xref: /kernel/linux/linux-5.10/drivers/pinctrl/core.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/kernel.h>
16#include <linux/kref.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/err.h>
22#include <linux/list.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/pinctrl/consumer.h>
26#include <linux/pinctrl/pinctrl.h>
27#include <linux/pinctrl/machine.h>
28
29#ifdef CONFIG_GPIOLIB
30#include "../gpio/gpiolib.h"
31#include <asm-generic/gpio.h>
32#endif
33
34#include "core.h"
35#include "devicetree.h"
36#include "pinmux.h"
37#include "pinconf.h"
38
39
40static bool pinctrl_dummy_state;
41
42/* Mutex taken to protect pinctrl_list */
43static DEFINE_MUTEX(pinctrl_list_mutex);
44
45/* Mutex taken to protect pinctrl_maps */
46DEFINE_MUTEX(pinctrl_maps_mutex);
47
48/* Mutex taken to protect pinctrldev_list */
49static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51/* Global list of pin control devices (struct pinctrl_dev) */
52static LIST_HEAD(pinctrldev_list);
53
54/* List of pin controller handles (struct pinctrl) */
55static LIST_HEAD(pinctrl_list);
56
57/* List of pinctrl maps (struct pinctrl_maps) */
58LIST_HEAD(pinctrl_maps);
59
60
61/**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
69void pinctrl_provide_dummies(void)
70{
71	pinctrl_dummy_state = true;
72}
73
74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75{
76	/* We're not allowed to register devices without name */
77	return pctldev->desc->name;
78}
79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82{
83	return dev_name(pctldev->dev);
84}
85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88{
89	return pctldev->driver_data;
90}
91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93/**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101{
102	struct pinctrl_dev *pctldev;
103
104	if (!devname)
105		return NULL;
106
107	mutex_lock(&pinctrldev_list_mutex);
108
109	list_for_each_entry(pctldev, &pinctrldev_list, node) {
110		if (!strcmp(dev_name(pctldev->dev), devname)) {
111			/* Matched on device name */
112			mutex_unlock(&pinctrldev_list_mutex);
113			return pctldev;
114		}
115	}
116
117	mutex_unlock(&pinctrldev_list_mutex);
118
119	return NULL;
120}
121
122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123{
124	struct pinctrl_dev *pctldev;
125
126	mutex_lock(&pinctrldev_list_mutex);
127
128	list_for_each_entry(pctldev, &pinctrldev_list, node)
129		if (pctldev->dev->of_node == np) {
130			mutex_unlock(&pinctrldev_list_mutex);
131			return pctldev;
132		}
133
134	mutex_unlock(&pinctrldev_list_mutex);
135
136	return NULL;
137}
138
139/**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145{
146	unsigned i, pin;
147
148	/* The pin number can be retrived from the pin controller descriptor */
149	for (i = 0; i < pctldev->desc->npins; i++) {
150		struct pin_desc *desc;
151
152		pin = pctldev->desc->pins[i].number;
153		desc = pin_desc_get(pctldev, pin);
154		/* Pin space may be sparse */
155		if (desc && !strcmp(name, desc->name))
156			return pin;
157	}
158
159	return -EINVAL;
160}
161
162/**
163 * pin_get_name_from_id() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168{
169	const struct pin_desc *desc;
170
171	desc = pin_desc_get(pctldev, pin);
172	if (!desc) {
173		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174			pin);
175		return NULL;
176	}
177
178	return desc->name;
179}
180EXPORT_SYMBOL_GPL(pin_get_name);
181
182/* Deletes a range of pin descriptors */
183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184				  const struct pinctrl_pin_desc *pins,
185				  unsigned num_pins)
186{
187	int i;
188
189	for (i = 0; i < num_pins; i++) {
190		struct pin_desc *pindesc;
191
192		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193					    pins[i].number);
194		if (pindesc) {
195			radix_tree_delete(&pctldev->pin_desc_tree,
196					  pins[i].number);
197			if (pindesc->dynamic_name)
198				kfree(pindesc->name);
199		}
200		kfree(pindesc);
201	}
202}
203
204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205				    const struct pinctrl_pin_desc *pin)
206{
207	struct pin_desc *pindesc;
208
209	pindesc = pin_desc_get(pctldev, pin->number);
210	if (pindesc) {
211		dev_err(pctldev->dev, "pin %d already registered\n",
212			pin->number);
213		return -EINVAL;
214	}
215
216	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
217	if (!pindesc)
218		return -ENOMEM;
219
220	/* Set owner */
221	pindesc->pctldev = pctldev;
222
223	/* Copy basic pin info */
224	if (pin->name) {
225		pindesc->name = pin->name;
226	} else {
227		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
228		if (!pindesc->name) {
229			kfree(pindesc);
230			return -ENOMEM;
231		}
232		pindesc->dynamic_name = true;
233	}
234
235	pindesc->drv_data = pin->drv_data;
236
237	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
238	pr_debug("registered pin %d (%s) on %s\n",
239		 pin->number, pindesc->name, pctldev->desc->name);
240	return 0;
241}
242
243static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
244				 const struct pinctrl_pin_desc *pins,
245				 unsigned num_descs)
246{
247	unsigned i;
248	int ret = 0;
249
250	for (i = 0; i < num_descs; i++) {
251		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
252		if (ret)
253			return ret;
254	}
255
256	return 0;
257}
258
259/**
260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
261 * @range: GPIO range used for the translation
262 * @gpio: gpio pin to translate to a pin number
263 *
264 * Finds the pin number for a given GPIO using the specified GPIO range
265 * as a base for translation. The distinction between linear GPIO ranges
266 * and pin list based GPIO ranges is managed correctly by this function.
267 *
268 * This function assumes the gpio is part of the specified GPIO range, use
269 * only after making sure this is the case (e.g. by calling it on the
270 * result of successful pinctrl_get_device_gpio_range calls)!
271 */
272static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
273				unsigned int gpio)
274{
275	unsigned int offset = gpio - range->base;
276	if (range->pins)
277		return range->pins[offset];
278	else
279		return range->pin_base + offset;
280}
281
282/**
283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284 * @pctldev: pin controller device to check
285 * @gpio: gpio pin to check taken from the global GPIO pin space
286 *
287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
288 * controller, return the range or NULL
289 */
290static struct pinctrl_gpio_range *
291pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
292{
293	struct pinctrl_gpio_range *range;
294
295	mutex_lock(&pctldev->mutex);
296	/* Loop over the ranges */
297	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298		/* Check if we're in the valid range */
299		if (gpio >= range->base &&
300		    gpio < range->base + range->npins) {
301			mutex_unlock(&pctldev->mutex);
302			return range;
303		}
304	}
305	mutex_unlock(&pctldev->mutex);
306	return NULL;
307}
308
309/**
310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311 * the same GPIO chip are in range
312 * @gpio: gpio pin to check taken from the global GPIO pin space
313 *
314 * This function is complement of pinctrl_match_gpio_range(). If the return
315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317 * of the same GPIO chip don't have back-end pinctrl interface.
318 * If the return value is true, it means that pinctrl device is ready & the
319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320 * is false, it means that pinctrl device may not be ready.
