1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17#define pr_fmt(fmt) "%s: " fmt, __func__ 18 19#include <linux/delay.h> 20#include <linux/kernel.h> 21#include <linux/module.h> 22#include <linux/device.h> 23#include <linux/slab.h> 24#include <linux/mutex.h> 25#include <linux/dma-map-ops.h> 26#include <linux/dma-mapping.h> 27#include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */ 28#include <linux/firmware.h> 29#include <linux/string.h> 30#include <linux/debugfs.h> 31#include <linux/rculist.h> 32#include <linux/remoteproc.h> 33#include <linux/iommu.h> 34#include <linux/idr.h> 35#include <linux/elf.h> 36#include <linux/crc32.h> 37#include <linux/of_reserved_mem.h> 38#include <linux/virtio_ids.h> 39#include <linux/virtio_ring.h> 40#include <asm/byteorder.h> 41#include <linux/platform_device.h> 42 43#include "remoteproc_internal.h" 44 45#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 46 47static DEFINE_MUTEX(rproc_list_mutex); 48static LIST_HEAD(rproc_list); 49static struct notifier_block rproc_panic_nb; 50 51typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 52 void *, int offset, int avail); 53 54static int rproc_alloc_carveout(struct rproc *rproc, 55 struct rproc_mem_entry *mem); 56static int rproc_release_carveout(struct rproc *rproc, 57 struct rproc_mem_entry *mem); 58 59/* Unique indices for remoteproc devices */ 60static DEFINE_IDA(rproc_dev_index); 61 62static const char * const rproc_crash_names[] = { 63 [RPROC_MMUFAULT] = "mmufault", 64 [RPROC_WATCHDOG] = "watchdog", 65 [RPROC_FATAL_ERROR] = "fatal error", 66}; 67 68/* translate rproc_crash_type to string */ 69static const char *rproc_crash_to_string(enum rproc_crash_type type) 70{ 71 if (type < ARRAY_SIZE(rproc_crash_names)) 72 return rproc_crash_names[type]; 73 return "unknown"; 74} 75 76/* 77 * This is the IOMMU fault handler we register with the IOMMU API 78 * (when relevant; not all remote processors access memory through 79 * an IOMMU). 80 * 81 * IOMMU core will invoke this handler whenever the remote processor 82 * will try to access an unmapped device address. 83 */ 84static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 85 unsigned long iova, int flags, void *token) 86{ 87 struct rproc *rproc = token; 88 89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 90 91 rproc_report_crash(rproc, RPROC_MMUFAULT); 92 93 /* 94 * Let the iommu core know we're not really handling this fault; 95 * we just used it as a recovery trigger. 96 */ 97 return -ENOSYS; 98} 99 100static int rproc_enable_iommu(struct rproc *rproc) 101{ 102 struct iommu_domain *domain; 103 struct device *dev = rproc->dev.parent; 104 int ret; 105 106 if (!rproc->has_iommu) { 107 dev_dbg(dev, "iommu not present\n"); 108 return 0; 109 } 110 111 domain = iommu_domain_alloc(dev->bus); 112 if (!domain) { 113 dev_err(dev, "can't alloc iommu domain\n"); 114 return -ENOMEM; 115 } 116 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 118 119 ret = iommu_attach_device(domain, dev); 120 if (ret) { 121 dev_err(dev, "can't attach iommu device: %d\n", ret); 122 goto free_domain; 123 } 124 125 rproc->domain = domain; 126 127 return 0; 128 129free_domain: 130 iommu_domain_free(domain); 131 return ret; 132} 133 134static void rproc_disable_iommu(struct rproc *rproc) 135{ 136 struct iommu_domain *domain = rproc->domain; 137 struct device *dev = rproc->dev.parent; 138 139 if (!domain) 140 return; 141 142 iommu_detach_device(domain, dev); 143 iommu_domain_free(domain); 144} 145 146phys_addr_t rproc_va_to_pa(void *cpu_addr) 147{ 148 /* 149 * Return physical address according to virtual address location 150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 151 * - in kernel: if region allocated in generic dma memory pool 152 */ 153 if (is_vmalloc_addr(cpu_addr)) { 154 return page_to_phys(vmalloc_to_page(cpu_addr)) + 155 offset_in_page(cpu_addr); 156 } 157 158 WARN_ON(!virt_addr_valid(cpu_addr)); 159 return virt_to_phys(cpu_addr); 160} 161EXPORT_SYMBOL(rproc_va_to_pa); 162 163/** 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 165 * @rproc: handle of a remote processor 166 * @da: remoteproc device address to translate 167 * @len: length of the memory region @da is pointing to 168 * 169 * Some remote processors will ask us to allocate them physically contiguous 170 * memory regions (which we call "carveouts"), and map them to specific 171 * device addresses (which are hardcoded in the firmware). They may also have 172 * dedicated memory regions internal to the processors, and use them either 173 * exclusively or alongside carveouts. 174 * 175 * They may then ask us to copy objects into specific device addresses (e.g. 176 * code/data sections) or expose us certain symbols in other device address 177 * (e.g. their trace buffer). 178 * 179 * This function is a helper function with which we can go over the allocated 180 * carveouts and translate specific device addresses to kernel virtual addresses 181 * so we can access the referenced memory. This function also allows to perform 182 * translations on the internal remoteproc memory regions through a platform 183 * implementation specific da_to_va ops, if present. 184 * 185 * The function returns a valid kernel address on success or NULL on failure. 186 * 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 188 * but only on kernel direct mapped RAM memory. Instead, we're just using 189 * here the output of the DMA API for the carveouts, which should be more 190 * correct. 191 */ 192void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 193{ 194 struct rproc_mem_entry *carveout; 195 void *ptr = NULL; 196 197 if (rproc->ops->da_to_va) { 198 ptr = rproc->ops->da_to_va(rproc, da, len); 199 if (ptr) 200 goto out; 201 } 202 203 list_for_each_entry(carveout, &rproc->carveouts, node) { 204 int offset = da - carveout->da; 205 206 /* Verify that carveout is allocated */ 207 if (!carveout->va) 208 continue; 209 210 /* try next carveout if da is too small */ 211 if (offset < 0) 212 continue; 213 214 /* try next carveout if da is too large */ 215 if (offset + len > carveout->len) 216 continue; 217 218 ptr = carveout->va + offset; 219 220 break; 221 } 222 223out: 224 return ptr; 225} 226EXPORT_SYMBOL(rproc_da_to_va); 227 228/** 229 * rproc_find_carveout_by_name() - lookup the carveout region by a name 230 * @rproc: handle of a remote processor 231 * @name: carveout name to find (format string) 232 * @...: optional parameters matching @name string 233 * 234 * Platform driver has the capability to register some pre-allacoted carveout 235 * (physically contiguous memory regions) before rproc firmware loading and 236 * associated resource table analysis. These regions may be dedicated memory 237 * regions internal to the coprocessor or specified DDR region with specific 238 * attributes 239 * 240 * This function is a helper function with which we can go over the 241 * allocated carveouts and return associated region characteristics like 242 * coprocessor address, length or processor virtual address. 243 * 244 * Return: a valid pointer on carveout entry on success or NULL on failure. 245 */ 246__printf(2, 3) 247struct rproc_mem_entry * 248rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 249{ 250 va_list args; 251 char _name[32]; 252 struct rproc_mem_entry *carveout, *mem = NULL; 253 254 if (!name) 255 return NULL; 256 257 va_start(args, name); 258 vsnprintf(_name, sizeof(_name), name, args); 259 va_end(args); 260 261 list_for_each_entry(carveout, &rproc->carveouts, node) { 262 /* Compare carveout and requested names */ 263 if (!strcmp(carveout->name, _name)) { 264 mem = carveout; 265 break; 266 } 267 } 268 269 return mem; 270} 271 272/** 273 * rproc_check_carveout_da() - Check specified carveout da configuration 274 * @rproc: handle of a remote processor 275 * @mem: pointer on carveout to check 276 * @da: area device address 277 * @len: associated area size 278 * 279 * This function is a helper function to verify requested device area (couple 280 * da, len) is part of specified carveout. 281 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 282 * checked. 