18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * TI K3 R5F (MCU) Remote Processor driver 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/ 68c2ecf20Sopenharmony_ci * Suman Anna <s-anna@ti.com> 78c2ecf20Sopenharmony_ci */ 88c2ecf20Sopenharmony_ci 98c2ecf20Sopenharmony_ci#include <linux/dma-mapping.h> 108c2ecf20Sopenharmony_ci#include <linux/err.h> 118c2ecf20Sopenharmony_ci#include <linux/interrupt.h> 128c2ecf20Sopenharmony_ci#include <linux/kernel.h> 138c2ecf20Sopenharmony_ci#include <linux/mailbox_client.h> 148c2ecf20Sopenharmony_ci#include <linux/module.h> 158c2ecf20Sopenharmony_ci#include <linux/of_address.h> 168c2ecf20Sopenharmony_ci#include <linux/of_device.h> 178c2ecf20Sopenharmony_ci#include <linux/of_reserved_mem.h> 188c2ecf20Sopenharmony_ci#include <linux/omap-mailbox.h> 198c2ecf20Sopenharmony_ci#include <linux/platform_device.h> 208c2ecf20Sopenharmony_ci#include <linux/pm_runtime.h> 218c2ecf20Sopenharmony_ci#include <linux/remoteproc.h> 228c2ecf20Sopenharmony_ci#include <linux/reset.h> 238c2ecf20Sopenharmony_ci#include <linux/slab.h> 248c2ecf20Sopenharmony_ci 258c2ecf20Sopenharmony_ci#include "omap_remoteproc.h" 268c2ecf20Sopenharmony_ci#include "remoteproc_internal.h" 278c2ecf20Sopenharmony_ci#include "ti_sci_proc.h" 288c2ecf20Sopenharmony_ci 298c2ecf20Sopenharmony_ci/* This address can either be for ATCM or BTCM with the other at address 0x0 */ 308c2ecf20Sopenharmony_ci#define K3_R5_TCM_DEV_ADDR 0x41010000 318c2ecf20Sopenharmony_ci 328c2ecf20Sopenharmony_ci/* R5 TI-SCI Processor Configuration Flags */ 338c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 348c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 358c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 368c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 378c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 388c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 398c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 408c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 418c2ecf20Sopenharmony_ci 428c2ecf20Sopenharmony_ci/* R5 TI-SCI Processor Control Flags */ 438c2ecf20Sopenharmony_ci#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 448c2ecf20Sopenharmony_ci 458c2ecf20Sopenharmony_ci/* R5 TI-SCI Processor Status Flags */ 468c2ecf20Sopenharmony_ci#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 478c2ecf20Sopenharmony_ci#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 488c2ecf20Sopenharmony_ci#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 498c2ecf20Sopenharmony_ci#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 508c2ecf20Sopenharmony_ci 518c2ecf20Sopenharmony_ci/** 528c2ecf20Sopenharmony_ci * struct k3_r5_mem - internal memory structure 538c2ecf20Sopenharmony_ci * @cpu_addr: MPU virtual address of the memory region 548c2ecf20Sopenharmony_ci * @bus_addr: Bus address used to access the memory region 558c2ecf20Sopenharmony_ci * @dev_addr: Device address from remoteproc view 568c2ecf20Sopenharmony_ci * @size: Size of the memory region 578c2ecf20Sopenharmony_ci */ 588c2ecf20Sopenharmony_cistruct k3_r5_mem { 598c2ecf20Sopenharmony_ci void __iomem *cpu_addr; 608c2ecf20Sopenharmony_ci phys_addr_t bus_addr; 618c2ecf20Sopenharmony_ci u32 dev_addr; 628c2ecf20Sopenharmony_ci size_t size; 638c2ecf20Sopenharmony_ci}; 648c2ecf20Sopenharmony_ci 658c2ecf20Sopenharmony_cienum cluster_mode { 668c2ecf20Sopenharmony_ci CLUSTER_MODE_SPLIT = 0, 678c2ecf20Sopenharmony_ci CLUSTER_MODE_LOCKSTEP, 688c2ecf20Sopenharmony_ci}; 698c2ecf20Sopenharmony_ci 708c2ecf20Sopenharmony_ci/** 718c2ecf20Sopenharmony_ci * struct k3_r5_cluster - K3 R5F Cluster structure 728c2ecf20Sopenharmony_ci * @dev: cached device pointer 738c2ecf20Sopenharmony_ci * @mode: Mode to configure the Cluster - Split or LockStep 748c2ecf20Sopenharmony_ci * @cores: list of R5 cores within the cluster 758c2ecf20Sopenharmony_ci */ 768c2ecf20Sopenharmony_cistruct k3_r5_cluster { 778c2ecf20Sopenharmony_ci struct device *dev; 788c2ecf20Sopenharmony_ci enum cluster_mode mode; 798c2ecf20Sopenharmony_ci struct list_head cores; 808c2ecf20Sopenharmony_ci}; 818c2ecf20Sopenharmony_ci 828c2ecf20Sopenharmony_ci/** 838c2ecf20Sopenharmony_ci * struct k3_r5_core - K3 R5 core structure 848c2ecf20Sopenharmony_ci * @elem: linked list item 858c2ecf20Sopenharmony_ci * @dev: cached device pointer 868c2ecf20Sopenharmony_ci * @rproc: rproc handle representing this core 878c2ecf20Sopenharmony_ci * @mem: internal memory regions data 888c2ecf20Sopenharmony_ci * @sram: on-chip SRAM memory regions data 898c2ecf20Sopenharmony_ci * @num_mems: number of internal memory regions 908c2ecf20Sopenharmony_ci * @num_sram: number of on-chip SRAM memory regions 918c2ecf20Sopenharmony_ci * @reset: reset control handle 928c2ecf20Sopenharmony_ci * @tsp: TI-SCI processor control handle 938c2ecf20Sopenharmony_ci * @ti_sci: TI-SCI handle 948c2ecf20Sopenharmony_ci * @ti_sci_id: TI-SCI device identifier 958c2ecf20Sopenharmony_ci * @atcm_enable: flag to control ATCM enablement 968c2ecf20Sopenharmony_ci * @btcm_enable: flag to control BTCM enablement 978c2ecf20Sopenharmony_ci * @loczrama: flag to dictate which TCM is at device address 0x0 988c2ecf20Sopenharmony_ci */ 998c2ecf20Sopenharmony_cistruct k3_r5_core { 1008c2ecf20Sopenharmony_ci struct list_head elem; 1018c2ecf20Sopenharmony_ci struct device *dev; 1028c2ecf20Sopenharmony_ci struct rproc *rproc; 1038c2ecf20Sopenharmony_ci struct k3_r5_mem *mem; 1048c2ecf20Sopenharmony_ci struct k3_r5_mem *sram; 1058c2ecf20Sopenharmony_ci int num_mems; 1068c2ecf20Sopenharmony_ci int num_sram; 1078c2ecf20Sopenharmony_ci struct reset_control *reset; 1088c2ecf20Sopenharmony_ci struct ti_sci_proc *tsp; 1098c2ecf20Sopenharmony_ci const struct ti_sci_handle *ti_sci; 1108c2ecf20Sopenharmony_ci u32 ti_sci_id; 1118c2ecf20Sopenharmony_ci u32 atcm_enable; 1128c2ecf20Sopenharmony_ci u32 btcm_enable; 1138c2ecf20Sopenharmony_ci u32 loczrama; 1148c2ecf20Sopenharmony_ci}; 1158c2ecf20Sopenharmony_ci 1168c2ecf20Sopenharmony_ci/** 1178c2ecf20Sopenharmony_ci * struct k3_r5_rproc - K3 remote processor state 1188c2ecf20Sopenharmony_ci * @dev: cached device pointer 1198c2ecf20Sopenharmony_ci * @cluster: cached pointer to parent cluster structure 1208c2ecf20Sopenharmony_ci * @mbox: mailbox channel handle 1218c2ecf20Sopenharmony_ci * @client: mailbox client to request the mailbox channel 1228c2ecf20Sopenharmony_ci * @rproc: rproc handle 1238c2ecf20Sopenharmony_ci * @core: cached pointer to r5 core structure being used 1248c2ecf20Sopenharmony_ci * @rmem: reserved memory regions data 1258c2ecf20Sopenharmony_ci * @num_rmems: number of reserved memory regions 1268c2ecf20Sopenharmony_ci */ 1278c2ecf20Sopenharmony_cistruct k3_r5_rproc { 1288c2ecf20Sopenharmony_ci struct device *dev; 1298c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster; 1308c2ecf20Sopenharmony_ci struct mbox_chan *mbox; 1318c2ecf20Sopenharmony_ci struct mbox_client client; 1328c2ecf20Sopenharmony_ci struct rproc *rproc; 1338c2ecf20Sopenharmony_ci struct k3_r5_core *core; 1348c2ecf20Sopenharmony_ci struct k3_r5_mem *rmem; 1358c2ecf20Sopenharmony_ci int num_rmems; 1368c2ecf20Sopenharmony_ci}; 1378c2ecf20Sopenharmony_ci 1388c2ecf20Sopenharmony_ci/** 1398c2ecf20Sopenharmony_ci * k3_r5_rproc_mbox_callback() - inbound mailbox message handler 1408c2ecf20Sopenharmony_ci * @client: mailbox client pointer used for requesting the mailbox channel 1418c2ecf20Sopenharmony_ci * @data: mailbox payload 1428c2ecf20Sopenharmony_ci * 1438c2ecf20Sopenharmony_ci * This handler is invoked by the OMAP mailbox driver whenever a mailbox 1448c2ecf20Sopenharmony_ci * message is received. Usually, the mailbox payload simply contains 1458c2ecf20Sopenharmony_ci * the index of the virtqueue that is kicked by the remote processor, 1468c2ecf20Sopenharmony_ci * and we let remoteproc core handle it. 1478c2ecf20Sopenharmony_ci * 1488c2ecf20Sopenharmony_ci * In addition to virtqueue indices, we also have some out-of-band values 1498c2ecf20Sopenharmony_ci * that indicate different events. Those values are deliberately very 1508c2ecf20Sopenharmony_ci * large so they don't coincide with virtqueue indices. 