321 */
322#ifdef CONFIG_GPIOLIB
323static bool pinctrl_ready_for_gpio_range(unsigned gpio)
324{
325	struct pinctrl_dev *pctldev;
326	struct pinctrl_gpio_range *range = NULL;
327	struct gpio_chip *chip = gpio_to_chip(gpio);
328
329	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
330		return false;
331
332	mutex_lock(&pinctrldev_list_mutex);
333
334	/* Loop over the pin controllers */
335	list_for_each_entry(pctldev, &pinctrldev_list, node) {
336		/* Loop over the ranges */
337		mutex_lock(&pctldev->mutex);
338		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
339			/* Check if any gpio range overlapped with gpio chip */
340			if (range->base + range->npins - 1 < chip->base ||
341			    range->base > chip->base + chip->ngpio - 1)
342				continue;
343			mutex_unlock(&pctldev->mutex);
344			mutex_unlock(&pinctrldev_list_mutex);
345			return true;
346		}
347		mutex_unlock(&pctldev->mutex);
348	}
349
350	mutex_unlock(&pinctrldev_list_mutex);
351
352	return false;
353}
354#else
355static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
356#endif
357
358/**
359 * pinctrl_get_device_gpio_range() - find device for GPIO range
360 * @gpio: the pin to locate the pin controller for
361 * @outdev: the pin control device if found
362 * @outrange: the GPIO range if found
363 *
364 * Find the pin controller handling a certain GPIO pin from the pinspace of
365 * the GPIO subsystem, return the device and the matching GPIO range. Returns
366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
367 * may still have not been registered.
368 */
369static int pinctrl_get_device_gpio_range(unsigned gpio,
370					 struct pinctrl_dev **outdev,
371					 struct pinctrl_gpio_range **outrange)
372{
373	struct pinctrl_dev *pctldev;
374
375	mutex_lock(&pinctrldev_list_mutex);
376
377	/* Loop over the pin controllers */
378	list_for_each_entry(pctldev, &pinctrldev_list, node) {
379		struct pinctrl_gpio_range *range;
380
381		range = pinctrl_match_gpio_range(pctldev, gpio);
382		if (range) {
383			*outdev = pctldev;
384			*outrange = range;
385			mutex_unlock(&pinctrldev_list_mutex);
386			return 0;
387		}
388	}
389
390	mutex_unlock(&pinctrldev_list_mutex);
391
392	return -EPROBE_DEFER;
393}
394
395/**
396 * pinctrl_add_gpio_range() - register a GPIO range for a controller
397 * @pctldev: pin controller device to add the range to
398 * @range: the GPIO range to add
399 *
400 * This adds a range of GPIOs to be handled by a certain pin controller. Call
401 * this to register handled ranges after registering your pin controller.
402 */
403void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
404			    struct pinctrl_gpio_range *range)
405{
406	mutex_lock(&pctldev->mutex);
407	list_add_tail(&range->node, &pctldev->gpio_ranges);
408	mutex_unlock(&pctldev->mutex);
409}
410EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
411
412void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
413			     struct pinctrl_gpio_range *ranges,
414			     unsigned nranges)
415{
416	int i;
417
418	for (i = 0; i < nranges; i++)
419		pinctrl_add_gpio_range(pctldev, &ranges[i]);
420}
421EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
422
423struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
424		struct pinctrl_gpio_range *range)
425{
426	struct pinctrl_dev *pctldev;
427
428	pctldev = get_pinctrl_dev_from_devname(devname);
429
430	/*
431	 * If we can't find this device, let's assume that is because
432	 * it has not probed yet, so the driver trying to register this
433	 * range need to defer probing.
434	 */
435	if (!pctldev) {
436		return ERR_PTR(-EPROBE_DEFER);
437	}
438	pinctrl_add_gpio_range(pctldev, range);
439
440	return pctldev;
441}
442EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
443
444int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
445				const unsigned **pins, unsigned *num_pins)
446{
447	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
448	int gs;
449
450	if (!pctlops->get_group_pins)
451		return -EINVAL;
452
453	gs = pinctrl_get_group_selector(pctldev, pin_group);
454	if (gs < 0)
455		return gs;
456
457	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
458}
459EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
460
461struct pinctrl_gpio_range *
462pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
463					unsigned int pin)
464{
465	struct pinctrl_gpio_range *range;
466
467	/* Loop over the ranges */
468	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
469		/* Check if we're in the valid range */
470		if (range->pins) {
471			int a;
472			for (a = 0; a < range->npins; a++) {
473				if (range->pins[a] == pin)
474					return range;
475			}
476		} else if (pin >= range->pin_base &&
477			   pin < range->pin_base + range->npins)
478			return range;
479	}
480
481	return NULL;
482}
483EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
484
485/**
486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
487 * @pctldev: the pin controller device to look in
488 * @pin: a controller-local number to find the range for
489 */
490struct pinctrl_gpio_range *
491pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
492				 unsigned int pin)
493{
494	struct pinctrl_gpio_range *range;
495
496	mutex_lock(&pctldev->mutex);
497	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
498	mutex_unlock(&pctldev->mutex);
499
500	return range;
501}
502EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
503
504/**
505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
506 * @pctldev: pin controller device to remove the range from
507 * @range: the GPIO range to remove
508 */
509void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
510			       struct pinctrl_gpio_range *range)
511{
512	mutex_lock(&pctldev->mutex);
513	list_del(&range->node);
514	mutex_unlock(&pctldev->mutex);
515}
516EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
517
518#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
519
520/**
521 * pinctrl_generic_get_group_count() - returns the number of pin groups
522 * @pctldev: pin controller device
523 */
524int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
525{
526	return pctldev->num_groups;
527}
528EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
529
530/**
531 * pinctrl_generic_get_group_name() - returns the name of a pin group
532 * @pctldev: pin controller device
533 * @selector: group number
534 */
535const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
536					   unsigned int selector)
537{
538	struct group_desc *group;
539
540	group = radix_tree_lookup(&pctldev->pin_group_tree,
541				  selector);
542	if (!group)
543		return NULL;
544
545	return group->name;
546}
547EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
548
549/**
550 * pinctrl_generic_get_group_pins() - gets the pin group pins
551 * @pctldev: pin controller device
552 * @selector: group number
553 * @pins: pins in the group
554 * @num_pins: number of pins in the group
555 */
556int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
557				   unsigned int selector,
558				   const unsigned int **pins,
559				   unsigned int *num_pins)
560{
561	struct group_desc *group;
562
563	group = radix_tree_lookup(&pctldev->pin_group_tree,
564				  selector);
565	if (!group) {
566		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
567			__func__, selector);
568		return -EINVAL;
569	}
570
571	*pins = group->pins;
572	*num_pins = group->num_pins;
573
574	return 0;
575}
576EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
577
578/**
579 * pinctrl_generic_get_group() - returns a pin group based on the number
580 * @pctldev: pin controller device
581 * @selector: group number
582 */
583struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
584					     unsigned int selector)
585{
586	struct group_desc *group;
587
588	group = radix_tree_lookup(&pctldev->pin_group_tree,
589				  selector);
590	if (!group)
591		return NULL;
592
593	return group;
594}
595EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
596
597static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
598						  const char *function)
599{
600	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
601	int ngroups = ops->get_groups_count(pctldev);
602	int selector = 0;
603
604	/* See if this pctldev has this group */
605	while (selector < ngroups) {
606		const char *gname = ops->get_group_name(pctldev, selector);
607
608		if (gname && !strcmp(function, gname))
609			return selector;
610
611		selector++;
612	}
613
614	return -EINVAL;
615}
616
617/**
618 * pinctrl_generic_add_group() - adds a new pin group
619 * @pctldev: pin controller device
620 * @name: name of the pin group
621 * @pins: pins in the pin group
622 * @num_pins: number of pins in the pin group
623 * @data: pin controller driver specific data
624 *
625 * Note that the caller must take care of locking.
626 */
627int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
628			      int *pins, int num_pins, void *data)
629{
630	struct group_desc *group;
631	int selector;
632
633	if (!name)
634		return -EINVAL;
635
636	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
637	if (selector >= 0)
638		return selector;
639
640	selector = pctldev->num_groups;
641
642	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
643	if (!group)
644		return -ENOMEM;
645
646	group->name = name;
647	group->pins = pins;
648	group->num_pins = num_pins;
649	group->data = data;
650
651	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
652
653	pctldev->num_groups++;
654
655	return selector;
656}
657EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
658
659/**
660 * pinctrl_generic_remove_group() - removes a numbered pin group
661 * @pctldev: pin controller device
662 * @selector: group number
663 *
664 * Note that the caller must take care of locking.
