18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * TI K3 R5F (MCU) Remote Processor driver
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/
68c2ecf20Sopenharmony_ci *	Suman Anna <s-anna@ti.com>
78c2ecf20Sopenharmony_ci */
88c2ecf20Sopenharmony_ci
98c2ecf20Sopenharmony_ci#include <linux/dma-mapping.h>
108c2ecf20Sopenharmony_ci#include <linux/err.h>
118c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
128c2ecf20Sopenharmony_ci#include <linux/kernel.h>
138c2ecf20Sopenharmony_ci#include <linux/mailbox_client.h>
148c2ecf20Sopenharmony_ci#include <linux/module.h>
158c2ecf20Sopenharmony_ci#include <linux/of_address.h>
168c2ecf20Sopenharmony_ci#include <linux/of_device.h>
178c2ecf20Sopenharmony_ci#include <linux/of_reserved_mem.h>
188c2ecf20Sopenharmony_ci#include <linux/omap-mailbox.h>
198c2ecf20Sopenharmony_ci#include <linux/platform_device.h>
208c2ecf20Sopenharmony_ci#include <linux/pm_runtime.h>
218c2ecf20Sopenharmony_ci#include <linux/remoteproc.h>
228c2ecf20Sopenharmony_ci#include <linux/reset.h>
238c2ecf20Sopenharmony_ci#include <linux/slab.h>
248c2ecf20Sopenharmony_ci
258c2ecf20Sopenharmony_ci#include "omap_remoteproc.h"
268c2ecf20Sopenharmony_ci#include "remoteproc_internal.h"
278c2ecf20Sopenharmony_ci#include "ti_sci_proc.h"
288c2ecf20Sopenharmony_ci
298c2ecf20Sopenharmony_ci/* This address can either be for ATCM or BTCM with the other at address 0x0 */
308c2ecf20Sopenharmony_ci#define K3_R5_TCM_DEV_ADDR	0x41010000
318c2ecf20Sopenharmony_ci
328c2ecf20Sopenharmony_ci/* R5 TI-SCI Processor Configuration Flags */
338c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_DBG_EN			0x00000001
348c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN			0x00000002
358c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP			0x00000100
368c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_TEINIT			0x00000200
378c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN			0x00000400
388c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE		0x00000800
398c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN			0x00001000
408c2ecf20Sopenharmony_ci#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN			0x00002000
418c2ecf20Sopenharmony_ci
428c2ecf20Sopenharmony_ci/* R5 TI-SCI Processor Control Flags */
438c2ecf20Sopenharmony_ci#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT		0x00000001
448c2ecf20Sopenharmony_ci
458c2ecf20Sopenharmony_ci/* R5 TI-SCI Processor Status Flags */
468c2ecf20Sopenharmony_ci#define PROC_BOOT_STATUS_FLAG_R5_WFE			0x00000001
478c2ecf20Sopenharmony_ci#define PROC_BOOT_STATUS_FLAG_R5_WFI			0x00000002
488c2ecf20Sopenharmony_ci#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED		0x00000004
498c2ecf20Sopenharmony_ci#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED	0x00000100
508c2ecf20Sopenharmony_ci
518c2ecf20Sopenharmony_ci/**
528c2ecf20Sopenharmony_ci * struct k3_r5_mem - internal memory structure
538c2ecf20Sopenharmony_ci * @cpu_addr: MPU virtual address of the memory region
548c2ecf20Sopenharmony_ci * @bus_addr: Bus address used to access the memory region
558c2ecf20Sopenharmony_ci * @dev_addr: Device address from remoteproc view
568c2ecf20Sopenharmony_ci * @size: Size of the memory region
578c2ecf20Sopenharmony_ci */
588c2ecf20Sopenharmony_cistruct k3_r5_mem {
598c2ecf20Sopenharmony_ci	void __iomem *cpu_addr;
608c2ecf20Sopenharmony_ci	phys_addr_t bus_addr;
618c2ecf20Sopenharmony_ci	u32 dev_addr;
628c2ecf20Sopenharmony_ci	size_t size;
638c2ecf20Sopenharmony_ci};
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_cienum cluster_mode {
668c2ecf20Sopenharmony_ci	CLUSTER_MODE_SPLIT = 0,
678c2ecf20Sopenharmony_ci	CLUSTER_MODE_LOCKSTEP,
688c2ecf20Sopenharmony_ci};
698c2ecf20Sopenharmony_ci
708c2ecf20Sopenharmony_ci/**
718c2ecf20Sopenharmony_ci * struct k3_r5_cluster - K3 R5F Cluster structure
728c2ecf20Sopenharmony_ci * @dev: cached device pointer
738c2ecf20Sopenharmony_ci * @mode: Mode to configure the Cluster - Split or LockStep
748c2ecf20Sopenharmony_ci * @cores: list of R5 cores within the cluster
758c2ecf20Sopenharmony_ci */
768c2ecf20Sopenharmony_cistruct k3_r5_cluster {
778c2ecf20Sopenharmony_ci	struct device *dev;
788c2ecf20Sopenharmony_ci	enum cluster_mode mode;
798c2ecf20Sopenharmony_ci	struct list_head cores;
808c2ecf20Sopenharmony_ci};
818c2ecf20Sopenharmony_ci
828c2ecf20Sopenharmony_ci/**
838c2ecf20Sopenharmony_ci * struct k3_r5_core - K3 R5 core structure
848c2ecf20Sopenharmony_ci * @elem: linked list item
858c2ecf20Sopenharmony_ci * @dev: cached device pointer
868c2ecf20Sopenharmony_ci * @rproc: rproc handle representing this core
878c2ecf20Sopenharmony_ci * @mem: internal memory regions data
888c2ecf20Sopenharmony_ci * @sram: on-chip SRAM memory regions data
898c2ecf20Sopenharmony_ci * @num_mems: number of internal memory regions
908c2ecf20Sopenharmony_ci * @num_sram: number of on-chip SRAM memory regions
918c2ecf20Sopenharmony_ci * @reset: reset control handle
928c2ecf20Sopenharmony_ci * @tsp: TI-SCI processor control handle
938c2ecf20Sopenharmony_ci * @ti_sci: TI-SCI handle
948c2ecf20Sopenharmony_ci * @ti_sci_id: TI-SCI device identifier
958c2ecf20Sopenharmony_ci * @atcm_enable: flag to control ATCM enablement
968c2ecf20Sopenharmony_ci * @btcm_enable: flag to control BTCM enablement
978c2ecf20Sopenharmony_ci * @loczrama: flag to dictate which TCM is at device address 0x0
988c2ecf20Sopenharmony_ci */
998c2ecf20Sopenharmony_cistruct k3_r5_core {
1008c2ecf20Sopenharmony_ci	struct list_head elem;
1018c2ecf20Sopenharmony_ci	struct device *dev;
1028c2ecf20Sopenharmony_ci	struct rproc *rproc;
1038c2ecf20Sopenharmony_ci	struct k3_r5_mem *mem;
1048c2ecf20Sopenharmony_ci	struct k3_r5_mem *sram;
1058c2ecf20Sopenharmony_ci	int num_mems;
1068c2ecf20Sopenharmony_ci	int num_sram;
1078c2ecf20Sopenharmony_ci	struct reset_control *reset;
1088c2ecf20Sopenharmony_ci	struct ti_sci_proc *tsp;
1098c2ecf20Sopenharmony_ci	const struct ti_sci_handle *ti_sci;
1108c2ecf20Sopenharmony_ci	u32 ti_sci_id;
1118c2ecf20Sopenharmony_ci	u32 atcm_enable;
1128c2ecf20Sopenharmony_ci	u32 btcm_enable;
1138c2ecf20Sopenharmony_ci	u32 loczrama;
1148c2ecf20Sopenharmony_ci};
1158c2ecf20Sopenharmony_ci
1168c2ecf20Sopenharmony_ci/**
1178c2ecf20Sopenharmony_ci * struct k3_r5_rproc - K3 remote processor state
1188c2ecf20Sopenharmony_ci * @dev: cached device pointer
1198c2ecf20Sopenharmony_ci * @cluster: cached pointer to parent cluster structure
1208c2ecf20Sopenharmony_ci * @mbox: mailbox channel handle
1218c2ecf20Sopenharmony_ci * @client: mailbox client to request the mailbox channel
1228c2ecf20Sopenharmony_ci * @rproc: rproc handle
1238c2ecf20Sopenharmony_ci * @core: cached pointer to r5 core structure being used
1248c2ecf20Sopenharmony_ci * @rmem: reserved memory regions data
1258c2ecf20Sopenharmony_ci * @num_rmems: number of reserved memory regions
1268c2ecf20Sopenharmony_ci */
1278c2ecf20Sopenharmony_cistruct k3_r5_rproc {
1288c2ecf20Sopenharmony_ci	struct device *dev;
1298c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster;
1308c2ecf20Sopenharmony_ci	struct mbox_chan *mbox;
1318c2ecf20Sopenharmony_ci	struct mbox_client client;
1328c2ecf20Sopenharmony_ci	struct rproc *rproc;
1338c2ecf20Sopenharmony_ci	struct k3_r5_core *core;
1348c2ecf20Sopenharmony_ci	struct k3_r5_mem *rmem;
1358c2ecf20Sopenharmony_ci	int num_rmems;
1368c2ecf20Sopenharmony_ci};
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_ci/**
1398c2ecf20Sopenharmony_ci * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
1408c2ecf20Sopenharmony_ci * @client: mailbox client pointer used for requesting the mailbox channel
1418c2ecf20Sopenharmony_ci * @data: mailbox payload
1428c2ecf20Sopenharmony_ci *
1438c2ecf20Sopenharmony_ci * This handler is invoked by the OMAP mailbox driver whenever a mailbox
1448c2ecf20Sopenharmony_ci * message is received. Usually, the mailbox payload simply contains
1458c2ecf20Sopenharmony_ci * the index of the virtqueue that is kicked by the remote processor,
1468c2ecf20Sopenharmony_ci * and we let remoteproc core handle it.
1478c2ecf20Sopenharmony_ci *
1488c2ecf20Sopenharmony_ci * In addition to virtqueue indices, we also have some out-of-band values
1498c2ecf20Sopenharmony_ci * that indicate different events. Those values are deliberately very
1508c2ecf20Sopenharmony_ci * large so they don't coincide with virtqueue indices.
