1// SPDX-License-Identifier: GPL-2.0-only 2#undef DEBUG 3 4/* 5 * ARM performance counter support. 6 * 7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 9 * 10 * This code is based on the sparc64 perf event code, which is in turn based 11 * on the x86 code. 12 */ 13#define pr_fmt(fmt) "hw perfevents: " fmt 14 15#include <linux/bitmap.h> 16#include <linux/cpumask.h> 17#include <linux/cpu_pm.h> 18#include <linux/export.h> 19#include <linux/kernel.h> 20#include <linux/perf/arm_pmu.h> 21#include <linux/slab.h> 22#include <linux/sched/clock.h> 23#include <linux/spinlock.h> 24#include <linux/irq.h> 25#include <linux/irqdesc.h> 26 27#include <asm/irq_regs.h> 28 29static int armpmu_count_irq_users(const int irq); 30 31struct pmu_irq_ops { 32 void (*enable_pmuirq)(unsigned int irq); 33 void (*disable_pmuirq)(unsigned int irq); 34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid); 35}; 36 37static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid) 38{ 39 free_irq(irq, per_cpu_ptr(devid, cpu)); 40} 41 42static const struct pmu_irq_ops pmuirq_ops = { 43 .enable_pmuirq = enable_irq, 44 .disable_pmuirq = disable_irq_nosync, 45 .free_pmuirq = armpmu_free_pmuirq 46}; 47 48static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid) 49{ 50 free_nmi(irq, per_cpu_ptr(devid, cpu)); 51} 52 53static const struct pmu_irq_ops pmunmi_ops = { 54 .enable_pmuirq = enable_nmi, 55 .disable_pmuirq = disable_nmi_nosync, 56 .free_pmuirq = armpmu_free_pmunmi 57}; 58 59static void armpmu_enable_percpu_pmuirq(unsigned int irq) 60{ 61 enable_percpu_irq(irq, IRQ_TYPE_NONE); 62} 63 64static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu, 65 void __percpu *devid) 66{ 67 if (armpmu_count_irq_users(irq) == 1) 68 free_percpu_irq(irq, devid); 69} 70 71static const struct pmu_irq_ops percpu_pmuirq_ops = { 72 .enable_pmuirq = armpmu_enable_percpu_pmuirq, 73 .disable_pmuirq = disable_percpu_irq, 74 .free_pmuirq = armpmu_free_percpu_pmuirq 75}; 76 77static void armpmu_enable_percpu_pmunmi(unsigned int irq) 78{ 79 if (!prepare_percpu_nmi(irq)) 80 enable_percpu_nmi(irq, IRQ_TYPE_NONE); 81} 82 83static void armpmu_disable_percpu_pmunmi(unsigned int irq) 84{ 85 disable_percpu_nmi(irq); 86 teardown_percpu_nmi(irq); 87} 88 89static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu, 90 void __percpu *devid) 91{ 92 if (armpmu_count_irq_users(irq) == 1) 93 free_percpu_nmi(irq, devid); 94} 95 96static const struct pmu_irq_ops percpu_pmunmi_ops = { 97 .enable_pmuirq = armpmu_enable_percpu_pmunmi, 98 .disable_pmuirq = armpmu_disable_percpu_pmunmi, 99 .free_pmuirq = armpmu_free_percpu_pmunmi 100}; 101 102static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); 103static DEFINE_PER_CPU(int, cpu_irq); 104static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops); 105 106static bool has_nmi; 107 108static inline u64 arm_pmu_event_max_period(struct perf_event *event) 109{ 110 if (event->hw.flags & ARMPMU_EVT_64BIT) 111 return GENMASK_ULL(63, 0); 112 else 113 return GENMASK_ULL(31, 0); 114} 115 116static int 117armpmu_map_cache_event(const unsigned (*cache_map) 118 [PERF_COUNT_HW_CACHE_MAX] 119 [PERF_COUNT_HW_CACHE_OP_MAX] 120 [PERF_COUNT_HW_CACHE_RESULT_MAX], 121 u64 config) 122{ 123 unsigned int cache_type, cache_op, cache_result, ret; 124 125 cache_type = (config >> 0) & 0xff; 126 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 127 return -EINVAL; 128 129 cache_op = (config >> 8) & 0xff; 130 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 131 return -EINVAL; 132 133 cache_result = (config >> 16) & 0xff; 134 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 135 return -EINVAL; 136 137 if (!cache_map) 138 return -ENOENT; 139 140 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 