665 */
666int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
667				 unsigned int selector)
668{
669	struct group_desc *group;
670
671	group = radix_tree_lookup(&pctldev->pin_group_tree,
672				  selector);
673	if (!group)
674		return -ENOENT;
675
676	radix_tree_delete(&pctldev->pin_group_tree, selector);
677	devm_kfree(pctldev->dev, group);
678
679	pctldev->num_groups--;
680
681	return 0;
682}
683EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
684
685/**
686 * pinctrl_generic_free_groups() - removes all pin groups
687 * @pctldev: pin controller device
688 *
689 * Note that the caller must take care of locking. The pinctrl groups
690 * are allocated with devm_kzalloc() so no need to free them here.
691 */
692static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
693{
694	struct radix_tree_iter iter;
695	void __rcu **slot;
696
697	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
698		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
699
700	pctldev->num_groups = 0;
701}
702
703#else
704static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
705{
706}
707#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
708
709/**
710 * pinctrl_get_group_selector() - returns the group selector for a group
711 * @pctldev: the pin controller handling the group
712 * @pin_group: the pin group to look up
713 */
714int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
715			       const char *pin_group)
716{
717	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
718	unsigned ngroups = pctlops->get_groups_count(pctldev);
719	unsigned group_selector = 0;
720
721	while (group_selector < ngroups) {
722		const char *gname = pctlops->get_group_name(pctldev,
723							    group_selector);
724		if (gname && !strcmp(gname, pin_group)) {
725			dev_dbg(pctldev->dev,
726				"found group selector %u for %s\n",
727				group_selector,
728				pin_group);
729			return group_selector;
730		}
731
732		group_selector++;
733	}
734
735	dev_err(pctldev->dev, "does not have pin group %s\n",
736		pin_group);
737
738	return -EINVAL;
739}
740
741bool pinctrl_gpio_can_use_line(unsigned gpio)
742{
743	struct pinctrl_dev *pctldev;
744	struct pinctrl_gpio_range *range;
745	bool result;
746	int pin;
747
748	/*
749	 * Try to obtain GPIO range, if it fails
750	 * we're probably dealing with GPIO driver
751	 * without a backing pin controller - bail out.
752	 */
753	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
754		return true;
755
756	mutex_lock(&pctldev->mutex);
757
758	/* Convert to the pin controllers number space */
759	pin = gpio_to_pin(range, gpio);
760
761	result = pinmux_can_be_used_for_gpio(pctldev, pin);
762
763	mutex_unlock(&pctldev->mutex);
764
765	return result;
766}
767EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
768
769/**
770 * pinctrl_gpio_request() - request a single pin to be used as GPIO
771 * @gpio: the GPIO pin number from the GPIO subsystem number space
772 *
773 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
774 * as part of their gpio_request() semantics, platforms and individual drivers
775 * shall *NOT* request GPIO pins to be muxed in.
776 */
777int pinctrl_gpio_request(unsigned gpio)
778{
779	struct pinctrl_dev *pctldev;
780	struct pinctrl_gpio_range *range;
781	int ret;
782	int pin;
783
784	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
785	if (ret) {
786		if (pinctrl_ready_for_gpio_range(gpio))
787			ret = 0;
788		return ret;
789	}
790
791	mutex_lock(&pctldev->mutex);
792
793	/* Convert to the pin controllers number space */
794	pin = gpio_to_pin(range, gpio);
795
796	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
797
798	mutex_unlock(&pctldev->mutex);
799
800	return ret;
801}
802EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
803
804/**
805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
806 * @gpio: the GPIO pin number from the GPIO subsystem number space
807 *
808 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
809 * as part of their gpio_free() semantics, platforms and individual drivers
810 * shall *NOT* request GPIO pins to be muxed out.
811 */
812void pinctrl_gpio_free(unsigned gpio)
813{
814	struct pinctrl_dev *pctldev;
815	struct pinctrl_gpio_range *range;
816	int ret;
817	int pin;
818
819	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
820	if (ret) {
821		return;
822	}
823	mutex_lock(&pctldev->mutex);
824
825	/* Convert to the pin controllers number space */
826	pin = gpio_to_pin(range, gpio);
827
828	pinmux_free_gpio(pctldev, pin, range);
829
830	mutex_unlock(&pctldev->mutex);
831}
832EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
833
834static int pinctrl_gpio_direction(unsigned gpio, bool input)
835{
836	struct pinctrl_dev *pctldev;
837	struct pinctrl_gpio_range *range;
838	int ret;
839	int pin;
840
841	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
842	if (ret) {
843		return ret;
844	}
845
846	mutex_lock(&pctldev->mutex);
847
848	/* Convert to the pin controllers number space */
849	pin = gpio_to_pin(range, gpio);
850	ret = pinmux_gpio_direction(pctldev, range, pin, input);
851
852	mutex_unlock(&pctldev->mutex);
853
854	return ret;
855}
856
857/**
858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
859 * @gpio: the GPIO pin number from the GPIO subsystem number space
860 *
861 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
862 * as part of their gpio_direction_input() semantics, platforms and individual
863 * drivers shall *NOT* touch pin control GPIO calls.
864 */
865int pinctrl_gpio_direction_input(unsigned gpio)
866{
867	return pinctrl_gpio_direction(gpio, true);
868}
869EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
870
871/**
872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
873 * @gpio: the GPIO pin number from the GPIO subsystem number space
874 *
875 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
876 * as part of their gpio_direction_output() semantics, platforms and individual
877 * drivers shall *NOT* touch pin control GPIO calls.
878 */
879int pinctrl_gpio_direction_output(unsigned gpio)
880{
881	return pinctrl_gpio_direction(gpio, false);
882}
883EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
884
885/**
886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
887 * @gpio: the GPIO pin number from the GPIO subsystem number space
888 * @config: the configuration to apply to the GPIO
889 *
890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
891 * they need to call the underlying pin controller to change GPIO config
892 * (for example set debounce time).
893 */
894int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
895{
896	unsigned long configs[] = { config };
897	struct pinctrl_gpio_range *range;
898	struct pinctrl_dev *pctldev;
899	int ret, pin;
900
901	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
902	if (ret)
903		return ret;
904
905	mutex_lock(&pctldev->mutex);
906	pin = gpio_to_pin(range, gpio);
907	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
908	mutex_unlock(&pctldev->mutex);
909
910	return ret;
911}
912EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
913
914static struct pinctrl_state *find_state(struct pinctrl *p,
915					const char *name)
916{
917	struct pinctrl_state *state;
918
919	list_for_each_entry(state, &p->states, node)
920		if (!strcmp(state->name, name))
921			return state;
922
923	return NULL;
924}
925
926static struct pinctrl_state *create_state(struct pinctrl *p,
927					  const char *name)
928{
929	struct pinctrl_state *state;
930
931	state = kzalloc(sizeof(*state), GFP_KERNEL);
932	if (!state)
933		return ERR_PTR(-ENOMEM);
934
935	state->name = name;
936	INIT_LIST_HEAD(&state->settings);
937
938	list_add_tail(&state->node, &p->states);
939
940	return state;
941}
942
943static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
944		       const struct pinctrl_map *map)
945{
946	struct pinctrl_state *state;
947	struct pinctrl_setting *setting;
948	int ret;
949
950	state = find_state(p, map->name);
951	if (!state)
952		state = create_state(p, map->name);
953	if (IS_ERR(state))
954		return PTR_ERR(state);
955
956	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
957		return 0;
958
959	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
960	if (!setting)
961		return -ENOMEM;
962
963	setting->type = map->type;
964
965	if (pctldev)
966		setting->pctldev = pctldev;
967	else
968		setting->pctldev =
969			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
970	if (!setting->pctldev) {
971		kfree(setting);
972		/* Do not defer probing of hogs (circular loop) */
973		if (!strcmp(map->ctrl_dev_name, map->dev_name))
974			return -ENODEV;
975		/*
976		 * OK let us guess that the driver is not there yet, and
977		 * let's defer obtaining this pinctrl handle to later...
