18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * drivers/pwm/pwm-tegra.c
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Tegra pulse-width-modulation controller driver
68c2ecf20Sopenharmony_ci *
78c2ecf20Sopenharmony_ci * Copyright (c) 2010-2020, NVIDIA Corporation.
88c2ecf20Sopenharmony_ci * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
98c2ecf20Sopenharmony_ci *
108c2ecf20Sopenharmony_ci * Overview of Tegra Pulse Width Modulator Register:
118c2ecf20Sopenharmony_ci * 1. 13-bit: Frequency division (SCALE)
128c2ecf20Sopenharmony_ci * 2. 8-bit : Pulse division (DUTY)
138c2ecf20Sopenharmony_ci * 3. 1-bit : Enable bit
148c2ecf20Sopenharmony_ci *
158c2ecf20Sopenharmony_ci * The PWM clock frequency is divided by 256 before subdividing it based
168c2ecf20Sopenharmony_ci * on the programmable frequency division value to generate the required
178c2ecf20Sopenharmony_ci * frequency for PWM output. The maximum output frequency that can be
188c2ecf20Sopenharmony_ci * achieved is (max rate of source clock) / 256.
198c2ecf20Sopenharmony_ci * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
208c2ecf20Sopenharmony_ci * 408 MHz/256 = 1.6 MHz.
218c2ecf20Sopenharmony_ci * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
228c2ecf20Sopenharmony_ci *
238c2ecf20Sopenharmony_ci * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
248c2ecf20Sopenharmony_ci * To achieve 100% duty cycle, program Bit [24] of this register to
258c2ecf20Sopenharmony_ci * 1’b1. In which case the other bits [23:16] are set to don't care.
268c2ecf20Sopenharmony_ci *
278c2ecf20Sopenharmony_ci * Limitations:
288c2ecf20Sopenharmony_ci * -	When PWM is disabled, the output is driven to inactive.
298c2ecf20Sopenharmony_ci * -	It does not allow the current PWM period to complete and
308c2ecf20Sopenharmony_ci *	stops abruptly.
318c2ecf20Sopenharmony_ci *
328c2ecf20Sopenharmony_ci * -	If the register is reconfigured while PWM is running,
338c2ecf20Sopenharmony_ci *	it does not complete the currently running period.
348c2ecf20Sopenharmony_ci *
358c2ecf20Sopenharmony_ci * -	If the user input duty is beyond acceptible limits,
368c2ecf20Sopenharmony_ci *	-EINVAL is returned.
378c2ecf20Sopenharmony_ci */
388c2ecf20Sopenharmony_ci
398c2ecf20Sopenharmony_ci#include <linux/clk.h>
408c2ecf20Sopenharmony_ci#include <linux/err.h>
418c2ecf20Sopenharmony_ci#include <linux/io.h>
428c2ecf20Sopenharmony_ci#include <linux/module.h>
438c2ecf20Sopenharmony_ci#include <linux/of.h>
448c2ecf20Sopenharmony_ci#include <linux/of_device.h>
458c2ecf20Sopenharmony_ci#include <linux/pwm.h>
468c2ecf20Sopenharmony_ci#include <linux/platform_device.h>
478c2ecf20Sopenharmony_ci#include <linux/pinctrl/consumer.h>
488c2ecf20Sopenharmony_ci#include <linux/slab.h>
498c2ecf20Sopenharmony_ci#include <linux/reset.h>
508c2ecf20Sopenharmony_ci
518c2ecf20Sopenharmony_ci#define PWM_ENABLE	(1 << 31)
528c2ecf20Sopenharmony_ci#define PWM_DUTY_WIDTH	8
538c2ecf20Sopenharmony_ci#define PWM_DUTY_SHIFT	16
548c2ecf20Sopenharmony_ci#define PWM_SCALE_WIDTH	13
558c2ecf20Sopenharmony_ci#define PWM_SCALE_SHIFT	0
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_cistruct tegra_pwm_soc {
588c2ecf20Sopenharmony_ci	unsigned int num_channels;
598c2ecf20Sopenharmony_ci
608c2ecf20Sopenharmony_ci	/* Maximum IP frequency for given SoCs */