1518c2ecf20Sopenharmony_ci */ 1528c2ecf20Sopenharmony_cistatic void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) 1538c2ecf20Sopenharmony_ci{ 1548c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, 1558c2ecf20Sopenharmony_ci client); 1568c2ecf20Sopenharmony_ci struct device *dev = kproc->rproc->dev.parent; 1578c2ecf20Sopenharmony_ci const char *name = kproc->rproc->name; 1588c2ecf20Sopenharmony_ci u32 msg = omap_mbox_message(data); 1598c2ecf20Sopenharmony_ci 1608c2ecf20Sopenharmony_ci dev_dbg(dev, "mbox msg: 0x%x\n", msg); 1618c2ecf20Sopenharmony_ci 1628c2ecf20Sopenharmony_ci switch (msg) { 1638c2ecf20Sopenharmony_ci case RP_MBOX_CRASH: 1648c2ecf20Sopenharmony_ci /* 1658c2ecf20Sopenharmony_ci * remoteproc detected an exception, but error recovery is not 1668c2ecf20Sopenharmony_ci * supported. So, just log this for now 1678c2ecf20Sopenharmony_ci */ 1688c2ecf20Sopenharmony_ci dev_err(dev, "K3 R5F rproc %s crashed\n", name); 1698c2ecf20Sopenharmony_ci break; 1708c2ecf20Sopenharmony_ci case RP_MBOX_ECHO_REPLY: 1718c2ecf20Sopenharmony_ci dev_info(dev, "received echo reply from %s\n", name); 1728c2ecf20Sopenharmony_ci break; 1738c2ecf20Sopenharmony_ci default: 1748c2ecf20Sopenharmony_ci /* silently handle all other valid messages */ 1758c2ecf20Sopenharmony_ci if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) 1768c2ecf20Sopenharmony_ci return; 1778c2ecf20Sopenharmony_ci if (msg > kproc->rproc->max_notifyid) { 1788c2ecf20Sopenharmony_ci dev_dbg(dev, "dropping unknown message 0x%x", msg); 1798c2ecf20Sopenharmony_ci return; 1808c2ecf20Sopenharmony_ci } 1818c2ecf20Sopenharmony_ci /* msg contains the index of the triggered vring */ 1828c2ecf20Sopenharmony_ci if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) 1838c2ecf20Sopenharmony_ci dev_dbg(dev, "no message was found in vqid %d\n", msg); 1848c2ecf20Sopenharmony_ci } 1858c2ecf20Sopenharmony_ci} 1868c2ecf20Sopenharmony_ci 1878c2ecf20Sopenharmony_ci/* kick a virtqueue */ 1888c2ecf20Sopenharmony_cistatic void k3_r5_rproc_kick(struct rproc *rproc, int vqid) 1898c2ecf20Sopenharmony_ci{ 1908c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc = rproc->priv; 1918c2ecf20Sopenharmony_ci struct device *dev = rproc->dev.parent; 1928c2ecf20Sopenharmony_ci mbox_msg_t msg = (mbox_msg_t)vqid; 1938c2ecf20Sopenharmony_ci int ret; 1948c2ecf20Sopenharmony_ci 1958c2ecf20Sopenharmony_ci /* send the index of the triggered virtqueue in the mailbox payload */ 1968c2ecf20Sopenharmony_ci ret = mbox_send_message(kproc->mbox, (void *)msg); 1978c2ecf20Sopenharmony_ci if (ret < 0) 1988c2ecf20Sopenharmony_ci dev_err(dev, "failed to send mailbox message, status = %d\n", 1998c2ecf20Sopenharmony_ci ret); 2008c2ecf20Sopenharmony_ci} 2018c2ecf20Sopenharmony_ci 2028c2ecf20Sopenharmony_cistatic int k3_r5_split_reset(struct k3_r5_core *core) 2038c2ecf20Sopenharmony_ci{ 2048c2ecf20Sopenharmony_ci int ret; 2058c2ecf20Sopenharmony_ci 2068c2ecf20Sopenharmony_ci ret = reset_control_assert(core->reset); 2078c2ecf20Sopenharmony_ci if (ret) { 2088c2ecf20Sopenharmony_ci dev_err(core->dev, "local-reset assert failed, ret = %d\n", 2098c2ecf20Sopenharmony_ci ret); 2108c2ecf20Sopenharmony_ci return ret; 2118c2ecf20Sopenharmony_ci } 2128c2ecf20Sopenharmony_ci 2138c2ecf20Sopenharmony_ci ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 2148c2ecf20Sopenharmony_ci core->ti_sci_id); 2158c2ecf20Sopenharmony_ci if (ret) { 2168c2ecf20Sopenharmony_ci dev_err(core->dev, "module-reset assert failed, ret = %d\n", 2178c2ecf20Sopenharmony_ci ret); 2188c2ecf20Sopenharmony_ci if (reset_control_deassert(core->reset)) 2198c2ecf20Sopenharmony_ci dev_warn(core->dev, "local-reset deassert back failed\n"); 2208c2ecf20Sopenharmony_ci } 2218c2ecf20Sopenharmony_ci 2228c2ecf20Sopenharmony_ci return ret; 2238c2ecf20Sopenharmony_ci} 2248c2ecf20Sopenharmony_ci 2258c2ecf20Sopenharmony_cistatic int k3_r5_split_release(struct k3_r5_core *core) 2268c2ecf20Sopenharmony_ci{ 2278c2ecf20Sopenharmony_ci int ret; 2288c2ecf20Sopenharmony_ci 2298c2ecf20Sopenharmony_ci ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, 2308c2ecf20Sopenharmony_ci core->ti_sci_id); 2318c2ecf20Sopenharmony_ci if (ret) { 2328c2ecf20Sopenharmony_ci dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 2338c2ecf20Sopenharmony_ci ret); 2348c2ecf20Sopenharmony_ci return ret; 2358c2ecf20Sopenharmony_ci } 2368c2ecf20Sopenharmony_ci 2378c2ecf20Sopenharmony_ci ret = reset_control_deassert(core->reset); 2388c2ecf20Sopenharmony_ci if (ret) { 2398c2ecf20Sopenharmony_ci dev_err(core->dev, "local-reset deassert failed, ret = %d\n", 2408c2ecf20Sopenharmony_ci ret); 2418c2ecf20Sopenharmony_ci if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 2428c2ecf20Sopenharmony_ci core->ti_sci_id)) 2438c2ecf20Sopenharmony_ci dev_warn(core->dev, "module-reset assert back failed\n"); 2448c2ecf20Sopenharmony_ci } 2458c2ecf20Sopenharmony_ci 2468c2ecf20Sopenharmony_ci return ret; 2478c2ecf20Sopenharmony_ci} 2488c2ecf20Sopenharmony_ci 2498c2ecf20Sopenharmony_cistatic int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) 2508c2ecf20Sopenharmony_ci{ 2518c2ecf20Sopenharmony_ci struct k3_r5_core *core; 2528c2ecf20Sopenharmony_ci int ret; 2538c2ecf20Sopenharmony_ci 2548c2ecf20Sopenharmony_ci /* assert local reset on all applicable cores */ 2558c2ecf20Sopenharmony_ci list_for_each_entry(core, &cluster->cores, elem) { 2568c2ecf20Sopenharmony_ci ret = reset_control_assert(core->reset); 2578c2ecf20Sopenharmony_ci if (ret) { 2588c2ecf20Sopenharmony_ci dev_err(core->dev, "local-reset assert failed, ret = %d\n", 2598c2ecf20Sopenharmony_ci ret); 2608c2ecf20Sopenharmony_ci core = list_prev_entry(core, elem); 2618c2ecf20Sopenharmony_ci goto unroll_local_reset; 2628c2ecf20Sopenharmony_ci } 2638c2ecf20Sopenharmony_ci } 2648c2ecf20Sopenharmony_ci 2658c2ecf20Sopenharmony_ci /* disable PSC modules on all applicable cores */ 2668c2ecf20Sopenharmony_ci list_for_each_entry(core, &cluster->cores, elem) { 2678c2ecf20Sopenharmony_ci ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 2688c2ecf20Sopenharmony_ci core->ti_sci_id); 2698c2ecf20Sopenharmony_ci if (ret) { 2708c2ecf20Sopenharmony_ci dev_err(core->dev, "module-reset assert failed, ret = %d\n", 2718c2ecf20Sopenharmony_ci ret); 2728c2ecf20Sopenharmony_ci goto unroll_module_reset; 2738c2ecf20Sopenharmony_ci } 2748c2ecf20Sopenharmony_ci } 2758c2ecf20Sopenharmony_ci 2768c2ecf20Sopenharmony_ci return 0; 2778c2ecf20Sopenharmony_ci 2788c2ecf20Sopenharmony_ciunroll_module_reset: 2798c2ecf20Sopenharmony_ci list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { 2808c2ecf20Sopenharmony_ci if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 2818c2ecf20Sopenharmony_ci core->ti_sci_id)) 2828c2ecf20Sopenharmony_ci dev_warn(core->dev, "module-reset assert back failed\n"); 2838c2ecf20Sopenharmony_ci } 2848c2ecf20Sopenharmony_ci core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 2858c2ecf20Sopenharmony_ciunroll_local_reset: 2868c2ecf20Sopenharmony_ci list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 2878c2ecf20Sopenharmony_ci if (reset_control_deassert(core->reset)) 2888c2ecf20Sopenharmony_ci dev_warn(core->dev, "local-reset deassert back failed\n"); 2898c2ecf20Sopenharmony_ci } 2908c2ecf20Sopenharmony_ci 2918c2ecf20Sopenharmony_ci return ret; 2928c2ecf20Sopenharmony_ci} 2938c2ecf20Sopenharmony_ci 2948c2ecf20Sopenharmony_cistatic int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) 2958c2ecf20Sopenharmony_ci{ 2968c2ecf20Sopenharmony_ci struct k3_r5_core *core; 2978c2ecf20Sopenharmony_ci int ret; 2988c2ecf20Sopenharmony_ci 2998c2ecf20Sopenharmony_ci /* enable PSC modules on all applicable cores */ 3008c2ecf20Sopenharmony_ci list_for_each_entry_reverse(core, &cluster->cores, elem) { 3018c2ecf20Sopenharmony_ci ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, 3028c2ecf20Sopenharmony_ci core->ti_sci_id); 3038c2ecf20Sopenharmony_ci if (ret) { 3048c2ecf20Sopenharmony_ci dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 3058c2ecf20Sopenharmony_ci ret); 3068c2ecf20Sopenharmony_ci core = list_next_entry(core, elem); 3078c2ecf20Sopenharmony_ci goto unroll_module_reset; 3088c2ecf20Sopenharmony_ci } 3098c2ecf20Sopenharmony_ci } 3108c2ecf20Sopenharmony_ci 3118c2ecf20Sopenharmony_ci /* deassert local reset on all applicable cores */ 3128c2ecf20Sopenharmony_ci list_for_each_entry_reverse(core, &cluster->cores, elem) { 3138c2ecf20Sopenharmony_ci ret = reset_control_deassert(core->reset); 3148c2ecf20Sopenharmony_ci if (ret) { 3158c2ecf20Sopenharmony_ci dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 3168c2ecf20Sopenharmony_ci ret); 3178c2ecf20Sopenharmony_ci goto unroll_local_reset; 3188c2ecf20Sopenharmony_ci } 3198c2ecf20Sopenharmony_ci } 3208c2ecf20Sopenharmony_ci 3218c2ecf20Sopenharmony_ci return 0; 3228c2ecf20Sopenharmony_ci 3238c2ecf20Sopenharmony_ciunroll_local_reset: 3248c2ecf20Sopenharmony_ci list_for_each_entry_continue(core, &cluster->cores, elem) { 3258c2ecf20Sopenharmony_ci if (reset_control_assert(core->reset)) 3268c2ecf20Sopenharmony_ci dev_warn(core->dev, "local-reset assert back failed\n"); 3278c2ecf20Sopenharmony_ci } 3288c2ecf20Sopenharmony_ci core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 3298c2ecf20Sopenharmony_ciunroll_module_reset: 3308c2ecf20Sopenharmony_ci list_for_each_entry_from(core, &cluster->cores, elem) { 3318c2ecf20Sopenharmony_ci if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 3328c2ecf20Sopenharmony_ci core->ti_sci_id)) 3338c2ecf20Sopenharmony_ci dev_warn(core->dev, "module-reset assert back failed\n"); 3348c2ecf20Sopenharmony_ci } 3358c2ecf20Sopenharmony_ci 3368c2ecf20Sopenharmony_ci return ret; 3378c2ecf20Sopenharmony_ci} 3388c2ecf20Sopenharmony_ci 3398c2ecf20Sopenharmony_cistatic inline int k3_r5_core_halt(struct k3_r5_core *core) 3408c2ecf20Sopenharmony_ci{ 3418c2ecf20Sopenharmony_ci return ti_sci_proc_set_control(core->tsp, 3428c2ecf20Sopenharmony_ci PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); 3438c2ecf20Sopenharmony_ci} 3448c2ecf20Sopenharmony_ci 3458c2ecf20Sopenharmony_cistatic inline int k3_r5_core_run(struct k3_r5_core *core) 3468c2ecf20Sopenharmony_ci{ 3478c2ecf20Sopenharmony_ci return ti_sci_proc_set_control(core->tsp, 3488c2ecf20Sopenharmony_ci 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); 3498c2ecf20Sopenharmony_ci} 3508c2ecf20Sopenharmony_ci 3518c2ecf20Sopenharmony_ci/* 3528c2ecf20Sopenharmony_ci * The R5F cores have controls for both a reset and a halt/run. The code 3538c2ecf20Sopenharmony_ci * execution from DDR requires the initial boot-strapping code to be run 3548c2ecf20Sopenharmony_ci * from the internal TCMs. This function is used to release the resets on 3558c2ecf20Sopenharmony_ci * applicable cores to allow loading into the TCMs. The .prepare() ops is 3568c2ecf20Sopenharmony_ci * invoked by remoteproc core before any firmware loading, and is followed 3578c2ecf20Sopenharmony_ci * by the .start() ops after loading to actually let the R5 cores run. 3588c2ecf20Sopenharmony_ci */ 3598c2ecf20Sopenharmony_cistatic int k3_r5_rproc_prepare(struct rproc *rproc) 3608c2ecf20Sopenharmony_ci{ 3618c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc = rproc->priv; 3628c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = kproc->cluster; 3638c2ecf20Sopenharmony_ci struct k3_r5_core *core = kproc->core; 3648c2ecf20Sopenharmony_ci struct device *dev = kproc->dev; 3658c2ecf20Sopenharmony_ci int ret; 3668c2ecf20Sopenharmony_ci 3678c2ecf20Sopenharmony_ci ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? 