978		 */
979		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
980			map->ctrl_dev_name);
981		return -EPROBE_DEFER;
982	}
983
984	setting->dev_name = map->dev_name;
985
986	switch (map->type) {
987	case PIN_MAP_TYPE_MUX_GROUP:
988		ret = pinmux_map_to_setting(map, setting);
989		break;
990	case PIN_MAP_TYPE_CONFIGS_PIN:
991	case PIN_MAP_TYPE_CONFIGS_GROUP:
992		ret = pinconf_map_to_setting(map, setting);
993		break;
994	default:
995		ret = -EINVAL;
996		break;
997	}
998	if (ret < 0) {
999		kfree(setting);
1000		return ret;
1001	}
1002
1003	list_add_tail(&setting->node, &state->settings);
1004
1005	return 0;
1006}
1007
1008static struct pinctrl *find_pinctrl(struct device *dev)
1009{
1010	struct pinctrl *p;
1011
1012	mutex_lock(&pinctrl_list_mutex);
1013	list_for_each_entry(p, &pinctrl_list, node)
1014		if (p->dev == dev) {
1015			mutex_unlock(&pinctrl_list_mutex);
1016			return p;
1017		}
1018
1019	mutex_unlock(&pinctrl_list_mutex);
1020	return NULL;
1021}
1022
1023static void pinctrl_free(struct pinctrl *p, bool inlist);
1024
1025static struct pinctrl *create_pinctrl(struct device *dev,
1026				      struct pinctrl_dev *pctldev)
1027{
1028	struct pinctrl *p;
1029	const char *devname;
1030	struct pinctrl_maps *maps_node;
1031	int i;
1032	const struct pinctrl_map *map;
1033	int ret;
1034
1035	/*
1036	 * create the state cookie holder struct pinctrl for each
1037	 * mapping, this is what consumers will get when requesting
1038	 * a pin control handle with pinctrl_get()
1039	 */
1040	p = kzalloc(sizeof(*p), GFP_KERNEL);
1041	if (!p)
1042		return ERR_PTR(-ENOMEM);
1043	p->dev = dev;
1044	INIT_LIST_HEAD(&p->states);
1045	INIT_LIST_HEAD(&p->dt_maps);
1046
1047	ret = pinctrl_dt_to_map(p, pctldev);
1048	if (ret < 0) {
1049		kfree(p);
1050		return ERR_PTR(ret);
1051	}
1052
1053	devname = dev_name(dev);
1054
1055	mutex_lock(&pinctrl_maps_mutex);
1056	/* Iterate over the pin control maps to locate the right ones */
1057	for_each_maps(maps_node, i, map) {
1058		/* Map must be for this device */
1059		if (strcmp(map->dev_name, devname))
1060			continue;
1061		/*
1062		 * If pctldev is not null, we are claiming hog for it,
1063		 * that means, setting that is served by pctldev by itself.
1064		 *
1065		 * Thus we must skip map that is for this device but is served
1066		 * by other device.
1067		 */
1068		if (pctldev &&
1069		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070			continue;
1071
1072		ret = add_setting(p, pctldev, map);
1073		/*
1074		 * At this point the adding of a setting may:
1075		 *
1076		 * - Defer, if the pinctrl device is not yet available
1077		 * - Fail, if the pinctrl device is not yet available,
1078		 *   AND the setting is a hog. We cannot defer that, since
1079		 *   the hog will kick in immediately after the device
1080		 *   is registered.
1081		 *
1082		 * If the error returned was not -EPROBE_DEFER then we
1083		 * accumulate the errors to see if we end up with
1084		 * an -EPROBE_DEFER later, as that is the worst case.
1085		 */
1086		if (ret == -EPROBE_DEFER) {
1087			pinctrl_free(p, false);
1088			mutex_unlock(&pinctrl_maps_mutex);
1089			return ERR_PTR(ret);
1090		}
1091	}
1092	mutex_unlock(&pinctrl_maps_mutex);
1093
1094	if (ret < 0) {
1095		/* If some other error than deferral occurred, return here */
1096		pinctrl_free(p, false);
1097		return ERR_PTR(ret);
1098	}
1099
1100	kref_init(&p->users);
1101
1102	/* Add the pinctrl handle to the global list */
1103	mutex_lock(&pinctrl_list_mutex);
1104	list_add_tail(&p->node, &pinctrl_list);
1105	mutex_unlock(&pinctrl_list_mutex);
1106
1107	return p;
1108}
1109
1110/**
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1113 */
1114struct pinctrl *pinctrl_get(struct device *dev)
1115{
1116	struct pinctrl *p;
1117
1118	if (WARN_ON(!dev))
1119		return ERR_PTR(-EINVAL);
1120
1121	/*
1122	 * See if somebody else (such as the device core) has already
1123	 * obtained a handle to the pinctrl for this device. In that case,
1124	 * return another pointer to it.
1125	 */
1126	p = find_pinctrl(dev);
1127	if (p) {
1128		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129		kref_get(&p->users);
1130		return p;
1131	}
1132
1133	return create_pinctrl(dev, NULL);
1134}
1135EXPORT_SYMBOL_GPL(pinctrl_get);
1136
1137static void pinctrl_free_setting(bool disable_setting,
1138				 struct pinctrl_setting *setting)
1139{
1140	switch (setting->type) {
1141	case PIN_MAP_TYPE_MUX_GROUP:
1142		if (disable_setting)
1143			pinmux_disable_setting(setting);
1144		pinmux_free_setting(setting);
1145		break;
1146	case PIN_MAP_TYPE_CONFIGS_PIN:
1147	case PIN_MAP_TYPE_CONFIGS_GROUP:
1148		pinconf_free_setting(setting);
1149		break;
1150	default:
1151		break;
1152	}
1153}
1154
1155static void pinctrl_free(struct pinctrl *p, bool inlist)
1156{
1157	struct pinctrl_state *state, *n1;
1158	struct pinctrl_setting *setting, *n2;
1159
1160	mutex_lock(&pinctrl_list_mutex);
1161	list_for_each_entry_safe(state, n1, &p->states, node) {
1162		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163			pinctrl_free_setting(state == p->state, setting);
1164			list_del(&setting->node);
1165			kfree(setting);
1166		}
1167		list_del(&state->node);
1168		kfree(state);
1169	}
1170
1171	pinctrl_dt_free_maps(p);
1172
1173	if (inlist)
1174		list_del(&p->node);
1175	kfree(p);
1176	mutex_unlock(&pinctrl_list_mutex);
1177}
1178
1179/**
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1182 */
1183static void pinctrl_release(struct kref *kref)
1184{
1185	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186
1187	pinctrl_free(p, true);
1188}
1189
1190/**
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1193 */
1194void pinctrl_put(struct pinctrl *p)
1195{
1196	kref_put(&p->users, pinctrl_release);
1197}
1198EXPORT_SYMBOL_GPL(pinctrl_put);
1199
1200/**
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1204 */
1205struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206						 const char *name)
1207{
1208	struct pinctrl_state *state;
1209
1210	state = find_state(p, name);
1211	if (!state) {
1212		if (pinctrl_dummy_state) {
1213			/* create dummy state */
1214			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215				name);
1216			state = create_state(p, name);
1217		} else
1218			state = ERR_PTR(-ENODEV);
1219	}
1220
1221	return state;
1222}
1223EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224
1225static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226			     struct device *consumer)
1227{
1228	if (pctldev->desc->link_consumers)
1229		device_link_add(consumer, pctldev->dev,
1230				DL_FLAG_PM_RUNTIME |
1231				DL_FLAG_AUTOREMOVE_CONSUMER);
1232}
1233
1234/**
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1238 */
1239static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240{
1241	struct pinctrl_setting *setting, *setting2;
1242	struct pinctrl_state *old_state = READ_ONCE(p->state);
1243	int ret;
1244
1245	if (old_state) {
1246		/*
1247		 * For each pinmux setting in the old state, forget SW's record
1248		 * of mux owner for that pingroup. Any pingroups which are
1249		 * still owned by the new state will be re-acquired by the call
1250		 * to pinmux_enable_setting() in the loop below.
