xref: /kernel/linux/linux-5.10/drivers/pwm/core.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9#include <linux/acpi.h>
10#include <linux/module.h>
11#include <linux/pwm.h>
12#include <linux/radix-tree.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/debugfs.h>
19#include <linux/seq_file.h>
20
21#include <dt-bindings/pwm/pwm.h>
22
23#define CREATE_TRACE_POINTS
24#include <trace/events/pwm.h>
25
26#define MAX_PWMS 1024
27
28static DEFINE_MUTEX(pwm_lookup_lock);
29static LIST_HEAD(pwm_lookup_list);
30static DEFINE_MUTEX(pwm_lock);
31static LIST_HEAD(pwm_chips);
32static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33static RADIX_TREE(pwm_tree, GFP_KERNEL);
34
35static struct pwm_device *pwm_to_device(unsigned int pwm)
36{
37	return radix_tree_lookup(&pwm_tree, pwm);
38}
39
40static int alloc_pwms(int pwm, unsigned int count)
41{
42	unsigned int from = 0;
43	unsigned int start;
44
45	if (pwm >= MAX_PWMS)
46		return -EINVAL;
47
48	if (pwm >= 0)
49		from = pwm;
50
51	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
52					   count, 0);
53
54	if (pwm >= 0 && start != pwm)
55		return -EEXIST;
56
57	if (start + count > MAX_PWMS)
58		return -ENOSPC;
59
60	return start;
61}
62
63static void free_pwms(struct pwm_chip *chip)
64{
65	unsigned int i;
66
67	for (i = 0; i < chip->npwm; i++) {
68		struct pwm_device *pwm = &chip->pwms[i];
69
70		radix_tree_delete(&pwm_tree, pwm->pwm);
71	}
72
73	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
74
75	kfree(chip->pwms);
76	chip->pwms = NULL;
77}
78
79static struct pwm_chip *pwmchip_find_by_name(const char *name)
80{
81	struct pwm_chip *chip;
82
83	if (!name)
84		return NULL;
85
86	mutex_lock(&pwm_lock);
87
88	list_for_each_entry(chip, &pwm_chips, list) {
89		const char *chip_name = dev_name(chip->dev);
90
91		if (chip_name && strcmp(chip_name, name) == 0) {
92			mutex_unlock(&pwm_lock);
93			return chip;
94		}
95	}
96
97	mutex_unlock(&pwm_lock);
98
99	return NULL;
100}
101
102static int pwm_device_request(struct pwm_device *pwm, const char *label)
103{
104	int err;
105
106	if (test_bit(PWMF_REQUESTED, &pwm->flags))
107		return -EBUSY;
108
109	if (!try_module_get(pwm->chip->ops->owner))
110		return -ENODEV;
111
112	if (pwm->chip->ops->request) {
113		err = pwm->chip->ops->request(pwm->chip, pwm);
114		if (err) {
115			module_put(pwm->chip->ops->owner);
116			return err;
117		}
118	}
119
120	if (pwm->chip->ops->get_state) {
121		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
122		trace_pwm_get(pwm, &pwm->state);
123
124		if (IS_ENABLED(CONFIG_PWM_DEBUG))
125			pwm->last = pwm->state;
126	}
127
128	set_bit(PWMF_REQUESTED, &pwm->flags);
129	pwm->label = label;
130
131	return 0;
132}
133
134struct pwm_device *
135of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
136{
137	struct pwm_device *pwm;
138
139	/* check, whether the driver supports a third cell for flags */
140	if (pc->of_pwm_n_cells < 3)
141		return ERR_PTR(-EINVAL);
142
143	/* flags in the third cell are optional */
144	if (args->args_count < 2)
145		return ERR_PTR(-EINVAL);
146
147	if (args->args[0] >= pc->npwm)
148		return ERR_PTR(-EINVAL);
149
150	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
151	if (IS_ERR(pwm))
152		return pwm;
153
154	pwm->args.period = args->args[1];
155	pwm->args.polarity = PWM_POLARITY_NORMAL;
156
157	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
158		pwm->args.polarity = PWM_POLARITY_INVERSED;
159
160	return pwm;
161}
162EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
163
164static struct pwm_device *
165of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
166{
167	struct pwm_device *pwm;
168
169	/* sanity check driver support */
170	if (pc->of_pwm_n_cells < 2)
171		return ERR_PTR(-EINVAL);
172
173	/* all cells are required */
174	if (args->args_count != pc->of_pwm_n_cells)
175		return ERR_PTR(-EINVAL);
176
177	if (args->args[0] >= pc->npwm)
178		return ERR_PTR(-EINVAL);
179
180	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
181	if (IS_ERR(pwm))
182		return pwm;
183
184	pwm->args.period = args->args[1];
185
186	return pwm;
187}
188
189static void of_pwmchip_add(struct pwm_chip *chip)
190{
191	if (!chip->dev || !chip->dev->of_node)
192		return;
193
194	if (!chip->of_xlate) {
195		chip->of_xlate = of_pwm_simple_xlate;
196		chip->of_pwm_n_cells = 2;
197	}
198
199	of_node_get(chip->dev->of_node);
200}
201
202static void of_pwmchip_remove(struct pwm_chip *chip)
203{
204	if (chip->dev)
205		of_node_put(chip->dev->of_node);
206}
207
208/**
209 * pwm_set_chip_data() - set private chip data for a PWM
210 * @pwm: PWM device
211 * @data: pointer to chip-specific data
212 *
213 * Returns: 0 on success or a negative error code on failure.