618c2ecf20Sopenharmony_ci	unsigned long max_frequency;
628c2ecf20Sopenharmony_ci};
638c2ecf20Sopenharmony_ci
648c2ecf20Sopenharmony_cistruct tegra_pwm_chip {
658c2ecf20Sopenharmony_ci	struct pwm_chip chip;
668c2ecf20Sopenharmony_ci	struct device *dev;
678c2ecf20Sopenharmony_ci
688c2ecf20Sopenharmony_ci	struct clk *clk;
698c2ecf20Sopenharmony_ci	struct reset_control*rst;
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_ci	unsigned long clk_rate;
728c2ecf20Sopenharmony_ci	unsigned long min_period_ns;
738c2ecf20Sopenharmony_ci
748c2ecf20Sopenharmony_ci	void __iomem *regs;
758c2ecf20Sopenharmony_ci
768c2ecf20Sopenharmony_ci	const struct tegra_pwm_soc *soc;
778c2ecf20Sopenharmony_ci};
788c2ecf20Sopenharmony_ci
798c2ecf20Sopenharmony_cistatic inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
808c2ecf20Sopenharmony_ci{
818c2ecf20Sopenharmony_ci	return container_of(chip, struct tegra_pwm_chip, chip);
828c2ecf20Sopenharmony_ci}
838c2ecf20Sopenharmony_ci
848c2ecf20Sopenharmony_cistatic inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
858c2ecf20Sopenharmony_ci{
868c2ecf20Sopenharmony_ci	return readl(chip->regs + (num << 4));
878c2ecf20Sopenharmony_ci}
888c2ecf20Sopenharmony_ci
898c2ecf20Sopenharmony_cistatic inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
908c2ecf20Sopenharmony_ci			     unsigned long val)
918c2ecf20Sopenharmony_ci{
928c2ecf20Sopenharmony_ci	writel(val, chip->regs + (num << 4));
938c2ecf20Sopenharmony_ci}
948c2ecf20Sopenharmony_ci
958c2ecf20Sopenharmony_cistatic int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
968c2ecf20Sopenharmony_ci			    int duty_ns, int period_ns)
978c2ecf20Sopenharmony_ci{
988c2ecf20Sopenharmony_ci	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
998c2ecf20Sopenharmony_ci	unsigned long long c = duty_ns, hz;
1008c2ecf20Sopenharmony_ci	unsigned long rate, required_clk_rate;
1018c2ecf20Sopenharmony_ci	u32 val = 0;
1028c2ecf20Sopenharmony_ci	int err;
1038c2ecf20Sopenharmony_ci
1048c2ecf20Sopenharmony_ci	/*
1058c2ecf20Sopenharmony_ci	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
1068c2ecf20Sopenharmony_ci	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
1078c2ecf20Sopenharmony_ci	 * nearest integer during division.
1088c2ecf20Sopenharmony_ci	 */
1098c2ecf20Sopenharmony_ci	c *= (1 << PWM_DUTY_WIDTH);
1108c2ecf20Sopenharmony_ci	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci	val = (u32)c << PWM_DUTY_SHIFT;
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_ci	/*
1158c2ecf20Sopenharmony_ci	 *  min period = max clock limit >> PWM_DUTY_WIDTH
1168c2ecf20Sopenharmony_ci	 */
1178c2ecf20Sopenharmony_ci	if (period_ns < pc->min_period_ns)
1188c2ecf20Sopenharmony_ci		return -EINVAL;
1198c2ecf20Sopenharmony_ci
1208c2ecf20Sopenharmony_ci	/*
1218c2ecf20Sopenharmony_ci	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
1228c2ecf20Sopenharmony_ci	 * cycles at the PWM clock rate will take period_ns nanoseconds.
1238c2ecf20Sopenharmony_ci	 *
1248c2ecf20Sopenharmony_ci	 * num_channels: If single instance of PWM controller has multiple
1258c2ecf20Sopenharmony_ci	 * channels (e.g. Tegra210 or older) then it is not possible to
1268c2ecf20Sopenharmony_ci	 * configure separate clock rates to each of the channels, in such
1278c2ecf20Sopenharmony_ci	 * case the value stored during probe will be referred.
