18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Intel Low Power Subsystem PWM controller driver
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2014, Intel Corporation
68c2ecf20Sopenharmony_ci * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
78c2ecf20Sopenharmony_ci * Author: Chew Kean Ho <kean.ho.chew@intel.com>
88c2ecf20Sopenharmony_ci * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
98c2ecf20Sopenharmony_ci * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
108c2ecf20Sopenharmony_ci * Author: Alan Cox <alan@linux.intel.com>
118c2ecf20Sopenharmony_ci */
128c2ecf20Sopenharmony_ci
138c2ecf20Sopenharmony_ci#include <linux/delay.h>
148c2ecf20Sopenharmony_ci#include <linux/io.h>
158c2ecf20Sopenharmony_ci#include <linux/iopoll.h>
168c2ecf20Sopenharmony_ci#include <linux/kernel.h>
178c2ecf20Sopenharmony_ci#include <linux/module.h>
188c2ecf20Sopenharmony_ci#include <linux/pm_runtime.h>
198c2ecf20Sopenharmony_ci#include <linux/time.h>
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci#include "pwm-lpss.h"
228c2ecf20Sopenharmony_ci
238c2ecf20Sopenharmony_ci#define PWM				0x00000000
248c2ecf20Sopenharmony_ci#define PWM_ENABLE			BIT(31)
258c2ecf20Sopenharmony_ci#define PWM_SW_UPDATE			BIT(30)
268c2ecf20Sopenharmony_ci#define PWM_BASE_UNIT_SHIFT		8
278c2ecf20Sopenharmony_ci#define PWM_ON_TIME_DIV_MASK		0x000000ff
288c2ecf20Sopenharmony_ci
298c2ecf20Sopenharmony_ci/* Size of each PWM register space if multiple */
308c2ecf20Sopenharmony_ci#define PWM_SIZE			0x400
318c2ecf20Sopenharmony_ci
328c2ecf20Sopenharmony_cistatic inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
338c2ecf20Sopenharmony_ci{
348c2ecf20Sopenharmony_ci	return container_of(chip, struct pwm_lpss_chip, chip);
358c2ecf20Sopenharmony_ci}
368c2ecf20Sopenharmony_ci
378c2ecf20Sopenharmony_cistatic inline u32 pwm_lpss_read(const struct pwm_device *pwm)
388c2ecf20Sopenharmony_ci{
398c2ecf20Sopenharmony_ci	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
408c2ecf20Sopenharmony_ci
418c2ecf20Sopenharmony_ci	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
428c2ecf20Sopenharmony_ci}
438c2ecf20Sopenharmony_ci
448c2ecf20Sopenharmony_cistatic inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
458c2ecf20Sopenharmony_ci{
468c2ecf20Sopenharmony_ci	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
478c2ecf20Sopenharmony_ci
488c2ecf20Sopenharmony_ci	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
498c2ecf20Sopenharmony_ci}
508c2ecf20Sopenharmony_ci
518c2ecf20Sopenharmony_cistatic int pwm_lpss_wait_for_update(struct pwm_device *pwm)
528c2ecf20Sopenharmony_ci{
538c2ecf20Sopenharmony_ci	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
548c2ecf20Sopenharmony_ci	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
558c2ecf20Sopenharmony_ci	const unsigned int ms = 500 * USEC_PER_MSEC;
568c2ecf20Sopenharmony_ci	u32 val;
578c2ecf20Sopenharmony_ci	int err;
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_ci	/*
608c2ecf20Sopenharmony_ci	 * PWM Configuration register has SW_UPDATE bit that is set when a new
618c2ecf20Sopenharmony_ci	 * configuration is written to the register. The bit is automatically
628c2ecf20Sopenharmony_ci	 * cleared at the start of the next output cycle by the IP block.
638c2ecf20Sopenharmony_ci	 *
648c2ecf20Sopenharmony_ci	 * If one writes a new configuration to the register while it still has
658c2ecf20Sopenharmony_ci	 * the bit enabled, PWM may freeze. That is, while one can still write
668c2ecf20Sopenharmony_ci	 * to the register, it won't have an effect. Thus, we try to sleep long
678c2ecf20Sopenharmony_ci	 * enough that the bit gets cleared and make sure the bit is not
688c2ecf20Sopenharmony_ci	 * enabled while we update the configuration.