214 */
215int pwm_set_chip_data(struct pwm_device *pwm, void *data)
216{
217	if (!pwm)
218		return -EINVAL;
219
220	pwm->chip_data = data;
221
222	return 0;
223}
224EXPORT_SYMBOL_GPL(pwm_set_chip_data);
225
226/**
227 * pwm_get_chip_data() - get private chip data for a PWM
228 * @pwm: PWM device
229 *
230 * Returns: A pointer to the chip-private data for the PWM device.
231 */
232void *pwm_get_chip_data(struct pwm_device *pwm)
233{
234	return pwm ? pwm->chip_data : NULL;
235}
236EXPORT_SYMBOL_GPL(pwm_get_chip_data);
237
238static bool pwm_ops_check(const struct pwm_chip *chip)
239{
240
241	const struct pwm_ops *ops = chip->ops;
242
243	/* driver supports legacy, non-atomic operation */
244	if (ops->config && ops->enable && ops->disable) {
245		if (IS_ENABLED(CONFIG_PWM_DEBUG))
246			dev_warn(chip->dev,
247				 "Driver needs updating to atomic API\n");
248
249		return true;
250	}
251
252	if (!ops->apply)
253		return false;
254
255	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
256		dev_warn(chip->dev,
257			 "Please implement the .get_state() callback\n");
258
259	return true;
260}
261
262/**
263 * pwmchip_add_with_polarity() - register a new PWM chip
264 * @chip: the PWM chip to add
265 * @polarity: initial polarity of PWM channels
266 *
267 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
268 * will be used. The initial polarity for all channels is specified by the
269 * @polarity parameter.
270 *
271 * Returns: 0 on success or a negative error code on failure.
272 */
273int pwmchip_add_with_polarity(struct pwm_chip *chip,
274			      enum pwm_polarity polarity)
275{
276	struct pwm_device *pwm;
277	unsigned int i;
278	int ret;
279
280	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
281		return -EINVAL;
282
283	if (!pwm_ops_check(chip))
284		return -EINVAL;
285
286	mutex_lock(&pwm_lock);
287
288	ret = alloc_pwms(chip->base, chip->npwm);
289	if (ret < 0)
290		goto out;
291
292	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
293	if (!chip->pwms) {
294		ret = -ENOMEM;
295		goto out;
296	}
297
298	chip->base = ret;
299
300	for (i = 0; i < chip->npwm; i++) {
301		pwm = &chip->pwms[i];
302
303		pwm->chip = chip;
304		pwm->pwm = chip->base + i;
305		pwm->hwpwm = i;
306		pwm->state.polarity = polarity;
307
308		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
309	}
310
311	bitmap_set(allocated_pwms, chip->base, chip->npwm);
312
313	INIT_LIST_HEAD(&chip->list);
314	list_add(&chip->list, &pwm_chips);
315
316	ret = 0;
317
318	if (IS_ENABLED(CONFIG_OF))
319		of_pwmchip_add(chip);
320
321out:
322	mutex_unlock(&pwm_lock);
323
324	if (!ret)
325		pwmchip_sysfs_export(chip);
326
327	return ret;
328}
329EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
330
331/**
332 * pwmchip_add() - register a new PWM chip
333 * @chip: the PWM chip to add
334 *
335 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
336 * will be used. The initial polarity for all channels is normal.
337 *
338 * Returns: 0 on success or a negative error code on failure.
339 */
340int pwmchip_add(struct pwm_chip *chip)
341{
342	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
343}
344EXPORT_SYMBOL_GPL(pwmchip_add);
345
346/**
347 * pwmchip_remove() - remove a PWM chip
348 * @chip: the PWM chip to remove
349 *
350 * Removes a PWM chip. This function may return busy if the PWM chip provides
351 * a PWM device that is still requested.
352 *
353 * Returns: 0 on success or a negative error code on failure.