3688c2ecf20Sopenharmony_ci k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); 3698c2ecf20Sopenharmony_ci if (ret) { 3708c2ecf20Sopenharmony_ci dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", 3718c2ecf20Sopenharmony_ci ret); 3728c2ecf20Sopenharmony_ci return ret; 3738c2ecf20Sopenharmony_ci } 3748c2ecf20Sopenharmony_ci 3758c2ecf20Sopenharmony_ci /* 3768c2ecf20Sopenharmony_ci * Zero out both TCMs unconditionally (access from v8 Arm core is not 3778c2ecf20Sopenharmony_ci * affected by ATCM & BTCM enable configuration values) so that ECC 3788c2ecf20Sopenharmony_ci * can be effective on all TCM addresses. 3798c2ecf20Sopenharmony_ci */ 3808c2ecf20Sopenharmony_ci dev_dbg(dev, "zeroing out ATCM memory\n"); 3818c2ecf20Sopenharmony_ci memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); 3828c2ecf20Sopenharmony_ci 3838c2ecf20Sopenharmony_ci dev_dbg(dev, "zeroing out BTCM memory\n"); 3848c2ecf20Sopenharmony_ci memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); 3858c2ecf20Sopenharmony_ci 3868c2ecf20Sopenharmony_ci return 0; 3878c2ecf20Sopenharmony_ci} 3888c2ecf20Sopenharmony_ci 3898c2ecf20Sopenharmony_ci/* 3908c2ecf20Sopenharmony_ci * This function implements the .unprepare() ops and performs the complimentary 3918c2ecf20Sopenharmony_ci * operations to that of the .prepare() ops. The function is used to assert the 3928c2ecf20Sopenharmony_ci * resets on all applicable cores for the rproc device (depending on LockStep 3938c2ecf20Sopenharmony_ci * or Split mode). This completes the second portion of powering down the R5F 3948c2ecf20Sopenharmony_ci * cores. The cores themselves are only halted in the .stop() ops, and the 3958c2ecf20Sopenharmony_ci * .unprepare() ops is invoked by the remoteproc core after the remoteproc is 3968c2ecf20Sopenharmony_ci * stopped. 3978c2ecf20Sopenharmony_ci */ 3988c2ecf20Sopenharmony_cistatic int k3_r5_rproc_unprepare(struct rproc *rproc) 3998c2ecf20Sopenharmony_ci{ 4008c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc = rproc->priv; 4018c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = kproc->cluster; 4028c2ecf20Sopenharmony_ci struct k3_r5_core *core = kproc->core; 4038c2ecf20Sopenharmony_ci struct device *dev = kproc->dev; 4048c2ecf20Sopenharmony_ci int ret; 4058c2ecf20Sopenharmony_ci 4068c2ecf20Sopenharmony_ci ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? 4078c2ecf20Sopenharmony_ci k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); 4088c2ecf20Sopenharmony_ci if (ret) 4098c2ecf20Sopenharmony_ci dev_err(dev, "unable to disable cores, ret = %d\n", ret); 4108c2ecf20Sopenharmony_ci 4118c2ecf20Sopenharmony_ci return ret; 4128c2ecf20Sopenharmony_ci} 4138c2ecf20Sopenharmony_ci 4148c2ecf20Sopenharmony_ci/* 4158c2ecf20Sopenharmony_ci * The R5F start sequence includes two different operations 4168c2ecf20Sopenharmony_ci * 1. Configure the boot vector for R5F core(s) 4178c2ecf20Sopenharmony_ci * 2. Unhalt/Run the R5F core(s) 4188c2ecf20Sopenharmony_ci * 4198c2ecf20Sopenharmony_ci * The sequence is different between LockStep and Split modes. The LockStep 4208c2ecf20Sopenharmony_ci * mode requires the boot vector to be configured only for Core0, and then 4218c2ecf20Sopenharmony_ci * unhalt both the cores to start the execution - Core1 needs to be unhalted 4228c2ecf20Sopenharmony_ci * first followed by Core0. The Split-mode requires that Core0 to be maintained 4238c2ecf20Sopenharmony_ci * always in a higher power state that Core1 (implying Core1 needs to be started 4248c2ecf20Sopenharmony_ci * always only after Core0 is started). 4258c2ecf20Sopenharmony_ci */ 4268c2ecf20Sopenharmony_cistatic int k3_r5_rproc_start(struct rproc *rproc) 4278c2ecf20Sopenharmony_ci{ 4288c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc = rproc->priv; 4298c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = kproc->cluster; 4308c2ecf20Sopenharmony_ci struct mbox_client *client = &kproc->client; 4318c2ecf20Sopenharmony_ci struct device *dev = kproc->dev; 4328c2ecf20Sopenharmony_ci struct k3_r5_core *core; 4338c2ecf20Sopenharmony_ci u32 boot_addr; 4348c2ecf20Sopenharmony_ci int ret; 4358c2ecf20Sopenharmony_ci 4368c2ecf20Sopenharmony_ci client->dev = dev; 4378c2ecf20Sopenharmony_ci client->tx_done = NULL; 4388c2ecf20Sopenharmony_ci client->rx_callback = k3_r5_rproc_mbox_callback; 4398c2ecf20Sopenharmony_ci client->tx_block = false; 4408c2ecf20Sopenharmony_ci client->knows_txdone = false; 4418c2ecf20Sopenharmony_ci 4428c2ecf20Sopenharmony_ci kproc->mbox = mbox_request_channel(client, 0); 4438c2ecf20Sopenharmony_ci if (IS_ERR(kproc->mbox)) { 4448c2ecf20Sopenharmony_ci ret = -EBUSY; 4458c2ecf20Sopenharmony_ci dev_err(dev, "mbox_request_channel failed: %ld\n", 4468c2ecf20Sopenharmony_ci PTR_ERR(kproc->mbox)); 4478c2ecf20Sopenharmony_ci return ret; 4488c2ecf20Sopenharmony_ci } 4498c2ecf20Sopenharmony_ci 4508c2ecf20Sopenharmony_ci /* 4518c2ecf20Sopenharmony_ci * Ping the remote processor, this is only for sanity-sake for now; 4528c2ecf20Sopenharmony_ci * there is no functional effect whatsoever. 4538c2ecf20Sopenharmony_ci * 4548c2ecf20Sopenharmony_ci * Note that the reply will _not_ arrive immediately: this message 4558c2ecf20Sopenharmony_ci * will wait in the mailbox fifo until the remote processor is booted. 4568c2ecf20Sopenharmony_ci */ 4578c2ecf20Sopenharmony_ci ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); 4588c2ecf20Sopenharmony_ci if (ret < 0) { 4598c2ecf20Sopenharmony_ci dev_err(dev, "mbox_send_message failed: %d\n", ret); 4608c2ecf20Sopenharmony_ci goto put_mbox; 4618c2ecf20Sopenharmony_ci } 4628c2ecf20Sopenharmony_ci 4638c2ecf20Sopenharmony_ci boot_addr = rproc->bootaddr; 4648c2ecf20Sopenharmony_ci /* TODO: add boot_addr sanity checking */ 4658c2ecf20Sopenharmony_ci dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); 4668c2ecf20Sopenharmony_ci 4678c2ecf20Sopenharmony_ci /* boot vector need not be programmed for Core1 in LockStep mode */ 4688c2ecf20Sopenharmony_ci core = kproc->core; 4698c2ecf20Sopenharmony_ci ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); 4708c2ecf20Sopenharmony_ci if (ret) 4718c2ecf20Sopenharmony_ci goto put_mbox; 4728c2ecf20Sopenharmony_ci 4738c2ecf20Sopenharmony_ci /* unhalt/run all applicable cores */ 4748c2ecf20Sopenharmony_ci if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 4758c2ecf20Sopenharmony_ci list_for_each_entry_reverse(core, &cluster->cores, elem) { 4768c2ecf20Sopenharmony_ci ret = k3_r5_core_run(core); 4778c2ecf20Sopenharmony_ci if (ret) 4788c2ecf20Sopenharmony_ci goto unroll_core_run; 4798c2ecf20Sopenharmony_ci } 4808c2ecf20Sopenharmony_ci } else { 4818c2ecf20Sopenharmony_ci ret = k3_r5_core_run(core); 4828c2ecf20Sopenharmony_ci if (ret) 4838c2ecf20Sopenharmony_ci goto put_mbox; 4848c2ecf20Sopenharmony_ci } 4858c2ecf20Sopenharmony_ci 4868c2ecf20Sopenharmony_ci return 0; 4878c2ecf20Sopenharmony_ci 4888c2ecf20Sopenharmony_ciunroll_core_run: 4898c2ecf20Sopenharmony_ci list_for_each_entry_continue(core, &cluster->cores, elem) { 4908c2ecf20Sopenharmony_ci if (k3_r5_core_halt(core)) 4918c2ecf20Sopenharmony_ci dev_warn(core->dev, "core halt back failed\n"); 4928c2ecf20Sopenharmony_ci } 4938c2ecf20Sopenharmony_ciput_mbox: 4948c2ecf20Sopenharmony_ci mbox_free_channel(kproc->mbox); 4958c2ecf20Sopenharmony_ci return ret; 4968c2ecf20Sopenharmony_ci} 4978c2ecf20Sopenharmony_ci 4988c2ecf20Sopenharmony_ci/* 4998c2ecf20Sopenharmony_ci * The R5F stop function includes the following operations 5008c2ecf20Sopenharmony_ci * 1. Halt R5F core(s) 5018c2ecf20Sopenharmony_ci * 5028c2ecf20Sopenharmony_ci * The sequence is different between LockStep and Split modes, and the order 5038c2ecf20Sopenharmony_ci * of cores the operations are performed are also in general reverse to that 5048c2ecf20Sopenharmony_ci * of the start function. The LockStep mode requires each operation to be 5058c2ecf20Sopenharmony_ci * performed first on Core0 followed by Core1. The Split-mode requires that 5068c2ecf20Sopenharmony_ci * Core0 to be maintained always in a higher power state that Core1 (implying 5078c2ecf20Sopenharmony_ci * Core1 needs to be stopped first before Core0). 