698c2ecf20Sopenharmony_ci	 */
708c2ecf20Sopenharmony_ci	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
718c2ecf20Sopenharmony_ci	if (err)
728c2ecf20Sopenharmony_ci		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
738c2ecf20Sopenharmony_ci
748c2ecf20Sopenharmony_ci	return err;
758c2ecf20Sopenharmony_ci}
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_cistatic inline int pwm_lpss_is_updating(struct pwm_device *pwm)
788c2ecf20Sopenharmony_ci{
798c2ecf20Sopenharmony_ci	return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
808c2ecf20Sopenharmony_ci}
818c2ecf20Sopenharmony_ci
828c2ecf20Sopenharmony_cistatic void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
838c2ecf20Sopenharmony_ci			     int duty_ns, int period_ns)
848c2ecf20Sopenharmony_ci{
858c2ecf20Sopenharmony_ci	unsigned long long on_time_div;
868c2ecf20Sopenharmony_ci	unsigned long c = lpwm->info->clk_rate, base_unit_range;
878c2ecf20Sopenharmony_ci	unsigned long long base_unit, freq = NSEC_PER_SEC;
888c2ecf20Sopenharmony_ci	u32 ctrl;
898c2ecf20Sopenharmony_ci
908c2ecf20Sopenharmony_ci	do_div(freq, period_ns);
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_ci	/*
938c2ecf20Sopenharmony_ci	 * The equation is:
948c2ecf20Sopenharmony_ci	 * base_unit = round(base_unit_range * freq / c)
958c2ecf20Sopenharmony_ci	 */
968c2ecf20Sopenharmony_ci	base_unit_range = BIT(lpwm->info->base_unit_bits);
978c2ecf20Sopenharmony_ci	freq *= base_unit_range;
988c2ecf20Sopenharmony_ci
998c2ecf20Sopenharmony_ci	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
1008c2ecf20Sopenharmony_ci	/* base_unit must not be 0 and we also want to avoid overflowing it */
1018c2ecf20Sopenharmony_ci	base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
1028c2ecf20Sopenharmony_ci
1038c2ecf20Sopenharmony_ci	on_time_div = 255ULL * duty_ns;
1048c2ecf20Sopenharmony_ci	do_div(on_time_div, period_ns);
1058c2ecf20Sopenharmony_ci	on_time_div = 255ULL - on_time_div;
1068c2ecf20Sopenharmony_ci
1078c2ecf20Sopenharmony_ci	ctrl = pwm_lpss_read(pwm);
1088c2ecf20Sopenharmony_ci	ctrl &= ~PWM_ON_TIME_DIV_MASK;
1098c2ecf20Sopenharmony_ci	ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
1108c2ecf20Sopenharmony_ci	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
1118c2ecf20Sopenharmony_ci	ctrl |= on_time_div;
1128c2ecf20Sopenharmony_ci
1138c2ecf20Sopenharmony_ci	pwm_lpss_write(pwm, ctrl);
1148c2ecf20Sopenharmony_ci	pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
1158c2ecf20Sopenharmony_ci}
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_cistatic inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
1188c2ecf20Sopenharmony_ci{
1198c2ecf20Sopenharmony_ci	if (cond)
1208c2ecf20Sopenharmony_ci		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
1218c2ecf20Sopenharmony_ci}
1228c2ecf20Sopenharmony_ci
1238c2ecf20Sopenharmony_cistatic int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
1248c2ecf20Sopenharmony_ci				   struct pwm_device *pwm,
1258c2ecf20Sopenharmony_ci				   const struct pwm_state *state)
1268c2ecf20Sopenharmony_ci{
1278c2ecf20Sopenharmony_ci	int ret;
1288c2ecf20Sopenharmony_ci
1298c2ecf20Sopenharmony_ci	ret = pwm_lpss_is_updating(pwm);
1308c2ecf20Sopenharmony_ci	if (ret)
1318c2ecf20Sopenharmony_ci		return ret;
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci	pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