354 */
355int pwmchip_remove(struct pwm_chip *chip)
356{
357	unsigned int i;
358	int ret = 0;
359
360	pwmchip_sysfs_unexport(chip);
361
362	mutex_lock(&pwm_lock);
363
364	for (i = 0; i < chip->npwm; i++) {
365		struct pwm_device *pwm = &chip->pwms[i];
366
367		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
368			ret = -EBUSY;
369			goto out;
370		}
371	}
372
373	list_del_init(&chip->list);
374
375	if (IS_ENABLED(CONFIG_OF))
376		of_pwmchip_remove(chip);
377
378	free_pwms(chip);
379
380out:
381	mutex_unlock(&pwm_lock);
382	return ret;
383}
384EXPORT_SYMBOL_GPL(pwmchip_remove);
385
386/**
387 * pwm_request() - request a PWM device
388 * @pwm: global PWM device index
389 * @label: PWM device label
390 *
391 * This function is deprecated, use pwm_get() instead.
392 *
393 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
394 * failure.
395 */
396struct pwm_device *pwm_request(int pwm, const char *label)
397{
398	struct pwm_device *dev;
399	int err;
400
401	if (pwm < 0 || pwm >= MAX_PWMS)
402		return ERR_PTR(-EINVAL);
403
404	mutex_lock(&pwm_lock);
405
406	dev = pwm_to_device(pwm);
407	if (!dev) {
408		dev = ERR_PTR(-EPROBE_DEFER);
409		goto out;
410	}
411
412	err = pwm_device_request(dev, label);
413	if (err < 0)
414		dev = ERR_PTR(err);
415
416out:
417	mutex_unlock(&pwm_lock);
418
419	return dev;
420}
421EXPORT_SYMBOL_GPL(pwm_request);
422
423/**
424 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
425 * @chip: PWM chip
426 * @index: per-chip index of the PWM to request
427 * @label: a literal description string of this PWM
428 *
429 * Returns: A pointer to the PWM device at the given index of the given PWM
430 * chip. A negative error code is returned if the index is not valid for the
431 * specified PWM chip or if the PWM device cannot be requested.
432 */
433struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
434					 unsigned int index,
435					 const char *label)
436{
437	struct pwm_device *pwm;
438	int err;
439
440	if (!chip || index >= chip->npwm)
441		return ERR_PTR(-EINVAL);
442
443	mutex_lock(&pwm_lock);
444	pwm = &chip->pwms[index];
445
446	err = pwm_device_request(pwm, label);
447	if (err < 0)
448		pwm = ERR_PTR(err);
449
450	mutex_unlock(&pwm_lock);
451	return pwm;
452}
453EXPORT_SYMBOL_GPL(pwm_request_from_chip);
454
455/**
456 * pwm_free() - free a PWM device
457 * @pwm: PWM device
458 *
459 * This function is deprecated, use pwm_put() instead.
460 */
461void pwm_free(struct pwm_device *pwm)
462{
463	pwm_put(pwm);
464}
465EXPORT_SYMBOL_GPL(pwm_free);
466
467static void pwm_apply_state_debug(struct pwm_device *pwm,
468				  const struct pwm_state *state)
469{
470	struct pwm_state *last = &pwm->last;
471	struct pwm_chip *chip = pwm->chip;
472	struct pwm_state s1, s2;
473	int err;
474
475	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
476		return;
477
478	/* No reasonable diagnosis possible without .get_state() */
479	if (!chip->ops->get_state)
480		return;
481
482	/*
483	 * *state was just applied. Read out the hardware state and do some
484	 * checks.
485	 */
486
487	chip->ops->get_state(chip, pwm, &s1);
488	trace_pwm_get(pwm, &s1);
489
490	/*
491	 * The lowlevel driver either ignored .polarity (which is a bug) or as
492	 * best effort inverted .polarity and fixed .duty_cycle respectively.
493	 * Undo this inversion and fixup for further tests.