1288c2ecf20Sopenharmony_ci	 *
1298c2ecf20Sopenharmony_ci	 * If every PWM controller instance has one channel respectively, i.e.
1308c2ecf20Sopenharmony_ci	 * nums_channels == 1 then only the clock rate can be modified
1318c2ecf20Sopenharmony_ci	 * dynamically (e.g. Tegra186 or Tegra194).
1328c2ecf20Sopenharmony_ci	 */
1338c2ecf20Sopenharmony_ci	if (pc->soc->num_channels == 1) {
1348c2ecf20Sopenharmony_ci		/*
1358c2ecf20Sopenharmony_ci		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
1368c2ecf20Sopenharmony_ci		 * with the maximum possible rate that the controller can
1378c2ecf20Sopenharmony_ci		 * provide. Any further lower value can be derived by setting
1388c2ecf20Sopenharmony_ci		 * PFM bits[0:12].
1398c2ecf20Sopenharmony_ci		 *
1408c2ecf20Sopenharmony_ci		 * required_clk_rate is a reference rate for source clock and
1418c2ecf20Sopenharmony_ci		 * it is derived based on user requested period. By setting the
1428c2ecf20Sopenharmony_ci		 * source clock rate as required_clk_rate, PWM controller will
1438c2ecf20Sopenharmony_ci		 * be able to configure the requested period.
1448c2ecf20Sopenharmony_ci		 */
1458c2ecf20Sopenharmony_ci		required_clk_rate = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC << PWM_DUTY_WIDTH,
1468c2ecf20Sopenharmony_ci						     period_ns);
1478c2ecf20Sopenharmony_ci
1488c2ecf20Sopenharmony_ci		err = clk_set_rate(pc->clk, required_clk_rate);
1498c2ecf20Sopenharmony_ci		if (err < 0)
1508c2ecf20Sopenharmony_ci			return -EINVAL;
1518c2ecf20Sopenharmony_ci
1528c2ecf20Sopenharmony_ci		/* Store the new rate for further references */
1538c2ecf20Sopenharmony_ci		pc->clk_rate = clk_get_rate(pc->clk);
1548c2ecf20Sopenharmony_ci	}
1558c2ecf20Sopenharmony_ci
1568c2ecf20Sopenharmony_ci	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
1578c2ecf20Sopenharmony_ci
1588c2ecf20Sopenharmony_ci	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
1598c2ecf20Sopenharmony_ci	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
1608c2ecf20Sopenharmony_ci	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
1618c2ecf20Sopenharmony_ci
1628c2ecf20Sopenharmony_ci	/*
1638c2ecf20Sopenharmony_ci	 * Since the actual PWM divider is the register's frequency divider
1648c2ecf20Sopenharmony_ci	 * field plus 1, we need to decrement to get the correct value to
1658c2ecf20Sopenharmony_ci	 * write to the register.
1668c2ecf20Sopenharmony_ci	 */
1678c2ecf20Sopenharmony_ci	if (rate > 0)
1688c2ecf20Sopenharmony_ci		rate--;
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_ci	/*
1718c2ecf20Sopenharmony_ci	 * Make sure that the rate will fit in the register's frequency
1728c2ecf20Sopenharmony_ci	 * divider field.
1738c2ecf20Sopenharmony_ci	 */
1748c2ecf20Sopenharmony_ci	if (rate >> PWM_SCALE_WIDTH)
1758c2ecf20Sopenharmony_ci		return -EINVAL;
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci	val |= rate << PWM_SCALE_SHIFT;
1788c2ecf20Sopenharmony_ci
1798c2ecf20Sopenharmony_ci	/*
1808c2ecf20Sopenharmony_ci	 * If the PWM channel is disabled, make sure to turn on the clock
1818c2ecf20Sopenharmony_ci	 * before writing the register. Otherwise, keep it enabled.
