1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * Mellanox boot control driver 4 * 5 * This driver provides a sysfs interface for systems management 6 * software to manage reset-time actions. 7 * 8 * Copyright (C) 2019 Mellanox Technologies 9 */ 10 11#include <linux/acpi.h> 12#include <linux/arm-smccc.h> 13#include <linux/module.h> 14#include <linux/platform_device.h> 15 16#include "mlxbf-bootctl.h" 17 18#define MLXBF_BOOTCTL_SB_SECURE_MASK 0x03 19#define MLXBF_BOOTCTL_SB_TEST_MASK 0x0c 20#define MLXBF_BOOTCTL_SB_DEV_MASK BIT(4) 21 22#define MLXBF_SB_KEY_NUM 4 23 24/* UUID used to probe ATF service. */ 25static const char *mlxbf_bootctl_svc_uuid_str = 26 "89c036b4-e7d7-11e6-8797-001aca00bfc4"; 27 28struct mlxbf_bootctl_name { 29 u32 value; 30 const char *name; 31}; 32 33static struct mlxbf_bootctl_name boot_names[] = { 34 { MLXBF_BOOTCTL_EXTERNAL, "external" }, 35 { MLXBF_BOOTCTL_EMMC, "emmc" }, 36 { MLNX_BOOTCTL_SWAP_EMMC, "swap_emmc" }, 37 { MLXBF_BOOTCTL_EMMC_LEGACY, "emmc_legacy" }, 38 { MLXBF_BOOTCTL_NONE, "none" }, 39}; 40 41enum { 42 MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION = 0, 43 MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE = 1, 44 MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE = 2, 45 MLXBF_BOOTCTL_SB_LIFECYCLE_RMA = 3 46}; 47 48static const char * const mlxbf_bootctl_lifecycle_states[] = { 49 [MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION] = "Production", 50 [MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE] = "GA Secured", 51 [MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE] = "GA Non-Secured", 52 [MLXBF_BOOTCTL_SB_LIFECYCLE_RMA] = "RMA", 53}; 54 55/* ARM SMC call which is atomic and no need for lock. */ 56static int mlxbf_bootctl_smc(unsigned int smc_op, int smc_arg) 57{ 58 struct arm_smccc_res res; 59 60 arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res); 61 62 return res.a0; 63} 64 65/* Return the action in integer or an error code. */ 66static int mlxbf_bootctl_reset_action_to_val(const char *action) 67{ 68 int i; 69 70 for (i = 0; i < ARRAY_SIZE(boot_names); i++) 71 if (sysfs_streq(boot_names[i].name, action)) 72 return boot_names[i].value; 73 74 return -EINVAL; 75} 76 77/* Return the action in string. */ 78static const char *mlxbf_bootctl_action_to_string(int action) 79{ 80 int i; 81 82 for (i = 0; i < ARRAY_SIZE(boot_names); i++) 83 if (boot_names[i].value == action) 84 return boot_names[i].name; 85 86 return "invalid action"; 87} 88 89static ssize_t post_reset_wdog_show(struct device *dev, 90 struct device_attribute *attr, char *buf) 91{ 92 int ret; 93 94 ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_POST_RESET_WDOG, 0); 95 if (ret < 0) 96 return ret; 97 98 return sprintf(buf, "%d\n", ret); 99} 100 101static ssize_t post_reset_wdog_store(struct device *dev, 102 struct device_attribute *attr, 103 const char *buf, size_t count) 104{ 105 unsigned long value; 106 int ret; 107 108 ret = kstrtoul(buf, 10, &value); 109 if (ret) 110 return ret; 111 112 ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_POST_RESET_WDOG, value); 113 if (ret < 0) 114 return ret; 115 116 return count; 117} 118 119static ssize_t mlxbf_bootctl_show(int smc_op, char *buf) 120{ 121 int action; 122 123 action = mlxbf_bootctl_smc(smc_op, 0); 124 if (action < 0) 125 return action; 126 127 return