494	 */
495	if (s1.enabled && s1.polarity != state->polarity) {
496		s2.polarity = state->polarity;
497		s2.duty_cycle = s1.period - s1.duty_cycle;
498		s2.period = s1.period;
499		s2.enabled = s1.enabled;
500	} else {
501		s2 = s1;
502	}
503
504	if (s2.polarity != state->polarity &&
505	    state->duty_cycle < state->period)
506		dev_warn(chip->dev, ".apply ignored .polarity\n");
507
508	if (state->enabled &&
509	    last->polarity == state->polarity &&
510	    last->period > s2.period &&
511	    last->period <= state->period)
512		dev_warn(chip->dev,
513			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
514			 state->period, s2.period, last->period);
515
516	if (state->enabled && state->period < s2.period)
517		dev_warn(chip->dev,
518			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
519			 state->period, s2.period);
520
521	if (state->enabled &&
522	    last->polarity == state->polarity &&
523	    last->period == s2.period &&
524	    last->duty_cycle > s2.duty_cycle &&
525	    last->duty_cycle <= state->duty_cycle)
526		dev_warn(chip->dev,
527			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
528			 state->duty_cycle, state->period,
529			 s2.duty_cycle, s2.period,
530			 last->duty_cycle, last->period);
531
532	if (state->enabled && state->duty_cycle < s2.duty_cycle)
533		dev_warn(chip->dev,
534			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
535			 state->duty_cycle, state->period,
536			 s2.duty_cycle, s2.period);
537
538	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
539		dev_warn(chip->dev,
540			 "requested disabled, but yielded enabled with duty > 0\n");
541
542	/* reapply the state that the driver reported being configured. */
543	err = chip->ops->apply(chip, pwm, &s1);
544	if (err) {
545		*last = s1;
546		dev_err(chip->dev, "failed to reapply current setting\n");
547		return;
548	}
549
550	trace_pwm_apply(pwm, &s1);
551
552	chip->ops->get_state(chip, pwm, last);
553	trace_pwm_get(pwm, last);
554
555	/* reapplication of the current state should give an exact match */
556	if (s1.enabled != last->enabled ||
557	    s1.polarity != last->polarity ||
558	    (s1.enabled && s1.period != last->period) ||
559	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
560		dev_err(chip->dev,
561			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
562			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
563			last->enabled, last->polarity, last->duty_cycle,
564			last->period);
565	}
566}
567
568/**
569 * pwm_apply_state() - atomically apply a new state to a PWM device
570 * @pwm: PWM device
571 * @state: new state to apply
572 */
573int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
574{
575	struct pwm_chip *chip;
576	int err;
577
578	if (!pwm || !state || !state->period ||
579	    state->duty_cycle > state->period)
580		return -EINVAL;
581
582	chip = pwm->chip;
583
584	if (state->period == pwm->state.period &&
585	    state->duty_cycle == pwm->state.duty_cycle &&
586	    state->polarity == pwm->state.polarity &&
587	    state->enabled == pwm->state.enabled)
588		return 0;
589
590	if (chip->ops->apply) {
591		err = chip->ops->apply(chip, pwm, state);
592		if (err)
593			return err;
594
595		trace_pwm_apply(pwm, state);
596
597		pwm->state = *state;
598
599		/*
600		 * only do this after pwm->state was applied as some
601		 * implementations of .get_state depend on this
602		 */
603		pwm_apply_state_debug(pwm, state);
604	} else {
605		/*
606		 * FIXME: restore the initial state in case of error.
607		 */
608		if (state->polarity != pwm->state.polarity) {
609			if (!chip->ops->set_polarity)
610				return -ENOTSUPP;
611
612			/*
613			 * Changing the polarity of a running PWM is
614			 * only allowed when the PWM driver implements
615			 * ->apply().
616			 */
617			if (pwm->state.enabled) {
618				chip->ops->disable(chip, pwm);
619				pwm->state.enabled = false;
620			}
621
622			err = chip->ops->set_polarity(chip, pwm,
623						      state->polarity);
624			if (err)
625				return err;
626
627			pwm->state.polarity = state->polarity;
628		}
629
630		if (state->period != pwm->state.period ||
631		    state->duty_cycle != pwm->state.duty_cycle) {
632			err = chip->ops->config(pwm->chip, pwm,
633						state->duty_cycle,
634						state->period);
635			if (err)
636				return err;
637
638			pwm->state.duty_cycle = state->duty_cycle;
639			pwm->state.period = state->period;
640		}
641
642		if (state->enabled != pwm->state.enabled) {
643			if (state->enabled) {
644				err = chip->ops->enable(chip, pwm);
645				if (err)
646					return err;
647			} else {
648				chip->ops->disable(chip, pwm);
649			}
650
651			pwm->state.enabled = state->enabled;
652		}
653	}
654
655	return 0;
656}
657EXPORT_SYMBOL_GPL(pwm_apply_state);
658
659/**
660 * pwm_capture() - capture and report a PWM signal
661 * @pwm: PWM device
662 * @result: structure to fill with capture result
663 * @timeout: time to wait, in milliseconds, before giving up on capture
664 *
665 * Returns: 0 on success or a negative error code on failure.
666 */
667int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
668		unsigned long timeout)
669{
670	int err;
671
672	if (!pwm || !pwm->chip->ops)
673		return -EINVAL;
674
675	if (!pwm->chip->ops->capture)
676		return -ENOSYS;
677
678	mutex_lock(&pwm_lock);
679	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
680	mutex_unlock(&pwm_lock);
681
682	return err;
683}
684EXPORT_SYMBOL_GPL(pwm_capture);
685
686/**
687 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
688 * @pwm: PWM device
689 *
690 * This function will adjust the PWM config to the PWM arguments provided
691 * by the DT or PWM lookup table. This is particularly useful to adapt
692 * the bootloader config to the Linux one.
