xref: /kernel/linux/linux-5.10/drivers/perf/arm_pmu.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2#undef DEBUG
3
4/*
5 * ARM performance counter support.
6 *
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 *
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
12 */
13#define pr_fmt(fmt) "hw perfevents: " fmt
14
15#include <linux/bitmap.h>
16#include <linux/cpumask.h>
17#include <linux/cpu_pm.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/perf/arm_pmu.h>
21#include <linux/slab.h>
22#include <linux/sched/clock.h>
23#include <linux/spinlock.h>
24#include <linux/irq.h>
25#include <linux/irqdesc.h>
26
27#include <asm/irq_regs.h>
28
29static int armpmu_count_irq_users(const int irq);
30
31struct pmu_irq_ops {
32	void (*enable_pmuirq)(unsigned int irq);
33	void (*disable_pmuirq)(unsigned int irq);
34	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35};
36
37static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38{
39	free_irq(irq, per_cpu_ptr(devid, cpu));
40}
41
42static const struct pmu_irq_ops pmuirq_ops = {
43	.enable_pmuirq = enable_irq,
44	.disable_pmuirq = disable_irq_nosync,
45	.free_pmuirq = armpmu_free_pmuirq
46};
47
48static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49{
50	free_nmi(irq, per_cpu_ptr(devid, cpu));
51}
52
53static const struct pmu_irq_ops pmunmi_ops = {
54	.enable_pmuirq = enable_nmi,
55	.disable_pmuirq = disable_nmi_nosync,
56	.free_pmuirq = armpmu_free_pmunmi
57};
58
59static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60{
61	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62}
63
64static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65				   void __percpu *devid)
66{
67	if (armpmu_count_irq_users(irq) == 1)
68		free_percpu_irq(irq, devid);
69}
70
71static const struct pmu_irq_ops percpu_pmuirq_ops = {
72	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73	.disable_pmuirq = disable_percpu_irq,
74	.free_pmuirq = armpmu_free_percpu_pmuirq
75};
76
77static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78{
79	if (!prepare_percpu_nmi(irq))
80		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81}
82
83static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84{
85	disable_percpu_nmi(irq);
86	teardown_percpu_nmi(irq);
87}
88
89static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90				      void __percpu *devid)
91{
92	if (armpmu_count_irq_users(irq) == 1)
93		free_percpu_nmi(irq, devid);
94}
95
96static const struct pmu_irq_ops percpu_pmunmi_ops = {
97	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99	.free_pmuirq = armpmu_free_percpu_pmunmi
100};
101
102static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103static DEFINE_PER_CPU(int, cpu_irq);
104static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106static bool has_nmi;
107
108static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109{
110	if (event->hw.flags & ARMPMU_EVT_64BIT)
111		return GENMASK_ULL(63, 0);
112	else
113		return GENMASK_ULL(31, 0);
114}
115
116static int
117armpmu_map_cache_event(const unsigned (*cache_map)
118				      [PERF_COUNT_HW_CACHE_MAX]
119				      [PERF_COUNT_HW_CACHE_OP_MAX]
120				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
121		       u64 config)
122{
123	unsigned int cache_type, cache_op, cache_result, ret;
124
125	cache_type = (config >>  0) & 0xff;
126	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
127		return -EINVAL;
128
129	cache_op = (config >>  8) & 0xff;
130	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
131		return -EINVAL;
132
133	cache_result = (config >> 16) & 0xff;
134	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
135		return -EINVAL;
136
137	if (!cache_map)
138		return -ENOENT;
139
140	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
141
142	if (ret == CACHE_OP_UNSUPPORTED)
143		return -ENOENT;
144
145	return ret;
146}
147
148static int
149armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
150{
151	int mapping;
152
153	if (config >= PERF_COUNT_HW_MAX)
154		return -EINVAL;
155
156	if (!event_map)
157		return -ENOENT;
158
159	mapping = (*event_map)[config];
160	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
161}
162
163static int
164armpmu_map_raw_event(u32 raw_event_mask, u64 config)
165{
166	return (int)(config & raw_event_mask);
167}
168
169int
170armpmu_map_event(struct perf_event *event,
171		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
172		 const unsigned (*cache_map)
173				[PERF_COUNT_HW_CACHE_MAX]
174				[PERF_COUNT_HW_CACHE_OP_MAX]
175				[PERF_COUNT_HW_CACHE_RESULT_MAX],
176		 u32 raw_event_mask)
177{
178	u64 config = event->attr.config;
179	int type = event->attr.type;
180
181	if (type == event->pmu->type)
182		return armpmu_map_raw_event(raw_event_mask, config);
