1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI K3 DSP Remote Processor(s) driver
4 *
5 * Copyright (C) 2018-2020 Texas Instruments Incorporated - https://www.ti.com/
6 *	Suman Anna <s-anna@ti.com>
7 */
8
9#include <linux/io.h>
10#include <linux/mailbox_client.h>
11#include <linux/module.h>
12#include <linux/of_device.h>
13#include <linux/of_reserved_mem.h>
14#include <linux/omap-mailbox.h>
15#include <linux/platform_device.h>
16#include <linux/remoteproc.h>
17#include <linux/reset.h>
18#include <linux/slab.h>
19
20#include "omap_remoteproc.h"
21#include "remoteproc_internal.h"
22#include "ti_sci_proc.h"
23
24#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK	(SZ_16M - 1)
25
26/**
27 * struct k3_dsp_mem - internal memory structure
28 * @cpu_addr: MPU virtual address of the memory region
29 * @bus_addr: Bus address used to access the memory region
30 * @dev_addr: Device address of the memory region from DSP view
31 * @size: Size of the memory region
32 */
33struct k3_dsp_mem {
34	void __iomem *cpu_addr;
35	phys_addr_t bus_addr;
36	u32 dev_addr;
37	size_t size;
38};
39
40/**
41 * struct k3_dsp_mem_data - memory definitions for a DSP
42 * @name: name for this memory entry
43 * @dev_addr: device address for the memory entry
44 */
45struct k3_dsp_mem_data {
46	const char *name;
47	const u32 dev_addr;
48};
49
50/**
51 * struct k3_dsp_dev_data - device data structure for a DSP
52 * @mems: pointer to memory definitions for a DSP
53 * @num_mems: number of memory regions in @mems
54 * @boot_align_addr: boot vector address alignment granularity
55 * @uses_lreset: flag to denote the need for local reset management
56 */
57struct k3_dsp_dev_data {
58	const struct k3_dsp_mem_data *mems;
59	u32 num_mems;
60	u32 boot_align_addr;
61	bool uses_lreset;
62};
63
64/**
65 * struct k3_dsp_rproc - k3 DSP remote processor driver structure
66 * @dev: cached device pointer
67 * @rproc: remoteproc device handle
68 * @mem: internal memory regions data
69 * @num_mems: number of internal memory regions
70 * @rmem: reserved memory regions data
71 * @num_rmems: number of reserved memory regions
72 * @reset: reset control handle
73 * @data: pointer to DSP-specific device data
74 * @tsp: TI-SCI processor control handle
75 * @ti_sci: TI-SCI handle
76 * @ti_sci_id: TI-SCI device identifier
77 * @mbox: mailbox channel handle
78 * @client: mailbox client to request the mailbox channel
79 */
80struct k3_dsp_rproc {
81	struct device *dev;
82	struct rproc *rproc;
83	struct k3_dsp_mem *mem;
84	int num_mems;
85	struct k3_dsp_mem *rmem;
86	int num_rmems;
87	struct reset_control *reset;
88	const struct k3_dsp_dev_data *data;
89	struct ti_sci_proc *tsp;
90	const struct ti_sci_handle *ti_sci;
91	u32 ti_sci_id;
92	struct mbox_chan *mbox;
93	struct mbox_client client;
94};
95
96/**
97 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
98 * @client: mailbox client pointer used for requesting the mailbox channel
99 * @data: mailbox payload
100 *
101 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
102 * message is received. Usually, the mailbox payload simply contains
103 * the index of the virtqueue that is kicked by the remote processor,
104 * and we let remoteproc core handle it.
105 *
106 * In addition to virtqueue indices, we also have some out-of-band values
107 * that indicate different events. Those values are deliberately very
108 * large so they don't coincide with virtqueue indices.