283 * 284 * Return: 0 if carveout matches request else error 285 */ 286static int rproc_check_carveout_da(struct rproc *rproc, 287 struct rproc_mem_entry *mem, u32 da, u32 len) 288{ 289 struct device *dev = &rproc->dev; 290 int delta; 291 292 /* Check requested resource length */ 293 if (len > mem->len) { 294 dev_err(dev, "Registered carveout doesn't fit len request\n"); 295 return -EINVAL; 296 } 297 298 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 299 /* Address doesn't match registered carveout configuration */ 300 return -EINVAL; 301 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 302 delta = da - mem->da; 303 304 /* Check requested resource belongs to registered carveout */ 305 if (delta < 0) { 306 dev_err(dev, 307 "Registered carveout doesn't fit da request\n"); 308 return -EINVAL; 309 } 310 311 if (delta + len > mem->len) { 312 dev_err(dev, 313 "Registered carveout doesn't fit len request\n"); 314 return -EINVAL; 315 } 316 } 317 318 return 0; 319} 320 321int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 322{ 323 struct rproc *rproc = rvdev->rproc; 324 struct device *dev = &rproc->dev; 325 struct rproc_vring *rvring = &rvdev->vring[i]; 326 struct fw_rsc_vdev *rsc; 327 int ret, notifyid; 328 struct rproc_mem_entry *mem; 329 size_t size; 330 331 /* actual size of vring (in bytes) */ 332 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 333 334 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 335 336 /* Search for pre-registered carveout */ 337 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 338 i); 339 if (mem) { 340 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 341 return -ENOMEM; 342 } else { 343 /* Register carveout in in list */ 344 mem = rproc_mem_entry_init(dev, NULL, 0, 345 size, rsc->vring[i].da, 346 rproc_alloc_carveout, 347 rproc_release_carveout, 348 "vdev%dvring%d", 349 rvdev->index, i); 350 if (!mem) { 351 dev_err(dev, "Can't allocate memory entry structure\n"); 352 return -ENOMEM; 353 } 354 355 rproc_add_carveout(rproc, mem); 356 } 357 358 /* 359 * Assign an rproc-wide unique index for this vring 360 * TODO: assign a notifyid for rvdev updates as well 361 * TODO: support predefined notifyids (via resource table) 362 */ 363 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 364 if (ret < 0) { 365 dev_err(dev, "idr_alloc failed: %d\n", ret); 366 return ret; 367 } 368 notifyid = ret; 369 370 /* Potentially bump max_notifyid */ 371 if (notifyid > rproc->max_notifyid) 372 rproc->max_notifyid = notifyid; 373 374 rvring->notifyid = notifyid; 375 376 /* Let the rproc know the notifyid of this vring.*/ 377 rsc->vring[i].notifyid = notifyid; 378 return 0; 379} 380 381static int 382rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 383{ 384 struct rproc *rproc = rvdev->rproc; 385 struct device *dev = &rproc->dev; 386 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 387 struct rproc_vring *rvring = &rvdev->vring[i]; 388 389 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 390 i, vring->da, vring->num, vring->align); 391 392 /* verify queue size and vring alignment are sane */ 393 if (!vring->num || !vring->align) { 394 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 395 vring->num, vring->align); 396 return -EINVAL; 397 } 398 399 rvring->len = vring->num; 400 rvring->align = vring->align; 401 rvring->rvdev = rvdev; 402 403 return 0; 404} 405 406void rproc_free_vring(struct rproc_vring *rvring) 407{ 408 struct rproc *rproc = rvring->rvdev->rproc; 409 int idx = rvring - rvring->rvdev->vring; 410 struct fw_rsc_vdev *rsc; 411 412 idr_remove(&rproc->notifyids, rvring->notifyid); 413 414 /* 415 * At this point rproc_stop() has been called and the installed resource 416 * table in the remote processor memory may no longer be accessible. As 417 * such and as per rproc_stop(), rproc->table_ptr points to the cached 418 * resource table (rproc->cached_table). The cached resource table is 419 * only available when a remote processor has been booted by the 420 * remoteproc core, otherwise it is NULL. 421 * 422 * Based on the above, reset the virtio device section in the cached 423 * resource table only if there is one to work with. 424 */ 425 if (rproc->table_ptr) { 426 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 427 rsc->vring[idx].da = 0; 428 rsc->vring[idx].notifyid = -1; 429 } 430} 431 432static int rproc_vdev_do_start(struct rproc_subdev *subdev) 433{ 434 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 435 436 return rproc_add_virtio_dev(rvdev, rvdev->id); 437} 438 439static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) 440{ 441 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 442 int ret; 443 444 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); 445 if (ret) 446 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); 447} 448 449/** 450 * rproc_rvdev_release() - release the existence of a rvdev 451 * 452 * @dev: the subdevice's dev 453 */ 454static void rproc_rvdev_release(struct device *dev) 455{ 456 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); 457 458 of_reserved_mem_device_release(dev); 459 460 kfree(rvdev); 461} 462 463static int copy_dma_range_map(struct device *to, struct device *from) 464{ 465 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r; 466 int num_ranges = 0; 467 468 if (!map) 469 return 0; 470 471 for (r = map; r->size; r++) 472 num_ranges++; 473 474 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)), 475 GFP_KERNEL); 476 if (!new_map) 477 return -ENOMEM; 478 to->dma_range_map = new_map; 479 return 0; 480} 481 482/** 483 * rproc_handle_vdev() - handle a vdev fw resource 484 * @rproc: the remote processor 485 * @rsc: the vring resource descriptor 486 * @offset: offset of the resource entry 487 * @avail: size of available data (for sanity checking the image) 488 * 489 * This resource entry requests the host to statically register a virtio 490 * device (vdev), and setup everything needed to support it. It contains 491 * everything needed to make it possible: the virtio device id, virtio 492 * device features, vrings information, virtio config space, etc... 493 * 494 * Before registering the vdev, the vrings are allocated from non-cacheable 495 * physically contiguous memory. Currently we only support two vrings per 496 * remote processor (temporary limitation). We might also want to consider 497 * doing the vring allocation only later when ->find_vqs() is invoked, and 498 * then release them upon ->del_vqs(). 499 * 500 * Note: @da is currently not really handled correctly: we dynamically 501 * allocate it using the DMA API, ignoring requested hard coded addresses, 502 * and we don't take care of any required IOMMU programming. This is all 503 * going to be taken care of when the generic iommu-based DMA API will be 504 * merged. Meanwhile, statically-addressed iommu-based firmware images should 505 * use RSC_DEVMEM resource entries to map their required @da to the physical 506 * address of their base CMA region (ouch, hacky!). 507 * 508 * Returns 0 on success, or an appropriate error code otherwise 509 */ 510static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 511 int offset, int avail) 512{ 513 struct device *dev = &rproc->dev; 514 struct rproc_vdev *rvdev; 515 int i, ret; 516 char name[16]; 517 518 /* make sure resource isn't truncated */ 519 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > 520 avail) { 521 dev_err(dev, "vdev rsc is truncated\n"); 522 return -EINVAL; 523 } 524 525 /* make sure reserved bytes are zeroes */ 526 if (rsc->reserved[0] || rsc->reserved[1]) { 527 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 528 return -EINVAL; 529 } 530 531 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 532 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 533 534 /* we currently support only two vrings per rvdev */ 535 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 536 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 537 return -EINVAL; 538 } 539 540 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 541 if (!rvdev) 542 return -ENOMEM; 543 544 kref_init(&rvdev->refcount); 545 546 rvdev->id = rsc->id; 547 rvdev->rproc = rproc; 548 rvdev->index = rproc->nb_vdev++; 549 550 /* Initialise vdev subdevice */ 551 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); 552 rvdev->dev.parent = &rproc->dev; 553 rvdev->dev.release = rproc_rvdev_release; 554 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); 555 dev_set_drvdata(&rvdev->dev, rvdev); 556 557 ret = device_register(&rvdev->dev); 558 if (ret) { 559 put_device(&rvdev->dev); 560 return ret; 561 } 562 563 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent); 564 if (ret) 565 goto free_rvdev; 566 567 /* Make device dma capable by inheriting from parent's capabilities */ 568 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); 569 570 ret = dma_coerce_mask_and_coherent(&rvdev->dev, 571 dma_get_mask(rproc->dev.parent)); 572 if (ret) { 573 dev_warn(dev, 574 "Failed to set DMA mask %llx. Trying to continue... %x\n", 575 dma_get_mask(rproc->dev.parent), ret); 576 } 577 578 /* parse the vrings */ 579 for (i = 0; i < rsc->num_of_vrings; i++) { 580 ret = rproc_parse_vring(rvdev, rsc, i); 581 if (ret) 582 goto free_rvdev; 583 } 584 585 /* remember the resource offset*/ 586 rvdev->rsc_offset = offset; 587 588 /* allocate the vring resources */ 589 for (i = 0; i < rsc->num_of_vrings; i++) { 590 ret = rproc_alloc_vring(rvdev, i); 591 if (ret) 592 goto unwind_vring_allocations; 593 } 594 595 list_add_tail(&rvdev->node, &rproc->rvdevs); 596 597 rvdev->subdev.start = rproc_vdev_do_start; 598 rvdev->subdev.stop = rproc_vdev_do_stop; 599 600 rproc_add_subdev(rproc, &rvdev->subdev); 601 602 return 0; 603 604unwind_vring_allocations: 605 for (i--; i >= 0; i--) 606 rproc_free_vring(&rvdev->vring[i]); 607free_rvdev: 608 device_unregister(&rvdev->dev); 609 return ret; 610} 611 612void rproc_vdev_release(struct kref *ref) 613{ 614 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 615 struct rproc_vring *rvring; 616 struct rproc *rproc = rvdev->rproc; 617 int id; 618 619 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 620 rvring = &rvdev->vring[id]; 621 rproc_free_vring(rvring); 622 } 623 624 rproc_remove_subdev(rproc, &rvdev->subdev); 625 list_del(&rvdev->node); 626 device_unregister(&rvdev->dev); 627} 628 629/** 630 * rproc_handle_trace() - handle a shared trace buffer resource 631 * @rproc: the remote processor 632 * @rsc: the trace resource descriptor 633 * @offset: offset of the resource entry 634 * @avail: size of available data (for sanity checking the image) 635 * 636 * In case the remote processor dumps trace logs into memory, 637 * export it via debugfs. 