1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17#define pr_fmt(fmt)    "%s: " fmt, __func__
18
19#include <linux/delay.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/slab.h>
24#include <linux/mutex.h>
25#include <linux/dma-map-ops.h>
26#include <linux/dma-mapping.h>
27#include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
28#include <linux/firmware.h>
29#include <linux/string.h>
30#include <linux/debugfs.h>
31#include <linux/rculist.h>
32#include <linux/remoteproc.h>
33#include <linux/iommu.h>
34#include <linux/idr.h>
35#include <linux/elf.h>
36#include <linux/crc32.h>
37#include <linux/of_reserved_mem.h>
38#include <linux/virtio_ids.h>
39#include <linux/virtio_ring.h>
40#include <asm/byteorder.h>
41#include <linux/platform_device.h>
42
43#include "remoteproc_internal.h"
44
45#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46
47static DEFINE_MUTEX(rproc_list_mutex);
48static LIST_HEAD(rproc_list);
49static struct notifier_block rproc_panic_nb;
50
51typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52				 void *, int offset, int avail);
53
54static int rproc_alloc_carveout(struct rproc *rproc,
55				struct rproc_mem_entry *mem);
56static int rproc_release_carveout(struct rproc *rproc,
57				  struct rproc_mem_entry *mem);
58
59/* Unique indices for remoteproc devices */
60static DEFINE_IDA(rproc_dev_index);
61
62static const char * const rproc_crash_names[] = {
63	[RPROC_MMUFAULT]	= "mmufault",
64	[RPROC_WATCHDOG]	= "watchdog",
65	[RPROC_FATAL_ERROR]	= "fatal error",
66};
67
68/* translate rproc_crash_type to string */
69static const char *rproc_crash_to_string(enum rproc_crash_type type)
70{
71	if (type < ARRAY_SIZE(rproc_crash_names))
72		return rproc_crash_names[type];
73	return "unknown";
74}
75
76/*
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
80 *
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
83 */
84static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85			     unsigned long iova, int flags, void *token)
86{
87	struct rproc *rproc = token;
88
89	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90
91	rproc_report_crash(rproc, RPROC_MMUFAULT);
92
93	/*
94	 * Let the iommu core know we're not really handling this fault;
95	 * we just used it as a recovery trigger.
96	 */
97	return -ENOSYS;
98}
99
100static int rproc_enable_iommu(struct rproc *rproc)
101{
102	struct iommu_domain *domain;
103	struct device *dev = rproc->dev.parent;
104	int ret;
105
106	if (!rproc->has_iommu) {
107		dev_dbg(dev, "iommu not present\n");
108		return 0;
109	}
110
111	domain = iommu_domain_alloc(dev->bus);
112	if (!domain) {
113		dev_err(dev, "can't alloc iommu domain\n");
114		return -ENOMEM;
115	}
116
117	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118
119	ret = iommu_attach_device(domain, dev);
120	if (ret) {
121		dev_err(dev, "can't attach iommu device: %d\n", ret);
122		goto free_domain;
123	}
124
125	rproc->domain = domain;
126
127	return 0;
128
129free_domain:
130	iommu_domain_free(domain);
131	return ret;
132}
133
134static void rproc_disable_iommu(struct rproc *rproc)
135{
136	struct iommu_domain *domain = rproc->domain;
137	struct device *dev = rproc->dev.parent;
138
139	if (!domain)
140		return;
141
142	iommu_detach_device(domain, dev);
143	iommu_domain_free(domain);
144}
145
146phys_addr_t rproc_va_to_pa(void *cpu_addr)
147{
148	/*
149	 * Return physical address according to virtual address location
150	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151	 * - in kernel: if region allocated in generic dma memory pool
152	 */
153	if (is_vmalloc_addr(cpu_addr)) {
154		return page_to_phys(vmalloc_to_page(cpu_addr)) +
155				    offset_in_page(cpu_addr);
156	}
157
158	WARN_ON(!virt_addr_valid(cpu_addr));
159	return virt_to_phys(cpu_addr);
160}
161EXPORT_SYMBOL(rproc_va_to_pa);
162
163/**
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 *
169 * Some remote processors will ask us to allocate them physically contiguous
170 * memory regions (which we call "carveouts"), and map them to specific
171 * device addresses (which are hardcoded in the firmware). They may also have
172 * dedicated memory regions internal to the processors, and use them either
173 * exclusively or alongside carveouts.
174 *
175 * They may then ask us to copy objects into specific device addresses (e.g.
176 * code/data sections) or expose us certain symbols in other device address
177 * (e.g. their trace buffer).
178 *
179 * This function is a helper function with which we can go over the allocated
180 * carveouts and translate specific device addresses to kernel virtual addresses
181 * so we can access the referenced memory. This function also allows to perform
182 * translations on the internal remoteproc memory regions through a platform
183 * implementation specific da_to_va ops, if present.
184 *
185 * The function returns a valid kernel address on success or NULL on failure.
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
191 */
192void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
193{
194	struct rproc_mem_entry *carveout;
195	void *ptr = NULL;
196
197	if (rproc->ops->da_to_va) {
198		ptr = rproc->ops->da_to_va(rproc, da, len);
199		if (ptr)
200			goto out;
201	}
202
203	list_for_each_entry(carveout, &rproc->carveouts, node) {
204		int offset = da - carveout->da;
205
206		/*  Verify that carveout is allocated */
207		if (!carveout->va)
208			continue;
209
210		/* try next carveout if da is too small */
211		if (offset < 0)
212			continue;
213
214		/* try next carveout if da is too large */
215		if (offset + len > carveout->len)
216			continue;
217
218		ptr = carveout->va + offset;
219
220		break;
221	}
222
223out:
224	return ptr;
225}
226EXPORT_SYMBOL(rproc_da_to_va);
227
228/**
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
231 * @name: carveout name to find (format string)
232 * @...: optional parameters matching @name string
233 *
234 * Platform driver has the capability to register some pre-allacoted carveout
235 * (physically contiguous memory regions) before rproc firmware loading and
236 * associated resource table analysis. These regions may be dedicated memory
237 * regions internal to the coprocessor or specified DDR region with specific
238 * attributes
239 *
240 * This function is a helper function with which we can go over the
241 * allocated carveouts and return associated region characteristics like
242 * coprocessor address, length or processor virtual address.
243 *
244 * Return: a valid pointer on carveout entry on success or NULL on failure.
245 */
246__printf(2, 3)
247struct rproc_mem_entry *
248rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
249{
250	va_list args;
251	char _name[32];
252	struct rproc_mem_entry *carveout, *mem = NULL;
253
254	if (!name)
255		return NULL;
256
257	va_start(args, name);
258	vsnprintf(_name, sizeof(_name), name, args);
259	va_end(args);
260
261	list_for_each_entry(carveout, &rproc->carveouts, node) {
262		/* Compare carveout and requested names */
263		if (!strcmp(carveout->name, _name)) {
264			mem = carveout;
265			break;
266		}
267	}
268
269	return mem;
270}
271
272/**
273 * rproc_check_carveout_da() - Check specified carveout da configuration
274 * @rproc: handle of a remote processor
275 * @mem: pointer on carveout to check
276 * @da: area device address
277 * @len: associated area size
278 *
279 * This function is a helper function to verify requested device area (couple
280 * da, len) is part of specified carveout.
281 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
282 * checked.