109 */
110static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
111{
112	struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
113						  client);
114	struct device *dev = kproc->rproc->dev.parent;
115	const char *name = kproc->rproc->name;
116	u32 msg = omap_mbox_message(data);
117
118	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
119
120	switch (msg) {
121	case RP_MBOX_CRASH:
122		/*
123		 * remoteproc detected an exception, but error recovery is not
124		 * supported. So, just log this for now
125		 */
126		dev_err(dev, "K3 DSP rproc %s crashed\n", name);
127		break;
128	case RP_MBOX_ECHO_REPLY:
129		dev_info(dev, "received echo reply from %s\n", name);
130		break;
131	default:
132		/* silently handle all other valid messages */
133		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
134			return;
135		if (msg > kproc->rproc->max_notifyid) {
136			dev_dbg(dev, "dropping unknown message 0x%x", msg);
137			return;
138		}
139		/* msg contains the index of the triggered vring */
140		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
141			dev_dbg(dev, "no message was found in vqid %d\n", msg);
142	}
143}
144
145/*
146 * Kick the remote processor to notify about pending unprocessed messages.
147 * The vqid usage is not used and is inconsequential, as the kick is performed
148 * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
149 * the remote processor is expected to process both its Tx and Rx virtqueues.
150 */
151static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
152{
153	struct k3_dsp_rproc *kproc = rproc->priv;
154	struct device *dev = rproc->dev.parent;
155	mbox_msg_t msg = (mbox_msg_t)vqid;
156	int ret;
157
158	/* send the index of the triggered virtqueue in the mailbox payload */
159	ret = mbox_send_message(kproc->mbox, (void *)msg);
160	if (ret < 0)
161		dev_err(dev, "failed to send mailbox message, status = %d\n",
162			ret);
163}
164
165/* Put the DSP processor into reset */
166static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
167{
168	struct device *dev = kproc->dev;
169	int ret;
170
171	ret = reset_control_assert(kproc->reset);
172	if (ret) {
173		dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
174		return ret;
175	}
176
177	if (kproc->data->uses_lreset)
178		return ret;
179
180	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
181						    kproc->ti_sci_id);
182	if (ret) {
183		dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
184		if (reset_control_deassert(kproc->reset))
185			dev_warn(dev, "local-reset deassert back failed\n");
186	}
187
188	return ret;
189}
190
191/* Release the DSP processor from reset */
192static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
193{
194	struct device *dev = kproc->dev;
195	int ret;
196
197	if (kproc->data->uses_lreset)
198		goto lreset;
199
200	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
201						    kproc->ti_sci_id);
202	if (ret) {
203		dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
204		return ret;
205	}
206
207lreset:
208	ret = reset_control_deassert(kproc->reset);
209	if (ret) {
210		dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
211		if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
212							  kproc->ti_sci_id))
213			dev_warn(dev, "module-reset assert back failed\n");
214	}
215
216	return ret;
217}
218
219/*
220 * The C66x DSP cores have a local reset that affects only the CPU, and a
221 * generic module reset that powers on the device and allows the DSP internal
222 * memories to be accessed while the local reset is asserted. This function is
223 * used to release the global reset on C66x DSPs to allow loading into the DSP
224 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
225 * firmware loading, and is followed by the .start() ops after loading to
226 * actually let the C66x DSP cores run.
227 */
228static int k3_dsp_rproc_prepare(struct rproc *rproc)
229{
230	struct k3_dsp_rproc *kproc = rproc->priv;
231	struct device *dev = kproc->dev;
232	int ret;
233
234	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
235						    kproc->ti_sci_id);
236	if (ret)
237		dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
238			ret);
239
240	return ret;
241}
242
243/*
244 * This function implements the .unprepare() ops and performs the complimentary
245 * operations to that of the .prepare() ops. The function is used to assert the
246 * global reset on applicable C66x cores. This completes the second portion of
247 * powering down the C66x DSP cores. The cores themselves are only halted in the
248 * .stop() callback through the local reset, and the .unprepare() ops is invoked
249 * by the remoteproc core after the remoteproc is stopped to balance the global
250 * reset.