183
184	switch (type) {
185	case PERF_TYPE_HARDWARE:
186		return armpmu_map_hw_event(event_map, config);
187	case PERF_TYPE_HW_CACHE:
188		return armpmu_map_cache_event(cache_map, config);
189	case PERF_TYPE_RAW:
190		return armpmu_map_raw_event(raw_event_mask, config);
191	}
192
193	return -ENOENT;
194}
195
196int armpmu_event_set_period(struct perf_event *event)
197{
198	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199	struct hw_perf_event *hwc = &event->hw;
200	s64 left = local64_read(&hwc->period_left);
201	s64 period = hwc->sample_period;
202	u64 max_period;
203	int ret = 0;
204
205	max_period = arm_pmu_event_max_period(event);
206	if (unlikely(left <= -period)) {
207		left = period;
208		local64_set(&hwc->period_left, left);
209		hwc->last_period = period;
210		ret = 1;
211	}
212
213	if (unlikely(left <= 0)) {
214		left += period;
215		local64_set(&hwc->period_left, left);
216		hwc->last_period = period;
217		ret = 1;
218	}
219
220	/*
221	 * Limit the maximum period to prevent the counter value
222	 * from overtaking the one we are about to program. In
223	 * effect we are reducing max_period to account for
224	 * interrupt latency (and we are being very conservative).
225	 */
226	if (left > (max_period >> 1))
227		left = (max_period >> 1);
228
229	local64_set(&hwc->prev_count, (u64)-left);
230
231	armpmu->write_counter(event, (u64)(-left) & max_period);
232
233	perf_event_update_userpage(event);
234
235	return ret;
236}
237
238u64 armpmu_event_update(struct perf_event *event)
239{
240	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241	struct hw_perf_event *hwc = &event->hw;
242	u64 delta, prev_raw_count, new_raw_count;
243	u64 max_period = arm_pmu_event_max_period(event);
244
245again:
246	prev_raw_count = local64_read(&hwc->prev_count);
247	new_raw_count = armpmu->read_counter(event);
248
249	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
250			     new_raw_count) != prev_raw_count)
251		goto again;
252
253	delta = (new_raw_count - prev_raw_count) & max_period;
254
255	local64_add(delta, &event->count);
256	local64_sub(delta, &hwc->period_left);
257
258	return new_raw_count;
259}
260
261static void
262armpmu_read(struct perf_event *event)
263{
264	armpmu_event_update(event);
265}
266
267static void
268armpmu_stop(struct perf_event *event, int flags)
269{
270	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
271	struct hw_perf_event *hwc = &event->hw;
272
273	/*
274	 * ARM pmu always has to update the counter, so ignore
275	 * PERF_EF_UPDATE, see comments in armpmu_start().
276	 */
277	if (!(hwc->state & PERF_HES_STOPPED)) {
278		armpmu->disable(event);
279		armpmu_event_update(event);
280		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
281	}
282}
283
284static void armpmu_start(struct perf_event *event, int flags)
285{
286	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
287	struct hw_perf_event *hwc = &event->hw;
288
289	/*
290	 * ARM pmu always has to reprogram the period, so ignore
291	 * PERF_EF_RELOAD, see the comment below.
292	 */
293	if (flags & PERF_EF_RELOAD)
294		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
295
296	hwc->state = 0;
297	/*
298	 * Set the period again. Some counters can't be stopped, so when we
299	 * were stopped we simply disabled the IRQ source and the counter
300	 * may have been left counting. If we don't do this step then we may
301	 * get an interrupt too soon or *way* too late if the overflow has
302	 * happened since disabling.
303	 */
304	armpmu_event_set_period(event);
305	armpmu->enable(event);
306}
307
308static void
309armpmu_del(struct perf_event *event, int flags)
310{
311	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
312	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
313	struct hw_perf_event *hwc = &event->hw;
314	int idx = hwc->idx;
315
316	armpmu_stop(event, PERF_EF_UPDATE);
317	hw_events->events[idx] = NULL;
318	armpmu->clear_event_idx(hw_events, event);
319	perf_event_update_userpage(event);
320	/* Clear the allocated counter */
321	hwc->idx = -1;
322}
323
324static int
325armpmu_add(struct perf_event *event, int flags)
326{
327	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
328	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
329	struct hw_perf_event *hwc = &event->hw;
330	int idx;
331
332	/* An event following a process won't be stopped earlier */
333	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
334		return -ENOENT;
335
336	/* If we don't have a space for the counter then finish early. */
337	idx = armpmu->get_event_idx(hw_events, event);
338	if (idx < 0)
339		return idx;
340
341	/*
342	 * If there is an event in the counter we are going to use then make
343	 * sure it is disabled.