1828c2ecf20Sopenharmony_ci	 */
1838c2ecf20Sopenharmony_ci	if (!pwm_is_enabled(pwm)) {
1848c2ecf20Sopenharmony_ci		err = clk_prepare_enable(pc->clk);
1858c2ecf20Sopenharmony_ci		if (err < 0)
1868c2ecf20Sopenharmony_ci			return err;
1878c2ecf20Sopenharmony_ci	} else
1888c2ecf20Sopenharmony_ci		val |= PWM_ENABLE;
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci	pwm_writel(pc, pwm->hwpwm, val);
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_ci	/*
1938c2ecf20Sopenharmony_ci	 * If the PWM is not enabled, turn the clock off again to save power.
1948c2ecf20Sopenharmony_ci	 */
1958c2ecf20Sopenharmony_ci	if (!pwm_is_enabled(pwm))
1968c2ecf20Sopenharmony_ci		clk_disable_unprepare(pc->clk);
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci	return 0;
1998c2ecf20Sopenharmony_ci}
2008c2ecf20Sopenharmony_ci
2018c2ecf20Sopenharmony_cistatic int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
2028c2ecf20Sopenharmony_ci{
2038c2ecf20Sopenharmony_ci	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
2048c2ecf20Sopenharmony_ci	int rc = 0;
2058c2ecf20Sopenharmony_ci	u32 val;
2068c2ecf20Sopenharmony_ci
2078c2ecf20Sopenharmony_ci	rc = clk_prepare_enable(pc->clk);
2088c2ecf20Sopenharmony_ci	if (rc < 0)
2098c2ecf20Sopenharmony_ci		return rc;
2108c2ecf20Sopenharmony_ci
2118c2ecf20Sopenharmony_ci	val = pwm_readl(pc, pwm->hwpwm);
2128c2ecf20Sopenharmony_ci	val |= PWM_ENABLE;
2138c2ecf20Sopenharmony_ci	pwm_writel(pc, pwm->hwpwm, val);
2148c2ecf20Sopenharmony_ci
2158c2ecf20Sopenharmony_ci	return 0;
2168c2ecf20Sopenharmony_ci}
2178c2ecf20Sopenharmony_ci
2188c2ecf20Sopenharmony_cistatic void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
2198c2ecf20Sopenharmony_ci{
2208c2ecf20Sopenharmony_ci	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
2218c2ecf20Sopenharmony_ci	u32 val;
2228c2ecf20Sopenharmony_ci
2238c2ecf20Sopenharmony_ci	val = pwm_readl(pc, pwm->hwpwm);
2248c2ecf20Sopenharmony_ci	val &= ~PWM_ENABLE;
2258c2ecf20Sopenharmony_ci	pwm_writel(pc, pwm->hwpwm, val);
2268c2ecf20Sopenharmony_ci
2278c2ecf20Sopenharmony_ci	clk_disable_unprepare(pc->clk);
2288c2ecf20Sopenharmony_ci}
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_cistatic const struct pwm_ops tegra_pwm_ops = {
2318c2ecf20Sopenharmony_ci	.config = tegra_pwm_config,
2328c2ecf20Sopenharmony_ci	.enable = tegra_pwm_enable,
2338c2ecf20Sopenharmony_ci	.disable = tegra_pwm_disable,
2348c2ecf20Sopenharmony_ci	.owner = THIS_MODULE,
2358c2ecf20Sopenharmony_ci};
2368c2ecf20Sopenharmony_ci
2378c2ecf20Sopenharmony_cistatic int tegra_pwm_probe(struct platform_device *pdev)
2388c2ecf20Sopenharmony_ci{
2398c2ecf20Sopenharmony_ci	struct tegra_pwm_chip *pwm;
2408c2ecf20Sopenharmony_ci	struct resource *r;
2418c2ecf20Sopenharmony_ci	int ret;
2428c2ecf20Sopenharmony_ci
2438c2ecf20Sopenharmony_ci	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
2448c2ecf20Sopenharmony_ci	if (!pwm)
2458c2ecf20Sopenharmony_ci		return -ENOMEM;
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci	pwm->soc = of_device_get_match_data(&pdev->dev);
2488c2ecf20Sopenharmony_ci	pwm->dev = &pdev->dev;
2498c2ecf20Sopenharmony_ci