5088c2ecf20Sopenharmony_ci * 5098c2ecf20Sopenharmony_ci * Note that the R5F halt operation in general is not effective when the R5F 5108c2ecf20Sopenharmony_ci * core is running, but is needed to make sure the core won't run after 5118c2ecf20Sopenharmony_ci * deasserting the reset the subsequent time. The asserting of reset can 5128c2ecf20Sopenharmony_ci * be done here, but is preferred to be done in the .unprepare() ops - this 5138c2ecf20Sopenharmony_ci * maintains the symmetric behavior between the .start(), .stop(), .prepare() 5148c2ecf20Sopenharmony_ci * and .unprepare() ops, and also balances them well between sysfs 'state' 5158c2ecf20Sopenharmony_ci * flow and device bind/unbind or module removal. 5168c2ecf20Sopenharmony_ci */ 5178c2ecf20Sopenharmony_cistatic int k3_r5_rproc_stop(struct rproc *rproc) 5188c2ecf20Sopenharmony_ci{ 5198c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc = rproc->priv; 5208c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = kproc->cluster; 5218c2ecf20Sopenharmony_ci struct k3_r5_core *core = kproc->core; 5228c2ecf20Sopenharmony_ci int ret; 5238c2ecf20Sopenharmony_ci 5248c2ecf20Sopenharmony_ci /* halt all applicable cores */ 5258c2ecf20Sopenharmony_ci if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 5268c2ecf20Sopenharmony_ci list_for_each_entry(core, &cluster->cores, elem) { 5278c2ecf20Sopenharmony_ci ret = k3_r5_core_halt(core); 5288c2ecf20Sopenharmony_ci if (ret) { 5298c2ecf20Sopenharmony_ci core = list_prev_entry(core, elem); 5308c2ecf20Sopenharmony_ci goto unroll_core_halt; 5318c2ecf20Sopenharmony_ci } 5328c2ecf20Sopenharmony_ci } 5338c2ecf20Sopenharmony_ci } else { 5348c2ecf20Sopenharmony_ci ret = k3_r5_core_halt(core); 5358c2ecf20Sopenharmony_ci if (ret) 5368c2ecf20Sopenharmony_ci goto out; 5378c2ecf20Sopenharmony_ci } 5388c2ecf20Sopenharmony_ci 5398c2ecf20Sopenharmony_ci mbox_free_channel(kproc->mbox); 5408c2ecf20Sopenharmony_ci 5418c2ecf20Sopenharmony_ci return 0; 5428c2ecf20Sopenharmony_ci 5438c2ecf20Sopenharmony_ciunroll_core_halt: 5448c2ecf20Sopenharmony_ci list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 5458c2ecf20Sopenharmony_ci if (k3_r5_core_run(core)) 5468c2ecf20Sopenharmony_ci dev_warn(core->dev, "core run back failed\n"); 5478c2ecf20Sopenharmony_ci } 5488c2ecf20Sopenharmony_ciout: 5498c2ecf20Sopenharmony_ci return ret; 5508c2ecf20Sopenharmony_ci} 5518c2ecf20Sopenharmony_ci 5528c2ecf20Sopenharmony_ci/* 5538c2ecf20Sopenharmony_ci * Internal Memory translation helper 5548c2ecf20Sopenharmony_ci * 5558c2ecf20Sopenharmony_ci * Custom function implementing the rproc .da_to_va ops to provide address 5568c2ecf20Sopenharmony_ci * translation (device address to kernel virtual address) for internal RAMs 5578c2ecf20Sopenharmony_ci * present in a DSP or IPU device). The translated addresses can be used 5588c2ecf20Sopenharmony_ci * either by the remoteproc core for loading, or by any rpmsg bus drivers. 5598c2ecf20Sopenharmony_ci */ 5608c2ecf20Sopenharmony_cistatic void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 5618c2ecf20Sopenharmony_ci{ 5628c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc = rproc->priv; 5638c2ecf20Sopenharmony_ci struct k3_r5_core *core = kproc->core; 5648c2ecf20Sopenharmony_ci void __iomem *va = NULL; 5658c2ecf20Sopenharmony_ci phys_addr_t bus_addr; 5668c2ecf20Sopenharmony_ci u32 dev_addr, offset; 5678c2ecf20Sopenharmony_ci size_t size; 5688c2ecf20Sopenharmony_ci int i; 5698c2ecf20Sopenharmony_ci 5708c2ecf20Sopenharmony_ci if (len == 0) 5718c2ecf20Sopenharmony_ci return NULL; 5728c2ecf20Sopenharmony_ci 5738c2ecf20Sopenharmony_ci /* handle both R5 and SoC views of ATCM and BTCM */ 5748c2ecf20Sopenharmony_ci for (i = 0; i < core->num_mems; i++) { 5758c2ecf20Sopenharmony_ci bus_addr = core->mem[i].bus_addr; 5768c2ecf20Sopenharmony_ci dev_addr = core->mem[i].dev_addr; 5778c2ecf20Sopenharmony_ci size = core->mem[i].size; 5788c2ecf20Sopenharmony_ci 5798c2ecf20Sopenharmony_ci /* handle R5-view addresses of TCMs */ 5808c2ecf20Sopenharmony_ci if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 5818c2ecf20Sopenharmony_ci offset = da - dev_addr; 5828c2ecf20Sopenharmony_ci va = core->mem[i].cpu_addr + offset; 5838c2ecf20Sopenharmony_ci return (__force void *)va; 5848c2ecf20Sopenharmony_ci } 5858c2ecf20Sopenharmony_ci 5868c2ecf20Sopenharmony_ci /* handle SoC-view addresses of TCMs */ 5878c2ecf20Sopenharmony_ci if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { 5888c2ecf20Sopenharmony_ci offset = da - bus_addr; 5898c2ecf20Sopenharmony_ci va = core->mem[i].cpu_addr + offset; 5908c2ecf20Sopenharmony_ci return (__force void *)va; 5918c2ecf20Sopenharmony_ci } 5928c2ecf20Sopenharmony_ci } 5938c2ecf20Sopenharmony_ci 5948c2ecf20Sopenharmony_ci /* handle any SRAM regions using SoC-view addresses */ 5958c2ecf20Sopenharmony_ci for (i = 0; i < core->num_sram; i++) { 5968c2ecf20Sopenharmony_ci dev_addr = core->sram[i].dev_addr; 5978c2ecf20Sopenharmony_ci size = core->sram[i].size; 5988c2ecf20Sopenharmony_ci 5998c2ecf20Sopenharmony_ci if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 6008c2ecf20Sopenharmony_ci offset = da - dev_addr; 6018c2ecf20Sopenharmony_ci va = core->sram[i].cpu_addr + offset; 6028c2ecf20Sopenharmony_ci return (__force void *)va; 6038c2ecf20Sopenharmony_ci } 6048c2ecf20Sopenharmony_ci } 6058c2ecf20Sopenharmony_ci 6068c2ecf20Sopenharmony_ci /* handle static DDR reserved memory regions */ 6078c2ecf20Sopenharmony_ci for (i = 0; i < kproc->num_rmems; i++) { 6088c2ecf20Sopenharmony_ci dev_addr = kproc->rmem[i].dev_addr; 6098c2ecf20Sopenharmony_ci size = kproc->rmem[i].size; 6108c2ecf20Sopenharmony_ci 6118c2ecf20Sopenharmony_ci if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 6128c2ecf20Sopenharmony_ci offset = da - dev_addr; 6138c2ecf20Sopenharmony_ci va = kproc->rmem[i].cpu_addr + offset; 6148c2ecf20Sopenharmony_ci return (__force void *)va; 6158c2ecf20Sopenharmony_ci } 6168c2ecf20Sopenharmony_ci } 6178c2ecf20Sopenharmony_ci 6188c2ecf20Sopenharmony_ci return NULL; 6198c2ecf20Sopenharmony_ci} 6208c2ecf20Sopenharmony_ci 6218c2ecf20Sopenharmony_cistatic const struct rproc_ops k3_r5_rproc_ops = { 6228c2ecf20Sopenharmony_ci .prepare = k3_r5_rproc_prepare, 6238c2ecf20Sopenharmony_ci .unprepare = k3_r5_rproc_unprepare, 6248c2ecf20Sopenharmony_ci .start = k3_r5_rproc_start, 6258c2ecf20Sopenharmony_ci .stop = k3_r5_rproc_stop, 6268c2ecf20Sopenharmony_ci .kick = k3_r5_rproc_kick, 6278c2ecf20Sopenharmony_ci .da_to_va = k3_r5_rproc_da_to_va, 6288c2ecf20Sopenharmony_ci}; 6298c2ecf20Sopenharmony_ci 6308c2ecf20Sopenharmony_ci/* 6318c2ecf20Sopenharmony_ci * Internal R5F Core configuration 6328c2ecf20Sopenharmony_ci * 6338c2ecf20Sopenharmony_ci * Each R5FSS has a cluster-level setting for configuring the processor 6348c2ecf20Sopenharmony_ci * subsystem either in a safety/fault-tolerant LockStep mode or a performance 6358c2ecf20Sopenharmony_ci * oriented Split mode. Each R5F core has a number of settings to either 6368c2ecf20Sopenharmony_ci * enable/disable each of the TCMs, control which TCM appears at the R5F core's 6378c2ecf20Sopenharmony_ci * address 0x0. These settings need to be configured before the resets for the 6388c2ecf20Sopenharmony_ci * corresponding core are released. These settings are all protected and managed 6398c2ecf20Sopenharmony_ci * by the System Processor. 6408c2ecf20Sopenharmony_ci * 6418c2ecf20Sopenharmony_ci * This function is used to pre-configure these settings for each R5F core, and 6428c2ecf20Sopenharmony_ci * the configuration is all done through various ti_sci_proc functions that 6438c2ecf20Sopenharmony_ci * communicate with the System Processor. The function also ensures that both 6448c2ecf20Sopenharmony_ci * the cores are halted before the .prepare() step. 6458c2ecf20Sopenharmony_ci * 6468c2ecf20Sopenharmony_ci * The function is called from k3_r5_cluster_rproc_init() and is invoked either 6478c2ecf20Sopenharmony_ci * once (in LockStep mode) or twice (in Split mode). Support for LockStep-mode 6488c2ecf20Sopenharmony_ci * is dictated by an eFUSE register bit, and the config settings retrieved from 6498c2ecf20Sopenharmony_ci * DT are adjusted accordingly as per the permitted cluster mode. All cluster 6508c2ecf20Sopenharmony_ci * level settings like Cluster mode and TEINIT (exception handling state 6518c2ecf20Sopenharmony_ci * dictating ARM or Thumb mode) can only be set and retrieved using Core0. 