283 *
284 * Return: 0 if carveout matches request else error
285 */
286static int rproc_check_carveout_da(struct rproc *rproc,
287				   struct rproc_mem_entry *mem, u32 da, u32 len)
288{
289	struct device *dev = &rproc->dev;
290	int delta;
291
292	/* Check requested resource length */
293	if (len > mem->len) {
294		dev_err(dev, "Registered carveout doesn't fit len request\n");
295		return -EINVAL;
296	}
297
298	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
299		/* Address doesn't match registered carveout configuration */
300		return -EINVAL;
301	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
302		delta = da - mem->da;
303
304		/* Check requested resource belongs to registered carveout */
305		if (delta < 0) {
306			dev_err(dev,
307				"Registered carveout doesn't fit da request\n");
308			return -EINVAL;
309		}
310
311		if (delta + len > mem->len) {
312			dev_err(dev,
313				"Registered carveout doesn't fit len request\n");
314			return -EINVAL;
315		}
316	}
317
318	return 0;
319}
320
321int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
322{
323	struct rproc *rproc = rvdev->rproc;
324	struct device *dev = &rproc->dev;
325	struct rproc_vring *rvring = &rvdev->vring[i];
326	struct fw_rsc_vdev *rsc;
327	int ret, notifyid;
328	struct rproc_mem_entry *mem;
329	size_t size;
330
331	/* actual size of vring (in bytes) */
332	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
333
334	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
335
336	/* Search for pre-registered carveout */
337	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
338					  i);
339	if (mem) {
340		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
341			return -ENOMEM;
342	} else {
343		/* Register carveout in in list */
344		mem = rproc_mem_entry_init(dev, NULL, 0,
345					   size, rsc->vring[i].da,
346					   rproc_alloc_carveout,
347					   rproc_release_carveout,
348					   "vdev%dvring%d",
349					   rvdev->index, i);
350		if (!mem) {
351			dev_err(dev, "Can't allocate memory entry structure\n");
352			return -ENOMEM;
353		}
354
355		rproc_add_carveout(rproc, mem);
356	}
357
358	/*
359	 * Assign an rproc-wide unique index for this vring
360	 * TODO: assign a notifyid for rvdev updates as well
361	 * TODO: support predefined notifyids (via resource table)
362	 */
363	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
364	if (ret < 0) {
365		dev_err(dev, "idr_alloc failed: %d\n", ret);
366		return ret;
367	}
368	notifyid = ret;
369
370	/* Potentially bump max_notifyid */
371	if (notifyid > rproc->max_notifyid)
372		rproc->max_notifyid = notifyid;
373
374	rvring->notifyid = notifyid;
375
376	/* Let the rproc know the notifyid of this vring.*/
377	rsc->vring[i].notifyid = notifyid;
378	return 0;
379}
380
381static int
382rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
383{
384	struct rproc *rproc = rvdev->rproc;
385	struct device *dev = &rproc->dev;
386	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
387	struct rproc_vring *rvring = &rvdev->vring[i];
388
389	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
390		i, vring->da, vring->num, vring->align);
391
392	/* verify queue size and vring alignment are sane */
393	if (!vring->num || !vring->align) {
394		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
395			vring->num, vring->align);
396		return -EINVAL;
397	}
398
399	rvring->len = vring->num;
400	rvring->align = vring->align;
401	rvring->rvdev = rvdev;
402
403	return 0;
404}
405
406void rproc_free_vring(struct rproc_vring *rvring)
407{
408	struct rproc *rproc = rvring->rvdev->rproc;
409	int idx = rvring - rvring->rvdev->vring;
410	struct fw_rsc_vdev *rsc;
411
412	idr_remove(&rproc->notifyids, rvring->notifyid);
413
414	/*
415	 * At this point rproc_stop() has been called and the installed resource
416	 * table in the remote processor memory may no longer be accessible. As
417	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
418	 * resource table (rproc->cached_table).  The cached resource table is
419	 * only available when a remote processor has been booted by the
420	 * remoteproc core, otherwise it is NULL.
421	 *
422	 * Based on the above, reset the virtio device section in the cached
423	 * resource table only if there is one to work with.
424	 */
425	if (rproc->table_ptr) {
426		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
427		rsc->vring[idx].da = 0;
428		rsc->vring[idx].notifyid = -1;
429	}
430}
431
432static int rproc_vdev_do_start(struct rproc_subdev *subdev)
433{
434	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
435
436	return rproc_add_virtio_dev(rvdev, rvdev->id);
437}
438
439static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
440{
441	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
442	int ret;
443
444	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
445	if (ret)
446		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
447}
448
449/**
450 * rproc_rvdev_release() - release the existence of a rvdev
451 *
452 * @dev: the subdevice's dev
453 */
454static void rproc_rvdev_release(struct device *dev)
455{
456	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
457
458	of_reserved_mem_device_release(dev);
459
460	kfree(rvdev);
461}
462
463static int copy_dma_range_map(struct device *to, struct device *from)
464{
465	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
466	int num_ranges = 0;
467
468	if (!map)
469		return 0;
470
471	for (r = map; r->size; r++)
472		num_ranges++;
473
474	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
475			  GFP_KERNEL);
476	if (!new_map)
477		return -ENOMEM;
478	to->dma_range_map = new_map;
479	return 0;
480}
481
482/**
483 * rproc_handle_vdev() - handle a vdev fw resource
484 * @rproc: the remote processor
485 * @rsc: the vring resource descriptor
486 * @offset: offset of the resource entry
487 * @avail: size of available data (for sanity checking the image)
488 *
489 * This resource entry requests the host to statically register a virtio
490 * device (vdev), and setup everything needed to support it. It contains
491 * everything needed to make it possible: the virtio device id, virtio
492 * device features, vrings information, virtio config space, etc...
493 *
494 * Before registering the vdev, the vrings are allocated from non-cacheable
495 * physically contiguous memory. Currently we only support two vrings per
496 * remote processor (temporary limitation). We might also want to consider
497 * doing the vring allocation only later when ->find_vqs() is invoked, and
498 * then release them upon ->del_vqs().
499 *
500 * Note: @da is currently not really handled correctly: we dynamically
501 * allocate it using the DMA API, ignoring requested hard coded addresses,
502 * and we don't take care of any required IOMMU programming. This is all
503 * going to be taken care of when the generic iommu-based DMA API will be
504 * merged. Meanwhile, statically-addressed iommu-based firmware images should
505 * use RSC_DEVMEM resource entries to map their required @da to the physical
506 * address of their base CMA region (ouch, hacky!).
507 *
508 * Returns 0 on success, or an appropriate error code otherwise
509 */
510static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
511			     int offset, int avail)
512{
513	struct device *dev = &rproc->dev;
514	struct rproc_vdev *rvdev;
515	int i, ret;
516	char name[16];
517
518	/* make sure resource isn't truncated */
519	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
520			avail) {
521		dev_err(dev, "vdev rsc is truncated\n");
522		return -EINVAL;
523	}
524
525	/* make sure reserved bytes are zeroes */
526	if (rsc->reserved[0] || rsc->reserved[1]) {
527		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
528		return -EINVAL;
529	}
530
531	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
532		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
533
534	/* we currently support only two vrings per rvdev */
535	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
536		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
537		return -EINVAL;
538	}
539
540	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
541	if (!rvdev)
542		return -ENOMEM;
543
544	kref_init(&rvdev->refcount);
545
546	rvdev->id = rsc->id;
547	rvdev->rproc = rproc;
548	rvdev->index = rproc->nb_vdev++;
549
550	/* Initialise vdev subdevice */
551	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
552	rvdev->dev.parent = &rproc->dev;
553	rvdev->dev.release = rproc_rvdev_release;
554	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
555	dev_set_drvdata(&rvdev->dev, rvdev);
556
557	ret = device_register(&rvdev->dev);
558	if (ret) {
559		put_device(&rvdev->dev);
560		return ret;
561	}
562
563	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
564	if (ret)
565		goto free_rvdev;
566
567	/* Make device dma capable by inheriting from parent's capabilities */
568	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
569
570	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
571					   dma_get_mask(rproc->dev.parent));
572	if (ret) {
573		dev_warn(dev,
574			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
575			 dma_get_mask(rproc->dev.parent), ret);
576	}
577
578	/* parse the vrings */
579	for (i = 0; i < rsc->num_of_vrings; i++) {
580		ret = rproc_parse_vring(rvdev, rsc, i);
581		if (ret)
582			goto free_rvdev;
583	}
584
585	/* remember the resource offset*/
586	rvdev->rsc_offset = offset;
587
588	/* allocate the vring resources */
589	for (i = 0; i < rsc->num_of_vrings; i++) {
590		ret = rproc_alloc_vring(rvdev, i);
591		if (ret)
592			goto unwind_vring_allocations;
593	}
594
595	list_add_tail(&rvdev->node, &rproc->rvdevs);
596
597	rvdev->subdev.start = rproc_vdev_do_start;
598	rvdev->subdev.stop = rproc_vdev_do_stop;
599
600	rproc_add_subdev(rproc, &rvdev->subdev);
601
602	return 0;
603
604unwind_vring_allocations:
605	for (i--; i >= 0; i--)
606		rproc_free_vring(&rvdev->vring[i]);
607free_rvdev:
608	device_unregister(&rvdev->dev);
609	return ret;
610}
611
612void rproc_vdev_release(struct kref *ref)
613{
614	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
615	struct rproc_vring *rvring;
616	struct rproc *rproc = rvdev->rproc;
617	int id;
618
619	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
620		rvring = &rvdev->vring[id];
621		rproc_free_vring(rvring);
622	}
623
624	rproc_remove_subdev(rproc, &rvdev->subdev);
625	list_del(&rvdev->node);
626	device_unregister(&rvdev->dev);
627}
628
629/**
630 * rproc_handle_trace() - handle a shared trace buffer resource
631 * @rproc: the remote processor
632 * @rsc: the trace resource descriptor
633 * @offset: offset of the resource entry
634 * @avail: size of available data (for sanity checking the image)
635 *
636 * In case the remote processor dumps trace logs into memory,
637 * export it via debugfs.
638 *
639 * Currently, the 'da' member of @rsc should contain the device address
640 * where the remote processor is dumping the traces. Later we could also
641 * support dynamically allocating this address using the generic
642 * DMA API (but currently there isn't a use case for that).