1348c2ecf20Sopenharmony_ci	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
1358c2ecf20Sopenharmony_ci	ret = pwm_lpss_wait_for_update(pwm);
1368c2ecf20Sopenharmony_ci	if (ret)
1378c2ecf20Sopenharmony_ci		return ret;
1388c2ecf20Sopenharmony_ci
1398c2ecf20Sopenharmony_ci	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
1408c2ecf20Sopenharmony_ci	return 0;
1418c2ecf20Sopenharmony_ci}
1428c2ecf20Sopenharmony_ci
1438c2ecf20Sopenharmony_cistatic int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1448c2ecf20Sopenharmony_ci			  const struct pwm_state *state)
1458c2ecf20Sopenharmony_ci{
1468c2ecf20Sopenharmony_ci	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
1478c2ecf20Sopenharmony_ci	int ret = 0;
1488c2ecf20Sopenharmony_ci
1498c2ecf20Sopenharmony_ci	if (state->enabled) {
1508c2ecf20Sopenharmony_ci		if (!pwm_is_enabled(pwm)) {
1518c2ecf20Sopenharmony_ci			pm_runtime_get_sync(chip->dev);
1528c2ecf20Sopenharmony_ci			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
1538c2ecf20Sopenharmony_ci			if (ret)
1548c2ecf20Sopenharmony_ci				pm_runtime_put(chip->dev);
1558c2ecf20Sopenharmony_ci		} else {
1568c2ecf20Sopenharmony_ci			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
1578c2ecf20Sopenharmony_ci		}
1588c2ecf20Sopenharmony_ci	} else if (pwm_is_enabled(pwm)) {
1598c2ecf20Sopenharmony_ci		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
1608c2ecf20Sopenharmony_ci		pm_runtime_put(chip->dev);
1618c2ecf20Sopenharmony_ci	}
1628c2ecf20Sopenharmony_ci
1638c2ecf20Sopenharmony_ci	return ret;
1648c2ecf20Sopenharmony_ci}
1658c2ecf20Sopenharmony_ci
1668c2ecf20Sopenharmony_cistatic void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1678c2ecf20Sopenharmony_ci			       struct pwm_state *state)
1688c2ecf20Sopenharmony_ci{
1698c2ecf20Sopenharmony_ci	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
1708c2ecf20Sopenharmony_ci	unsigned long base_unit_range;
1718c2ecf20Sopenharmony_ci	unsigned long long base_unit, freq, on_time_div;
1728c2ecf20Sopenharmony_ci	u32 ctrl;
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_ci	pm_runtime_get_sync(chip->dev);
1758c2ecf20Sopenharmony_ci
1768c2ecf20Sopenharmony_ci	base_unit_range = BIT(lpwm->info->base_unit_bits);
1778c2ecf20Sopenharmony_ci
1788c2ecf20Sopenharmony_ci	ctrl = pwm_lpss_read(pwm);
1798c2ecf20Sopenharmony_ci	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
1808c2ecf20Sopenharmony_ci	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
1818c2ecf20Sopenharmony_ci
1828c2ecf20Sopenharmony_ci	freq = base_unit * lpwm->info->clk_rate;
1838c2ecf20Sopenharmony_ci	do_div(freq, base_unit_range);
1848c2ecf20Sopenharmony_ci	if (freq == 0)
1858c2ecf20Sopenharmony_ci		state->period = NSEC_PER_SEC;
1868c2ecf20Sopenharmony_ci	else
1878c2ecf20Sopenharmony_ci		state->period = NSEC_PER_SEC / (unsigned long)freq;
1888c2ecf20Sopenharmony_ci
1898c2ecf20Sopenharmony_ci	on_time_div *= state->period;
1908c2ecf20Sopenharmony_ci	do_div(on_time_div, 255);
1918c2ecf20Sopenharmony_ci	state->duty_cycle = on_time_div;
1928c2ecf20Sopenharmony_ci
1938c2ecf20Sopenharmony_ci	state->polarity = PWM_POLARITY_NORMAL;
1948c2ecf20Sopenharmony_ci	state->enabled = !!(ctrl & PWM_ENABLE);
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci	pm_runtime_put(chip->dev);
1978c2ecf20Sopenharmony_ci}