1518c2ecf20Sopenharmony_ci */
1528c2ecf20Sopenharmony_cistatic void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
1538c2ecf20Sopenharmony_ci{
1548c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
1558c2ecf20Sopenharmony_ci						client);
1568c2ecf20Sopenharmony_ci	struct device *dev = kproc->rproc->dev.parent;
1578c2ecf20Sopenharmony_ci	const char *name = kproc->rproc->name;
1588c2ecf20Sopenharmony_ci	u32 msg = omap_mbox_message(data);
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
1618c2ecf20Sopenharmony_ci
1628c2ecf20Sopenharmony_ci	switch (msg) {
1638c2ecf20Sopenharmony_ci	case RP_MBOX_CRASH:
1648c2ecf20Sopenharmony_ci		/*
1658c2ecf20Sopenharmony_ci		 * remoteproc detected an exception, but error recovery is not
1668c2ecf20Sopenharmony_ci		 * supported. So, just log this for now
1678c2ecf20Sopenharmony_ci		 */
1688c2ecf20Sopenharmony_ci		dev_err(dev, "K3 R5F rproc %s crashed\n", name);
1698c2ecf20Sopenharmony_ci		break;
1708c2ecf20Sopenharmony_ci	case RP_MBOX_ECHO_REPLY:
1718c2ecf20Sopenharmony_ci		dev_info(dev, "received echo reply from %s\n", name);
1728c2ecf20Sopenharmony_ci		break;
1738c2ecf20Sopenharmony_ci	default:
1748c2ecf20Sopenharmony_ci		/* silently handle all other valid messages */
1758c2ecf20Sopenharmony_ci		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
1768c2ecf20Sopenharmony_ci			return;
1778c2ecf20Sopenharmony_ci		if (msg > kproc->rproc->max_notifyid) {
1788c2ecf20Sopenharmony_ci			dev_dbg(dev, "dropping unknown message 0x%x", msg);
1798c2ecf20Sopenharmony_ci			return;
1808c2ecf20Sopenharmony_ci		}
1818c2ecf20Sopenharmony_ci		/* msg contains the index of the triggered vring */
1828c2ecf20Sopenharmony_ci		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
1838c2ecf20Sopenharmony_ci			dev_dbg(dev, "no message was found in vqid %d\n", msg);
1848c2ecf20Sopenharmony_ci	}
1858c2ecf20Sopenharmony_ci}
1868c2ecf20Sopenharmony_ci
1878c2ecf20Sopenharmony_ci/* kick a virtqueue */
1888c2ecf20Sopenharmony_cistatic void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
1898c2ecf20Sopenharmony_ci{
1908c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc = rproc->priv;
1918c2ecf20Sopenharmony_ci	struct device *dev = rproc->dev.parent;
1928c2ecf20Sopenharmony_ci	mbox_msg_t msg = (mbox_msg_t)vqid;
1938c2ecf20Sopenharmony_ci	int ret;
1948c2ecf20Sopenharmony_ci
1958c2ecf20Sopenharmony_ci	/* send the index of the triggered virtqueue in the mailbox payload */
1968c2ecf20Sopenharmony_ci	ret = mbox_send_message(kproc->mbox, (void *)msg);
1978c2ecf20Sopenharmony_ci	if (ret < 0)
1988c2ecf20Sopenharmony_ci		dev_err(dev, "failed to send mailbox message, status = %d\n",
1998c2ecf20Sopenharmony_ci			ret);
2008c2ecf20Sopenharmony_ci}
2018c2ecf20Sopenharmony_ci
2028c2ecf20Sopenharmony_cistatic int k3_r5_split_reset(struct k3_r5_core *core)
2038c2ecf20Sopenharmony_ci{
2048c2ecf20Sopenharmony_ci	int ret;
2058c2ecf20Sopenharmony_ci
2068c2ecf20Sopenharmony_ci	ret = reset_control_assert(core->reset);
2078c2ecf20Sopenharmony_ci	if (ret) {
2088c2ecf20Sopenharmony_ci		dev_err(core->dev, "local-reset assert failed, ret = %d\n",
2098c2ecf20Sopenharmony_ci			ret);
2108c2ecf20Sopenharmony_ci		return ret;
2118c2ecf20Sopenharmony_ci	}
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_ci	ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
2148c2ecf20Sopenharmony_ci						   core->ti_sci_id);
2158c2ecf20Sopenharmony_ci	if (ret) {
2168c2ecf20Sopenharmony_ci		dev_err(core->dev, "module-reset assert failed, ret = %d\n",
2178c2ecf20Sopenharmony_ci			ret);
2188c2ecf20Sopenharmony_ci		if (reset_control_deassert(core->reset))
2198c2ecf20Sopenharmony_ci			dev_warn(core->dev, "local-reset deassert back failed\n");
2208c2ecf20Sopenharmony_ci	}
2218c2ecf20Sopenharmony_ci
2228c2ecf20Sopenharmony_ci	return ret;
2238c2ecf20Sopenharmony_ci}
2248c2ecf20Sopenharmony_ci
2258c2ecf20Sopenharmony_cistatic int k3_r5_split_release(struct k3_r5_core *core)
2268c2ecf20Sopenharmony_ci{
2278c2ecf20Sopenharmony_ci	int ret;
2288c2ecf20Sopenharmony_ci
2298c2ecf20Sopenharmony_ci	ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
2308c2ecf20Sopenharmony_ci						   core->ti_sci_id);
2318c2ecf20Sopenharmony_ci	if (ret) {
2328c2ecf20Sopenharmony_ci		dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
2338c2ecf20Sopenharmony_ci			ret);
2348c2ecf20Sopenharmony_ci		return ret;
2358c2ecf20Sopenharmony_ci	}
2368c2ecf20Sopenharmony_ci
2378c2ecf20Sopenharmony_ci	ret = reset_control_deassert(core->reset);
2388c2ecf20Sopenharmony_ci	if (ret) {
2398c2ecf20Sopenharmony_ci		dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
2408c2ecf20Sopenharmony_ci			ret);
2418c2ecf20Sopenharmony_ci		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
2428c2ecf20Sopenharmony_ci							 core->ti_sci_id))
2438c2ecf20Sopenharmony_ci			dev_warn(core->dev, "module-reset assert back failed\n");
2448c2ecf20Sopenharmony_ci	}
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_ci	return ret;
2478c2ecf20Sopenharmony_ci}
2488c2ecf20Sopenharmony_ci
2498c2ecf20Sopenharmony_cistatic int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
2508c2ecf20Sopenharmony_ci{
2518c2ecf20Sopenharmony_ci	struct k3_r5_core *core;
2528c2ecf20Sopenharmony_ci	int ret;
2538c2ecf20Sopenharmony_ci
2548c2ecf20Sopenharmony_ci	/* assert local reset on all applicable cores */
2558c2ecf20Sopenharmony_ci	list_for_each_entry(core, &cluster->cores, elem) {
2568c2ecf20Sopenharmony_ci		ret = reset_control_assert(core->reset);
2578c2ecf20Sopenharmony_ci		if (ret) {
2588c2ecf20Sopenharmony_ci			dev_err(core->dev, "local-reset assert failed, ret = %d\n",
2598c2ecf20Sopenharmony_ci				ret);
2608c2ecf20Sopenharmony_ci			core = list_prev_entry(core, elem);
2618c2ecf20Sopenharmony_ci			goto unroll_local_reset;
2628c2ecf20Sopenharmony_ci		}
2638c2ecf20Sopenharmony_ci	}
2648c2ecf20Sopenharmony_ci
2658c2ecf20Sopenharmony_ci	/* disable PSC modules on all applicable cores */
2668c2ecf20Sopenharmony_ci	list_for_each_entry(core, &cluster->cores, elem) {
2678c2ecf20Sopenharmony_ci		ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
2688c2ecf20Sopenharmony_ci							   core->ti_sci_id);
2698c2ecf20Sopenharmony_ci		if (ret) {
2708c2ecf20Sopenharmony_ci			dev_err(core->dev, "module-reset assert failed, ret = %d\n",
2718c2ecf20Sopenharmony_ci				ret);
2728c2ecf20Sopenharmony_ci			goto unroll_module_reset;
2738c2ecf20Sopenharmony_ci		}
2748c2ecf20Sopenharmony_ci	}
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci	return 0;
2778c2ecf20Sopenharmony_ci
2788c2ecf20Sopenharmony_ciunroll_module_reset:
2798c2ecf20Sopenharmony_ci	list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
2808c2ecf20Sopenharmony_ci		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
2818c2ecf20Sopenharmony_ci							 core->ti_sci_id))
2828c2ecf20Sopenharmony_ci			dev_warn(core->dev, "module-reset assert back failed\n");
2838c2ecf20Sopenharmony_ci	}
2848c2ecf20Sopenharmony_ci	core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
2858c2ecf20Sopenharmony_ciunroll_local_reset:
2868c2ecf20Sopenharmony_ci	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
2878c2ecf20Sopenharmony_ci		if (reset_control_deassert(core->reset))
2888c2ecf20Sopenharmony_ci			dev_warn(core->dev, "local-reset deassert back failed\n");
2898c2ecf20Sopenharmony_ci	}
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci	return ret;
2928c2ecf20Sopenharmony_ci}
2938c2ecf20Sopenharmony_ci
2948c2ecf20Sopenharmony_cistatic int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
2958c2ecf20Sopenharmony_ci{
2968c2ecf20Sopenharmony_ci	struct k3_r5_core *core;
2978c2ecf20Sopenharmony_ci	int ret;
2988c2ecf20Sopenharmony_ci
2998c2ecf20Sopenharmony_ci	/* enable PSC modules on all applicable cores */
3008c2ecf20Sopenharmony_ci	list_for_each_entry_reverse(core, &cluster->cores, elem) {
3018c2ecf20Sopenharmony_ci		ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
3028c2ecf20Sopenharmony_ci							   core->ti_sci_id);
3038c2ecf20Sopenharmony_ci		if (ret) {
3048c2ecf20Sopenharmony_ci			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
3058c2ecf20Sopenharmony_ci				ret);
3068c2ecf20Sopenharmony_ci			core = list_next_entry(core, elem);
3078c2ecf20Sopenharmony_ci			goto unroll_module_reset;
3088c2ecf20Sopenharmony_ci		}
3098c2ecf20Sopenharmony_ci	}
3108c2ecf20Sopenharmony_ci
3118c2ecf20Sopenharmony_ci	/* deassert local reset on all applicable cores */
3128c2ecf20Sopenharmony_ci	list_for_each_entry_reverse(core, &cluster->cores, elem) {
3138c2ecf20Sopenharmony_ci		ret = reset_control_deassert(core->reset);
3148c2ecf20Sopenharmony_ci		if (ret) {
3158c2ecf20Sopenharmony_ci			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
3168c2ecf20Sopenharmony_ci				ret);
3178c2ecf20Sopenharmony_ci			goto unroll_local_reset;
3188c2ecf20Sopenharmony_ci		}
3198c2ecf20Sopenharmony_ci	}
3208c2ecf20Sopenharmony_ci
3218c2ecf20Sopenharmony_ci	return 0;
3228c2ecf20Sopenharmony_ci
3238c2ecf20Sopenharmony_ciunroll_local_reset:
3248c2ecf20Sopenharmony_ci	list_for_each_entry_continue(core, &cluster->cores, elem) {
3258c2ecf20Sopenharmony_ci		if (reset_control_assert(core->reset))
3268c2ecf20Sopenharmony_ci			dev_warn(core->dev, "local-reset assert back failed\n");
3278c2ecf20Sopenharmony_ci	}
3288c2ecf20Sopenharmony_ci	core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
3298c2ecf20Sopenharmony_ciunroll_module_reset:
3308c2ecf20Sopenharmony_ci	list_for_each_entry_from(core, &cluster->cores, elem) {
3318c2ecf20Sopenharmony_ci		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
3328c2ecf20Sopenharmony_ci							 core->ti_sci_id))
3338c2ecf20Sopenharmony_ci			dev_warn(core->dev, "module-reset assert back failed\n");
3348c2ecf20Sopenharmony_ci	}
3358c2ecf20Sopenharmony_ci
3368c2ecf20Sopenharmony_ci	return ret;
3378c2ecf20Sopenharmony_ci}
3388c2ecf20Sopenharmony_ci
3398c2ecf20Sopenharmony_cistatic inline int k3_r5_core_halt(struct k3_r5_core *core)
3408c2ecf20Sopenharmony_ci{
3418c2ecf20Sopenharmony_ci	return ti_sci_proc_set_control(core->tsp,
3428c2ecf20Sopenharmony_ci				       PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
3438c2ecf20Sopenharmony_ci}
3448c2ecf20Sopenharmony_ci
3458c2ecf20Sopenharmony_cistatic inline int k3_r5_core_run(struct k3_r5_core *core)
3468c2ecf20Sopenharmony_ci{
3478c2ecf20Sopenharmony_ci	return ti_sci_proc_set_control(core->tsp,
3488c2ecf20Sopenharmony_ci				       0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
3498c2ecf20Sopenharmony_ci}
3508c2ecf20Sopenharmony_ci
3518c2ecf20Sopenharmony_ci/*
3528c2ecf20Sopenharmony_ci * The R5F cores have controls for both a reset and a halt/run. The code
3538c2ecf20Sopenharmony_ci * execution from DDR requires the initial boot-strapping code to be run
3548c2ecf20Sopenharmony_ci * from the internal TCMs. This function is used to release the resets on
3558c2ecf20Sopenharmony_ci * applicable cores to allow loading into the TCMs. The .prepare() ops is
3568c2ecf20Sopenharmony_ci * invoked by remoteproc core before any firmware loading, and is followed
3578c2ecf20Sopenharmony_ci * by the .start() ops after loading to actually let the R5 cores run.