643 *
644 * Returns 0 on success, or an appropriate error code otherwise
645 */
646static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
647			      int offset, int avail)
648{
649	struct rproc_debug_trace *trace;
650	struct device *dev = &rproc->dev;
651	char name[15];
652
653	if (sizeof(*rsc) > avail) {
654		dev_err(dev, "trace rsc is truncated\n");
655		return -EINVAL;
656	}
657
658	/* make sure reserved bytes are zeroes */
659	if (rsc->reserved) {
660		dev_err(dev, "trace rsc has non zero reserved bytes\n");
661		return -EINVAL;
662	}
663
664	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
665	if (!trace)
666		return -ENOMEM;
667
668	/* set the trace buffer dma properties */
669	trace->trace_mem.len = rsc->len;
670	trace->trace_mem.da = rsc->da;
671
672	/* set pointer on rproc device */
673	trace->rproc = rproc;
674
675	/* make sure snprintf always null terminates, even if truncating */
676	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
677
678	/* create the debugfs entry */
679	trace->tfile = rproc_create_trace_file(name, rproc, trace);
680	if (!trace->tfile) {
681		kfree(trace);
682		return -EINVAL;
683	}
684
685	list_add_tail(&trace->node, &rproc->traces);
686
687	rproc->num_traces++;
688
689	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
690		name, rsc->da, rsc->len);
691
692	return 0;
693}
694
695/**
696 * rproc_handle_devmem() - handle devmem resource entry
697 * @rproc: remote processor handle
698 * @rsc: the devmem resource entry
699 * @offset: offset of the resource entry
700 * @avail: size of available data (for sanity checking the image)
701 *
702 * Remote processors commonly need to access certain on-chip peripherals.
703 *
704 * Some of these remote processors access memory via an iommu device,
705 * and might require us to configure their iommu before they can access
706 * the on-chip peripherals they need.
707 *
708 * This resource entry is a request to map such a peripheral device.
709 *
710 * These devmem entries will contain the physical address of the device in
711 * the 'pa' member. If a specific device address is expected, then 'da' will
712 * contain it (currently this is the only use case supported). 'len' will
713 * contain the size of the physical region we need to map.
714 *
715 * Currently we just "trust" those devmem entries to contain valid physical
716 * addresses, but this is going to change: we want the implementations to
717 * tell us ranges of physical addresses the firmware is allowed to request,
718 * and not allow firmwares to request access to physical addresses that
719 * are outside those ranges.
720 */
721static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
722			       int offset, int avail)
723{
724	struct rproc_mem_entry *mapping;
725	struct device *dev = &rproc->dev;
726	int ret;
727
728	/* no point in handling this resource without a valid iommu domain */
729	if (!rproc->domain)
730		return -EINVAL;
731
732	if (sizeof(*rsc) > avail) {
733		dev_err(dev, "devmem rsc is truncated\n");
734		return -EINVAL;
735	}
736
737	/* make sure reserved bytes are zeroes */
738	if (rsc->reserved) {
739		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
740		return -EINVAL;
741	}
742
743	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
744	if (!mapping)
745		return -ENOMEM;
746
747	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
748	if (ret) {
749		dev_err(dev, "failed to map devmem: %d\n", ret);
750		goto out;
751	}
752
753	/*
754	 * We'll need this info later when we'll want to unmap everything
755	 * (e.g. on shutdown).
756	 *
757	 * We can't trust the remote processor not to change the resource
758	 * table, so we must maintain this info independently.
759	 */
760	mapping->da = rsc->da;
761	mapping->len = rsc->len;
762	list_add_tail(&mapping->node, &rproc->mappings);
763
764	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
765		rsc->pa, rsc->da, rsc->len);
766
767	return 0;
768
769out:
770	kfree(mapping);
771	return ret;
772}
773
774/**
775 * rproc_alloc_carveout() - allocated specified carveout
776 * @rproc: rproc handle
777 * @mem: the memory entry to allocate
778 *
779 * This function allocate specified memory entry @mem using
780 * dma_alloc_coherent() as default allocator
781 */
782static int rproc_alloc_carveout(struct rproc *rproc,
783				struct rproc_mem_entry *mem)
784{
785	struct rproc_mem_entry *mapping = NULL;
786	struct device *dev = &rproc->dev;
787	dma_addr_t dma;
788	void *va;
789	int ret;
790
791	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
792	if (!va) {
793		dev_err(dev->parent,
794			"failed to allocate dma memory: len 0x%zx\n",
795			mem->len);
796		return -ENOMEM;
797	}
798
799	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
800		va, &dma, mem->len);
801
802	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
803		/*
804		 * Check requested da is equal to dma address
805		 * and print a warn message in case of missalignment.
806		 * Don't stop rproc_start sequence as coprocessor may
807		 * build pa to da translation on its side.
808		 */
809		if (mem->da != (u32)dma)
810			dev_warn(dev->parent,
811				 "Allocated carveout doesn't fit device address request\n");
812	}
813
814	/*
815	 * Ok, this is non-standard.
816	 *
817	 * Sometimes we can't rely on the generic iommu-based DMA API
818	 * to dynamically allocate the device address and then set the IOMMU
819	 * tables accordingly, because some remote processors might
820	 * _require_ us to use hard coded device addresses that their
821	 * firmware was compiled with.
822	 *
823	 * In this case, we must use the IOMMU API directly and map
824	 * the memory to the device address as expected by the remote
825	 * processor.
826	 *
827	 * Obviously such remote processor devices should not be configured
828	 * to use the iommu-based DMA API: we expect 'dma' to contain the
829	 * physical address in this case.
830	 */
831	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
832		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
833		if (!mapping) {
834			ret = -ENOMEM;
835			goto dma_free;
836		}
837
838		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
839				mem->flags);
840		if (ret) {
841			dev_err(dev, "iommu_map failed: %d\n", ret);
842			goto free_mapping;
843		}
844
845		/*
846		 * We'll need this info later when we'll want to unmap
847		 * everything (e.g. on shutdown).
848		 *
849		 * We can't trust the remote processor not to change the
850		 * resource table, so we must maintain this info independently.
851		 */
852		mapping->da = mem->da;
853		mapping->len = mem->len;
854		list_add_tail(&mapping->node, &rproc->mappings);
855
856		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
857			mem->da, &dma);
858	}
859
860	if (mem->da == FW_RSC_ADDR_ANY) {
861		/* Update device address as undefined by requester */
862		if ((u64)dma & HIGH_BITS_MASK)
863			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
864
865		mem->da = (u32)dma;
866	}
867
868	mem->dma = dma;
869	mem->va = va;
870
871	return 0;
872
873free_mapping:
874	kfree(mapping);
875dma_free:
876	dma_free_coherent(dev->parent, mem->len, va, dma);
877	return ret;
878}
879
880/**
881 * rproc_release_carveout() - release acquired carveout
882 * @rproc: rproc handle
883 * @mem: the memory entry to release
884 *
885 * This function releases specified memory entry @mem allocated via
886 * rproc_alloc_carveout() function by @rproc.
887 */
888static int rproc_release_carveout(struct rproc *rproc,
889				  struct rproc_mem_entry *mem)
890{
891	struct device *dev = &rproc->dev;
892
893	/* clean up carveout allocations */
894	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
895	return 0;
896}
897
898/**
899 * rproc_handle_carveout() - handle phys contig memory allocation requests
900 * @rproc: rproc handle
901 * @rsc: the resource entry
902 * @offset: offset of the resource entry
903 * @avail: size of available data (for image validation)
904 *
905 * This function will handle firmware requests for allocation of physically
906 * contiguous memory regions.
907 *
908 * These request entries should come first in the firmware's resource table,
909 * as other firmware entries might request placing other data objects inside
910 * these memory regions (e.g. data/code segments, trace resource entries, ...).
911 *
912 * Allocating memory this way helps utilizing the reserved physical memory
913 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
914 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
915 * pressure is important; it may have a substantial impact on performance.
916 */
917static int rproc_handle_carveout(struct rproc *rproc,
918				 struct fw_rsc_carveout *rsc,
919				 int offset, int avail)
920{
921	struct rproc_mem_entry *carveout;
922	struct device *dev = &rproc->dev;
923
924	if (sizeof(*rsc) > avail) {
925		dev_err(dev, "carveout rsc is truncated\n");
926		return -EINVAL;
927	}
928
929	/* make sure reserved bytes are zeroes */
930	if (rsc->reserved) {
931		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
932		return -EINVAL;
933	}
934
935	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
936		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
937
938	/*
939	 * Check carveout rsc already part of a registered carveout,
940	 * Search by name, then check the da and length
941	 */
942	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
943
944	if (carveout) {
945		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
946			dev_err(dev,
947				"Carveout already associated to resource table\n");
948			return -ENOMEM;
949		}
950
951		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
952			return -ENOMEM;
953
954		/* Update memory carveout with resource table info */
955		carveout->rsc_offset = offset;
956		carveout->flags = rsc->flags;
957
958		return 0;
959	}
960
961	/* Register carveout in in list */
962	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
963					rproc_alloc_carveout,
964					rproc_release_carveout, rsc->name);
965	if (!carveout) {
966		dev_err(dev, "Can't allocate memory entry structure\n");
967		return -ENOMEM;
968	}
969
970	carveout->flags = rsc->flags;
971	carveout->rsc_offset = offset;
972	rproc_add_carveout(rproc, carveout);
973
974	return 0;
975}
976
977/**
978 * rproc_add_carveout() - register an allocated carveout region
979 * @rproc: rproc handle
980 * @mem: memory entry to register
981 *
982 * This function registers specified memory entry in @rproc carveouts list.