638 * 639 * Currently, the 'da' member of @rsc should contain the device address 640 * where the remote processor is dumping the traces. Later we could also 641 * support dynamically allocating this address using the generic 642 * DMA API (but currently there isn't a use case for that). 643 * 644 * Returns 0 on success, or an appropriate error code otherwise 645 */ 646static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 647 int offset, int avail) 648{ 649 struct rproc_debug_trace *trace; 650 struct device *dev = &rproc->dev; 651 char name[15]; 652 653 if (sizeof(*rsc) > avail) { 654 dev_err(dev, "trace rsc is truncated\n"); 655 return -EINVAL; 656 } 657 658 /* make sure reserved bytes are zeroes */ 659 if (rsc->reserved) { 660 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 661 return -EINVAL; 662 } 663 664 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 665 if (!trace) 666 return -ENOMEM; 667 668 /* set the trace buffer dma properties */ 669 trace->trace_mem.len = rsc->len; 670 trace->trace_mem.da = rsc->da; 671 672 /* set pointer on rproc device */ 673 trace->rproc = rproc; 674 675 /* make sure snprintf always null terminates, even if truncating */ 676 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 677 678 /* create the debugfs entry */ 679 trace->tfile = rproc_create_trace_file(name, rproc, trace); 680 if (!trace->tfile) { 681 kfree(trace); 682 return -EINVAL; 683 } 684 685 list_add_tail(&trace->node, &rproc->traces); 686 687 rproc->num_traces++; 688 689 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 690 name, rsc->da, rsc->len); 691 692 return 0; 693} 694 695/** 696 * rproc_handle_devmem() - handle devmem resource entry 697 * @rproc: remote processor handle 698 * @rsc: the devmem resource entry 699 * @offset: offset of the resource entry 700 * @avail: size of available data (for sanity checking the image) 701 * 702 * Remote processors commonly need to access certain on-chip peripherals. 703 * 704 * Some of these remote processors access memory via an iommu device, 705 * and might require us to configure their iommu before they can access 706 * the on-chip peripherals they need. 707 * 708 * This resource entry is a request to map such a peripheral device. 709 * 710 * These devmem entries will contain the physical address of the device in 711 * the 'pa' member. If a specific device address is expected, then 'da' will 712 * contain it (currently this is the only use case supported). 'len' will 713 * contain the size of the physical region we need to map. 714 * 715 * Currently we just "trust" those devmem entries to contain valid physical 716 * addresses, but this is going to change: we want the implementations to 717 * tell us ranges of physical addresses the firmware is allowed to request, 718 * and not allow firmwares to request access to physical addresses that 719 * are outside those ranges. 720 */ 721static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 722 int offset, int avail) 723{ 724 struct rproc_mem_entry *mapping; 725 struct device *dev = &rproc->dev; 726 int ret; 727 728 /* no point in handling this resource without a valid iommu domain */ 729 if (!rproc->domain) 730 return -EINVAL; 731 732 if (sizeof(*rsc) > avail) { 733 dev_err(dev, "devmem rsc is truncated\n"); 734 return -EINVAL; 735 } 736 737 /* make sure reserved bytes are zeroes */ 738 if (rsc->reserved) { 739 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 740 return -EINVAL; 741 } 742 743 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 744 if (!mapping) 745 return -ENOMEM; 746 747 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 748 if (ret) { 749 dev_err(dev, "failed to map devmem: %d\n", ret); 750 goto out; 751 } 752 753 /* 754 * We'll need this info later when we'll want to unmap everything 755 * (e.g. on shutdown). 756 * 757 * We can't trust the remote processor not to change the resource 758 * table, so we must maintain this info independently. 759 */ 760 mapping->da = rsc->da; 761 mapping->len = rsc->len; 762 list_add_tail(&mapping->node, &rproc->mappings); 763 764 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 765 rsc->pa, rsc->da, rsc->len); 766 767 return 0; 768 769out: 770 kfree(mapping); 771 return ret; 772} 773 774/** 775 * rproc_alloc_carveout() - allocated specified carveout 776 * @rproc: rproc handle 777 * @mem: the memory entry to allocate 778 * 779 * This function allocate specified memory entry @mem using 780 * dma_alloc_coherent() as default allocator 781 */ 782static int rproc_alloc_carveout(struct rproc *rproc, 783 struct rproc_mem_entry *mem) 784{ 785 struct rproc_mem_entry *mapping = NULL; 786 struct device *dev = &rproc->dev; 787 dma_addr_t dma; 788 void *va; 789 int ret; 790 791 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 792 if (!va) { 793 dev_err(dev->parent, 794 "failed to allocate dma memory: len 0x%zx\n", 795 mem->len); 796 return -ENOMEM; 797 } 798 799 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 800 va, &dma, mem->len); 801 802 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 803 /* 804 * Check requested da is equal to dma address 805 * and print a warn message in case of missalignment. 806 * Don't stop rproc_start sequence as coprocessor may 807 * build pa to da translation on its side. 808 */ 809 if (mem->da != (u32)dma) 810 dev_warn(dev->parent, 811 "Allocated carveout doesn't fit device address request\n"); 812 } 813 814 /* 815 * Ok, this is non-standard. 816 * 817 * Sometimes we can't rely on the generic iommu-based DMA API 818 * to dynamically allocate the device address and then set the IOMMU 819 * tables accordingly, because some remote processors might 820 * _require_ us to use hard coded device addresses that their 821 * firmware was compiled with. 822 * 823 * In this case, we must use the IOMMU API directly and map 824 * the memory to the device address as expected by the remote 825 * processor. 826 * 827 * Obviously such remote processor devices should not be configured 828 * to use the iommu-based DMA API: we expect 'dma' to contain the 829 * physical address in this case. 830 */ 831 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 832 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 833 if (!mapping) { 834 ret = -ENOMEM; 835 goto dma_free; 836 } 837 838 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 839 mem->flags); 840 if (ret) { 841 dev_err(dev, "iommu_map failed: %d\n", ret); 842 goto free_mapping; 843 } 844 845 /* 846 * We'll need this info later when we'll want to unmap 847 * everything (e.g. on shutdown). 848 * 849 * We can't trust the remote processor not to change the 850 * resource table, so we must maintain this info independently. 851 */ 852 mapping->da = mem->da; 853 mapping->len = mem->len; 854 list_add_tail(&mapping->node, &rproc->mappings); 855 856 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 857 mem->da, &dma); 858 } 859 860 if (mem->da == FW_RSC_ADDR_ANY) { 861 /* Update device address as undefined by requester */ 862 if ((u64)dma & HIGH_BITS_MASK) 863 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 864 865 mem->da = (u32)dma; 866 } 867 868 mem->dma = dma; 869 mem->va = va; 870 871 return 0; 872 873free_mapping: 874 kfree(mapping); 875dma_free: 876 dma_free_coherent(dev->parent, mem->len, va, dma); 877 return ret; 878} 879 880/** 881 * rproc_release_carveout() - release acquired carveout 882 * @rproc: rproc handle 883 * @mem: the memory entry to release 884 * 885 * This function releases specified memory entry @mem allocated via 886 * rproc_alloc_carveout() function by @rproc. 887 */ 888static int rproc_release_carveout(struct rproc *rproc, 889 struct rproc_mem_entry *mem) 890{ 891 struct device *dev = &rproc->dev; 892 893 /* clean up carveout allocations */ 894 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 895 return 0; 896} 897 898/** 899 * rproc_handle_carveout() - handle phys contig memory allocation requests 900 * @rproc: rproc handle 901 * @rsc: the resource entry 902 * @offset: offset of the resource entry 903 * @avail: size of available data (for image validation) 904 * 905 * This function will handle firmware requests for allocation of physically 906 * contiguous memory regions. 