1// SPDX-License-Identifier: GPL-2.0 2/* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11#include <linux/acpi.h> 12#include <linux/kernel.h> 13#include <linux/delay.h> 14#include <linux/dmi.h> 15#include <linux/init.h> 16#include <linux/msi.h> 17#include <linux/of.h> 18#include <linux/pci.h> 19#include <linux/pm.h> 20#include <linux/slab.h> 21#include <linux/module.h> 22#include <linux/spinlock.h> 23#include <linux/string.h> 24#include <linux/log2.h> 25#include <linux/logic_pio.h> 26#include <linux/pm_wakeup.h> 27#include <linux/interrupt.h> 28#include <linux/device.h> 29#include <linux/pm_runtime.h> 30#include <linux/pci_hotplug.h> 31#include <linux/vmalloc.h> 32#include <asm/dma.h> 33#include <linux/aer.h> 34#include "pci.h" 35 36DEFINE_MUTEX(pci_slot_mutex); 37 38const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40}; 41EXPORT_SYMBOL_GPL(pci_power_names); 42 43int isa_dma_bridge_buggy; 44EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46int pci_pci_problems; 47EXPORT_SYMBOL(pci_pci_problems); 48 49unsigned int pci_pm_d3hot_delay; 50 51static void pci_pme_list_scan(struct work_struct *work); 52 53static LIST_HEAD(pci_pme_list); 54static DEFINE_MUTEX(pci_pme_list_mutex); 55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60}; 61 62#define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64static void pci_dev_d3_sleep(struct pci_dev *dev) 65{ 66 unsigned int delay = dev->d3hot_delay; 67 68 if (delay < pci_pm_d3hot_delay) 69 delay = pci_pm_d3hot_delay; 70 71 if (delay) 72 msleep(delay); 73} 74 75#ifdef CONFIG_PCI_DOMAINS 76int pci_domains_supported = 1; 77#endif 78 79#define DEFAULT_CARDBUS_IO_SIZE (256) 80#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81/* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85#define DEFAULT_HOTPLUG_IO_SIZE (256) 86#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 88/* hpiosize=nn can override this */ 89unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90/* 91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 93 * pci=hpmemsize=nnM overrides both 94 */ 95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 97 98#define DEFAULT_HOTPLUG_BUS_SIZE 1 99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 100 101 102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 103#ifdef CONFIG_PCIE_BUS_TUNE_OFF 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 105#elif defined CONFIG_PCIE_BUS_SAFE 106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 107#elif defined CONFIG_PCIE_BUS_PERFORMANCE 108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 109#elif defined CONFIG_PCIE_BUS_PEER2PEER 110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 111#else 112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 113#endif 114 115/* 116 * The default CLS is used if arch didn't set CLS explicitly and not 117 * all pci devices agree on the same value. Arch can override either 118 * the dfl or actual value as it sees fit. Don't forget this is 119 * measured in 32-bit words, not bytes. 120 */ 121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 122u8 pci_cache_line_size; 123 124/* 125 * If we set up a device for bus mastering, we need to check the latency 126 * timer as certain BIOSes forget to set it properly. 127 */ 128unsigned int pcibios_max_latency = 255; 129 130/* If set, the PCIe ARI capability will not be used. */ 131static bool pcie_ari_disabled; 132 133/* If set, the PCIe ATS capability will not be used. */ 134static bool pcie_ats_disabled; 135 136/* If set, the PCI config space of each device is printed during boot. */ 137bool pci_early_dump; 138 139bool pci_ats_disabled(void) 140{ 141 return pcie_ats_disabled; 142} 143EXPORT_SYMBOL_GPL(pci_ats_disabled); 144 145/* Disable bridge_d3 for all PCIe ports */ 146static bool pci_bridge_d3_disable; 147/* Force bridge_d3 for all PCIe ports */ 148static bool pci_bridge_d3_force; 149 150static int __init pcie_port_pm_setup(char *str) 151{ 152 if (!strcmp(str, "off")) 153 pci_bridge_d3_disable = true; 154 else if (!strcmp(str, "force")) 155 pci_bridge_d3_force = true; 156 return 1; 157} 158__setup("pcie_port_pm=", pcie_port_pm_setup); 159 160/** 161 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 162 * @bus: pointer to PCI bus structure to search 163 * 164 * Given a PCI bus, returns the highest PCI bus number present in the set 165 * including the given PCI bus and its list of child PCI buses. 166 */ 167unsigned char pci_bus_max_busnr(struct pci_bus *bus) 168{ 169 struct pci_bus *tmp; 170 unsigned char max, n; 171 172 max = bus->busn_res.end; 173 list_for_each_entry(tmp, &bus->children, node) { 174 n = pci_bus_max_busnr(tmp); 175 if (n > max) 176 max = n; 177 } 178 return max; 179} 180EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 181 182/** 183 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 184 * @pdev: the PCI device 185 * 186 * Returns error bits set in PCI_STATUS and clears them. 187 */ 188int pci_status_get_and_clear_errors(struct pci_dev *pdev) 189{ 190 u16 status; 191 int ret; 192 193 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 194 if (ret != PCIBIOS_SUCCESSFUL) 195 return -EIO; 196 197 status &= PCI_STATUS_ERROR_BITS; 198 if (status) 199 pci_write_config_word(pdev, PCI_STATUS, status); 200 201 return status; 202} 203EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 204 205#ifdef CONFIG_HAS_IOMEM 206void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 207{ 208 struct resource *res = &pdev->resource[bar]; 209 210 /* 211 * Make sure the BAR is actually a memory resource, not an IO resource 212 */ 213 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 214 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 215 return NULL; 216 } 217 return ioremap(res->start, resource_size(res)); 218} 219EXPORT_SYMBOL_GPL(pci_ioremap_bar); 220 221void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 222{ 223 /* 224 * Make sure the BAR is actually a memory resource, not an IO resource 225 */ 226 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 227 WARN_ON(1); 228 return NULL; 229 } 230 return ioremap_wc(pci_resource_start(pdev, bar), 231 pci_resource_len(pdev, bar)); 232} 233EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 234#endif 235 236/** 237 * pci_dev_str_match_path - test if a path string matches a device 238 * @dev: the PCI device to test 239 * @path: string to match the device against 240 * @endptr: pointer to the string after the match 241 * 242 * Test if a string (typically from a kernel parameter) formatted as a 243 * path of device/function addresses matches a PCI device. The string must 244 * be of the form: 245 * 246 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 247 * 248 * A path for a device can be obtained using 'lspci -t'. Using a path 249 * is more robust against bus renumbering than using only a single bus, 250 * device and function address. 251 * 252 * Returns 1 if the string matches the device, 0 if it does not and 253 * a negative error code if it fails to parse the string. 254 */ 255static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 256 const char **endptr) 257{ 258 int ret; 259 int seg, bus, slot, func; 260 char *wpath, *p; 261 char end; 262 263 *endptr = strchrnul(path, ';'); 264 265 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 266 if (!wpath) 267 return -ENOMEM; 268 269 while (1) { 270 p = strrchr(wpath, '/'); 271 if (!p) 272 break; 273 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 274 if (ret != 2) { 275 ret = -EINVAL; 276 goto free_and_exit; 277 } 278 279 if (dev->devfn != PCI_DEVFN(slot, func)) { 280 ret = 0; 281 goto free_and_exit; 282 } 283 284 /* 285 * Note: we don't need to get a reference to the upstream 286 * bridge because we hold a reference to the top level 287 * device which should hold a reference to the bridge, 288 * and so on. 289 */ 290 dev = pci_upstream_bridge(dev); 291 if (!dev) { 292 ret = 0; 293 goto free_and_exit; 294 } 295 296 *p = 0; 297 } 298 299 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 300 &func, &end); 301 if (ret != 4) { 302 seg = 0; 303 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 304 if (ret != 3) { 305 ret = -EINVAL; 306 goto free_and_exit; 307 } 308 } 309 310 ret = (seg == pci_domain_nr(dev->bus) && 311 bus == dev->bus->number && 312 dev->devfn == PCI_DEVFN(slot, func)); 313 314free_and_exit: 315 kfree(wpath); 316 return ret; 317} 318 319/** 320 * pci_dev_str_match - test if a string matches a device 321 * @dev: the PCI device to test 322 * @p: string to match the device against 323 * @endptr: pointer to the string after the match 324 * 325 * Test if a string (typically from a kernel parameter) matches a specified 326 * PCI device. The string may be of one of the following formats: 327 * 328 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 329 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 330 * 331 * The first format specifies a PCI bus/device/function address which 332 * may change if new hardware is inserted, if motherboard firmware changes, 333 * or due to changes caused in kernel parameters. If the domain is 334 * left unspecified, it is taken to be 0. In order to be robust against 335 * bus renumbering issues, a path of PCI device/function numbers may be used 336 * to address the specific device. The path for a device can be determined 337 * through the use of 'lspci -t'. 338 * 339 * The second format matches devices using IDs in the configuration 340 * space which may match multiple devices in the system. A value of 0 341 * for any field will match all devices. (Note: this differs from 342 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 343 * legacy reasons and convenience so users don't have to specify 344 * FFFFFFFFs on the command line.) 345 * 346 * Returns 1 if the string matches the device, 0 if it does not and 347 * a negative error code if the string cannot be parsed. 348 */ 349static int pci_dev_str_match(struct pci_dev *dev, const char *p, 350 const char **endptr) 351{ 352 int ret; 353 int count; 354 unsigned short vendor, device, subsystem_vendor, subsystem_device; 355 356 if (strncmp(p, "pci:", 4) == 0) { 357 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 358 p += 4; 359 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 360 &subsystem_vendor, &subsystem_device, &count); 361 if (ret != 4) { 362 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 363 if (ret != 2) 364 return -EINVAL; 365 366 subsystem_vendor = 0; 367 subsystem_device = 0; 368 } 369 370 p += count; 371 372 if ((!vendor || vendor == dev->vendor) && 373 (!device || device == dev->device) && 374 (!subsystem_vendor || 375 subsystem_vendor == dev->subsystem_vendor) && 376 (!subsystem_device || 377 subsystem_device == dev->subsystem_device)) 378 goto found; 379 } else { 380 /* 381 * PCI Bus, Device, Function IDs are specified 382 * (optionally, may include a path of devfns following it) 383 */ 384 ret = pci_dev_str_match_path(dev, p, &p); 385 if (ret < 0) 386 return ret; 387 else if (ret) 388 goto found; 389 } 390 391 *endptr = p; 392 return 0; 393 394found: 395 *endptr = p; 396 return 1; 397} 398 399static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 400 u8 pos, int cap, int *ttl) 401{ 402 u8 id; 403 u16 ent; 404 405 pci_bus_read_config_byte(bus, devfn, pos, &pos); 406 407 while ((*ttl)--) { 408 if (pos < 0x40) 409 break; 410 pos &= ~3; 411 pci_bus_read_config_word(bus, devfn, pos, &ent); 412 413 id = ent & 0xff; 414 if (id == 0xff) 415 break; 416 if (id == cap) 417 return pos; 418 pos = (ent >> 8); 419 } 420 return 0; 421} 422 423static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 424 u8 pos, int cap) 425{ 426 int ttl = PCI_FIND_CAP_TTL; 427 428 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 429} 430 431int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 432{ 433 return __pci_find_next_cap(dev->bus, dev->devfn, 434 pos + PCI_CAP_LIST_NEXT, cap); 435} 436EXPORT_SYMBOL_GPL(pci_find_next_capability); 437 438static int __pci_bus_find_cap_start(struct pci_bus *bus, 439 unsigned int devfn, u8 hdr_type) 440{ 441 u16 status; 442 443 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 444 if (!(status & PCI_STATUS_CAP_LIST)) 445 return 0; 446 447 switch (hdr_type) { 448 case PCI_HEADER_TYPE_NORMAL: 449 case PCI_HEADER_TYPE_BRIDGE: 450 return PCI_CAPABILITY_LIST; 451 case PCI_HEADER_TYPE_CARDBUS: 452 return PCI_CB_CAPABILITY_LIST; 453 } 454 455 return 0; 456} 457 458/** 459 * pci_find_capability - query for devices' capabilities 460 * @dev: PCI device to query 461 * @cap: capability code 462 * 463 * Tell if a device supports a given PCI capability. 464 * Returns the address of the requested capability structure within the 465 * device's PCI configuration space or 0 in case the device does not 466 * support it. Possible values for @cap include: 467 * 468 * %PCI_CAP_ID_PM Power Management 469 * %PCI_CAP_ID_AGP Accelerated Graphics Port 470 * %PCI_CAP_ID_VPD Vital Product Data 471 * %PCI_CAP_ID_SLOTID Slot Identification 472 * %PCI_CAP_ID_MSI Message Signalled Interrupts 473 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 474 * %PCI_CAP_ID_PCIX PCI-X 475 * %PCI_CAP_ID_EXP PCI Express 476 */ 477int pci_find_capability(struct pci_dev *dev, int cap) 478{ 479 int pos; 480 481 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 482 if (pos) 483 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 484 485 return pos; 486} 487EXPORT_SYMBOL(pci_find_capability); 488 489/** 490 * pci_bus_find_capability - query for devices' capabilities 491 * @bus: the PCI bus to query 492 * @devfn: PCI device to query 493 * @cap: capability code 494 * 495 * Like pci_find_capability() but works for PCI devices that do not have a 496 * pci_dev structure set up yet. 497 * 498 * Returns the address of the requested capability structure within the 499 * device's PCI configuration space or 0 in case the device does not 500 * support it. 501 */ 502int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 503{ 504 int pos; 505 u8 hdr_type; 506 507 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 508 509 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 510 if (pos) 511 pos = __pci_find_next_cap(bus, devfn, pos, cap); 512 513 return pos; 514} 515EXPORT_SYMBOL(pci_bus_find_capability); 516 517/** 518 * pci_find_next_ext_capability - Find an extended capability 519 * @dev: PCI device to query 520 * @start: address at which to start looking (0 to start at beginning of list) 521 * @cap: capability code 522 * 523 * Returns the address of the next matching extended capability structure 524 * within the device's PCI configuration space or 0 if the device does 525 * not support it. Some capabilities can occur several times, e.g., the 526 * vendor-specific capability, and this provides a way to find them all. 527 */ 528int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 529{ 530 u32 header; 531 int ttl; 532 int pos = PCI_CFG_SPACE_SIZE; 533 534 /* minimum 8 bytes per capability */ 535 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 536 537 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 538 return 0; 539 540 if (start) 541 pos = start; 542 543 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 544 return 0; 545 546 /* 547 * If we have no capabilities, this is indicated by cap ID, 548 * cap version and next pointer all being 0. 549 */ 550 if (header == 0) 551 return 0; 552 553 while (ttl-- > 0) { 554 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 555 return pos; 556 557 pos = PCI_EXT_CAP_NEXT(header); 558 if (pos < PCI_CFG_SPACE_SIZE) 559 break; 560 561 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 562 break; 563 } 564 565 return 0; 566} 567EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 568 569/** 570 * pci_find_ext_capability - Find an extended capability 571 * @dev: PCI device to query 572 * @cap: capability code 573 * 574 * Returns the address of the requested extended capability structure 575 * within the device's PCI configuration space or 0 if the device does 576 * not support it. Possible values for @cap include: 577 * 578 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 579 * %PCI_EXT_CAP_ID_VC Virtual Channel 580 * %PCI_EXT_CAP_ID_DSN Device Serial Number 581 * %PCI_EXT_CAP_ID_PWR Power Budgeting 582 */ 583int pci_find_ext_capability(struct pci_dev *dev, int cap) 584{ 585 return pci_find_next_ext_capability(dev, 0, cap); 586} 587EXPORT_SYMBOL_GPL(pci_find_ext_capability); 588 589/** 590 * pci_get_dsn - Read and return the 8-byte Device Serial Number 591 * @dev: PCI device to query 592 * 593 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 594 * Number. 595 * 596 * Returns the DSN, or zero if the capability does not exist. 597 */ 598u64 pci_get_dsn(struct pci_dev *dev) 599{ 600 u32 dword; 601 u64 dsn; 602 int pos; 603 604 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 605 if (!pos) 606 return 0; 607 608 /* 609 * The Device Serial Number is two dwords offset 4 bytes from the 610 * capability position. The specification says that the first dword is 611 * the lower half, and the second dword is the upper half. 612 */ 613 pos += 4; 614 pci_read_config_dword(dev, pos, &dword); 615 dsn = (u64)dword; 616 pci_read_config_dword(dev, pos + 4, &dword); 617 dsn |= ((u64)dword) << 32; 618 619 return dsn; 620} 621EXPORT_SYMBOL_GPL(pci_get_dsn); 622 623static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 624{ 625 int rc, ttl = PCI_FIND_CAP_TTL; 626 u8 cap, mask; 627 628 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 629 mask = HT_3BIT_CAP_MASK; 630 else 631 mask = HT_5BIT_CAP_MASK; 632 633 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 634 PCI_CAP_ID_HT, &ttl); 635 while (pos) { 636 rc = pci_read_config_byte(dev, pos + 3, &cap); 637 if (rc != PCIBIOS_SUCCESSFUL) 638 return 0; 639 640 if ((cap & mask) == ht_cap) 641 return pos; 642 643 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 644 pos + PCI_CAP_LIST_NEXT, 645 PCI_CAP_ID_HT, &ttl); 646 } 647 648 return 0; 649} 650/** 651 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 652 * @dev: PCI device to query 653 * @pos: Position from which to continue searching 654 * @ht_cap: Hypertransport capability code 655 * 656 * To be used in conjunction with pci_find_ht_capability() to search for 657 * all capabilities matching @ht_cap. @pos should always be a value returned 658 * from pci_find_ht_capability(). 659 * 660 * NB. To be 100% safe against broken PCI devices, the caller should take 661 * steps to avoid an infinite loop. 662 */ 663int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 664{ 665 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 666} 667EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 668 669/** 670 * pci_find_ht_capability - query a device's Hypertransport capabilities 671 * @dev: PCI device to query 672 * @ht_cap: Hypertransport capability code 673 * 674 * Tell if a device supports a given Hypertransport capability. 675 * Returns an address within the device's PCI configuration space 676 * or 0 in case the device does not support the request capability. 677 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 678 * which has a Hypertransport capability matching @ht_cap. 679 */ 680int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 681{ 682 int pos; 683 684 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 685 if (pos) 686 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 687 688 return pos; 689} 690EXPORT_SYMBOL_GPL(pci_find_ht_capability); 691 692/** 693 * pci_find_parent_resource - return resource region of parent bus of given 694 * region 695 * @dev: PCI device structure contains resources to be searched 696 * @res: child resource record for which parent is sought 697 * 698 * For given resource region of given device, return the resource region of 699 * parent bus the given region is contained in. 700 */ 701struct resource *pci_find_parent_resource(const struct pci_dev *dev, 702 struct resource *res) 703{ 704 const struct pci_bus *bus = dev->bus; 705 struct resource *r; 706 int i; 707 708 pci_bus_for_each_resource(bus, r, i) { 709 if (!r) 710 continue; 711 if (resource_contains(r, res)) { 712 713 /* 714 * If the window is prefetchable but the BAR is 715 * not, the allocator made a mistake. 716 */ 717 if (r->flags & IORESOURCE_PREFETCH && 718 !(res->flags & IORESOURCE_PREFETCH)) 719 return NULL; 720 721 /* 722 * If we're below a transparent bridge, there may 723 * be both a positively-decoded aperture and a 724 * subtractively-decoded region that contain the BAR. 725 * We want the positively-decoded one, so this depends 726 * on pci_bus_for_each_resource() giving us those 727 * first. 728 */ 729 return r; 730 } 731 } 732 return NULL; 733} 734EXPORT_SYMBOL(pci_find_parent_resource); 735 736/** 737 * pci_find_resource - Return matching PCI device resource 738 * @dev: PCI device to query 739 * @res: Resource to look for 740 * 741 * Goes over standard PCI resources (BARs) and checks if the given resource 742 * is partially or fully contained in any of them. In that case the 743 * matching resource is returned, %NULL otherwise. 744 */ 745struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 746{ 747 int i; 748 749 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 750 struct resource *r = &dev->resource[i]; 751 752 if (r->start && resource_contains(r, res)) 753 return r; 754 } 755 756 return NULL; 757} 758EXPORT_SYMBOL(pci_find_resource); 759 760/** 761 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 762 * @dev: the PCI device to operate on 763 * @pos: config space offset of status word 764 * @mask: mask of bit(s) to care about in status word 765 * 766 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 767 */ 768int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 769{ 770 int i; 771 772 /* Wait for Transaction Pending bit clean */ 773 for (i = 0; i < 4; i++) { 774 u16 status; 775 if (i) 776 msleep((1 << (i - 1)) * 100); 777 778 pci_read_config_word(dev, pos, &status); 779 if (!(status & mask)) 780 return 1; 781 } 782 783 return 0; 784} 785 786static int pci_acs_enable; 787 788/** 789 * pci_request_acs - ask for ACS to be enabled if supported 790 */ 791void pci_request_acs(void) 792{ 793 pci_acs_enable = 1; 794} 795 796static const char *disable_acs_redir_param; 797 798/** 799 * pci_disable_acs_redir - disable ACS redirect capabilities 800 * @dev: the PCI device 801 * 802 * For only devices specified in the disable_acs_redir parameter. 