693 */
694int pwm_adjust_config(struct pwm_device *pwm)
695{
696	struct pwm_state state;
697	struct pwm_args pargs;
698
699	pwm_get_args(pwm, &pargs);
700	pwm_get_state(pwm, &state);
701
702	/*
703	 * If the current period is zero it means that either the PWM driver
704	 * does not support initial state retrieval or the PWM has not yet
705	 * been configured.
706	 *
707	 * In either case, we setup the new period and polarity, and assign a
708	 * duty cycle of 0.
709	 */
710	if (!state.period) {
711		state.duty_cycle = 0;
712		state.period = pargs.period;
713		state.polarity = pargs.polarity;
714
715		return pwm_apply_state(pwm, &state);
716	}
717
718	/*
719	 * Adjust the PWM duty cycle/period based on the period value provided
720	 * in PWM args.
721	 */
722	if (pargs.period != state.period) {
723		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
724
725		do_div(dutycycle, state.period);
726		state.duty_cycle = dutycycle;
727		state.period = pargs.period;
728	}
729
730	/*
731	 * If the polarity changed, we should also change the duty cycle.
732	 */
733	if (pargs.polarity != state.polarity) {
734		state.polarity = pargs.polarity;
735		state.duty_cycle = state.period - state.duty_cycle;
736	}
737
738	return pwm_apply_state(pwm, &state);
739}
740EXPORT_SYMBOL_GPL(pwm_adjust_config);
741
742static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
743{
744	struct pwm_chip *chip;
745
746	mutex_lock(&pwm_lock);
747
748	list_for_each_entry(chip, &pwm_chips, list)
749		if (chip->dev && chip->dev->of_node == np) {
750			mutex_unlock(&pwm_lock);
751			return chip;
752		}
753
754	mutex_unlock(&pwm_lock);
755
756	return ERR_PTR(-EPROBE_DEFER);
757}
758
759static struct device_link *pwm_device_link_add(struct device *dev,
760					       struct pwm_device *pwm)
761{
762	struct device_link *dl;
763
764	if (!dev) {
765		/*
766		 * No device for the PWM consumer has been provided. It may
767		 * impact the PM sequence ordering: the PWM supplier may get
768		 * suspended before the consumer.
769		 */
770		dev_warn(pwm->chip->dev,
771			 "No consumer device specified to create a link to\n");
772		return NULL;
773	}
774
775	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
776	if (!dl) {
777		dev_err(dev, "failed to create device link to %s\n",
778			dev_name(pwm->chip->dev));
779		return ERR_PTR(-EINVAL);
780	}
781
782	return dl;
783}
784
785/**
786 * of_pwm_get() - request a PWM via the PWM framework
787 * @dev: device for PWM consumer
788 * @np: device node to get the PWM from
789 * @con_id: consumer name
790 *
791 * Returns the PWM device parsed from the phandle and index specified in the
792 * "pwms" property of a device tree node or a negative error-code on failure.
793 * Values parsed from the device tree are stored in the returned PWM device
794 * object.
795 *
796 * If con_id is NULL, the first PWM device listed in the "pwms" property will
797 * be requested. Otherwise the "pwm-names" property is used to do a reverse
798 * lookup of the PWM index. This also means that the "pwm-names" property
799 * becomes mandatory for devices that look up the PWM device via the con_id
800 * parameter.
801 *
802 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
803 * error code on failure.
804 */
805struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
806			      const char *con_id)
807{
808	struct pwm_device *pwm = NULL;
809	struct of_phandle_args args;
810	struct device_link *dl;
811	struct pwm_chip *pc;
812	int index = 0;
813	int err;
814
815	if (con_id) {
816		index = of_property_match_string(np, "pwm-names", con_id);
817		if (index < 0)
818			return ERR_PTR(index);
819	}
820
821	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
822					 &args);
823	if (err) {
824		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
825		return ERR_PTR(err);
826	}
827
828	pc = of_node_to_pwmchip(args.np);
829	if (IS_ERR(pc)) {
830		if (PTR_ERR(pc) != -EPROBE_DEFER)
831			pr_err("%s(): PWM chip not found\n", __func__);
832
833		pwm = ERR_CAST(pc);
834		goto put;
835	}
836
837	pwm = pc->of_xlate(pc, &args);
838	if (IS_ERR(pwm))
839		goto put;
840
841	dl = pwm_device_link_add(dev, pwm);
842	if (IS_ERR(dl)) {
843		/* of_xlate ended up calling pwm_request_from_chip() */
844		pwm_free(pwm);
845		pwm = ERR_CAST(dl);
846		goto put;
847	}
848
849	/*
850	 * If a consumer name was not given, try to look it up from the
851	 * "pwm-names" property if it exists. Otherwise use the name of
852	 * the user device node.