2508c2ecf20Sopenharmony_ci	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2518c2ecf20Sopenharmony_ci	pwm->regs = devm_ioremap_resource(&pdev->dev, r);
2528c2ecf20Sopenharmony_ci	if (IS_ERR(pwm->regs))
2538c2ecf20Sopenharmony_ci		return PTR_ERR(pwm->regs);
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, pwm);
2568c2ecf20Sopenharmony_ci
2578c2ecf20Sopenharmony_ci	pwm->clk = devm_clk_get(&pdev->dev, NULL);
2588c2ecf20Sopenharmony_ci	if (IS_ERR(pwm->clk))
2598c2ecf20Sopenharmony_ci		return PTR_ERR(pwm->clk);
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci	/* Set maximum frequency of the IP */
2628c2ecf20Sopenharmony_ci	ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
2638c2ecf20Sopenharmony_ci	if (ret < 0) {
2648c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
2658c2ecf20Sopenharmony_ci		return ret;
2668c2ecf20Sopenharmony_ci	}
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci	/*
2698c2ecf20Sopenharmony_ci	 * The requested and configured frequency may differ due to
2708c2ecf20Sopenharmony_ci	 * clock register resolutions. Get the configured frequency
2718c2ecf20Sopenharmony_ci	 * so that PWM period can be calculated more accurately.
2728c2ecf20Sopenharmony_ci	 */
2738c2ecf20Sopenharmony_ci	pwm->clk_rate = clk_get_rate(pwm->clk);
2748c2ecf20Sopenharmony_ci
2758c2ecf20Sopenharmony_ci	/* Set minimum limit of PWM period for the IP */
2768c2ecf20Sopenharmony_ci	pwm->min_period_ns =
2778c2ecf20Sopenharmony_ci	    (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
2788c2ecf20Sopenharmony_ci
2798c2ecf20Sopenharmony_ci	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
2808c2ecf20Sopenharmony_ci	if (IS_ERR(pwm->rst)) {
2818c2ecf20Sopenharmony_ci		ret = PTR_ERR(pwm->rst);
2828c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
2838c2ecf20Sopenharmony_ci		return ret;
2848c2ecf20Sopenharmony_ci	}
2858c2ecf20Sopenharmony_ci
2868c2ecf20Sopenharmony_ci	reset_control_deassert(pwm->rst);
2878c2ecf20Sopenharmony_ci
2888c2ecf20Sopenharmony_ci	pwm->chip.dev = &pdev->dev;
2898c2ecf20Sopenharmony_ci	pwm->chip.ops = &tegra_pwm_ops;
2908c2ecf20Sopenharmony_ci	pwm->chip.base = -1;
2918c2ecf20Sopenharmony_ci	pwm->chip.npwm = pwm->soc->num_channels;
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci	ret = pwmchip_add(&pwm->chip);
2948c2ecf20Sopenharmony_ci	if (ret < 0) {
2958c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
2968c2ecf20Sopenharmony_ci		reset_control_assert(pwm->rst);
2978c2ecf20Sopenharmony_ci		return ret;
2988c2ecf20Sopenharmony_ci	}
2998c2ecf20Sopenharmony_ci
3008c2ecf20Sopenharmony_ci	return 0;
3018c2ecf20Sopenharmony_ci}
3028c2ecf20Sopenharmony_ci
3038c2ecf20Sopenharmony_cistatic int tegra_pwm_remove(struct platform_device *pdev)
3048c2ecf20Sopenharmony_ci{
3058c2ecf20Sopenharmony_ci	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
3068c2ecf20Sopenharmony_ci	int err;
3078c2ecf20Sopenharmony_ci
3088c2ecf20Sopenharmony_ci	if (WARN_ON(!pc))
3098c2ecf20Sopenharmony_ci		return -ENODEV;
3108c2ecf20Sopenharmony_ci
3118c2ecf20Sopenharmony_ci	err = clk_prepare_enable(pc->clk);
3128c2ecf20Sopenharmony_ci	if (err < 0)