907 * 908 * These request entries should come first in the firmware's resource table, 909 * as other firmware entries might request placing other data objects inside 910 * these memory regions (e.g. data/code segments, trace resource entries, ...). 911 * 912 * Allocating memory this way helps utilizing the reserved physical memory 913 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 914 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 915 * pressure is important; it may have a substantial impact on performance. 916 */ 917static int rproc_handle_carveout(struct rproc *rproc, 918 struct fw_rsc_carveout *rsc, 919 int offset, int avail) 920{ 921 struct rproc_mem_entry *carveout; 922 struct device *dev = &rproc->dev; 923 924 if (sizeof(*rsc) > avail) { 925 dev_err(dev, "carveout rsc is truncated\n"); 926 return -EINVAL; 927 } 928 929 /* make sure reserved bytes are zeroes */ 930 if (rsc->reserved) { 931 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 932 return -EINVAL; 933 } 934 935 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 936 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 937 938 /* 939 * Check carveout rsc already part of a registered carveout, 940 * Search by name, then check the da and length 941 */ 942 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 943 944 if (carveout) { 945 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 946 dev_err(dev, 947 "Carveout already associated to resource table\n"); 948 return -ENOMEM; 949 } 950 951 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 952 return -ENOMEM; 953 954 /* Update memory carveout with resource table info */ 955 carveout->rsc_offset = offset; 956 carveout->flags = rsc->flags; 957 958 return 0; 959 } 960 961 /* Register carveout in in list */ 962 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 963 rproc_alloc_carveout, 964 rproc_release_carveout, rsc->name); 965 if (!carveout) { 966 dev_err(dev, "Can't allocate memory entry structure\n"); 967 return -ENOMEM; 968 } 969 970 carveout->flags = rsc->flags; 971 carveout->rsc_offset = offset; 972 rproc_add_carveout(rproc, carveout); 973 974 return 0; 975} 976 977/** 978 * rproc_add_carveout() - register an allocated carveout region 979 * @rproc: rproc handle 980 * @mem: memory entry to register 981 * 982 * This function registers specified memory entry in @rproc carveouts list. 983 * Specified carveout should have been allocated before registering. 984 */ 985void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 986{ 987 list_add_tail(&mem->node, &rproc->carveouts); 988} 989EXPORT_SYMBOL(rproc_add_carveout); 990 991/** 992 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 993 * @dev: pointer on device struct 994 * @va: virtual address 995 * @dma: dma address 996 * @len: memory carveout length 997 * @da: device address 998 * @alloc: memory carveout allocation function 999 * @release: memory carveout release function 1000 * @name: carveout name 1001 * 1002 * This function allocates a rproc_mem_entry struct and fill it with parameters 1003 * provided by client. 1004 */ 1005__printf(8, 9) 1006struct rproc_mem_entry * 1007rproc_mem_entry_init(struct device *dev, 1008 void *va, dma_addr_t dma, size_t len, u32 da, 1009 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 1010 int (*release)(struct rproc *, struct rproc_mem_entry *), 1011 const char *name, ...) 1012{ 1013 struct rproc_mem_entry *mem; 1014 va_list args; 1015 1016 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1017 if (!mem) 1018 return mem; 1019 1020 mem->va = va; 1021 mem->dma = dma; 1022 mem->da = da; 1023 mem->len = len; 1024 mem->alloc = alloc; 1025 mem->release = release; 1026 mem->rsc_offset = FW_RSC_ADDR_ANY; 1027 mem->of_resm_idx = -1; 1028 1029 va_start(args, name); 1030 vsnprintf(mem->name, sizeof(mem->name), name, args); 1031 va_end(args); 1032 1033 return mem; 1034} 1035EXPORT_SYMBOL(rproc_mem_entry_init); 1036 1037/** 1038 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 1039 * from a reserved memory phandle 1040 * @dev: pointer on device struct 1041 * @of_resm_idx: reserved memory phandle index in "memory-region" 1042 * @len: memory carveout length 1043 * @da: device address 1044 * @name: carveout name 1045 * 1046 * This function allocates a rproc_mem_entry struct and fill it with parameters 1047 * provided by client. 1048 */ 1049__printf(5, 6) 1050struct rproc_mem_entry * 1051rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 1052 u32 da, const char *name, ...) 1053{ 1054 struct rproc_mem_entry *mem; 1055 va_list args; 1056 1057 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1058 if (!mem) 1059 return mem; 1060 1061 mem->da = da; 1062 mem->len = len; 1063 mem->rsc_offset = FW_RSC_ADDR_ANY; 1064 mem->of_resm_idx = of_resm_idx; 1065 1066 va_start(args, name); 1067 vsnprintf(mem->name, sizeof(mem->name), name, args); 1068 va_end(args); 1069 1070 return mem; 1071} 1072EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 1073 1074/** 1075 * rproc_of_parse_firmware() - parse and return the firmware-name 1076 * @dev: pointer on device struct representing a rproc 1077 * @index: index to use for the firmware-name retrieval 1078 * @fw_name: pointer to a character string, in which the firmware 1079 * name is returned on success and unmodified otherwise. 1080 * 1081 * This is an OF helper function that parses a device's DT node for 1082 * the "firmware-name" property and returns the firmware name pointer 1083 * in @fw_name on success. 1084 * 1085 * Return: 0 on success, or an appropriate failure. 1086 */ 1087int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 1088{ 1089 int ret; 1090 1091 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1092 index, fw_name); 1093 return ret ? ret : 0; 1094} 1095EXPORT_SYMBOL(rproc_of_parse_firmware); 1096 1097/* 1098 * A lookup table for resource handlers. The indices are defined in 1099 * enum fw_resource_type. 1100 */ 1101static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1102 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 1103 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 1104 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 1105 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 1106}; 1107 1108/* handle firmware resource entries before booting the remote processor */ 1109static int rproc_handle_resources(struct rproc *rproc, 1110 rproc_handle_resource_t handlers[RSC_LAST]) 1111{ 1112 struct device *dev = &rproc->dev; 1113 rproc_handle_resource_t handler; 1114 int ret = 0, i; 1115 1116 if (!rproc->table_ptr) 1117 return 0; 1118 1119 for (i = 0; i < rproc->table_ptr->num; i++) { 1120 int offset = rproc->table_ptr->offset[i]; 1121 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1122 int avail = rproc->table_sz - offset - sizeof(*hdr); 1123 void *rsc = (void *)hdr + sizeof(*hdr); 1124 1125 /* make sure table isn't truncated */ 1126 if (avail < 0) { 1127 dev_err(dev, "rsc table is truncated\n"); 1128 return -EINVAL; 1129 } 1130 1131 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1132 1133 if (hdr->type >= RSC_VENDOR_START && 1134 hdr->type <= RSC_VENDOR_END) { 1135 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1136 offset + sizeof(*hdr), avail); 1137 if (ret == RSC_HANDLED) 1138 continue; 1139 else if (ret < 0) 1140 break; 1141 1142 dev_warn(dev, "unsupported vendor resource %d\n", 1143 hdr->type); 1144 continue; 1145 } 1146 1147 if (hdr->type >= RSC_LAST) { 1148 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1149 continue; 1150 } 1151 1152 handler = handlers[hdr->type]; 1153 if (!handler) 1154 continue; 1155 1156 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1157 if (ret) 1158 break; 1159 } 1160 1161 return ret; 1162} 1163 1164static int rproc_prepare_subdevices(struct rproc *rproc) 1165{ 1166 struct rproc_subdev *subdev; 1167 int ret; 1168 1169 list_for_each_entry(subdev, &rproc->subdevs, node) { 1170 if (subdev->prepare) { 1171 ret = subdev->prepare(subdev); 1172 if (ret) 1173 goto unroll_preparation; 1174 } 1175 } 1176 1177 return 0; 1178 1179unroll_preparation: 1180 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1181 if (subdev->unprepare) 1182 subdev->unprepare(subdev); 1183 } 1184 1185 return ret; 1186} 1187 1188static int rproc_start_subdevices(struct rproc *rproc) 1189{ 1190 struct rproc_subdev *subdev; 1191 int ret; 1192 1193 list_for_each_entry(subdev, &rproc->subdevs, node) { 1194 if (subdev->start) { 1195 ret = subdev->start(subdev); 1196 if (ret) 1197 goto unroll_registration; 1198 } 1199 } 1200 1201 return 0; 1202 1203unroll_registration: 1204 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1205 if (subdev->stop) 1206 subdev->stop(subdev, true); 1207 } 1208 1209 return ret; 1210} 1211 1212static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1213{ 1214 struct rproc_subdev *subdev; 1215 1216 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1217 if (subdev->stop) 1218 subdev->stop(subdev, crashed); 1219 } 1220} 1221 1222static