344	 */
345	event->hw.idx = idx;
346	armpmu->disable(event);
347	hw_events->events[idx] = event;
348
349	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
350	if (flags & PERF_EF_START)
351		armpmu_start(event, PERF_EF_RELOAD);
352
353	/* Propagate our changes to the userspace mapping. */
354	perf_event_update_userpage(event);
355
356	return 0;
357}
358
359static int
360validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
361			       struct perf_event *event)
362{
363	struct arm_pmu *armpmu;
364
365	if (is_software_event(event))
366		return 1;
367
368	/*
369	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
370	 * core perf code won't check that the pmu->ctx == leader->ctx
371	 * until after pmu->event_init(event).
372	 */
373	if (event->pmu != pmu)
374		return 0;
375
376	if (event->state < PERF_EVENT_STATE_OFF)
377		return 1;
378
379	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
380		return 1;
381
382	armpmu = to_arm_pmu(event->pmu);
383	return armpmu->get_event_idx(hw_events, event) >= 0;
384}
385
386static int
387validate_group(struct perf_event *event)
388{
389	struct perf_event *sibling, *leader = event->group_leader;
390	struct pmu_hw_events fake_pmu;
391
392	/*
393	 * Initialise the fake PMU. We only need to populate the
394	 * used_mask for the purposes of validation.
395	 */
396	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
397
398	if (!validate_event(event->pmu, &fake_pmu, leader))
399		return -EINVAL;
400
401	if (event == leader)
402		return 0;
403
404	for_each_sibling_event(sibling, leader) {
405		if (!validate_event(event->pmu, &fake_pmu, sibling))
406			return -EINVAL;
407	}
408
409	if (!validate_event(event->pmu, &fake_pmu, event))
410		return -EINVAL;
411
412	return 0;
413}
414
415static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
416{
417	struct arm_pmu *armpmu;
418	int ret;
419	u64 start_clock, finish_clock;
420
421	/*
422	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
423	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
424	 * do any necessary shifting, we just need to perform the first
425	 * dereference.
426	 */
427	armpmu = *(void **)dev;
428	if (WARN_ON_ONCE(!armpmu))
429		return IRQ_NONE;
430
431	start_clock = sched_clock();
432	ret = armpmu->handle_irq(armpmu);
433	finish_clock = sched_clock();
434
435	perf_sample_event_took(finish_clock - start_clock);
436	return ret;
437}
438
439static int
440__hw_perf_event_init(struct perf_event *event)
441{
442	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
443	struct hw_perf_event *hwc = &event->hw;
444	int mapping;
445
446	hwc->flags = 0;
447	mapping = armpmu->map_event(event);
448
449	if (mapping < 0) {
450		pr_debug("event %x:%llx not supported\n", event->attr.type,
451			 event->attr.config);
452		return mapping;
453	}
454
455	/*
456	 * We don't assign an index until we actually place the event onto
457	 * hardware. Use -1 to signify that we haven't decided where to put it
458	 * yet. For SMP systems, each core has it's own PMU so we can't do any
459	 * clever allocation or constraints checking at this point.
460	 */
461	hwc->idx		= -1;
462	hwc->config_base	= 0;
463	hwc->config		= 0;
464	hwc->event_base		= 0;
465
466	/*
467	 * Check whether we need to exclude the counter from certain modes.
468	 */
469	if (armpmu->set_event_filter &&
470	    armpmu->set_event_filter(hwc, &event->attr)) {
471		pr_debug("ARM performance counters do not support "
472			 "mode exclusion\n");
473		return -EOPNOTSUPP;
474	}
475
476	/*
477	 * Store the event encoding into the config_base field.
478	 */
479	hwc->config_base	    |= (unsigned long)mapping;
480
481	if (!is_sampling_event(event)) {
482		/*
483		 * For non-sampling runs, limit the sample_period to half
484		 * of the counter width. That way, the new counter value
485		 * is far less likely to overtake the previous one unless
486		 * you have some serious IRQ latency issues.