1251		 */
1252		list_for_each_entry(setting, &old_state->settings, node) {
1253			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254				continue;
1255			pinmux_disable_setting(setting);
1256		}
1257	}
1258
1259	p->state = NULL;
1260
1261	/* Apply all the settings for the new state */
1262	list_for_each_entry(setting, &state->settings, node) {
1263		switch (setting->type) {
1264		case PIN_MAP_TYPE_MUX_GROUP:
1265			ret = pinmux_enable_setting(setting);
1266			break;
1267		case PIN_MAP_TYPE_CONFIGS_PIN:
1268		case PIN_MAP_TYPE_CONFIGS_GROUP:
1269			ret = pinconf_apply_setting(setting);
1270			break;
1271		default:
1272			ret = -EINVAL;
1273			break;
1274		}
1275
1276		if (ret < 0) {
1277			goto unapply_new_state;
1278		}
1279
1280		/* Do not link hogs (circular dependency) */
1281		if (p != setting->pctldev->p)
1282			pinctrl_link_add(setting->pctldev, p->dev);
1283	}
1284
1285	p->state = state;
1286
1287	return 0;
1288
1289unapply_new_state:
1290	dev_err(p->dev, "Error applying setting, reverse things back\n");
1291
1292	list_for_each_entry(setting2, &state->settings, node) {
1293		if (&setting2->node == &setting->node)
1294			break;
1295		/*
1296		 * All we can do here is pinmux_disable_setting.
1297		 * That means that some pins are muxed differently now
1298		 * than they were before applying the setting (We can't
1299		 * "unmux a pin"!), but it's not a big deal since the pins
1300		 * are free to be muxed by another apply_setting.
1301		 */
1302		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1303			pinmux_disable_setting(setting2);
1304	}
1305
1306	/* There's no infinite recursive loop here because p->state is NULL */
1307	if (old_state)
1308		pinctrl_select_state(p, old_state);
1309
1310	return ret;
1311}
1312
1313/**
1314 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1315 * @p: the pinctrl handle for the device that requests configuration
1316 * @state: the state handle to select/activate/program
1317 */
1318int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1319{
1320	if (p->state == state)
1321		return 0;
1322
1323	return pinctrl_commit_state(p, state);
1324}
1325EXPORT_SYMBOL_GPL(pinctrl_select_state);
1326
1327static void devm_pinctrl_release(struct device *dev, void *res)
1328{
1329	pinctrl_put(*(struct pinctrl **)res);
1330}
1331
1332/**
1333 * devm_pinctrl_get() - Resource managed pinctrl_get()
1334 * @dev: the device to obtain the handle for
1335 *
1336 * If there is a need to explicitly destroy the returned struct pinctrl,
1337 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1338 */
1339struct pinctrl *devm_pinctrl_get(struct device *dev)
1340{
1341	struct pinctrl **ptr, *p;
1342
1343	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1344	if (!ptr)
1345		return ERR_PTR(-ENOMEM);
1346
1347	p = pinctrl_get(dev);
1348	if (!IS_ERR(p)) {
1349		*ptr = p;
1350		devres_add(dev, ptr);
1351	} else {
1352		devres_free(ptr);
1353	}
1354
1355	return p;
1356}
1357EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1358
1359static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1360{
1361	struct pinctrl **p = res;
1362
1363	return *p == data;
1364}
1365
1366/**
1367 * devm_pinctrl_put() - Resource managed pinctrl_put()
1368 * @p: the pinctrl handle to release
1369 *
1370 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1371 * this function will not need to be called and the resource management
1372 * code will ensure that the resource is freed.
1373 */
1374void devm_pinctrl_put(struct pinctrl *p)
1375{
1376	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1377			       devm_pinctrl_match, p));
1378}
1379EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1380
1381/**
1382 * pinctrl_register_mappings() - register a set of pin controller mappings
1383 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1384 *	keeps a reference to the passed in maps, so they should _not_ be
1385 *	marked with __initdata.
1386 * @num_maps: the number of maps in the mapping table
1387 */
1388int pinctrl_register_mappings(const struct pinctrl_map *maps,
1389			      unsigned num_maps)
1390{
1391	int i, ret;
1392	struct pinctrl_maps *maps_node;
1393
1394	pr_debug("add %u pinctrl maps\n", num_maps);
1395
1396	/* First sanity check the new mapping */
1397	for (i = 0; i < num_maps; i++) {
1398		if (!maps[i].dev_name) {
1399			pr_err("failed to register map %s (%d): no device given\n",
1400			       maps[i].name, i);
1401			return -EINVAL;
1402		}
1403
1404		if (!maps[i].name) {
1405			pr_err("failed to register map %d: no map name given\n",
1406			       i);
1407			return -EINVAL;
1408		}
1409
1410		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1411				!maps[i].ctrl_dev_name) {
1412			pr_err("failed to register map %s (%d): no pin control device given\n",
1413			       maps[i].name, i);
1414			return -EINVAL;
1415		}
1416
1417		switch (maps[i].type) {
1418		case PIN_MAP_TYPE_DUMMY_STATE:
1419			break;
1420		case PIN_MAP_TYPE_MUX_GROUP:
1421			ret = pinmux_validate_map(&maps[i], i);
1422			if (ret < 0)
1423				return ret;
1424			break;
1425		case PIN_MAP_TYPE_CONFIGS_PIN:
1426		case PIN_MAP_TYPE_CONFIGS_GROUP:
1427			ret = pinconf_validate_map(&maps[i], i);
1428			if (ret < 0)
1429				return ret;
1430			break;
1431		default:
1432			pr_err("failed to register map %s (%d): invalid type given\n",
1433			       maps[i].name, i);
1434			return -EINVAL;
1435		}
1436	}
1437
1438	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1439	if (!maps_node)
1440		return -ENOMEM;
1441
1442	maps_node->maps = maps;
1443	maps_node->num_maps = num_maps;
1444
1445	mutex_lock(&pinctrl_maps_mutex);
1446	list_add_tail(&maps_node->node, &pinctrl_maps);
1447	mutex_unlock(&pinctrl_maps_mutex);
1448
1449	return 0;
1450}
1451EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1452
1453/**
1454 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1455 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1456 *	when registering the mappings.
1457 */
1458void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1459{
1460	struct pinctrl_maps *maps_node;
1461
1462	mutex_lock(&pinctrl_maps_mutex);
1463	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1464		if (maps_node->maps == map) {
1465			list_del(&maps_node->node);
1466			kfree(maps_node);
1467			mutex_unlock(&pinctrl_maps_mutex);
1468			return;
1469		}
1470	}
1471	mutex_unlock(&pinctrl_maps_mutex);
1472}
1473EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1474
1475/**
1476 * pinctrl_force_sleep() - turn a given controller device into sleep state
1477 * @pctldev: pin controller device
1478 */
1479int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1480{
1481	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1482		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1483	return 0;
1484}
1485EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1486
1487/**
1488 * pinctrl_force_default() - turn a given controller device into default state
1489 * @pctldev: pin controller device
1490 */
1491int pinctrl_force_default(struct pinctrl_dev *pctldev)
1492{
1493	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1494		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1495	return 0;
1496}
1497EXPORT_SYMBOL_GPL(pinctrl_force_default);
1498
1499/**
1500 * pinctrl_init_done() - tell pinctrl probe is done
1501 *
1502 * We'll use this time to switch the pins from "init" to "default" unless the
1503 * driver selected some other state.