6528c2ecf20Sopenharmony_ci * 6538c2ecf20Sopenharmony_ci * The function behavior is different based on the cluster mode. The R5F cores 6548c2ecf20Sopenharmony_ci * are configured independently as per their individual settings in Split mode. 6558c2ecf20Sopenharmony_ci * They are identically configured in LockStep mode using the primary Core0 6568c2ecf20Sopenharmony_ci * settings. However, some individual settings cannot be set in LockStep mode. 6578c2ecf20Sopenharmony_ci * This is overcome by switching to Split-mode initially and then programming 6588c2ecf20Sopenharmony_ci * both the cores with the same settings, before reconfiguing again for 6598c2ecf20Sopenharmony_ci * LockStep mode. 6608c2ecf20Sopenharmony_ci */ 6618c2ecf20Sopenharmony_cistatic int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) 6628c2ecf20Sopenharmony_ci{ 6638c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = kproc->cluster; 6648c2ecf20Sopenharmony_ci struct device *dev = kproc->dev; 6658c2ecf20Sopenharmony_ci struct k3_r5_core *core0, *core, *temp; 6668c2ecf20Sopenharmony_ci u32 ctrl = 0, cfg = 0, stat = 0; 6678c2ecf20Sopenharmony_ci u32 set_cfg = 0, clr_cfg = 0; 6688c2ecf20Sopenharmony_ci u64 boot_vec = 0; 6698c2ecf20Sopenharmony_ci bool lockstep_en; 6708c2ecf20Sopenharmony_ci int ret; 6718c2ecf20Sopenharmony_ci 6728c2ecf20Sopenharmony_ci core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 6738c2ecf20Sopenharmony_ci core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? core0 : kproc->core; 6748c2ecf20Sopenharmony_ci 6758c2ecf20Sopenharmony_ci ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, 6768c2ecf20Sopenharmony_ci &stat); 6778c2ecf20Sopenharmony_ci if (ret < 0) 6788c2ecf20Sopenharmony_ci return ret; 6798c2ecf20Sopenharmony_ci 6808c2ecf20Sopenharmony_ci dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", 6818c2ecf20Sopenharmony_ci boot_vec, cfg, ctrl, stat); 6828c2ecf20Sopenharmony_ci 6838c2ecf20Sopenharmony_ci lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); 6848c2ecf20Sopenharmony_ci if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { 6858c2ecf20Sopenharmony_ci dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); 6868c2ecf20Sopenharmony_ci cluster->mode = CLUSTER_MODE_SPLIT; 6878c2ecf20Sopenharmony_ci } 6888c2ecf20Sopenharmony_ci 6898c2ecf20Sopenharmony_ci /* always enable ARM mode and set boot vector to 0 */ 6908c2ecf20Sopenharmony_ci boot_vec = 0x0; 6918c2ecf20Sopenharmony_ci if (core == core0) { 6928c2ecf20Sopenharmony_ci clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; 6938c2ecf20Sopenharmony_ci /* 6948c2ecf20Sopenharmony_ci * LockStep configuration bit is Read-only on Split-mode _only_ 6958c2ecf20Sopenharmony_ci * devices and system firmware will NACK any requests with the 6968c2ecf20Sopenharmony_ci * bit configured, so program it only on permitted devices 6978c2ecf20Sopenharmony_ci */ 6988c2ecf20Sopenharmony_ci if (lockstep_en) 6998c2ecf20Sopenharmony_ci clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 7008c2ecf20Sopenharmony_ci } 7018c2ecf20Sopenharmony_ci 7028c2ecf20Sopenharmony_ci if (core->atcm_enable) 7038c2ecf20Sopenharmony_ci set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 7048c2ecf20Sopenharmony_ci else 7058c2ecf20Sopenharmony_ci clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 7068c2ecf20Sopenharmony_ci 7078c2ecf20Sopenharmony_ci if (core->btcm_enable) 7088c2ecf20Sopenharmony_ci set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 7098c2ecf20Sopenharmony_ci else 7108c2ecf20Sopenharmony_ci clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 7118c2ecf20Sopenharmony_ci 7128c2ecf20Sopenharmony_ci if (core->loczrama) 7138c2ecf20Sopenharmony_ci set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 7148c2ecf20Sopenharmony_ci else 7158c2ecf20Sopenharmony_ci clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 7168c2ecf20Sopenharmony_ci 7178c2ecf20Sopenharmony_ci if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 7188c2ecf20Sopenharmony_ci /* 7198c2ecf20Sopenharmony_ci * work around system firmware limitations to make sure both 7208c2ecf20Sopenharmony_ci * cores are programmed symmetrically in LockStep. LockStep 7218c2ecf20Sopenharmony_ci * and TEINIT config is only allowed with Core0. 7228c2ecf20Sopenharmony_ci */ 7238c2ecf20Sopenharmony_ci list_for_each_entry(temp, &cluster->cores, elem) { 7248c2ecf20Sopenharmony_ci ret = k3_r5_core_halt(temp); 7258c2ecf20Sopenharmony_ci if (ret) 7268c2ecf20Sopenharmony_ci goto out; 7278c2ecf20Sopenharmony_ci 7288c2ecf20Sopenharmony_ci if (temp != core) { 7298c2ecf20Sopenharmony_ci clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 7308c2ecf20Sopenharmony_ci clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; 7318c2ecf20Sopenharmony_ci } 7328c2ecf20Sopenharmony_ci ret = ti_sci_proc_set_config(temp->tsp, boot_vec, 7338c2ecf20Sopenharmony_ci set_cfg, clr_cfg); 7348c2ecf20Sopenharmony_ci if (ret) 7358c2ecf20Sopenharmony_ci goto out; 7368c2ecf20Sopenharmony_ci } 7378c2ecf20Sopenharmony_ci 7388c2ecf20Sopenharmony_ci set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 7398c2ecf20Sopenharmony_ci clr_cfg = 0; 7408c2ecf20Sopenharmony_ci ret = ti_sci_proc_set_config(core->tsp, boot_vec, 7418c2ecf20Sopenharmony_ci set_cfg, clr_cfg); 7428c2ecf20Sopenharmony_ci } else { 7438c2ecf20Sopenharmony_ci ret = k3_r5_core_halt(core); 7448c2ecf20Sopenharmony_ci if (ret) 7458c2ecf20Sopenharmony_ci goto out; 7468c2ecf20Sopenharmony_ci 7478c2ecf20Sopenharmony_ci ret = ti_sci_proc_set_config(core->tsp, boot_vec, 7488c2ecf20Sopenharmony_ci set_cfg, clr_cfg); 7498c2ecf20Sopenharmony_ci } 7508c2ecf20Sopenharmony_ci 7518c2ecf20Sopenharmony_ciout: 7528c2ecf20Sopenharmony_ci return ret; 7538c2ecf20Sopenharmony_ci} 7548c2ecf20Sopenharmony_ci 7558c2ecf20Sopenharmony_cistatic int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) 7568c2ecf20Sopenharmony_ci{ 7578c2ecf20Sopenharmony_ci struct device *dev = kproc->dev; 7588c2ecf20Sopenharmony_ci struct device_node *np = dev_of_node(dev); 7598c2ecf20Sopenharmony_ci struct device_node *rmem_np; 7608c2ecf20Sopenharmony_ci struct reserved_mem *rmem; 7618c2ecf20Sopenharmony_ci int num_rmems; 7628c2ecf20Sopenharmony_ci int ret, i; 7638c2ecf20Sopenharmony_ci 7648c2ecf20Sopenharmony_ci num_rmems = of_property_count_elems_of_size(np, "memory-region", 7658c2ecf20Sopenharmony_ci sizeof(phandle)); 7668c2ecf20Sopenharmony_ci if (num_rmems <= 0) { 7678c2ecf20Sopenharmony_ci dev_err(dev, "device does not have reserved memory regions, ret = %d\n", 7688c2ecf20Sopenharmony_ci num_rmems); 7698c2ecf20Sopenharmony_ci return -EINVAL; 7708c2ecf20Sopenharmony_ci } 7718c2ecf20Sopenharmony_ci if (num_rmems < 2) { 7728c2ecf20Sopenharmony_ci dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n", 7738c2ecf20Sopenharmony_ci num_rmems); 7748c2ecf20Sopenharmony_ci return -EINVAL; 7758c2ecf20Sopenharmony_ci } 7768c2ecf20Sopenharmony_ci 7778c2ecf20Sopenharmony_ci /* use reserved memory region 0 for vring DMA allocations */ 7788c2ecf20Sopenharmony_ci ret = of_reserved_mem_device_init_by_idx(dev, np, 0); 7798c2ecf20Sopenharmony_ci if (ret) { 7808c2ecf20Sopenharmony_ci dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", 7818c2ecf20Sopenharmony_ci ret); 7828c2ecf20Sopenharmony_ci return ret; 7838c2ecf20Sopenharmony_ci } 7848c2ecf20Sopenharmony_ci 7858c2ecf20Sopenharmony_ci num_rmems--; 7868c2ecf20Sopenharmony_ci kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); 7878c2ecf20Sopenharmony_ci if (!kproc->rmem) { 7888c2ecf20Sopenharmony_ci ret = -ENOMEM; 7898c2ecf20Sopenharmony_ci goto release_rmem; 7908c2ecf20Sopenharmony_ci } 7918c2ecf20Sopenharmony_ci 7928c2ecf20Sopenharmony_ci /* use remaining reserved memory regions for static carveouts */ 7938c2ecf20Sopenharmony_ci for (i = 0; i < num_rmems; i++) { 7948c2ecf20Sopenharmony_ci rmem_np = of_parse_phandle(np, "memory-region", i + 1); 7958c2ecf20Sopenharmony_ci if (!rmem_np) { 7968c2ecf20Sopenharmony_ci ret = -EINVAL; 7978c2ecf20Sopenharmony_ci goto unmap_rmem; 7988c2ecf20Sopenharmony_ci } 7998c2ecf20Sopenharmony_ci 8008c2ecf20Sopenharmony_ci rmem = of_reserved_mem_lookup(rmem_np); 8018c2ecf20Sopenharmony_ci if (!rmem) { 8028c2ecf20Sopenharmony_ci of_node_put(rmem_np); 8038c2ecf20Sopenharmony_ci ret = -EINVAL; 8048c2ecf20Sopenharmony_ci goto unmap_rmem; 8058c2ecf20Sopenharmony_ci } 8068c2ecf20Sopenharmony_ci of_node_put(rmem_np); 8078c2ecf20Sopenharmony_ci 8088c2ecf20Sopenharmony_ci kproc->rmem[i].bus_addr = rmem->base; 8098c2ecf20Sopenharmony_ci /* 8108c2ecf20Sopenharmony_ci * R5Fs do not have an MMU, but have a Region Address Translator 8118c2ecf20Sopenharmony_ci * (RAT) module that provides a fixed entry translation between 8128c2ecf20Sopenharmony_ci * the 32-bit processor addresses to 64-bit bus addresses. The 8138c2ecf20Sopenharmony_ci * RAT is programmable only by the R5F cores. Support for RAT 8148c2ecf20Sopenharmony_ci * is currently not supported, so 64-bit address regions are not 8158c2ecf20Sopenharmony_ci * supported. The absence of MMUs implies that the R5F device 8168c2ecf20Sopenharmony_ci * addresses/supported memory regions are restricted to 32-bit 8178c2ecf20Sopenharmony_ci * bus addresses, and are identical 8188c2ecf20Sopenharmony_ci */ 8198c2ecf20Sopenharmony_ci kproc->rmem[i].dev_addr = (u32)rmem->base; 8208c2ecf20Sopenharmony_ci kproc->rmem[i].size = rmem->size; 8218c2ecf20Sopenharmony_ci kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); 8228c2ecf20Sopenharmony_ci if (!kproc->rmem[i].cpu_addr) { 8238c2ecf20Sopenharmony_ci dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", 8248c2ecf20Sopenharmony_ci i + 1, &rmem->base, &rmem->size); 8258c2ecf20Sopenharmony_ci ret = -ENOMEM; 8268c2ecf20Sopenharmony_ci goto unmap_rmem; 8278c2ecf20Sopenharmony_ci } 8288c2ecf20Sopenharmony_ci 8298c2ecf20Sopenharmony_ci dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 8308c2ecf20Sopenharmony_ci i + 1, &kproc->rmem[i].bus_addr, 8318c2ecf20Sopenharmony_ci kproc->rmem[i].size, kproc->rmem[i].cpu_addr, 8328c2ecf20Sopenharmony_ci kproc->rmem[i].dev_addr); 8338c2ecf20Sopenharmony_ci } 8348c2ecf20Sopenharmony_ci kproc->num_rmems = num_rmems; 8358c2ecf20Sopenharmony_ci 8368c2ecf20Sopenharmony_ci return 0; 8378c2ecf20Sopenharmony_ci 8388c2ecf20Sopenharmony_ciunmap_rmem: 8398c2ecf20Sopenharmony_ci for (i--; i >= 