983 * Specified carveout should have been allocated before registering.
984 */
985void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
986{
987	list_add_tail(&mem->node, &rproc->carveouts);
988}
989EXPORT_SYMBOL(rproc_add_carveout);
990
991/**
992 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
993 * @dev: pointer on device struct
994 * @va: virtual address
995 * @dma: dma address
996 * @len: memory carveout length
997 * @da: device address
998 * @alloc: memory carveout allocation function
999 * @release: memory carveout release function
1000 * @name: carveout name
1001 *
1002 * This function allocates a rproc_mem_entry struct and fill it with parameters
1003 * provided by client.
1004 */
1005__printf(8, 9)
1006struct rproc_mem_entry *
1007rproc_mem_entry_init(struct device *dev,
1008		     void *va, dma_addr_t dma, size_t len, u32 da,
1009		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1010		     int (*release)(struct rproc *, struct rproc_mem_entry *),
1011		     const char *name, ...)
1012{
1013	struct rproc_mem_entry *mem;
1014	va_list args;
1015
1016	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1017	if (!mem)
1018		return mem;
1019
1020	mem->va = va;
1021	mem->dma = dma;
1022	mem->da = da;
1023	mem->len = len;
1024	mem->alloc = alloc;
1025	mem->release = release;
1026	mem->rsc_offset = FW_RSC_ADDR_ANY;
1027	mem->of_resm_idx = -1;
1028
1029	va_start(args, name);
1030	vsnprintf(mem->name, sizeof(mem->name), name, args);
1031	va_end(args);
1032
1033	return mem;
1034}
1035EXPORT_SYMBOL(rproc_mem_entry_init);
1036
1037/**
1038 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1039 * from a reserved memory phandle
1040 * @dev: pointer on device struct
1041 * @of_resm_idx: reserved memory phandle index in "memory-region"
1042 * @len: memory carveout length
1043 * @da: device address
1044 * @name: carveout name
1045 *
1046 * This function allocates a rproc_mem_entry struct and fill it with parameters
1047 * provided by client.
1048 */
1049__printf(5, 6)
1050struct rproc_mem_entry *
1051rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1052			     u32 da, const char *name, ...)
1053{
1054	struct rproc_mem_entry *mem;
1055	va_list args;
1056
1057	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1058	if (!mem)
1059		return mem;
1060
1061	mem->da = da;
1062	mem->len = len;
1063	mem->rsc_offset = FW_RSC_ADDR_ANY;
1064	mem->of_resm_idx = of_resm_idx;
1065
1066	va_start(args, name);
1067	vsnprintf(mem->name, sizeof(mem->name), name, args);
1068	va_end(args);
1069
1070	return mem;
1071}
1072EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1073
1074/**
1075 * rproc_of_parse_firmware() - parse and return the firmware-name
1076 * @dev: pointer on device struct representing a rproc
1077 * @index: index to use for the firmware-name retrieval
1078 * @fw_name: pointer to a character string, in which the firmware
1079 *           name is returned on success and unmodified otherwise.
1080 *
1081 * This is an OF helper function that parses a device's DT node for
1082 * the "firmware-name" property and returns the firmware name pointer
1083 * in @fw_name on success.
1084 *
1085 * Return: 0 on success, or an appropriate failure.
1086 */
1087int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1088{
1089	int ret;
1090
1091	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1092					    index, fw_name);
1093	return ret ? ret : 0;
1094}
1095EXPORT_SYMBOL(rproc_of_parse_firmware);
1096
1097/*
1098 * A lookup table for resource handlers. The indices are defined in
1099 * enum fw_resource_type.
1100 */
1101static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1102	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1103	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1104	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1105	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1106};
1107
1108/* handle firmware resource entries before booting the remote processor */
1109static int rproc_handle_resources(struct rproc *rproc,
1110				  rproc_handle_resource_t handlers[RSC_LAST])
1111{
1112	struct device *dev = &rproc->dev;
1113	rproc_handle_resource_t handler;
1114	int ret = 0, i;
1115
1116	if (!rproc->table_ptr)
1117		return 0;
1118
1119	for (i = 0; i < rproc->table_ptr->num; i++) {
1120		int offset = rproc->table_ptr->offset[i];
1121		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1122		int avail = rproc->table_sz - offset - sizeof(*hdr);
1123		void *rsc = (void *)hdr + sizeof(*hdr);
1124
1125		/* make sure table isn't truncated */
1126		if (avail < 0) {
1127			dev_err(dev, "rsc table is truncated\n");
1128			return -EINVAL;
1129		}
1130
1131		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1132
1133		if (hdr->type >= RSC_VENDOR_START &&
1134		    hdr->type <= RSC_VENDOR_END) {
1135			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1136					       offset + sizeof(*hdr), avail);
1137			if (ret == RSC_HANDLED)
1138				continue;
1139			else if (ret < 0)
1140				break;
1141
1142			dev_warn(dev, "unsupported vendor resource %d\n",
1143				 hdr->type);
1144			continue;
1145		}
1146
1147		if (hdr->type >= RSC_LAST) {
1148			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1149			continue;
1150		}
1151
1152		handler = handlers[hdr->type];
1153		if (!handler)
1154			continue;
1155
1156		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1157		if (ret)
1158			break;
1159	}
1160
1161	return ret;
1162}
1163
1164static int rproc_prepare_subdevices(struct rproc *rproc)
1165{
1166	struct rproc_subdev *subdev;
1167	int ret;
1168
1169	list_for_each_entry(subdev, &rproc->subdevs, node) {
1170		if (subdev->prepare) {
1171			ret = subdev->prepare(subdev);
1172			if (ret)
1173				goto unroll_preparation;
1174		}
1175	}
1176
1177	return 0;
1178
1179unroll_preparation:
1180	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1181		if (subdev->unprepare)
1182			subdev->unprepare(subdev);
1183	}
1184
1185	return ret;
1186}
1187
1188static int rproc_start_subdevices(struct rproc *rproc)
1189{
1190	struct rproc_subdev *subdev;
1191	int ret;
1192
1193	list_for_each_entry(subdev, &rproc->subdevs, node) {
1194		if (subdev->start) {
1195			ret = subdev->start(subdev);
1196			if (ret)
1197				goto unroll_registration;
1198		}
1199	}
1200
1201	return 0;
1202
1203unroll_registration:
1204	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1205		if (subdev->stop)
1206			subdev->stop(subdev, true);
1207	}
1208
1209	return ret;
1210}
1211
1212static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1213{
1214	struct rproc_subdev *subdev;
1215
1216	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1217		if (subdev->stop)
1218			subdev->stop(subdev, crashed);
1219	}
1220}
1221
1222static void rproc_unprepare_subdevices(struct rproc *rproc)
1223{
1224	struct rproc_subdev *subdev;
1225
1226	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1227		if (subdev->unprepare)
1228			subdev->unprepare(subdev);
1229	}
1230}
1231
1232/**
1233 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1234 * in the list
1235 * @rproc: the remote processor handle
1236 *
1237 * This function parses registered carveout list, performs allocation
1238 * if alloc() ops registered and updates resource table information
1239 * if rsc_offset set.
1240 *
1241 * Return: 0 on success
1242 */
1243static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1244{
1245	struct rproc_mem_entry *entry, *tmp;
1246	struct fw_rsc_carveout *rsc;
1247	struct device *dev = &rproc->dev;
1248	u64 pa;
1249	int ret;
1250
1251	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1252		if (entry->alloc) {
1253			ret = entry->alloc(rproc, entry);
1254			if (ret) {
1255				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1256					entry->name, ret);
1257				return -ENOMEM;
1258			}
1259		}
1260
1261		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1262			/* update resource table */
1263			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1264
1265			/*
1266			 * Some remote processors might need to know the pa
1267			 * even though they are behind an IOMMU. E.g., OMAP4's
1268			 * remote M3 processor needs this so it can control
1269			 * on-chip hardware accelerators that are not behind
1270			 * the IOMMU, and therefor must know the pa.
1271			 *
1272			 * Generally we don't want to expose physical addresses
1273			 * if we don't have to (remote processors are generally
1274			 * _not_ trusted), so we might want to do this only for
1275			 * remote processor that _must_ have this (e.g. OMAP4's
1276			 * dual M3 subsystem).
1277			 *
1278			 * Non-IOMMU processors might also want to have this info.
1279			 * In this case, the device address and the physical address
1280			 * are the same.