141 142 if (ret == CACHE_OP_UNSUPPORTED) 143 return -ENOENT; 144 145 return ret; 146} 147 148static int 149armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 150{ 151 int mapping; 152 153 if (config >= PERF_COUNT_HW_MAX) 154 return -EINVAL; 155 156 if (!event_map) 157 return -ENOENT; 158 159 mapping = (*event_map)[config]; 160 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 161} 162 163static int 164armpmu_map_raw_event(u32 raw_event_mask, u64 config) 165{ 166 return (int)(config & raw_event_mask); 167} 168 169int 170armpmu_map_event(struct perf_event *event, 171 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 172 const unsigned (*cache_map) 173 [PERF_COUNT_HW_CACHE_MAX] 174 [PERF_COUNT_HW_CACHE_OP_MAX] 175 [PERF_COUNT_HW_CACHE_RESULT_MAX], 176 u32 raw_event_mask) 177{ 178 u64 config = event->attr.config; 179 int type = event->attr.type; 180 181 if (type == event->pmu->type) 182 return armpmu_map_raw_event(raw_event_mask, config); 183 184 switch (type) { 185 case PERF_TYPE_HARDWARE: 186 return armpmu_map_hw_event(event_map, config); 187 case PERF_TYPE_HW_CACHE: 188 return armpmu_map_cache_event(cache_map, config); 189 case PERF_TYPE_RAW: 190 return armpmu_map_raw_event(raw_event_mask, config); 191 } 192 193 return -ENOENT; 194} 195 196int armpmu_event_set_period(struct perf_event *event) 197{ 198 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 199 struct hw_perf_event *hwc = &event->hw; 200 s64 left = local64_read(&hwc->period_left); 201 s64 period = hwc->sample_period; 202 u64 max_period; 203 int ret = 0; 204 205 max_period = arm_pmu_event_max_period(event); 206 if (unlikely(left <= -period)) { 207 left = period; 208 local64_set(&hwc->period_left, left); 209 hwc->last_period = period; 210 ret = 1; 211 } 212 213 if (unlikely(left <= 0)) { 214 left += period; 215 local64_set(&hwc->period_left, left); 216 hwc->last_period = period; 217 ret = 1; 218 } 219 220 /* 221 * Limit the maximum period to prevent the counter value 222 * from overtaking the one we are about to program. In 223 * effect we are reducing max_period to account for 224 * interrupt latency (and we are being very conservative). 225 */ 226 if (left > (max_period >> 1)) 227 left = (max_period >> 1); 228 229 local64_set(&hwc->prev_count, (u64)-left); 230 231 armpmu->write_counter(event, (u64)(-left) & max_period); 232 233 perf_event_update_userpage(event); 234 235 return ret; 236} 237 238u64 armpmu_event_update(struct perf_event *event) 239{ 240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 241 struct hw_perf_event *hwc = &event->hw; 242 u64 delta, prev_raw_count, new_raw_count; 243 u64 max_period = arm_pmu_event_max_period(event); 244 245again: 246 prev_raw_count = local64_read(&hwc->prev_count); 247 new_raw_count = armpmu->read_counter(event); 248 249 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 250 new_raw_count) != prev_raw_count) 251 goto again; 252 253 delta = (new_raw_count - prev_raw_count) & max_period; 254 255 local64_add(delta, &event->count); 256 local64_sub(delta, &hwc->period_left); 257 258 return new_raw_count; 259} 260 261static void 262armpmu_read(struct perf_event *event) 263{ 264 armpmu_event_update(event); 265} 266 267static void 268armpmu_stop(struct perf_event *event, int flags) 269{ 270 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 271 struct hw_perf_event *hwc = &event->hw; 272 273 /* 274 * ARM pmu always has to update the counter, so ignore 275 * PERF_EF_UPDATE, see comments in armpmu_start(). 276 */ 277 if (!