853	 */
854	if (!con_id) {
855		err = of_property_read_string_index(np, "pwm-names", index,
856						    &con_id);
857		if (err < 0)
858			con_id = np->name;
859	}
860
861	pwm->label = con_id;
862
863put:
864	of_node_put(args.np);
865
866	return pwm;
867}
868EXPORT_SYMBOL_GPL(of_pwm_get);
869
870#if IS_ENABLED(CONFIG_ACPI)
871static struct pwm_chip *device_to_pwmchip(struct device *dev)
872{
873	struct pwm_chip *chip;
874
875	mutex_lock(&pwm_lock);
876
877	list_for_each_entry(chip, &pwm_chips, list) {
878		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
879
880		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
881			mutex_unlock(&pwm_lock);
882			return chip;
883		}
884	}
885
886	mutex_unlock(&pwm_lock);
887
888	return ERR_PTR(-EPROBE_DEFER);
889}
890#endif
891
892/**
893 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
894 * @fwnode: firmware node to get the "pwm" property from
895 *
896 * Returns the PWM device parsed from the fwnode and index specified in the
897 * "pwms" property or a negative error-code on failure.
898 * Values parsed from the device tree are stored in the returned PWM device
899 * object.
900 *
901 * This is analogous to of_pwm_get() except con_id is not yet supported.
902 * ACPI entries must look like
903 * Package () {"pwms", Package ()
904 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
905 *
906 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
907 * error code on failure.
908 */
909static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
910{
911	struct pwm_device *pwm = ERR_PTR(-ENODEV);
912#if IS_ENABLED(CONFIG_ACPI)
913	struct fwnode_reference_args args;
914	struct acpi_device *acpi;
915	struct pwm_chip *chip;
916	int ret;
917
918	memset(&args, 0, sizeof(args));
919
920	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
921	if (ret < 0)
922		return ERR_PTR(ret);
923
924	acpi = to_acpi_device_node(args.fwnode);
925	if (!acpi)
926		return ERR_PTR(-EINVAL);
927
928	if (args.nargs < 2)
929		return ERR_PTR(-EPROTO);
930
931	chip = device_to_pwmchip(&acpi->dev);
932	if (IS_ERR(chip))
933		return ERR_CAST(chip);
934
935	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
936	if (IS_ERR(pwm))
937		return pwm;
938
939	pwm->args.period = args.args[1];
940	pwm->args.polarity = PWM_POLARITY_NORMAL;
941
942	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
943		pwm->args.polarity = PWM_POLARITY_INVERSED;
944#endif
945
946	return pwm;
947}
948
949/**
950 * pwm_add_table() - register PWM device consumers
951 * @table: array of consumers to register
952 * @num: number of consumers in table
953 */
954void pwm_add_table(struct pwm_lookup *table, size_t num)
955{
956	mutex_lock(&pwm_lookup_lock);
957
958	while (num--) {
959		list_add_tail(&table->list, &pwm_lookup_list);
960		table++;
961	}
962
963	mutex_unlock(&pwm_lookup_lock);
964}
965
966/**
967 * pwm_remove_table() - unregister PWM device consumers
968 * @table: array of consumers to unregister
969 * @num: number of consumers in table
970 */
971void pwm_remove_table(struct pwm_lookup *table, size_t num)
972{
973	mutex_lock(&pwm_lookup_lock);
974
975	while (num--) {
976		list_del(&table->list);
977		table++;
978	}
979
980	mutex_unlock(&pwm_lookup_lock);
981}
982
983/**
984 * pwm_get() - look up and request a PWM device
985 * @dev: device for PWM consumer
986 * @con_id: consumer name
987 *
988 * Lookup is first attempted using DT. If the device was not instantiated from
989 * a device tree, a PWM chip and a relative index is looked up via a table
990 * supplied by board setup code (see pwm_add_table()).
991 *
992 * Once a PWM chip has been found the specified PWM device will be requested
993 * and is ready to be used.
994 *
995 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
996 * error code on failure.
997 */
998struct pwm_device *pwm_get(struct device *dev, const char *con_id)
999{
1000	const char *dev_id = dev ? dev_name(dev) : NULL;
1001	struct pwm_device *pwm;
1002	struct pwm_chip *chip;
1003	struct device_link *dl;
1004	unsigned int best = 0;
1005	struct pwm_lookup *p, *chosen = NULL;
1006	unsigned int match;
1007	int err;
1008
1009	/* look up via DT first */
1010	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
1011		return of_pwm_get(dev, dev->of_node, con_id);
1012
1013	/* then lookup via ACPI */
1014	if (dev && is_acpi_node(dev->fwnode)) {
1015		pwm = acpi_pwm_get(dev->fwnode);
1016		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1017			return pwm;
1018	}
1019
1020	/*
1021	 * We look up the provider in the static table typically provided by
1022	 * board setup code. We first try to lookup the consumer device by
1023	 * name. If the consumer device was passed in as NULL or if no match
1024	 * was found, we try to find the consumer by directly looking it up
1025	 * by name.