251 */
252static int k3_dsp_rproc_unprepare(struct rproc *rproc)
253{
254	struct k3_dsp_rproc *kproc = rproc->priv;
255	struct device *dev = kproc->dev;
256	int ret;
257
258	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
259						    kproc->ti_sci_id);
260	if (ret)
261		dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
262
263	return ret;
264}
265
266/*
267 * Power up the DSP remote processor.
268 *
269 * This function will be invoked only after the firmware for this rproc
270 * was loaded, parsed successfully, and all of its resource requirements
271 * were met.
272 */
273static int k3_dsp_rproc_start(struct rproc *rproc)
274{
275	struct k3_dsp_rproc *kproc = rproc->priv;
276	struct mbox_client *client = &kproc->client;
277	struct device *dev = kproc->dev;
278	u32 boot_addr;
279	int ret;
280
281	client->dev = dev;
282	client->tx_done = NULL;
283	client->rx_callback = k3_dsp_rproc_mbox_callback;
284	client->tx_block = false;
285	client->knows_txdone = false;
286
287	kproc->mbox = mbox_request_channel(client, 0);
288	if (IS_ERR(kproc->mbox)) {
289		ret = -EBUSY;
290		dev_err(dev, "mbox_request_channel failed: %ld\n",
291			PTR_ERR(kproc->mbox));
292		return ret;
293	}
294
295	/*
296	 * Ping the remote processor, this is only for sanity-sake for now;
297	 * there is no functional effect whatsoever.
298	 *
299	 * Note that the reply will _not_ arrive immediately: this message
300	 * will wait in the mailbox fifo until the remote processor is booted.
301	 */
302	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
303	if (ret < 0) {
304		dev_err(dev, "mbox_send_message failed: %d\n", ret);
305		goto put_mbox;
306	}
307
308	boot_addr = rproc->bootaddr;
309	if (boot_addr & (kproc->data->boot_align_addr - 1)) {
310		dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
311			boot_addr, kproc->data->boot_align_addr);
312		ret = -EINVAL;
313		goto put_mbox;
314	}
315
316	dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
317	ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
318	if (ret)
319		goto put_mbox;
320
321	ret = k3_dsp_rproc_release(kproc);
322	if (ret)
323		goto put_mbox;
324
325	return 0;
326
327put_mbox:
328	mbox_free_channel(kproc->mbox);
329	return ret;
330}
331
332/*
333 * Stop the DSP remote processor.
334 *
335 * This function puts the DSP processor into reset, and finishes processing
336 * of any pending messages.
337 */
338static int k3_dsp_rproc_stop(struct rproc *rproc)
339{
340	struct k3_dsp_rproc *kproc = rproc->priv;
341
342	mbox_free_channel(kproc->mbox);
343
344	k3_dsp_rproc_reset(kproc);
345
346	return 0;
347}
348
349/*
350 * Custom function to translate a DSP device address (internal RAMs only) to a
351 * kernel virtual address.  The DSPs can access their RAMs at either an internal
352 * address visible only from a DSP, or at the SoC-level bus address. Both these
353 * addresses need to be looked through for translation. The translated addresses
354 * can be used either by the remoteproc core for loading (when using kernel
355 * remoteproc loader), or by any rpmsg bus drivers.