487		 */
488		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
489		hwc->last_period    = hwc->sample_period;
490		local64_set(&hwc->period_left, hwc->sample_period);
491	}
492
493	return validate_group(event);
494}
495
496static int armpmu_event_init(struct perf_event *event)
497{
498	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
499
500	/*
501	 * Reject CPU-affine events for CPUs that are of a different class to
502	 * that which this PMU handles. Process-following events (where
503	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
504	 * reject them later (in armpmu_add) if they're scheduled on a
505	 * different class of CPU.
506	 */
507	if (event->cpu != -1 &&
508		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
509		return -ENOENT;
510
511	/* does not support taken branch sampling */
512	if (has_branch_stack(event))
513		return -EOPNOTSUPP;
514
515	if (armpmu->map_event(event) == -ENOENT)
516		return -ENOENT;
517
518	return __hw_perf_event_init(event);
519}
520
521static void armpmu_enable(struct pmu *pmu)
522{
523	struct arm_pmu *armpmu = to_arm_pmu(pmu);
524	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
526
527	/* For task-bound events we may be called on other CPUs */
528	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529		return;
530
531	if (enabled)
532		armpmu->start(armpmu);
533}
534
535static void armpmu_disable(struct pmu *pmu)
536{
537	struct arm_pmu *armpmu = to_arm_pmu(pmu);
538
539	/* For task-bound events we may be called on other CPUs */
540	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541		return;
542
543	armpmu->stop(armpmu);
544}
545
546/*
547 * In heterogeneous systems, events are specific to a particular
548 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549 * the same microarchitecture.
550 */
551static int armpmu_filter_match(struct perf_event *event)
552{
553	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
554	unsigned int cpu = smp_processor_id();
555	int ret;
556
557	ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
558	if (ret && armpmu->filter_match)
559		return armpmu->filter_match(event);
560
561	return ret;
562}
563
564static ssize_t armpmu_cpumask_show(struct device *dev,
565				   struct device_attribute *attr, char *buf)
566{
567	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
568	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
569}
570
571static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
572
573static struct attribute *armpmu_common_attrs[] = {
574	&dev_attr_cpus.attr,
575	NULL,
576};
577
578static struct attribute_group armpmu_common_attr_group = {
579	.attrs = armpmu_common_attrs,
580};
581
582/* Set at runtime when we know what CPU type we are. */
583static struct arm_pmu *__oprofile_cpu_pmu;
584
585/*
586 * Despite the names, these two functions are CPU-specific and are used
587 * by the OProfile/perf code.
588 */
589const char *perf_pmu_name(void)
590{
591	if (!__oprofile_cpu_pmu)
592		return NULL;
593
594	return __oprofile_cpu_pmu->name;
595}
596EXPORT_SYMBOL_GPL(perf_pmu_name);
597
598int perf_num_counters(void)
599{
600	int max_events = 0;
601
602	if (__oprofile_cpu_pmu != NULL)
603		max_events = __oprofile_cpu_pmu->num_events;
604
605	return max_events;
606}
607EXPORT_SYMBOL_GPL(perf_num_counters);
608
609static int armpmu_count_irq_users(const int irq)
610{
611	int cpu, count = 0;
612
613	for_each_possible_cpu(cpu) {
614		if (per_cpu(cpu_irq, cpu) == irq)
615			count++;
616	}
617
618	return count;
619}
620
621static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
622{
623	const struct pmu_irq_ops *ops = NULL;
624	int cpu;
625
626	for_each_possible_cpu(cpu) {
627		if (per_cpu(cpu_irq, cpu) != irq)
628			continue;
629
630		ops = per_cpu(cpu_irq_ops, cpu);
631		if (ops)
632			break;
633	}
634
635	return ops;
636}
637
638void armpmu_free_irq(int irq, int cpu)
639{
640	if (per_cpu(cpu_irq, cpu) == 0)
641		return;
642	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
643		return;
644
645	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
646
647	per_cpu(cpu_irq, cpu) = 0;
648	per_cpu(cpu_irq_ops, cpu) = NULL;
649}
650
651int armpmu_request_irq(int irq, int cpu)
652{
653	int err = 0;
654	const irq_handler_t handler = armpmu_dispatch_irq;
655	const struct pmu_irq_ops *irq_ops;
656
657	if (!irq)
658		return 0;
659