803 */ 804static void pci_disable_acs_redir(struct pci_dev *dev) 805{ 806 int ret = 0; 807 const char *p; 808 int pos; 809 u16 ctrl; 810 811 if (!disable_acs_redir_param) 812 return; 813 814 p = disable_acs_redir_param; 815 while (*p) { 816 ret = pci_dev_str_match(dev, p, &p); 817 if (ret < 0) { 818 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 819 disable_acs_redir_param); 820 821 break; 822 } else if (ret == 1) { 823 /* Found a match */ 824 break; 825 } 826 827 if (*p != ';' && *p != ',') { 828 /* End of param or invalid format */ 829 break; 830 } 831 p++; 832 } 833 834 if (ret != 1) 835 return; 836 837 if (!pci_dev_specific_disable_acs_redir(dev)) 838 return; 839 840 pos = dev->acs_cap; 841 if (!pos) { 842 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 843 return; 844 } 845 846 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 847 848 /* P2P Request & Completion Redirect */ 849 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 850 851 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 852 853 pci_info(dev, "disabled ACS redirect\n"); 854} 855 856/** 857 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 858 * @dev: the PCI device 859 */ 860static void pci_std_enable_acs(struct pci_dev *dev) 861{ 862 int pos; 863 u16 cap; 864 u16 ctrl; 865 866 pos = dev->acs_cap; 867 if (!pos) 868 return; 869 870 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 871 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 872 873 /* Source Validation */ 874 ctrl |= (cap & PCI_ACS_SV); 875 876 /* P2P Request Redirect */ 877 ctrl |= (cap & PCI_ACS_RR); 878 879 /* P2P Completion Redirect */ 880 ctrl |= (cap & PCI_ACS_CR); 881 882 /* Upstream Forwarding */ 883 ctrl |= (cap & PCI_ACS_UF); 884 885 /* Enable Translation Blocking for external devices */ 886 if (dev->external_facing || dev->untrusted) 887 ctrl |= (cap & PCI_ACS_TB); 888 889 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 890} 891 892/** 893 * pci_enable_acs - enable ACS if hardware support it 894 * @dev: the PCI device 895 */ 896static void pci_enable_acs(struct pci_dev *dev) 897{ 898 if (!pci_acs_enable) 899 goto disable_acs_redir; 900 901 if (!pci_dev_specific_enable_acs(dev)) 902 goto disable_acs_redir; 903 904 pci_std_enable_acs(dev); 905 906disable_acs_redir: 907 /* 908 * Note: pci_disable_acs_redir() must be called even if ACS was not 909 * enabled by the kernel because it may have been enabled by 910 * platform firmware. So if we are told to disable it, we should 911 * always disable it after setting the kernel's default 912 * preferences. 913 */ 914 pci_disable_acs_redir(dev); 915} 916 917/** 918 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 919 * @dev: PCI device to have its BARs restored 920 * 921 * Restore the BAR values for a given device, so as to make it 922 * accessible by its driver. 923 */ 924static void pci_restore_bars(struct pci_dev *dev) 925{ 926 int i; 927 928 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 929 pci_update_resource(dev, i); 930} 931 932static const struct pci_platform_pm_ops *pci_platform_pm; 933 934int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 935{ 936 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 937 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 938 return -EINVAL; 939 pci_platform_pm = ops; 940 return 0; 941} 942 943static inline bool platform_pci_power_manageable(struct pci_dev *dev) 944{ 945 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 946} 947 948static inline int platform_pci_set_power_state(struct pci_dev *dev, 949 pci_power_t t) 950{ 951 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 952} 953 954static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 955{ 956 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 957} 958 959static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 960{ 961 if (pci_platform_pm && pci_platform_pm->refresh_state) 962 pci_platform_pm->refresh_state(dev); 963} 964 965static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 966{ 967 return pci_platform_pm ? 968 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 969} 970 971static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 972{ 973 return pci_platform_pm ? 974 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 975} 976 977static inline bool platform_pci_need_resume(struct pci_dev *dev) 978{ 979 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 980} 981 982static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 983{ 984 if (pci_platform_pm && pci_platform_pm->bridge_d3) 985 return pci_platform_pm->bridge_d3(dev); 986 return false; 987} 988 989/** 990 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 991 * given PCI device 992 * @dev: PCI device to handle. 993 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 994 * 995 * RETURN VALUE: 996 * -EINVAL if the requested state is invalid. 997 * -EIO if device does not support PCI PM or its PM capabilities register has a 998 * wrong version, or device doesn't support the requested state. 999 * 0 if device already is in the requested state. 1000 * 0 if device's power state has been successfully changed. 1001 */ 1002static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1003{ 1004 u16 pmcsr; 1005 bool need_restore = false; 1006 1007 /* Check if we're already there */ 1008 if (dev->current_state == state) 1009 return 0; 1010 1011 if (!dev->pm_cap) 1012 return -EIO; 1013 1014 if (state < PCI_D0 || state > PCI_D3hot) 1015 return -EINVAL; 1016 1017 /* 1018 * Validate transition: We can enter D0 from any state, but if 1019 * we're already in a low-power state, we can only go deeper. E.g., 1020 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1021 * we'd have to go from D3 to D0, then to D1. 1022 */ 1023 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1024 && dev->current_state > state) { 1025 pci_err(dev, "invalid power transition (from %s to %s)\n", 1026 pci_power_name(dev->current_state), 1027 pci_power_name(state)); 1028 return -EINVAL; 1029 } 1030 1031 /* Check if this device supports the desired state */ 1032 if ((state == PCI_D1 && !dev->d1_support) 1033 || (state == PCI_D2 && !dev->d2_support)) 1034 return -EIO; 1035 1036 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1037 if (pmcsr == (u16) ~0) { 1038 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1039 pci_power_name(dev->current_state), 1040 pci_power_name(state)); 1041 return -EIO; 1042 } 1043 1044 /* 1045 * If we're (effectively) in D3, force entire word to 0. 1046 * This doesn't affect PME_Status, disables PME_En, and 1047 * sets PowerState to 0. 1048 */ 1049 switch (dev->current_state) { 1050 case PCI_D0: 1051 case PCI_D1: 1052 case PCI_D2: 1053 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1054 pmcsr |= state; 1055 break; 1056 case PCI_D3hot: 1057 case PCI_D3cold: 1058 case PCI_UNKNOWN: /* Boot-up */ 1059 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1060 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1061 need_restore = true; 1062 fallthrough; /* force to D0 */ 1063 default: 1064 pmcsr = 0; 1065 break; 1066 } 1067 1068 /* Enter specified state */ 1069 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1070 1071 /* 1072 * Mandatory power management transition delays; see PCI PM 1.1 1073 * 5.6.1 table 18 1074 */ 1075 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1076 pci_dev_d3_sleep(dev); 1077 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1078 udelay(PCI_PM_D2_DELAY); 1079 1080 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1081 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1082 if (dev->current_state != state) 1083 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1084 pci_power_name(dev->current_state), 1085 pci_power_name(state)); 1086 1087 /* 1088 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1089 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1090 * from D3hot to D0 _may_ perform an internal reset, thereby 1091 * going to "D0 Uninitialized" rather than "D0 Initialized". 1092 * For example, at least some versions of the 3c905B and the 1093 * 3c556B exhibit this behaviour. 1094 * 1095 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1096 * devices in a D3hot state at boot. Consequently, we need to 1097 * restore at least the BARs so that the device will be 1098 * accessible to its driver. 1099 */ 1100 if (need_restore) 1101 pci_restore_bars(dev); 1102 1103 if (dev->bus->self) 1104 pcie_aspm_pm_state_change(dev->bus->self); 1105 1106 return 0; 1107} 1108 1109/** 1110 * pci_update_current_state - Read power state of given device and cache it 1111 * @dev: PCI device to handle. 1112 * @state: State to cache in case the device doesn't have the PM capability 1113 * 1114 * The power state is read from the PMCSR register, which however is 1115 * inaccessible in D3cold. The platform firmware is therefore queried first 1116 * to detect accessibility of the register. In case the platform firmware 1117 * reports an incorrect state or the device isn't power manageable by the 1118 * platform at all, we try to detect D3cold by testing accessibility of the 1119 * vendor ID in config space. 1120 */ 1121void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1122{ 1123 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1124 !pci_device_is_present(dev)) { 1125 dev->current_state = PCI_D3cold; 1126 } else if (dev->pm_cap) { 1127 u16 pmcsr; 1128 1129 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1130 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1131 } else { 1132 dev->current_state = state; 1133 } 1134} 1135 1136/** 1137 * pci_refresh_power_state - Refresh the given device's power state data 1138 * @dev: Target PCI device. 1139 * 1140 * Ask the platform to refresh the devices power state information and invoke 1141 * pci_update_current_state() to update its current PCI power state. 1142 */ 1143void pci_refresh_power_state(struct pci_dev *dev) 1144{ 1145 if (platform_pci_power_manageable(dev)) 1146 platform_pci_refresh_power_state(dev); 1147 1148 pci_update_current_state(dev, dev->current_state); 1149} 1150 1151/** 1152 * pci_platform_power_transition - Use platform to change device power state 1153 * @dev: PCI device to handle. 1154 * @state: State to put the device into. 1155 */ 1156int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1157{ 1158 int error; 1159 1160 if (platform_pci_power_manageable(dev)) { 1161 error = platform_pci_set_power_state(dev, state); 1162 if (!error) 1163 pci_update_current_state(dev, state); 1164 } else 1165 error = -ENODEV; 1166 1167 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1168 dev->current_state = PCI_D0; 1169 1170 return error; 1171} 1172EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1173 1174/** 1175 * pci_wakeup - Wake up a PCI device 1176 * @pci_dev: Device to handle. 1177 * @ign: ignored parameter 1178 */ 1179static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1180{ 1181 pci_wakeup_event(pci_dev); 1182 pm_request_resume(&pci_dev->dev); 1183 return 0; 1184} 1185 1186/** 1187 * pci_wakeup_bus - Walk given bus and wake up devices on it 1188 * @bus: Top bus of the subtree to walk. 1189 */ 1190void pci_wakeup_bus(struct pci_bus *bus) 1191{ 1192 if (bus) 1193 pci_walk_bus(bus, pci_wakeup, NULL); 1194} 1195 1196static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1197{ 1198 int delay = 1; 1199 u32 id; 1200 1201 /* 1202 * After reset, the device should not silently discard config 1203 * requests, but it may still indicate that it needs more time by 1204 * responding to them with CRS completions. The Root Port will 1205 * generally synthesize ~0 data to complete the read (except when 1206 * CRS SV is enabled and the read was for the Vendor ID; in that 1207 * case it synthesizes 0x0001 data). 1208 * 1209 * Wait for the device to return a non-CRS completion. Read the 1210 * Command register instead of Vendor ID so we don't have to 1211 * contend with the CRS SV value. 1212 */ 1213 pci_read_config_dword(dev, PCI_COMMAND, &id); 1214 while (id == ~0) { 1215 if (delay > timeout) { 1216 pci_warn(dev, "not ready %dms after %s; giving up\n", 1217 delay - 1, reset_type); 1218 return -ENOTTY; 1219 } 1220 1221 if (delay > PCI_RESET_WAIT) 1222 pci_info(dev, "not ready %dms after %s; waiting\n", 1223 delay - 1, reset_type); 1224 1225 msleep(delay); 1226 delay *= 2; 1227 pci_read_config_dword(dev, PCI_COMMAND, &id); 1228 } 1229 1230 if (delay > PCI_RESET_WAIT) 1231 pci_info(dev, "ready %dms after %s\n", delay - 1, 1232 reset_type); 1233 1234 return 0; 1235} 1236 1237/** 1238 * pci_power_up - Put the given device into D0 1239 * @dev: PCI device to power up 1240 */ 1241int pci_power_up(struct pci_dev *dev) 1242{ 1243 pci_platform_power_transition(dev, PCI_D0); 1244 1245 /* 1246 * Mandatory power management transition delays are handled in 1247 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1248 * corresponding bridge. 1249 */ 1250 if (dev->runtime_d3cold) { 1251 /* 1252 * When powering on a bridge from D3cold, the whole hierarchy 1253 * may be powered on into D0uninitialized state, resume them to 1254 * give them a chance to suspend again 1255 */ 1256 pci_wakeup_bus(dev->subordinate); 1257 } 1258 1259 return pci_raw_set_power_state(dev, PCI_D0); 1260} 1261 1262/** 1263 * __pci_dev_set_current_state - Set current state of a PCI device 1264 * @dev: Device to handle 1265 * @data: pointer to state to be set 1266 */ 1267static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1268{ 1269 pci_power_t state = *(pci_power_t *)data; 1270 1271 dev->current_state = state; 1272 return 0; 1273} 1274 1275/** 1276 * pci_bus_set_current_state - Walk given bus and set current state of devices 1277 * @bus: Top bus of the subtree to walk. 1278 * @state: state to be set 1279 */ 1280void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1281{ 1282 if (bus) 1283 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1284} 1285 1286/** 1287 * pci_set_power_state - Set the power state of a PCI device 1288 * @dev: PCI device to handle. 1289 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1290 * 1291 * Transition a device to a new power state, using the platform firmware and/or 1292 * the device's PCI PM registers. 1293 * 1294 * RETURN VALUE: 1295 * -EINVAL if the requested state is invalid. 1296 * -EIO if device does not support PCI PM or its PM capabilities register has a 1297 * wrong version, or device doesn't support the requested state. 1298 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1299 * 0 if device already is in the requested state. 1300 * 0 if the transition is to D3 but D3 is not supported. 1301 * 0 if device's power state has been successfully changed. 1302 */ 1303int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1304{ 1305 int error; 1306 1307 /* Bound the state we're entering */ 1308 if (state > PCI_D3cold) 1309 state = PCI_D3cold; 1310 else if (state < PCI_D0) 1311 state = PCI_D0; 1312 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1313 1314 /* 1315 * If the device or the parent bridge do not support PCI 1316 * PM, ignore the request if we're doing anything other 1317 * than putting it into D0 (which would only happen on 1318 * boot). 1319 */ 1320 return 0; 1321 1322 /* Check if we're already there */ 1323 if (dev->current_state == state) 1324 return 0; 1325 1326 if (state == PCI_D0) 1327 return pci_power_up(dev); 1328 1329 /* 1330 * This device is quirked not to be put into D3, so don't put it in 1331 * D3 1332 */ 1333 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1334 return 0; 1335 1336 /* 1337 * To put device in D3cold, we put device into D3hot in native 1338 * way, then put device into D3cold with platform ops 1339 */ 1340 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1341 PCI_D3hot : state); 1342 1343 if (pci_platform_power_transition(dev, state)) 1344 return error; 1345 1346 /* Powering off a bridge may power off the whole hierarchy */ 1347 if (state == PCI_D3cold) 1348 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1349 1350 return 0; 1351} 1352EXPORT_SYMBOL(pci_set_power_state); 1353 1354/** 1355 * pci_choose_state - Choose the power state of a PCI device 1356 * @dev: PCI device to be suspended 1357 * @state: target sleep state for the whole system. This is the value 1358 * that is passed to suspend() function. 1359 * 1360 * Returns PCI power state suitable for given device and given system 1361 * message. 1362 */ 1363pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1364{ 1365 pci_power_t ret; 1366 1367 if (!dev->pm_cap) 1368 return PCI_D0; 1369 1370 ret = platform_pci_choose_state(dev); 1371 if (ret != PCI_POWER_ERROR) 1372 return ret; 1373 1374 switch (state.event) { 1375 case PM_EVENT_ON: 1376 return PCI_D0; 1377 case PM_EVENT_FREEZE: 1378 case PM_EVENT_PRETHAW: 1379 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1380 case PM_EVENT_SUSPEND: 1381 case PM_EVENT_HIBERNATE: 1382 return PCI_D3hot; 1383 default: 1384 pci_info(dev, "unrecognized suspend event %d\n", 1385 state.event); 1386 BUG(); 1387 } 1388 return PCI_D0; 1389} 1390EXPORT_SYMBOL(pci_choose_state); 1391 1392#define PCI_EXP_SAVE_REGS 7 1393 1394static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1395 u16 cap, bool extended) 1396{ 1397 struct pci_cap_saved_state *tmp; 1398 1399 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1400 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1401 return tmp; 1402 } 1403 return NULL; 1404} 1405 1406struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1407{ 1408 return _pci_find_saved_cap(dev, cap, false); 1409} 1410 1411struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1412{ 1413 return _pci_find_saved_cap(dev, cap, true); 1414} 1415 1416static int pci_save_pcie_state(struct pci_dev *dev) 1417{ 1418 int i = 0; 1419 struct pci_cap_saved_state *save_state; 1420 u16 *cap; 1421 1422 if (!pci_is_pcie(dev)) 1423 return 0; 1424 1425 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1426 if (!save_state) { 1427 pci_err(dev, "buffer not found in %s\n", __func__); 1428 return -ENOMEM; 1429 } 1430 1431 cap = (u16 *)&save_state->cap.data[0]; 1432 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1433 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1434 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1435 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1436 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1437 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1438 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1439 1440 return 0; 1441} 1442 1443static void pci_restore_pcie_state(struct pci_dev *dev) 1444{ 1445 int i = 0; 1446 struct pci_cap_saved_state *save_state; 1447 u16 *cap; 1448 1449 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1450 if (!save_state) 1451 return; 1452 1453 cap = (u16 *)&save_state->cap.data[0]; 1454 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1455 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1456 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1457 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1458 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1459 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1460 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1461} 1462 1463static int pci_save_pcix_state(struct pci_dev *dev) 1464{ 1465 int pos; 1466 struct pci_cap_saved_state *save_state; 1467 1468 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1469 if (!pos) 1470 return 0; 1471 1472 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1473 if (!save_state) { 1474 pci_err(dev, "buffer not found in %s\n", __func__); 1475 return -ENOMEM; 1476 } 1477 1478 pci_read_config_word(dev, pos + PCI_X_CMD, 1479 (u16 *)save_state->cap.data); 1480 1481 return 0; 1482} 1483 1484static void pci_restore_pcix_state(struct pci_dev *dev) 1485{ 1486 int i = 0, pos; 1487 struct pci_cap_saved_state *save_state; 1488 u16 *cap; 1489 1490 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1491 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1492 if (!save_state || !pos) 1493 return; 1494 cap = (u16 *)&save_state->cap.data[0]; 1495 1496 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1497} 1498 1499static void pci_save_ltr_state(struct pci_dev *dev) 1500{ 1501 int ltr; 1502 struct pci_cap_saved_state *save_state; 1503 u16 *cap; 1504 1505 if (!pci_is_pcie(dev)) 1506 return; 1507 1508 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1509 if (!ltr) 1510 return; 1511 1512 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1513 if (!save_state) { 1514 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1515 return; 1516 } 1517 1518 cap = (u16 *)&save_state->cap.data[0]; 1519 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1520 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1521} 1522 1523static void pci_restore_ltr_state(struct pci_dev *dev) 1524{ 1525 struct pci_cap_saved_state *save_state; 1526 int ltr; 1527 u16 *cap; 1528 1529 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1530 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1531 if (!save_state || !ltr) 1532 return; 1533 1534 cap = (u16 *)&save_state->cap.data[0]; 1535 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1536 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1537} 1538 1539/** 1540 * pci_save_state - save the PCI configuration space of a device before 1541 * suspending 1542 * @dev: PCI device that we're dealing with 1543 */ 1544int pci_save_state(struct pci_dev *dev) 1545{ 1546 int i; 1547 /* XXX: 100% dword access ok here? */ 1548 for (i = 0; i < 16; i++) { 1549 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1550 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1551 i * 4, dev->saved_config_space[i]); 1552 } 1553 dev->state_saved = true; 1554 1555 i = pci_save_pcie_state(dev); 1556 if (i != 0) 1557 return i; 1558 1559 i = pci_save_pcix_state(dev); 1560 if (i != 0) 1561 return i; 1562 1563 pci_save_ltr_state(dev); 1564 pci_save_dpc_state(dev); 1565 pci_save_aer_state(dev); 1566 return pci_save_vc_state(dev); 1567} 1568EXPORT_SYMBOL(pci_save_state); 1569 1570static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1571 u32 saved_val, int retry, bool force) 1572{ 1573 u32 val; 1574 1575 pci_read_config_dword(pdev, offset, &val); 1576 if (!force && val == saved_val) 1577 return; 1578 1579 for (;;) { 1580 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1581 offset, val, saved_val); 1582 pci_write_config_dword(pdev, offset, saved_val); 1583 if (retry-- <= 0) 1584 return; 1585 1586 pci_read_config_dword(pdev, offset, &val); 1587 if (val == saved_val) 1588 return; 1589 1590 mdelay(1); 1591 } 1592} 1593 1594static void pci_restore_config_space_range(struct pci_dev *pdev, 1595 int start, int end, int retry, 1596 bool force) 1597{ 1598 int index; 1599 1600 for (index = end; index >= start; index--) 1601 pci_restore_config_dword(pdev, 4 * index, 1602 pdev->saved_config_space[index], 1603 retry, force); 1604} 1605 1606static void pci_restore_config_space(struct pci_dev *pdev) 1607{ 1608 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1609 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1610 /* Restore BARs before the command register. */ 1611 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1612 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1613 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1614 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1615 1616 /* 1617 * Force rewriting of prefetch registers to avoid S3 resume 1618 * issues on Intel PCI bridges that occur when these 1619 * registers are not explicitly written. 