(hwc->state & PERF_HES_STOPPED)) { 278 armpmu->disable(event); 279 armpmu_event_update(event); 280 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 281 } 282} 283 284static void armpmu_start(struct perf_event *event, int flags) 285{ 286 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 287 struct hw_perf_event *hwc = &event->hw; 288 289 /* 290 * ARM pmu always has to reprogram the period, so ignore 291 * PERF_EF_RELOAD, see the comment below. 292 */ 293 if (flags & PERF_EF_RELOAD) 294 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 295 296 hwc->state = 0; 297 /* 298 * Set the period again. Some counters can't be stopped, so when we 299 * were stopped we simply disabled the IRQ source and the counter 300 * may have been left counting. If we don't do this step then we may 301 * get an interrupt too soon or *way* too late if the overflow has 302 * happened since disabling. 303 */ 304 armpmu_event_set_period(event); 305 armpmu->enable(event); 306} 307 308static void 309armpmu_del(struct perf_event *event, int flags) 310{ 311 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 312 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 313 struct hw_perf_event *hwc = &event->hw; 314 int idx = hwc->idx; 315 316 armpmu_stop(event, PERF_EF_UPDATE); 317 hw_events->events[idx] = NULL; 318 armpmu->clear_event_idx(hw_events, event); 319 perf_event_update_userpage(event); 320 /* Clear the allocated counter */ 321 hwc->idx = -1; 322} 323 324static int 325armpmu_add(struct perf_event *event, int flags) 326{ 327 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 328 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 329 struct hw_perf_event *hwc = &event->hw; 330 int idx; 331 332 /* An event following a process won't be stopped earlier */ 333 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 334 return -ENOENT; 335 336 /* If we don't have a space for the counter then finish early. */ 337 idx = armpmu->get_event_idx(hw_events, event); 338 if (idx < 0) 339 return idx; 340 341 /* 342 * If there is an event in the counter we are going to use then make 343 * sure it is disabled. 344 */ 345 event->hw.idx = idx; 346 armpmu->disable(event); 347 hw_events->events[idx] = event; 348 349 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 350 if (flags & PERF_EF_START) 351 armpmu_start(event, PERF_EF_RELOAD); 352 353 /* Propagate our changes to the userspace mapping. */ 354 perf_event_update_userpage(event); 355 356 return 0; 357} 358 359static int 360validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 361 struct perf_event *event) 362{ 363 struct arm_pmu *armpmu; 364 365 if (is_software_event(event)) 366 return 1; 367 368 /* 369 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 370 * core perf code won't check that the pmu->ctx == leader->ctx 371 * until after pmu->event_init(event). 372 */ 373 if (event->pmu != pmu) 374 return 0; 375 376 if (event->state < PERF_EVENT_STATE_OFF) 377 return 1; 378 379 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 380 return 1; 381 382 armpmu = to_arm_pmu(event->pmu); 383 return armpmu->get_event_idx(hw_events, event) >= 0; 384} 385 386static int 387validate_group(struct perf_event *event) 388{ 389 struct perf_event *sibling, *leader = event->group_leader; 390 struct pmu_hw_events fake_pmu; 391 392 /* 393 * Initialise the fake PMU. We only need to populate the 394 * used_mask for the purposes of validation. 395 */ 396 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 397 398 if (!validate_event(event->pmu, &fake_pmu, leader)) 399 return -EINVAL; 400 401 if (event == leader) 402 return 0; 403 404 for_each_sibling_event(sibling, leader) { 405 if (!validate_event(event->pmu, &fake_pmu, sibling)) 406 return -EINVAL; 407 } 408 409 if (!validate_event(event->pmu, &fake_pmu, event)) 410 return -EINVAL; 411 412 return 0; 413} 414 415static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 416{ 417 struct arm_pmu *armpmu; 418 int ret; 419 u64 start_clock, finish_clock; 420 421 /* 422 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 423 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 424 * do any necessary shifting, we just need to perform the first 425 * dereference. 