1281			 */
1282
1283			/* Use va if defined else dma to generate pa */
1284			if (entry->va)
1285				pa = (u64)rproc_va_to_pa(entry->va);
1286			else
1287				pa = (u64)entry->dma;
1288
1289			if (((u64)pa) & HIGH_BITS_MASK)
1290				dev_warn(dev,
1291					 "Physical address cast in 32bit to fit resource table format\n");
1292
1293			rsc->pa = (u32)pa;
1294			rsc->da = entry->da;
1295			rsc->len = entry->len;
1296		}
1297	}
1298
1299	return 0;
1300}
1301
1302
1303/**
1304 * rproc_resource_cleanup() - clean up and free all acquired resources
1305 * @rproc: rproc handle
1306 *
1307 * This function will free all resources acquired for @rproc, and it
1308 * is called whenever @rproc either shuts down or fails to boot.
1309 */
1310void rproc_resource_cleanup(struct rproc *rproc)
1311{
1312	struct rproc_mem_entry *entry, *tmp;
1313	struct rproc_debug_trace *trace, *ttmp;
1314	struct rproc_vdev *rvdev, *rvtmp;
1315	struct device *dev = &rproc->dev;
1316
1317	/* clean up debugfs trace entries */
1318	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1319		rproc_remove_trace_file(trace->tfile);
1320		rproc->num_traces--;
1321		list_del(&trace->node);
1322		kfree(trace);
1323	}
1324
1325	/* clean up iommu mapping entries */
1326	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1327		size_t unmapped;
1328
1329		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1330		if (unmapped != entry->len) {
1331			/* nothing much to do besides complaining */
1332			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1333				unmapped);
1334		}
1335
1336		list_del(&entry->node);
1337		kfree(entry);
1338	}
1339
1340	/* clean up carveout allocations */
1341	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1342		if (entry->release)
1343			entry->release(rproc, entry);
1344		list_del(&entry->node);
1345		kfree(entry);
1346	}
1347
1348	/* clean up remote vdev entries */
1349	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1350		kref_put(&rvdev->refcount, rproc_vdev_release);
1351
1352	rproc_coredump_cleanup(rproc);
1353}
1354EXPORT_SYMBOL(rproc_resource_cleanup);
1355
1356static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1357{
1358	struct resource_table *loaded_table;
1359	struct device *dev = &rproc->dev;
1360	int ret;
1361
1362	/* load the ELF segments to memory */
1363	ret = rproc_load_segments(rproc, fw);
1364	if (ret) {
1365		dev_err(dev, "Failed to load program segments: %d\n", ret);
1366		return ret;
1367	}
1368
1369	/*
1370	 * The starting device has been given the rproc->cached_table as the
1371	 * resource table. The address of the vring along with the other
1372	 * allocated resources (carveouts etc) is stored in cached_table.
1373	 * In order to pass this information to the remote device we must copy
1374	 * this information to device memory. We also update the table_ptr so
1375	 * that any subsequent changes will be applied to the loaded version.
1376	 */
1377	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1378	if (loaded_table) {
1379		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1380		rproc->table_ptr = loaded_table;
1381	}
1382
1383	ret = rproc_prepare_subdevices(rproc);
1384	if (ret) {
1385		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1386			rproc->name, ret);
1387		goto reset_table_ptr;
1388	}
1389
1390	/* power up the remote processor */
1391	ret = rproc->ops->start(rproc);
1392	if (ret) {
1393		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1394		goto unprepare_subdevices;
1395	}
1396
1397	/* Start any subdevices for the remote processor */
1398	ret = rproc_start_subdevices(rproc);
1399	if (ret) {
1400		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1401			rproc->name, ret);
1402		goto stop_rproc;
1403	}
1404
1405	rproc->state = RPROC_RUNNING;
1406
1407	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1408
1409	return 0;
1410
1411stop_rproc:
1412	rproc->ops->stop(rproc);
1413unprepare_subdevices:
1414	rproc_unprepare_subdevices(rproc);
1415reset_table_ptr:
1416	rproc->table_ptr = rproc->cached_table;
1417
1418	return ret;
1419}
1420
1421static int rproc_attach(struct rproc *rproc)
1422{
1423	struct device *dev = &rproc->dev;
1424	int ret;
1425
1426	ret = rproc_prepare_subdevices(rproc);
1427	if (ret) {
1428		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1429			rproc->name, ret);
1430		goto out;
1431	}
1432
1433	/* Attach to the remote processor */
1434	ret = rproc_attach_device(rproc);
1435	if (ret) {
1436		dev_err(dev, "can't attach to rproc %s: %d\n",
1437			rproc->name, ret);
1438		goto unprepare_subdevices;
1439	}
1440
1441	/* Start any subdevices for the remote processor */
1442	ret = rproc_start_subdevices(rproc);
1443	if (ret) {
1444		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1445			rproc->name, ret);
1446		goto stop_rproc;
1447	}
1448
1449	rproc->state = RPROC_RUNNING;
1450
1451	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1452
1453	return 0;
1454
1455stop_rproc:
1456	rproc->ops->stop(rproc);
1457unprepare_subdevices:
1458	rproc_unprepare_subdevices(rproc);
1459out:
1460	return ret;
1461}
1462
1463/*
1464 * take a firmware and boot a remote processor with it.
1465 */
1466static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1467{
1468	struct device *dev = &rproc->dev;
1469	const char *name = rproc->firmware;
1470	int ret;
1471
1472	ret = rproc_fw_sanity_check(rproc, fw);
1473	if (ret)
1474		return ret;
1475
1476	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1477
1478	/*
1479	 * if enabling an IOMMU isn't relevant for this rproc, this is
1480	 * just a nop
1481	 */
1482	ret = rproc_enable_iommu(rproc);
1483	if (ret) {
1484		dev_err(dev, "can't enable iommu: %d\n", ret);
1485		return ret;
1486	}
1487
1488	/* Prepare rproc for firmware loading if needed */
1489	ret = rproc_prepare_device(rproc);
1490	if (ret) {
1491		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1492		goto disable_iommu;
1493	}
1494
1495	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1496
1497	/* Load resource table, core dump segment list etc from the firmware */
1498	ret = rproc_parse_fw(rproc, fw);
1499	if (ret)
1500		goto unprepare_rproc;
1501
1502	/* reset max_notifyid */
1503	rproc->max_notifyid = -1;
1504
1505	/* reset handled vdev */
1506	rproc->nb_vdev = 0;
1507
1508	/* handle fw resources which are required to boot rproc */
1509	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1510	if (ret) {
1511		dev_err(dev, "Failed to process resources: %d\n", ret);
1512		goto clean_up_resources;
1513	}
1514
1515	/* Allocate carveout resources associated to rproc */
1516	ret = rproc_alloc_registered_carveouts(rproc);
1517	if (ret) {
1518		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1519			ret);
1520		goto clean_up_resources;
1521	}
1522
1523	ret = rproc_start(rproc, fw);
1524	if (ret)
1525		goto clean_up_resources;
1526
1527	return 0;
1528
1529clean_up_resources:
1530	rproc_resource_cleanup(rproc);
1531	kfree(rproc->cached_table);
1532	rproc->cached_table = NULL;
1533	rproc->table_ptr = NULL;
1534unprepare_rproc:
1535	/* release HW resources if needed */
1536	rproc_unprepare_device(rproc);
1537disable_iommu:
1538	rproc_disable_iommu(rproc);
1539	return ret;
1540}
1541
1542/*
1543 * Attach to remote processor - similar to rproc_fw_boot() but without
1544 * the steps that deal with the firmware image.
1545 */
1546static int rproc_actuate(struct rproc *rproc)
1547{
1548	struct device *dev = &rproc->dev;
1549	int ret;
1550
1551	/*
1552	 * if enabling an IOMMU isn't relevant for this rproc, this is
1553	 * just a nop
1554	 */
1555	ret = rproc_enable_iommu(rproc);
1556	if (ret) {
1557		dev_err(dev, "can't enable iommu: %d\n", ret);
1558		return ret;
1559	}
1560
1561	/* reset max_notifyid */
1562	rproc->max_notifyid = -1;
1563
1564	/* reset handled vdev */
1565	rproc->nb_vdev = 0;
1566
1567	/*
1568	 * Handle firmware resources required to attach to a remote processor.
1569	 * Because we are attaching rather than booting the remote processor,
1570	 * we expect the platform driver to properly set rproc->table_ptr.
1571	 */
1572	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1573	if (ret) {
1574		dev_err(dev, "Failed to process resources: %d\n", ret);
1575		goto disable_iommu;
1576	}
1577
1578	/* Allocate carveout resources associated to rproc */
1579	ret = rproc_alloc_registered_carveouts(rproc);
1580	if (ret) {
1581		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1582			ret);
1583		goto clean_up_resources;
1584	}
1585
1586	ret = rproc_attach(rproc);
1587	if (ret)
1588		goto clean_up_resources;
1589
1590	return 0;
1591
1592clean_up_resources:
1593	rproc_resource_cleanup(rproc);
1594disable_iommu:
1595	rproc_disable_iommu(rproc);
1596	return ret;
1597}
1598
1599/*
1600 * take a firmware and boot it up.
1601 *
1602 * Note: this function is called asynchronously upon registration of the
1603 * remote processor (so we must wait until it completes before we try
1604 * to unregister the device. one other option is just to use kref here,
1605 * that might be cleaner).