void rproc_unprepare_subdevices(struct rproc *rproc) 1223{ 1224 struct rproc_subdev *subdev; 1225 1226 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1227 if (subdev->unprepare) 1228 subdev->unprepare(subdev); 1229 } 1230} 1231 1232/** 1233 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1234 * in the list 1235 * @rproc: the remote processor handle 1236 * 1237 * This function parses registered carveout list, performs allocation 1238 * if alloc() ops registered and updates resource table information 1239 * if rsc_offset set. 1240 * 1241 * Return: 0 on success 1242 */ 1243static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1244{ 1245 struct rproc_mem_entry *entry, *tmp; 1246 struct fw_rsc_carveout *rsc; 1247 struct device *dev = &rproc->dev; 1248 u64 pa; 1249 int ret; 1250 1251 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1252 if (entry->alloc) { 1253 ret = entry->alloc(rproc, entry); 1254 if (ret) { 1255 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1256 entry->name, ret); 1257 return -ENOMEM; 1258 } 1259 } 1260 1261 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1262 /* update resource table */ 1263 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1264 1265 /* 1266 * Some remote processors might need to know the pa 1267 * even though they are behind an IOMMU. E.g., OMAP4's 1268 * remote M3 processor needs this so it can control 1269 * on-chip hardware accelerators that are not behind 1270 * the IOMMU, and therefor must know the pa. 1271 * 1272 * Generally we don't want to expose physical addresses 1273 * if we don't have to (remote processors are generally 1274 * _not_ trusted), so we might want to do this only for 1275 * remote processor that _must_ have this (e.g. OMAP4's 1276 * dual M3 subsystem). 1277 * 1278 * Non-IOMMU processors might also want to have this info. 1279 * In this case, the device address and the physical address 1280 * are the same. 1281 */ 1282 1283 /* Use va if defined else dma to generate pa */ 1284 if (entry->va) 1285 pa = (u64)rproc_va_to_pa(entry->va); 1286 else 1287 pa = (u64)entry->dma; 1288 1289 if (((u64)pa) & HIGH_BITS_MASK) 1290 dev_warn(dev, 1291 "Physical address cast in 32bit to fit resource table format\n"); 1292 1293 rsc->pa = (u32)pa; 1294 rsc->da = entry->da; 1295 rsc->len = entry->len; 1296 } 1297 } 1298 1299 return 0; 1300} 1301 1302 1303/** 1304 * rproc_resource_cleanup() - clean up and free all acquired resources 1305 * @rproc: rproc handle 1306 * 1307 * This function will free all resources acquired for @rproc, and it 1308 * is called whenever @rproc either shuts down or fails to boot. 1309 */ 1310void rproc_resource_cleanup(struct rproc *rproc) 1311{ 1312 struct rproc_mem_entry *entry, *tmp; 1313 struct rproc_debug_trace *trace, *ttmp; 1314 struct rproc_vdev *rvdev, *rvtmp; 1315 struct device *dev = &rproc->dev; 1316 1317 /* clean up debugfs trace entries */ 1318 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1319 rproc_remove_trace_file(trace->tfile); 1320 rproc->num_traces--; 1321 list_del(&trace->node); 1322 kfree(trace); 1323 } 1324 1325 /* clean up iommu mapping entries */ 1326 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1327 size_t unmapped; 1328 1329 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1330 if (unmapped != entry->len) { 1331 /* nothing much to do besides complaining */ 1332 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1333 unmapped); 1334 } 1335 1336 list_del(&entry->node); 1337 kfree(entry); 1338 } 1339 1340 /* clean up carveout allocations */ 1341 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1342 if (entry->release) 1343 entry->release(rproc, entry); 1344 list_del(&entry->node); 1345 kfree(entry); 1346 } 1347 1348 /* clean up remote vdev entries */ 1349 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1350 kref_put(&rvdev->refcount, rproc_vdev_release); 1351 1352 rproc_coredump_cleanup(rproc); 1353} 1354EXPORT_SYMBOL(rproc_resource_cleanup); 1355 1356static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1357{ 1358 struct resource_table *loaded_table; 1359 struct device *dev = &rproc->dev; 1360 int ret; 1361 1362 /* load the ELF segments to memory */ 1363 ret = rproc_load_segments(rproc, fw); 1364 if (ret) { 1365 dev_err(dev, "Failed to load program segments: %d\n", ret); 1366 return ret; 1367 } 1368 1369 /* 1370 * The starting device has been given the rproc->cached_table as the 1371 * resource table. The address of the vring along with the other 1372 * allocated resources (carveouts etc) is stored in cached_table. 1373 * In order to pass this information to the remote device we must copy 1374 * this information to device memory. We also update the table_ptr so 1375 * that any subsequent changes will be applied to the loaded version. 1376 */ 1377 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1378 if (loaded_table) { 1379 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1380 rproc->table_ptr = loaded_table; 1381 } 1382 1383 ret = rproc_prepare_subdevices(rproc); 1384 if (ret) { 1385 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1386 rproc->name, ret); 1387 goto reset_table_ptr; 1388 } 1389 1390 /* power up the remote processor */ 1391 ret = rproc->ops->start(rproc); 1392 if (ret) { 1393 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1394 goto unprepare_subdevices; 1395 } 1396 1397 /* Start any subdevices for the remote processor */ 1398 ret = rproc_start_subdevices(rproc); 1399 if (ret) { 1400 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1401 rproc->name, ret); 1402 goto stop_rproc; 1403 } 1404 1405 rproc->state = RPROC_RUNNING; 1406 1407 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1408 1409 return 0; 1410 1411stop_rproc: 1412 rproc->ops->stop(rproc); 1413unprepare_subdevices: 1414 rproc_unprepare_subdevices(rproc); 1415reset_table_ptr: 1416 rproc->table_ptr = rproc->cached_table; 1417 1418 return ret; 1419} 1420 1421static int rproc_attach(struct rproc *rproc) 1422{ 1423 struct device *dev = &rproc->dev; 1424 int ret; 1425 1426 ret = rproc_prepare_subdevices(rproc); 1427 if (ret) { 1428 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1429 rproc->name, ret); 1430 goto out; 1431 } 1432 1433 /* Attach to the remote processor */ 1434 ret = rproc_attach_device(rproc); 1435 if (ret) { 1436 dev_err(dev, "can't attach to rproc %s: %d\n", 1437 rproc->name, ret); 1438 goto unprepare_subdevices; 1439 } 1440 1441 /* Start any subdevices for the remote processor */ 1442 ret = rproc_start_subdevices(rproc); 1443 if (ret) { 1444 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1445 rproc->name, ret); 1446 goto stop_rproc; 1447 } 1448 1449 rproc->state = RPROC_RUNNING; 1450 1451 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1452 1453 return 0; 1454 1455stop_rproc: 1456 rproc->ops->stop(rproc); 1457unprepare_subdevices: 1458 rproc_unprepare_subdevices(rproc); 1459out: 1460 return ret; 1461} 1462 1463/* 1464 * take a firmware and boot a remote processor with it. 1465 */ 1466static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1467{ 1468 struct device *dev = &rproc->dev; 1469 const char *name = rproc->firmware; 1470 int ret; 1471 1472 ret = rproc_fw_sanity_check(rproc, fw); 1473 if (ret) 1474 return ret; 1475 1476 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1477 1478 /* 1479 * if enabling an IOMMU isn't relevant for this rproc, this is 1480 * just a nop 1481 */ 1482 ret = rproc_enable_iommu(rproc); 1483 if (ret) { 1484 dev_err(dev, "can't enable iommu: %d\n", ret); 1485 return ret; 1486 } 1487 1488 /* Prepare rproc for firmware loading if needed */ 1489 ret = rproc_prepare_device(rproc); 1490 if (ret) { 1491 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1492 goto disable_iommu; 1493 } 1494 1495 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1496 1497 /* Load resource table, core dump segment list etc from the firmware */ 1498 ret = rproc_parse_fw(rproc, fw); 1499 if (ret) 1500 goto unprepare_rproc; 1501 1502 /* reset max_notifyid */ 1503 rproc->max_notifyid = -1; 1504 1505 /* reset handled vdev */ 1506 rproc->nb_vdev = 0; 1507 1508 /* handle fw resources which are required to boot rproc */ 1509 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1510 if (ret) { 1511 dev_err(dev, "Failed to process resources: %d\n", ret); 1512 goto clean_up_resources; 1513 } 1514 1515 /* Allocate carveout resources associated to rproc */ 1516 ret = rproc_alloc_registered_carveouts(rproc); 1517 if (ret) { 1518 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1519 ret); 1520 goto clean_up_resources; 1521 } 1522 1523 ret = rproc_start(rproc, fw); 1524 if (ret) 1525 goto clean_up_resources; 1526 1527 return 0; 1528 1529clean_up_resources: 1530 rproc_resource_cleanup(rproc); 1531 kfree(rproc->cached_table); 1532 rproc->cached_table = NULL; 1533 rproc->table_ptr = NULL; 1534unprepare_rproc: 1535 /* release HW resources if needed */ 1536 rproc_unprepare_device(rproc); 1537disable_iommu: 1538 rproc_disable_iommu(rproc); 1539 return ret; 1540} 1541 1542/* 1543 * Attach to remote processor - similar to rproc_fw_boot() but without 1544 * the steps that deal with the firmware image. 