3588c2ecf20Sopenharmony_ci */
3598c2ecf20Sopenharmony_cistatic int k3_r5_rproc_prepare(struct rproc *rproc)
3608c2ecf20Sopenharmony_ci{
3618c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc = rproc->priv;
3628c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = kproc->cluster;
3638c2ecf20Sopenharmony_ci	struct k3_r5_core *core = kproc->core;
3648c2ecf20Sopenharmony_ci	struct device *dev = kproc->dev;
3658c2ecf20Sopenharmony_ci	int ret;
3668c2ecf20Sopenharmony_ci
3678c2ecf20Sopenharmony_ci	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
3688c2ecf20Sopenharmony_ci		k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
3698c2ecf20Sopenharmony_ci	if (ret) {
3708c2ecf20Sopenharmony_ci		dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
3718c2ecf20Sopenharmony_ci			ret);
3728c2ecf20Sopenharmony_ci		return ret;
3738c2ecf20Sopenharmony_ci	}
3748c2ecf20Sopenharmony_ci
3758c2ecf20Sopenharmony_ci	/*
3768c2ecf20Sopenharmony_ci	 * Zero out both TCMs unconditionally (access from v8 Arm core is not
3778c2ecf20Sopenharmony_ci	 * affected by ATCM & BTCM enable configuration values) so that ECC
3788c2ecf20Sopenharmony_ci	 * can be effective on all TCM addresses.
3798c2ecf20Sopenharmony_ci	 */
3808c2ecf20Sopenharmony_ci	dev_dbg(dev, "zeroing out ATCM memory\n");
3818c2ecf20Sopenharmony_ci	memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
3828c2ecf20Sopenharmony_ci
3838c2ecf20Sopenharmony_ci	dev_dbg(dev, "zeroing out BTCM memory\n");
3848c2ecf20Sopenharmony_ci	memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
3858c2ecf20Sopenharmony_ci
3868c2ecf20Sopenharmony_ci	return 0;
3878c2ecf20Sopenharmony_ci}
3888c2ecf20Sopenharmony_ci
3898c2ecf20Sopenharmony_ci/*
3908c2ecf20Sopenharmony_ci * This function implements the .unprepare() ops and performs the complimentary
3918c2ecf20Sopenharmony_ci * operations to that of the .prepare() ops. The function is used to assert the
3928c2ecf20Sopenharmony_ci * resets on all applicable cores for the rproc device (depending on LockStep
3938c2ecf20Sopenharmony_ci * or Split mode). This completes the second portion of powering down the R5F
3948c2ecf20Sopenharmony_ci * cores. The cores themselves are only halted in the .stop() ops, and the
3958c2ecf20Sopenharmony_ci * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
3968c2ecf20Sopenharmony_ci * stopped.
3978c2ecf20Sopenharmony_ci */
3988c2ecf20Sopenharmony_cistatic int k3_r5_rproc_unprepare(struct rproc *rproc)
3998c2ecf20Sopenharmony_ci{
4008c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc = rproc->priv;
4018c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = kproc->cluster;
4028c2ecf20Sopenharmony_ci	struct k3_r5_core *core = kproc->core;
4038c2ecf20Sopenharmony_ci	struct device *dev = kproc->dev;
4048c2ecf20Sopenharmony_ci	int ret;
4058c2ecf20Sopenharmony_ci
4068c2ecf20Sopenharmony_ci	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
4078c2ecf20Sopenharmony_ci		k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
4088c2ecf20Sopenharmony_ci	if (ret)
4098c2ecf20Sopenharmony_ci		dev_err(dev, "unable to disable cores, ret = %d\n", ret);
4108c2ecf20Sopenharmony_ci
4118c2ecf20Sopenharmony_ci	return ret;
4128c2ecf20Sopenharmony_ci}
4138c2ecf20Sopenharmony_ci
4148c2ecf20Sopenharmony_ci/*
4158c2ecf20Sopenharmony_ci * The R5F start sequence includes two different operations
4168c2ecf20Sopenharmony_ci * 1. Configure the boot vector for R5F core(s)
4178c2ecf20Sopenharmony_ci * 2. Unhalt/Run the R5F core(s)
4188c2ecf20Sopenharmony_ci *
4198c2ecf20Sopenharmony_ci * The sequence is different between LockStep and Split modes. The LockStep
4208c2ecf20Sopenharmony_ci * mode requires the boot vector to be configured only for Core0, and then
4218c2ecf20Sopenharmony_ci * unhalt both the cores to start the execution - Core1 needs to be unhalted
4228c2ecf20Sopenharmony_ci * first followed by Core0. The Split-mode requires that Core0 to be maintained
4238c2ecf20Sopenharmony_ci * always in a higher power state that Core1 (implying Core1 needs to be started
4248c2ecf20Sopenharmony_ci * always only after Core0 is started).
4258c2ecf20Sopenharmony_ci */
4268c2ecf20Sopenharmony_cistatic int k3_r5_rproc_start(struct rproc *rproc)
4278c2ecf20Sopenharmony_ci{
4288c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc = rproc->priv;
4298c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = kproc->cluster;
4308c2ecf20Sopenharmony_ci	struct mbox_client *client = &kproc->client;
4318c2ecf20Sopenharmony_ci	struct device *dev = kproc->dev;
4328c2ecf20Sopenharmony_ci	struct k3_r5_core *core;
4338c2ecf20Sopenharmony_ci	u32 boot_addr;
4348c2ecf20Sopenharmony_ci	int ret;
4358c2ecf20Sopenharmony_ci
4368c2ecf20Sopenharmony_ci	client->dev = dev;
4378c2ecf20Sopenharmony_ci	client->tx_done = NULL;
4388c2ecf20Sopenharmony_ci	client->rx_callback = k3_r5_rproc_mbox_callback;
4398c2ecf20Sopenharmony_ci	client->tx_block = false;
4408c2ecf20Sopenharmony_ci	client->knows_txdone = false;
4418c2ecf20Sopenharmony_ci
4428c2ecf20Sopenharmony_ci	kproc->mbox = mbox_request_channel(client, 0);
4438c2ecf20Sopenharmony_ci	if (IS_ERR(kproc->mbox)) {
4448c2ecf20Sopenharmony_ci		ret = -EBUSY;
4458c2ecf20Sopenharmony_ci		dev_err(dev, "mbox_request_channel failed: %ld\n",
4468c2ecf20Sopenharmony_ci			PTR_ERR(kproc->mbox));
4478c2ecf20Sopenharmony_ci		return ret;
4488c2ecf20Sopenharmony_ci	}
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci	/*
4518c2ecf20Sopenharmony_ci	 * Ping the remote processor, this is only for sanity-sake for now;
4528c2ecf20Sopenharmony_ci	 * there is no functional effect whatsoever.
4538c2ecf20Sopenharmony_ci	 *
4548c2ecf20Sopenharmony_ci	 * Note that the reply will _not_ arrive immediately: this message
4558c2ecf20Sopenharmony_ci	 * will wait in the mailbox fifo until the remote processor is booted.
4568c2ecf20Sopenharmony_ci	 */
4578c2ecf20Sopenharmony_ci	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
4588c2ecf20Sopenharmony_ci	if (ret < 0) {
4598c2ecf20Sopenharmony_ci		dev_err(dev, "mbox_send_message failed: %d\n", ret);
4608c2ecf20Sopenharmony_ci		goto put_mbox;
4618c2ecf20Sopenharmony_ci	}
4628c2ecf20Sopenharmony_ci
4638c2ecf20Sopenharmony_ci	boot_addr = rproc->bootaddr;
4648c2ecf20Sopenharmony_ci	/* TODO: add boot_addr sanity checking */
4658c2ecf20Sopenharmony_ci	dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
4668c2ecf20Sopenharmony_ci
4678c2ecf20Sopenharmony_ci	/* boot vector need not be programmed for Core1 in LockStep mode */
4688c2ecf20Sopenharmony_ci	core = kproc->core;
4698c2ecf20Sopenharmony_ci	ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
4708c2ecf20Sopenharmony_ci	if (ret)
4718c2ecf20Sopenharmony_ci		goto put_mbox;
4728c2ecf20Sopenharmony_ci
4738c2ecf20Sopenharmony_ci	/* unhalt/run all applicable cores */
4748c2ecf20Sopenharmony_ci	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
4758c2ecf20Sopenharmony_ci		list_for_each_entry_reverse(core, &cluster->cores, elem) {
4768c2ecf20Sopenharmony_ci			ret = k3_r5_core_run(core);
4778c2ecf20Sopenharmony_ci			if (ret)
4788c2ecf20Sopenharmony_ci				goto unroll_core_run;
4798c2ecf20Sopenharmony_ci		}
4808c2ecf20Sopenharmony_ci	} else {
4818c2ecf20Sopenharmony_ci		ret = k3_r5_core_run(core);
4828c2ecf20Sopenharmony_ci		if (ret)
4838c2ecf20Sopenharmony_ci			goto put_mbox;
4848c2ecf20Sopenharmony_ci	}
4858c2ecf20Sopenharmony_ci
4868c2ecf20Sopenharmony_ci	return 0;
4878c2ecf20Sopenharmony_ci
4888c2ecf20Sopenharmony_ciunroll_core_run:
4898c2ecf20Sopenharmony_ci	list_for_each_entry_continue(core, &cluster->cores, elem) {
4908c2ecf20Sopenharmony_ci		if (k3_r5_core_halt(core))
4918c2ecf20Sopenharmony_ci			dev_warn(core->dev, "core halt back failed\n");
4928c2ecf20Sopenharmony_ci	}
4938c2ecf20Sopenharmony_ciput_mbox:
4948c2ecf20Sopenharmony_ci	mbox_free_channel(kproc->mbox);
4958c2ecf20Sopenharmony_ci	return ret;
4968c2ecf20Sopenharmony_ci}
4978c2ecf20Sopenharmony_ci
4988c2ecf20Sopenharmony_ci/*
4998c2ecf20Sopenharmony_ci * The R5F stop function includes the following operations
5008c2ecf20Sopenharmony_ci * 1. Halt R5F core(s)
5018c2ecf20Sopenharmony_ci *
5028c2ecf20Sopenharmony_ci * The sequence is different between LockStep and Split modes, and the order
5038c2ecf20Sopenharmony_ci * of cores the operations are performed are also in general reverse to that
5048c2ecf20Sopenharmony_ci * of the start function. The LockStep mode requires each operation to be
5058c2ecf20Sopenharmony_ci * performed first on Core0 followed by Core1. The Split-mode requires that
5068c2ecf20Sopenharmony_ci * Core0 to be maintained always in a higher power state that Core1 (implying
5078c2ecf20Sopenharmony_ci * Core1 needs to be stopped first before Core0).
5088c2ecf20Sopenharmony_ci *
5098c2ecf20Sopenharmony_ci * Note that the R5F halt operation in general is not effective when the R5F
5108c2ecf20Sopenharmony_ci * core is running, but is needed to make sure the core won't run after
5118c2ecf20Sopenharmony_ci * deasserting the reset the subsequent time. The asserting of reset can
5128c2ecf20Sopenharmony_ci * be done here, but is preferred to be done in the .unprepare() ops - this
5138c2ecf20Sopenharmony_ci * maintains the symmetric behavior between the .start(), .stop(), .prepare()
5148c2ecf20Sopenharmony_ci * and .unprepare() ops, and also balances them well between sysfs 'state'
5158c2ecf20Sopenharmony_ci * flow and device bind/unbind or module removal.