0; i--) 8408c2ecf20Sopenharmony_ci iounmap(kproc->rmem[i].cpu_addr); 8418c2ecf20Sopenharmony_ci kfree(kproc->rmem); 8428c2ecf20Sopenharmony_cirelease_rmem: 8438c2ecf20Sopenharmony_ci of_reserved_mem_device_release(dev); 8448c2ecf20Sopenharmony_ci return ret; 8458c2ecf20Sopenharmony_ci} 8468c2ecf20Sopenharmony_ci 8478c2ecf20Sopenharmony_cistatic void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) 8488c2ecf20Sopenharmony_ci{ 8498c2ecf20Sopenharmony_ci int i; 8508c2ecf20Sopenharmony_ci 8518c2ecf20Sopenharmony_ci for (i = 0; i < kproc->num_rmems; i++) 8528c2ecf20Sopenharmony_ci iounmap(kproc->rmem[i].cpu_addr); 8538c2ecf20Sopenharmony_ci kfree(kproc->rmem); 8548c2ecf20Sopenharmony_ci 8558c2ecf20Sopenharmony_ci of_reserved_mem_device_release(kproc->dev); 8568c2ecf20Sopenharmony_ci} 8578c2ecf20Sopenharmony_ci 8588c2ecf20Sopenharmony_cistatic int k3_r5_cluster_rproc_init(struct platform_device *pdev) 8598c2ecf20Sopenharmony_ci{ 8608c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 8618c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 8628c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc; 8638c2ecf20Sopenharmony_ci struct k3_r5_core *core, *core1; 8648c2ecf20Sopenharmony_ci struct device *cdev; 8658c2ecf20Sopenharmony_ci const char *fw_name; 8668c2ecf20Sopenharmony_ci struct rproc *rproc; 8678c2ecf20Sopenharmony_ci int ret; 8688c2ecf20Sopenharmony_ci 8698c2ecf20Sopenharmony_ci core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 8708c2ecf20Sopenharmony_ci list_for_each_entry(core, &cluster->cores, elem) { 8718c2ecf20Sopenharmony_ci cdev = core->dev; 8728c2ecf20Sopenharmony_ci ret = rproc_of_parse_firmware(cdev, 0, &fw_name); 8738c2ecf20Sopenharmony_ci if (ret) { 8748c2ecf20Sopenharmony_ci dev_err(dev, "failed to parse firmware-name property, ret = %d\n", 8758c2ecf20Sopenharmony_ci ret); 8768c2ecf20Sopenharmony_ci goto out; 8778c2ecf20Sopenharmony_ci } 8788c2ecf20Sopenharmony_ci 8798c2ecf20Sopenharmony_ci rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, 8808c2ecf20Sopenharmony_ci fw_name, sizeof(*kproc)); 8818c2ecf20Sopenharmony_ci if (!rproc) { 8828c2ecf20Sopenharmony_ci ret = -ENOMEM; 8838c2ecf20Sopenharmony_ci goto out; 8848c2ecf20Sopenharmony_ci } 8858c2ecf20Sopenharmony_ci 8868c2ecf20Sopenharmony_ci /* K3 R5s have a Region Address Translator (RAT) but no MMU */ 8878c2ecf20Sopenharmony_ci rproc->has_iommu = false; 8888c2ecf20Sopenharmony_ci /* error recovery is not supported at present */ 8898c2ecf20Sopenharmony_ci rproc->recovery_disabled = true; 8908c2ecf20Sopenharmony_ci 8918c2ecf20Sopenharmony_ci kproc = rproc->priv; 8928c2ecf20Sopenharmony_ci kproc->cluster = cluster; 8938c2ecf20Sopenharmony_ci kproc->core = core; 8948c2ecf20Sopenharmony_ci kproc->dev = cdev; 8958c2ecf20Sopenharmony_ci kproc->rproc = rproc; 8968c2ecf20Sopenharmony_ci core->rproc = rproc; 8978c2ecf20Sopenharmony_ci 8988c2ecf20Sopenharmony_ci ret = k3_r5_rproc_configure(kproc); 8998c2ecf20Sopenharmony_ci if (ret) { 9008c2ecf20Sopenharmony_ci dev_err(dev, "initial configure failed, ret = %d\n", 9018c2ecf20Sopenharmony_ci ret); 9028c2ecf20Sopenharmony_ci goto err_config; 9038c2ecf20Sopenharmony_ci } 9048c2ecf20Sopenharmony_ci 9058c2ecf20Sopenharmony_ci ret = k3_r5_reserved_mem_init(kproc); 9068c2ecf20Sopenharmony_ci if (ret) { 9078c2ecf20Sopenharmony_ci dev_err(dev, "reserved memory init failed, ret = %d\n", 9088c2ecf20Sopenharmony_ci ret); 9098c2ecf20Sopenharmony_ci goto err_config; 9108c2ecf20Sopenharmony_ci } 9118c2ecf20Sopenharmony_ci 9128c2ecf20Sopenharmony_ci ret = rproc_add(rproc); 9138c2ecf20Sopenharmony_ci if (ret) { 9148c2ecf20Sopenharmony_ci dev_err(dev, "rproc_add failed, ret = %d\n", ret); 9158c2ecf20Sopenharmony_ci goto err_add; 9168c2ecf20Sopenharmony_ci } 9178c2ecf20Sopenharmony_ci 9188c2ecf20Sopenharmony_ci /* create only one rproc in lockstep mode */ 9198c2ecf20Sopenharmony_ci if (cluster->mode == CLUSTER_MODE_LOCKSTEP) 9208c2ecf20Sopenharmony_ci break; 9218c2ecf20Sopenharmony_ci } 9228c2ecf20Sopenharmony_ci 9238c2ecf20Sopenharmony_ci return 0; 9248c2ecf20Sopenharmony_ci 9258c2ecf20Sopenharmony_cierr_split: 9268c2ecf20Sopenharmony_ci rproc_del(rproc); 9278c2ecf20Sopenharmony_cierr_add: 9288c2ecf20Sopenharmony_ci k3_r5_reserved_mem_exit(kproc); 9298c2ecf20Sopenharmony_cierr_config: 9308c2ecf20Sopenharmony_ci rproc_free(rproc); 9318c2ecf20Sopenharmony_ci core->rproc = NULL; 9328c2ecf20Sopenharmony_ciout: 9338c2ecf20Sopenharmony_ci /* undo core0 upon any failures on core1 in split-mode */ 9348c2ecf20Sopenharmony_ci if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { 9358c2ecf20Sopenharmony_ci core = list_prev_entry(core, elem); 9368c2ecf20Sopenharmony_ci rproc = core->rproc; 9378c2ecf20Sopenharmony_ci kproc = rproc->priv; 9388c2ecf20Sopenharmony_ci goto err_split; 9398c2ecf20Sopenharmony_ci } 9408c2ecf20Sopenharmony_ci return ret; 9418c2ecf20Sopenharmony_ci} 9428c2ecf20Sopenharmony_ci 9438c2ecf20Sopenharmony_cistatic int k3_r5_cluster_rproc_exit(struct platform_device *pdev) 9448c2ecf20Sopenharmony_ci{ 9458c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 9468c2ecf20Sopenharmony_ci struct k3_r5_rproc *kproc; 9478c2ecf20Sopenharmony_ci struct k3_r5_core *core; 9488c2ecf20Sopenharmony_ci struct rproc *rproc; 9498c2ecf20Sopenharmony_ci 9508c2ecf20Sopenharmony_ci /* 9518c2ecf20Sopenharmony_ci * lockstep mode has only one rproc associated with first core, whereas 9528c2ecf20Sopenharmony_ci * split-mode has two rprocs associated with each core, and requires 9538c2ecf20Sopenharmony_ci * that core1 be powered down first 9548c2ecf20Sopenharmony_ci */ 9558c2ecf20Sopenharmony_ci core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? 9568c2ecf20Sopenharmony_ci list_first_entry(&cluster->cores, struct k3_r5_core, elem) : 9578c2ecf20Sopenharmony_ci list_last_entry(&cluster->cores, struct k3_r5_core, elem); 9588c2ecf20Sopenharmony_ci 9598c2ecf20Sopenharmony_ci list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 9608c2ecf20Sopenharmony_ci rproc = core->rproc; 9618c2ecf20Sopenharmony_ci kproc = rproc->priv; 9628c2ecf20Sopenharmony_ci 9638c2ecf20Sopenharmony_ci rproc_del(rproc); 9648c2ecf20Sopenharmony_ci 9658c2ecf20Sopenharmony_ci k3_r5_reserved_mem_exit(kproc); 9668c2ecf20Sopenharmony_ci 9678c2ecf20Sopenharmony_ci rproc_free(rproc); 9688c2ecf20Sopenharmony_ci core->rproc = NULL; 9698c2ecf20Sopenharmony_ci } 9708c2ecf20Sopenharmony_ci 9718c2ecf20Sopenharmony_ci return 0; 9728c2ecf20Sopenharmony_ci} 9738c2ecf20Sopenharmony_ci 9748c2ecf20Sopenharmony_cistatic int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, 9758c2ecf20Sopenharmony_ci struct k3_r5_core *core) 9768c2ecf20Sopenharmony_ci{ 9778c2ecf20Sopenharmony_ci static const char * const mem_names[] = {"atcm", "btcm"}; 9788c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 9798c2ecf20Sopenharmony_ci struct resource *res; 9808c2ecf20Sopenharmony_ci int num_mems; 9818c2ecf20Sopenharmony_ci int i; 9828c2ecf20Sopenharmony_ci 9838c2ecf20Sopenharmony_ci num_mems = ARRAY_SIZE(mem_names); 9848c2ecf20Sopenharmony_ci core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); 9858c2ecf20Sopenharmony_ci if (!core->mem) 9868c2ecf20Sopenharmony_ci return -ENOMEM; 9878c2ecf20Sopenharmony_ci 9888c2ecf20Sopenharmony_ci for (i = 0; i < num_mems; i++) { 9898c2ecf20Sopenharmony_ci res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 9908c2ecf20Sopenharmony_ci mem_names[i]); 9918c2ecf20Sopenharmony_ci if (!res) { 9928c2ecf20Sopenharmony_ci dev_err(dev, "found no memory resource for %s\n", 9938c2ecf20Sopenharmony_ci mem_names[i]); 9948c2ecf20Sopenharmony_ci return -EINVAL; 9958c2ecf20Sopenharmony_ci } 9968c2ecf20Sopenharmony_ci if (!devm_request_mem_region(dev, res->start, 9978c2ecf20Sopenharmony_ci resource_size(res), 9988c2ecf20Sopenharmony_ci dev_name(dev))) { 9998c2ecf20Sopenharmony_ci dev_err(dev, "could not request %s region for resource\n", 10008c2ecf20Sopenharmony_ci mem_names[i]); 10018c2ecf20Sopenharmony_ci return -EBUSY; 10028c2ecf20Sopenharmony_ci } 10038c2ecf20Sopenharmony_ci 10048c2ecf20Sopenharmony_ci /* 10058c2ecf20Sopenharmony_ci * TCMs are designed in general to support RAM-like backing 10068c2ecf20Sopenharmony_ci * memories. So, map these as Normal Non-Cached memories. This 10078c2ecf20Sopenharmony_ci * also avoids/fixes any potential alignment faults due to 10088c2ecf20Sopenharmony_ci * unaligned data accesses when using memcpy() or memset() 10098c2ecf20Sopenharmony_ci * functions (normally seen with device type memory). 10108c2ecf20Sopenharmony_ci */ 10118c2ecf20Sopenharmony_ci core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, 10128c2ecf20Sopenharmony_ci resource_size(res)); 10138c2ecf20Sopenharmony_ci if (!core->mem[i].cpu_addr) { 10148c2ecf20Sopenharmony_ci dev_err(dev, "failed to map %s memory\n", mem_names[i]); 10158c2ecf20Sopenharmony_ci return -ENOMEM; 10168c2ecf20Sopenharmony_ci } 10178c2ecf20Sopenharmony_ci core->mem[i].bus_addr = res->start; 10188c2ecf20Sopenharmony_ci 10198c2ecf20Sopenharmony_ci /* 10208c2ecf20Sopenharmony_ci * TODO: 10218c2ecf20Sopenharmony_ci * The R5F cores can place ATCM & BTCM anywhere in its address 10228c2ecf20Sopenharmony_ci * based on the corresponding Region Registers in the System 10238c2ecf20Sopenharmony_ci * Control coprocessor. For now, place ATCM and BTCM at 10248c2ecf20Sopenharmony_ci * addresses 0 and 0x41010000 (same as the bus address on AM65x 10258c2ecf20Sopenharmony_ci * SoCs) based on loczrama setting 10268c2ecf20Sopenharmony_ci */ 10278c2ecf20Sopenharmony_ci if (!strcmp(mem_names[i], "atcm")) { 10288c2ecf20Sopenharmony_ci core->mem[i].dev_addr = core->loczrama ? 