sprintf(buf, "%s\n", mlxbf_bootctl_action_to_string(action)); 128} 129 130static int mlxbf_bootctl_store(int smc_op, const char *buf, size_t count) 131{ 132 int ret, action; 133 134 action = mlxbf_bootctl_reset_action_to_val(buf); 135 if (action < 0) 136 return action; 137 138 ret = mlxbf_bootctl_smc(smc_op, action); 139 if (ret < 0) 140 return ret; 141 142 return count; 143} 144 145static ssize_t reset_action_show(struct device *dev, 146 struct device_attribute *attr, char *buf) 147{ 148 return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_RESET_ACTION, buf); 149} 150 151static ssize_t reset_action_store(struct device *dev, 152 struct device_attribute *attr, 153 const char *buf, size_t count) 154{ 155 return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_RESET_ACTION, buf, count); 156} 157 158static ssize_t second_reset_action_show(struct device *dev, 159 struct device_attribute *attr, 160 char *buf) 161{ 162 return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_SECOND_RESET_ACTION, buf); 163} 164 165static ssize_t second_reset_action_store(struct device *dev, 166 struct device_attribute *attr, 167 const char *buf, size_t count) 168{ 169 return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_SECOND_RESET_ACTION, buf, 170 count); 171} 172 173static ssize_t lifecycle_state_show(struct device *dev, 174 struct device_attribute *attr, char *buf) 175{ 176 int status_bits; 177 int use_dev_key; 178 int test_state; 179 int lc_state; 180 181 status_bits = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS, 182 MLXBF_BOOTCTL_FUSE_STATUS_LIFECYCLE); 183 if (status_bits < 0) 184 return status_bits; 185 186 use_dev_key = status_bits & MLXBF_BOOTCTL_SB_DEV_MASK; 187 test_state = status_bits & MLXBF_BOOTCTL_SB_TEST_MASK; 188 lc_state = status_bits & MLXBF_BOOTCTL_SB_SECURE_MASK; 189 190 /* 191 * If the test bits are set, we specify that the current state may be 192 * due to using the test bits. 193 */ 194 if (test_state) { 195 return sprintf(buf, "%s(test)\n", 196 mlxbf_bootctl_lifecycle_states[lc_state]); 197 } else if (use_dev_key && 198 (lc_state == MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE)) { 199 return sprintf(buf, "Secured (development)\n"); 200 } 201 202 return sprintf(buf, "%s\n", mlxbf_bootctl_lifecycle_states[lc_state]); 203} 204 205static ssize_t secure_boot_fuse_state_show(struct device *dev, 206 struct device_attribute *attr, 207 char *buf) 208{ 209 int burnt, valid, key, key_state, buf_len = 0, upper_key_used = 0; 210 const char *status; 211 212 key_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS, 213 MLXBF_BOOTCTL_FUSE_STATUS_KEYS); 214 if (key_state < 0) 215 return key_state; 216 217 /* 218 * key_state contains the bits for 4 Key versions, loaded from eFuses 219 * after a hard reset. Lower 4 bits are a thermometer code indicating 220 * key programming has started for key n (0000 = none, 0001 = version 0, 221 * 0011 = version 1, 0111 = version 2, 1111 = version 3). Upper 4 bits 222 * are a thermometer code indicating key programming has completed for 223 * key n (same encodings as the start bits). This allows for detection 224 * of an interruption in the progamming process which has left the key 225 * partially programmed (and thus invalid). The process is to burn the 226 * eFuse for the new key start bit, burn the key eFuses, then burn the 227 * eFuse for the new key complete bit. 228 * 229 * For example 0000_0000: no key valid, 0001_0001: key version 0 valid, 230 * 0011_0011: key 1 version valid, 0011_0111: key version 2 started 231 * programming but did not complete, etc. The most recent key for which 232 * both start and complete bit is set is loaded. On soft reset, this 233 * register is not modified. 