426 */ 427 armpmu = *(void **)dev; 428 if (WARN_ON_ONCE(!armpmu)) 429 return IRQ_NONE; 430 431 start_clock = sched_clock(); 432 ret = armpmu->handle_irq(armpmu); 433 finish_clock = sched_clock(); 434 435 perf_sample_event_took(finish_clock - start_clock); 436 return ret; 437} 438 439static int 440__hw_perf_event_init(struct perf_event *event) 441{ 442 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 443 struct hw_perf_event *hwc = &event->hw; 444 int mapping; 445 446 hwc->flags = 0; 447 mapping = armpmu->map_event(event); 448 449 if (mapping < 0) { 450 pr_debug("event %x:%llx not supported\n", event->attr.type, 451 event->attr.config); 452 return mapping; 453 } 454 455 /* 456 * We don't assign an index until we actually place the event onto 457 * hardware. Use -1 to signify that we haven't decided where to put it 458 * yet. For SMP systems, each core has it's own PMU so we can't do any 459 * clever allocation or constraints checking at this point. 460 */ 461 hwc->idx = -1; 462 hwc->config_base = 0; 463 hwc->config = 0; 464 hwc->event_base = 0; 465 466 /* 467 * Check whether we need to exclude the counter from certain modes. 468 */ 469 if (armpmu->set_event_filter && 470 armpmu->set_event_filter(hwc, &event->attr)) { 471 pr_debug("ARM performance counters do not support " 472 "mode exclusion\n"); 473 return -EOPNOTSUPP; 474 } 475 476 /* 477 * Store the event encoding into the config_base field. 478 */ 479 hwc->config_base |= (unsigned long)mapping; 480 481 if (!is_sampling_event(event)) { 482 /* 483 * For non-sampling runs, limit the sample_period to half 484 * of the counter width. That way, the new counter value 485 * is far less likely to overtake the previous one unless 486 * you have some serious IRQ latency issues. 487 */ 488 hwc->sample_period = arm_pmu_event_max_period(event) >> 1; 489 hwc->last_period = hwc->sample_period; 490 local64_set(&hwc->period_left, hwc->sample_period); 491 } 492 493 return validate_group(event); 494} 495 496static int armpmu_event_init(struct perf_event *event) 497{ 498 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 499 500 /* 501 * Reject CPU-affine events for CPUs that are of a different class to 502 * that which this PMU handles. Process-following events (where 503 * event->cpu == -1) can be migrated between CPUs, and thus we have to 504 * reject them later (in armpmu_add) if they're scheduled on a 505 * different class of CPU. 506 */ 507 if (event->cpu != -1 && 508 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 509 return -ENOENT; 510 511 /* does not support taken branch sampling */ 512 if (has_branch_stack(event)) 513 return -EOPNOTSUPP; 514 515 if (armpmu->map_event(event) == -ENOENT) 516 return -ENOENT; 517 518 return __hw_perf_event_init(event); 519} 520 521static void armpmu_enable(struct pmu *pmu) 522{ 523 struct arm_pmu *armpmu = to_arm_pmu(pmu); 524 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 525 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 526 527 /* For task-bound events we may be called on other CPUs */ 528 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 529 return; 530 531 if (enabled) 532 armpmu->start(armpmu); 533} 534 535static void armpmu_disable(struct pmu *pmu) 536{ 537 struct arm_pmu *armpmu = to_arm_pmu(pmu); 538 539 /* For task-bound events we may be called on other CPUs */ 540 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 541 return; 542 543 armpmu->stop(armpmu); 544} 545 546/* 547 * In heterogeneous systems, events are specific to a particular 548 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 549 * the same microarchitecture. 