5168c2ecf20Sopenharmony_ci */
5178c2ecf20Sopenharmony_cistatic int k3_r5_rproc_stop(struct rproc *rproc)
5188c2ecf20Sopenharmony_ci{
5198c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc = rproc->priv;
5208c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = kproc->cluster;
5218c2ecf20Sopenharmony_ci	struct k3_r5_core *core = kproc->core;
5228c2ecf20Sopenharmony_ci	int ret;
5238c2ecf20Sopenharmony_ci
5248c2ecf20Sopenharmony_ci	/* halt all applicable cores */
5258c2ecf20Sopenharmony_ci	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
5268c2ecf20Sopenharmony_ci		list_for_each_entry(core, &cluster->cores, elem) {
5278c2ecf20Sopenharmony_ci			ret = k3_r5_core_halt(core);
5288c2ecf20Sopenharmony_ci			if (ret) {
5298c2ecf20Sopenharmony_ci				core = list_prev_entry(core, elem);
5308c2ecf20Sopenharmony_ci				goto unroll_core_halt;
5318c2ecf20Sopenharmony_ci			}
5328c2ecf20Sopenharmony_ci		}
5338c2ecf20Sopenharmony_ci	} else {
5348c2ecf20Sopenharmony_ci		ret = k3_r5_core_halt(core);
5358c2ecf20Sopenharmony_ci		if (ret)
5368c2ecf20Sopenharmony_ci			goto out;
5378c2ecf20Sopenharmony_ci	}
5388c2ecf20Sopenharmony_ci
5398c2ecf20Sopenharmony_ci	mbox_free_channel(kproc->mbox);
5408c2ecf20Sopenharmony_ci
5418c2ecf20Sopenharmony_ci	return 0;
5428c2ecf20Sopenharmony_ci
5438c2ecf20Sopenharmony_ciunroll_core_halt:
5448c2ecf20Sopenharmony_ci	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
5458c2ecf20Sopenharmony_ci		if (k3_r5_core_run(core))
5468c2ecf20Sopenharmony_ci			dev_warn(core->dev, "core run back failed\n");
5478c2ecf20Sopenharmony_ci	}
5488c2ecf20Sopenharmony_ciout:
5498c2ecf20Sopenharmony_ci	return ret;
5508c2ecf20Sopenharmony_ci}
5518c2ecf20Sopenharmony_ci
5528c2ecf20Sopenharmony_ci/*
5538c2ecf20Sopenharmony_ci * Internal Memory translation helper
5548c2ecf20Sopenharmony_ci *
5558c2ecf20Sopenharmony_ci * Custom function implementing the rproc .da_to_va ops to provide address
5568c2ecf20Sopenharmony_ci * translation (device address to kernel virtual address) for internal RAMs
5578c2ecf20Sopenharmony_ci * present in a DSP or IPU device). The translated addresses can be used
5588c2ecf20Sopenharmony_ci * either by the remoteproc core for loading, or by any rpmsg bus drivers.
5598c2ecf20Sopenharmony_ci */
5608c2ecf20Sopenharmony_cistatic void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
5618c2ecf20Sopenharmony_ci{
5628c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc = rproc->priv;
5638c2ecf20Sopenharmony_ci	struct k3_r5_core *core = kproc->core;
5648c2ecf20Sopenharmony_ci	void __iomem *va = NULL;
5658c2ecf20Sopenharmony_ci	phys_addr_t bus_addr;
5668c2ecf20Sopenharmony_ci	u32 dev_addr, offset;
5678c2ecf20Sopenharmony_ci	size_t size;
5688c2ecf20Sopenharmony_ci	int i;
5698c2ecf20Sopenharmony_ci
5708c2ecf20Sopenharmony_ci	if (len == 0)
5718c2ecf20Sopenharmony_ci		return NULL;
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_ci	/* handle both R5 and SoC views of ATCM and BTCM */
5748c2ecf20Sopenharmony_ci	for (i = 0; i < core->num_mems; i++) {
5758c2ecf20Sopenharmony_ci		bus_addr = core->mem[i].bus_addr;
5768c2ecf20Sopenharmony_ci		dev_addr = core->mem[i].dev_addr;
5778c2ecf20Sopenharmony_ci		size = core->mem[i].size;
5788c2ecf20Sopenharmony_ci
5798c2ecf20Sopenharmony_ci		/* handle R5-view addresses of TCMs */
5808c2ecf20Sopenharmony_ci		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
5818c2ecf20Sopenharmony_ci			offset = da - dev_addr;
5828c2ecf20Sopenharmony_ci			va = core->mem[i].cpu_addr + offset;
5838c2ecf20Sopenharmony_ci			return (__force void *)va;
5848c2ecf20Sopenharmony_ci		}
5858c2ecf20Sopenharmony_ci
5868c2ecf20Sopenharmony_ci		/* handle SoC-view addresses of TCMs */
5878c2ecf20Sopenharmony_ci		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
5888c2ecf20Sopenharmony_ci			offset = da - bus_addr;
5898c2ecf20Sopenharmony_ci			va = core->mem[i].cpu_addr + offset;
5908c2ecf20Sopenharmony_ci			return (__force void *)va;
5918c2ecf20Sopenharmony_ci		}
5928c2ecf20Sopenharmony_ci	}
5938c2ecf20Sopenharmony_ci
5948c2ecf20Sopenharmony_ci	/* handle any SRAM regions using SoC-view addresses */
5958c2ecf20Sopenharmony_ci	for (i = 0; i < core->num_sram; i++) {
5968c2ecf20Sopenharmony_ci		dev_addr = core->sram[i].dev_addr;
5978c2ecf20Sopenharmony_ci		size = core->sram[i].size;
5988c2ecf20Sopenharmony_ci
5998c2ecf20Sopenharmony_ci		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
6008c2ecf20Sopenharmony_ci			offset = da - dev_addr;
6018c2ecf20Sopenharmony_ci			va = core->sram[i].cpu_addr + offset;
6028c2ecf20Sopenharmony_ci			return (__force void *)va;
6038c2ecf20Sopenharmony_ci		}
6048c2ecf20Sopenharmony_ci	}
6058c2ecf20Sopenharmony_ci
6068c2ecf20Sopenharmony_ci	/* handle static DDR reserved memory regions */
6078c2ecf20Sopenharmony_ci	for (i = 0; i < kproc->num_rmems; i++) {
6088c2ecf20Sopenharmony_ci		dev_addr = kproc->rmem[i].dev_addr;
6098c2ecf20Sopenharmony_ci		size = kproc->rmem[i].size;
6108c2ecf20Sopenharmony_ci
6118c2ecf20Sopenharmony_ci		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
6128c2ecf20Sopenharmony_ci			offset = da - dev_addr;
6138c2ecf20Sopenharmony_ci			va = kproc->rmem[i].cpu_addr + offset;
6148c2ecf20Sopenharmony_ci			return (__force void *)va;
6158c2ecf20Sopenharmony_ci		}
6168c2ecf20Sopenharmony_ci	}
6178c2ecf20Sopenharmony_ci
6188c2ecf20Sopenharmony_ci	return NULL;
6198c2ecf20Sopenharmony_ci}
6208c2ecf20Sopenharmony_ci
6218c2ecf20Sopenharmony_cistatic const struct rproc_ops k3_r5_rproc_ops = {
6228c2ecf20Sopenharmony_ci	.prepare	= k3_r5_rproc_prepare,
6238c2ecf20Sopenharmony_ci	.unprepare	= k3_r5_rproc_unprepare,
6248c2ecf20Sopenharmony_ci	.start		= k3_r5_rproc_start,
6258c2ecf20Sopenharmony_ci	.stop		= k3_r5_rproc_stop,
6268c2ecf20Sopenharmony_ci	.kick		= k3_r5_rproc_kick,
6278c2ecf20Sopenharmony_ci	.da_to_va	= k3_r5_rproc_da_to_va,
6288c2ecf20Sopenharmony_ci};
6298c2ecf20Sopenharmony_ci
6308c2ecf20Sopenharmony_ci/*
6318c2ecf20Sopenharmony_ci * Internal R5F Core configuration
6328c2ecf20Sopenharmony_ci *
6338c2ecf20Sopenharmony_ci * Each R5FSS has a cluster-level setting for configuring the processor
6348c2ecf20Sopenharmony_ci * subsystem either in a safety/fault-tolerant LockStep mode or a performance
6358c2ecf20Sopenharmony_ci * oriented Split mode. Each R5F core has a number of settings to either
6368c2ecf20Sopenharmony_ci * enable/disable each of the TCMs, control which TCM appears at the R5F core's
6378c2ecf20Sopenharmony_ci * address 0x0. These settings need to be configured before the resets for the
6388c2ecf20Sopenharmony_ci * corresponding core are released. These settings are all protected and managed
6398c2ecf20Sopenharmony_ci * by the System Processor.
6408c2ecf20Sopenharmony_ci *
6418c2ecf20Sopenharmony_ci * This function is used to pre-configure these settings for each R5F core, and
6428c2ecf20Sopenharmony_ci * the configuration is all done through various ti_sci_proc functions that
6438c2ecf20Sopenharmony_ci * communicate with the System Processor. The function also ensures that both
6448c2ecf20Sopenharmony_ci * the cores are halted before the .prepare() step.
6458c2ecf20Sopenharmony_ci *
6468c2ecf20Sopenharmony_ci * The function is called from k3_r5_cluster_rproc_init() and is invoked either
6478c2ecf20Sopenharmony_ci * once (in LockStep mode) or twice (in Split mode). Support for LockStep-mode
6488c2ecf20Sopenharmony_ci * is dictated by an eFUSE register bit, and the config settings retrieved from
6498c2ecf20Sopenharmony_ci * DT are adjusted accordingly as per the permitted cluster mode. All cluster
6508c2ecf20Sopenharmony_ci * level settings like Cluster mode and TEINIT (exception handling state
6518c2ecf20Sopenharmony_ci * dictating ARM or Thumb mode) can only be set and retrieved using Core0.
6528c2ecf20Sopenharmony_ci *
6538c2ecf20Sopenharmony_ci * The function behavior is different based on the cluster mode. The R5F cores
6548c2ecf20Sopenharmony_ci * are configured independently as per their individual settings in Split mode.
6558c2ecf20Sopenharmony_ci * They are identically configured in LockStep mode using the primary Core0
6568c2ecf20Sopenharmony_ci * settings. However, some individual settings cannot be set in LockStep mode.
6578c2ecf20Sopenharmony_ci * This is overcome by switching to Split-mode initially and then programming
6588c2ecf20Sopenharmony_ci * both the cores with the same settings, before reconfiguing again for
6598c2ecf20Sopenharmony_ci * LockStep mode.