1545 */ 1546static int rproc_actuate(struct rproc *rproc) 1547{ 1548 struct device *dev = &rproc->dev; 1549 int ret; 1550 1551 /* 1552 * if enabling an IOMMU isn't relevant for this rproc, this is 1553 * just a nop 1554 */ 1555 ret = rproc_enable_iommu(rproc); 1556 if (ret) { 1557 dev_err(dev, "can't enable iommu: %d\n", ret); 1558 return ret; 1559 } 1560 1561 /* reset max_notifyid */ 1562 rproc->max_notifyid = -1; 1563 1564 /* reset handled vdev */ 1565 rproc->nb_vdev = 0; 1566 1567 /* 1568 * Handle firmware resources required to attach to a remote processor. 1569 * Because we are attaching rather than booting the remote processor, 1570 * we expect the platform driver to properly set rproc->table_ptr. 1571 */ 1572 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1573 if (ret) { 1574 dev_err(dev, "Failed to process resources: %d\n", ret); 1575 goto disable_iommu; 1576 } 1577 1578 /* Allocate carveout resources associated to rproc */ 1579 ret = rproc_alloc_registered_carveouts(rproc); 1580 if (ret) { 1581 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1582 ret); 1583 goto clean_up_resources; 1584 } 1585 1586 ret = rproc_attach(rproc); 1587 if (ret) 1588 goto clean_up_resources; 1589 1590 return 0; 1591 1592clean_up_resources: 1593 rproc_resource_cleanup(rproc); 1594disable_iommu: 1595 rproc_disable_iommu(rproc); 1596 return ret; 1597} 1598 1599/* 1600 * take a firmware and boot it up. 1601 * 1602 * Note: this function is called asynchronously upon registration of the 1603 * remote processor (so we must wait until it completes before we try 1604 * to unregister the device. one other option is just to use kref here, 1605 * that might be cleaner). 1606 */ 1607static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1608{ 1609 struct rproc *rproc = context; 1610 1611 rproc_boot(rproc); 1612 1613 release_firmware(fw); 1614} 1615 1616static int rproc_trigger_auto_boot(struct rproc *rproc) 1617{ 1618 int ret; 1619 1620 /* 1621 * Since the remote processor is in a detached state, it has already 1622 * been booted by another entity. As such there is no point in waiting 1623 * for a firmware image to be loaded, we can simply initiate the process 1624 * of attaching to it immediately. 1625 */ 1626 if (rproc->state == RPROC_DETACHED) 1627 return rproc_boot(rproc); 1628 1629 /* 1630 * We're initiating an asynchronous firmware loading, so we can 1631 * be built-in kernel code, without hanging the boot process. 1632 */ 1633 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 1634 rproc->firmware, &rproc->dev, GFP_KERNEL, 1635 rproc, rproc_auto_boot_callback); 1636 if (ret < 0) 1637 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1638 1639 return ret; 1640} 1641 1642static int rproc_stop(struct rproc *rproc, bool crashed) 1643{ 1644 struct device *dev = &rproc->dev; 1645 int ret; 1646 1647 /* Stop any subdevices for the remote processor */ 1648 rproc_stop_subdevices(rproc, crashed); 1649 1650 /* the installed resource table is no longer accessible */ 1651 rproc->table_ptr = rproc->cached_table; 1652 1653 /* power off the remote processor */ 1654 ret = rproc->ops->stop(rproc); 1655 if (ret) { 1656 dev_err(dev, "can't stop rproc: %d\n", ret); 1657 return ret; 1658 } 1659 1660 rproc_unprepare_subdevices(rproc); 1661 1662 rproc->state = RPROC_OFFLINE; 1663 1664 /* 1665 * The remote processor has been stopped and is now offline, which means 1666 * that the next time it is brought back online the remoteproc core will 1667 * be responsible to load its firmware. As such it is no longer 1668 * autonomous. 1669 */ 1670 rproc->autonomous = false; 1671 1672 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1673 1674 return 0; 1675} 1676 1677 1678/** 1679 * rproc_trigger_recovery() - recover a remoteproc 1680 * @rproc: the remote processor 1681 * 1682 * The recovery is done by resetting all the virtio devices, that way all the 1683 * rpmsg drivers will be reseted along with the remote processor making the 1684 * remoteproc functional again. 1685 * 1686 * This function can sleep, so it cannot be called from atomic context. 1687 */ 1688int rproc_trigger_recovery(struct rproc *rproc) 1689{ 1690 const struct firmware *firmware_p; 1691 struct device *dev = &rproc->dev; 1692 int ret; 1693 1694 ret = mutex_lock_interruptible(&rproc->lock); 1695 if (ret) 1696 return ret; 1697 1698 /* State could have changed before we got the mutex */ 1699 if (rproc->state != RPROC_CRASHED) 1700 goto unlock_mutex; 1701 1702 dev_err(dev, "recovering %s\n", rproc->name); 1703 1704 ret = rproc_stop(rproc, true); 1705 if (ret) 1706 goto unlock_mutex; 1707 1708 /* generate coredump */ 1709 rproc_coredump(rproc); 1710 1711 /* load firmware */ 1712 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1713 if (ret < 0) { 1714 dev_err(dev, "request_firmware failed: %d\n", ret); 1715 goto unlock_mutex; 1716 } 1717 1718 /* boot the remote processor up again */ 1719 ret = rproc_start(rproc, firmware_p); 1720 1721 release_firmware(firmware_p); 1722 1723unlock_mutex: 1724 mutex_unlock(&rproc->lock); 1725 return ret; 1726} 1727 1728/** 1729 * rproc_crash_handler_work() - handle a crash 1730 * @work: work treating the crash 1731 * 1732 * This function needs to handle everything related to a crash, like cpu 1733 * registers and stack dump, information to help to debug the fatal error, etc. 1734 */ 1735static void rproc_crash_handler_work(struct work_struct *work) 1736{ 1737 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1738 struct device *dev = &rproc->dev; 1739 1740 dev_dbg(dev, "enter %s\n", __func__); 1741 1742 mutex_lock(&rproc->lock); 1743 1744 if (rproc->state == RPROC_CRASHED) { 1745 /* handle only the first crash detected */ 1746 mutex_unlock(&rproc->lock); 1747 return; 1748 } 1749 1750 if (rproc->state == RPROC_OFFLINE) { 1751 /* Don't recover if the remote processor was stopped */ 1752 mutex_unlock(&rproc->lock); 1753 goto out; 1754 } 1755 1756 rproc->state = RPROC_CRASHED; 1757 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1758 rproc->name); 1759 1760 mutex_unlock(&rproc->lock); 1761 1762 if (!rproc->recovery_disabled) 1763 rproc_trigger_recovery(rproc); 1764 1765out: 1766 pm_relax(rproc->dev.parent); 1767} 1768 1769/** 1770 * rproc_boot() - boot a remote processor 1771 * @rproc: handle of a remote processor 1772 * 1773 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1774 * 1775 * If the remote processor is already powered on, this function immediately 1776 * returns (successfully). 1777 * 1778 * Returns 0 on success, and an appropriate error value otherwise. 1779 */ 1780int rproc_boot(struct rproc *rproc) 1781{ 1782 const struct firmware *firmware_p; 1783 struct device *dev; 1784 int ret; 1785 1786 if (!rproc) { 1787 pr_err("invalid rproc handle\n"); 1788 return -EINVAL; 1789 } 1790 1791 dev = &rproc->dev; 1792 1793 ret = mutex_lock_interruptible(&rproc->lock); 1794 if (ret) { 1795 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1796 return ret; 1797 } 1798 1799 if (rproc->state == RPROC_DELETED) { 1800 ret = -ENODEV; 1801 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1802 goto unlock_mutex; 1803 } 1804 1805 /* skip the boot or attach process if rproc is already powered up */ 1806 if (atomic_inc_return(&rproc->power) > 1) { 1807 ret = 0; 1808 goto unlock_mutex; 1809 } 1810 1811 if (rproc->state == RPROC_DETACHED) { 1812 dev_info(dev, "attaching to %s\n", rproc->name); 1813 1814 ret = rproc_actuate(rproc); 1815 } else { 1816 dev_info(dev, "powering up %s\n", rproc->name); 1817 1818 /* load firmware */ 1819 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1820 if (ret < 0) { 1821 dev_err(dev, "request_firmware failed: %d\n", ret); 1822 goto downref_rproc; 1823 } 1824 1825 ret = rproc_fw_boot(rproc, firmware_p); 1826 1827 release_firmware(firmware_p); 1828 } 1829 1830downref_rproc: 1831 if (ret) 1832 atomic_dec(&rproc->power); 1833unlock_mutex: 1834 mutex_unlock(&rproc->lock); 1835 return ret; 1836} 1837EXPORT_SYMBOL(rproc_boot); 1838 1839/** 1840 * rproc_shutdown() - power off the remote processor 1841 * @rproc: the remote processor 1842 * 1843 * Power off a remote processor (previously booted with rproc_boot()). 1844 * 1845 * In case @rproc is still being used by an additional user(s), then 1846 * this function will just decrement the power refcount and exit, 1847 * without really powering off the device. 1848 * 1849 * Every call to rproc_boot() must (eventually) be accompanied by a call 1850 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1851 * 1852 * Notes: 1853 * - we're not decrementing the rproc's refcount, only the power refcount. 1854 * which means that the @rproc handle stays valid even after rproc_shutdown() 1855 * returns, and users can still use it with a subsequent rproc_boot(), if 1856 * needed. 