1620 */ 1621 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1622 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1623 } else { 1624 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1625 } 1626} 1627 1628static void pci_restore_rebar_state(struct pci_dev *pdev) 1629{ 1630 unsigned int pos, nbars, i; 1631 u32 ctrl; 1632 1633 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1634 if (!pos) 1635 return; 1636 1637 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1638 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1639 PCI_REBAR_CTRL_NBAR_SHIFT; 1640 1641 for (i = 0; i < nbars; i++, pos += 8) { 1642 struct resource *res; 1643 int bar_idx, size; 1644 1645 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1646 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1647 res = pdev->resource + bar_idx; 1648 size = ilog2(resource_size(res)) - 20; 1649 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1650 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1651 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1652 } 1653} 1654 1655/** 1656 * pci_restore_state - Restore the saved state of a PCI device 1657 * @dev: PCI device that we're dealing with 1658 */ 1659void pci_restore_state(struct pci_dev *dev) 1660{ 1661 if (!dev->state_saved) 1662 return; 1663 1664 /* 1665 * Restore max latencies (in the LTR capability) before enabling 1666 * LTR itself (in the PCIe capability). 1667 */ 1668 pci_restore_ltr_state(dev); 1669 1670 pci_restore_pcie_state(dev); 1671 pci_restore_pasid_state(dev); 1672 pci_restore_pri_state(dev); 1673 pci_restore_ats_state(dev); 1674 pci_restore_vc_state(dev); 1675 pci_restore_rebar_state(dev); 1676 pci_restore_dpc_state(dev); 1677 1678 pci_aer_clear_status(dev); 1679 pci_restore_aer_state(dev); 1680 1681 pci_restore_config_space(dev); 1682 1683 pci_restore_pcix_state(dev); 1684 pci_restore_msi_state(dev); 1685 1686 /* Restore ACS and IOV configuration state */ 1687 pci_enable_acs(dev); 1688 pci_restore_iov_state(dev); 1689 1690 dev->state_saved = false; 1691} 1692EXPORT_SYMBOL(pci_restore_state); 1693 1694struct pci_saved_state { 1695 u32 config_space[16]; 1696 struct pci_cap_saved_data cap[]; 1697}; 1698 1699/** 1700 * pci_store_saved_state - Allocate and return an opaque struct containing 1701 * the device saved state. 1702 * @dev: PCI device that we're dealing with 1703 * 1704 * Return NULL if no state or error. 1705 */ 1706struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1707{ 1708 struct pci_saved_state *state; 1709 struct pci_cap_saved_state *tmp; 1710 struct pci_cap_saved_data *cap; 1711 size_t size; 1712 1713 if (!dev->state_saved) 1714 return NULL; 1715 1716 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1717 1718 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1719 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1720 1721 state = kzalloc(size, GFP_KERNEL); 1722 if (!state) 1723 return NULL; 1724 1725 memcpy(state->config_space, dev->saved_config_space, 1726 sizeof(state->config_space)); 1727 1728 cap = state->cap; 1729 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1730 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1731 memcpy(cap, &tmp->cap, len); 1732 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1733 } 1734 /* Empty cap_save terminates list */ 1735 1736 return state; 1737} 1738EXPORT_SYMBOL_GPL(pci_store_saved_state); 1739 1740/** 1741 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1742 * @dev: PCI device that we're dealing with 1743 * @state: Saved state returned from pci_store_saved_state() 1744 */ 1745int pci_load_saved_state(struct pci_dev *dev, 1746 struct pci_saved_state *state) 1747{ 1748 struct pci_cap_saved_data *cap; 1749 1750 dev->state_saved = false; 1751 1752 if (!state) 1753 return 0; 1754 1755 memcpy(dev->saved_config_space, state->config_space, 1756 sizeof(state->config_space)); 1757 1758 cap = state->cap; 1759 while (cap->size) { 1760 struct pci_cap_saved_state *tmp; 1761 1762 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1763 if (!tmp || tmp->cap.size != cap->size) 1764 return -EINVAL; 1765 1766 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1767 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1768 sizeof(struct pci_cap_saved_data) + cap->size); 1769 } 1770 1771 dev->state_saved = true; 1772 return 0; 1773} 1774EXPORT_SYMBOL_GPL(pci_load_saved_state); 1775 1776/** 1777 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1778 * and free the memory allocated for it. 1779 * @dev: PCI device that we're dealing with 1780 * @state: Pointer to saved state returned from pci_store_saved_state() 1781 */ 1782int pci_load_and_free_saved_state(struct pci_dev *dev, 1783 struct pci_saved_state **state) 1784{ 1785 int ret = pci_load_saved_state(dev, *state); 1786 kfree(*state); 1787 *state = NULL; 1788 return ret; 1789} 1790EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1791 1792int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1793{ 1794 return pci_enable_resources(dev, bars); 1795} 1796 1797static int do_pci_enable_device(struct pci_dev *dev, int bars) 1798{ 1799 int err; 1800 struct pci_dev *bridge; 1801 u16 cmd; 1802 u8 pin; 1803 1804 err = pci_set_power_state(dev, PCI_D0); 1805 if (err < 0 && err != -EIO) 1806 return err; 1807 1808 bridge = pci_upstream_bridge(dev); 1809 if (bridge) 1810 pcie_aspm_powersave_config_link(bridge); 1811 1812 err = pcibios_enable_device(dev, bars); 1813 if (err < 0) 1814 return err; 1815 pci_fixup_device(pci_fixup_enable, dev); 1816 1817 if (dev->msi_enabled || dev->msix_enabled) 1818 return 0; 1819 1820 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1821 if (pin) { 1822 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1823 if (cmd & PCI_COMMAND_INTX_DISABLE) 1824 pci_write_config_word(dev, PCI_COMMAND, 1825 cmd & ~PCI_COMMAND_INTX_DISABLE); 1826 } 1827 1828 return 0; 1829} 1830 1831/** 1832 * pci_reenable_device - Resume abandoned device 1833 * @dev: PCI device to be resumed 1834 * 1835 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1836 * to be called by normal code, write proper resume handler and use it instead. 1837 */ 1838int pci_reenable_device(struct pci_dev *dev) 1839{ 1840 if (pci_is_enabled(dev)) 1841 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1842 return 0; 1843} 1844EXPORT_SYMBOL(pci_reenable_device); 1845 1846static void pci_enable_bridge(struct pci_dev *dev) 1847{ 1848 struct pci_dev *bridge; 1849 int retval; 1850 1851 bridge = pci_upstream_bridge(dev); 1852 if (bridge) 1853 pci_enable_bridge(bridge); 1854 1855 if (pci_is_enabled(dev)) { 1856 if (!dev->is_busmaster) 1857 pci_set_master(dev); 1858 return; 1859 } 1860 1861 retval = pci_enable_device(dev); 1862 if (retval) 1863 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1864 retval); 1865 pci_set_master(dev); 1866} 1867 1868static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1869{ 1870 struct pci_dev *bridge; 1871 int err; 1872 int i, bars = 0; 1873 1874 /* 1875 * Power state could be unknown at this point, either due to a fresh 1876 * boot or a device removal call. So get the current power state 1877 * so that things like MSI message writing will behave as expected 1878 * (e.g. if the device really is in D0 at enable time). 1879 */ 1880 pci_update_current_state(dev, dev->current_state); 1881 1882 if (atomic_inc_return(&dev->enable_cnt) > 1) 1883 return 0; /* already enabled */ 1884 1885 bridge = pci_upstream_bridge(dev); 1886 if (bridge) 1887 pci_enable_bridge(bridge); 1888 1889 /* only skip sriov related */ 1890 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1891 if (dev->resource[i].flags & flags) 1892 bars |= (1 << i); 1893 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1894 if (dev->resource[i].flags & flags) 1895 bars |= (1 << i); 1896 1897 err = do_pci_enable_device(dev, bars); 1898 if (err < 0) 1899 atomic_dec(&dev->enable_cnt); 1900 return err; 1901} 1902 1903/** 1904 * pci_enable_device_io - Initialize a device for use with IO space 1905 * @dev: PCI device to be initialized 1906 * 1907 * Initialize device before it's used by a driver. Ask low-level code 1908 * to enable I/O resources. Wake up the device if it was suspended. 1909 * Beware, this function can fail. 1910 */ 1911int pci_enable_device_io(struct pci_dev *dev) 1912{ 1913 return pci_enable_device_flags(dev, IORESOURCE_IO); 1914} 1915EXPORT_SYMBOL(pci_enable_device_io); 1916 1917/** 1918 * pci_enable_device_mem - Initialize a device for use with Memory space 1919 * @dev: PCI device to be initialized 1920 * 1921 * Initialize device before it's used by a driver. Ask low-level code 1922 * to enable Memory resources. Wake up the device if it was suspended. 1923 * Beware, this function can fail. 1924 */ 1925int pci_enable_device_mem(struct pci_dev *dev) 1926{ 1927 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1928} 1929EXPORT_SYMBOL(pci_enable_device_mem); 1930 1931/** 1932 * pci_enable_device - Initialize device before it's used by a driver. 1933 * @dev: PCI device to be initialized 1934 * 1935 * Initialize device before it's used by a driver. Ask low-level code 1936 * to enable I/O and memory. Wake up the device if it was suspended. 1937 * Beware, this function can fail. 1938 * 1939 * Note we don't actually enable the device many times if we call 1940 * this function repeatedly (we just increment the count). 1941 */ 1942int pci_enable_device(struct pci_dev *dev) 1943{ 1944 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1945} 1946EXPORT_SYMBOL(pci_enable_device); 1947 1948/* 1949 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1950 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1951 * there's no need to track it separately. pci_devres is initialized 1952 * when a device is enabled using managed PCI device enable interface. 1953 */ 1954struct pci_devres { 1955 unsigned int enabled:1; 1956 unsigned int pinned:1; 1957 unsigned int orig_intx:1; 1958 unsigned int restore_intx:1; 1959 unsigned int mwi:1; 1960 u32 region_mask; 1961}; 1962 1963static void pcim_release(struct device *gendev, void *res) 1964{ 1965 struct pci_dev *dev = to_pci_dev(gendev); 1966 struct pci_devres *this = res; 1967 int i; 1968 1969 if (dev->msi_enabled) 1970 pci_disable_msi(dev); 1971 if (dev->msix_enabled) 1972 pci_disable_msix(dev); 1973 1974 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1975 if (this->region_mask & (1 << i)) 1976 pci_release_region(dev, i); 1977 1978 if (this->mwi) 1979 pci_clear_mwi(dev); 1980 1981 if (this->restore_intx) 1982 pci_intx(dev, this->orig_intx); 1983 1984 if (this->enabled && !this->pinned) 1985 pci_disable_device(dev); 1986} 1987 1988static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1989{ 1990 struct pci_devres *dr, *new_dr; 1991 1992 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1993 if (dr) 1994 return dr; 1995 1996 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1997 if (!new_dr) 1998 return NULL; 1999 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2000} 2001 2002static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2003{ 2004 if (pci_is_managed(pdev)) 2005 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2006 return NULL; 2007} 2008 2009/** 2010 * pcim_enable_device - Managed pci_enable_device() 2011 * @pdev: PCI device to be initialized 2012 * 2013 * Managed pci_enable_device(). 2014 */ 2015int pcim_enable_device(struct pci_dev *pdev) 2016{ 2017 struct pci_devres *dr; 2018 int rc; 2019 2020 dr = get_pci_dr(pdev); 2021 if (unlikely(!dr)) 2022 return -ENOMEM; 2023 if (dr->enabled) 2024 return 0; 2025 2026 rc = pci_enable_device(pdev); 2027 if (!rc) { 2028 pdev->is_managed = 1; 2029 dr->enabled = 1; 2030 } 2031 return rc; 2032} 2033EXPORT_SYMBOL(pcim_enable_device); 2034 2035/** 2036 * pcim_pin_device - Pin managed PCI device 2037 * @pdev: PCI device to pin 2038 * 2039 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2040 * driver detach. @pdev must have been enabled with 2041 * pcim_enable_device(). 2042 */ 2043void pcim_pin_device(struct pci_dev *pdev) 2044{ 2045 struct pci_devres *dr; 2046 2047 dr = find_pci_dr(pdev); 2048 WARN_ON(!dr || !dr->enabled); 2049 if (dr) 2050 dr->pinned = 1; 2051} 2052EXPORT_SYMBOL(pcim_pin_device); 2053 2054/* 2055 * pcibios_add_device - provide arch specific hooks when adding device dev 2056 * @dev: the PCI device being added 2057 * 2058 * Permits the platform to provide architecture specific functionality when 2059 * devices are added. This is the default implementation. Architecture 2060 * implementations can override this. 2061 */ 2062int __weak pcibios_add_device(struct pci_dev *dev) 2063{ 2064 return 0; 2065} 2066 2067/** 2068 * pcibios_release_device - provide arch specific hooks when releasing 2069 * device dev 2070 * @dev: the PCI device being released 2071 * 2072 * Permits the platform to provide architecture specific functionality when 2073 * devices are released. This is the default implementation. Architecture 2074 * implementations can override this. 2075 */ 2076void __weak pcibios_release_device(struct pci_dev *dev) {} 2077 2078/** 2079 * pcibios_disable_device - disable arch specific PCI resources for device dev 2080 * @dev: the PCI device to disable 2081 * 2082 * Disables architecture specific PCI resources for the device. This 2083 * is the default implementation. Architecture implementations can 2084 * override this. 2085 */ 2086void __weak pcibios_disable_device(struct pci_dev *dev) {} 2087 2088/** 2089 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2090 * @irq: ISA IRQ to penalize 2091 * @active: IRQ active or not 2092 * 2093 * Permits the platform to provide architecture-specific functionality when 2094 * penalizing ISA IRQs. This is the default implementation. Architecture 2095 * implementations can override this. 2096 */ 2097void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2098 2099static void do_pci_disable_device(struct pci_dev *dev) 2100{ 2101 u16 pci_command; 2102 2103 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2104 if (pci_command & PCI_COMMAND_MASTER) { 2105 pci_command &= ~PCI_COMMAND_MASTER; 2106 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2107 } 2108 2109 pcibios_disable_device(dev); 2110} 2111 2112/** 2113 * pci_disable_enabled_device - Disable device without updating enable_cnt 2114 * @dev: PCI device to disable 2115 * 2116 * NOTE: This function is a backend of PCI power management routines and is 2117 * not supposed to be called drivers. 2118 */ 2119void pci_disable_enabled_device(struct pci_dev *dev) 2120{ 2121 if (pci_is_enabled(dev)) 2122 do_pci_disable_device(dev); 2123} 2124 2125/** 2126 * pci_disable_device - Disable PCI device after use 2127 * @dev: PCI device to be disabled 2128 * 2129 * Signal to the system that the PCI device is not in use by the system 2130 * anymore. This only involves disabling PCI bus-mastering, if active. 2131 * 2132 * Note we don't actually disable the device until all callers of 2133 * pci_enable_device() have called pci_disable_device(). 2134 */ 2135void pci_disable_device(struct pci_dev *dev) 2136{ 2137 struct pci_devres *dr; 2138 2139 dr = find_pci_dr(dev); 2140 if (dr) 2141 dr->enabled = 0; 2142 2143 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2144 "disabling already-disabled device"); 2145 2146 if (atomic_dec_return(&dev->enable_cnt) != 0) 2147 return; 2148 2149 do_pci_disable_device(dev); 2150 2151 dev->is_busmaster = 0; 2152} 2153EXPORT_SYMBOL(pci_disable_device); 2154 2155/** 2156 * pcibios_set_pcie_reset_state - set reset state for device dev 2157 * @dev: the PCIe device reset 2158 * @state: Reset state to enter into 2159 * 2160 * Set the PCIe reset state for the device. This is the default 2161 * implementation. Architecture implementations can override this. 2162 */ 2163int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2164 enum pcie_reset_state state) 2165{ 2166 return -EINVAL; 2167} 2168 2169/** 2170 * pci_set_pcie_reset_state - set reset state for device dev 2171 * @dev: the PCIe device reset 2172 * @state: Reset state to enter into 2173 * 2174 * Sets the PCI reset state for the device. 2175 */ 2176int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2177{ 2178 return pcibios_set_pcie_reset_state(dev, state); 2179} 2180EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2181 2182void pcie_clear_device_status(struct pci_dev *dev) 2183{ 2184 u16 sta; 2185 2186 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2187 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2188} 2189 2190/** 2191 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2192 * @dev: PCIe root port or event collector. 2193 */ 2194void pcie_clear_root_pme_status(struct pci_dev *dev) 2195{ 2196 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2197} 2198 2199/** 2200 * pci_check_pme_status - Check if given device has generated PME. 2201 * @dev: Device to check. 2202 * 2203 * Check the PME status of the device and if set, clear it and clear PME enable 2204 * (if set). Return 'true' if PME status and PME enable were both set or 2205 * 'false' otherwise. 2206 */ 2207bool pci_check_pme_status(struct pci_dev *dev) 2208{ 2209 int pmcsr_pos; 2210 u16 pmcsr; 2211 bool ret = false; 2212 2213 if (!dev->pm_cap) 2214 return false; 2215 2216 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2217 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2218 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2219 return false; 2220 2221 /* Clear PME status. */ 2222 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2223 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2224 /* Disable PME to avoid interrupt flood. */ 2225 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2226 ret = true; 2227 } 2228 2229 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2230 2231 return ret; 2232} 2233 2234/** 2235 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2236 * @dev: Device to handle. 2237 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2238 * 2239 * Check if @dev has generated PME and queue a resume request for it in that 2240 * case. 2241 */ 2242static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2243{ 2244 if (pme_poll_reset && dev->pme_poll) 2245 dev->pme_poll = false; 2246 2247 if (pci_check_pme_status(dev)) { 2248 pci_wakeup_event(dev); 2249 pm_request_resume(&dev->dev); 2250 } 2251 return 0; 2252} 2253 2254/** 2255 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2256 * @bus: Top bus of the subtree to walk. 2257 */ 2258void pci_pme_wakeup_bus(struct pci_bus *bus) 2259{ 2260 if (bus) 2261 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2262} 2263 2264 2265/** 2266 * pci_pme_capable - check the capability of PCI device to generate PME# 2267 * @dev: PCI device to handle. 2268 * @state: PCI state from which device will issue PME#. 2269 */ 2270bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2271{ 2272 if (!dev->pm_cap) 2273 return false; 2274 2275 return !!(dev->pme_support & (1 << state)); 2276} 2277EXPORT_SYMBOL(pci_pme_capable); 2278 2279static void pci_pme_list_scan(struct work_struct *work) 2280{ 2281 struct pci_pme_device *pme_dev, *n; 2282 2283 mutex_lock(&pci_pme_list_mutex); 2284 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2285 if (pme_dev->dev->pme_poll) { 2286 struct pci_dev *bridge; 2287 2288 bridge = pme_dev->dev->bus->self; 2289 /* 2290 * If bridge is in low power state, the 2291 * configuration space of subordinate devices 2292 * may be not accessible 2293 */ 2294 if (bridge && bridge->current_state != PCI_D0) 2295 continue; 2296 /* 2297 * If the device is in D3cold it should not be 2298 * polled either. 2299 */ 2300 if (pme_dev->dev->current_state == PCI_D3cold) 2301 continue; 2302 2303 pci_pme_wakeup(pme_dev->dev, NULL); 2304 } else { 2305 list_del(&pme_dev->list); 2306 kfree(pme_dev); 2307 } 2308 } 2309 if (!list_empty(&pci_pme_list)) 2310 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2311 msecs_to_jiffies(PME_TIMEOUT)); 2312 mutex_unlock(&pci_pme_list_mutex); 2313} 2314 2315static void __pci_pme_active(struct pci_dev *dev, bool enable) 2316{ 2317 u16 pmcsr; 2318 2319 if (!dev->pme_support) 2320 return; 2321 2322 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2323 /* Clear PME_Status by writing 1 to it and enable PME# */ 2324 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2325 if (!enable) 2326 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2327 2328 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2329} 2330 2331/** 2332 * pci_pme_restore - Restore PME configuration after config space restore. 2333 * @dev: PCI device to update. 2334 */ 2335void pci_pme_restore(struct pci_dev *dev) 2336{ 2337 u16 pmcsr; 2338 2339 if (!dev->pme_support) 2340 return; 2341 2342 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2343 if (dev->wakeup_prepared) { 2344 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2345 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2346 } else { 2347 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2348 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2349 } 2350 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2351} 2352 2353/** 2354 * pci_pme_active - enable or disable PCI device's PME# function 2355 * @dev: PCI device to handle. 2356 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2357 * 2358 * The caller must verify that the device is capable of generating PME# before 2359 * calling this function with @enable equal to 'true'. 2360 */ 2361void pci_pme_active(struct pci_dev *dev, bool enable) 2362{ 2363 __pci_pme_active(dev, enable); 2364 2365 /* 2366 * PCI (as opposed to PCIe) PME requires that the device have 2367 * its PME# line hooked up correctly. Not all hardware vendors 2368 * do this, so the PME never gets delivered and the device 2369 * remains asleep. The easiest way around this is to 2370 * periodically walk the list of suspended devices and check 2371 * whether any have their PME flag set. The assumption is that 2372 * we'll wake up often enough anyway that this won't be a huge 2373 * hit, and the power savings from the devices will still be a 2374 * win. 2375 * 2376 * Although PCIe uses in-band PME message instead of PME# line 2377 * to report PME, PME does not work for some PCIe devices in 2378 * reality. For example, there are devices that set their PME 2379 * status bits, but don't really bother to send a PME message; 2380 * there are PCI Express Root Ports that don't bother to 2381 * trigger interrupts when they receive PME messages from the 2382 * devices below. So PME poll is used for PCIe devices too. 2383 */ 2384 2385 if (dev->pme_poll) { 2386 struct pci_pme_device *pme_dev; 2387 if (enable) { 2388 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2389 GFP_KERNEL); 2390 if (!pme_dev) { 2391 pci_warn(dev, "can't enable PME#\n"); 2392 return; 2393 } 2394 pme_dev->dev = dev; 2395 mutex_lock(&pci_pme_list_mutex); 2396 list_add(&pme_dev->list, &pci_pme_list); 2397 if (list_is_singular(&pci_pme_list)) 2398 queue_delayed_work(system_freezable_wq, 2399 &pci_pme_work, 2400 msecs_to_jiffies(PME_TIMEOUT)); 2401 mutex_unlock(&pci_pme_list_mutex); 2402 } else { 2403 mutex_lock(&pci_pme_list_mutex); 2404 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2405 if (pme_dev->dev == dev) { 2406 list_del(&pme_dev->list); 2407 kfree(pme_dev); 2408 break; 2409 } 2410 } 2411 mutex_unlock(&pci_pme_list_mutex); 2412 } 2413 } 2414 2415 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2416} 2417EXPORT_SYMBOL(pci_pme_active); 2418 2419/** 2420 * __pci_enable_wake - enable PCI device as wakeup event source 2421 * @dev: PCI device affected 2422 * @state: PCI state from which device will issue wakeup events 2423 * @enable: True to enable event generation; false to disable 2424 * 2425 * This enables the device as a wakeup event source, or disables it. 2426 * When such events involves platform-specific hooks, those hooks are 2427 * called automatically by this routine. 