1026	 *
1027	 * If a match is found, the provider PWM chip is looked up by name
1028	 * and a PWM device is requested using the PWM device per-chip index.
1029	 *
1030	 * The lookup algorithm was shamelessly taken from the clock
1031	 * framework:
1032	 *
1033	 * We do slightly fuzzy matching here:
1034	 *  An entry with a NULL ID is assumed to be a wildcard.
1035	 *  If an entry has a device ID, it must match
1036	 *  If an entry has a connection ID, it must match
1037	 * Then we take the most specific entry - with the following order
1038	 * of precedence: dev+con > dev only > con only.
1039	 */
1040	mutex_lock(&pwm_lookup_lock);
1041
1042	list_for_each_entry(p, &pwm_lookup_list, list) {
1043		match = 0;
1044
1045		if (p->dev_id) {
1046			if (!dev_id || strcmp(p->dev_id, dev_id))
1047				continue;
1048
1049			match += 2;
1050		}
1051
1052		if (p->con_id) {
1053			if (!con_id || strcmp(p->con_id, con_id))
1054				continue;
1055
1056			match += 1;
1057		}
1058
1059		if (match > best) {
1060			chosen = p;
1061
1062			if (match != 3)
1063				best = match;
1064			else
1065				break;
1066		}
1067	}
1068
1069	mutex_unlock(&pwm_lookup_lock);
1070
1071	if (!chosen)
1072		return ERR_PTR(-ENODEV);
1073
1074	chip = pwmchip_find_by_name(chosen->provider);
1075
1076	/*
1077	 * If the lookup entry specifies a module, load the module and retry
1078	 * the PWM chip lookup. This can be used to work around driver load
1079	 * ordering issues if driver's can't be made to properly support the
1080	 * deferred probe mechanism.
1081	 */
1082	if (!chip && chosen->module) {
1083		err = request_module(chosen->module);
1084		if (err == 0)
1085			chip = pwmchip_find_by_name(chosen->provider);
1086	}
1087
1088	if (!chip)
1089		return ERR_PTR(-EPROBE_DEFER);
1090
1091	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1092	if (IS_ERR(pwm))
1093		return pwm;
1094
1095	dl = pwm_device_link_add(dev, pwm);
1096	if (IS_ERR(dl)) {
1097		pwm_free(pwm);
1098		return ERR_CAST(dl);
1099	}
1100
1101	pwm->args.period = chosen->period;
1102	pwm->args.polarity = chosen->polarity;
1103
1104	return pwm;
1105}
1106EXPORT_SYMBOL_GPL(pwm_get);
1107
1108/**
1109 * pwm_put() - release a PWM device
1110 * @pwm: PWM device
1111 */
1112void pwm_put(struct pwm_device *pwm)
1113{
1114	if (!pwm)
1115		return;
1116
1117	mutex_lock(&pwm_lock);
1118
1119	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1120		pr_warn("PWM device already freed\n");
1121		goto out;
1122	}
1123
1124	if (pwm->chip->ops->free)
1125		pwm->chip->ops->free(pwm->chip, pwm);
1126
1127	pwm_set_chip_data(pwm, NULL);
1128	pwm->label = NULL;
1129
1130	module_put(pwm->chip->ops->owner);
1131out:
1132	mutex_unlock(&pwm_lock);
1133}
1134EXPORT_SYMBOL_GPL(pwm_put);
1135
1136static void devm_pwm_release(struct device *dev, void *res)
1137{
1138	pwm_put(*(struct pwm_device **)res);
1139}
1140
1141/**
1142 * devm_pwm_get() - resource managed pwm_get()
1143 * @dev: device for PWM consumer
1144 * @con_id: consumer name
1145 *
1146 * This function performs like pwm_get() but the acquired PWM device will
1147 * automatically be released on driver detach.
1148 *
1149 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1150 * error code on failure.