1857 */ 1858void rproc_shutdown(struct rproc *rproc) 1859{ 1860 struct device *dev = &rproc->dev; 1861 int ret; 1862 1863 ret = mutex_lock_interruptible(&rproc->lock); 1864 if (ret) { 1865 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1866 return; 1867 } 1868 1869 /* if the remote proc is still needed, bail out */ 1870 if (!atomic_dec_and_test(&rproc->power)) 1871 goto out; 1872 1873 ret = rproc_stop(rproc, false); 1874 if (ret) { 1875 atomic_inc(&rproc->power); 1876 goto out; 1877 } 1878 1879 /* clean up all acquired resources */ 1880 rproc_resource_cleanup(rproc); 1881 1882 /* release HW resources if needed */ 1883 rproc_unprepare_device(rproc); 1884 1885 rproc_disable_iommu(rproc); 1886 1887 /* Free the copy of the resource table */ 1888 kfree(rproc->cached_table); 1889 rproc->cached_table = NULL; 1890 rproc->table_ptr = NULL; 1891out: 1892 mutex_unlock(&rproc->lock); 1893} 1894EXPORT_SYMBOL(rproc_shutdown); 1895 1896/** 1897 * rproc_get_by_phandle() - find a remote processor by phandle 1898 * @phandle: phandle to the rproc 1899 * 1900 * Finds an rproc handle using the remote processor's phandle, and then 1901 * return a handle to the rproc. 1902 * 1903 * This function increments the remote processor's refcount, so always 1904 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1905 * 1906 * Returns the rproc handle on success, and NULL on failure. 1907 */ 1908#ifdef CONFIG_OF 1909struct rproc *rproc_get_by_phandle(phandle phandle) 1910{ 1911 struct rproc *rproc = NULL, *r; 1912 struct device_node *np; 1913 1914 np = of_find_node_by_phandle(phandle); 1915 if (!np) 1916 return NULL; 1917 1918 rcu_read_lock(); 1919 list_for_each_entry_rcu(r, &rproc_list, node) { 1920 if (r->dev.parent && r->dev.parent->of_node == np) { 1921 /* prevent underlying implementation from being removed */ 1922 if (!try_module_get(r->dev.parent->driver->owner)) { 1923 dev_err(&r->dev, "can't get owner\n"); 1924 break; 1925 } 1926 1927 rproc = r; 1928 get_device(&rproc->dev); 1929 break; 1930 } 1931 } 1932 rcu_read_unlock(); 1933 1934 of_node_put(np); 1935 1936 return rproc; 1937} 1938#else 1939struct rproc *rproc_get_by_phandle(phandle phandle) 1940{ 1941 return NULL; 1942} 1943#endif 1944EXPORT_SYMBOL(rproc_get_by_phandle); 1945 1946static int rproc_validate(struct rproc *rproc) 1947{ 1948 switch (rproc->state) { 1949 case RPROC_OFFLINE: 1950 /* 1951 * An offline processor without a start() 1952 * function makes no sense. 1953 */ 1954 if (!rproc->ops->start) 1955 return -EINVAL; 1956 break; 1957 case RPROC_DETACHED: 1958 /* 1959 * A remote processor in a detached state without an 1960 * attach() function makes not sense. 1961 */ 1962 if (!rproc->ops->attach) 1963 return -EINVAL; 1964 /* 1965 * When attaching to a remote processor the device memory 1966 * is already available and as such there is no need to have a 1967 * cached table. 1968 */ 1969 if (rproc->cached_table) 1970 return -EINVAL; 1971 break; 1972 default: 1973 /* 1974 * When adding a remote processor, the state of the device 1975 * can be offline or detached, nothing else. 1976 */ 1977 return -EINVAL; 1978 } 1979 1980 return 0; 1981} 1982 1983/** 1984 * rproc_add() - register a remote processor 1985 * @rproc: the remote processor handle to register 1986 * 1987 * Registers @rproc with the remoteproc framework, after it has been 1988 * allocated with rproc_alloc(). 1989 * 1990 * This is called by the platform-specific rproc implementation, whenever 1991 * a new remote processor device is probed. 1992 * 1993 * Returns 0 on success and an appropriate error code otherwise. 1994 * 1995 * Note: this function initiates an asynchronous firmware loading 1996 * context, which will look for virtio devices supported by the rproc's 1997 * firmware. 1998 * 1999 * If found, those virtio devices will be created and added, so as a result 2000 * of registering this remote processor, additional virtio drivers might be 2001 * probed. 2002 */ 2003int rproc_add(struct rproc *rproc) 2004{ 2005 struct device *dev = &rproc->dev; 2006 int ret; 2007 2008 ret = device_add(dev); 2009 if (ret < 0) 2010 return ret; 2011 2012 ret = rproc_validate(rproc); 2013 if (ret < 0) 2014 return ret; 2015 2016 dev_info(dev, "%s is available\n", rproc->name); 2017 2018 /* create debugfs entries */ 2019 rproc_create_debug_dir(rproc); 2020 2021 /* add char device for this remoteproc */ 2022 ret = rproc_char_device_add(rproc); 2023 if (ret < 0) 2024 return ret; 2025 2026 /* 2027 * Remind ourselves the remote processor has been attached to rather 2028 * than booted by the remoteproc core. This is important because the 2029 * RPROC_DETACHED state will be lost as soon as the remote processor 2030 * has been attached to. Used in firmware_show() and reset in 2031 * rproc_stop(). 2032 */ 2033 if (rproc->state == RPROC_DETACHED) 2034 rproc->autonomous = true; 2035 2036 /* if rproc is marked always-on, request it to boot */ 2037 if (rproc->auto_boot) { 2038 ret = rproc_trigger_auto_boot(rproc); 2039 if (ret < 0) 2040 return ret; 2041 } 2042 2043 /* expose to rproc_get_by_phandle users */ 2044 mutex_lock(&rproc_list_mutex); 2045 list_add_rcu(&rproc->node, &rproc_list); 2046 mutex_unlock(&rproc_list_mutex); 2047 2048 return 0; 2049} 2050EXPORT_SYMBOL(rproc_add); 2051 2052static void devm_rproc_remove(void *rproc) 2053{ 2054 rproc_del(rproc); 2055} 2056 2057/** 2058 * devm_rproc_add() - resource managed rproc_add() 2059 * @dev: the underlying device 2060 * @rproc: the remote processor handle to register 2061 * 2062 * This function performs like rproc_add() but the registered rproc device will 2063 * automatically be removed on driver detach. 2064 * 2065 * Returns: 0 on success, negative errno on failure 2066 */ 2067int devm_rproc_add(struct device *dev, struct rproc *rproc) 2068{ 2069 int err; 2070 2071 err = rproc_add(rproc); 2072 if (err) 2073 return err; 2074 2075 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2076} 2077EXPORT_SYMBOL(devm_rproc_add); 2078 2079/** 2080 * rproc_type_release() - release a remote processor instance 2081 * @dev: the rproc's device 2082 * 2083 * This function should _never_ be called directly. 2084 * 2085 * It will be called by the driver core when no one holds a valid pointer 2086 * to @dev anymore. 2087 */ 2088static void rproc_type_release(struct device *dev) 2089{ 2090 struct rproc *rproc = container_of(dev, struct rproc, dev); 2091 2092 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2093 2094 idr_destroy(&rproc->notifyids); 2095 2096 if (rproc->index >= 0) 2097 ida_simple_remove(&rproc_dev_index, rproc->index); 2098 2099 kfree_const(rproc->firmware); 2100 kfree_const(rproc->name); 2101 kfree(rproc->ops); 2102 kfree(rproc); 2103} 2104 2105static const struct device_type rproc_type = { 2106 .name = "remoteproc", 2107 .release = rproc_type_release, 2108}; 2109 2110static int rproc_alloc_firmware(struct rproc *rproc, 2111 const char *name, const char *firmware) 2112{ 2113 const char *p; 2114 2115 /* 2116 * Allocate a firmware name if the caller gave us one to work 2117 * with. Otherwise construct a new one using a default pattern. 2118 */ 2119 if (firmware) 2120 p = kstrdup_const(firmware, GFP_KERNEL); 2121 else 2122 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2123 2124 if (!p) 2125 return -ENOMEM; 2126 2127 rproc->firmware = p; 2128 2129 return 0; 2130} 2131 2132static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2133{ 2134 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2135 if (!rproc->ops) 2136 return -ENOMEM; 2137 2138 if (rproc->ops->load) 2139 return 0; 2140 2141 /* Default to ELF loader if no load function is specified */ 2142 rproc->ops->load = rproc_elf_load_segments; 2143 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2144 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2145 rproc->ops->sanity_check = rproc_elf_sanity_check; 2146 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2147 2148 return 0; 2149} 2150 2151/** 2152 * rproc_alloc() - allocate a remote processor handle 2153 * @dev: the underlying device 2154 * @name: name of this remote processor 2155 * @ops: platform-specific handlers (mainly start/stop) 2156 * @firmware: name of firmware file to load, can be NULL 2157 * @len: length of private data needed by the rproc driver (in bytes) 2158 * 2159 * Allocates a new remote processor handle, but does not register 2160 * it yet. if @firmware is NULL, a default name is used. 2161 * 2162 * This function should be used by rproc implementations during initialization 2163 * of the remote processor. 2164 * 2165 * After creating an rproc handle using this function, and when ready, 2166 * implementations should then call rproc_add() to complete 2167 * the registration of the remote processor. 