2428 * 2429 * Devices with legacy power management (no standard PCI PM capabilities) 2430 * always require such platform hooks. 2431 * 2432 * RETURN VALUE: 2433 * 0 is returned on success 2434 * -EINVAL is returned if device is not supposed to wake up the system 2435 * Error code depending on the platform is returned if both the platform and 2436 * the native mechanism fail to enable the generation of wake-up events 2437 */ 2438static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2439{ 2440 int ret = 0; 2441 2442 /* 2443 * Bridges that are not power-manageable directly only signal 2444 * wakeup on behalf of subordinate devices which is set up 2445 * elsewhere, so skip them. However, bridges that are 2446 * power-manageable may signal wakeup for themselves (for example, 2447 * on a hotplug event) and they need to be covered here. 2448 */ 2449 if (!pci_power_manageable(dev)) 2450 return 0; 2451 2452 /* Don't do the same thing twice in a row for one device. */ 2453 if (!!enable == !!dev->wakeup_prepared) 2454 return 0; 2455 2456 /* 2457 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2458 * Anderson we should be doing PME# wake enable followed by ACPI wake 2459 * enable. To disable wake-up we call the platform first, for symmetry. 2460 */ 2461 2462 if (enable) { 2463 int error; 2464 2465 /* 2466 * Enable PME signaling if the device can signal PME from 2467 * D3cold regardless of whether or not it can signal PME from 2468 * the current target state, because that will allow it to 2469 * signal PME when the hierarchy above it goes into D3cold and 2470 * the device itself ends up in D3cold as a result of that. 2471 */ 2472 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2473 pci_pme_active(dev, true); 2474 else 2475 ret = 1; 2476 error = platform_pci_set_wakeup(dev, true); 2477 if (ret) 2478 ret = error; 2479 if (!ret) 2480 dev->wakeup_prepared = true; 2481 } else { 2482 platform_pci_set_wakeup(dev, false); 2483 pci_pme_active(dev, false); 2484 dev->wakeup_prepared = false; 2485 } 2486 2487 return ret; 2488} 2489 2490/** 2491 * pci_enable_wake - change wakeup settings for a PCI device 2492 * @pci_dev: Target device 2493 * @state: PCI state from which device will issue wakeup events 2494 * @enable: Whether or not to enable event generation 2495 * 2496 * If @enable is set, check device_may_wakeup() for the device before calling 2497 * __pci_enable_wake() for it. 2498 */ 2499int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2500{ 2501 if (enable && !device_may_wakeup(&pci_dev->dev)) 2502 return -EINVAL; 2503 2504 return __pci_enable_wake(pci_dev, state, enable); 2505} 2506EXPORT_SYMBOL(pci_enable_wake); 2507 2508/** 2509 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2510 * @dev: PCI device to prepare 2511 * @enable: True to enable wake-up event generation; false to disable 2512 * 2513 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2514 * and this function allows them to set that up cleanly - pci_enable_wake() 2515 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2516 * ordering constraints. 2517 * 2518 * This function only returns error code if the device is not allowed to wake 2519 * up the system from sleep or it is not capable of generating PME# from both 2520 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2521 */ 2522int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2523{ 2524 return pci_pme_capable(dev, PCI_D3cold) ? 2525 pci_enable_wake(dev, PCI_D3cold, enable) : 2526 pci_enable_wake(dev, PCI_D3hot, enable); 2527} 2528EXPORT_SYMBOL(pci_wake_from_d3); 2529 2530/** 2531 * pci_target_state - find an appropriate low power state for a given PCI dev 2532 * @dev: PCI device 2533 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2534 * 2535 * Use underlying platform code to find a supported low power state for @dev. 2536 * If the platform can't manage @dev, return the deepest state from which it 2537 * can generate wake events, based on any available PME info. 2538 */ 2539static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2540{ 2541 pci_power_t target_state = PCI_D3hot; 2542 2543 if (platform_pci_power_manageable(dev)) { 2544 /* 2545 * Call the platform to find the target state for the device. 2546 */ 2547 pci_power_t state = platform_pci_choose_state(dev); 2548 2549 switch (state) { 2550 case PCI_POWER_ERROR: 2551 case PCI_UNKNOWN: 2552 break; 2553 case PCI_D1: 2554 case PCI_D2: 2555 if (pci_no_d1d2(dev)) 2556 break; 2557 fallthrough; 2558 default: 2559 target_state = state; 2560 } 2561 2562 return target_state; 2563 } 2564 2565 if (!dev->pm_cap) 2566 target_state = PCI_D0; 2567 2568 /* 2569 * If the device is in D3cold even though it's not power-manageable by 2570 * the platform, it may have been powered down by non-standard means. 2571 * Best to let it slumber. 2572 */ 2573 if (dev->current_state == PCI_D3cold) 2574 target_state = PCI_D3cold; 2575 2576 if (wakeup && dev->pme_support) { 2577 pci_power_t state = target_state; 2578 2579 /* 2580 * Find the deepest state from which the device can generate 2581 * PME#. 2582 */ 2583 while (state && !(dev->pme_support & (1 << state))) 2584 state--; 2585 2586 if (state) 2587 return state; 2588 else if (dev->pme_support & 1) 2589 return PCI_D0; 2590 } 2591 2592 return target_state; 2593} 2594 2595/** 2596 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2597 * into a sleep state 2598 * @dev: Device to handle. 2599 * 2600 * Choose the power state appropriate for the device depending on whether 2601 * it can wake up the system and/or is power manageable by the platform 2602 * (PCI_D3hot is the default) and put the device into that state. 2603 */ 2604int pci_prepare_to_sleep(struct pci_dev *dev) 2605{ 2606 bool wakeup = device_may_wakeup(&dev->dev); 2607 pci_power_t target_state = pci_target_state(dev, wakeup); 2608 int error; 2609 2610 if (target_state == PCI_POWER_ERROR) 2611 return -EIO; 2612 2613 pci_enable_wake(dev, target_state, wakeup); 2614 2615 error = pci_set_power_state(dev, target_state); 2616 2617 if (error) 2618 pci_enable_wake(dev, target_state, false); 2619 2620 return error; 2621} 2622EXPORT_SYMBOL(pci_prepare_to_sleep); 2623 2624/** 2625 * pci_back_from_sleep - turn PCI device on during system-wide transition 2626 * into working state 2627 * @dev: Device to handle. 2628 * 2629 * Disable device's system wake-up capability and put it into D0. 2630 */ 2631int pci_back_from_sleep(struct pci_dev *dev) 2632{ 2633 pci_enable_wake(dev, PCI_D0, false); 2634 return pci_set_power_state(dev, PCI_D0); 2635} 2636EXPORT_SYMBOL(pci_back_from_sleep); 2637 2638/** 2639 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2640 * @dev: PCI device being suspended. 2641 * 2642 * Prepare @dev to generate wake-up events at run time and put it into a low 2643 * power state. 2644 */ 2645int pci_finish_runtime_suspend(struct pci_dev *dev) 2646{ 2647 pci_power_t target_state; 2648 int error; 2649 2650 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2651 if (target_state == PCI_POWER_ERROR) 2652 return -EIO; 2653 2654 dev->runtime_d3cold = target_state == PCI_D3cold; 2655 2656 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2657 2658 error = pci_set_power_state(dev, target_state); 2659 2660 if (error) { 2661 pci_enable_wake(dev, target_state, false); 2662 dev->runtime_d3cold = false; 2663 } 2664 2665 return error; 2666} 2667 2668/** 2669 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2670 * @dev: Device to check. 2671 * 2672 * Return true if the device itself is capable of generating wake-up events 2673 * (through the platform or using the native PCIe PME) or if the device supports 2674 * PME and one of its upstream bridges can generate wake-up events. 2675 */ 2676bool pci_dev_run_wake(struct pci_dev *dev) 2677{ 2678 struct pci_bus *bus = dev->bus; 2679 2680 if (!dev->pme_support) 2681 return false; 2682 2683 /* PME-capable in principle, but not from the target power state */ 2684 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2685 return false; 2686 2687 if (device_can_wakeup(&dev->dev)) 2688 return true; 2689 2690 while (bus->parent) { 2691 struct pci_dev *bridge = bus->self; 2692 2693 if (device_can_wakeup(&bridge->dev)) 2694 return true; 2695 2696 bus = bus->parent; 2697 } 2698 2699 /* We have reached the root bus. */ 2700 if (bus->bridge) 2701 return device_can_wakeup(bus->bridge); 2702 2703 return false; 2704} 2705EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2706 2707/** 2708 * pci_dev_need_resume - Check if it is necessary to resume the device. 2709 * @pci_dev: Device to check. 2710 * 2711 * Return 'true' if the device is not runtime-suspended or it has to be 2712 * reconfigured due to wakeup settings difference between system and runtime 2713 * suspend, or the current power state of it is not suitable for the upcoming 2714 * (system-wide) transition. 2715 */ 2716bool pci_dev_need_resume(struct pci_dev *pci_dev) 2717{ 2718 struct device *dev = &pci_dev->dev; 2719 pci_power_t target_state; 2720 2721 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2722 return true; 2723 2724 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2725 2726 /* 2727 * If the earlier platform check has not triggered, D3cold is just power 2728 * removal on top of D3hot, so no need to resume the device in that 2729 * case. 2730 */ 2731 return target_state != pci_dev->current_state && 2732 target_state != PCI_D3cold && 2733 pci_dev->current_state != PCI_D3hot; 2734} 2735 2736/** 2737 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2738 * @pci_dev: Device to check. 2739 * 2740 * If the device is suspended and it is not configured for system wakeup, 2741 * disable PME for it to prevent it from waking up the system unnecessarily. 2742 * 2743 * Note that if the device's power state is D3cold and the platform check in 2744 * pci_dev_need_resume() has not triggered, the device's configuration need not 2745 * be changed. 2746 */ 2747void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2748{ 2749 struct device *dev = &pci_dev->dev; 2750 2751 spin_lock_irq(&dev->power.lock); 2752 2753 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2754 pci_dev->current_state < PCI_D3cold) 2755 __pci_pme_active(pci_dev, false); 2756 2757 spin_unlock_irq(&dev->power.lock); 2758} 2759 2760/** 2761 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2762 * @pci_dev: Device to handle. 2763 * 2764 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2765 * it might have been disabled during the prepare phase of system suspend if 2766 * the device was not configured for system wakeup. 2767 */ 2768void pci_dev_complete_resume(struct pci_dev *pci_dev) 2769{ 2770 struct device *dev = &pci_dev->dev; 2771 2772 if (!pci_dev_run_wake(pci_dev)) 2773 return; 2774 2775 spin_lock_irq(&dev->power.lock); 2776 2777 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2778 __pci_pme_active(pci_dev, true); 2779 2780 spin_unlock_irq(&dev->power.lock); 2781} 2782 2783void pci_config_pm_runtime_get(struct pci_dev *pdev) 2784{ 2785 struct device *dev = &pdev->dev; 2786 struct device *parent = dev->parent; 2787 2788 if (parent) 2789 pm_runtime_get_sync(parent); 2790 pm_runtime_get_noresume(dev); 2791 /* 2792 * pdev->current_state is set to PCI_D3cold during suspending, 2793 * so wait until suspending completes 2794 */ 2795 pm_runtime_barrier(dev); 2796 /* 2797 * Only need to resume devices in D3cold, because config 2798 * registers are still accessible for devices suspended but 2799 * not in D3cold. 2800 */ 2801 if (pdev->current_state == PCI_D3cold) 2802 pm_runtime_resume(dev); 2803} 2804 2805void pci_config_pm_runtime_put(struct pci_dev *pdev) 2806{ 2807 struct device *dev = &pdev->dev; 2808 struct device *parent = dev->parent; 2809 2810 pm_runtime_put(dev); 2811 if (parent) 2812 pm_runtime_put_sync(parent); 2813} 2814 2815static const struct dmi_system_id bridge_d3_blacklist[] = { 2816#ifdef CONFIG_X86 2817 { 2818 /* 2819 * Gigabyte X299 root port is not marked as hotplug capable 2820 * which allows Linux to power manage it. However, this 2821 * confuses the BIOS SMI handler so don't power manage root 2822 * ports on that system. 2823 */ 2824 .ident = "X299 DESIGNARE EX-CF", 2825 .matches = { 2826 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2827 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2828 }, 2829 }, 2830 { 2831 /* 2832 * Downstream device is not accessible after putting a root port 2833 * into D3cold and back into D0 on Elo Continental Z2 board 2834 */ 2835 .ident = "Elo Continental Z2", 2836 .matches = { 2837 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 2838 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 2839 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 2840 }, 2841 }, 2842#endif 2843 { } 2844}; 2845 2846/** 2847 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2848 * @bridge: Bridge to check 2849 * 2850 * This function checks if it is possible to move the bridge to D3. 2851 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2852 */ 2853bool pci_bridge_d3_possible(struct pci_dev *bridge) 2854{ 2855 if (!pci_is_pcie(bridge)) 2856 return false; 2857 2858 switch (pci_pcie_type(bridge)) { 2859 case PCI_EXP_TYPE_ROOT_PORT: 2860 case PCI_EXP_TYPE_UPSTREAM: 2861 case PCI_EXP_TYPE_DOWNSTREAM: 2862 if (pci_bridge_d3_disable) 2863 return false; 2864 2865 /* 2866 * Hotplug ports handled by firmware in System Management Mode 2867 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2868 */ 2869 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2870 return false; 2871 2872 if (pci_bridge_d3_force) 2873 return true; 2874 2875 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2876 if (bridge->is_thunderbolt) 2877 return true; 2878 2879 /* Platform might know better if the bridge supports D3 */ 2880 if (platform_pci_bridge_d3(bridge)) 2881 return true; 2882 2883 /* 2884 * Hotplug ports handled natively by the OS were not validated 2885 * by vendors for runtime D3 at least until 2018 because there 2886 * was no OS support. 2887 */ 2888 if (bridge->is_hotplug_bridge) 2889 return false; 2890 2891 if (dmi_check_system(bridge_d3_blacklist)) 2892 return false; 2893 2894 /* 2895 * It should be safe to put PCIe ports from 2015 or newer 2896 * to D3. 2897 */ 2898 if (dmi_get_bios_year() >= 2015) 2899 return true; 2900 break; 2901 } 2902 2903 return false; 2904} 2905 2906static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2907{ 2908 bool *d3cold_ok = data; 2909 2910 if (/* The device needs to be allowed to go D3cold ... */ 2911 dev->no_d3cold || !dev->d3cold_allowed || 2912 2913 /* ... and if it is wakeup capable to do so from D3cold. */ 2914 (device_may_wakeup(&dev->dev) && 2915 !pci_pme_capable(dev, PCI_D3cold)) || 2916 2917 /* If it is a bridge it must be allowed to go to D3. */ 2918 !pci_power_manageable(dev)) 2919 2920 *d3cold_ok = false; 2921 2922 return !*d3cold_ok; 2923} 2924 2925/* 2926 * pci_bridge_d3_update - Update bridge D3 capabilities 2927 * @dev: PCI device which is changed 2928 * 2929 * Update upstream bridge PM capabilities accordingly depending on if the 2930 * device PM configuration was changed or the device is being removed. The 2931 * change is also propagated upstream. 2932 */ 2933void pci_bridge_d3_update(struct pci_dev *dev) 2934{ 2935 bool remove = !device_is_registered(&dev->dev); 2936 struct pci_dev *bridge; 2937 bool d3cold_ok = true; 2938 2939 bridge = pci_upstream_bridge(dev); 2940 if (!bridge || !pci_bridge_d3_possible(bridge)) 2941 return; 2942 2943 /* 2944 * If D3 is currently allowed for the bridge, removing one of its 2945 * children won't change that. 2946 */ 2947 if (remove && bridge->bridge_d3) 2948 return; 2949 2950 /* 2951 * If D3 is currently allowed for the bridge and a child is added or 2952 * changed, disallowance of D3 can only be caused by that child, so 2953 * we only need to check that single device, not any of its siblings. 2954 * 2955 * If D3 is currently not allowed for the bridge, checking the device 2956 * first may allow us to skip checking its siblings. 2957 */ 2958 if (!remove) 2959 pci_dev_check_d3cold(dev, &d3cold_ok); 2960 2961 /* 2962 * If D3 is currently not allowed for the bridge, this may be caused 2963 * either by the device being changed/removed or any of its siblings, 2964 * so we need to go through all children to find out if one of them 2965 * continues to block D3. 2966 */ 2967 if (d3cold_ok && !bridge->bridge_d3) 2968 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2969 &d3cold_ok); 2970 2971 if (bridge->bridge_d3 != d3cold_ok) { 2972 bridge->bridge_d3 = d3cold_ok; 2973 /* Propagate change to upstream bridges */ 2974 pci_bridge_d3_update(bridge); 2975 } 2976} 2977 2978/** 2979 * pci_d3cold_enable - Enable D3cold for device 2980 * @dev: PCI device to handle 2981 * 2982 * This function can be used in drivers to enable D3cold from the device 2983 * they handle. It also updates upstream PCI bridge PM capabilities 2984 * accordingly. 2985 */ 2986void pci_d3cold_enable(struct pci_dev *dev) 2987{ 2988 if (dev->no_d3cold) { 2989 dev->no_d3cold = false; 2990 pci_bridge_d3_update(dev); 2991 } 2992} 2993EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2994 2995/** 2996 * pci_d3cold_disable - Disable D3cold for device 2997 * @dev: PCI device to handle 2998 * 2999 * This function can be used in drivers to disable D3cold from the device 3000 * they handle. It also updates upstream PCI bridge PM capabilities 3001 * accordingly. 3002 */ 3003void pci_d3cold_disable(struct pci_dev *dev) 3004{ 3005 if (!dev->no_d3cold) { 3006 dev->no_d3cold = true; 3007 pci_bridge_d3_update(dev); 3008 } 3009} 3010EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3011 3012/** 3013 * pci_pm_init - Initialize PM functions of given PCI device 3014 * @dev: PCI device to handle. 3015 */ 3016void pci_pm_init(struct pci_dev *dev) 3017{ 3018 int pm; 3019 u16 status; 3020 u16 pmc; 3021 3022 pm_runtime_forbid(&dev->dev); 3023 pm_runtime_set_active(&dev->dev); 3024 pm_runtime_enable(&dev->dev); 3025 device_enable_async_suspend(&dev->dev); 3026 dev->wakeup_prepared = false; 3027 3028 dev->pm_cap = 0; 3029 dev->pme_support = 0; 3030 3031 /* find PCI PM capability in list */ 3032 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3033 if (!pm) 3034 return; 3035 /* Check device's ability to generate PME# */ 3036 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3037 3038 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3039 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3040 pmc & PCI_PM_CAP_VER_MASK); 3041 return; 3042 } 3043 3044 dev->pm_cap = pm; 3045 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3046 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3047 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3048 dev->d3cold_allowed = true; 3049 3050 dev->d1_support = false; 3051 dev->d2_support = false; 3052 if (!pci_no_d1d2(dev)) { 3053 if (pmc & PCI_PM_CAP_D1) 3054 dev->d1_support = true; 3055 if (pmc & PCI_PM_CAP_D2) 3056 dev->d2_support = true; 3057 3058 if (dev->d1_support || dev->d2_support) 3059 pci_info(dev, "supports%s%s\n", 3060 dev->d1_support ? " D1" : "", 3061 dev->d2_support ? " D2" : ""); 3062 } 3063 3064 pmc &= PCI_PM_CAP_PME_MASK; 3065 if (pmc) { 3066 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3067 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3068 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3069 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3070 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3071 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3072 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3073 dev->pme_poll = true; 3074 /* 3075 * Make device's PM flags reflect the wake-up capability, but 3076 * let the user space enable it to wake up the system as needed. 3077 */ 3078 device_set_wakeup_capable(&dev->dev, true); 3079 /* Disable the PME# generation functionality */ 3080 pci_pme_active(dev, false); 3081 } 3082 3083 pci_read_config_word(dev, PCI_STATUS, &status); 3084 if (status & PCI_STATUS_IMM_READY) 3085 dev->imm_ready = 1; 3086} 3087 3088static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3089{ 3090 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3091 3092 switch (prop) { 3093 case PCI_EA_P_MEM: 3094 case PCI_EA_P_VF_MEM: 3095 flags |= IORESOURCE_MEM; 3096 break; 3097 case PCI_EA_P_MEM_PREFETCH: 3098 case PCI_EA_P_VF_MEM_PREFETCH: 3099 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3100 break; 3101 case PCI_EA_P_IO: 3102 flags |= IORESOURCE_IO; 3103 break; 3104 default: 3105 return 0; 3106 } 3107 3108 return flags; 3109} 3110 3111static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3112 u8 prop) 3113{ 3114 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3115 return &dev->resource[bei]; 3116#ifdef CONFIG_PCI_IOV 3117 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3118 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3119 return &dev->resource[PCI_IOV_RESOURCES + 3120 bei - PCI_EA_BEI_VF_BAR0]; 3121#endif 3122 else if (bei == PCI_EA_BEI_ROM) 3123 return &dev->resource[PCI_ROM_RESOURCE]; 3124 else 3125 return NULL; 3126} 3127 3128/* Read an Enhanced Allocation (EA) entry */ 3129static int pci_ea_read(struct pci_dev *dev, int offset) 3130{ 3131 struct resource *res; 3132 int ent_size, ent_offset = offset; 3133 resource_size_t start, end; 3134 unsigned long flags; 3135 u32 dw0, bei, base, max_offset; 3136 u8 prop; 3137 bool support_64 = (sizeof(resource_size_t) >= 8); 3138 3139 pci_read_config_dword(dev, ent_offset, &dw0); 3140 ent_offset += 4; 3141 3142 /* Entry size field indicates DWORDs after 1st */ 3143 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3144 3145 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3146 goto out; 3147 3148 bei = (dw0 & PCI_EA_BEI) >> 4; 3149 prop = (dw0 & PCI_EA_PP) >> 8; 3150 3151 /* 3152 * If the Property is in the reserved range, try the Secondary 3153 * Property instead. 