6608c2ecf20Sopenharmony_ci */
6618c2ecf20Sopenharmony_cistatic int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
6628c2ecf20Sopenharmony_ci{
6638c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = kproc->cluster;
6648c2ecf20Sopenharmony_ci	struct device *dev = kproc->dev;
6658c2ecf20Sopenharmony_ci	struct k3_r5_core *core0, *core, *temp;
6668c2ecf20Sopenharmony_ci	u32 ctrl = 0, cfg = 0, stat = 0;
6678c2ecf20Sopenharmony_ci	u32 set_cfg = 0, clr_cfg = 0;
6688c2ecf20Sopenharmony_ci	u64 boot_vec = 0;
6698c2ecf20Sopenharmony_ci	bool lockstep_en;
6708c2ecf20Sopenharmony_ci	int ret;
6718c2ecf20Sopenharmony_ci
6728c2ecf20Sopenharmony_ci	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
6738c2ecf20Sopenharmony_ci	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? core0 : kproc->core;
6748c2ecf20Sopenharmony_ci
6758c2ecf20Sopenharmony_ci	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
6768c2ecf20Sopenharmony_ci				     &stat);
6778c2ecf20Sopenharmony_ci	if (ret < 0)
6788c2ecf20Sopenharmony_ci		return ret;
6798c2ecf20Sopenharmony_ci
6808c2ecf20Sopenharmony_ci	dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
6818c2ecf20Sopenharmony_ci		boot_vec, cfg, ctrl, stat);
6828c2ecf20Sopenharmony_ci
6838c2ecf20Sopenharmony_ci	lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
6848c2ecf20Sopenharmony_ci	if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
6858c2ecf20Sopenharmony_ci		dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
6868c2ecf20Sopenharmony_ci		cluster->mode = CLUSTER_MODE_SPLIT;
6878c2ecf20Sopenharmony_ci	}
6888c2ecf20Sopenharmony_ci
6898c2ecf20Sopenharmony_ci	/* always enable ARM mode and set boot vector to 0 */
6908c2ecf20Sopenharmony_ci	boot_vec = 0x0;
6918c2ecf20Sopenharmony_ci	if (core == core0) {
6928c2ecf20Sopenharmony_ci		clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
6938c2ecf20Sopenharmony_ci		/*
6948c2ecf20Sopenharmony_ci		 * LockStep configuration bit is Read-only on Split-mode _only_
6958c2ecf20Sopenharmony_ci		 * devices and system firmware will NACK any requests with the
6968c2ecf20Sopenharmony_ci		 * bit configured, so program it only on permitted devices
6978c2ecf20Sopenharmony_ci		 */
6988c2ecf20Sopenharmony_ci		if (lockstep_en)
6998c2ecf20Sopenharmony_ci			clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
7008c2ecf20Sopenharmony_ci	}
7018c2ecf20Sopenharmony_ci
7028c2ecf20Sopenharmony_ci	if (core->atcm_enable)
7038c2ecf20Sopenharmony_ci		set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
7048c2ecf20Sopenharmony_ci	else
7058c2ecf20Sopenharmony_ci		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
7068c2ecf20Sopenharmony_ci
7078c2ecf20Sopenharmony_ci	if (core->btcm_enable)
7088c2ecf20Sopenharmony_ci		set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
7098c2ecf20Sopenharmony_ci	else
7108c2ecf20Sopenharmony_ci		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
7118c2ecf20Sopenharmony_ci
7128c2ecf20Sopenharmony_ci	if (core->loczrama)
7138c2ecf20Sopenharmony_ci		set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
7148c2ecf20Sopenharmony_ci	else
7158c2ecf20Sopenharmony_ci		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
7168c2ecf20Sopenharmony_ci
7178c2ecf20Sopenharmony_ci	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
7188c2ecf20Sopenharmony_ci		/*
7198c2ecf20Sopenharmony_ci		 * work around system firmware limitations to make sure both
7208c2ecf20Sopenharmony_ci		 * cores are programmed symmetrically in LockStep. LockStep
7218c2ecf20Sopenharmony_ci		 * and TEINIT config is only allowed with Core0.
7228c2ecf20Sopenharmony_ci		 */
7238c2ecf20Sopenharmony_ci		list_for_each_entry(temp, &cluster->cores, elem) {
7248c2ecf20Sopenharmony_ci			ret = k3_r5_core_halt(temp);
7258c2ecf20Sopenharmony_ci			if (ret)
7268c2ecf20Sopenharmony_ci				goto out;
7278c2ecf20Sopenharmony_ci
7288c2ecf20Sopenharmony_ci			if (temp != core) {
7298c2ecf20Sopenharmony_ci				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
7308c2ecf20Sopenharmony_ci				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
7318c2ecf20Sopenharmony_ci			}
7328c2ecf20Sopenharmony_ci			ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
7338c2ecf20Sopenharmony_ci						     set_cfg, clr_cfg);
7348c2ecf20Sopenharmony_ci			if (ret)
7358c2ecf20Sopenharmony_ci				goto out;
7368c2ecf20Sopenharmony_ci		}
7378c2ecf20Sopenharmony_ci
7388c2ecf20Sopenharmony_ci		set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
7398c2ecf20Sopenharmony_ci		clr_cfg = 0;
7408c2ecf20Sopenharmony_ci		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
7418c2ecf20Sopenharmony_ci					     set_cfg, clr_cfg);
7428c2ecf20Sopenharmony_ci	} else {
7438c2ecf20Sopenharmony_ci		ret = k3_r5_core_halt(core);
7448c2ecf20Sopenharmony_ci		if (ret)
7458c2ecf20Sopenharmony_ci			goto out;
7468c2ecf20Sopenharmony_ci
7478c2ecf20Sopenharmony_ci		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
7488c2ecf20Sopenharmony_ci					     set_cfg, clr_cfg);
7498c2ecf20Sopenharmony_ci	}
7508c2ecf20Sopenharmony_ci
7518c2ecf20Sopenharmony_ciout:
7528c2ecf20Sopenharmony_ci	return ret;
7538c2ecf20Sopenharmony_ci}
7548c2ecf20Sopenharmony_ci
7558c2ecf20Sopenharmony_cistatic int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
7568c2ecf20Sopenharmony_ci{
7578c2ecf20Sopenharmony_ci	struct device *dev = kproc->dev;
7588c2ecf20Sopenharmony_ci	struct device_node *np = dev_of_node(dev);
7598c2ecf20Sopenharmony_ci	struct device_node *rmem_np;
7608c2ecf20Sopenharmony_ci	struct reserved_mem *rmem;
7618c2ecf20Sopenharmony_ci	int num_rmems;
7628c2ecf20Sopenharmony_ci	int ret, i;
7638c2ecf20Sopenharmony_ci
7648c2ecf20Sopenharmony_ci	num_rmems = of_property_count_elems_of_size(np, "memory-region",
7658c2ecf20Sopenharmony_ci						    sizeof(phandle));
7668c2ecf20Sopenharmony_ci	if (num_rmems <= 0) {
7678c2ecf20Sopenharmony_ci		dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
7688c2ecf20Sopenharmony_ci			num_rmems);
7698c2ecf20Sopenharmony_ci		return -EINVAL;
7708c2ecf20Sopenharmony_ci	}
7718c2ecf20Sopenharmony_ci	if (num_rmems < 2) {
7728c2ecf20Sopenharmony_ci		dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
7738c2ecf20Sopenharmony_ci			num_rmems);
7748c2ecf20Sopenharmony_ci		return -EINVAL;
7758c2ecf20Sopenharmony_ci	}
7768c2ecf20Sopenharmony_ci
7778c2ecf20Sopenharmony_ci	/* use reserved memory region 0 for vring DMA allocations */
7788c2ecf20Sopenharmony_ci	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
7798c2ecf20Sopenharmony_ci	if (ret) {
7808c2ecf20Sopenharmony_ci		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
7818c2ecf20Sopenharmony_ci			ret);
7828c2ecf20Sopenharmony_ci		return ret;
7838c2ecf20Sopenharmony_ci	}
7848c2ecf20Sopenharmony_ci
7858c2ecf20Sopenharmony_ci	num_rmems--;
7868c2ecf20Sopenharmony_ci	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
7878c2ecf20Sopenharmony_ci	if (!kproc->rmem) {
7888c2ecf20Sopenharmony_ci		ret = -ENOMEM;
7898c2ecf20Sopenharmony_ci		goto release_rmem;
7908c2ecf20Sopenharmony_ci	}
7918c2ecf20Sopenharmony_ci
7928c2ecf20Sopenharmony_ci	/* use remaining reserved memory regions for static carveouts */
7938c2ecf20Sopenharmony_ci	for (i = 0; i < num_rmems; i++) {
7948c2ecf20Sopenharmony_ci		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
7958c2ecf20Sopenharmony_ci		if (!rmem_np) {
7968c2ecf20Sopenharmony_ci			ret = -EINVAL;
7978c2ecf20Sopenharmony_ci			goto unmap_rmem;
7988c2ecf20Sopenharmony_ci		}
7998c2ecf20Sopenharmony_ci
8008c2ecf20Sopenharmony_ci		rmem = of_reserved_mem_lookup(rmem_np);
8018c2ecf20Sopenharmony_ci		if (!rmem) {
8028c2ecf20Sopenharmony_ci			of_node_put(rmem_np);
8038c2ecf20Sopenharmony_ci			ret = -EINVAL;
8048c2ecf20Sopenharmony_ci			goto unmap_rmem;
8058c2ecf20Sopenharmony_ci		}
8068c2ecf20Sopenharmony_ci		of_node_put(rmem_np);
8078c2ecf20Sopenharmony_ci
8088c2ecf20Sopenharmony_ci		kproc->rmem[i].bus_addr = rmem->base;
8098c2ecf20Sopenharmony_ci		/*
8108c2ecf20Sopenharmony_ci		 * R5Fs do not have an MMU, but have a Region Address Translator
8118c2ecf20Sopenharmony_ci		 * (RAT) module that provides a fixed entry translation between
8128c2ecf20Sopenharmony_ci		 * the 32-bit processor addresses to 64-bit bus addresses. The
8138c2ecf20Sopenharmony_ci		 * RAT is programmable only by the R5F cores. Support for RAT
8148c2ecf20Sopenharmony_ci		 * is currently not supported, so 64-bit address regions are not
8158c2ecf20Sopenharmony_ci		 * supported. The absence of MMUs implies that the R5F device
8168c2ecf20Sopenharmony_ci		 * addresses/supported memory regions are restricted to 32-bit
8178c2ecf20Sopenharmony_ci		 * bus addresses, and are identical
8188c2ecf20Sopenharmony_ci		 */
8198c2ecf20Sopenharmony_ci		kproc->rmem[i].dev_addr = (u32)rmem->base;
8208c2ecf20Sopenharmony_ci		kproc->rmem[i].size = rmem->size;
8218c2ecf20Sopenharmony_ci		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
8228c2ecf20Sopenharmony_ci		if (!kproc->rmem[i].cpu_addr) {
8238c2ecf20Sopenharmony_ci			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
8248c2ecf20Sopenharmony_ci				i + 1, &rmem->base, &rmem->size);
8258c2ecf20Sopenharmony_ci			ret = -ENOMEM;
8268c2ecf20Sopenharmony_ci			goto unmap_rmem;
8278c2ecf20Sopenharmony_ci		}
8288c2ecf20Sopenharmony_ci
8298c2ecf20Sopenharmony_ci		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
8308c2ecf20Sopenharmony_ci			i + 1, &kproc->rmem[i].bus_addr,
8318c2ecf20Sopenharmony_ci			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
8328c2ecf20Sopenharmony_ci			kproc->rmem[i].dev_addr);
8338c2ecf20Sopenharmony_ci	}
8348c2ecf20Sopenharmony_ci	kproc->num_rmems = num_rmems;
8358c2ecf20Sopenharmony_ci
8368c2ecf20Sopenharmony_ci	return 0;
8378c2ecf20Sopenharmony_ci
8388c2ecf20Sopenharmony_ciunmap_rmem:
8398c2ecf20Sopenharmony_ci	for (i--; i >= 0; i--)
8408c2ecf20Sopenharmony_ci		iounmap(kproc->rmem[i].cpu_addr);