660	if (!irq_is_percpu_devid(irq)) {
661		unsigned long irq_flags;
662
663		err = irq_force_affinity(irq, cpumask_of(cpu));
664
665		if (err && num_possible_cpus() > 1) {
666			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
667				irq, cpu);
668			goto err_out;
669		}
670
671		irq_flags = IRQF_PERCPU |
672			    IRQF_NOBALANCING |
673			    IRQF_NO_THREAD;
674
675		irq_set_status_flags(irq, IRQ_NOAUTOEN);
676
677		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
678				  per_cpu_ptr(&cpu_armpmu, cpu));
679
680		/* If cannot get an NMI, get a normal interrupt */
681		if (err) {
682			err = request_irq(irq, handler, irq_flags, "arm-pmu",
683					  per_cpu_ptr(&cpu_armpmu, cpu));
684			irq_ops = &pmuirq_ops;
685		} else {
686			has_nmi = true;
687			irq_ops = &pmunmi_ops;
688		}
689	} else if (armpmu_count_irq_users(irq) == 0) {
690		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
691
692		/* If cannot get an NMI, get a normal interrupt */
693		if (err) {
694			err = request_percpu_irq(irq, handler, "arm-pmu",
695						 &cpu_armpmu);
696			irq_ops = &percpu_pmuirq_ops;
697		} else {
698			has_nmi= true;
699			irq_ops = &percpu_pmunmi_ops;
700		}
701	} else {
702		/* Per cpudevid irq was already requested by another CPU */
703		irq_ops = armpmu_find_irq_ops(irq);
704
705		if (WARN_ON(!irq_ops))
706			err = -EINVAL;
707	}
708
709	if (err)
710		goto err_out;
711
712	per_cpu(cpu_irq, cpu) = irq;
713	per_cpu(cpu_irq_ops, cpu) = irq_ops;
714	return 0;
715
716err_out:
717	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
718	return err;
719}
720
721static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
722{
723	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
724	return per_cpu(hw_events->irq, cpu);
725}
726
727/*
728 * PMU hardware loses all context when a CPU goes offline.
729 * When a CPU is hotplugged back in, since some hardware registers are
730 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
731 * junk values out of them.
732 */
733static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
734{
735	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
736	int irq;
737
738	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
739		return 0;
740	if (pmu->reset)
741		pmu->reset(pmu);
742
743	per_cpu(cpu_armpmu, cpu) = pmu;
744
745	irq = armpmu_get_cpu_irq(pmu, cpu);
746	if (irq)
747		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
748
749	return 0;
750}
751
752static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
753{
754	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
755	int irq;
756
757	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
758		return 0;
759
760	irq = armpmu_get_cpu_irq(pmu, cpu);
761	if (irq)
762		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
763
764	per_cpu(cpu_armpmu, cpu) = NULL;
765
766	return 0;
767}
768
769#ifdef CONFIG_CPU_PM
770static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
771{
772	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
773	struct perf_event *event;
774	int idx;
775
776	for (idx = 0; idx < armpmu->num_events; idx++) {
777		event = hw_events->events[idx];
778		if (!event)
779			continue;
780
781		switch (cmd) {
782		case CPU_PM_ENTER:
783			/*
784			 * Stop and update the counter
785			 */
786			armpmu_stop(event, PERF_EF_UPDATE);
787			break;
788		case CPU_PM_EXIT:
789		case CPU_PM_ENTER_FAILED:
790			 /*
791			  * Restore and enable the counter.
792			  * armpmu_start() indirectly calls
793			  *
794			  * perf_event_update_userpage()
795			  *
796			  * that requires RCU read locking to be functional,
797			  * wrap the call within RCU_NONIDLE to make the
798			  * RCU subsystem aware this cpu is not idle from
799			  * an RCU perspective for the armpmu_start() call
800			  * duration.
801			  */
802			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
803			break;
804		default:
805			break;
806		}
807	}
808}
809
810static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
811			     void *v)
812{
813	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
814	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
815	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
816
817	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
818		return NOTIFY_DONE;
819
820	/*
821	 * Always reset the PMU registers on power-up even if
822	 * there are no events running.