1504 *
1505 * @dev: device to that's done probing
1506 */
1507int pinctrl_init_done(struct device *dev)
1508{
1509	struct dev_pin_info *pins = dev->pins;
1510	int ret;
1511
1512	if (!pins)
1513		return 0;
1514
1515	if (IS_ERR(pins->init_state))
1516		return 0; /* No such state */
1517
1518	if (pins->p->state != pins->init_state)
1519		return 0; /* Not at init anyway */
1520
1521	if (IS_ERR(pins->default_state))
1522		return 0; /* No default state */
1523
1524	ret = pinctrl_select_state(pins->p, pins->default_state);
1525	if (ret)
1526		dev_err(dev, "failed to activate default pinctrl state\n");
1527
1528	return ret;
1529}
1530
1531static int pinctrl_select_bound_state(struct device *dev,
1532				      struct pinctrl_state *state)
1533{
1534	struct dev_pin_info *pins = dev->pins;
1535	int ret;
1536
1537	if (IS_ERR(state))
1538		return 0; /* No such state */
1539	ret = pinctrl_select_state(pins->p, state);
1540	if (ret)
1541		dev_err(dev, "failed to activate pinctrl state %s\n",
1542			state->name);
1543	return ret;
1544}
1545
1546/**
1547 * pinctrl_select_default_state() - select default pinctrl state
1548 * @dev: device to select default state for
1549 */
1550int pinctrl_select_default_state(struct device *dev)
1551{
1552	if (!dev->pins)
1553		return 0;
1554
1555	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1556}
1557EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1558
1559#ifdef CONFIG_PM
1560
1561/**
1562 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1563 * @dev: device to select default state for
1564 */
1565int pinctrl_pm_select_default_state(struct device *dev)
1566{
1567	return pinctrl_select_default_state(dev);
1568}
1569EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1570
1571/**
1572 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1573 * @dev: device to select sleep state for
1574 */
1575int pinctrl_pm_select_sleep_state(struct device *dev)
1576{
1577	if (!dev->pins)
1578		return 0;
1579
1580	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1581}
1582EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1583
1584/**
1585 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1586 * @dev: device to select idle state for
1587 */
1588int pinctrl_pm_select_idle_state(struct device *dev)
1589{
1590	if (!dev->pins)
1591		return 0;
1592
1593	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1594}
1595EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1596#endif
1597
1598#ifdef CONFIG_DEBUG_FS
1599
1600static int pinctrl_pins_show(struct seq_file *s, void *what)
1601{
1602	struct pinctrl_dev *pctldev = s->private;
1603	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1604	unsigned i, pin;
1605#ifdef CONFIG_GPIOLIB
1606	struct pinctrl_gpio_range *range;
1607	struct gpio_chip *chip;
1608	int gpio_num;
1609#endif
1610
1611	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1612
1613	mutex_lock(&pctldev->mutex);
1614
1615	/* The pin number can be retrived from the pin controller descriptor */
1616	for (i = 0; i < pctldev->desc->npins; i++) {
1617		struct pin_desc *desc;
1618
1619		pin = pctldev->desc->pins[i].number;
1620		desc = pin_desc_get(pctldev, pin);
1621		/* Pin space may be sparse */
1622		if (!desc)
1623			continue;
1624
1625		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1626
1627#ifdef CONFIG_GPIOLIB
1628		gpio_num = -1;
1629		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1630			if ((pin >= range->pin_base) &&
1631			    (pin < (range->pin_base + range->npins))) {
1632				gpio_num = range->base + (pin - range->pin_base);
1633				break;
1634			}
1635		}
1636		if (gpio_num >= 0)
1637			chip = gpio_to_chip(gpio_num);
1638		else
1639			chip = NULL;
1640		if (chip)
1641			seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1642		else
1643			seq_puts(s, "0:? ");
1644#endif
1645
1646		/* Driver-specific info per pin */
1647		if (ops->pin_dbg_show)
1648			ops->pin_dbg_show(pctldev, s, pin);
1649
1650		seq_puts(s, "\n");
1651	}
1652
1653	mutex_unlock(&pctldev->mutex);
1654
1655	return 0;
1656}
1657DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1658
1659static int pinctrl_groups_show(struct seq_file *s, void *what)
1660{
1661	struct pinctrl_dev *pctldev = s->private;
1662	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1663	unsigned ngroups, selector = 0;
1664
1665	mutex_lock(&pctldev->mutex);
1666
1667	ngroups = ops->get_groups_count(pctldev);
1668
1669	seq_puts(s, "registered pin groups:\n");
1670	while (selector < ngroups) {
1671		const unsigned *pins = NULL;
1672		unsigned num_pins = 0;
1673		const char *gname = ops->get_group_name(pctldev, selector);
1674		const char *pname;
1675		int ret = 0;
1676		int i;
1677
1678		if (ops->get_group_pins)
1679			ret = ops->get_group_pins(pctldev, selector,
1680						  &pins, &num_pins);
1681		if (ret)
1682			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1683				   gname);
1684		else {
1685			seq_printf(s, "group: %s\n", gname);
1686			for (i = 0; i < num_pins; i++) {
1687				pname = pin_get_name(pctldev, pins[i]);
1688				if (WARN_ON(!pname)) {
1689					mutex_unlock(&pctldev->mutex);
1690					return -EINVAL;
1691				}
1692				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1693			}
1694			seq_puts(s, "\n");
1695		}
1696		selector++;
1697	}
1698
1699	mutex_unlock(&pctldev->mutex);
1700
1701	return 0;
1702}
1703DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1704
1705static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1706{
1707	struct pinctrl_dev *pctldev = s->private;
1708	struct pinctrl_gpio_range *range;
1709
1710	seq_puts(s, "GPIO ranges handled:\n");
1711
1712	mutex_lock(&pctldev->mutex);
1713
1714	/* Loop over the ranges */
1715	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1716		if (range->pins) {
1717			int a;
1718			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1719				range->id, range->name,
1720				range->base, (range->base + range->npins - 1));
1721			for (a = 0; a < range->npins - 1; a++)
1722				seq_printf(s, "%u, ", range->pins[a]);
1723			seq_printf(s, "%u}\n", range->pins[a]);
1724		}
1725		else
1726			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1727				range->id, range->name,
1728				range->base, (range->base + range->npins - 1),
1729				range->pin_base,
1730				(range->pin_base + range->npins - 1));
1731	}
1732
1733	mutex_unlock(&pctldev->mutex);
1734
1735	return 0;
1736}
1737DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1738
1739static int pinctrl_devices_show(struct seq_file *s, void *what)
1740{
1741	struct pinctrl_dev *pctldev;
1742
1743	seq_puts(s, "name [pinmux] [pinconf]\n");
1744
1745	mutex_lock(&pinctrldev_list_mutex);
1746
1747	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1748		seq_printf(s, "%s ", pctldev->desc->name);
1749		if (pctldev->desc->pmxops)
1750			seq_puts(s, "yes ");
1751		else
1752			seq_puts(s, "no ");
1753		if (pctldev->desc->confops)
1754			seq_puts(s, "yes");
1755		else
1756			seq_puts(s, "no");
1757		seq_puts(s, "\n");
1758	}
1759
1760	mutex_unlock(&pinctrldev_list_mutex);
1761
1762	return 0;
1763}
1764DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1765
1766static inline const char *map_type(enum pinctrl_map_type type)
1767{
1768	static const char * const names[] = {
1769		"INVALID",
1770		"DUMMY_STATE",
1771		"MUX_GROUP",
1772		"CONFIGS_PIN",
1773		"CONFIGS_GROUP",
1774	};
1775
1776	if (type >= ARRAY_SIZE(names))
1777		return "UNKNOWN";
1778
1779	return names[type];
1780}
1781
1782static int pinctrl_maps_show(struct seq_file *s, void *what)
1783{
1784	struct pinctrl_maps *maps_node;
1785	int i;
1786	const struct pinctrl_map *map;
1787
1788	seq_puts(s, "Pinctrl maps:\n");
1789
1790	mutex_lock(&pinctrl_maps_mutex);
1791	for_each_maps(maps_node, i, map) {
1792		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1793			   map->dev_name, map->name, map_type(map->type),
1794			   map->type);
1795
1796		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1797			seq_printf(s, "controlling device %s\n",
1798				   map->ctrl_dev_name);
1799
1800		switch (map->type) {
1801		case PIN_MAP_TYPE_MUX_GROUP:
1802			pinmux_show_map(s, map);
1803			break;
1804		case PIN_MAP_TYPE_CONFIGS_PIN:
1805		case PIN_MAP_TYPE_CONFIGS_GROUP:
1806			pinconf_show_map(s, map);
1807			break;
1808		default:
1809			break;
1810		}
1811
1812		seq_putc(s, '\n');
1813	}
1814	mutex_unlock(&pinctrl_maps_mutex);
1815
1816	return 0;
1817}