8418c2ecf20Sopenharmony_ci	kfree(kproc->rmem);
8428c2ecf20Sopenharmony_cirelease_rmem:
8438c2ecf20Sopenharmony_ci	of_reserved_mem_device_release(dev);
8448c2ecf20Sopenharmony_ci	return ret;
8458c2ecf20Sopenharmony_ci}
8468c2ecf20Sopenharmony_ci
8478c2ecf20Sopenharmony_cistatic void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
8488c2ecf20Sopenharmony_ci{
8498c2ecf20Sopenharmony_ci	int i;
8508c2ecf20Sopenharmony_ci
8518c2ecf20Sopenharmony_ci	for (i = 0; i < kproc->num_rmems; i++)
8528c2ecf20Sopenharmony_ci		iounmap(kproc->rmem[i].cpu_addr);
8538c2ecf20Sopenharmony_ci	kfree(kproc->rmem);
8548c2ecf20Sopenharmony_ci
8558c2ecf20Sopenharmony_ci	of_reserved_mem_device_release(kproc->dev);
8568c2ecf20Sopenharmony_ci}
8578c2ecf20Sopenharmony_ci
8588c2ecf20Sopenharmony_cistatic int k3_r5_cluster_rproc_init(struct platform_device *pdev)
8598c2ecf20Sopenharmony_ci{
8608c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
8618c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
8628c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc;
8638c2ecf20Sopenharmony_ci	struct k3_r5_core *core, *core1;
8648c2ecf20Sopenharmony_ci	struct device *cdev;
8658c2ecf20Sopenharmony_ci	const char *fw_name;
8668c2ecf20Sopenharmony_ci	struct rproc *rproc;
8678c2ecf20Sopenharmony_ci	int ret;
8688c2ecf20Sopenharmony_ci
8698c2ecf20Sopenharmony_ci	core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
8708c2ecf20Sopenharmony_ci	list_for_each_entry(core, &cluster->cores, elem) {
8718c2ecf20Sopenharmony_ci		cdev = core->dev;
8728c2ecf20Sopenharmony_ci		ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
8738c2ecf20Sopenharmony_ci		if (ret) {
8748c2ecf20Sopenharmony_ci			dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
8758c2ecf20Sopenharmony_ci				ret);
8768c2ecf20Sopenharmony_ci			goto out;
8778c2ecf20Sopenharmony_ci		}
8788c2ecf20Sopenharmony_ci
8798c2ecf20Sopenharmony_ci		rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
8808c2ecf20Sopenharmony_ci				    fw_name, sizeof(*kproc));
8818c2ecf20Sopenharmony_ci		if (!rproc) {
8828c2ecf20Sopenharmony_ci			ret = -ENOMEM;
8838c2ecf20Sopenharmony_ci			goto out;
8848c2ecf20Sopenharmony_ci		}
8858c2ecf20Sopenharmony_ci
8868c2ecf20Sopenharmony_ci		/* K3 R5s have a Region Address Translator (RAT) but no MMU */
8878c2ecf20Sopenharmony_ci		rproc->has_iommu = false;
8888c2ecf20Sopenharmony_ci		/* error recovery is not supported at present */
8898c2ecf20Sopenharmony_ci		rproc->recovery_disabled = true;
8908c2ecf20Sopenharmony_ci
8918c2ecf20Sopenharmony_ci		kproc = rproc->priv;
8928c2ecf20Sopenharmony_ci		kproc->cluster = cluster;
8938c2ecf20Sopenharmony_ci		kproc->core = core;
8948c2ecf20Sopenharmony_ci		kproc->dev = cdev;
8958c2ecf20Sopenharmony_ci		kproc->rproc = rproc;
8968c2ecf20Sopenharmony_ci		core->rproc = rproc;
8978c2ecf20Sopenharmony_ci
8988c2ecf20Sopenharmony_ci		ret = k3_r5_rproc_configure(kproc);
8998c2ecf20Sopenharmony_ci		if (ret) {
9008c2ecf20Sopenharmony_ci			dev_err(dev, "initial configure failed, ret = %d\n",
9018c2ecf20Sopenharmony_ci				ret);
9028c2ecf20Sopenharmony_ci			goto err_config;
9038c2ecf20Sopenharmony_ci		}
9048c2ecf20Sopenharmony_ci
9058c2ecf20Sopenharmony_ci		ret = k3_r5_reserved_mem_init(kproc);
9068c2ecf20Sopenharmony_ci		if (ret) {
9078c2ecf20Sopenharmony_ci			dev_err(dev, "reserved memory init failed, ret = %d\n",
9088c2ecf20Sopenharmony_ci				ret);
9098c2ecf20Sopenharmony_ci			goto err_config;
9108c2ecf20Sopenharmony_ci		}
9118c2ecf20Sopenharmony_ci
9128c2ecf20Sopenharmony_ci		ret = rproc_add(rproc);
9138c2ecf20Sopenharmony_ci		if (ret) {
9148c2ecf20Sopenharmony_ci			dev_err(dev, "rproc_add failed, ret = %d\n", ret);
9158c2ecf20Sopenharmony_ci			goto err_add;
9168c2ecf20Sopenharmony_ci		}
9178c2ecf20Sopenharmony_ci
9188c2ecf20Sopenharmony_ci		/* create only one rproc in lockstep mode */
9198c2ecf20Sopenharmony_ci		if (cluster->mode == CLUSTER_MODE_LOCKSTEP)
9208c2ecf20Sopenharmony_ci			break;
9218c2ecf20Sopenharmony_ci	}
9228c2ecf20Sopenharmony_ci
9238c2ecf20Sopenharmony_ci	return 0;
9248c2ecf20Sopenharmony_ci
9258c2ecf20Sopenharmony_cierr_split:
9268c2ecf20Sopenharmony_ci	rproc_del(rproc);
9278c2ecf20Sopenharmony_cierr_add:
9288c2ecf20Sopenharmony_ci	k3_r5_reserved_mem_exit(kproc);
9298c2ecf20Sopenharmony_cierr_config:
9308c2ecf20Sopenharmony_ci	rproc_free(rproc);
9318c2ecf20Sopenharmony_ci	core->rproc = NULL;
9328c2ecf20Sopenharmony_ciout:
9338c2ecf20Sopenharmony_ci	/* undo core0 upon any failures on core1 in split-mode */
9348c2ecf20Sopenharmony_ci	if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
9358c2ecf20Sopenharmony_ci		core = list_prev_entry(core, elem);
9368c2ecf20Sopenharmony_ci		rproc = core->rproc;
9378c2ecf20Sopenharmony_ci		kproc = rproc->priv;
9388c2ecf20Sopenharmony_ci		goto err_split;
9398c2ecf20Sopenharmony_ci	}
9408c2ecf20Sopenharmony_ci	return ret;
9418c2ecf20Sopenharmony_ci}
9428c2ecf20Sopenharmony_ci
9438c2ecf20Sopenharmony_cistatic int k3_r5_cluster_rproc_exit(struct platform_device *pdev)
9448c2ecf20Sopenharmony_ci{
9458c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
9468c2ecf20Sopenharmony_ci	struct k3_r5_rproc *kproc;
9478c2ecf20Sopenharmony_ci	struct k3_r5_core *core;
9488c2ecf20Sopenharmony_ci	struct rproc *rproc;
9498c2ecf20Sopenharmony_ci
9508c2ecf20Sopenharmony_ci	/*
9518c2ecf20Sopenharmony_ci	 * lockstep mode has only one rproc associated with first core, whereas
9528c2ecf20Sopenharmony_ci	 * split-mode has two rprocs associated with each core, and requires
9538c2ecf20Sopenharmony_ci	 * that core1 be powered down first
9548c2ecf20Sopenharmony_ci	 */
9558c2ecf20Sopenharmony_ci	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
9568c2ecf20Sopenharmony_ci		list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
9578c2ecf20Sopenharmony_ci		list_last_entry(&cluster->cores, struct k3_r5_core, elem);
9588c2ecf20Sopenharmony_ci
9598c2ecf20Sopenharmony_ci	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
9608c2ecf20Sopenharmony_ci		rproc = core->rproc;
9618c2ecf20Sopenharmony_ci		kproc = rproc->priv;
9628c2ecf20Sopenharmony_ci
9638c2ecf20Sopenharmony_ci		rproc_del(rproc);
9648c2ecf20Sopenharmony_ci
9658c2ecf20Sopenharmony_ci		k3_r5_reserved_mem_exit(kproc);
9668c2ecf20Sopenharmony_ci
9678c2ecf20Sopenharmony_ci		rproc_free(rproc);
9688c2ecf20Sopenharmony_ci		core->rproc = NULL;
9698c2ecf20Sopenharmony_ci	}
9708c2ecf20Sopenharmony_ci
9718c2ecf20Sopenharmony_ci	return 0;
9728c2ecf20Sopenharmony_ci}
9738c2ecf20Sopenharmony_ci
9748c2ecf20Sopenharmony_cistatic int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
9758c2ecf20Sopenharmony_ci					       struct k3_r5_core *core)
9768c2ecf20Sopenharmony_ci{
9778c2ecf20Sopenharmony_ci	static const char * const mem_names[] = {"atcm", "btcm"};
9788c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
9798c2ecf20Sopenharmony_ci	struct resource *res;
9808c2ecf20Sopenharmony_ci	int num_mems;
9818c2ecf20Sopenharmony_ci	int i;
9828c2ecf20Sopenharmony_ci
9838c2ecf20Sopenharmony_ci	num_mems = ARRAY_SIZE(mem_names);
9848c2ecf20Sopenharmony_ci	core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
9858c2ecf20Sopenharmony_ci	if (!core->mem)
9868c2ecf20Sopenharmony_ci		return -ENOMEM;
9878c2ecf20Sopenharmony_ci
9888c2ecf20Sopenharmony_ci	for (i = 0; i < num_mems; i++) {
9898c2ecf20Sopenharmony_ci		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
9908c2ecf20Sopenharmony_ci						   mem_names[i]);
9918c2ecf20Sopenharmony_ci		if (!res) {
9928c2ecf20Sopenharmony_ci			dev_err(dev, "found no memory resource for %s\n",
9938c2ecf20Sopenharmony_ci				mem_names[i]);
9948c2ecf20Sopenharmony_ci			return -EINVAL;
9958c2ecf20Sopenharmony_ci		}
9968c2ecf20Sopenharmony_ci		if (!devm_request_mem_region(dev, res->start,
9978c2ecf20Sopenharmony_ci					     resource_size(res),
9988c2ecf20Sopenharmony_ci					     dev_name(dev))) {
9998c2ecf20Sopenharmony_ci			dev_err(dev, "could not request %s region for resource\n",
10008c2ecf20Sopenharmony_ci				mem_names[i]);
10018c2ecf20Sopenharmony_ci			return -EBUSY;
10028c2ecf20Sopenharmony_ci		}
10038c2ecf20Sopenharmony_ci
10048c2ecf20Sopenharmony_ci		/*
10058c2ecf20Sopenharmony_ci		 * TCMs are designed in general to support RAM-like backing
10068c2ecf20Sopenharmony_ci		 * memories. So, map these as Normal Non-Cached memories. This
10078c2ecf20Sopenharmony_ci		 * also avoids/fixes any potential alignment faults due to
10088c2ecf20Sopenharmony_ci		 * unaligned data accesses when using memcpy() or memset()
10098c2ecf20Sopenharmony_ci		 * functions (normally seen with device type memory).
10108c2ecf20Sopenharmony_ci		 */
10118c2ecf20Sopenharmony_ci		core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
10128c2ecf20Sopenharmony_ci							resource_size(res));
10138c2ecf20Sopenharmony_ci		if (!core->mem[i].cpu_addr) {
10148c2ecf20Sopenharmony_ci			dev_err(dev, "failed to map %s memory\n", mem_names[i]);
10158c2ecf20Sopenharmony_ci			return -ENOMEM;
10168c2ecf20Sopenharmony_ci		}
10178c2ecf20Sopenharmony_ci		core->mem[i].bus_addr = res->start;
10188c2ecf20Sopenharmony_ci
10198c2ecf20Sopenharmony_ci		/*
10208c2ecf20Sopenharmony_ci		 * TODO:
10218c2ecf20Sopenharmony_ci		 * The R5F cores can place ATCM & BTCM anywhere in its address
10228c2ecf20Sopenharmony_ci		 * based on the corresponding Region Registers in the System
10238c2ecf20Sopenharmony_ci		 * Control coprocessor. For now, place ATCM and BTCM at
10248c2ecf20Sopenharmony_ci		 * addresses 0 and 0x41010000 (same as the bus address on AM65x
10258c2ecf20Sopenharmony_ci		 * SoCs) based on loczrama setting
10268c2ecf20Sopenharmony_ci		 */
10278c2ecf20Sopenharmony_ci		if (!strcmp(mem_names[i], "atcm")) {
10288c2ecf20Sopenharmony_ci			core->mem[i].dev_addr = core->loczrama ?
10298c2ecf20Sopenharmony_ci							0 : K3_R5_TCM_DEV_ADDR;
10308c2ecf20Sopenharmony_ci		} else {
10318c2ecf20Sopenharmony_ci			core->mem[i].dev_addr = core->loczrama ?