823	 */
824	if (cmd == CPU_PM_EXIT && armpmu->reset)
825		armpmu->reset(armpmu);
826
827	if (!enabled)
828		return NOTIFY_OK;
829
830	switch (cmd) {
831	case CPU_PM_ENTER:
832		armpmu->stop(armpmu);
833		cpu_pm_pmu_setup(armpmu, cmd);
834		break;
835	case CPU_PM_EXIT:
836	case CPU_PM_ENTER_FAILED:
837		cpu_pm_pmu_setup(armpmu, cmd);
838		armpmu->start(armpmu);
839		break;
840	default:
841		return NOTIFY_DONE;
842	}
843
844	return NOTIFY_OK;
845}
846
847static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
848{
849	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
850	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
851}
852
853static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
854{
855	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
856}
857#else
858static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
859static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
860#endif
861
862static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
863{
864	int err;
865
866	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
867				       &cpu_pmu->node);
868	if (err)
869		goto out;
870
871	err = cpu_pm_pmu_register(cpu_pmu);
872	if (err)
873		goto out_unregister;
874
875	return 0;
876
877out_unregister:
878	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
879					    &cpu_pmu->node);
880out:
881	return err;
882}
883
884static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
885{
886	cpu_pm_pmu_unregister(cpu_pmu);
887	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
888					    &cpu_pmu->node);
889}
890
891static struct arm_pmu *__armpmu_alloc(gfp_t flags)
892{
893	struct arm_pmu *pmu;
894	int cpu;
895
896	pmu = kzalloc(sizeof(*pmu), flags);
897	if (!pmu) {
898		pr_info("failed to allocate PMU device!\n");
899		goto out;
900	}
901
902	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
903	if (!pmu->hw_events) {
904		pr_info("failed to allocate per-cpu PMU data.\n");
905		goto out_free_pmu;
906	}
907
908	pmu->pmu = (struct pmu) {
909		.pmu_enable	= armpmu_enable,
910		.pmu_disable	= armpmu_disable,
911		.event_init	= armpmu_event_init,
912		.add		= armpmu_add,
913		.del		= armpmu_del,
914		.start		= armpmu_start,
915		.stop		= armpmu_stop,
916		.read		= armpmu_read,
917		.filter_match	= armpmu_filter_match,
918		.attr_groups	= pmu->attr_groups,
919		/*
920		 * This is a CPU PMU potentially in a heterogeneous
921		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
922		 * and we have taken ctx sharing into account (e.g. with our
923		 * pmu::filter_match callback and pmu::event_init group
924		 * validation).
925		 */
926		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
927	};
928
929	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
930		&armpmu_common_attr_group;
931
932	for_each_possible_cpu(cpu) {
933		struct pmu_hw_events *events;
934
935		events = per_cpu_ptr(pmu->hw_events, cpu);
936		raw_spin_lock_init(&events->pmu_lock);
937		events->percpu_pmu = pmu;
938	}
939
940	return pmu;
941
942out_free_pmu:
943	kfree(pmu);
944out:
945	return NULL;
946}
947
948struct arm_pmu *armpmu_alloc(void)
949{
950	return __armpmu_alloc(GFP_KERNEL);
951}
952
953struct arm_pmu *armpmu_alloc_atomic(void)
954{
955	return __armpmu_alloc(GFP_ATOMIC);
956}
957
958
959void armpmu_free(struct arm_pmu *pmu)
960{
961	free_percpu(pmu->hw_events);
962	kfree(pmu);
963}
964
965int armpmu_register(struct arm_pmu *pmu)
966{
967	int ret;
968
969	ret = cpu_pmu_init(pmu);
970	if (ret)
971		return ret;
972
973	if (!pmu->set_event_filter)
974		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
975
976	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
977	if (ret)
978		goto out_destroy;
979
980	if (!__oprofile_cpu_pmu)
981		__oprofile_cpu_pmu = pmu;
982
983	pr_info("enabled with %s PMU driver, %d counters available%s\n",
984		pmu->name, pmu->num_events,
985		has_nmi ? ", using NMIs" : "");
986
987	return 0;
988
989out_destroy:
990	cpu_pmu_destroy(pmu);
991	return ret;
992}
993
994static int arm_pmu_hp_init(void)
995{
996	int ret;
997
998	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
999				      "perf/arm/pmu:starting",
1000				      arm_perf_starting_cpu,
1001				      arm_perf_teardown_cpu);
1002	if (ret)
1003		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1004		       ret);
1005	return ret;
1006}
1007subsys_initcall(arm_pmu_hp_init);
1008