1818DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1819
1820static int pinctrl_show(struct seq_file *s, void *what)
1821{
1822	struct pinctrl *p;
1823	struct pinctrl_state *state;
1824	struct pinctrl_setting *setting;
1825
1826	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1827
1828	mutex_lock(&pinctrl_list_mutex);
1829
1830	list_for_each_entry(p, &pinctrl_list, node) {
1831		seq_printf(s, "device: %s current state: %s\n",
1832			   dev_name(p->dev),
1833			   p->state ? p->state->name : "none");
1834
1835		list_for_each_entry(state, &p->states, node) {
1836			seq_printf(s, "  state: %s\n", state->name);
1837
1838			list_for_each_entry(setting, &state->settings, node) {
1839				struct pinctrl_dev *pctldev = setting->pctldev;
1840
1841				seq_printf(s, "    type: %s controller %s ",
1842					   map_type(setting->type),
1843					   pinctrl_dev_get_name(pctldev));
1844
1845				switch (setting->type) {
1846				case PIN_MAP_TYPE_MUX_GROUP:
1847					pinmux_show_setting(s, setting);
1848					break;
1849				case PIN_MAP_TYPE_CONFIGS_PIN:
1850				case PIN_MAP_TYPE_CONFIGS_GROUP:
1851					pinconf_show_setting(s, setting);
1852					break;
1853				default:
1854					break;
1855				}
1856			}
1857		}
1858	}
1859
1860	mutex_unlock(&pinctrl_list_mutex);
1861
1862	return 0;
1863}
1864DEFINE_SHOW_ATTRIBUTE(pinctrl);
1865
1866static struct dentry *debugfs_root;
1867
1868static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1869{
1870	struct dentry *device_root;
1871	const char *debugfs_name;
1872
1873	if (pctldev->desc->name &&
1874			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1875		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1876				"%s-%s", dev_name(pctldev->dev),
1877				pctldev->desc->name);
1878		if (!debugfs_name) {
1879			pr_warn("failed to determine debugfs dir name for %s\n",
1880				dev_name(pctldev->dev));
1881			return;
1882		}
1883	} else {
1884		debugfs_name = dev_name(pctldev->dev);
1885	}
1886
1887	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1888	pctldev->device_root = device_root;
1889
1890	if (IS_ERR(device_root) || !device_root) {
1891		pr_warn("failed to create debugfs directory for %s\n",
1892			dev_name(pctldev->dev));
1893		return;
1894	}
1895	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1896			    device_root, pctldev, &pinctrl_pins_fops);
1897	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1898			    device_root, pctldev, &pinctrl_groups_fops);
1899	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1900			    device_root, pctldev, &pinctrl_gpioranges_fops);
1901	if (pctldev->desc->pmxops)
1902		pinmux_init_device_debugfs(device_root, pctldev);
1903	if (pctldev->desc->confops)
1904		pinconf_init_device_debugfs(device_root, pctldev);
1905}
1906
1907static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1908{
1909	debugfs_remove_recursive(pctldev->device_root);
1910}
1911
1912static void pinctrl_init_debugfs(void)
1913{
1914	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1915	if (IS_ERR(debugfs_root) || !debugfs_root) {
1916		pr_warn("failed to create debugfs directory\n");
1917		debugfs_root = NULL;
1918		return;
1919	}
1920
1921	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1922			    debugfs_root, NULL, &pinctrl_devices_fops);
1923	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1924			    debugfs_root, NULL, &pinctrl_maps_fops);
1925	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1926			    debugfs_root, NULL, &pinctrl_fops);
1927}
1928
1929#else /* CONFIG_DEBUG_FS */
1930
1931static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1932{
1933}
1934
1935static void pinctrl_init_debugfs(void)
1936{
1937}
1938
1939static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1940{
1941}
1942
1943#endif
1944
1945static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1946{
1947	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1948
1949	if (!ops ||
1950	    !ops->get_groups_count ||
1951	    !ops->get_group_name)
1952		return -EINVAL;
1953
1954	return 0;
1955}
1956
1957/**
1958 * pinctrl_init_controller() - init a pin controller device
1959 * @pctldesc: descriptor for this pin controller
1960 * @dev: parent device for this pin controller
1961 * @driver_data: private pin controller data for this pin controller
1962 */
1963static struct pinctrl_dev *
1964pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1965			void *driver_data)
1966{
1967	struct pinctrl_dev *pctldev;
1968	int ret;
1969
1970	if (!pctldesc)
1971		return ERR_PTR(-EINVAL);
1972	if (!pctldesc->name)
1973		return ERR_PTR(-EINVAL);
1974
1975	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1976	if (!pctldev)
1977		return ERR_PTR(-ENOMEM);
1978
1979	/* Initialize pin control device struct */
1980	pctldev->owner = pctldesc->owner;
1981	pctldev->desc = pctldesc;
1982	pctldev->driver_data = driver_data;
1983	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1984#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1985	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1986#endif
1987#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1988	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1989#endif
1990	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1991	INIT_LIST_HEAD(&pctldev->node);
1992	pctldev->dev = dev;
1993	mutex_init(&pctldev->mutex);
1994
1995	/* check core ops for sanity */
1996	ret = pinctrl_check_ops(pctldev);
1997	if (ret) {
1998		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1999		goto out_err;
2000	}
2001
2002	/* If we're implementing pinmuxing, check the ops for sanity */
2003	if (pctldesc->pmxops) {
2004		ret = pinmux_check_ops(pctldev);
2005		if (ret)
2006			goto out_err;
2007	}
2008
2009	/* If we're implementing pinconfig, check the ops for sanity */
2010	if (pctldesc->confops) {
2011		ret = pinconf_check_ops(pctldev);
2012		if (ret)
2013			goto out_err;
2014	}
2015
2016	/* Register all the pins */
2017	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2018	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2019	if (ret) {
2020		dev_err(dev, "error during pin registration\n");
2021		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2022				      pctldesc->npins);
2023		goto out_err;
2024	}
2025
2026	return pctldev;
2027
2028out_err:
2029	mutex_destroy(&pctldev->mutex);
2030	kfree(pctldev);
2031	return ERR_PTR(ret);
2032}
2033
2034static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2035{
2036	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2037	if (PTR_ERR(pctldev->p) == -ENODEV) {
2038		dev_dbg(pctldev->dev, "no hogs found\n");
2039
2040		return 0;
2041	}
2042
2043	if (IS_ERR(pctldev->p)) {
2044		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2045			PTR_ERR(pctldev->p));
2046
2047		return PTR_ERR(pctldev->p);
2048	}
2049
2050	pctldev->hog_default =
2051		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2052	if (IS_ERR(pctldev->hog_default)) {
2053		dev_dbg(pctldev->dev,
2054			"failed to lookup the default state\n");
2055	} else {
2056		if (pinctrl_select_state(pctldev->p,
2057					 pctldev->hog_default))
2058			dev_err(pctldev->dev,
2059				"failed to select default state\n");
2060	}
2061
2062	pctldev->hog_sleep =
2063		pinctrl_lookup_state(pctldev->p,
2064				     PINCTRL_STATE_SLEEP);
2065	if (IS_ERR(pctldev->hog_sleep))
2066		dev_dbg(pctldev->dev,
2067			"failed to lookup the sleep state\n");
2068
2069	return 0;
2070}
2071
2072int pinctrl_enable(struct pinctrl_dev *pctldev)
2073{
2074	int error;
2075
2076	error = pinctrl_claim_hogs(pctldev);
2077	if (error) {
2078		dev_err(pctldev->dev, "could not claim hogs: %i\n", error);
2079		return error;
2080	}
2081
2082	mutex_lock(&pinctrldev_list_mutex);
2083	list_add_tail(&pctldev->node, &pinctrldev_list);
2084	mutex_unlock(&pinctrldev_list_mutex);
2085
2086	pinctrl_init_device_debugfs(pctldev);
2087
2088	return 0;
2089}
2090EXPORT_SYMBOL_GPL(pinctrl_enable);
2091
2092/**
2093 * pinctrl_register() - register a pin controller device
2094 * @pctldesc: descriptor for this pin controller
2095 * @dev: parent device for this pin controller
2096 * @driver_data: private pin controller data for this pin controller
2097 *
2098 * Note that pinctrl_register() is known to have problems as the pin
2099 * controller driver functions are called before the driver has a
2100 * struct pinctrl_dev handle. To avoid issues later on, please use the
2101 * new pinctrl_register_and_init() below instead.