10298c2ecf20Sopenharmony_ci 0 : K3_R5_TCM_DEV_ADDR; 10308c2ecf20Sopenharmony_ci } else { 10318c2ecf20Sopenharmony_ci core->mem[i].dev_addr = core->loczrama ? 10328c2ecf20Sopenharmony_ci K3_R5_TCM_DEV_ADDR : 0; 10338c2ecf20Sopenharmony_ci } 10348c2ecf20Sopenharmony_ci core->mem[i].size = resource_size(res); 10358c2ecf20Sopenharmony_ci 10368c2ecf20Sopenharmony_ci dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", 10378c2ecf20Sopenharmony_ci mem_names[i], &core->mem[i].bus_addr, 10388c2ecf20Sopenharmony_ci core->mem[i].size, core->mem[i].cpu_addr, 10398c2ecf20Sopenharmony_ci core->mem[i].dev_addr); 10408c2ecf20Sopenharmony_ci } 10418c2ecf20Sopenharmony_ci core->num_mems = num_mems; 10428c2ecf20Sopenharmony_ci 10438c2ecf20Sopenharmony_ci return 0; 10448c2ecf20Sopenharmony_ci} 10458c2ecf20Sopenharmony_ci 10468c2ecf20Sopenharmony_cistatic int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, 10478c2ecf20Sopenharmony_ci struct k3_r5_core *core) 10488c2ecf20Sopenharmony_ci{ 10498c2ecf20Sopenharmony_ci struct device_node *np = pdev->dev.of_node; 10508c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 10518c2ecf20Sopenharmony_ci struct device_node *sram_np; 10528c2ecf20Sopenharmony_ci struct resource res; 10538c2ecf20Sopenharmony_ci int num_sram; 10548c2ecf20Sopenharmony_ci int i, ret; 10558c2ecf20Sopenharmony_ci 10568c2ecf20Sopenharmony_ci num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); 10578c2ecf20Sopenharmony_ci if (num_sram <= 0) { 10588c2ecf20Sopenharmony_ci dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", 10598c2ecf20Sopenharmony_ci num_sram); 10608c2ecf20Sopenharmony_ci return 0; 10618c2ecf20Sopenharmony_ci } 10628c2ecf20Sopenharmony_ci 10638c2ecf20Sopenharmony_ci core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); 10648c2ecf20Sopenharmony_ci if (!core->sram) 10658c2ecf20Sopenharmony_ci return -ENOMEM; 10668c2ecf20Sopenharmony_ci 10678c2ecf20Sopenharmony_ci for (i = 0; i < num_sram; i++) { 10688c2ecf20Sopenharmony_ci sram_np = of_parse_phandle(np, "sram", i); 10698c2ecf20Sopenharmony_ci if (!sram_np) 10708c2ecf20Sopenharmony_ci return -EINVAL; 10718c2ecf20Sopenharmony_ci 10728c2ecf20Sopenharmony_ci if (!of_device_is_available(sram_np)) { 10738c2ecf20Sopenharmony_ci of_node_put(sram_np); 10748c2ecf20Sopenharmony_ci return -EINVAL; 10758c2ecf20Sopenharmony_ci } 10768c2ecf20Sopenharmony_ci 10778c2ecf20Sopenharmony_ci ret = of_address_to_resource(sram_np, 0, &res); 10788c2ecf20Sopenharmony_ci of_node_put(sram_np); 10798c2ecf20Sopenharmony_ci if (ret) 10808c2ecf20Sopenharmony_ci return -EINVAL; 10818c2ecf20Sopenharmony_ci 10828c2ecf20Sopenharmony_ci core->sram[i].bus_addr = res.start; 10838c2ecf20Sopenharmony_ci core->sram[i].dev_addr = res.start; 10848c2ecf20Sopenharmony_ci core->sram[i].size = resource_size(&res); 10858c2ecf20Sopenharmony_ci core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, 10868c2ecf20Sopenharmony_ci resource_size(&res)); 10878c2ecf20Sopenharmony_ci if (!core->sram[i].cpu_addr) { 10888c2ecf20Sopenharmony_ci dev_err(dev, "failed to parse and map sram%d memory at %pad\n", 10898c2ecf20Sopenharmony_ci i, &res.start); 10908c2ecf20Sopenharmony_ci return -ENOMEM; 10918c2ecf20Sopenharmony_ci } 10928c2ecf20Sopenharmony_ci 10938c2ecf20Sopenharmony_ci dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 10948c2ecf20Sopenharmony_ci i, &core->sram[i].bus_addr, 10958c2ecf20Sopenharmony_ci core->sram[i].size, core->sram[i].cpu_addr, 10968c2ecf20Sopenharmony_ci core->sram[i].dev_addr); 10978c2ecf20Sopenharmony_ci } 10988c2ecf20Sopenharmony_ci core->num_sram = num_sram; 10998c2ecf20Sopenharmony_ci 11008c2ecf20Sopenharmony_ci return 0; 11018c2ecf20Sopenharmony_ci} 11028c2ecf20Sopenharmony_ci 11038c2ecf20Sopenharmony_cistatic 11048c2ecf20Sopenharmony_cistruct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, 11058c2ecf20Sopenharmony_ci const struct ti_sci_handle *sci) 11068c2ecf20Sopenharmony_ci{ 11078c2ecf20Sopenharmony_ci struct ti_sci_proc *tsp; 11088c2ecf20Sopenharmony_ci u32 temp[2]; 11098c2ecf20Sopenharmony_ci int ret; 11108c2ecf20Sopenharmony_ci 11118c2ecf20Sopenharmony_ci ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", 11128c2ecf20Sopenharmony_ci temp, 2); 11138c2ecf20Sopenharmony_ci if (ret < 0) 11148c2ecf20Sopenharmony_ci return ERR_PTR(ret); 11158c2ecf20Sopenharmony_ci 11168c2ecf20Sopenharmony_ci tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); 11178c2ecf20Sopenharmony_ci if (!tsp) 11188c2ecf20Sopenharmony_ci return ERR_PTR(-ENOMEM); 11198c2ecf20Sopenharmony_ci 11208c2ecf20Sopenharmony_ci tsp->dev = dev; 11218c2ecf20Sopenharmony_ci tsp->sci = sci; 11228c2ecf20Sopenharmony_ci tsp->ops = &sci->ops.proc_ops; 11238c2ecf20Sopenharmony_ci tsp->proc_id = temp[0]; 11248c2ecf20Sopenharmony_ci tsp->host_id = temp[1]; 11258c2ecf20Sopenharmony_ci 11268c2ecf20Sopenharmony_ci return tsp; 11278c2ecf20Sopenharmony_ci} 11288c2ecf20Sopenharmony_ci 11298c2ecf20Sopenharmony_cistatic int k3_r5_core_of_init(struct platform_device *pdev) 11308c2ecf20Sopenharmony_ci{ 11318c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 11328c2ecf20Sopenharmony_ci struct device_node *np = dev_of_node(dev); 11338c2ecf20Sopenharmony_ci struct k3_r5_core *core; 11348c2ecf20Sopenharmony_ci int ret; 11358c2ecf20Sopenharmony_ci 11368c2ecf20Sopenharmony_ci if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) 11378c2ecf20Sopenharmony_ci return -ENOMEM; 11388c2ecf20Sopenharmony_ci 11398c2ecf20Sopenharmony_ci core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); 11408c2ecf20Sopenharmony_ci if (!core) { 11418c2ecf20Sopenharmony_ci ret = -ENOMEM; 11428c2ecf20Sopenharmony_ci goto err; 11438c2ecf20Sopenharmony_ci } 11448c2ecf20Sopenharmony_ci 11458c2ecf20Sopenharmony_ci core->dev = dev; 11468c2ecf20Sopenharmony_ci /* 11478c2ecf20Sopenharmony_ci * Use SoC Power-on-Reset values as default if no DT properties are 11488c2ecf20Sopenharmony_ci * used to dictate the TCM configurations 11498c2ecf20Sopenharmony_ci */ 11508c2ecf20Sopenharmony_ci core->atcm_enable = 0; 11518c2ecf20Sopenharmony_ci core->btcm_enable = 1; 11528c2ecf20Sopenharmony_ci core->loczrama = 1; 11538c2ecf20Sopenharmony_ci 11548c2ecf20Sopenharmony_ci ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); 11558c2ecf20Sopenharmony_ci if (ret < 0 && ret != -EINVAL) { 11568c2ecf20Sopenharmony_ci dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", 11578c2ecf20Sopenharmony_ci ret); 11588c2ecf20Sopenharmony_ci goto err; 11598c2ecf20Sopenharmony_ci } 11608c2ecf20Sopenharmony_ci 11618c2ecf20Sopenharmony_ci ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); 11628c2ecf20Sopenharmony_ci if (ret < 0 && ret != -EINVAL) { 11638c2ecf20Sopenharmony_ci dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", 11648c2ecf20Sopenharmony_ci ret); 11658c2ecf20Sopenharmony_ci goto err; 11668c2ecf20Sopenharmony_ci } 11678c2ecf20Sopenharmony_ci 11688c2ecf20Sopenharmony_ci ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); 11698c2ecf20Sopenharmony_ci if (ret < 0 && ret != -EINVAL) { 11708c2ecf20Sopenharmony_ci dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); 11718c2ecf20Sopenharmony_ci goto err; 11728c2ecf20Sopenharmony_ci } 11738c2ecf20Sopenharmony_ci 11748c2ecf20Sopenharmony_ci core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); 11758c2ecf20Sopenharmony_ci if (IS_ERR(core->ti_sci)) { 11768c2ecf20Sopenharmony_ci ret = PTR_ERR(core->ti_sci); 11778c2ecf20Sopenharmony_ci if (ret != -EPROBE_DEFER) { 11788c2ecf20Sopenharmony_ci dev_err(dev, "failed to get ti-sci handle, ret = %d\n", 11798c2ecf20Sopenharmony_ci ret); 11808c2ecf20Sopenharmony_ci } 11818c2ecf20Sopenharmony_ci core->ti_sci = NULL; 11828c2ecf20Sopenharmony_ci goto err; 11838c2ecf20Sopenharmony_ci } 11848c2ecf20Sopenharmony_ci 11858c2ecf20Sopenharmony_ci ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); 11868c2ecf20Sopenharmony_ci if (ret) { 11878c2ecf20Sopenharmony_ci dev_err(dev, "missing 'ti,sci-dev-id' property\n"); 11888c2ecf20Sopenharmony_ci goto err; 11898c2ecf20Sopenharmony_ci } 11908c2ecf20Sopenharmony_ci 11918c2ecf20Sopenharmony_ci core->reset = devm_reset_control_get_exclusive(dev, NULL); 11928c2ecf20Sopenharmony_ci if (IS_ERR_OR_NULL(core->reset)) { 11938c2ecf20Sopenharmony_ci ret = PTR_ERR_OR_ZERO(core->reset); 11948c2ecf20Sopenharmony_ci if (!ret) 11958c2ecf20Sopenharmony_ci ret = -ENODEV; 11968c2ecf20Sopenharmony_ci if (ret != -EPROBE_DEFER) { 11978c2ecf20Sopenharmony_ci dev_err(dev, "failed to get reset handle, ret = %d\n", 11988c2ecf20Sopenharmony_ci ret); 11998c2ecf20Sopenharmony_ci } 12008c2ecf20Sopenharmony_ci goto err; 12018c2ecf20Sopenharmony_ci } 12028c2ecf20Sopenharmony_ci 12038c2ecf20Sopenharmony_ci core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); 12048c2ecf20Sopenharmony_ci if (IS_ERR(core->tsp)) { 12058c2ecf20Sopenharmony_ci ret = PTR_ERR(core->tsp); 12068c2ecf20Sopenharmony_ci dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", 12078c2ecf20Sopenharmony_ci ret); 12088c2ecf20Sopenharmony_ci goto