3154 */ 3155 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3156 prop = (dw0 & PCI_EA_SP) >> 16; 3157 if (prop > PCI_EA_P_BRIDGE_IO) 3158 goto out; 3159 3160 res = pci_ea_get_resource(dev, bei, prop); 3161 if (!res) { 3162 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3163 goto out; 3164 } 3165 3166 flags = pci_ea_flags(dev, prop); 3167 if (!flags) { 3168 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3169 goto out; 3170 } 3171 3172 /* Read Base */ 3173 pci_read_config_dword(dev, ent_offset, &base); 3174 start = (base & PCI_EA_FIELD_MASK); 3175 ent_offset += 4; 3176 3177 /* Read MaxOffset */ 3178 pci_read_config_dword(dev, ent_offset, &max_offset); 3179 ent_offset += 4; 3180 3181 /* Read Base MSBs (if 64-bit entry) */ 3182 if (base & PCI_EA_IS_64) { 3183 u32 base_upper; 3184 3185 pci_read_config_dword(dev, ent_offset, &base_upper); 3186 ent_offset += 4; 3187 3188 flags |= IORESOURCE_MEM_64; 3189 3190 /* entry starts above 32-bit boundary, can't use */ 3191 if (!support_64 && base_upper) 3192 goto out; 3193 3194 if (support_64) 3195 start |= ((u64)base_upper << 32); 3196 } 3197 3198 end = start + (max_offset | 0x03); 3199 3200 /* Read MaxOffset MSBs (if 64-bit entry) */ 3201 if (max_offset & PCI_EA_IS_64) { 3202 u32 max_offset_upper; 3203 3204 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3205 ent_offset += 4; 3206 3207 flags |= IORESOURCE_MEM_64; 3208 3209 /* entry too big, can't use */ 3210 if (!support_64 && max_offset_upper) 3211 goto out; 3212 3213 if (support_64) 3214 end += ((u64)max_offset_upper << 32); 3215 } 3216 3217 if (end < start) { 3218 pci_err(dev, "EA Entry crosses address boundary\n"); 3219 goto out; 3220 } 3221 3222 if (ent_size != ent_offset - offset) { 3223 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3224 ent_size, ent_offset - offset); 3225 goto out; 3226 } 3227 3228 res->name = pci_name(dev); 3229 res->start = start; 3230 res->end = end; 3231 res->flags = flags; 3232 3233 if (bei <= PCI_EA_BEI_BAR5) 3234 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3235 bei, res, prop); 3236 else if (bei == PCI_EA_BEI_ROM) 3237 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3238 res, prop); 3239 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3240 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3241 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3242 else 3243 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3244 bei, res, prop); 3245 3246out: 3247 return offset + ent_size; 3248} 3249 3250/* Enhanced Allocation Initialization */ 3251void pci_ea_init(struct pci_dev *dev) 3252{ 3253 int ea; 3254 u8 num_ent; 3255 int offset; 3256 int i; 3257 3258 /* find PCI EA capability in list */ 3259 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3260 if (!ea) 3261 return; 3262 3263 /* determine the number of entries */ 3264 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3265 &num_ent); 3266 num_ent &= PCI_EA_NUM_ENT_MASK; 3267 3268 offset = ea + PCI_EA_FIRST_ENT; 3269 3270 /* Skip DWORD 2 for type 1 functions */ 3271 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3272 offset += 4; 3273 3274 /* parse each EA entry */ 3275 for (i = 0; i < num_ent; ++i) 3276 offset = pci_ea_read(dev, offset); 3277} 3278 3279static void pci_add_saved_cap(struct pci_dev *pci_dev, 3280 struct pci_cap_saved_state *new_cap) 3281{ 3282 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3283} 3284 3285/** 3286 * _pci_add_cap_save_buffer - allocate buffer for saving given 3287 * capability registers 3288 * @dev: the PCI device 3289 * @cap: the capability to allocate the buffer for 3290 * @extended: Standard or Extended capability ID 3291 * @size: requested size of the buffer 3292 */ 3293static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3294 bool extended, unsigned int size) 3295{ 3296 int pos; 3297 struct pci_cap_saved_state *save_state; 3298 3299 if (extended) 3300 pos = pci_find_ext_capability(dev, cap); 3301 else 3302 pos = pci_find_capability(dev, cap); 3303 3304 if (!pos) 3305 return 0; 3306 3307 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3308 if (!save_state) 3309 return -ENOMEM; 3310 3311 save_state->cap.cap_nr = cap; 3312 save_state->cap.cap_extended = extended; 3313 save_state->cap.size = size; 3314 pci_add_saved_cap(dev, save_state); 3315 3316 return 0; 3317} 3318 3319int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3320{ 3321 return _pci_add_cap_save_buffer(dev, cap, false, size); 3322} 3323 3324int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3325{ 3326 return _pci_add_cap_save_buffer(dev, cap, true, size); 3327} 3328 3329/** 3330 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3331 * @dev: the PCI device 3332 */ 3333void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3334{ 3335 int error; 3336 3337 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3338 PCI_EXP_SAVE_REGS * sizeof(u16)); 3339 if (error) 3340 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3341 3342 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3343 if (error) 3344 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3345 3346 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3347 2 * sizeof(u16)); 3348 if (error) 3349 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3350 3351 pci_allocate_vc_save_buffers(dev); 3352} 3353 3354void pci_free_cap_save_buffers(struct pci_dev *dev) 3355{ 3356 struct pci_cap_saved_state *tmp; 3357 struct hlist_node *n; 3358 3359 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3360 kfree(tmp); 3361} 3362 3363/** 3364 * pci_configure_ari - enable or disable ARI forwarding 3365 * @dev: the PCI device 3366 * 3367 * If @dev and its upstream bridge both support ARI, enable ARI in the 3368 * bridge. Otherwise, disable ARI in the bridge. 3369 */ 3370void pci_configure_ari(struct pci_dev *dev) 3371{ 3372 u32 cap; 3373 struct pci_dev *bridge; 3374 3375 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3376 return; 3377 3378 bridge = dev->bus->self; 3379 if (!bridge) 3380 return; 3381 3382 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3383 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3384 return; 3385 3386 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3387 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3388 PCI_EXP_DEVCTL2_ARI); 3389 bridge->ari_enabled = 1; 3390 } else { 3391 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3392 PCI_EXP_DEVCTL2_ARI); 3393 bridge->ari_enabled = 0; 3394 } 3395} 3396 3397static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3398{ 3399 int pos; 3400 u16 cap, ctrl; 3401 3402 pos = pdev->acs_cap; 3403 if (!pos) 3404 return false; 3405 3406 /* 3407 * Except for egress control, capabilities are either required 3408 * or only required if controllable. Features missing from the 3409 * capability field can therefore be assumed as hard-wired enabled. 3410 */ 3411 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3412 acs_flags &= (cap | PCI_ACS_EC); 3413 3414 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3415 return (ctrl & acs_flags) == acs_flags; 3416} 3417 3418/** 3419 * pci_acs_enabled - test ACS against required flags for a given device 3420 * @pdev: device to test 3421 * @acs_flags: required PCI ACS flags 3422 * 3423 * Return true if the device supports the provided flags. Automatically 3424 * filters out flags that are not implemented on multifunction devices. 3425 * 3426 * Note that this interface checks the effective ACS capabilities of the 3427 * device rather than the actual capabilities. For instance, most single 3428 * function endpoints are not required to support ACS because they have no 3429 * opportunity for peer-to-peer access. We therefore return 'true' 3430 * regardless of whether the device exposes an ACS capability. This makes 3431 * it much easier for callers of this function to ignore the actual type 3432 * or topology of the device when testing ACS support. 3433 */ 3434bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3435{ 3436 int ret; 3437 3438 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3439 if (ret >= 0) 3440 return ret > 0; 3441 3442 /* 3443 * Conventional PCI and PCI-X devices never support ACS, either 3444 * effectively or actually. The shared bus topology implies that 3445 * any device on the bus can receive or snoop DMA. 3446 */ 3447 if (!pci_is_pcie(pdev)) 3448 return false; 3449 3450 switch (pci_pcie_type(pdev)) { 3451 /* 3452 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3453 * but since their primary interface is PCI/X, we conservatively 3454 * handle them as we would a non-PCIe device. 3455 */ 3456 case PCI_EXP_TYPE_PCIE_BRIDGE: 3457 /* 3458 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3459 * applicable... must never implement an ACS Extended Capability...". 3460 * This seems arbitrary, but we take a conservative interpretation 3461 * of this statement. 3462 */ 3463 case PCI_EXP_TYPE_PCI_BRIDGE: 3464 case PCI_EXP_TYPE_RC_EC: 3465 return false; 3466 /* 3467 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3468 * implement ACS in order to indicate their peer-to-peer capabilities, 3469 * regardless of whether they are single- or multi-function devices. 3470 */ 3471 case PCI_EXP_TYPE_DOWNSTREAM: 3472 case PCI_EXP_TYPE_ROOT_PORT: 3473 return pci_acs_flags_enabled(pdev, acs_flags); 3474 /* 3475 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3476 * implemented by the remaining PCIe types to indicate peer-to-peer 3477 * capabilities, but only when they are part of a multifunction 3478 * device. The footnote for section 6.12 indicates the specific 3479 * PCIe types included here. 3480 */ 3481 case PCI_EXP_TYPE_ENDPOINT: 3482 case PCI_EXP_TYPE_UPSTREAM: 3483 case PCI_EXP_TYPE_LEG_END: 3484 case PCI_EXP_TYPE_RC_END: 3485 if (!pdev->multifunction) 3486 break; 3487 3488 return pci_acs_flags_enabled(pdev, acs_flags); 3489 } 3490 3491 /* 3492 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3493 * to single function devices with the exception of downstream ports. 3494 */ 3495 return true; 3496} 3497 3498/** 3499 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3500 * @start: starting downstream device 3501 * @end: ending upstream device or NULL to search to the root bus 3502 * @acs_flags: required flags 3503 * 3504 * Walk up a device tree from start to end testing PCI ACS support. If 3505 * any step along the way does not support the required flags, return false. 3506 */ 3507bool pci_acs_path_enabled(struct pci_dev *start, 3508 struct pci_dev *end, u16 acs_flags) 3509{ 3510 struct pci_dev *pdev, *parent = start; 3511 3512 do { 3513 pdev = parent; 3514 3515 if (!pci_acs_enabled(pdev, acs_flags)) 3516 return false; 3517 3518 if (pci_is_root_bus(pdev->bus)) 3519 return (end == NULL); 3520 3521 parent = pdev->bus->self; 3522 } while (pdev != end); 3523 3524 return true; 3525} 3526 3527/** 3528 * pci_acs_init - Initialize ACS if hardware supports it 3529 * @dev: the PCI device 3530 */ 3531void pci_acs_init(struct pci_dev *dev) 3532{ 3533 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3534 3535 /* 3536 * Attempt to enable ACS regardless of capability because some Root 3537 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3538 * the standard ACS capability but still support ACS via those 3539 * quirks. 3540 */ 3541 pci_enable_acs(dev); 3542} 3543 3544/** 3545 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3546 * @pdev: PCI device 3547 * @bar: BAR to find 3548 * 3549 * Helper to find the position of the ctrl register for a BAR. 3550 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3551 * Returns -ENOENT if no ctrl register for the BAR could be found. 3552 */ 3553static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3554{ 3555 unsigned int pos, nbars, i; 3556 u32 ctrl; 3557 3558 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3559 if (!pos) 3560 return -ENOTSUPP; 3561 3562 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3563 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3564 PCI_REBAR_CTRL_NBAR_SHIFT; 3565 3566 for (i = 0; i < nbars; i++, pos += 8) { 3567 int bar_idx; 3568 3569 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3570 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3571 if (bar_idx == bar) 3572 return pos; 3573 } 3574 3575 return -ENOENT; 3576} 3577 3578/** 3579 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3580 * @pdev: PCI device 3581 * @bar: BAR to query 3582 * 3583 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3584 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3585 */ 3586u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3587{ 3588 int pos; 3589 u32 cap; 3590 3591 pos = pci_rebar_find_pos(pdev, bar); 3592 if (pos < 0) 3593 return 0; 3594 3595 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3596 cap &= PCI_REBAR_CAP_SIZES; 3597 3598 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3599 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3600 bar == 0 && cap == 0x7000) 3601 cap = 0x3f000; 3602 3603 return cap >> 4; 3604} 3605 3606/** 3607 * pci_rebar_get_current_size - get the current size of a BAR 3608 * @pdev: PCI device 3609 * @bar: BAR to set size to 3610 * 3611 * Read the size of a BAR from the resizable BAR config. 3612 * Returns size if found or negative error code. 3613 */ 3614int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3615{ 3616 int pos; 3617 u32 ctrl; 3618 3619 pos = pci_rebar_find_pos(pdev, bar); 3620 if (pos < 0) 3621 return pos; 3622 3623 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3624 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3625} 3626 3627/** 3628 * pci_rebar_set_size - set a new size for a BAR 3629 * @pdev: PCI device 3630 * @bar: BAR to set size to 3631 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3632 * 3633 * Set the new size of a BAR as defined in the spec. 3634 * Returns zero if resizing was successful, error code otherwise. 3635 */ 3636int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3637{ 3638 int pos; 3639 u32 ctrl; 3640 3641 pos = pci_rebar_find_pos(pdev, bar); 3642 if (pos < 0) 3643 return pos; 3644 3645 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3646 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3647 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3648 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3649 return 0; 3650} 3651 3652/** 3653 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3654 * @dev: the PCI device 3655 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3656 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3657 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3658 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3659 * 3660 * Return 0 if all upstream bridges support AtomicOp routing, egress 3661 * blocking is disabled on all upstream ports, and the root port supports 3662 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3663 * AtomicOp completion), or negative otherwise. 3664 */ 3665int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3666{ 3667 struct pci_bus *bus = dev->bus; 3668 struct pci_dev *bridge; 3669 u32 cap, ctl2; 3670 3671 if (!pci_is_pcie(dev)) 3672 return -EINVAL; 3673 3674 /* 3675 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3676 * AtomicOp requesters. For now, we only support endpoints as 3677 * requesters and root ports as completers. No endpoints as 3678 * completers, and no peer-to-peer. 3679 */ 3680 3681 switch (pci_pcie_type(dev)) { 3682 case PCI_EXP_TYPE_ENDPOINT: 3683 case PCI_EXP_TYPE_LEG_END: 3684 case PCI_EXP_TYPE_RC_END: 3685 break; 3686 default: 3687 return -EINVAL; 3688 } 3689 3690 while (bus->parent) { 3691 bridge = bus->self; 3692 3693 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3694 3695 switch (pci_pcie_type(bridge)) { 3696 /* Ensure switch ports support AtomicOp routing */ 3697 case PCI_EXP_TYPE_UPSTREAM: 3698 case PCI_EXP_TYPE_DOWNSTREAM: 3699 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3700 return -EINVAL; 3701 break; 3702 3703 /* Ensure root port supports all the sizes we care about */ 3704 case PCI_EXP_TYPE_ROOT_PORT: 3705 if ((cap & cap_mask) != cap_mask) 3706 return -EINVAL; 3707 break; 3708 } 3709 3710 /* Ensure upstream ports don't block AtomicOps on egress */ 3711 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3712 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3713 &ctl2); 3714 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3715 return -EINVAL; 3716 } 3717 3718 bus = bus->parent; 3719 } 3720 3721 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3722 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3723 return 0; 3724} 3725EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3726 3727/** 3728 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3729 * @dev: the PCI device 3730 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3731 * 3732 * Perform INTx swizzling for a device behind one level of bridge. This is 3733 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3734 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3735 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3736 * the PCI Express Base Specification, Revision 2.1) 3737 */ 3738u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3739{ 3740 int slot; 3741 3742 if (pci_ari_enabled(dev->bus)) 3743 slot = 0; 3744 else 3745 slot = PCI_SLOT(dev->devfn); 3746 3747 return (((pin - 1) + slot) % 4) + 1; 3748} 3749 3750int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3751{ 3752 u8 pin; 3753 3754 pin = dev->pin; 3755 if (!pin) 3756 return -1; 3757 3758 while (!pci_is_root_bus(dev->bus)) { 3759 pin = pci_swizzle_interrupt_pin(dev, pin); 3760 dev = dev->bus->self; 3761 } 3762 *bridge = dev; 3763 return pin; 3764} 3765 3766/** 3767 * pci_common_swizzle - swizzle INTx all the way to root bridge 3768 * @dev: the PCI device 3769 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3770 * 3771 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3772 * bridges all the way up to a PCI root bus. 3773 */ 3774u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3775{ 3776 u8 pin = *pinp; 3777 3778 while (!pci_is_root_bus(dev->bus)) { 3779 pin = pci_swizzle_interrupt_pin(dev, pin); 3780 dev = dev->bus->self; 3781 } 3782 *pinp = pin; 3783 return PCI_SLOT(dev->devfn); 3784} 3785EXPORT_SYMBOL_GPL(pci_common_swizzle); 3786 3787/** 3788 * pci_release_region - Release a PCI bar 3789 * @pdev: PCI device whose resources were previously reserved by 3790 * pci_request_region() 3791 * @bar: BAR to release 3792 * 3793 * Releases the PCI I/O and memory resources previously reserved by a 3794 * successful call to pci_request_region(). Call this function only 3795 * after all use of the PCI regions has ceased. 3796 */ 3797void pci_release_region(struct pci_dev *pdev, int bar) 3798{ 3799 struct pci_devres *dr; 3800 3801 if (pci_resource_len(pdev, bar) == 0) 3802 return; 3803 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3804 release_region(pci_resource_start(pdev, bar), 3805 pci_resource_len(pdev, bar)); 3806 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3807 release_mem_region(pci_resource_start(pdev, bar), 3808 pci_resource_len(pdev, bar)); 3809 3810 dr = find_pci_dr(pdev); 3811 if (dr) 3812 dr->region_mask &= ~(1 << bar); 3813} 3814EXPORT_SYMBOL(pci_release_region); 3815 3816/** 3817 * __pci_request_region - Reserved PCI I/O and memory resource 3818 * @pdev: PCI device whose resources are to be reserved 3819 * @bar: BAR to be reserved 3820 * @res_name: Name to be associated with resource. 3821 * @exclusive: whether the region access is exclusive or not 3822 * 3823 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3824 * being reserved by owner @res_name. Do not access any 3825 * address inside the PCI regions unless this call returns 3826 * successfully. 3827 * 3828 * If @exclusive is set, then the region is marked so that userspace 3829 * is explicitly not allowed to map the resource via /dev/mem or 3830 * sysfs MMIO access. 3831 * 3832 * Returns 0 on success, or %EBUSY on error. A warning 3833 * message is also printed on failure. 3834 */ 3835static int __pci_request_region(struct pci_dev *pdev, int bar, 3836 const char *res_name, int exclusive) 3837{ 3838 struct pci_devres *dr; 3839 3840 if (pci_resource_len(pdev, bar) == 0) 3841 return 0; 3842 3843 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3844 if (!request_region(pci_resource_start(pdev, bar), 3845 pci_resource_len(pdev, bar), res_name)) 3846 goto err_out; 3847 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3848 if (!__request_mem_region(pci_resource_start(pdev, bar), 3849 pci_resource_len(pdev, bar), res_name, 3850 exclusive)) 3851 goto err_out; 3852 } 3853 3854 dr = find_pci_dr(pdev); 3855 if (dr) 3856 dr->region_mask |= 1 << bar; 3857 3858 return 0; 3859 3860err_out: 3861 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3862 &pdev->resource[bar]); 3863 return -EBUSY; 3864} 3865 3866/** 3867 * pci_request_region - Reserve PCI I/O and memory resource 3868 * @pdev: PCI device whose resources are to be reserved 3869 * @bar: BAR to be reserved 3870 * @res_name: Name to be associated with resource 3871 * 3872 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3873 * being reserved by owner @res_name. Do not access any 3874 * address inside the PCI regions unless this call returns 3875 * successfully. 3876 * 3877 * Returns 0 on success, or %EBUSY on error. A warning 3878 * message is also printed on failure. 3879 */ 3880int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3881{ 3882 return __pci_request_region(pdev, bar, res_name, 0); 3883} 3884EXPORT_SYMBOL(pci_request_region); 3885 3886/** 3887 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3888 * @pdev: PCI device whose resources were previously reserved 3889 * @bars: Bitmask of BARs to be released 3890 * 3891 * Release selected PCI I/O and memory resources previously reserved. 3892 * Call this function only after all use of the PCI regions has ceased. 