550 */ 551static int armpmu_filter_match(struct perf_event *event) 552{ 553 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 554 unsigned int cpu = smp_processor_id(); 555 int ret; 556 557 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); 558 if (ret && armpmu->filter_match) 559 return armpmu->filter_match(event); 560 561 return ret; 562} 563 564static ssize_t armpmu_cpumask_show(struct device *dev, 565 struct device_attribute *attr, char *buf) 566{ 567 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 568 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 569} 570 571static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); 572 573static struct attribute *armpmu_common_attrs[] = { 574 &dev_attr_cpus.attr, 575 NULL, 576}; 577 578static struct attribute_group armpmu_common_attr_group = { 579 .attrs = armpmu_common_attrs, 580}; 581 582/* Set at runtime when we know what CPU type we are. */ 583static struct arm_pmu *__oprofile_cpu_pmu; 584 585/* 586 * Despite the names, these two functions are CPU-specific and are used 587 * by the OProfile/perf code. 588 */ 589const char *perf_pmu_name(void) 590{ 591 if (!__oprofile_cpu_pmu) 592 return NULL; 593 594 return __oprofile_cpu_pmu->name; 595} 596EXPORT_SYMBOL_GPL(perf_pmu_name); 597 598int perf_num_counters(void) 599{ 600 int max_events = 0; 601 602 if (__oprofile_cpu_pmu != NULL) 603 max_events = __oprofile_cpu_pmu->num_events; 604 605 return max_events; 606} 607EXPORT_SYMBOL_GPL(perf_num_counters); 608 609static int armpmu_count_irq_users(const int irq) 610{ 611 int cpu, count = 0; 612 613 for_each_possible_cpu(cpu) { 614 if (per_cpu(cpu_irq, cpu) == irq) 615 count++; 616 } 617 618 return count; 619} 620 621static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq) 622{ 623 const struct pmu_irq_ops *ops = NULL; 624 int cpu; 625 626 for_each_possible_cpu(cpu) { 627 if (per_cpu(cpu_irq, cpu) != irq) 628 continue; 629 630 ops = per_cpu(cpu_irq_ops, cpu); 631 if (ops) 632 break; 633 } 634 635 return ops; 636} 637 638void armpmu_free_irq(int irq, int cpu) 639{ 640 if (per_cpu(cpu_irq, cpu) == 0) 641 return; 642 if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) 643 return; 644 645 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu); 646 647 per_cpu(cpu_irq, cpu) = 0; 648 per_cpu(cpu_irq_ops, cpu) = NULL; 649} 650 651int armpmu_request_irq(int irq, int cpu) 652{ 653 int err = 0; 654 const irq_handler_t handler = armpmu_dispatch_irq; 655 const struct pmu_irq_ops *irq_ops; 656 657 if (!irq) 658 return 0; 659 660 if (!irq_is_percpu_devid(irq)) { 661 unsigned long irq_flags; 662 663 err = irq_force_affinity(irq, cpumask_of(cpu)); 664 665 if (err && num_possible_cpus() > 1) { 666 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 667 irq, cpu); 668 goto err_out; 669 } 670 671 irq_flags = IRQF_PERCPU | 672 IRQF_NOBALANCING | 673 IRQF_NO_THREAD; 674 675 irq_set_status_flags(irq, IRQ_NOAUTOEN); 676 677 err = request_nmi(irq, handler, irq_flags, "arm-pmu", 678 per_cpu_ptr(&cpu_armpmu, cpu)); 679 680 /* If cannot get an NMI, get a normal interrupt */ 681 if (err) { 682 err = request_irq(irq, handler, irq_flags, "arm-pmu", 683 per_cpu_ptr(&cpu_armpmu, cpu)); 684 irq_ops = &pmuirq_ops; 685 } else { 686 has_nmi = true; 687 irq_ops = &pmunmi_ops; 688 } 689 } else if (armpmu_count_irq_users(irq) == 0) { 690 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu); 691 692 /* If cannot get an NMI, get a normal interrupt */ 693 if (err) { 694 err = request_percpu_irq(irq, handler, "arm-pmu", 695 &cpu_armpmu); 696 irq_ops = &percpu_pmuirq_ops; 697 } else { 698 has_nmi= true; 699 irq_ops = &percpu_pmunmi_ops; 700 } 701 } else { 702 /* Per cpudevid irq was already requested by another CPU */ 703 irq_ops = armpmu_find_irq_ops(irq); 704 705 if (WARN_ON(!irq_ops)) 706 err = -EINVAL; 707 } 708 709 if (err) 710 goto err_out; 711 712 per_cpu(cpu_irq, cpu) = irq; 713 per_cpu(cpu_irq_ops, cpu) = irq_ops; 714 return 0; 715 716err_out: 717 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); 718 return err; 719} 720 721static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 722{ 723 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 724 return per_cpu(hw_events->irq, cpu); 725} 726 727/* 728 * PMU hardware loses all context when a CPU goes offline. 729 * When a CPU is hotplugged back in, since some hardware registers are 730 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 731 * junk values out of them. 732 */ 733static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 734{ 735 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 736 int irq; 737 738 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 739 return 0; 740 if (pmu->reset) 741 pmu->reset(pmu); 742 743 per_cpu(cpu_armpmu, cpu) = pmu; 744 745 irq = armpmu_get_cpu_irq(pmu, cpu); 746 if (irq) 747 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq); 748 749 return 0; 750} 751 752static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 753{ 754 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 755 int irq; 756 757 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 758 return 0; 759 760 irq = armpmu_get_cpu_irq(pmu, cpu); 761 if (irq) 762 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq); 763 764 per_cpu(cpu_armpmu, cpu) = NULL; 765 766 return 0; 767} 768 769#ifdef CONFIG_CPU_PM 770static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 771{ 772 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 773 struct perf_event *event; 774 int idx; 775 776 for (idx = 0; idx < armpmu->num_events; idx++) { 777 event = hw_events->events[idx]; 778 if (!event) 779 continue; 780 781 switch (cmd) { 782 case CPU_PM_ENTER: 783 /* 784 * Stop and update the counter 785 */ 786 armpmu_stop(event, PERF_EF_UPDATE); 787 break; 788 case CPU_PM_EXIT: 789 case CPU_PM_ENTER_FAILED: 790 /* 791 * Restore and enable the counter. 792 * armpmu_start() indirectly calls 793 * 794 * perf_event_update_userpage() 795 * 796 * that requires RCU read locking to be functional, 797 * wrap the call within RCU_NONIDLE to make the 798 * RCU subsystem aware this cpu is not idle from 799 * an RCU perspective for the armpmu_start() call 800 * duration. 801 */ 802 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); 803 break; 804 default: 805 break; 806 } 807 } 808} 809 810static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 811 void *v) 812{ 813 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 814 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 815 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 816 817 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 818 return NOTIFY_DONE; 819 820 /* 821 * Always reset the PMU registers on power-up even if 822 * there are no events running. 