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_cistatic const struct pwm_ops pwm_lpss_ops = {
2008c2ecf20Sopenharmony_ci	.apply = pwm_lpss_apply,
2018c2ecf20Sopenharmony_ci	.get_state = pwm_lpss_get_state,
2028c2ecf20Sopenharmony_ci	.owner = THIS_MODULE,
2038c2ecf20Sopenharmony_ci};
2048c2ecf20Sopenharmony_ci
2058c2ecf20Sopenharmony_cistruct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
2068c2ecf20Sopenharmony_ci				     const struct pwm_lpss_boardinfo *info)
2078c2ecf20Sopenharmony_ci{
2088c2ecf20Sopenharmony_ci	struct pwm_lpss_chip *lpwm;
2098c2ecf20Sopenharmony_ci	unsigned long c;
2108c2ecf20Sopenharmony_ci	int i, ret;
2118c2ecf20Sopenharmony_ci	u32 ctrl;
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_ci	if (WARN_ON(info->npwm > MAX_PWMS))
2148c2ecf20Sopenharmony_ci		return ERR_PTR(-ENODEV);
2158c2ecf20Sopenharmony_ci
2168c2ecf20Sopenharmony_ci	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
2178c2ecf20Sopenharmony_ci	if (!lpwm)
2188c2ecf20Sopenharmony_ci		return ERR_PTR(-ENOMEM);
2198c2ecf20Sopenharmony_ci
2208c2ecf20Sopenharmony_ci	lpwm->regs = devm_ioremap_resource(dev, r);
2218c2ecf20Sopenharmony_ci	if (IS_ERR(lpwm->regs))
2228c2ecf20Sopenharmony_ci		return ERR_CAST(lpwm->regs);
2238c2ecf20Sopenharmony_ci
2248c2ecf20Sopenharmony_ci	lpwm->info = info;
2258c2ecf20Sopenharmony_ci
2268c2ecf20Sopenharmony_ci	c = lpwm->info->clk_rate;
2278c2ecf20Sopenharmony_ci	if (!c)
2288c2ecf20Sopenharmony_ci		return ERR_PTR(-EINVAL);
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_ci	lpwm->chip.dev = dev;
2318c2ecf20Sopenharmony_ci	lpwm->chip.ops = &pwm_lpss_ops;
2328c2ecf20Sopenharmony_ci	lpwm->chip.base = -1;
2338c2ecf20Sopenharmony_ci	lpwm->chip.npwm = info->npwm;
2348c2ecf20Sopenharmony_ci
2358c2ecf20Sopenharmony_ci	ret = pwmchip_add(&lpwm->chip);
2368c2ecf20Sopenharmony_ci	if (ret) {
2378c2ecf20Sopenharmony_ci		dev_err(dev, "failed to add PWM chip: %d\n", ret);
2388c2ecf20Sopenharmony_ci		return ERR_PTR(ret);
2398c2ecf20Sopenharmony_ci	}
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_ci	for (i = 0; i < lpwm->info->npwm; i++) {
2428c2ecf20Sopenharmony_ci		ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
2438c2ecf20Sopenharmony_ci		if (ctrl & PWM_ENABLE)
2448c2ecf20Sopenharmony_ci			pm_runtime_get(dev);
2458c2ecf20Sopenharmony_ci	}
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci	return lpwm;
2488c2ecf20Sopenharmony_ci}
2498c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(pwm_lpss_probe);
2508c2ecf20Sopenharmony_ci
2518c2ecf20Sopenharmony_ciint pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
2528c2ecf20Sopenharmony_ci{
2538c2ecf20Sopenharmony_ci	int i;
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_ci	for (i = 0; i < lpwm->info->npwm; i++) {
2568c2ecf20Sopenharmony_ci		if (pwm_is_enabled(&lpwm->chip.pwms[i]))
2578c2ecf20Sopenharmony_ci			pm_runtime_put(lpwm->chip.dev);
2588c2ecf20Sopenharmony_ci	}
2598c2ecf20Sopenharmony_ci	return pwmchip_remove(&lpwm->chip);
2608c2ecf20Sopenharmony_ci}
2618c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(pwm_lpss_remove);
2628c2ecf20Sopenharmony_ci
2638c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("PWM driver for Intel LPSS");
2648c2ecf20Sopenharmony_ciMODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
2658c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
266