1606 */
1607static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1608{
1609	struct rproc *rproc = context;
1610
1611	rproc_boot(rproc);
1612
1613	release_firmware(fw);
1614}
1615
1616static int rproc_trigger_auto_boot(struct rproc *rproc)
1617{
1618	int ret;
1619
1620	/*
1621	 * Since the remote processor is in a detached state, it has already
1622	 * been booted by another entity.  As such there is no point in waiting
1623	 * for a firmware image to be loaded, we can simply initiate the process
1624	 * of attaching to it immediately.
1625	 */
1626	if (rproc->state == RPROC_DETACHED)
1627		return rproc_boot(rproc);
1628
1629	/*
1630	 * We're initiating an asynchronous firmware loading, so we can
1631	 * be built-in kernel code, without hanging the boot process.
1632	 */
1633	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1634				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1635				      rproc, rproc_auto_boot_callback);
1636	if (ret < 0)
1637		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1638
1639	return ret;
1640}
1641
1642static int rproc_stop(struct rproc *rproc, bool crashed)
1643{
1644	struct device *dev = &rproc->dev;
1645	int ret;
1646
1647	/* Stop any subdevices for the remote processor */
1648	rproc_stop_subdevices(rproc, crashed);
1649
1650	/* the installed resource table is no longer accessible */
1651	rproc->table_ptr = rproc->cached_table;
1652
1653	/* power off the remote processor */
1654	ret = rproc->ops->stop(rproc);
1655	if (ret) {
1656		dev_err(dev, "can't stop rproc: %d\n", ret);
1657		return ret;
1658	}
1659
1660	rproc_unprepare_subdevices(rproc);
1661
1662	rproc->state = RPROC_OFFLINE;
1663
1664	/*
1665	 * The remote processor has been stopped and is now offline, which means
1666	 * that the next time it is brought back online the remoteproc core will
1667	 * be responsible to load its firmware.  As such it is no longer
1668	 * autonomous.
1669	 */
1670	rproc->autonomous = false;
1671
1672	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1673
1674	return 0;
1675}
1676
1677
1678/**
1679 * rproc_trigger_recovery() - recover a remoteproc
1680 * @rproc: the remote processor
1681 *
1682 * The recovery is done by resetting all the virtio devices, that way all the
1683 * rpmsg drivers will be reseted along with the remote processor making the
1684 * remoteproc functional again.
1685 *
1686 * This function can sleep, so it cannot be called from atomic context.
1687 */
1688int rproc_trigger_recovery(struct rproc *rproc)
1689{
1690	const struct firmware *firmware_p;
1691	struct device *dev = &rproc->dev;
1692	int ret;
1693
1694	ret = mutex_lock_interruptible(&rproc->lock);
1695	if (ret)
1696		return ret;
1697
1698	/* State could have changed before we got the mutex */
1699	if (rproc->state != RPROC_CRASHED)
1700		goto unlock_mutex;
1701
1702	dev_err(dev, "recovering %s\n", rproc->name);
1703
1704	ret = rproc_stop(rproc, true);
1705	if (ret)
1706		goto unlock_mutex;
1707
1708	/* generate coredump */
1709	rproc_coredump(rproc);
1710
1711	/* load firmware */
1712	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1713	if (ret < 0) {
1714		dev_err(dev, "request_firmware failed: %d\n", ret);
1715		goto unlock_mutex;
1716	}
1717
1718	/* boot the remote processor up again */
1719	ret = rproc_start(rproc, firmware_p);
1720
1721	release_firmware(firmware_p);
1722
1723unlock_mutex:
1724	mutex_unlock(&rproc->lock);
1725	return ret;
1726}
1727
1728/**
1729 * rproc_crash_handler_work() - handle a crash
1730 * @work: work treating the crash
1731 *
1732 * This function needs to handle everything related to a crash, like cpu
1733 * registers and stack dump, information to help to debug the fatal error, etc.
1734 */
1735static void rproc_crash_handler_work(struct work_struct *work)
1736{
1737	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1738	struct device *dev = &rproc->dev;
1739
1740	dev_dbg(dev, "enter %s\n", __func__);
1741
1742	mutex_lock(&rproc->lock);
1743
1744	if (rproc->state == RPROC_CRASHED) {
1745		/* handle only the first crash detected */
1746		mutex_unlock(&rproc->lock);
1747		return;
1748	}
1749
1750	if (rproc->state == RPROC_OFFLINE) {
1751		/* Don't recover if the remote processor was stopped */
1752		mutex_unlock(&rproc->lock);
1753		goto out;
1754	}
1755
1756	rproc->state = RPROC_CRASHED;
1757	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1758		rproc->name);
1759
1760	mutex_unlock(&rproc->lock);
1761
1762	if (!rproc->recovery_disabled)
1763		rproc_trigger_recovery(rproc);
1764
1765out:
1766	pm_relax(rproc->dev.parent);
1767}
1768
1769/**
1770 * rproc_boot() - boot a remote processor
1771 * @rproc: handle of a remote processor
1772 *
1773 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1774 *
1775 * If the remote processor is already powered on, this function immediately
1776 * returns (successfully).
1777 *
1778 * Returns 0 on success, and an appropriate error value otherwise.
1779 */
1780int rproc_boot(struct rproc *rproc)
1781{
1782	const struct firmware *firmware_p;
1783	struct device *dev;
1784	int ret;
1785
1786	if (!rproc) {
1787		pr_err("invalid rproc handle\n");
1788		return -EINVAL;
1789	}
1790
1791	dev = &rproc->dev;
1792
1793	ret = mutex_lock_interruptible(&rproc->lock);
1794	if (ret) {
1795		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1796		return ret;
1797	}
1798
1799	if (rproc->state == RPROC_DELETED) {
1800		ret = -ENODEV;
1801		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1802		goto unlock_mutex;
1803	}
1804
1805	/* skip the boot or attach process if rproc is already powered up */
1806	if (atomic_inc_return(&rproc->power) > 1) {
1807		ret = 0;
1808		goto unlock_mutex;
1809	}
1810
1811	if (rproc->state == RPROC_DETACHED) {
1812		dev_info(dev, "attaching to %s\n", rproc->name);
1813
1814		ret = rproc_actuate(rproc);
1815	} else {
1816		dev_info(dev, "powering up %s\n", rproc->name);
1817
1818		/* load firmware */
1819		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1820		if (ret < 0) {
1821			dev_err(dev, "request_firmware failed: %d\n", ret);
1822			goto downref_rproc;
1823		}
1824
1825		ret = rproc_fw_boot(rproc, firmware_p);
1826
1827		release_firmware(firmware_p);
1828	}
1829
1830downref_rproc:
1831	if (ret)
1832		atomic_dec(&rproc->power);
1833unlock_mutex:
1834	mutex_unlock(&rproc->lock);
1835	return ret;
1836}
1837EXPORT_SYMBOL(rproc_boot);
1838
1839/**
1840 * rproc_shutdown() - power off the remote processor
1841 * @rproc: the remote processor
1842 *
1843 * Power off a remote processor (previously booted with rproc_boot()).
1844 *
1845 * In case @rproc is still being used by an additional user(s), then
1846 * this function will just decrement the power refcount and exit,
1847 * without really powering off the device.
1848 *
1849 * Every call to rproc_boot() must (eventually) be accompanied by a call
1850 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1851 *
1852 * Notes:
1853 * - we're not decrementing the rproc's refcount, only the power refcount.
1854 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1855 *   returns, and users can still use it with a subsequent rproc_boot(), if
1856 *   needed.
1857 */
1858void rproc_shutdown(struct rproc *rproc)
1859{
1860	struct device *dev = &rproc->dev;
1861	int ret;
1862
1863	ret = mutex_lock_interruptible(&rproc->lock);
1864	if (ret) {
1865		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1866		return;
1867	}
1868
1869	/* if the remote proc is still needed, bail out */
1870	if (!atomic_dec_and_test(&rproc->power))
1871		goto out;
1872
1873	ret = rproc_stop(rproc, false);
1874	if (ret) {
1875		atomic_inc(&rproc->power);
1876		goto out;
1877	}
1878
1879	/* clean up all acquired resources */
1880	rproc_resource_cleanup(rproc);
1881
1882	/* release HW resources if needed */
1883	rproc_unprepare_device(rproc);
1884
1885	rproc_disable_iommu(rproc);
1886
1887	/* Free the copy of the resource table */
1888	kfree(rproc->cached_table);
1889	rproc->cached_table = NULL;
1890	rproc->table_ptr = NULL;
1891out:
1892	mutex_unlock(&rproc->lock);
1893}
1894EXPORT_SYMBOL(rproc_shutdown);
1895
1896/**
1897 * rproc_get_by_phandle() - find a remote processor by phandle
1898 * @phandle: phandle to the rproc
1899 *
1900 * Finds an rproc handle using the remote processor's phandle, and then
1901 * return a handle to the rproc.