3893 */ 3894void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3895{ 3896 int i; 3897 3898 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3899 if (bars & (1 << i)) 3900 pci_release_region(pdev, i); 3901} 3902EXPORT_SYMBOL(pci_release_selected_regions); 3903 3904static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3905 const char *res_name, int excl) 3906{ 3907 int i; 3908 3909 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3910 if (bars & (1 << i)) 3911 if (__pci_request_region(pdev, i, res_name, excl)) 3912 goto err_out; 3913 return 0; 3914 3915err_out: 3916 while (--i >= 0) 3917 if (bars & (1 << i)) 3918 pci_release_region(pdev, i); 3919 3920 return -EBUSY; 3921} 3922 3923 3924/** 3925 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3926 * @pdev: PCI device whose resources are to be reserved 3927 * @bars: Bitmask of BARs to be requested 3928 * @res_name: Name to be associated with resource 3929 */ 3930int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3931 const char *res_name) 3932{ 3933 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3934} 3935EXPORT_SYMBOL(pci_request_selected_regions); 3936 3937int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3938 const char *res_name) 3939{ 3940 return __pci_request_selected_regions(pdev, bars, res_name, 3941 IORESOURCE_EXCLUSIVE); 3942} 3943EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3944 3945/** 3946 * pci_release_regions - Release reserved PCI I/O and memory resources 3947 * @pdev: PCI device whose resources were previously reserved by 3948 * pci_request_regions() 3949 * 3950 * Releases all PCI I/O and memory resources previously reserved by a 3951 * successful call to pci_request_regions(). Call this function only 3952 * after all use of the PCI regions has ceased. 3953 */ 3954 3955void pci_release_regions(struct pci_dev *pdev) 3956{ 3957 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3958} 3959EXPORT_SYMBOL(pci_release_regions); 3960 3961/** 3962 * pci_request_regions - Reserve PCI I/O and memory resources 3963 * @pdev: PCI device whose resources are to be reserved 3964 * @res_name: Name to be associated with resource. 3965 * 3966 * Mark all PCI regions associated with PCI device @pdev as 3967 * being reserved by owner @res_name. Do not access any 3968 * address inside the PCI regions unless this call returns 3969 * successfully. 3970 * 3971 * Returns 0 on success, or %EBUSY on error. A warning 3972 * message is also printed on failure. 3973 */ 3974int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3975{ 3976 return pci_request_selected_regions(pdev, 3977 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3978} 3979EXPORT_SYMBOL(pci_request_regions); 3980 3981/** 3982 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3983 * @pdev: PCI device whose resources are to be reserved 3984 * @res_name: Name to be associated with resource. 3985 * 3986 * Mark all PCI regions associated with PCI device @pdev as being reserved 3987 * by owner @res_name. Do not access any address inside the PCI regions 3988 * unless this call returns successfully. 3989 * 3990 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3991 * and the sysfs MMIO access will not be allowed. 3992 * 3993 * Returns 0 on success, or %EBUSY on error. A warning message is also 3994 * printed on failure. 3995 */ 3996int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3997{ 3998 return pci_request_selected_regions_exclusive(pdev, 3999 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4000} 4001EXPORT_SYMBOL(pci_request_regions_exclusive); 4002 4003/* 4004 * Record the PCI IO range (expressed as CPU physical address + size). 4005 * Return a negative value if an error has occurred, zero otherwise 4006 */ 4007int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4008 resource_size_t size) 4009{ 4010 int ret = 0; 4011#ifdef PCI_IOBASE 4012 struct logic_pio_hwaddr *range; 4013 4014 if (!size || addr + size < addr) 4015 return -EINVAL; 4016 4017 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4018 if (!range) 4019 return -ENOMEM; 4020 4021 range->fwnode = fwnode; 4022 range->size = size; 4023 range->hw_start = addr; 4024 range->flags = LOGIC_PIO_CPU_MMIO; 4025 4026 ret = logic_pio_register_range(range); 4027 if (ret) 4028 kfree(range); 4029 4030 /* Ignore duplicates due to deferred probing */ 4031 if (ret == -EEXIST) 4032 ret = 0; 4033#endif 4034 4035 return ret; 4036} 4037 4038phys_addr_t pci_pio_to_address(unsigned long pio) 4039{ 4040 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4041 4042#ifdef PCI_IOBASE 4043 if (pio >= MMIO_UPPER_LIMIT) 4044 return address; 4045 4046 address = logic_pio_to_hwaddr(pio); 4047#endif 4048 4049 return address; 4050} 4051EXPORT_SYMBOL_GPL(pci_pio_to_address); 4052 4053unsigned long __weak pci_address_to_pio(phys_addr_t address) 4054{ 4055#ifdef PCI_IOBASE 4056 return logic_pio_trans_cpuaddr(address); 4057#else 4058 if (address > IO_SPACE_LIMIT) 4059 return (unsigned long)-1; 4060 4061 return (unsigned long) address; 4062#endif 4063} 4064 4065/** 4066 * pci_remap_iospace - Remap the memory mapped I/O space 4067 * @res: Resource describing the I/O space 4068 * @phys_addr: physical address of range to be mapped 4069 * 4070 * Remap the memory mapped I/O space described by the @res and the CPU 4071 * physical address @phys_addr into virtual address space. Only 4072 * architectures that have memory mapped IO functions defined (and the 4073 * PCI_IOBASE value defined) should call this function. 4074 */ 4075int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4076{ 4077#if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4078 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4079 4080 if (!(res->flags & IORESOURCE_IO)) 4081 return -EINVAL; 4082 4083 if (res->end > IO_SPACE_LIMIT) 4084 return -EINVAL; 4085 4086 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4087 pgprot_device(PAGE_KERNEL)); 4088#else 4089 /* 4090 * This architecture does not have memory mapped I/O space, 4091 * so this function should never be called 4092 */ 4093 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4094 return -ENODEV; 4095#endif 4096} 4097EXPORT_SYMBOL(pci_remap_iospace); 4098 4099/** 4100 * pci_unmap_iospace - Unmap the memory mapped I/O space 4101 * @res: resource to be unmapped 4102 * 4103 * Unmap the CPU virtual address @res from virtual address space. Only 4104 * architectures that have memory mapped IO functions defined (and the 4105 * PCI_IOBASE value defined) should call this function. 4106 */ 4107void pci_unmap_iospace(struct resource *res) 4108{ 4109#if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4110 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4111 4112 unmap_kernel_range(vaddr, resource_size(res)); 4113#endif 4114} 4115EXPORT_SYMBOL(pci_unmap_iospace); 4116 4117static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4118{ 4119 struct resource **res = ptr; 4120 4121 pci_unmap_iospace(*res); 4122} 4123 4124/** 4125 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4126 * @dev: Generic device to remap IO address for 4127 * @res: Resource describing the I/O space 4128 * @phys_addr: physical address of range to be mapped 4129 * 4130 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4131 * detach. 4132 */ 4133int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4134 phys_addr_t phys_addr) 4135{ 4136 const struct resource **ptr; 4137 int error; 4138 4139 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4140 if (!ptr) 4141 return -ENOMEM; 4142 4143 error = pci_remap_iospace(res, phys_addr); 4144 if (error) { 4145 devres_free(ptr); 4146 } else { 4147 *ptr = res; 4148 devres_add(dev, ptr); 4149 } 4150 4151 return error; 4152} 4153EXPORT_SYMBOL(devm_pci_remap_iospace); 4154 4155/** 4156 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4157 * @dev: Generic device to remap IO address for 4158 * @offset: Resource address to map 4159 * @size: Size of map 4160 * 4161 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4162 * detach. 4163 */ 4164void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4165 resource_size_t offset, 4166 resource_size_t size) 4167{ 4168 void __iomem **ptr, *addr; 4169 4170 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4171 if (!ptr) 4172 return NULL; 4173 4174 addr = pci_remap_cfgspace(offset, size); 4175 if (addr) { 4176 *ptr = addr; 4177 devres_add(dev, ptr); 4178 } else 4179 devres_free(ptr); 4180 4181 return addr; 4182} 4183EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4184 4185/** 4186 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4187 * @dev: generic device to handle the resource for 4188 * @res: configuration space resource to be handled 4189 * 4190 * Checks that a resource is a valid memory region, requests the memory 4191 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4192 * proper PCI configuration space memory attributes are guaranteed. 4193 * 4194 * All operations are managed and will be undone on driver detach. 4195 * 4196 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4197 * on failure. Usage example:: 4198 * 4199 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4200 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4201 * if (IS_ERR(base)) 4202 * return PTR_ERR(base); 4203 */ 4204void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4205 struct resource *res) 4206{ 4207 resource_size_t size; 4208 const char *name; 4209 void __iomem *dest_ptr; 4210 4211 BUG_ON(!dev); 4212 4213 if (!res || resource_type(res) != IORESOURCE_MEM) { 4214 dev_err(dev, "invalid resource\n"); 4215 return IOMEM_ERR_PTR(-EINVAL); 4216 } 4217 4218 size = resource_size(res); 4219 name = res->name ?: dev_name(dev); 4220 4221 if (!devm_request_mem_region(dev, res->start, size, name)) { 4222 dev_err(dev, "can't request region for resource %pR\n", res); 4223 return IOMEM_ERR_PTR(-EBUSY); 4224 } 4225 4226 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4227 if (!dest_ptr) { 4228 dev_err(dev, "ioremap failed for resource %pR\n", res); 4229 devm_release_mem_region(dev, res->start, size); 4230 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4231 } 4232 4233 return dest_ptr; 4234} 4235EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4236 4237static void __pci_set_master(struct pci_dev *dev, bool enable) 4238{ 4239 u16 old_cmd, cmd; 4240 4241 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4242 if (enable) 4243 cmd = old_cmd | PCI_COMMAND_MASTER; 4244 else 4245 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4246 if (cmd != old_cmd) { 4247 pci_dbg(dev, "%s bus mastering\n", 4248 enable ? "enabling" : "disabling"); 4249 pci_write_config_word(dev, PCI_COMMAND, cmd); 4250 } 4251 dev->is_busmaster = enable; 4252} 4253 4254/** 4255 * pcibios_setup - process "pci=" kernel boot arguments 4256 * @str: string used to pass in "pci=" kernel boot arguments 4257 * 4258 * Process kernel boot arguments. This is the default implementation. 4259 * Architecture specific implementations can override this as necessary. 4260 */ 4261char * __weak __init pcibios_setup(char *str) 4262{ 4263 return str; 4264} 4265 4266/** 4267 * pcibios_set_master - enable PCI bus-mastering for device dev 4268 * @dev: the PCI device to enable 4269 * 4270 * Enables PCI bus-mastering for the device. This is the default 4271 * implementation. Architecture specific implementations can override 4272 * this if necessary. 4273 */ 4274void __weak pcibios_set_master(struct pci_dev *dev) 4275{ 4276 u8 lat; 4277 4278 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4279 if (pci_is_pcie(dev)) 4280 return; 4281 4282 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4283 if (lat < 16) 4284 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4285 else if (lat > pcibios_max_latency) 4286 lat = pcibios_max_latency; 4287 else 4288 return; 4289 4290 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4291} 4292 4293/** 4294 * pci_set_master - enables bus-mastering for device dev 4295 * @dev: the PCI device to enable 4296 * 4297 * Enables bus-mastering on the device and calls pcibios_set_master() 4298 * to do the needed arch specific settings. 4299 */ 4300void pci_set_master(struct pci_dev *dev) 4301{ 4302 __pci_set_master(dev, true); 4303 pcibios_set_master(dev); 4304} 4305EXPORT_SYMBOL(pci_set_master); 4306 4307/** 4308 * pci_clear_master - disables bus-mastering for device dev 4309 * @dev: the PCI device to disable 4310 */ 4311void pci_clear_master(struct pci_dev *dev) 4312{ 4313 __pci_set_master(dev, false); 4314} 4315EXPORT_SYMBOL(pci_clear_master); 4316 4317/** 4318 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4319 * @dev: the PCI device for which MWI is to be enabled 4320 * 4321 * Helper function for pci_set_mwi. 4322 * Originally copied from drivers/net/acenic.c. 4323 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4324 * 4325 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4326 */ 4327int pci_set_cacheline_size(struct pci_dev *dev) 4328{ 4329 u8 cacheline_size; 4330 4331 if (!pci_cache_line_size) 4332 return -EINVAL; 4333 4334 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4335 equal to or multiple of the right value. */ 4336 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4337 if (cacheline_size >= pci_cache_line_size && 4338 (cacheline_size % pci_cache_line_size) == 0) 4339 return 0; 4340 4341 /* Write the correct value. */ 4342 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4343 /* Read it back. */ 4344 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4345 if (cacheline_size == pci_cache_line_size) 4346 return 0; 4347 4348 pci_info(dev, "cache line size of %d is not supported\n", 4349 pci_cache_line_size << 2); 4350 4351 return -EINVAL; 4352} 4353EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4354 4355/** 4356 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4357 * @dev: the PCI device for which MWI is enabled 4358 * 4359 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4360 * 4361 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4362 */ 4363int pci_set_mwi(struct pci_dev *dev) 4364{ 4365#ifdef PCI_DISABLE_MWI 4366 return 0; 4367#else 4368 int rc; 4369 u16 cmd; 4370 4371 rc = pci_set_cacheline_size(dev); 4372 if (rc) 4373 return rc; 4374 4375 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4376 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4377 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4378 cmd |= PCI_COMMAND_INVALIDATE; 4379 pci_write_config_word(dev, PCI_COMMAND, cmd); 4380 } 4381 return 0; 4382#endif 4383} 4384EXPORT_SYMBOL(pci_set_mwi); 4385 4386/** 4387 * pcim_set_mwi - a device-managed pci_set_mwi() 4388 * @dev: the PCI device for which MWI is enabled 4389 * 4390 * Managed pci_set_mwi(). 4391 * 4392 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4393 */ 4394int pcim_set_mwi(struct pci_dev *dev) 4395{ 4396 struct pci_devres *dr; 4397 4398 dr = find_pci_dr(dev); 4399 if (!dr) 4400 return -ENOMEM; 4401 4402 dr->mwi = 1; 4403 return pci_set_mwi(dev); 4404} 4405EXPORT_SYMBOL(pcim_set_mwi); 4406 4407/** 4408 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4409 * @dev: the PCI device for which MWI is enabled 4410 * 4411 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4412 * Callers are not required to check the return value. 4413 * 4414 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4415 */ 4416int pci_try_set_mwi(struct pci_dev *dev) 4417{ 4418#ifdef PCI_DISABLE_MWI 4419 return 0; 4420#else 4421 return pci_set_mwi(dev); 4422#endif 4423} 4424EXPORT_SYMBOL(pci_try_set_mwi); 4425 4426/** 4427 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4428 * @dev: the PCI device to disable 4429 * 4430 * Disables PCI Memory-Write-Invalidate transaction on the device 4431 */ 4432void pci_clear_mwi(struct pci_dev *dev) 4433{ 4434#ifndef PCI_DISABLE_MWI 4435 u16 cmd; 4436 4437 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4438 if (cmd & PCI_COMMAND_INVALIDATE) { 4439 cmd &= ~PCI_COMMAND_INVALIDATE; 4440 pci_write_config_word(dev, PCI_COMMAND, cmd); 4441 } 4442#endif 4443} 4444EXPORT_SYMBOL(pci_clear_mwi); 4445 4446/** 4447 * pci_intx - enables/disables PCI INTx for device dev 4448 * @pdev: the PCI device to operate on 4449 * @enable: boolean: whether to enable or disable PCI INTx 4450 * 4451 * Enables/disables PCI INTx for device @pdev 4452 */ 4453void pci_intx(struct pci_dev *pdev, int enable) 4454{ 4455 u16 pci_command, new; 4456 4457 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4458 4459 if (enable) 4460 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4461 else 4462 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4463 4464 if (new != pci_command) { 4465 struct pci_devres *dr; 4466 4467 pci_write_config_word(pdev, PCI_COMMAND, new); 4468 4469 dr = find_pci_dr(pdev); 4470 if (dr && !dr->restore_intx) { 4471 dr->restore_intx = 1; 4472 dr->orig_intx = !enable; 4473 } 4474 } 4475} 4476EXPORT_SYMBOL_GPL(pci_intx); 4477 4478static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4479{ 4480 struct pci_bus *bus = dev->bus; 4481 bool mask_updated = true; 4482 u32 cmd_status_dword; 4483 u16 origcmd, newcmd; 4484 unsigned long flags; 4485 bool irq_pending; 4486 4487 /* 4488 * We do a single dword read to retrieve both command and status. 4489 * Document assumptions that make this possible. 4490 */ 4491 BUILD_BUG_ON(PCI_COMMAND % 4); 4492 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4493 4494 raw_spin_lock_irqsave(&pci_lock, flags); 4495 4496 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4497 4498 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4499 4500 /* 4501 * Check interrupt status register to see whether our device 4502 * triggered the interrupt (when masking) or the next IRQ is 4503 * already pending (when unmasking). 4504 */ 4505 if (mask != irq_pending) { 4506 mask_updated = false; 4507 goto done; 4508 } 4509 4510 origcmd = cmd_status_dword; 4511 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4512 if (mask) 4513 newcmd |= PCI_COMMAND_INTX_DISABLE; 4514 if (newcmd != origcmd) 4515 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4516 4517done: 4518 raw_spin_unlock_irqrestore(&pci_lock, flags); 4519 4520 return mask_updated; 4521} 4522 4523/** 4524 * pci_check_and_mask_intx - mask INTx on pending interrupt 4525 * @dev: the PCI device to operate on 4526 * 4527 * Check if the device dev has its INTx line asserted, mask it and return 4528 * true in that case. False is returned if no interrupt was pending. 4529 */ 4530bool pci_check_and_mask_intx(struct pci_dev *dev) 4531{ 4532 return pci_check_and_set_intx_mask(dev, true); 4533} 4534EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4535 4536/** 4537 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4538 * @dev: the PCI device to operate on 4539 * 4540 * Check if the device dev has its INTx line asserted, unmask it if not and 4541 * return true. False is returned and the mask remains active if there was 4542 * still an interrupt pending. 4543 */ 4544bool pci_check_and_unmask_intx(struct pci_dev *dev) 4545{ 4546 return pci_check_and_set_intx_mask(dev, false); 4547} 4548EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4549 4550/** 4551 * pci_wait_for_pending_transaction - wait for pending transaction 4552 * @dev: the PCI device to operate on 4553 * 4554 * Return 0 if transaction is pending 1 otherwise. 4555 */ 4556int pci_wait_for_pending_transaction(struct pci_dev *dev) 4557{ 4558 if (!pci_is_pcie(dev)) 4559 return 1; 4560 4561 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4562 PCI_EXP_DEVSTA_TRPND); 4563} 4564EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4565 4566/** 4567 * pcie_has_flr - check if a device supports function level resets 4568 * @dev: device to check 4569 * 4570 * Returns true if the device advertises support for PCIe function level 4571 * resets. 4572 */ 4573bool pcie_has_flr(struct pci_dev *dev) 4574{ 4575 u32 cap; 4576 4577 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4578 return false; 4579 4580 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4581 return cap & PCI_EXP_DEVCAP_FLR; 4582} 4583EXPORT_SYMBOL_GPL(pcie_has_flr); 4584 4585/** 4586 * pcie_flr - initiate a PCIe function level reset 4587 * @dev: device to reset 4588 * 4589 * Initiate a function level reset on @dev. The caller should ensure the 4590 * device supports FLR before calling this function, e.g. by using the 4591 * pcie_has_flr() helper. 4592 */ 4593int pcie_flr(struct pci_dev *dev) 4594{ 4595 if (!pci_wait_for_pending_transaction(dev)) 4596 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4597 4598 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4599 4600 if (dev->imm_ready) 4601 return 0; 4602 4603 /* 4604 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4605 * 100ms, but may silently discard requests while the FLR is in 4606 * progress. Wait 100ms before trying to access the device. 4607 */ 4608 msleep(100); 4609 4610 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4611} 4612EXPORT_SYMBOL_GPL(pcie_flr); 4613 4614static int pci_af_flr(struct pci_dev *dev, int probe) 4615{ 4616 int pos; 4617 u8 cap; 4618 4619 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4620 if (!pos) 4621 return -ENOTTY; 4622 4623 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4624 return -ENOTTY; 4625 4626 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4627 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4628 return -ENOTTY; 4629 4630 if (probe) 4631 return 0; 4632 4633 /* 4634 * Wait for Transaction Pending bit to clear. A word-aligned test 4635 * is used, so we use the control offset rather than status and shift 4636 * the test bit to match. 4637 */ 4638 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4639 PCI_AF_STATUS_TP << 8)) 4640 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4641 4642 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4643 4644 if (dev->imm_ready) 4645 return 0; 4646 4647 /* 4648 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4649 * updated 27 July 2006; a device must complete an FLR within 4650 * 100ms, but may silently discard requests while the FLR is in 4651 * progress. Wait 100ms before trying to access the device. 4652 */ 4653 msleep(100); 4654 4655 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4656} 4657 4658/** 4659 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4660 * @dev: Device to reset. 4661 * @probe: If set, only check if the device can be reset this way. 4662 * 4663 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4664 * unset, it will be reinitialized internally when going from PCI_D3hot to 4665 * PCI_D0. If that's the case and the device is not in a low-power state 4666 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4667 * 4668 * NOTE: This causes the caller to sleep for twice the device power transition 4669 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4670 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4671 * Moreover, only devices in D0 can be reset by this function. 4672 */ 4673static int pci_pm_reset(struct pci_dev *dev, int probe) 4674{ 4675 u16 csr; 4676 4677 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4678 return -ENOTTY; 4679 4680 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4681 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4682 return -ENOTTY; 4683 4684 if (probe) 4685 return 0; 4686 4687 if (dev->current_state != PCI_D0) 4688 return -EINVAL; 4689 4690 csr &= ~PCI_PM_CTRL_STATE_MASK; 4691 csr |= PCI_D3hot; 4692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4693 pci_dev_d3_sleep(dev); 4694 4695 csr &= ~PCI_PM_CTRL_STATE_MASK; 4696 csr |= PCI_D0; 4697 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4698 pci_dev_d3_sleep(dev); 4699 4700 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4701} 4702 4703/** 4704 * pcie_wait_for_link_delay - Wait until link is active or inactive 4705 * @pdev: Bridge device 4706 * @active: waiting for active or inactive? 