356 */
357static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
358{
359	struct k3_dsp_rproc *kproc = rproc->priv;
360	void __iomem *va = NULL;
361	phys_addr_t bus_addr;
362	u32 dev_addr, offset;
363	size_t size;
364	int i;
365
366	if (len == 0)
367		return NULL;
368
369	for (i = 0; i < kproc->num_mems; i++) {
370		bus_addr = kproc->mem[i].bus_addr;
371		dev_addr = kproc->mem[i].dev_addr;
372		size = kproc->mem[i].size;
373
374		if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
375			/* handle DSP-view addresses */
376			if (da >= dev_addr &&
377			    ((da + len) <= (dev_addr + size))) {
378				offset = da - dev_addr;
379				va = kproc->mem[i].cpu_addr + offset;
380				return (__force void *)va;
381			}
382		} else {
383			/* handle SoC-view addresses */
384			if (da >= bus_addr &&
385			    (da + len) <= (bus_addr + size)) {
386				offset = da - bus_addr;
387				va = kproc->mem[i].cpu_addr + offset;
388				return (__force void *)va;
389			}
390		}
391	}
392
393	/* handle static DDR reserved memory regions */
394	for (i = 0; i < kproc->num_rmems; i++) {
395		dev_addr = kproc->rmem[i].dev_addr;
396		size = kproc->rmem[i].size;
397
398		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
399			offset = da - dev_addr;
400			va = kproc->rmem[i].cpu_addr + offset;
401			return (__force void *)va;
402		}
403	}
404
405	return NULL;
406}
407
408static const struct rproc_ops k3_dsp_rproc_ops = {
409	.start		= k3_dsp_rproc_start,
410	.stop		= k3_dsp_rproc_stop,
411	.kick		= k3_dsp_rproc_kick,
412	.da_to_va	= k3_dsp_rproc_da_to_va,
413};
414
415static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
416					struct k3_dsp_rproc *kproc)
417{
418	const struct k3_dsp_dev_data *data = kproc->data;
419	struct device *dev = &pdev->dev;
420	struct resource *res;
421	int num_mems = 0;
422	int i;
423
424	num_mems = kproc->data->num_mems;
425	kproc->mem = devm_kcalloc(kproc->dev, num_mems,
426				  sizeof(*kproc->mem), GFP_KERNEL);
427	if (!kproc->mem)
428		return -ENOMEM;
429
430	for (i = 0; i < num_mems; i++) {
431		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
432						   data->mems[i].name);
433		if (!res) {
434			dev_err(dev, "found no memory resource for %s\n",
435				data->mems[i].name);
436			return -EINVAL;
437		}
438		if (!devm_request_mem_region(dev, res->start,
439					     resource_size(res),
440					     dev_name(dev))) {
441			dev_err(dev, "could not request %s region for resource\n",
442				data->mems[i].name);
443			return -EBUSY;
444		}
445
446		kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
447							 resource_size(res));
448		if (!kproc->mem[i].cpu_addr) {
449			dev_err(dev, "failed to map %s memory\n",
450				data->mems[i].name);
451			return -ENOMEM;
452		}
453		kproc->mem[i].bus_addr = res->start;
454		kproc->mem[i].dev_addr = data->mems[i].dev_addr;
455		kproc->mem[i].size = resource_size(res);
456
457		dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
458			data->mems[i].name, &kproc->mem[i].bus_addr,
459			kproc->mem[i].size, kproc->mem[i].cpu_addr,
460			kproc->mem[i].dev_addr);
461	}
462	kproc->num_mems = num_mems;
463
464	return 0;
465}
466
467static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
468{
469	struct device *dev = kproc->dev;
470	struct device_node *np = dev->of_node;
471	struct device_node *rmem_np;
472	struct reserved_mem *rmem;
473	int num_rmems;
474	int ret, i;
475
476	num_rmems = of_property_count_elems_of_size(np, "memory-region",
477						    sizeof(phandle));
478	if (num_rmems <= 0) {
479		dev_err(dev, "device does not reserved memory regions, ret = %d\n",
480			num_rmems);
481		return -EINVAL;
482	}
483	if (num_rmems < 2) {
484		dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
485			num_rmems);
486		return -EINVAL;
487	}
488
489	/* use reserved memory region 0 for vring DMA allocations */
490	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
491	if (ret) {
492		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
493			ret);
494		return ret;
495	}
496
497	num_rmems--;
498	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
499	if (!kproc->rmem) {
500		ret = -ENOMEM;
501		goto release_rmem;
502	}
503
504	/* use remaining reserved memory regions for static carveouts */
505	for (i = 0; i < num_rmems; i++) {
506		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
507		if (!rmem_np) {
508			ret = -EINVAL;