1902 *
1903 * This function increments the remote processor's refcount, so always
1904 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1905 *
1906 * Returns the rproc handle on success, and NULL on failure.
1907 */
1908#ifdef CONFIG_OF
1909struct rproc *rproc_get_by_phandle(phandle phandle)
1910{
1911	struct rproc *rproc = NULL, *r;
1912	struct device_node *np;
1913
1914	np = of_find_node_by_phandle(phandle);
1915	if (!np)
1916		return NULL;
1917
1918	rcu_read_lock();
1919	list_for_each_entry_rcu(r, &rproc_list, node) {
1920		if (r->dev.parent && r->dev.parent->of_node == np) {
1921			/* prevent underlying implementation from being removed */
1922			if (!try_module_get(r->dev.parent->driver->owner)) {
1923				dev_err(&r->dev, "can't get owner\n");
1924				break;
1925			}
1926
1927			rproc = r;
1928			get_device(&rproc->dev);
1929			break;
1930		}
1931	}
1932	rcu_read_unlock();
1933
1934	of_node_put(np);
1935
1936	return rproc;
1937}
1938#else
1939struct rproc *rproc_get_by_phandle(phandle phandle)
1940{
1941	return NULL;
1942}
1943#endif
1944EXPORT_SYMBOL(rproc_get_by_phandle);
1945
1946static int rproc_validate(struct rproc *rproc)
1947{
1948	switch (rproc->state) {
1949	case RPROC_OFFLINE:
1950		/*
1951		 * An offline processor without a start()
1952		 * function makes no sense.
1953		 */
1954		if (!rproc->ops->start)
1955			return -EINVAL;
1956		break;
1957	case RPROC_DETACHED:
1958		/*
1959		 * A remote processor in a detached state without an
1960		 * attach() function makes not sense.
1961		 */
1962		if (!rproc->ops->attach)
1963			return -EINVAL;
1964		/*
1965		 * When attaching to a remote processor the device memory
1966		 * is already available and as such there is no need to have a
1967		 * cached table.
1968		 */
1969		if (rproc->cached_table)
1970			return -EINVAL;
1971		break;
1972	default:
1973		/*
1974		 * When adding a remote processor, the state of the device
1975		 * can be offline or detached, nothing else.
1976		 */
1977		return -EINVAL;
1978	}
1979
1980	return 0;
1981}
1982
1983/**
1984 * rproc_add() - register a remote processor
1985 * @rproc: the remote processor handle to register
1986 *
1987 * Registers @rproc with the remoteproc framework, after it has been
1988 * allocated with rproc_alloc().
1989 *
1990 * This is called by the platform-specific rproc implementation, whenever
1991 * a new remote processor device is probed.
1992 *
1993 * Returns 0 on success and an appropriate error code otherwise.
1994 *
1995 * Note: this function initiates an asynchronous firmware loading
1996 * context, which will look for virtio devices supported by the rproc's
1997 * firmware.
1998 *
1999 * If found, those virtio devices will be created and added, so as a result
2000 * of registering this remote processor, additional virtio drivers might be
2001 * probed.
2002 */
2003int rproc_add(struct rproc *rproc)
2004{
2005	struct device *dev = &rproc->dev;
2006	int ret;
2007
2008	ret = device_add(dev);
2009	if (ret < 0)
2010		return ret;
2011
2012	ret = rproc_validate(rproc);
2013	if (ret < 0)
2014		return ret;
2015
2016	dev_info(dev, "%s is available\n", rproc->name);
2017
2018	/* create debugfs entries */
2019	rproc_create_debug_dir(rproc);
2020
2021	/* add char device for this remoteproc */
2022	ret = rproc_char_device_add(rproc);
2023	if (ret < 0)
2024		return ret;
2025
2026	/*
2027	 * Remind ourselves the remote processor has been attached to rather
2028	 * than booted by the remoteproc core.  This is important because the
2029	 * RPROC_DETACHED state will be lost as soon as the remote processor
2030	 * has been attached to.  Used in firmware_show() and reset in
2031	 * rproc_stop().
2032	 */
2033	if (rproc->state == RPROC_DETACHED)
2034		rproc->autonomous = true;
2035
2036	/* if rproc is marked always-on, request it to boot */
2037	if (rproc->auto_boot) {
2038		ret = rproc_trigger_auto_boot(rproc);
2039		if (ret < 0)
2040			return ret;
2041	}
2042
2043	/* expose to rproc_get_by_phandle users */
2044	mutex_lock(&rproc_list_mutex);
2045	list_add_rcu(&rproc->node, &rproc_list);
2046	mutex_unlock(&rproc_list_mutex);
2047
2048	return 0;
2049}
2050EXPORT_SYMBOL(rproc_add);
2051
2052static void devm_rproc_remove(void *rproc)
2053{
2054	rproc_del(rproc);
2055}
2056
2057/**
2058 * devm_rproc_add() - resource managed rproc_add()
2059 * @dev: the underlying device
2060 * @rproc: the remote processor handle to register
2061 *
2062 * This function performs like rproc_add() but the registered rproc device will
2063 * automatically be removed on driver detach.
2064 *
2065 * Returns: 0 on success, negative errno on failure
2066 */
2067int devm_rproc_add(struct device *dev, struct rproc *rproc)
2068{
2069	int err;
2070
2071	err = rproc_add(rproc);
2072	if (err)
2073		return err;
2074
2075	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2076}
2077EXPORT_SYMBOL(devm_rproc_add);
2078
2079/**
2080 * rproc_type_release() - release a remote processor instance
2081 * @dev: the rproc's device
2082 *
2083 * This function should _never_ be called directly.
2084 *
2085 * It will be called by the driver core when no one holds a valid pointer
2086 * to @dev anymore.
2087 */
2088static void rproc_type_release(struct device *dev)
2089{
2090	struct rproc *rproc = container_of(dev, struct rproc, dev);
2091
2092	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2093
2094	idr_destroy(&rproc->notifyids);
2095
2096	if (rproc->index >= 0)
2097		ida_simple_remove(&rproc_dev_index, rproc->index);
2098
2099	kfree_const(rproc->firmware);
2100	kfree_const(rproc->name);
2101	kfree(rproc->ops);
2102	kfree(rproc);
2103}
2104
2105static const struct device_type rproc_type = {
2106	.name		= "remoteproc",
2107	.release	= rproc_type_release,
2108};
2109
2110static int rproc_alloc_firmware(struct rproc *rproc,
2111				const char *name, const char *firmware)
2112{
2113	const char *p;
2114
2115	/*
2116	 * Allocate a firmware name if the caller gave us one to work
2117	 * with.  Otherwise construct a new one using a default pattern.
2118	 */
2119	if (firmware)
2120		p = kstrdup_const(firmware, GFP_KERNEL);
2121	else
2122		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2123
2124	if (!p)
2125		return -ENOMEM;
2126
2127	rproc->firmware = p;
2128
2129	return 0;
2130}
2131
2132static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2133{
2134	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2135	if (!rproc->ops)
2136		return -ENOMEM;
2137
2138	if (rproc->ops->load)
2139		return 0;
2140
2141	/* Default to ELF loader if no load function is specified */
2142	rproc->ops->load = rproc_elf_load_segments;
2143	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2144	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2145	rproc->ops->sanity_check = rproc_elf_sanity_check;
2146	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2147
2148	return 0;
2149}
2150
2151/**
2152 * rproc_alloc() - allocate a remote processor handle
2153 * @dev: the underlying device
2154 * @name: name of this remote processor
2155 * @ops: platform-specific handlers (mainly start/stop)
2156 * @firmware: name of firmware file to load, can be NULL
2157 * @len: length of private data needed by the rproc driver (in bytes)
2158 *
2159 * Allocates a new remote processor handle, but does not register
2160 * it yet. if @firmware is NULL, a default name is used.
2161 *
2162 * This function should be used by rproc implementations during initialization
2163 * of the remote processor.
2164 *
2165 * After creating an rproc handle using this function, and when ready,
2166 * implementations should then call rproc_add() to complete
2167 * the registration of the remote processor.
2168 *
2169 * On success the new rproc is returned, and on failure, NULL.