823 */ 824 if (cmd == CPU_PM_EXIT && armpmu->reset) 825 armpmu->reset(armpmu); 826 827 if (!enabled) 828 return NOTIFY_OK; 829 830 switch (cmd) { 831 case CPU_PM_ENTER: 832 armpmu->stop(armpmu); 833 cpu_pm_pmu_setup(armpmu, cmd); 834 break; 835 case CPU_PM_EXIT: 836 case CPU_PM_ENTER_FAILED: 837 cpu_pm_pmu_setup(armpmu, cmd); 838 armpmu->start(armpmu); 839 break; 840 default: 841 return NOTIFY_DONE; 842 } 843 844 return NOTIFY_OK; 845} 846 847static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 848{ 849 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 850 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 851} 852 853static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 854{ 855 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 856} 857#else 858static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 859static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 860#endif 861 862static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 863{ 864 int err; 865 866 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 867 &cpu_pmu->node); 868 if (err) 869 goto out; 870 871 err = cpu_pm_pmu_register(cpu_pmu); 872 if (err) 873 goto out_unregister; 874 875 return 0; 876 877out_unregister: 878 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 879 &cpu_pmu->node); 880out: 881 return err; 882} 883 884static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 885{ 886 cpu_pm_pmu_unregister(cpu_pmu); 887 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 888 &cpu_pmu->node); 889} 890 891static struct arm_pmu *__armpmu_alloc(gfp_t flags) 892{ 893 struct arm_pmu *pmu; 894 int cpu; 895 896 pmu = kzalloc(sizeof(*pmu), flags); 897 if (!pmu) { 898 pr_info("failed to allocate PMU device!\n"); 899 goto out; 900 } 901 902 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags); 903 if (!pmu->hw_events) { 904 pr_info("failed to allocate per-cpu PMU data.\n"); 905 goto out_free_pmu; 906 } 907 908 pmu->pmu = (struct pmu) { 909 .pmu_enable = armpmu_enable, 910 .pmu_disable = armpmu_disable, 911 .event_init = armpmu_event_init, 912 .add = armpmu_add, 913 .del = armpmu_del, 914 .start = armpmu_start, 915 .stop = armpmu_stop, 916 .read = armpmu_read, 917 .filter_match = armpmu_filter_match, 918 .attr_groups = pmu->attr_groups, 919 /* 920 * This is a CPU PMU potentially in a heterogeneous 921 * configuration (e.g. big.LITTLE). This is not an uncore PMU, 922 * and we have taken ctx sharing into account (e.g. with our 923 * pmu::filter_match callback and pmu::event_init group 924 * validation). 925 */ 926 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS, 927 }; 928 929 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 930 &armpmu_common_attr_group; 931 932 for_each_possible_cpu(cpu) { 933 struct pmu_hw_events *events; 934 935 events = per_cpu_ptr(pmu->hw_events, cpu); 936 raw_spin_lock_init(&events->pmu_lock); 937 events->percpu_pmu = pmu; 938 } 939 940 return pmu; 941 942out_free_pmu: 943 kfree(pmu); 944out: 945 return NULL; 946} 947 948struct arm_pmu *armpmu_alloc(void) 949{ 950 return __armpmu_alloc(GFP_KERNEL); 951} 952 953struct arm_pmu *armpmu_alloc_atomic(void) 954{ 955 return __armpmu_alloc(GFP_ATOMIC); 956} 957 958 959void armpmu_free(struct arm_pmu *pmu) 960{ 961 free_percpu(pmu->hw_events); 962 kfree(pmu); 963} 964 965int armpmu_register(struct arm_pmu *pmu) 966{ 967 int ret; 968 969 ret = cpu_pmu_init(pmu); 970 if (ret) 971 return ret; 972 973 if (!pmu->set_event_filter) 974 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 975 976 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 977 if (ret) 978 goto out_destroy; 979 980 if (!__oprofile_cpu_pmu) 981 __oprofile_cpu_pmu = pmu; 982 983 pr_info("enabled with %s PMU driver, %d counters available%s\n", 984 pmu->name, pmu->num_events, 985 has_nmi ? ", using NMIs" : ""); 986 987 return 0; 988 989out_destroy: 990 cpu_pmu_destroy(pmu); 991 return ret; 992} 993 994static int arm_pmu_hp_init(void) 995{ 996 int ret; 997 998 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 999 "perf/arm/pmu:starting", 1000 arm_perf_starting_cpu, 1001 arm_perf_teardown_cpu); 1002 if (ret) 1003 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 1004 ret); 1005 return ret; 1006} 1007subsys_initcall(arm_pmu_hp_init); 1008