2102 */
2103struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2104				    struct device *dev, void *driver_data)
2105{
2106	struct pinctrl_dev *pctldev;
2107	int error;
2108
2109	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2110	if (IS_ERR(pctldev))
2111		return pctldev;
2112
2113	error = pinctrl_enable(pctldev);
2114	if (error)
2115		return ERR_PTR(error);
2116
2117	return pctldev;
2118}
2119EXPORT_SYMBOL_GPL(pinctrl_register);
2120
2121/**
2122 * pinctrl_register_and_init() - register and init pin controller device
2123 * @pctldesc: descriptor for this pin controller
2124 * @dev: parent device for this pin controller
2125 * @driver_data: private pin controller data for this pin controller
2126 * @pctldev: pin controller device
2127 *
2128 * Note that pinctrl_enable() still needs to be manually called after
2129 * this once the driver is ready.
2130 */
2131int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2132			      struct device *dev, void *driver_data,
2133			      struct pinctrl_dev **pctldev)
2134{
2135	struct pinctrl_dev *p;
2136
2137	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2138	if (IS_ERR(p))
2139		return PTR_ERR(p);
2140
2141	/*
2142	 * We have pinctrl_start() call functions in the pin controller
2143	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2144	 * let's make sure pctldev is properly initialized for the
2145	 * pin controller driver before we do anything.
2146	 */
2147	*pctldev = p;
2148
2149	return 0;
2150}
2151EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2152
2153/**
2154 * pinctrl_unregister() - unregister pinmux
2155 * @pctldev: pin controller to unregister
2156 *
2157 * Called by pinmux drivers to unregister a pinmux.
2158 */
2159void pinctrl_unregister(struct pinctrl_dev *pctldev)
2160{
2161	struct pinctrl_gpio_range *range, *n;
2162
2163	if (!pctldev)
2164		return;
2165
2166	mutex_lock(&pctldev->mutex);
2167	pinctrl_remove_device_debugfs(pctldev);
2168	mutex_unlock(&pctldev->mutex);
2169
2170	if (!IS_ERR_OR_NULL(pctldev->p))
2171		pinctrl_put(pctldev->p);
2172
2173	mutex_lock(&pinctrldev_list_mutex);
2174	mutex_lock(&pctldev->mutex);
2175	/* TODO: check that no pinmuxes are still active? */
2176	list_del(&pctldev->node);
2177	pinmux_generic_free_functions(pctldev);
2178	pinctrl_generic_free_groups(pctldev);
2179	/* Destroy descriptor tree */
2180	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2181			      pctldev->desc->npins);
2182	/* remove gpio ranges map */
2183	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2184		list_del(&range->node);
2185
2186	mutex_unlock(&pctldev->mutex);
2187	mutex_destroy(&pctldev->mutex);
2188	kfree(pctldev);
2189	mutex_unlock(&pinctrldev_list_mutex);
2190}
2191EXPORT_SYMBOL_GPL(pinctrl_unregister);
2192
2193static void devm_pinctrl_dev_release(struct device *dev, void *res)
2194{
2195	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2196
2197	pinctrl_unregister(pctldev);
2198}
2199
2200static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2201{
2202	struct pctldev **r = res;
2203
2204	if (WARN_ON(!r || !*r))
2205		return 0;
2206
2207	return *r == data;
2208}
2209
2210/**
2211 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2212 * @dev: parent device for this pin controller
2213 * @pctldesc: descriptor for this pin controller
2214 * @driver_data: private pin controller data for this pin controller
2215 *
2216 * Returns an error pointer if pincontrol register failed. Otherwise
2217 * it returns valid pinctrl handle.
2218 *
2219 * The pinctrl device will be automatically released when the device is unbound.
2220 */
2221struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2222					  struct pinctrl_desc *pctldesc,
2223					  void *driver_data)
2224{
2225	struct pinctrl_dev **ptr, *pctldev;
2226
2227	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2228	if (!ptr)
2229		return ERR_PTR(-ENOMEM);
2230
2231	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2232	if (IS_ERR(pctldev)) {
2233		devres_free(ptr);
2234		return pctldev;
2235	}
2236
2237	*ptr = pctldev;
2238	devres_add(dev, ptr);
2239
2240	return pctldev;
2241}
2242EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2243
2244/**
2245 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2246 * @dev: parent device for this pin controller
2247 * @pctldesc: descriptor for this pin controller
2248 * @driver_data: private pin controller data for this pin controller
2249 * @pctldev: pin controller device
2250 *
2251 * Returns zero on success or an error number on failure.
2252 *
2253 * The pinctrl device will be automatically released when the device is unbound.
2254 */
2255int devm_pinctrl_register_and_init(struct device *dev,
2256				   struct pinctrl_desc *pctldesc,
2257				   void *driver_data,
2258				   struct pinctrl_dev **pctldev)
2259{
2260	struct pinctrl_dev **ptr;
2261	int error;
2262
2263	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2264	if (!ptr)
2265		return -ENOMEM;
2266
2267	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2268	if (error) {
2269		devres_free(ptr);
2270		return error;
2271	}
2272
2273	*ptr = *pctldev;
2274	devres_add(dev, ptr);
2275
2276	return 0;
2277}
2278EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2279
2280/**
2281 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2282 * @dev: device for which which resource was allocated
2283 * @pctldev: the pinctrl device to unregister.
2284 */
2285void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2286{
2287	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2288			       devm_pinctrl_dev_match, pctldev));
2289}
2290EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2291
2292static int __init pinctrl_init(void)
2293{
2294	pr_info("initialized pinctrl subsystem\n");
2295	pinctrl_init_debugfs();
2296	return 0;
2297}
2298
2299/* init early since many drivers really need to initialized pinmux early */
2300core_initcall(pinctrl_init);
2301