2170 *
2171 * Note: _never_ directly deallocate @rproc, even if it was not registered
2172 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2173 */
2174struct rproc *rproc_alloc(struct device *dev, const char *name,
2175			  const struct rproc_ops *ops,
2176			  const char *firmware, int len)
2177{
2178	struct rproc *rproc;
2179
2180	if (!dev || !name || !ops)
2181		return NULL;
2182
2183	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2184	if (!rproc)
2185		return NULL;
2186
2187	rproc->priv = &rproc[1];
2188	rproc->auto_boot = true;
2189	rproc->elf_class = ELFCLASSNONE;
2190	rproc->elf_machine = EM_NONE;
2191
2192	device_initialize(&rproc->dev);
2193	rproc->dev.parent = dev;
2194	rproc->dev.type = &rproc_type;
2195	rproc->dev.class = &rproc_class;
2196	rproc->dev.driver_data = rproc;
2197	idr_init(&rproc->notifyids);
2198
2199	rproc->name = kstrdup_const(name, GFP_KERNEL);
2200	if (!rproc->name)
2201		goto put_device;
2202
2203	if (rproc_alloc_firmware(rproc, name, firmware))
2204		goto put_device;
2205
2206	if (rproc_alloc_ops(rproc, ops))
2207		goto put_device;
2208
2209	/* Assign a unique device index and name */
2210	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2211	if (rproc->index < 0) {
2212		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2213		goto put_device;
2214	}
2215
2216	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2217
2218	atomic_set(&rproc->power, 0);
2219
2220	mutex_init(&rproc->lock);
2221
2222	INIT_LIST_HEAD(&rproc->carveouts);
2223	INIT_LIST_HEAD(&rproc->mappings);
2224	INIT_LIST_HEAD(&rproc->traces);
2225	INIT_LIST_HEAD(&rproc->rvdevs);
2226	INIT_LIST_HEAD(&rproc->subdevs);
2227	INIT_LIST_HEAD(&rproc->dump_segments);
2228
2229	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2230
2231	rproc->state = RPROC_OFFLINE;
2232
2233	return rproc;
2234
2235put_device:
2236	put_device(&rproc->dev);
2237	return NULL;
2238}
2239EXPORT_SYMBOL(rproc_alloc);
2240
2241/**
2242 * rproc_free() - unroll rproc_alloc()
2243 * @rproc: the remote processor handle
2244 *
2245 * This function decrements the rproc dev refcount.
2246 *
2247 * If no one holds any reference to rproc anymore, then its refcount would
2248 * now drop to zero, and it would be freed.
2249 */
2250void rproc_free(struct rproc *rproc)
2251{
2252	put_device(&rproc->dev);
2253}
2254EXPORT_SYMBOL(rproc_free);
2255
2256/**
2257 * rproc_put() - release rproc reference
2258 * @rproc: the remote processor handle
2259 *
2260 * This function decrements the rproc dev refcount.
2261 *
2262 * If no one holds any reference to rproc anymore, then its refcount would
2263 * now drop to zero, and it would be freed.
2264 */
2265void rproc_put(struct rproc *rproc)
2266{
2267	module_put(rproc->dev.parent->driver->owner);
2268	put_device(&rproc->dev);
2269}
2270EXPORT_SYMBOL(rproc_put);
2271
2272/**
2273 * rproc_del() - unregister a remote processor
2274 * @rproc: rproc handle to unregister
2275 *
2276 * This function should be called when the platform specific rproc
2277 * implementation decides to remove the rproc device. it should
2278 * _only_ be called if a previous invocation of rproc_add()
2279 * has completed successfully.
2280 *
2281 * After rproc_del() returns, @rproc isn't freed yet, because
2282 * of the outstanding reference created by rproc_alloc. To decrement that
2283 * one last refcount, one still needs to call rproc_free().
2284 *
2285 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2286 */
2287int rproc_del(struct rproc *rproc)
2288{
2289	if (!rproc)
2290		return -EINVAL;
2291
2292	/* if rproc is marked always-on, rproc_add() booted it */
2293	/* TODO: make sure this works with rproc->power > 1 */
2294	if (rproc->auto_boot)
2295		rproc_shutdown(rproc);
2296
2297	mutex_lock(&rproc->lock);
2298	rproc->state = RPROC_DELETED;
2299	mutex_unlock(&rproc->lock);
2300
2301	rproc_delete_debug_dir(rproc);
2302
2303	/* the rproc is downref'ed as soon as it's removed from the klist */
2304	mutex_lock(&rproc_list_mutex);
2305	list_del_rcu(&rproc->node);
2306	mutex_unlock(&rproc_list_mutex);
2307
2308	/* Ensure that no readers of rproc_list are still active */
2309	synchronize_rcu();
2310
2311	device_del(&rproc->dev);
2312	rproc_char_device_remove(rproc);
2313
2314	return 0;
2315}
2316EXPORT_SYMBOL(rproc_del);
2317
2318static void devm_rproc_free(struct device *dev, void *res)
2319{
2320	rproc_free(*(struct rproc **)res);
2321}
2322
2323/**
2324 * devm_rproc_alloc() - resource managed rproc_alloc()
2325 * @dev: the underlying device
2326 * @name: name of this remote processor
2327 * @ops: platform-specific handlers (mainly start/stop)
2328 * @firmware: name of firmware file to load, can be NULL
2329 * @len: length of private data needed by the rproc driver (in bytes)
2330 *
2331 * This function performs like rproc_alloc() but the acquired rproc device will
2332 * automatically be released on driver detach.
2333 *
2334 * Returns: new rproc instance, or NULL on failure
2335 */
2336struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2337			       const struct rproc_ops *ops,
2338			       const char *firmware, int len)
2339{
2340	struct rproc **ptr, *rproc;
2341
2342	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2343	if (!ptr)
2344		return NULL;
2345
2346	rproc = rproc_alloc(dev, name, ops, firmware, len);
2347	if (rproc) {
2348		*ptr = rproc;
2349		devres_add(dev, ptr);
2350	} else {
2351		devres_free(ptr);
2352	}
2353
2354	return rproc;
2355}
2356EXPORT_SYMBOL(devm_rproc_alloc);
2357
2358/**
2359 * rproc_add_subdev() - add a subdevice to a remoteproc
2360 * @rproc: rproc handle to add the subdevice to
2361 * @subdev: subdev handle to register
2362 *
2363 * Caller is responsible for populating optional subdevice function pointers.
2364 */
2365void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2366{
2367	list_add_tail(&subdev->node, &rproc->subdevs);
2368}
2369EXPORT_SYMBOL(rproc_add_subdev);
2370
2371/**
2372 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2373 * @rproc: rproc handle to remove the subdevice from
2374 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2375 */
2376void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2377{
2378	list_del(&subdev->node);
2379}
2380EXPORT_SYMBOL(rproc_remove_subdev);
2381
2382/**
2383 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2384 * @dev:	child device to find ancestor of
2385 *
2386 * Returns the ancestor rproc instance, or NULL if not found.
2387 */
2388struct rproc *rproc_get_by_child(struct device *dev)
2389{
2390	for (dev = dev->parent; dev; dev = dev->parent) {
2391		if (dev->type == &rproc_type)
2392			return dev->driver_data;
2393	}
2394
2395	return NULL;
2396}
2397EXPORT_SYMBOL(rproc_get_by_child);
2398
2399/**
2400 * rproc_report_crash() - rproc crash reporter function
2401 * @rproc: remote processor
2402 * @type: crash type
2403 *
2404 * This function must be called every time a crash is detected by the low-level
2405 * drivers implementing a specific remoteproc. This should not be called from a
2406 * non-remoteproc driver.
2407 *
2408 * This function can be called from atomic/interrupt context.
2409 */
2410void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2411{
2412	if (!rproc) {
2413		pr_err("NULL rproc pointer\n");
2414		return;
2415	}
2416
2417	/* Prevent suspend while the remoteproc is being recovered */
2418	pm_stay_awake(rproc->dev.parent);
2419
2420	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2421		rproc->name, rproc_crash_to_string(type));
2422
2423	/* create a new task to handle the error */
2424	schedule_work(&rproc->crash_handler);
2425}
2426EXPORT_SYMBOL(rproc_report_crash);
2427
2428static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2429			       void *ptr)
2430{
2431	unsigned int longest = 0;
2432	struct rproc *rproc;
2433	unsigned int d;
2434
2435	rcu_read_lock();
2436	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2437		if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2438			continue;
2439
2440		d = rproc->ops->panic(rproc);
2441		longest = max(longest, d);
2442	}
2443	rcu_read_unlock();
2444
2445	/*
2446	 * Delay for the longest requested duration before returning. This can
2447	 * be used by the remoteproc drivers to give the remote processor time
2448	 * to perform any requested operations (such as flush caches), when
2449	 * it's not possible to signal the Linux side due to the panic.
2450	 */
2451	mdelay(longest);
2452
2453	return NOTIFY_DONE;
2454}
2455
2456static void __init rproc_init_panic(void)
2457{
2458	rproc_panic_nb.notifier_call = rproc_panic_handler;
2459	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2460}
2461
2462static void __exit rproc_exit_panic(void)
2463{
2464	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2465}
2466
2467static int __init remoteproc_init(void)
2468{
2469	rproc_init_sysfs();
2470	rproc_init_debugfs();
2471	rproc_init_cdev();
2472	rproc_init_panic();
2473
2474	return 0;
2475}
2476subsys_initcall(remoteproc_init);
2477
2478static void __exit remoteproc_exit(void)
2479{
2480	ida_destroy(&rproc_dev_index);
2481
2482	rproc_exit_panic();
2483	rproc_exit_debugfs();
2484	rproc_exit_sysfs();
2485}
2486module_exit(remoteproc_exit);
2487
2488MODULE_LICENSE("GPL v2");
2489MODULE_DESCRIPTION("Generic Remote Processor Framework");
2490