err; 12098c2ecf20Sopenharmony_ci } 12108c2ecf20Sopenharmony_ci 12118c2ecf20Sopenharmony_ci ret = k3_r5_core_of_get_internal_memories(pdev, core); 12128c2ecf20Sopenharmony_ci if (ret) { 12138c2ecf20Sopenharmony_ci dev_err(dev, "failed to get internal memories, ret = %d\n", 12148c2ecf20Sopenharmony_ci ret); 12158c2ecf20Sopenharmony_ci goto err; 12168c2ecf20Sopenharmony_ci } 12178c2ecf20Sopenharmony_ci 12188c2ecf20Sopenharmony_ci ret = k3_r5_core_of_get_sram_memories(pdev, core); 12198c2ecf20Sopenharmony_ci if (ret) { 12208c2ecf20Sopenharmony_ci dev_err(dev, "failed to get sram memories, ret = %d\n", ret); 12218c2ecf20Sopenharmony_ci goto err; 12228c2ecf20Sopenharmony_ci } 12238c2ecf20Sopenharmony_ci 12248c2ecf20Sopenharmony_ci ret = ti_sci_proc_request(core->tsp); 12258c2ecf20Sopenharmony_ci if (ret < 0) { 12268c2ecf20Sopenharmony_ci dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); 12278c2ecf20Sopenharmony_ci goto err; 12288c2ecf20Sopenharmony_ci } 12298c2ecf20Sopenharmony_ci 12308c2ecf20Sopenharmony_ci platform_set_drvdata(pdev, core); 12318c2ecf20Sopenharmony_ci devres_close_group(dev, k3_r5_core_of_init); 12328c2ecf20Sopenharmony_ci 12338c2ecf20Sopenharmony_ci return 0; 12348c2ecf20Sopenharmony_ci 12358c2ecf20Sopenharmony_cierr: 12368c2ecf20Sopenharmony_ci devres_release_group(dev, k3_r5_core_of_init); 12378c2ecf20Sopenharmony_ci return ret; 12388c2ecf20Sopenharmony_ci} 12398c2ecf20Sopenharmony_ci 12408c2ecf20Sopenharmony_ci/* 12418c2ecf20Sopenharmony_ci * free the resources explicitly since driver model is not being used 12428c2ecf20Sopenharmony_ci * for the child R5F devices 12438c2ecf20Sopenharmony_ci */ 12448c2ecf20Sopenharmony_cistatic void k3_r5_core_of_exit(struct platform_device *pdev) 12458c2ecf20Sopenharmony_ci{ 12468c2ecf20Sopenharmony_ci struct k3_r5_core *core = platform_get_drvdata(pdev); 12478c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 12488c2ecf20Sopenharmony_ci int ret; 12498c2ecf20Sopenharmony_ci 12508c2ecf20Sopenharmony_ci ret = ti_sci_proc_release(core->tsp); 12518c2ecf20Sopenharmony_ci if (ret) 12528c2ecf20Sopenharmony_ci dev_err(dev, "failed to release proc, ret = %d\n", ret); 12538c2ecf20Sopenharmony_ci 12548c2ecf20Sopenharmony_ci platform_set_drvdata(pdev, NULL); 12558c2ecf20Sopenharmony_ci devres_release_group(dev, k3_r5_core_of_init); 12568c2ecf20Sopenharmony_ci} 12578c2ecf20Sopenharmony_ci 12588c2ecf20Sopenharmony_cistatic void k3_r5_cluster_of_exit(struct platform_device *pdev) 12598c2ecf20Sopenharmony_ci{ 12608c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 12618c2ecf20Sopenharmony_ci struct platform_device *cpdev; 12628c2ecf20Sopenharmony_ci struct k3_r5_core *core, *temp; 12638c2ecf20Sopenharmony_ci 12648c2ecf20Sopenharmony_ci list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { 12658c2ecf20Sopenharmony_ci list_del(&core->elem); 12668c2ecf20Sopenharmony_ci cpdev = to_platform_device(core->dev); 12678c2ecf20Sopenharmony_ci k3_r5_core_of_exit(cpdev); 12688c2ecf20Sopenharmony_ci } 12698c2ecf20Sopenharmony_ci} 12708c2ecf20Sopenharmony_ci 12718c2ecf20Sopenharmony_cistatic int k3_r5_cluster_of_init(struct platform_device *pdev) 12728c2ecf20Sopenharmony_ci{ 12738c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 12748c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 12758c2ecf20Sopenharmony_ci struct device_node *np = dev_of_node(dev); 12768c2ecf20Sopenharmony_ci struct platform_device *cpdev; 12778c2ecf20Sopenharmony_ci struct device_node *child; 12788c2ecf20Sopenharmony_ci struct k3_r5_core *core; 12798c2ecf20Sopenharmony_ci int ret; 12808c2ecf20Sopenharmony_ci 12818c2ecf20Sopenharmony_ci for_each_available_child_of_node(np, child) { 12828c2ecf20Sopenharmony_ci cpdev = of_find_device_by_node(child); 12838c2ecf20Sopenharmony_ci if (!cpdev) { 12848c2ecf20Sopenharmony_ci ret = -ENODEV; 12858c2ecf20Sopenharmony_ci dev_err(dev, "could not get R5 core platform device\n"); 12868c2ecf20Sopenharmony_ci of_node_put(child); 12878c2ecf20Sopenharmony_ci goto fail; 12888c2ecf20Sopenharmony_ci } 12898c2ecf20Sopenharmony_ci 12908c2ecf20Sopenharmony_ci ret = k3_r5_core_of_init(cpdev); 12918c2ecf20Sopenharmony_ci if (ret) { 12928c2ecf20Sopenharmony_ci dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", 12938c2ecf20Sopenharmony_ci ret); 12948c2ecf20Sopenharmony_ci put_device(&cpdev->dev); 12958c2ecf20Sopenharmony_ci of_node_put(child); 12968c2ecf20Sopenharmony_ci goto fail; 12978c2ecf20Sopenharmony_ci } 12988c2ecf20Sopenharmony_ci 12998c2ecf20Sopenharmony_ci core = platform_get_drvdata(cpdev); 13008c2ecf20Sopenharmony_ci put_device(&cpdev->dev); 13018c2ecf20Sopenharmony_ci list_add_tail(&core->elem, &cluster->cores); 13028c2ecf20Sopenharmony_ci } 13038c2ecf20Sopenharmony_ci 13048c2ecf20Sopenharmony_ci return 0; 13058c2ecf20Sopenharmony_ci 13068c2ecf20Sopenharmony_cifail: 13078c2ecf20Sopenharmony_ci k3_r5_cluster_of_exit(pdev); 13088c2ecf20Sopenharmony_ci return ret; 13098c2ecf20Sopenharmony_ci} 13108c2ecf20Sopenharmony_ci 13118c2ecf20Sopenharmony_cistatic int k3_r5_probe(struct platform_device *pdev) 13128c2ecf20Sopenharmony_ci{ 13138c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 13148c2ecf20Sopenharmony_ci struct device_node *np = dev_of_node(dev); 13158c2ecf20Sopenharmony_ci struct k3_r5_cluster *cluster; 13168c2ecf20Sopenharmony_ci int ret; 13178c2ecf20Sopenharmony_ci int num_cores; 13188c2ecf20Sopenharmony_ci 13198c2ecf20Sopenharmony_ci cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); 13208c2ecf20Sopenharmony_ci if (!cluster) 13218c2ecf20Sopenharmony_ci return -ENOMEM; 13228c2ecf20Sopenharmony_ci 13238c2ecf20Sopenharmony_ci cluster->dev = dev; 13248c2ecf20Sopenharmony_ci cluster->mode = CLUSTER_MODE_LOCKSTEP; 13258c2ecf20Sopenharmony_ci INIT_LIST_HEAD(&cluster->cores); 13268c2ecf20Sopenharmony_ci 13278c2ecf20Sopenharmony_ci ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); 13288c2ecf20Sopenharmony_ci if (ret < 0 && ret != -EINVAL) { 13298c2ecf20Sopenharmony_ci dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", 13308c2ecf20Sopenharmony_ci ret); 13318c2ecf20Sopenharmony_ci return ret; 13328c2ecf20Sopenharmony_ci } 13338c2ecf20Sopenharmony_ci 13348c2ecf20Sopenharmony_ci num_cores = of_get_available_child_count(np); 13358c2ecf20Sopenharmony_ci if (num_cores != 2) { 13368c2ecf20Sopenharmony_ci dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n", 13378c2ecf20Sopenharmony_ci num_cores); 13388c2ecf20Sopenharmony_ci return -ENODEV; 13398c2ecf20Sopenharmony_ci } 13408c2ecf20Sopenharmony_ci 13418c2ecf20Sopenharmony_ci platform_set_drvdata(pdev, cluster); 13428c2ecf20Sopenharmony_ci 13438c2ecf20Sopenharmony_ci ret = devm_of_platform_populate(dev); 13448c2ecf20Sopenharmony_ci if (ret) { 13458c2ecf20Sopenharmony_ci dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", 13468c2ecf20Sopenharmony_ci ret); 13478c2ecf20Sopenharmony_ci return ret; 13488c2ecf20Sopenharmony_ci } 13498c2ecf20Sopenharmony_ci 13508c2ecf20Sopenharmony_ci ret = k3_r5_cluster_of_init(pdev); 13518c2ecf20Sopenharmony_ci if (ret) { 13528c2ecf20Sopenharmony_ci dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); 13538c2ecf20Sopenharmony_ci return ret; 13548c2ecf20Sopenharmony_ci } 13558c2ecf20Sopenharmony_ci 13568c2ecf20Sopenharmony_ci ret = devm_add_action_or_reset(dev, 13578c2ecf20Sopenharmony_ci (void(*)(void *))k3_r5_cluster_of_exit, 13588c2ecf20Sopenharmony_ci pdev); 13598c2ecf20Sopenharmony_ci if (ret) 13608c2ecf20Sopenharmony_ci return ret; 13618c2ecf20Sopenharmony_ci 13628c2ecf20Sopenharmony_ci ret = k3_r5_cluster_rproc_init(pdev); 13638c2ecf20Sopenharmony_ci if (ret) { 13648c2ecf20Sopenharmony_ci dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", 13658c2ecf20Sopenharmony_ci ret); 13668c2ecf20Sopenharmony_ci return ret; 13678c2ecf20Sopenharmony_ci } 13688c2ecf20Sopenharmony_ci 13698c2ecf20Sopenharmony_ci ret = devm_add_action_or_reset(dev, 13708c2ecf20Sopenharmony_ci (void(*)(void *))k3_r5_cluster_rproc_exit, 13718c2ecf20Sopenharmony_ci pdev); 13728c2ecf20Sopenharmony_ci if (ret) 13738c2ecf20Sopenharmony_ci return ret; 13748c2ecf20Sopenharmony_ci 13758c2ecf20Sopenharmony_ci return 0; 13768c2ecf20Sopenharmony_ci} 13778c2ecf20Sopenharmony_ci 13788c2ecf20Sopenharmony_cistatic const struct of_device_id k3_r5_of_match[] = { 13798c2ecf20Sopenharmony_ci { .compatible = "ti,am654-r5fss", }, 13808c2ecf20Sopenharmony_ci { .compatible = "ti,j721e-r5fss", }, 13818c2ecf20Sopenharmony_ci { /* sentinel */ }, 13828c2ecf20Sopenharmony_ci}; 13838c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, k3_r5_of_match); 13848c2ecf20Sopenharmony_ci 13858c2ecf20Sopenharmony_cistatic struct platform_driver k3_r5_rproc_driver = { 13868c2ecf20Sopenharmony_ci .probe = k3_r5_probe, 13878c2ecf20Sopenharmony_ci .driver = { 13888c2ecf20Sopenharmony_ci .name = "k3_r5_rproc", 13898c2ecf20Sopenharmony_ci .of_match_table = k3_r5_of_match, 13908c2ecf20Sopenharmony_ci }, 13918c2ecf20Sopenharmony_ci}; 13928c2ecf20Sopenharmony_ci 13938c2ecf20Sopenharmony_cimodule_platform_driver(k3_r5_rproc_driver); 13948c2ecf20Sopenharmony_ci 13958c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2"); 13968c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("TI K3 R5F remote processor driver"); 13978c2ecf20Sopenharmony_ciMODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 1398