drvdata(pdev, cluster);
1342
1343	ret = devm_of_platform_populate(dev);
1344	if (ret) {
1345		dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1346			ret);
1347		return ret;
1348	}
1349
1350	ret = k3_r5_cluster_of_init(pdev);
1351	if (ret) {
1352		dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1353		return ret;
1354	}
1355
1356	ret = devm_add_action_or_reset(dev,
1357				       (void(*)(void *))k3_r5_cluster_of_exit,
1358				       pdev);
1359	if (ret)
1360		return ret;
1361
1362	ret = k3_r5_cluster_rproc_init(pdev);
1363	if (ret) {
1364		dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1365			ret);
1366		return ret;
1367	}
1368
1369	ret = devm_add_action_or_reset(dev,
1370				       (void(*)(void *))k3_r5_cluster_rproc_exit,
1371				       pdev);
1372	if (ret)
1373		return ret;
1374
1375	return 0;
1376}
1377
1378static const struct of_device_id k3_r5_of_match[] = {
1379	{ .compatible = "ti,am654-r5fss", },
1380	{ .compatible = "ti,j721e-r5fss", },
1381	{ /* sentinel */ },
1382};
1383MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1384
1385static struct platform_driver k3_r5_rproc_driver = {
1386	.probe = k3_r5_probe,
1387	.driver = {
1388		.name = "k3_r5_rproc",
1389		.of_match_table = k3_r5_of_match,
1390	},
1391};
1392
1393module_platform_driver(k3_r5_rproc_driver);
1394
1395MODULE_LICENSE("GPL v2");
1396MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1397MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1398