234 */ 235 for (key = MLXBF_SB_KEY_NUM - 1; key >= 0; key--) { 236 burnt = key_state & BIT(key); 237 valid = key_state & BIT(key + MLXBF_SB_KEY_NUM); 238 239 if (burnt && valid) 240 upper_key_used = 1; 241 242 if (upper_key_used) { 243 if (burnt) 244 status = valid ? "Used" : "Wasted"; 245 else 246 status = valid ? "Invalid" : "Skipped"; 247 } else { 248 if (burnt) 249 status = valid ? "InUse" : "Incomplete"; 250 else 251 status = valid ? "Invalid" : "Free"; 252 } 253 buf_len += sprintf(buf + buf_len, "%d:%s ", key, status); 254 } 255 buf_len += sprintf(buf + buf_len, "\n"); 256 257 return buf_len; 258} 259 260static DEVICE_ATTR_RW(post_reset_wdog); 261static DEVICE_ATTR_RW(reset_action); 262static DEVICE_ATTR_RW(second_reset_action); 263static DEVICE_ATTR_RO(lifecycle_state); 264static DEVICE_ATTR_RO(secure_boot_fuse_state); 265 266static struct attribute *mlxbf_bootctl_attrs[] = { 267 &dev_attr_post_reset_wdog.attr, 268 &dev_attr_reset_action.attr, 269 &dev_attr_second_reset_action.attr, 270 &dev_attr_lifecycle_state.attr, 271 &dev_attr_secure_boot_fuse_state.attr, 272 NULL 273}; 274 275ATTRIBUTE_GROUPS(mlxbf_bootctl); 276 277static const struct acpi_device_id mlxbf_bootctl_acpi_ids[] = { 278 {"MLNXBF04", 0}, 279 {} 280}; 281 282MODULE_DEVICE_TABLE(acpi, mlxbf_bootctl_acpi_ids); 283 284static bool mlxbf_bootctl_guid_match(const guid_t *guid, 285 const struct arm_smccc_res *res) 286{ 287 guid_t id = GUID_INIT(res->a0, res->a1, res->a1 >> 16, 288 res->a2, res->a2 >> 8, res->a2 >> 16, 289 res->a2 >> 24, res->a3, res->a3 >> 8, 290 res->a3 >> 16, res->a3 >> 24); 291 292 return guid_equal(guid, &id); 293} 294 295static int mlxbf_bootctl_probe(struct platform_device *pdev) 296{ 297 struct arm_smccc_res res = { 0 }; 298 guid_t guid; 299 int ret; 300 301 /* Ensure we have the UUID we expect for this service. */ 302 arm_smccc_smc(MLXBF_BOOTCTL_SIP_SVC_UID, 0, 0, 0, 0, 0, 0, 0, &res); 303 guid_parse(mlxbf_bootctl_svc_uuid_str, &guid); 304 if (!mlxbf_bootctl_guid_match(&guid, &res)) 305 return -ENODEV; 306 307 /* 308 * When watchdog is used, it sets boot mode to MLXBF_BOOTCTL_SWAP_EMMC 309 * in case of boot failures. However it doesn't clear the state if there 310 * is no failure. Restore the default boot mode here to avoid any 311 * unnecessary boot partition swapping. 312 */ 313 ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_RESET_ACTION, 314 MLXBF_BOOTCTL_EMMC); 315 if (ret < 0) 316 dev_warn(&pdev->dev, "Unable to reset the EMMC boot mode\n"); 317 318 return 0; 319} 320 321static struct platform_driver mlxbf_bootctl_driver = { 322 .probe = mlxbf_bootctl_probe, 323 .driver = { 324 .name = "mlxbf-bootctl", 325 .dev_groups = mlxbf_bootctl_groups, 326 .acpi_match_table = mlxbf_bootctl_acpi_ids, 327 } 328}; 329 330module_platform_driver(mlxbf_bootctl_driver); 331 332MODULE_DESCRIPTION("Mellanox boot control driver"); 333MODULE_LICENSE("GPL v2"); 334MODULE_AUTHOR("Mellanox Technologies"); 335