2168 * 2169 * On success the new rproc is returned, and on failure, NULL. 2170 * 2171 * Note: _never_ directly deallocate @rproc, even if it was not registered 2172 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2173 */ 2174struct rproc *rproc_alloc(struct device *dev, const char *name, 2175 const struct rproc_ops *ops, 2176 const char *firmware, int len) 2177{ 2178 struct rproc *rproc; 2179 2180 if (!dev || !name || !ops) 2181 return NULL; 2182 2183 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2184 if (!rproc) 2185 return NULL; 2186 2187 rproc->priv = &rproc[1]; 2188 rproc->auto_boot = true; 2189 rproc->elf_class = ELFCLASSNONE; 2190 rproc->elf_machine = EM_NONE; 2191 2192 device_initialize(&rproc->dev); 2193 rproc->dev.parent = dev; 2194 rproc->dev.type = &rproc_type; 2195 rproc->dev.class = &rproc_class; 2196 rproc->dev.driver_data = rproc; 2197 idr_init(&rproc->notifyids); 2198 2199 rproc->name = kstrdup_const(name, GFP_KERNEL); 2200 if (!rproc->name) 2201 goto put_device; 2202 2203 if (rproc_alloc_firmware(rproc, name, firmware)) 2204 goto put_device; 2205 2206 if (rproc_alloc_ops(rproc, ops)) 2207 goto put_device; 2208 2209 /* Assign a unique device index and name */ 2210 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 2211 if (rproc->index < 0) { 2212 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 2213 goto put_device; 2214 } 2215 2216 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2217 2218 atomic_set(&rproc->power, 0); 2219 2220 mutex_init(&rproc->lock); 2221 2222 INIT_LIST_HEAD(&rproc->carveouts); 2223 INIT_LIST_HEAD(&rproc->mappings); 2224 INIT_LIST_HEAD(&rproc->traces); 2225 INIT_LIST_HEAD(&rproc->rvdevs); 2226 INIT_LIST_HEAD(&rproc->subdevs); 2227 INIT_LIST_HEAD(&rproc->dump_segments); 2228 2229 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2230 2231 rproc->state = RPROC_OFFLINE; 2232 2233 return rproc; 2234 2235put_device: 2236 put_device(&rproc->dev); 2237 return NULL; 2238} 2239EXPORT_SYMBOL(rproc_alloc); 2240 2241/** 2242 * rproc_free() - unroll rproc_alloc() 2243 * @rproc: the remote processor handle 2244 * 2245 * This function decrements the rproc dev refcount. 2246 * 2247 * If no one holds any reference to rproc anymore, then its refcount would 2248 * now drop to zero, and it would be freed. 2249 */ 2250void rproc_free(struct rproc *rproc) 2251{ 2252 put_device(&rproc->dev); 2253} 2254EXPORT_SYMBOL(rproc_free); 2255 2256/** 2257 * rproc_put() - release rproc reference 2258 * @rproc: the remote processor handle 2259 * 2260 * This function decrements the rproc dev refcount. 2261 * 2262 * If no one holds any reference to rproc anymore, then its refcount would 2263 * now drop to zero, and it would be freed. 2264 */ 2265void rproc_put(struct rproc *rproc) 2266{ 2267 module_put(rproc->dev.parent->driver->owner); 2268 put_device(&rproc->dev); 2269} 2270EXPORT_SYMBOL(rproc_put); 2271 2272/** 2273 * rproc_del() - unregister a remote processor 2274 * @rproc: rproc handle to unregister 2275 * 2276 * This function should be called when the platform specific rproc 2277 * implementation decides to remove the rproc device. it should 2278 * _only_ be called if a previous invocation of rproc_add() 2279 * has completed successfully. 2280 * 2281 * After rproc_del() returns, @rproc isn't freed yet, because 2282 * of the outstanding reference created by rproc_alloc. To decrement that 2283 * one last refcount, one still needs to call rproc_free(). 2284 * 2285 * Returns 0 on success and -EINVAL if @rproc isn't valid. 2286 */ 2287int rproc_del(struct rproc *rproc) 2288{ 2289 if (!rproc) 2290 return -EINVAL; 2291 2292 /* if rproc is marked always-on, rproc_add() booted it */ 2293 /* TODO: make sure this works with rproc->power > 1 */ 2294 if (rproc->auto_boot) 2295 rproc_shutdown(rproc); 2296 2297 mutex_lock(&rproc->lock); 2298 rproc->state = RPROC_DELETED; 2299 mutex_unlock(&rproc->lock); 2300 2301 rproc_delete_debug_dir(rproc); 2302 2303 /* the rproc is downref'ed as soon as it's removed from the klist */ 2304 mutex_lock(&rproc_list_mutex); 2305 list_del_rcu(&rproc->node); 2306 mutex_unlock(&rproc_list_mutex); 2307 2308 /* Ensure that no readers of rproc_list are still active */ 2309 synchronize_rcu(); 2310 2311 device_del(&rproc->dev); 2312 rproc_char_device_remove(rproc); 2313 2314 return 0; 2315} 2316EXPORT_SYMBOL(rproc_del); 2317 2318static void devm_rproc_free(struct device *dev, void *res) 2319{ 2320 rproc_free(*(struct rproc **)res); 2321} 2322 2323/** 2324 * devm_rproc_alloc() - resource managed rproc_alloc() 2325 * @dev: the underlying device 2326 * @name: name of this remote processor 2327 * @ops: platform-specific handlers (mainly start/stop) 2328 * @firmware: name of firmware file to load, can be NULL 2329 * @len: length of private data needed by the rproc driver (in bytes) 2330 * 2331 * This function performs like rproc_alloc() but the acquired rproc device will 2332 * automatically be released on driver detach. 2333 * 2334 * Returns: new rproc instance, or NULL on failure 2335 */ 2336struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2337 const struct rproc_ops *ops, 2338 const char *firmware, int len) 2339{ 2340 struct rproc **ptr, *rproc; 2341 2342 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2343 if (!ptr) 2344 return NULL; 2345 2346 rproc = rproc_alloc(dev, name, ops, firmware, len); 2347 if (rproc) { 2348 *ptr = rproc; 2349 devres_add(dev, ptr); 2350 } else { 2351 devres_free(ptr); 2352 } 2353 2354 return rproc; 2355} 2356EXPORT_SYMBOL(devm_rproc_alloc); 2357 2358/** 2359 * rproc_add_subdev() - add a subdevice to a remoteproc 2360 * @rproc: rproc handle to add the subdevice to 2361 * @subdev: subdev handle to register 2362 * 2363 * Caller is responsible for populating optional subdevice function pointers. 2364 */ 2365void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2366{ 2367 list_add_tail(&subdev->node, &rproc->subdevs); 2368} 2369EXPORT_SYMBOL(rproc_add_subdev); 2370 2371/** 2372 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2373 * @rproc: rproc handle to remove the subdevice from 2374 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2375 */ 2376void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2377{ 2378 list_del(&subdev->node); 2379} 2380EXPORT_SYMBOL(rproc_remove_subdev); 2381 2382/** 2383 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2384 * @dev: child device to find ancestor of 2385 * 2386 * Returns the ancestor rproc instance, or NULL if not found. 2387 */ 2388struct rproc *rproc_get_by_child(struct device *dev) 2389{ 2390 for (dev = dev->parent; dev; dev = dev->parent) { 2391 if (dev->type == &rproc_type) 2392 return dev->driver_data; 2393 } 2394 2395 return NULL; 2396} 2397EXPORT_SYMBOL(rproc_get_by_child); 2398 2399/** 2400 * rproc_report_crash() - rproc crash reporter function 2401 * @rproc: remote processor 2402 * @type: crash type 2403 * 2404 * This function must be called every time a crash is detected by the low-level 2405 * drivers implementing a specific remoteproc. This should not be called from a 2406 * non-remoteproc driver. 2407 * 2408 * This function can be called from atomic/interrupt context. 2409 */ 2410void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2411{ 2412 if (!rproc) { 2413 pr_err("NULL rproc pointer\n"); 2414 return; 2415 } 2416 2417 /* Prevent suspend while the remoteproc is being recovered */ 2418 pm_stay_awake(rproc->dev.parent); 2419 2420 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2421 rproc->name, rproc_crash_to_string(type)); 2422 2423 /* create a new task to handle the error */ 2424 schedule_work(&rproc->crash_handler); 2425} 2426EXPORT_SYMBOL(rproc_report_crash); 2427 2428static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2429 void *ptr) 2430{ 2431 unsigned int longest = 0; 2432 struct rproc *rproc; 2433 unsigned int d; 2434 2435 rcu_read_lock(); 2436 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2437 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING) 2438 continue; 2439 2440 d = rproc->ops->panic(rproc); 2441 longest = max(longest, d); 2442 } 2443 rcu_read_unlock(); 2444 2445 /* 2446 * Delay for the longest requested duration before returning. This can 2447 * be used by the remoteproc drivers to give the remote processor time 2448 * to perform any requested operations (such as flush caches), when 2449 * it's not possible to signal the Linux side due to the panic. 2450 */ 2451 mdelay(longest); 2452 2453 return NOTIFY_DONE; 2454} 2455 2456static void __init rproc_init_panic(void) 2457{ 2458 rproc_panic_nb.notifier_call = rproc_panic_handler; 2459 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2460} 2461 2462static void __exit rproc_exit_panic(void) 2463{ 2464 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2465} 2466 2467static int __init remoteproc_init(void) 2468{ 2469 rproc_init_sysfs(); 2470 rproc_init_debugfs(); 2471 rproc_init_cdev(); 2472 rproc_init_panic(); 2473 2474 return 0; 2475} 2476subsys_initcall(remoteproc_init); 2477 2478static void __exit remoteproc_exit(void) 2479{ 2480 ida_destroy(&rproc_dev_index); 2481 2482 rproc_exit_panic(); 2483 rproc_exit_debugfs(); 2484 rproc_exit_sysfs(); 2485} 2486module_exit(remoteproc_exit); 2487 2488MODULE_LICENSE("GPL v2"); 2489MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2490