509			goto unmap_rmem;
510		}
511
512		rmem = of_reserved_mem_lookup(rmem_np);
513		if (!rmem) {
514			of_node_put(rmem_np);
515			ret = -EINVAL;
516			goto unmap_rmem;
517		}
518		of_node_put(rmem_np);
519
520		kproc->rmem[i].bus_addr = rmem->base;
521		/* 64-bit address regions currently not supported */
522		kproc->rmem[i].dev_addr = (u32)rmem->base;
523		kproc->rmem[i].size = rmem->size;
524		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
525		if (!kproc->rmem[i].cpu_addr) {
526			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
527				i + 1, &rmem->base, &rmem->size);
528			ret = -ENOMEM;
529			goto unmap_rmem;
530		}
531
532		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
533			i + 1, &kproc->rmem[i].bus_addr,
534			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
535			kproc->rmem[i].dev_addr);
536	}
537	kproc->num_rmems = num_rmems;
538
539	return 0;
540
541unmap_rmem:
542	for (i--; i >= 0; i--)
543		iounmap(kproc->rmem[i].cpu_addr);
544	kfree(kproc->rmem);
545release_rmem:
546	of_reserved_mem_device_release(kproc->dev);
547	return ret;
548}
549
550static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
551{
552	int i;
553
554	for (i = 0; i < kproc->num_rmems; i++)
555		iounmap(kproc->rmem[i].cpu_addr);
556	kfree(kproc->rmem);
557
558	of_reserved_mem_device_release(kproc->dev);
559}
560
561static
562struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
563					    const struct ti_sci_handle *sci)
564{
565	struct ti_sci_proc *tsp;
566	u32 temp[2];
567	int ret;
568
569	ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
570					 temp, 2);
571	if (ret < 0)
572		return ERR_PTR(ret);
573
574	tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
575	if (!tsp)
576		return ERR_PTR(-ENOMEM);
577
578	tsp->dev = dev;
579	tsp->sci = sci;
580	tsp->ops = &sci->ops.proc_ops;
581	tsp->proc_id = temp[0];
582	tsp->host_id = temp[1];
583
584	return tsp;
585}
586
587static int k3_dsp_rproc_probe(struct platform_device *pdev)
588{
589	struct device *dev = &pdev->dev;
590	struct device_node *np = dev->of_node;
591	const struct k3_dsp_dev_data *data;
592	struct k3_dsp_rproc *kproc;
593	struct rproc *rproc;
594	const char *fw_name;
595	int ret = 0;
596	int ret1;
597
598	data = of_device_get_match_data(dev);
599	if (!data)
600		return -ENODEV;
601
602	ret = rproc_of_parse_firmware(dev, 0, &fw_name);
603	if (ret) {
604		dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
605			ret);
606		return ret;
607	}
608
609	rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name,
610			    sizeof(*kproc));
611	if (!rproc)
612		return -ENOMEM;
613
614	rproc->has_iommu = false;
615	rproc->recovery_disabled = true;
616	if (data->uses_lreset) {
617		rproc->ops->prepare = k3_dsp_rproc_prepare;
618		rproc->ops->unprepare = k3_dsp_rproc_unprepare;
619	}
620	kproc = rproc->priv;
621	kproc->rproc = rproc;
622	kproc->dev = dev;
623	kproc->data = data;
624
625	kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
626	if (IS_ERR(kproc->ti_sci)) {
627		ret = PTR_ERR(kproc->ti_sci);
628		if (ret != -EPROBE_DEFER) {
629			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
630				ret);
631		}
632		kproc->ti_sci = NULL;
633		goto free_rproc;
634	}
635
636	ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
637	if (ret) {
638		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
639		goto put_sci;
640	}
641
642	kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
643	if (IS_ERR(kproc->reset)) {
644		ret = PTR_ERR(kproc->reset);
645		dev_err(dev, "failed to get reset, status = %d\n", ret);
646		goto put_sci;
647	}
648
649	kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
650	if (IS_ERR(kproc->tsp)) {
651		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
652			ret);
653		ret = PTR_ERR(kproc->tsp);
654		goto put_sci;
655	}
656
657	ret = ti_sci_proc_request(kproc->tsp);
658	if (ret < 0) {
659		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
660		goto free_tsp;
661	}
662
663	ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
664	if (ret)
665		goto release_tsp;
666
667	ret = k3_dsp_reserved_mem_init(kproc);
668	if (ret) {
669		dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
670		goto release_tsp;
671	}
672
673	/*
674	 * ensure the DSP local reset is asserted to ensure the DSP doesn't
675	 * execute bogus code in .prepare() when the module reset is released.