10328c2ecf20Sopenharmony_ci							K3_R5_TCM_DEV_ADDR : 0;
10338c2ecf20Sopenharmony_ci		}
10348c2ecf20Sopenharmony_ci		core->mem[i].size = resource_size(res);
10358c2ecf20Sopenharmony_ci
10368c2ecf20Sopenharmony_ci		dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
10378c2ecf20Sopenharmony_ci			mem_names[i], &core->mem[i].bus_addr,
10388c2ecf20Sopenharmony_ci			core->mem[i].size, core->mem[i].cpu_addr,
10398c2ecf20Sopenharmony_ci			core->mem[i].dev_addr);
10408c2ecf20Sopenharmony_ci	}
10418c2ecf20Sopenharmony_ci	core->num_mems = num_mems;
10428c2ecf20Sopenharmony_ci
10438c2ecf20Sopenharmony_ci	return 0;
10448c2ecf20Sopenharmony_ci}
10458c2ecf20Sopenharmony_ci
10468c2ecf20Sopenharmony_cistatic int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
10478c2ecf20Sopenharmony_ci					   struct k3_r5_core *core)
10488c2ecf20Sopenharmony_ci{
10498c2ecf20Sopenharmony_ci	struct device_node *np = pdev->dev.of_node;
10508c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
10518c2ecf20Sopenharmony_ci	struct device_node *sram_np;
10528c2ecf20Sopenharmony_ci	struct resource res;
10538c2ecf20Sopenharmony_ci	int num_sram;
10548c2ecf20Sopenharmony_ci	int i, ret;
10558c2ecf20Sopenharmony_ci
10568c2ecf20Sopenharmony_ci	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
10578c2ecf20Sopenharmony_ci	if (num_sram <= 0) {
10588c2ecf20Sopenharmony_ci		dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
10598c2ecf20Sopenharmony_ci			num_sram);
10608c2ecf20Sopenharmony_ci		return 0;
10618c2ecf20Sopenharmony_ci	}
10628c2ecf20Sopenharmony_ci
10638c2ecf20Sopenharmony_ci	core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
10648c2ecf20Sopenharmony_ci	if (!core->sram)
10658c2ecf20Sopenharmony_ci		return -ENOMEM;
10668c2ecf20Sopenharmony_ci
10678c2ecf20Sopenharmony_ci	for (i = 0; i < num_sram; i++) {
10688c2ecf20Sopenharmony_ci		sram_np = of_parse_phandle(np, "sram", i);
10698c2ecf20Sopenharmony_ci		if (!sram_np)
10708c2ecf20Sopenharmony_ci			return -EINVAL;
10718c2ecf20Sopenharmony_ci
10728c2ecf20Sopenharmony_ci		if (!of_device_is_available(sram_np)) {
10738c2ecf20Sopenharmony_ci			of_node_put(sram_np);
10748c2ecf20Sopenharmony_ci			return -EINVAL;
10758c2ecf20Sopenharmony_ci		}
10768c2ecf20Sopenharmony_ci
10778c2ecf20Sopenharmony_ci		ret = of_address_to_resource(sram_np, 0, &res);
10788c2ecf20Sopenharmony_ci		of_node_put(sram_np);
10798c2ecf20Sopenharmony_ci		if (ret)
10808c2ecf20Sopenharmony_ci			return -EINVAL;
10818c2ecf20Sopenharmony_ci
10828c2ecf20Sopenharmony_ci		core->sram[i].bus_addr = res.start;
10838c2ecf20Sopenharmony_ci		core->sram[i].dev_addr = res.start;
10848c2ecf20Sopenharmony_ci		core->sram[i].size = resource_size(&res);
10858c2ecf20Sopenharmony_ci		core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
10868c2ecf20Sopenharmony_ci							 resource_size(&res));
10878c2ecf20Sopenharmony_ci		if (!core->sram[i].cpu_addr) {
10888c2ecf20Sopenharmony_ci			dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
10898c2ecf20Sopenharmony_ci				i, &res.start);
10908c2ecf20Sopenharmony_ci			return -ENOMEM;
10918c2ecf20Sopenharmony_ci		}
10928c2ecf20Sopenharmony_ci
10938c2ecf20Sopenharmony_ci		dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
10948c2ecf20Sopenharmony_ci			i, &core->sram[i].bus_addr,
10958c2ecf20Sopenharmony_ci			core->sram[i].size, core->sram[i].cpu_addr,
10968c2ecf20Sopenharmony_ci			core->sram[i].dev_addr);
10978c2ecf20Sopenharmony_ci	}
10988c2ecf20Sopenharmony_ci	core->num_sram = num_sram;
10998c2ecf20Sopenharmony_ci
11008c2ecf20Sopenharmony_ci	return 0;
11018c2ecf20Sopenharmony_ci}
11028c2ecf20Sopenharmony_ci
11038c2ecf20Sopenharmony_cistatic
11048c2ecf20Sopenharmony_cistruct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
11058c2ecf20Sopenharmony_ci					  const struct ti_sci_handle *sci)
11068c2ecf20Sopenharmony_ci{
11078c2ecf20Sopenharmony_ci	struct ti_sci_proc *tsp;
11088c2ecf20Sopenharmony_ci	u32 temp[2];
11098c2ecf20Sopenharmony_ci	int ret;
11108c2ecf20Sopenharmony_ci
11118c2ecf20Sopenharmony_ci	ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
11128c2ecf20Sopenharmony_ci					 temp, 2);
11138c2ecf20Sopenharmony_ci	if (ret < 0)
11148c2ecf20Sopenharmony_ci		return ERR_PTR(ret);
11158c2ecf20Sopenharmony_ci
11168c2ecf20Sopenharmony_ci	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
11178c2ecf20Sopenharmony_ci	if (!tsp)
11188c2ecf20Sopenharmony_ci		return ERR_PTR(-ENOMEM);
11198c2ecf20Sopenharmony_ci
11208c2ecf20Sopenharmony_ci	tsp->dev = dev;
11218c2ecf20Sopenharmony_ci	tsp->sci = sci;
11228c2ecf20Sopenharmony_ci	tsp->ops = &sci->ops.proc_ops;
11238c2ecf20Sopenharmony_ci	tsp->proc_id = temp[0];
11248c2ecf20Sopenharmony_ci	tsp->host_id = temp[1];
11258c2ecf20Sopenharmony_ci
11268c2ecf20Sopenharmony_ci	return tsp;
11278c2ecf20Sopenharmony_ci}
11288c2ecf20Sopenharmony_ci
11298c2ecf20Sopenharmony_cistatic int k3_r5_core_of_init(struct platform_device *pdev)
11308c2ecf20Sopenharmony_ci{
11318c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
11328c2ecf20Sopenharmony_ci	struct device_node *np = dev_of_node(dev);
11338c2ecf20Sopenharmony_ci	struct k3_r5_core *core;
11348c2ecf20Sopenharmony_ci	int ret;
11358c2ecf20Sopenharmony_ci
11368c2ecf20Sopenharmony_ci	if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
11378c2ecf20Sopenharmony_ci		return -ENOMEM;
11388c2ecf20Sopenharmony_ci
11398c2ecf20Sopenharmony_ci	core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
11408c2ecf20Sopenharmony_ci	if (!core) {
11418c2ecf20Sopenharmony_ci		ret = -ENOMEM;
11428c2ecf20Sopenharmony_ci		goto err;
11438c2ecf20Sopenharmony_ci	}
11448c2ecf20Sopenharmony_ci
11458c2ecf20Sopenharmony_ci	core->dev = dev;
11468c2ecf20Sopenharmony_ci	/*
11478c2ecf20Sopenharmony_ci	 * Use SoC Power-on-Reset values as default if no DT properties are
11488c2ecf20Sopenharmony_ci	 * used to dictate the TCM configurations
11498c2ecf20Sopenharmony_ci	 */
11508c2ecf20Sopenharmony_ci	core->atcm_enable = 0;
11518c2ecf20Sopenharmony_ci	core->btcm_enable = 1;
11528c2ecf20Sopenharmony_ci	core->loczrama = 1;
11538c2ecf20Sopenharmony_ci
11548c2ecf20Sopenharmony_ci	ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
11558c2ecf20Sopenharmony_ci	if (ret < 0 && ret != -EINVAL) {
11568c2ecf20Sopenharmony_ci		dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
11578c2ecf20Sopenharmony_ci			ret);
11588c2ecf20Sopenharmony_ci		goto err;
11598c2ecf20Sopenharmony_ci	}
11608c2ecf20Sopenharmony_ci
11618c2ecf20Sopenharmony_ci	ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
11628c2ecf20Sopenharmony_ci	if (ret < 0 && ret != -EINVAL) {
11638c2ecf20Sopenharmony_ci		dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
11648c2ecf20Sopenharmony_ci			ret);
11658c2ecf20Sopenharmony_ci		goto err;
11668c2ecf20Sopenharmony_ci	}
11678c2ecf20Sopenharmony_ci
11688c2ecf20Sopenharmony_ci	ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
11698c2ecf20Sopenharmony_ci	if (ret < 0 && ret != -EINVAL) {
11708c2ecf20Sopenharmony_ci		dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
11718c2ecf20Sopenharmony_ci		goto err;
11728c2ecf20Sopenharmony_ci	}
11738c2ecf20Sopenharmony_ci
11748c2ecf20Sopenharmony_ci	core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
11758c2ecf20Sopenharmony_ci	if (IS_ERR(core->ti_sci)) {
11768c2ecf20Sopenharmony_ci		ret = PTR_ERR(core->ti_sci);
11778c2ecf20Sopenharmony_ci		if (ret != -EPROBE_DEFER) {
11788c2ecf20Sopenharmony_ci			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
11798c2ecf20Sopenharmony_ci				ret);
11808c2ecf20Sopenharmony_ci		}
11818c2ecf20Sopenharmony_ci		core->ti_sci = NULL;
11828c2ecf20Sopenharmony_ci		goto err;
11838c2ecf20Sopenharmony_ci	}
11848c2ecf20Sopenharmony_ci
11858c2ecf20Sopenharmony_ci	ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
11868c2ecf20Sopenharmony_ci	if (ret) {
11878c2ecf20Sopenharmony_ci		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
11888c2ecf20Sopenharmony_ci		goto err;
11898c2ecf20Sopenharmony_ci	}
11908c2ecf20Sopenharmony_ci
11918c2ecf20Sopenharmony_ci	core->reset = devm_reset_control_get_exclusive(dev, NULL);
11928c2ecf20Sopenharmony_ci	if (IS_ERR_OR_NULL(core->reset)) {
11938c2ecf20Sopenharmony_ci		ret = PTR_ERR_OR_ZERO(core->reset);
11948c2ecf20Sopenharmony_ci		if (!ret)
11958c2ecf20Sopenharmony_ci			ret = -ENODEV;
11968c2ecf20Sopenharmony_ci		if (ret != -EPROBE_DEFER) {
11978c2ecf20Sopenharmony_ci			dev_err(dev, "failed to get reset handle, ret = %d\n",
11988c2ecf20Sopenharmony_ci				ret);
11998c2ecf20Sopenharmony_ci		}
12008c2ecf20Sopenharmony_ci		goto err;
12018c2ecf20Sopenharmony_ci	}
12028c2ecf20Sopenharmony_ci
12038c2ecf20Sopenharmony_ci	core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
12048c2ecf20Sopenharmony_ci	if (IS_ERR(core->tsp)) {
12058c2ecf20Sopenharmony_ci		ret = PTR_ERR(core->tsp);
12068c2ecf20Sopenharmony_ci		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
12078c2ecf20Sopenharmony_ci			ret);
12088c2ecf20Sopenharmony_ci		goto err;
12098c2ecf20Sopenharmony_ci	}
12108c2ecf20Sopenharmony_ci
12118c2ecf20Sopenharmony_ci	ret = k3_r5_core_of_get_internal_memories(pdev, core);
12128c2ecf20Sopenharmony_ci	if (ret) {
12138c2ecf20Sopenharmony_ci		dev_err(dev, "failed to get internal memories, ret = %d\n",