3138c2ecf20Sopenharmony_ci		return err;
3148c2ecf20Sopenharmony_ci
3158c2ecf20Sopenharmony_ci	reset_control_assert(pc->rst);
3168c2ecf20Sopenharmony_ci	clk_disable_unprepare(pc->clk);
3178c2ecf20Sopenharmony_ci
3188c2ecf20Sopenharmony_ci	return pwmchip_remove(&pc->chip);
3198c2ecf20Sopenharmony_ci}
3208c2ecf20Sopenharmony_ci
3218c2ecf20Sopenharmony_ci#ifdef CONFIG_PM_SLEEP
3228c2ecf20Sopenharmony_cistatic int tegra_pwm_suspend(struct device *dev)
3238c2ecf20Sopenharmony_ci{
3248c2ecf20Sopenharmony_ci	return pinctrl_pm_select_sleep_state(dev);
3258c2ecf20Sopenharmony_ci}
3268c2ecf20Sopenharmony_ci
3278c2ecf20Sopenharmony_cistatic int tegra_pwm_resume(struct device *dev)
3288c2ecf20Sopenharmony_ci{
3298c2ecf20Sopenharmony_ci	return pinctrl_pm_select_default_state(dev);
3308c2ecf20Sopenharmony_ci}
3318c2ecf20Sopenharmony_ci#endif
3328c2ecf20Sopenharmony_ci
3338c2ecf20Sopenharmony_cistatic const struct tegra_pwm_soc tegra20_pwm_soc = {
3348c2ecf20Sopenharmony_ci	.num_channels = 4,
3358c2ecf20Sopenharmony_ci	.max_frequency = 48000000UL,
3368c2ecf20Sopenharmony_ci};
3378c2ecf20Sopenharmony_ci
3388c2ecf20Sopenharmony_cistatic const struct tegra_pwm_soc tegra186_pwm_soc = {
3398c2ecf20Sopenharmony_ci	.num_channels = 1,
3408c2ecf20Sopenharmony_ci	.max_frequency = 102000000UL,
3418c2ecf20Sopenharmony_ci};
3428c2ecf20Sopenharmony_ci
3438c2ecf20Sopenharmony_cistatic const struct tegra_pwm_soc tegra194_pwm_soc = {
3448c2ecf20Sopenharmony_ci	.num_channels = 1,
3458c2ecf20Sopenharmony_ci	.max_frequency = 408000000UL,
3468c2ecf20Sopenharmony_ci};
3478c2ecf20Sopenharmony_ci
3488c2ecf20Sopenharmony_cistatic const struct of_device_id tegra_pwm_of_match[] = {
3498c2ecf20Sopenharmony_ci	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
3508c2ecf20Sopenharmony_ci	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
3518c2ecf20Sopenharmony_ci	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
3528c2ecf20Sopenharmony_ci	{ }
3538c2ecf20Sopenharmony_ci};
3548c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
3558c2ecf20Sopenharmony_ci
3568c2ecf20Sopenharmony_cistatic const struct dev_pm_ops tegra_pwm_pm_ops = {
3578c2ecf20Sopenharmony_ci	SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
3588c2ecf20Sopenharmony_ci};
3598c2ecf20Sopenharmony_ci
3608c2ecf20Sopenharmony_cistatic struct platform_driver tegra_pwm_driver = {
3618c2ecf20Sopenharmony_ci	.driver = {
3628c2ecf20Sopenharmony_ci		.name = "tegra-pwm",
3638c2ecf20Sopenharmony_ci		.of_match_table = tegra_pwm_of_match,
3648c2ecf20Sopenharmony_ci		.pm = &tegra_pwm_pm_ops,
3658c2ecf20Sopenharmony_ci	},
3668c2ecf20Sopenharmony_ci	.probe = tegra_pwm_probe,
3678c2ecf20Sopenharmony_ci	.remove = tegra_pwm_remove,
3688c2ecf20Sopenharmony_ci};
3698c2ecf20Sopenharmony_ci
3708c2ecf20Sopenharmony_cimodule_platform_driver(tegra_pwm_driver);
3718c2ecf20Sopenharmony_ci
3728c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
3738c2ecf20Sopenharmony_ciMODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
3748c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Tegra PWM controller driver");
3758c2ecf20Sopenharmony_ciMODULE_ALIAS("platform:tegra-pwm");
376