4707 * @delay: Delay to wait after link has become active (in ms) 4708 * 4709 * Use this to wait till link becomes active or inactive. 4710 */ 4711static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4712 int delay) 4713{ 4714 int timeout = 1000; 4715 bool ret; 4716 u16 lnk_status; 4717 4718 /* 4719 * Some controllers might not implement link active reporting. In this 4720 * case, we wait for 1000 ms + any delay requested by the caller. 4721 */ 4722 if (!pdev->link_active_reporting) { 4723 msleep(timeout + delay); 4724 return true; 4725 } 4726 4727 /* 4728 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4729 * after which we should expect an link active if the reset was 4730 * successful. If so, software must wait a minimum 100ms before sending 4731 * configuration requests to devices downstream this port. 4732 * 4733 * If the link fails to activate, either the device was physically 4734 * removed or the link is permanently failed. 4735 */ 4736 if (active) 4737 msleep(20); 4738 for (;;) { 4739 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4740 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4741 if (ret == active) 4742 break; 4743 if (timeout <= 0) 4744 break; 4745 msleep(10); 4746 timeout -= 10; 4747 } 4748 if (active && ret) 4749 msleep(delay); 4750 4751 return ret == active; 4752} 4753 4754/** 4755 * pcie_wait_for_link - Wait until link is active or inactive 4756 * @pdev: Bridge device 4757 * @active: waiting for active or inactive? 4758 * 4759 * Use this to wait till link becomes active or inactive. 4760 */ 4761bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4762{ 4763 return pcie_wait_for_link_delay(pdev, active, 100); 4764} 4765 4766/* 4767 * Find maximum D3cold delay required by all the devices on the bus. The 4768 * spec says 100 ms, but firmware can lower it and we allow drivers to 4769 * increase it as well. 4770 * 4771 * Called with @pci_bus_sem locked for reading. 4772 */ 4773static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4774{ 4775 const struct pci_dev *pdev; 4776 int min_delay = 100; 4777 int max_delay = 0; 4778 4779 list_for_each_entry(pdev, &bus->devices, bus_list) { 4780 if (pdev->d3cold_delay < min_delay) 4781 min_delay = pdev->d3cold_delay; 4782 if (pdev->d3cold_delay > max_delay) 4783 max_delay = pdev->d3cold_delay; 4784 } 4785 4786 return max(min_delay, max_delay); 4787} 4788 4789/** 4790 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4791 * @dev: PCI bridge 4792 * @reset_type: reset type in human-readable form 4793 * @timeout: maximum time to wait for devices on secondary bus (milliseconds) 4794 * 4795 * Handle necessary delays before access to the devices on the secondary 4796 * side of the bridge are permitted after D3cold to D0 transition 4797 * or Conventional Reset. 4798 * 4799 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4800 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4801 * 4.3.2. 4802 * 4803 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4804 * failed to become accessible. 4805 */ 4806int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type, 4807 int timeout) 4808{ 4809 struct pci_dev *child; 4810 int delay, ret = 0; 4811 4812 if (pci_dev_is_disconnected(dev)) 4813 return 0; 4814 4815 if (!pci_is_bridge(dev)) 4816 return 0; 4817 4818 down_read(&pci_bus_sem); 4819 4820 /* 4821 * We only deal with devices that are present currently on the bus. 4822 * For any hot-added devices the access delay is handled in pciehp 4823 * board_added(). In case of ACPI hotplug the firmware is expected 4824 * to configure the devices before OS is notified. 4825 */ 4826 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4827 up_read(&pci_bus_sem); 4828 return 0; 4829 } 4830 4831 /* Take d3cold_delay requirements into account */ 4832 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4833 if (!delay) { 4834 up_read(&pci_bus_sem); 4835 return 0; 4836 } 4837 4838 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 4839 struct pci_dev, bus_list)); 4840 up_read(&pci_bus_sem); 4841 4842 /* 4843 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4844 * accessing the device after reset (that is 1000 ms + 100 ms). 4845 */ 4846 if (!pci_is_pcie(dev)) { 4847 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4848 msleep(1000 + delay); 4849 goto put_child; 4850 } 4851 4852 /* 4853 * For PCIe downstream and root ports that do not support speeds 4854 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4855 * speeds (gen3) we need to wait first for the data link layer to 4856 * become active. 4857 * 4858 * However, 100 ms is the minimum and the PCIe spec says the 4859 * software must allow at least 1s before it can determine that the 4860 * device that did not respond is a broken device. There is 4861 * evidence that 100 ms is not always enough, for example certain 4862 * Titan Ridge xHCI controller does not always respond to 4863 * configuration requests if we only wait for 100 ms (see 4864 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4865 * 4866 * Therefore we wait for 100 ms and check for the device presence 4867 * until the timeout expires. 4868 */ 4869 if (!pcie_downstream_port(dev)) 4870 goto put_child; 4871 4872 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4873 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4874 msleep(delay); 4875 } else { 4876 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4877 delay); 4878 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4879 /* Did not train, no need to wait any further */ 4880 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4881 ret = -ENOTTY; 4882 goto put_child; 4883 } 4884 } 4885 4886 ret = pci_dev_wait(child, reset_type, timeout - delay); 4887 4888put_child: 4889 pci_dev_put(child); 4890 return ret; 4891} 4892 4893void pci_reset_secondary_bus(struct pci_dev *dev) 4894{ 4895 u16 ctrl; 4896 4897 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4898 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4899 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4900 4901 /* 4902 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4903 * this to 2ms to ensure that we meet the minimum requirement. 4904 */ 4905 msleep(2); 4906 4907 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4908 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4909} 4910 4911void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4912{ 4913 pci_reset_secondary_bus(dev); 4914} 4915 4916/** 4917 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4918 * @dev: Bridge device 4919 * 4920 * Use the bridge control register to assert reset on the secondary bus. 4921 * Devices on the secondary bus are left in power-on state. 4922 */ 4923int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4924{ 4925 pcibios_reset_secondary_bus(dev); 4926 4927 return pci_bridge_wait_for_secondary_bus(dev, "bus reset", 4928 PCIE_RESET_READY_POLL_MS); 4929} 4930EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4931 4932static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4933{ 4934 struct pci_dev *pdev; 4935 4936 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4937 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4938 return -ENOTTY; 4939 4940 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4941 if (pdev != dev) 4942 return -ENOTTY; 4943 4944 if (probe) 4945 return 0; 4946 4947 return pci_bridge_secondary_bus_reset(dev->bus->self); 4948} 4949 4950static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4951{ 4952 int rc = -ENOTTY; 4953 4954 if (!hotplug || !try_module_get(hotplug->owner)) 4955 return rc; 4956 4957 if (hotplug->ops->reset_slot) 4958 rc = hotplug->ops->reset_slot(hotplug, probe); 4959 4960 module_put(hotplug->owner); 4961 4962 return rc; 4963} 4964 4965static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4966{ 4967 if (dev->multifunction || dev->subordinate || !dev->slot || 4968 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4969 return -ENOTTY; 4970 4971 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4972} 4973 4974static void pci_dev_lock(struct pci_dev *dev) 4975{ 4976 /* block PM suspend, driver probe, etc. */ 4977 device_lock(&dev->dev); 4978 pci_cfg_access_lock(dev); 4979} 4980 4981/* Return 1 on successful lock, 0 on contention */ 4982static int pci_dev_trylock(struct pci_dev *dev) 4983{ 4984 if (device_trylock(&dev->dev)) { 4985 if (pci_cfg_access_trylock(dev)) 4986 return 1; 4987 device_unlock(&dev->dev); 4988 } 4989 4990 return 0; 4991} 4992 4993static void pci_dev_unlock(struct pci_dev *dev) 4994{ 4995 pci_cfg_access_unlock(dev); 4996 device_unlock(&dev->dev); 4997} 4998 4999static void pci_dev_save_and_disable(struct pci_dev *dev) 5000{ 5001 const struct pci_error_handlers *err_handler = 5002 dev->driver ? dev->driver->err_handler : NULL; 5003 5004 /* 5005 * dev->driver->err_handler->reset_prepare() is protected against 5006 * races with ->remove() by the device lock, which must be held by 5007 * the caller. 5008 */ 5009 if (err_handler && err_handler->reset_prepare) 5010 err_handler->reset_prepare(dev); 5011 5012 /* 5013 * Wake-up device prior to save. PM registers default to D0 after 5014 * reset and a simple register restore doesn't reliably return 5015 * to a non-D0 state anyway. 5016 */ 5017 pci_set_power_state(dev, PCI_D0); 5018 5019 pci_save_state(dev); 5020 /* 5021 * Disable the device by clearing the Command register, except for 5022 * INTx-disable which is set. This not only disables MMIO and I/O port 5023 * BARs, but also prevents the device from being Bus Master, preventing 5024 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5025 * compliant devices, INTx-disable prevents legacy interrupts. 5026 */ 5027 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5028} 5029 5030static void pci_dev_restore(struct pci_dev *dev) 5031{ 5032 const struct pci_error_handlers *err_handler = 5033 dev->driver ? dev->driver->err_handler : NULL; 5034 5035 pci_restore_state(dev); 5036 5037 /* 5038 * dev->driver->err_handler->reset_done() is protected against 5039 * races with ->remove() by the device lock, which must be held by 5040 * the caller. 5041 */ 5042 if (err_handler && err_handler->reset_done) 5043 err_handler->reset_done(dev); 5044} 5045 5046/** 5047 * __pci_reset_function_locked - reset a PCI device function while holding 5048 * the @dev mutex lock. 5049 * @dev: PCI device to reset 5050 * 5051 * Some devices allow an individual function to be reset without affecting 5052 * other functions in the same device. The PCI device must be responsive 5053 * to PCI config space in order to use this function. 5054 * 5055 * The device function is presumed to be unused and the caller is holding 5056 * the device mutex lock when this function is called. 5057 * 5058 * Resetting the device will make the contents of PCI configuration space 5059 * random, so any caller of this must be prepared to reinitialise the 5060 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5061 * etc. 5062 * 5063 * Returns 0 if the device function was successfully reset or negative if the 5064 * device doesn't support resetting a single function. 5065 */ 5066int __pci_reset_function_locked(struct pci_dev *dev) 5067{ 5068 int rc; 5069 5070 might_sleep(); 5071 5072 /* 5073 * A reset method returns -ENOTTY if it doesn't support this device 5074 * and we should try the next method. 5075 * 5076 * If it returns 0 (success), we're finished. If it returns any 5077 * other error, we're also finished: this indicates that further 5078 * reset mechanisms might be broken on the device. 5079 */ 5080 rc = pci_dev_specific_reset(dev, 0); 5081 if (rc != -ENOTTY) 5082 return rc; 5083 if (pcie_has_flr(dev)) { 5084 rc = pcie_flr(dev); 5085 if (rc != -ENOTTY) 5086 return rc; 5087 } 5088 rc = pci_af_flr(dev, 0); 5089 if (rc != -ENOTTY) 5090 return rc; 5091 rc = pci_pm_reset(dev, 0); 5092 if (rc != -ENOTTY) 5093 return rc; 5094 rc = pci_dev_reset_slot_function(dev, 0); 5095 if (rc != -ENOTTY) 5096 return rc; 5097 return pci_parent_bus_reset(dev, 0); 5098} 5099EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5100 5101/** 5102 * pci_probe_reset_function - check whether the device can be safely reset 5103 * @dev: PCI device to reset 5104 * 5105 * Some devices allow an individual function to be reset without affecting 5106 * other functions in the same device. The PCI device must be responsive 5107 * to PCI config space in order to use this function. 5108 * 5109 * Returns 0 if the device function can be reset or negative if the 5110 * device doesn't support resetting a single function. 5111 */ 5112int pci_probe_reset_function(struct pci_dev *dev) 5113{ 5114 int rc; 5115 5116 might_sleep(); 5117 5118 rc = pci_dev_specific_reset(dev, 1); 5119 if (rc != -ENOTTY) 5120 return rc; 5121 if (pcie_has_flr(dev)) 5122 return 0; 5123 rc = pci_af_flr(dev, 1); 5124 if (rc != -ENOTTY) 5125 return rc; 5126 rc = pci_pm_reset(dev, 1); 5127 if (rc != -ENOTTY) 5128 return rc; 5129 rc = pci_dev_reset_slot_function(dev, 1); 5130 if (rc != -ENOTTY) 5131 return rc; 5132 5133 return pci_parent_bus_reset(dev, 1); 5134} 5135 5136/** 5137 * pci_reset_function - quiesce and reset a PCI device function 5138 * @dev: PCI device to reset 5139 * 5140 * Some devices allow an individual function to be reset without affecting 5141 * other functions in the same device. The PCI device must be responsive 5142 * to PCI config space in order to use this function. 5143 * 5144 * This function does not just reset the PCI portion of a device, but 5145 * clears all the state associated with the device. This function differs 5146 * from __pci_reset_function_locked() in that it saves and restores device state 5147 * over the reset and takes the PCI device lock. 5148 * 5149 * Returns 0 if the device function was successfully reset or negative if the 5150 * device doesn't support resetting a single function. 5151 */ 5152int pci_reset_function(struct pci_dev *dev) 5153{ 5154 int rc; 5155 5156 if (!dev->reset_fn) 5157 return -ENOTTY; 5158 5159 pci_dev_lock(dev); 5160 pci_dev_save_and_disable(dev); 5161 5162 rc = __pci_reset_function_locked(dev); 5163 5164 pci_dev_restore(dev); 5165 pci_dev_unlock(dev); 5166 5167 return rc; 5168} 5169EXPORT_SYMBOL_GPL(pci_reset_function); 5170 5171/** 5172 * pci_reset_function_locked - quiesce and reset a PCI device function 5173 * @dev: PCI device to reset 5174 * 5175 * Some devices allow an individual function to be reset without affecting 5176 * other functions in the same device. The PCI device must be responsive 5177 * to PCI config space in order to use this function. 5178 * 5179 * This function does not just reset the PCI portion of a device, but 5180 * clears all the state associated with the device. This function differs 5181 * from __pci_reset_function_locked() in that it saves and restores device state 5182 * over the reset. It also differs from pci_reset_function() in that it 5183 * requires the PCI device lock to be held. 5184 * 5185 * Returns 0 if the device function was successfully reset or negative if the 5186 * device doesn't support resetting a single function. 5187 */ 5188int pci_reset_function_locked(struct pci_dev *dev) 5189{ 5190 int rc; 5191 5192 if (!dev->reset_fn) 5193 return -ENOTTY; 5194 5195 pci_dev_save_and_disable(dev); 5196 5197 rc = __pci_reset_function_locked(dev); 5198 5199 pci_dev_restore(dev); 5200 5201 return rc; 5202} 5203EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5204 5205/** 5206 * pci_try_reset_function - quiesce and reset a PCI device function 5207 * @dev: PCI device to reset 5208 * 5209 * Same as above, except return -EAGAIN if unable to lock device. 5210 */ 5211int pci_try_reset_function(struct pci_dev *dev) 5212{ 5213 int rc; 5214 5215 if (!dev->reset_fn) 5216 return -ENOTTY; 5217 5218 if (!pci_dev_trylock(dev)) 5219 return -EAGAIN; 5220 5221 pci_dev_save_and_disable(dev); 5222 rc = __pci_reset_function_locked(dev); 5223 pci_dev_restore(dev); 5224 pci_dev_unlock(dev); 5225 5226 return rc; 5227} 5228EXPORT_SYMBOL_GPL(pci_try_reset_function); 5229 5230/* Do any devices on or below this bus prevent a bus reset? */ 5231static bool pci_bus_resetable(struct pci_bus *bus) 5232{ 5233 struct pci_dev *dev; 5234 5235 5236 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5237 return false; 5238 5239 list_for_each_entry(dev, &bus->devices, bus_list) { 5240 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5241 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5242 return false; 5243 } 5244 5245 return true; 5246} 5247 5248/* Lock devices from the top of the tree down */ 5249static void pci_bus_lock(struct pci_bus *bus) 5250{ 5251 struct pci_dev *dev; 5252 5253 pci_dev_lock(bus->self); 5254 list_for_each_entry(dev, &bus->devices, bus_list) { 5255 if (dev->subordinate) 5256 pci_bus_lock(dev->subordinate); 5257 else 5258 pci_dev_lock(dev); 5259 } 5260} 5261 5262/* Unlock devices from the bottom of the tree up */ 5263static void pci_bus_unlock(struct pci_bus *bus) 5264{ 5265 struct pci_dev *dev; 5266 5267 list_for_each_entry(dev, &bus->devices, bus_list) { 5268 if (dev->subordinate) 5269 pci_bus_unlock(dev->subordinate); 5270 else 5271 pci_dev_unlock(dev); 5272 } 5273 pci_dev_unlock(bus->self); 5274} 5275 5276/* Return 1 on successful lock, 0 on contention */ 5277static int pci_bus_trylock(struct pci_bus *bus) 5278{ 5279 struct pci_dev *dev; 5280 5281 if (!pci_dev_trylock(bus->self)) 5282 return 0; 5283 5284 list_for_each_entry(dev, &bus->devices, bus_list) { 5285 if (dev->subordinate) { 5286 if (!pci_bus_trylock(dev->subordinate)) 5287 goto unlock; 5288 } else if (!pci_dev_trylock(dev)) 5289 goto unlock; 5290 } 5291 return 1; 5292 5293unlock: 5294 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5295 if (dev->subordinate) 5296 pci_bus_unlock(dev->subordinate); 5297 else 5298 pci_dev_unlock(dev); 5299 } 5300 pci_dev_unlock(bus->self); 5301 return 0; 5302} 5303 5304/* Do any devices on or below this slot prevent a bus reset? */ 5305static bool pci_slot_resetable(struct pci_slot *slot) 5306{ 5307 struct pci_dev *dev; 5308 5309 if (slot->bus->self && 5310 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5311 return false; 5312 5313 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5314 if (!dev->slot || dev->slot != slot) 5315 continue; 5316 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5317 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5318 return false; 5319 } 5320 5321 return true; 5322} 5323 5324/* Lock devices from the top of the tree down */ 5325static void pci_slot_lock(struct pci_slot *slot) 5326{ 5327 struct pci_dev *dev; 5328 5329 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5330 if (!dev->slot || dev->slot != slot) 5331 continue; 5332 if (dev->subordinate) 5333 pci_bus_lock(dev->subordinate); 5334 else 5335 pci_dev_lock(dev); 5336 } 5337} 5338 5339/* Unlock devices from the bottom of the tree up */ 5340static void pci_slot_unlock(struct pci_slot *slot) 5341{ 5342 struct pci_dev *dev; 5343 5344 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5345 if (!dev->slot || dev->slot != slot) 5346 continue; 5347 if (dev->subordinate) 5348 pci_bus_unlock(dev->subordinate); 5349 pci_dev_unlock(dev); 5350 } 5351} 5352 5353/* Return 1 on successful lock, 0 on contention */ 5354static int pci_slot_trylock(struct pci_slot *slot) 5355{ 5356 struct pci_dev *dev; 5357 5358 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5359 if (!dev->slot || dev->slot != slot) 5360 continue; 5361 if (dev->subordinate) { 5362 if (!pci_bus_trylock(dev->subordinate)) { 5363 pci_dev_unlock(dev); 5364 goto unlock; 5365 } 5366 } else if (!pci_dev_trylock(dev)) 5367 goto unlock; 5368 } 5369 return 1; 5370 5371unlock: 5372 list_for_each_entry_continue_reverse(dev, 5373 &slot->bus->devices, bus_list) { 5374 if (!dev->slot || dev->slot != slot) 5375 continue; 5376 if (dev->subordinate) 5377 pci_bus_unlock(dev->subordinate); 5378 else 5379 pci_dev_unlock(dev); 5380 } 5381 return 0; 5382} 5383 5384/* 5385 * Save and disable devices from the top of the tree down while holding 5386 * the @dev mutex lock for the entire tree. 5387 */ 5388static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5389{ 5390 struct pci_dev *dev; 5391 5392 list_for_each_entry(dev, &bus->devices, bus_list) { 5393 pci_dev_save_and_disable(dev); 5394 if (dev->subordinate) 5395 pci_bus_save_and_disable_locked(dev->subordinate); 5396 } 5397} 5398 5399/* 5400 * Restore devices from top of the tree down while holding @dev mutex lock 5401 * for the entire tree. Parent bridges need to be restored before we can 5402 * get to subordinate devices. 5403 */ 5404static void pci_bus_restore_locked(struct pci_bus *bus) 5405{ 5406 struct pci_dev *dev; 5407 5408 list_for_each_entry(dev, &bus->devices, bus_list) { 5409 pci_dev_restore(dev); 5410 if (dev->subordinate) 5411 pci_bus_restore_locked(dev->subordinate); 5412 } 5413} 5414 5415/* 5416 * Save and disable devices from the top of the tree down while holding 5417 * the @dev mutex lock for the entire tree. 5418 */ 5419static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5420{ 5421 struct pci_dev *dev; 5422 5423 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5424 if (!dev->slot || dev->slot != slot) 5425 continue; 5426 pci_dev_save_and_disable(dev); 5427 if (dev->subordinate) 5428 pci_bus_save_and_disable_locked(dev->subordinate); 5429 } 5430} 5431 5432/* 5433 * Restore devices from top of the tree down while holding @dev mutex lock 5434 * for the entire tree. Parent bridges need to be restored before we can 5435 * get to subordinate devices. 5436 */ 5437static void pci_slot_restore_locked(struct pci_slot *slot) 5438{ 5439 struct pci_dev *dev; 5440 5441 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5442 if (!dev->slot || dev->slot != slot) 5443 continue; 5444 pci_dev_restore(dev); 5445 if (dev->subordinate) 5446 pci_bus_restore_locked(dev->subordinate); 5447 } 5448} 5449 5450static int pci_slot_reset(struct pci_slot *slot, int probe) 5451{ 5452 int rc; 5453 5454 if (!slot || !pci_slot_resetable(slot)) 5455 return -ENOTTY; 5456 5457 if (!probe) 5458 pci_slot_lock(slot); 5459 5460 might_sleep(); 5461 5462 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5463 5464 if (!probe) 5465 pci_slot_unlock(slot); 5466 5467 return rc; 5468} 5469 5470/** 5471 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5472 * @slot: PCI slot to probe 5473 * 5474 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5475 */ 5476int pci_probe_reset_slot(struct pci_slot *slot) 5477{ 5478 return pci_slot_reset(slot, 1); 5479} 5480EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5481 5482/** 5483 * __pci_reset_slot - Try to reset a PCI slot 5484 * @slot: PCI slot to reset 5485 * 5486 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5487 * independent of other slots. For instance, some slots may support slot power 5488 * control. In the case of a 1:1 bus to slot architecture, this function may 5489 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5490 * Generally a slot reset should be attempted before a bus reset. All of the 5491 * function of the slot and any subordinate buses behind the slot are reset 5492 * through this function. PCI config space of all devices in the slot and 5493 * behind the slot is saved before and restored after reset. 