1151 */
1152struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1153{
1154	struct pwm_device **ptr, *pwm;
1155
1156	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1157	if (!ptr)
1158		return ERR_PTR(-ENOMEM);
1159
1160	pwm = pwm_get(dev, con_id);
1161	if (!IS_ERR(pwm)) {
1162		*ptr = pwm;
1163		devres_add(dev, ptr);
1164	} else {
1165		devres_free(ptr);
1166	}
1167
1168	return pwm;
1169}
1170EXPORT_SYMBOL_GPL(devm_pwm_get);
1171
1172/**
1173 * devm_of_pwm_get() - resource managed of_pwm_get()
1174 * @dev: device for PWM consumer
1175 * @np: device node to get the PWM from
1176 * @con_id: consumer name
1177 *
1178 * This function performs like of_pwm_get() but the acquired PWM device will
1179 * automatically be released on driver detach.
1180 *
1181 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1182 * error code on failure.
1183 */
1184struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1185				   const char *con_id)
1186{
1187	struct pwm_device **ptr, *pwm;
1188
1189	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1190	if (!ptr)
1191		return ERR_PTR(-ENOMEM);
1192
1193	pwm = of_pwm_get(dev, np, con_id);
1194	if (!IS_ERR(pwm)) {
1195		*ptr = pwm;
1196		devres_add(dev, ptr);
1197	} else {
1198		devres_free(ptr);
1199	}
1200
1201	return pwm;
1202}
1203EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1204
1205/**
1206 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1207 * @dev: device for PWM consumer
1208 * @fwnode: firmware node to get the PWM from
1209 * @con_id: consumer name
1210 *
1211 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1212 * acpi_pwm_get() for a detailed description.
1213 *
1214 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1215 * error code on failure.
1216 */
1217struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1218				       struct fwnode_handle *fwnode,
1219				       const char *con_id)
1220{
1221	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1222
1223	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1224	if (!ptr)
1225		return ERR_PTR(-ENOMEM);
1226
1227	if (is_of_node(fwnode))
1228		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1229	else if (is_acpi_node(fwnode))
1230		pwm = acpi_pwm_get(fwnode);
1231
1232	if (!IS_ERR(pwm)) {
1233		*ptr = pwm;
1234		devres_add(dev, ptr);
1235	} else {
1236		devres_free(ptr);
1237	}
1238
1239	return pwm;
1240}
1241EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1242
1243static int devm_pwm_match(struct device *dev, void *res, void *data)
1244{
1245	struct pwm_device **p = res;
1246
1247	if (WARN_ON(!p || !*p))
1248		return 0;
1249
1250	return *p == data;
1251}
1252
1253/**
1254 * devm_pwm_put() - resource managed pwm_put()
1255 * @dev: device for PWM consumer
1256 * @pwm: PWM device
1257 *
1258 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1259 * function is usually not needed because devm-allocated resources are
1260 * automatically released on driver detach.
1261 */
1262void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1263{
1264	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1265}
1266EXPORT_SYMBOL_GPL(devm_pwm_put);
1267
1268#ifdef CONFIG_DEBUG_FS
1269static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1270{
1271	unsigned int i;
1272
1273	for (i = 0; i < chip->npwm; i++) {
1274		struct pwm_device *pwm = &chip->pwms[i];
1275		struct pwm_state state;
1276
1277		pwm_get_state(pwm, &state);
1278
1279		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1280
1281		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1282			seq_puts(s, " requested");
1283
1284		if (state.enabled)
1285			seq_puts(s, " enabled");
1286
1287		seq_printf(s, " period: %llu ns", state.period);
1288		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1289		seq_printf(s, " polarity: %s",
1290			   state.polarity ? "inverse" : "normal");
1291
1292		seq_puts(s, "\n");
1293	}
1294}
1295
1296static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1297{
1298	mutex_lock(&pwm_lock);
1299	s->private = "";
1300
1301	return seq_list_start(&pwm_chips, *pos);
1302}
1303
1304static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1305{
1306	s->private = "\n";
1307
1308	return seq_list_next(v, &pwm_chips, pos);
1309}
1310
1311static void pwm_seq_stop(struct seq_file *s, void *v)
1312{
1313	mutex_unlock(&pwm_lock);
1314}
1315
1316static int pwm_seq_show(struct seq_file *s, void *v)
1317{
1318	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1319
1320	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1321		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1322		   dev_name(chip->dev), chip->npwm,
1323		   (chip->npwm != 1) ? "s" : "");
1324
1325	pwm_dbg_show(chip, s);
1326
1327	return 0;
1328}
1329
1330static const struct seq_operations pwm_debugfs_sops = {
1331	.start = pwm_seq_start,
1332	.next = pwm_seq_next,
1333	.stop = pwm_seq_stop,
1334	.show = pwm_seq_show,
1335};
1336
1337DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1338
1339static int __init pwm_debugfs_init(void)
1340{
1341	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1342			    &pwm_debugfs_fops);
1343
1344	return 0;
1345}
1346subsys_initcall(pwm_debugfs_init);
1347#endif /* CONFIG_DEBUG_FS */
1348