12148c2ecf20Sopenharmony_ci			ret);
12158c2ecf20Sopenharmony_ci		goto err;
12168c2ecf20Sopenharmony_ci	}
12178c2ecf20Sopenharmony_ci
12188c2ecf20Sopenharmony_ci	ret = k3_r5_core_of_get_sram_memories(pdev, core);
12198c2ecf20Sopenharmony_ci	if (ret) {
12208c2ecf20Sopenharmony_ci		dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
12218c2ecf20Sopenharmony_ci		goto err;
12228c2ecf20Sopenharmony_ci	}
12238c2ecf20Sopenharmony_ci
12248c2ecf20Sopenharmony_ci	ret = ti_sci_proc_request(core->tsp);
12258c2ecf20Sopenharmony_ci	if (ret < 0) {
12268c2ecf20Sopenharmony_ci		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
12278c2ecf20Sopenharmony_ci		goto err;
12288c2ecf20Sopenharmony_ci	}
12298c2ecf20Sopenharmony_ci
12308c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, core);
12318c2ecf20Sopenharmony_ci	devres_close_group(dev, k3_r5_core_of_init);
12328c2ecf20Sopenharmony_ci
12338c2ecf20Sopenharmony_ci	return 0;
12348c2ecf20Sopenharmony_ci
12358c2ecf20Sopenharmony_cierr:
12368c2ecf20Sopenharmony_ci	devres_release_group(dev, k3_r5_core_of_init);
12378c2ecf20Sopenharmony_ci	return ret;
12388c2ecf20Sopenharmony_ci}
12398c2ecf20Sopenharmony_ci
12408c2ecf20Sopenharmony_ci/*
12418c2ecf20Sopenharmony_ci * free the resources explicitly since driver model is not being used
12428c2ecf20Sopenharmony_ci * for the child R5F devices
12438c2ecf20Sopenharmony_ci */
12448c2ecf20Sopenharmony_cistatic void k3_r5_core_of_exit(struct platform_device *pdev)
12458c2ecf20Sopenharmony_ci{
12468c2ecf20Sopenharmony_ci	struct k3_r5_core *core = platform_get_drvdata(pdev);
12478c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
12488c2ecf20Sopenharmony_ci	int ret;
12498c2ecf20Sopenharmony_ci
12508c2ecf20Sopenharmony_ci	ret = ti_sci_proc_release(core->tsp);
12518c2ecf20Sopenharmony_ci	if (ret)
12528c2ecf20Sopenharmony_ci		dev_err(dev, "failed to release proc, ret = %d\n", ret);
12538c2ecf20Sopenharmony_ci
12548c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, NULL);
12558c2ecf20Sopenharmony_ci	devres_release_group(dev, k3_r5_core_of_init);
12568c2ecf20Sopenharmony_ci}
12578c2ecf20Sopenharmony_ci
12588c2ecf20Sopenharmony_cistatic void k3_r5_cluster_of_exit(struct platform_device *pdev)
12598c2ecf20Sopenharmony_ci{
12608c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
12618c2ecf20Sopenharmony_ci	struct platform_device *cpdev;
12628c2ecf20Sopenharmony_ci	struct k3_r5_core *core, *temp;
12638c2ecf20Sopenharmony_ci
12648c2ecf20Sopenharmony_ci	list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
12658c2ecf20Sopenharmony_ci		list_del(&core->elem);
12668c2ecf20Sopenharmony_ci		cpdev = to_platform_device(core->dev);
12678c2ecf20Sopenharmony_ci		k3_r5_core_of_exit(cpdev);
12688c2ecf20Sopenharmony_ci	}
12698c2ecf20Sopenharmony_ci}
12708c2ecf20Sopenharmony_ci
12718c2ecf20Sopenharmony_cistatic int k3_r5_cluster_of_init(struct platform_device *pdev)
12728c2ecf20Sopenharmony_ci{
12738c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
12748c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
12758c2ecf20Sopenharmony_ci	struct device_node *np = dev_of_node(dev);
12768c2ecf20Sopenharmony_ci	struct platform_device *cpdev;
12778c2ecf20Sopenharmony_ci	struct device_node *child;
12788c2ecf20Sopenharmony_ci	struct k3_r5_core *core;
12798c2ecf20Sopenharmony_ci	int ret;
12808c2ecf20Sopenharmony_ci
12818c2ecf20Sopenharmony_ci	for_each_available_child_of_node(np, child) {
12828c2ecf20Sopenharmony_ci		cpdev = of_find_device_by_node(child);
12838c2ecf20Sopenharmony_ci		if (!cpdev) {
12848c2ecf20Sopenharmony_ci			ret = -ENODEV;
12858c2ecf20Sopenharmony_ci			dev_err(dev, "could not get R5 core platform device\n");
12868c2ecf20Sopenharmony_ci			of_node_put(child);
12878c2ecf20Sopenharmony_ci			goto fail;
12888c2ecf20Sopenharmony_ci		}
12898c2ecf20Sopenharmony_ci
12908c2ecf20Sopenharmony_ci		ret = k3_r5_core_of_init(cpdev);
12918c2ecf20Sopenharmony_ci		if (ret) {
12928c2ecf20Sopenharmony_ci			dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
12938c2ecf20Sopenharmony_ci				ret);
12948c2ecf20Sopenharmony_ci			put_device(&cpdev->dev);
12958c2ecf20Sopenharmony_ci			of_node_put(child);
12968c2ecf20Sopenharmony_ci			goto fail;
12978c2ecf20Sopenharmony_ci		}
12988c2ecf20Sopenharmony_ci
12998c2ecf20Sopenharmony_ci		core = platform_get_drvdata(cpdev);
13008c2ecf20Sopenharmony_ci		put_device(&cpdev->dev);
13018c2ecf20Sopenharmony_ci		list_add_tail(&core->elem, &cluster->cores);
13028c2ecf20Sopenharmony_ci	}
13038c2ecf20Sopenharmony_ci
13048c2ecf20Sopenharmony_ci	return 0;
13058c2ecf20Sopenharmony_ci
13068c2ecf20Sopenharmony_cifail:
13078c2ecf20Sopenharmony_ci	k3_r5_cluster_of_exit(pdev);
13088c2ecf20Sopenharmony_ci	return ret;
13098c2ecf20Sopenharmony_ci}
13108c2ecf20Sopenharmony_ci
13118c2ecf20Sopenharmony_cistatic int k3_r5_probe(struct platform_device *pdev)
13128c2ecf20Sopenharmony_ci{
13138c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
13148c2ecf20Sopenharmony_ci	struct device_node *np = dev_of_node(dev);
13158c2ecf20Sopenharmony_ci	struct k3_r5_cluster *cluster;
13168c2ecf20Sopenharmony_ci	int ret;
13178c2ecf20Sopenharmony_ci	int num_cores;
13188c2ecf20Sopenharmony_ci
13198c2ecf20Sopenharmony_ci	cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
13208c2ecf20Sopenharmony_ci	if (!cluster)
13218c2ecf20Sopenharmony_ci		return -ENOMEM;
13228c2ecf20Sopenharmony_ci
13238c2ecf20Sopenharmony_ci	cluster->dev = dev;
13248c2ecf20Sopenharmony_ci	cluster->mode = CLUSTER_MODE_LOCKSTEP;
13258c2ecf20Sopenharmony_ci	INIT_LIST_HEAD(&cluster->cores);
13268c2ecf20Sopenharmony_ci
13278c2ecf20Sopenharmony_ci	ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
13288c2ecf20Sopenharmony_ci	if (ret < 0 && ret != -EINVAL) {
13298c2ecf20Sopenharmony_ci		dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
13308c2ecf20Sopenharmony_ci			ret);
13318c2ecf20Sopenharmony_ci		return ret;
13328c2ecf20Sopenharmony_ci	}
13338c2ecf20Sopenharmony_ci
13348c2ecf20Sopenharmony_ci	num_cores = of_get_available_child_count(np);
13358c2ecf20Sopenharmony_ci	if (num_cores != 2) {
13368c2ecf20Sopenharmony_ci		dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
13378c2ecf20Sopenharmony_ci			num_cores);
13388c2ecf20Sopenharmony_ci		return -ENODEV;
13398c2ecf20Sopenharmony_ci	}
13408c2ecf20Sopenharmony_ci
13418c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, cluster);
13428c2ecf20Sopenharmony_ci
13438c2ecf20Sopenharmony_ci	ret = devm_of_platform_populate(dev);
13448c2ecf20Sopenharmony_ci	if (ret) {
13458c2ecf20Sopenharmony_ci		dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
13468c2ecf20Sopenharmony_ci			ret);
13478c2ecf20Sopenharmony_ci		return ret;
13488c2ecf20Sopenharmony_ci	}
13498c2ecf20Sopenharmony_ci
13508c2ecf20Sopenharmony_ci	ret = k3_r5_cluster_of_init(pdev);
13518c2ecf20Sopenharmony_ci	if (ret) {
13528c2ecf20Sopenharmony_ci		dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
13538c2ecf20Sopenharmony_ci		return ret;
13548c2ecf20Sopenharmony_ci	}
13558c2ecf20Sopenharmony_ci
13568c2ecf20Sopenharmony_ci	ret = devm_add_action_or_reset(dev,
13578c2ecf20Sopenharmony_ci				       (void(*)(void *))k3_r5_cluster_of_exit,
13588c2ecf20Sopenharmony_ci				       pdev);
13598c2ecf20Sopenharmony_ci	if (ret)
13608c2ecf20Sopenharmony_ci		return ret;
13618c2ecf20Sopenharmony_ci
13628c2ecf20Sopenharmony_ci	ret = k3_r5_cluster_rproc_init(pdev);
13638c2ecf20Sopenharmony_ci	if (ret) {
13648c2ecf20Sopenharmony_ci		dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
13658c2ecf20Sopenharmony_ci			ret);
13668c2ecf20Sopenharmony_ci		return ret;
13678c2ecf20Sopenharmony_ci	}
13688c2ecf20Sopenharmony_ci
13698c2ecf20Sopenharmony_ci	ret = devm_add_action_or_reset(dev,
13708c2ecf20Sopenharmony_ci				       (void(*)(void *))k3_r5_cluster_rproc_exit,
13718c2ecf20Sopenharmony_ci				       pdev);
13728c2ecf20Sopenharmony_ci	if (ret)
13738c2ecf20Sopenharmony_ci		return ret;
13748c2ecf20Sopenharmony_ci
13758c2ecf20Sopenharmony_ci	return 0;
13768c2ecf20Sopenharmony_ci}
13778c2ecf20Sopenharmony_ci
13788c2ecf20Sopenharmony_cistatic const struct of_device_id k3_r5_of_match[] = {
13798c2ecf20Sopenharmony_ci	{ .compatible = "ti,am654-r5fss", },
13808c2ecf20Sopenharmony_ci	{ .compatible = "ti,j721e-r5fss", },
13818c2ecf20Sopenharmony_ci	{ /* sentinel */ },
13828c2ecf20Sopenharmony_ci};
13838c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, k3_r5_of_match);
13848c2ecf20Sopenharmony_ci
13858c2ecf20Sopenharmony_cistatic struct platform_driver k3_r5_rproc_driver = {
13868c2ecf20Sopenharmony_ci	.probe = k3_r5_probe,
13878c2ecf20Sopenharmony_ci	.driver = {
13888c2ecf20Sopenharmony_ci		.name = "k3_r5_rproc",
13898c2ecf20Sopenharmony_ci		.of_match_table = k3_r5_of_match,
13908c2ecf20Sopenharmony_ci	},
13918c2ecf20Sopenharmony_ci};
13928c2ecf20Sopenharmony_ci
13938c2ecf20Sopenharmony_cimodule_platform_driver(k3_r5_rproc_driver);
13948c2ecf20Sopenharmony_ci
13958c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
13968c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("TI K3 R5F remote processor driver");
13978c2ecf20Sopenharmony_ciMODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1398