676	 */
677	if (data->uses_lreset) {
678		ret = reset_control_status(kproc->reset);
679		if (ret < 0) {
680			dev_err(dev, "failed to get reset status, status = %d\n",
681				ret);
682			goto release_mem;
683		} else if (ret == 0) {
684			dev_warn(dev, "local reset is deasserted for device\n");
685			k3_dsp_rproc_reset(kproc);
686		}
687	}
688
689	ret = rproc_add(rproc);
690	if (ret) {
691		dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
692			ret);
693		goto release_mem;
694	}
695
696	platform_set_drvdata(pdev, kproc);
697
698	return 0;
699
700release_mem:
701	k3_dsp_reserved_mem_exit(kproc);
702release_tsp:
703	ret1 = ti_sci_proc_release(kproc->tsp);
704	if (ret1)
705		dev_err(dev, "failed to release proc, ret = %d\n", ret1);
706free_tsp:
707	kfree(kproc->tsp);
708put_sci:
709	ret1 = ti_sci_put_handle(kproc->ti_sci);
710	if (ret1)
711		dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
712free_rproc:
713	rproc_free(rproc);
714	return ret;
715}
716
717static int k3_dsp_rproc_remove(struct platform_device *pdev)
718{
719	struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
720	struct device *dev = &pdev->dev;
721	int ret;
722
723	rproc_del(kproc->rproc);
724
725	ret = ti_sci_proc_release(kproc->tsp);
726	if (ret)
727		dev_err(dev, "failed to release proc, ret = %d\n", ret);
728
729	kfree(kproc->tsp);
730
731	ret = ti_sci_put_handle(kproc->ti_sci);
732	if (ret)
733		dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
734
735	k3_dsp_reserved_mem_exit(kproc);
736	rproc_free(kproc->rproc);
737
738	return 0;
739}
740
741static const struct k3_dsp_mem_data c66_mems[] = {
742	{ .name = "l2sram", .dev_addr = 0x800000 },
743	{ .name = "l1pram", .dev_addr = 0xe00000 },
744	{ .name = "l1dram", .dev_addr = 0xf00000 },
745};
746
747/* C71x cores only have a L1P Cache, there are no L1P SRAMs */
748static const struct k3_dsp_mem_data c71_mems[] = {
749	{ .name = "l2sram", .dev_addr = 0x800000 },
750	{ .name = "l1dram", .dev_addr = 0xe00000 },
751};
752
753static const struct k3_dsp_dev_data c66_data = {
754	.mems = c66_mems,
755	.num_mems = ARRAY_SIZE(c66_mems),
756	.boot_align_addr = SZ_1K,
757	.uses_lreset = true,
758};
759
760static const struct k3_dsp_dev_data c71_data = {
761	.mems = c71_mems,
762	.num_mems = ARRAY_SIZE(c71_mems),
763	.boot_align_addr = SZ_2M,
764	.uses_lreset = false,
765};
766
767static const struct of_device_id k3_dsp_of_match[] = {
768	{ .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
769	{ .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
770	{ /* sentinel */ },
771};
772MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
773
774static struct platform_driver k3_dsp_rproc_driver = {
775	.probe	= k3_dsp_rproc_probe,
776	.remove	= k3_dsp_rproc_remove,
777	.driver	= {
778		.name = "k3-dsp-rproc",
779		.of_match_table = k3_dsp_of_match,
780	},
781};
782
783module_platform_driver(k3_dsp_rproc_driver);
784
785MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
786MODULE_LICENSE("GPL v2");
787MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
788