5494 * 5495 * Same as above except return -EAGAIN if the slot cannot be locked 5496 */ 5497static int __pci_reset_slot(struct pci_slot *slot) 5498{ 5499 int rc; 5500 5501 rc = pci_slot_reset(slot, 1); 5502 if (rc) 5503 return rc; 5504 5505 if (pci_slot_trylock(slot)) { 5506 pci_slot_save_and_disable_locked(slot); 5507 might_sleep(); 5508 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5509 pci_slot_restore_locked(slot); 5510 pci_slot_unlock(slot); 5511 } else 5512 rc = -EAGAIN; 5513 5514 return rc; 5515} 5516 5517static int pci_bus_reset(struct pci_bus *bus, int probe) 5518{ 5519 int ret; 5520 5521 if (!bus->self || !pci_bus_resetable(bus)) 5522 return -ENOTTY; 5523 5524 if (probe) 5525 return 0; 5526 5527 pci_bus_lock(bus); 5528 5529 might_sleep(); 5530 5531 ret = pci_bridge_secondary_bus_reset(bus->self); 5532 5533 pci_bus_unlock(bus); 5534 5535 return ret; 5536} 5537 5538/** 5539 * pci_bus_error_reset - reset the bridge's subordinate bus 5540 * @bridge: The parent device that connects to the bus to reset 5541 * 5542 * This function will first try to reset the slots on this bus if the method is 5543 * available. If slot reset fails or is not available, this will fall back to a 5544 * secondary bus reset. 5545 */ 5546int pci_bus_error_reset(struct pci_dev *bridge) 5547{ 5548 struct pci_bus *bus = bridge->subordinate; 5549 struct pci_slot *slot; 5550 5551 if (!bus) 5552 return -ENOTTY; 5553 5554 mutex_lock(&pci_slot_mutex); 5555 if (list_empty(&bus->slots)) 5556 goto bus_reset; 5557 5558 list_for_each_entry(slot, &bus->slots, list) 5559 if (pci_probe_reset_slot(slot)) 5560 goto bus_reset; 5561 5562 list_for_each_entry(slot, &bus->slots, list) 5563 if (pci_slot_reset(slot, 0)) 5564 goto bus_reset; 5565 5566 mutex_unlock(&pci_slot_mutex); 5567 return 0; 5568bus_reset: 5569 mutex_unlock(&pci_slot_mutex); 5570 return pci_bus_reset(bridge->subordinate, 0); 5571} 5572 5573/** 5574 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5575 * @bus: PCI bus to probe 5576 * 5577 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5578 */ 5579int pci_probe_reset_bus(struct pci_bus *bus) 5580{ 5581 return pci_bus_reset(bus, 1); 5582} 5583EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5584 5585/** 5586 * __pci_reset_bus - Try to reset a PCI bus 5587 * @bus: top level PCI bus to reset 5588 * 5589 * Same as above except return -EAGAIN if the bus cannot be locked 5590 */ 5591static int __pci_reset_bus(struct pci_bus *bus) 5592{ 5593 int rc; 5594 5595 rc = pci_bus_reset(bus, 1); 5596 if (rc) 5597 return rc; 5598 5599 if (pci_bus_trylock(bus)) { 5600 pci_bus_save_and_disable_locked(bus); 5601 might_sleep(); 5602 rc = pci_bridge_secondary_bus_reset(bus->self); 5603 pci_bus_restore_locked(bus); 5604 pci_bus_unlock(bus); 5605 } else 5606 rc = -EAGAIN; 5607 5608 return rc; 5609} 5610 5611/** 5612 * pci_reset_bus - Try to reset a PCI bus 5613 * @pdev: top level PCI device to reset via slot/bus 5614 * 5615 * Same as above except return -EAGAIN if the bus cannot be locked 5616 */ 5617int pci_reset_bus(struct pci_dev *pdev) 5618{ 5619 return (!pci_probe_reset_slot(pdev->slot)) ? 5620 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5621} 5622EXPORT_SYMBOL_GPL(pci_reset_bus); 5623 5624/** 5625 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5626 * @dev: PCI device to query 5627 * 5628 * Returns mmrbc: maximum designed memory read count in bytes or 5629 * appropriate error value. 5630 */ 5631int pcix_get_max_mmrbc(struct pci_dev *dev) 5632{ 5633 int cap; 5634 u32 stat; 5635 5636 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5637 if (!cap) 5638 return -EINVAL; 5639 5640 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5641 return -EINVAL; 5642 5643 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5644} 5645EXPORT_SYMBOL(pcix_get_max_mmrbc); 5646 5647/** 5648 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5649 * @dev: PCI device to query 5650 * 5651 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5652 * value. 5653 */ 5654int pcix_get_mmrbc(struct pci_dev *dev) 5655{ 5656 int cap; 5657 u16 cmd; 5658 5659 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5660 if (!cap) 5661 return -EINVAL; 5662 5663 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5664 return -EINVAL; 5665 5666 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5667} 5668EXPORT_SYMBOL(pcix_get_mmrbc); 5669 5670/** 5671 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5672 * @dev: PCI device to query 5673 * @mmrbc: maximum memory read count in bytes 5674 * valid values are 512, 1024, 2048, 4096 5675 * 5676 * If possible sets maximum memory read byte count, some bridges have errata 5677 * that prevent this. 5678 */ 5679int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5680{ 5681 int cap; 5682 u32 stat, v, o; 5683 u16 cmd; 5684 5685 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5686 return -EINVAL; 5687 5688 v = ffs(mmrbc) - 10; 5689 5690 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5691 if (!cap) 5692 return -EINVAL; 5693 5694 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5695 return -EINVAL; 5696 5697 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5698 return -E2BIG; 5699 5700 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5701 return -EINVAL; 5702 5703 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5704 if (o != v) { 5705 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5706 return -EIO; 5707 5708 cmd &= ~PCI_X_CMD_MAX_READ; 5709 cmd |= v << 2; 5710 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5711 return -EIO; 5712 } 5713 return 0; 5714} 5715EXPORT_SYMBOL(pcix_set_mmrbc); 5716 5717/** 5718 * pcie_get_readrq - get PCI Express read request size 5719 * @dev: PCI device to query 5720 * 5721 * Returns maximum memory read request in bytes or appropriate error value. 5722 */ 5723int pcie_get_readrq(struct pci_dev *dev) 5724{ 5725 u16 ctl; 5726 5727 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5728 5729 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5730} 5731EXPORT_SYMBOL(pcie_get_readrq); 5732 5733/** 5734 * pcie_set_readrq - set PCI Express maximum memory read request 5735 * @dev: PCI device to query 5736 * @rq: maximum memory read count in bytes 5737 * valid values are 128, 256, 512, 1024, 2048, 4096 5738 * 5739 * If possible sets maximum memory read request in bytes 5740 */ 5741int pcie_set_readrq(struct pci_dev *dev, int rq) 5742{ 5743 u16 v; 5744 int ret; 5745 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 5746 5747 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5748 return -EINVAL; 5749 5750 /* 5751 * If using the "performance" PCIe config, we clamp the read rq 5752 * size to the max packet size to keep the host bridge from 5753 * generating requests larger than we can cope with. 5754 */ 5755 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5756 int mps = pcie_get_mps(dev); 5757 5758 if (mps < rq) 5759 rq = mps; 5760 } 5761 5762 v = (ffs(rq) - 8) << 12; 5763 5764 if (bridge->no_inc_mrrs) { 5765 int max_mrrs = pcie_get_readrq(dev); 5766 5767 if (rq > max_mrrs) { 5768 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 5769 return -EINVAL; 5770 } 5771 } 5772 5773 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5774 PCI_EXP_DEVCTL_READRQ, v); 5775 5776 return pcibios_err_to_errno(ret); 5777} 5778EXPORT_SYMBOL(pcie_set_readrq); 5779 5780/** 5781 * pcie_get_mps - get PCI Express maximum payload size 5782 * @dev: PCI device to query 5783 * 5784 * Returns maximum payload size in bytes 5785 */ 5786int pcie_get_mps(struct pci_dev *dev) 5787{ 5788 u16 ctl; 5789 5790 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5791 5792 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5793} 5794EXPORT_SYMBOL(pcie_get_mps); 5795 5796/** 5797 * pcie_set_mps - set PCI Express maximum payload size 5798 * @dev: PCI device to query 5799 * @mps: maximum payload size in bytes 5800 * valid values are 128, 256, 512, 1024, 2048, 4096 5801 * 5802 * If possible sets maximum payload size 5803 */ 5804int pcie_set_mps(struct pci_dev *dev, int mps) 5805{ 5806 u16 v; 5807 int ret; 5808 5809 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5810 return -EINVAL; 5811 5812 v = ffs(mps) - 8; 5813 if (v > dev->pcie_mpss) 5814 return -EINVAL; 5815 v <<= 5; 5816 5817 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5818 PCI_EXP_DEVCTL_PAYLOAD, v); 5819 5820 return pcibios_err_to_errno(ret); 5821} 5822EXPORT_SYMBOL(pcie_set_mps); 5823 5824/** 5825 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5826 * device and its bandwidth limitation 5827 * @dev: PCI device to query 5828 * @limiting_dev: storage for device causing the bandwidth limitation 5829 * @speed: storage for speed of limiting device 5830 * @width: storage for width of limiting device 5831 * 5832 * Walk up the PCI device chain and find the point where the minimum 5833 * bandwidth is available. Return the bandwidth available there and (if 5834 * limiting_dev, speed, and width pointers are supplied) information about 5835 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5836 * raw bandwidth. 5837 */ 5838u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5839 enum pci_bus_speed *speed, 5840 enum pcie_link_width *width) 5841{ 5842 u16 lnksta; 5843 enum pci_bus_speed next_speed; 5844 enum pcie_link_width next_width; 5845 u32 bw, next_bw; 5846 5847 if (speed) 5848 *speed = PCI_SPEED_UNKNOWN; 5849 if (width) 5850 *width = PCIE_LNK_WIDTH_UNKNOWN; 5851 5852 bw = 0; 5853 5854 while (dev) { 5855 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5856 5857 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5858 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5859 PCI_EXP_LNKSTA_NLW_SHIFT; 5860 5861 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5862 5863 /* Check if current device limits the total bandwidth */ 5864 if (!bw || next_bw <= bw) { 5865 bw = next_bw; 5866 5867 if (limiting_dev) 5868 *limiting_dev = dev; 5869 if (speed) 5870 *speed = next_speed; 5871 if (width) 5872 *width = next_width; 5873 } 5874 5875 dev = pci_upstream_bridge(dev); 5876 } 5877 5878 return bw; 5879} 5880EXPORT_SYMBOL(pcie_bandwidth_available); 5881 5882/** 5883 * pcie_get_speed_cap - query for the PCI device's link speed capability 5884 * @dev: PCI device to query 5885 * 5886 * Query the PCI device speed capability. Return the maximum link speed 5887 * supported by the device. 5888 */ 5889enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5890{ 5891 u32 lnkcap2, lnkcap; 5892 5893 /* 5894 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5895 * implementation note there recommends using the Supported Link 5896 * Speeds Vector in Link Capabilities 2 when supported. 5897 * 5898 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5899 * should use the Supported Link Speeds field in Link Capabilities, 5900 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5901 */ 5902 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5903 5904 /* PCIe r3.0-compliant */ 5905 if (lnkcap2) 5906 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5907 5908 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5909 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5910 return PCIE_SPEED_5_0GT; 5911 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5912 return PCIE_SPEED_2_5GT; 5913 5914 return PCI_SPEED_UNKNOWN; 5915} 5916EXPORT_SYMBOL(pcie_get_speed_cap); 5917 5918/** 5919 * pcie_get_width_cap - query for the PCI device's link width capability 5920 * @dev: PCI device to query 5921 * 5922 * Query the PCI device width capability. Return the maximum link width 5923 * supported by the device. 5924 */ 5925enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5926{ 5927 u32 lnkcap; 5928 5929 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5930 if (lnkcap) 5931 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5932 5933 return PCIE_LNK_WIDTH_UNKNOWN; 5934} 5935EXPORT_SYMBOL(pcie_get_width_cap); 5936 5937/** 5938 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5939 * @dev: PCI device 5940 * @speed: storage for link speed 5941 * @width: storage for link width 5942 * 5943 * Calculate a PCI device's link bandwidth by querying for its link speed 5944 * and width, multiplying them, and applying encoding overhead. The result 5945 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5946 */ 5947u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5948 enum pcie_link_width *width) 5949{ 5950 *speed = pcie_get_speed_cap(dev); 5951 *width = pcie_get_width_cap(dev); 5952 5953 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5954 return 0; 5955 5956 return *width * PCIE_SPEED2MBS_ENC(*speed); 5957} 5958 5959/** 5960 * __pcie_print_link_status - Report the PCI device's link speed and width 5961 * @dev: PCI device to query 5962 * @verbose: Print info even when enough bandwidth is available 5963 * 5964 * If the available bandwidth at the device is less than the device is 5965 * capable of, report the device's maximum possible bandwidth and the 5966 * upstream link that limits its performance. If @verbose, always print 5967 * the available bandwidth, even if the device isn't constrained. 5968 */ 5969void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5970{ 5971 enum pcie_link_width width, width_cap; 5972 enum pci_bus_speed speed, speed_cap; 5973 struct pci_dev *limiting_dev = NULL; 5974 u32 bw_avail, bw_cap; 5975 5976 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5977 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5978 5979 if (bw_avail >= bw_cap && verbose) 5980 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5981 bw_cap / 1000, bw_cap % 1000, 5982 pci_speed_string(speed_cap), width_cap); 5983 else if (bw_avail < bw_cap) 5984 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5985 bw_avail / 1000, bw_avail % 1000, 5986 pci_speed_string(speed), width, 5987 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5988 bw_cap / 1000, bw_cap % 1000, 5989 pci_speed_string(speed_cap), width_cap); 5990} 5991 5992/** 5993 * pcie_print_link_status - Report the PCI device's link speed and width 5994 * @dev: PCI device to query 5995 * 5996 * Report the available bandwidth at the device. 5997 */ 5998void pcie_print_link_status(struct pci_dev *dev) 5999{ 6000 __pcie_print_link_status(dev, true); 6001} 6002EXPORT_SYMBOL(pcie_print_link_status); 6003 6004/** 6005 * pci_select_bars - Make BAR mask from the type of resource 6006 * @dev: the PCI device for which BAR mask is made 6007 * @flags: resource type mask to be selected 6008 * 6009 * This helper routine makes bar mask from the type of resource. 6010 */ 6011int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6012{ 6013 int i, bars = 0; 6014 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6015 if (pci_resource_flags(dev, i) & flags) 6016 bars |= (1 << i); 6017 return bars; 6018} 6019EXPORT_SYMBOL(pci_select_bars); 6020 6021/* Some architectures require additional programming to enable VGA */ 6022static arch_set_vga_state_t arch_set_vga_state; 6023 6024void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6025{ 6026 arch_set_vga_state = func; /* NULL disables */ 6027} 6028 6029static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6030 unsigned int command_bits, u32 flags) 6031{ 6032 if (arch_set_vga_state) 6033 return arch_set_vga_state(dev, decode, command_bits, 6034 flags); 6035 return 0; 6036} 6037 6038/** 6039 * pci_set_vga_state - set VGA decode state on device and parents if requested 6040 * @dev: the PCI device 6041 * @decode: true = enable decoding, false = disable decoding 6042 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6043 * @flags: traverse ancestors and change bridges 6044 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6045 */ 6046int pci_set_vga_state(struct pci_dev *dev, bool decode, 6047 unsigned int command_bits, u32 flags) 6048{ 6049 struct pci_bus *bus; 6050 struct pci_dev *bridge; 6051 u16 cmd; 6052 int rc; 6053 6054 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6055 6056 /* ARCH specific VGA enables */ 6057 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6058 if (rc) 6059 return rc; 6060 6061 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6062 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6063 if (decode) 6064 cmd |= command_bits; 6065 else 6066 cmd &= ~command_bits; 6067 pci_write_config_word(dev, PCI_COMMAND, cmd); 6068 } 6069 6070 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6071 return 0; 6072 6073 bus = dev->bus; 6074 while (bus) { 6075 bridge = bus->self; 6076 if (bridge) { 6077 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6078 &cmd); 6079 if (decode) 6080 cmd |= PCI_BRIDGE_CTL_VGA; 6081 else 6082 cmd &= ~PCI_BRIDGE_CTL_VGA; 6083 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6084 cmd); 6085 } 6086 bus = bus->parent; 6087 } 6088 return 0; 6089} 6090 6091#ifdef CONFIG_ACPI 6092bool pci_pr3_present(struct pci_dev *pdev) 6093{ 6094 struct acpi_device *adev; 6095 6096 if (acpi_disabled) 6097 return false; 6098 6099 adev = ACPI_COMPANION(&pdev->dev); 6100 if (!adev) 6101 return false; 6102 6103 return adev->power.flags.power_resources && 6104 acpi_has_method(adev->handle, "_PR3"); 6105} 6106EXPORT_SYMBOL_GPL(pci_pr3_present); 6107#endif 6108 6109/** 6110 * pci_add_dma_alias - Add a DMA devfn alias for a device 6111 * @dev: the PCI device for which alias is added 6112 * @devfn_from: alias slot and function 6113 * @nr_devfns: number of subsequent devfns to alias 6114 * 6115 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6116 * which is used to program permissible bus-devfn source addresses for DMA 6117 * requests in an IOMMU. These aliases factor into IOMMU group creation 6118 * and are useful for devices generating DMA requests beyond or different 6119 * from their logical bus-devfn. Examples include device quirks where the 6120 * device simply uses the wrong devfn, as well as non-transparent bridges 6121 * where the alias may be a proxy for devices in another domain. 6122 * 6123 * IOMMU group creation is performed during device discovery or addition, 6124 * prior to any potential DMA mapping and therefore prior to driver probing 6125 * (especially for userspace assigned devices where IOMMU group definition 6126 * cannot be left as a userspace activity). DMA aliases should therefore 6127 * be configured via quirks, such as the PCI fixup header quirk. 6128 */ 6129void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6130{ 6131 int devfn_to; 6132 6133 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6134 devfn_to = devfn_from + nr_devfns - 1; 6135 6136 if (!dev->dma_alias_mask) 6137 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6138 if (!dev->dma_alias_mask) { 6139 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6140 return; 6141 } 6142 6143 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6144 6145 if (nr_devfns == 1) 6146 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6147 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6148 else if (nr_devfns > 1) 6149 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6150 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6151 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6152} 6153 6154bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6155{ 6156 return (dev1->dma_alias_mask && 6157 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6158 (dev2->dma_alias_mask && 6159 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6160 pci_real_dma_dev(dev1) == dev2 || 6161 pci_real_dma_dev(dev2) == dev1; 6162} 6163 6164bool pci_device_is_present(struct pci_dev *pdev) 6165{ 6166 u32 v; 6167 6168 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6169 pdev = pci_physfn(pdev); 6170 if (pci_dev_is_disconnected(pdev)) 6171 return false; 6172 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6173} 6174EXPORT_SYMBOL_GPL(pci_device_is_present); 6175 6176void pci_ignore_hotplug(struct pci_dev *dev) 6177{ 6178 struct pci_dev *bridge = dev->bus->self; 6179 6180 dev->ignore_hotplug = 1; 6181 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6182 if (bridge) 6183 bridge->ignore_hotplug = 1; 6184} 6185EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6186 6187/** 6188 * pci_real_dma_dev - Get PCI DMA device for PCI device 6189 * @dev: the PCI device that may have a PCI DMA alias 6190 * 6191 * Permits the platform to provide architecture-specific functionality to 6192 * devices needing to alias DMA to another PCI device on another PCI bus. If 6193 * the PCI device is on the same bus, it is recommended to use 6194 * pci_add_dma_alias(). This is the default implementation. Architecture 6195 * implementations can override this. 6196 */ 6197struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6198{ 6199 return dev; 6200} 6201 6202resource_size_t __weak pcibios_default_alignment(void) 6203{ 6204 return 0; 6205} 6206 6207/* 6208 * Arches that don't want to expose struct resource to userland as-is in 6209 * sysfs and /proc can implement their own pci_resource_to_user(). 6210 */ 6211void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6212 const struct resource *rsrc, 6213 resource_size_t *start, resource_size_t *end) 6214{ 6215 *start = rsrc->start; 6216 *end = rsrc->end; 6217} 6218 6219static char *resource_alignment_param; 6220static DEFINE_SPINLOCK(resource_alignment_lock); 6221 6222/** 6223 * pci_specified_resource_alignment - get resource alignment specified by user. 6224 * @dev: the PCI device to get 6225 * @resize: whether or not to change resources' size when reassigning alignment 6226 * 6227 * RETURNS: Resource alignment if it is specified. 6228 * Zero if it is not specified. 6229 */ 6230static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6231 bool *resize) 6232{ 6233 int align_order, count; 6234 resource_size_t align = pcibios_default_alignment(); 6235 const char *p; 6236 int ret; 6237 6238 spin_lock(&resource_alignment_lock); 6239 p = resource_alignment_param; 6240 if (!p || !*p) 6241 goto out; 6242 if (pci_has_flag(PCI_PROBE_ONLY)) { 6243 align = 0; 6244 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6245 goto out; 6246 } 6247 6248 while (*p) { 6249 count = 0; 6250 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6251 p[count] == '@') { 6252 p += count + 1; 6253 if (align_order > 63) { 6254 pr_err("PCI: Invalid requested alignment (order %d)\n", 6255 align_order); 6256 align_order = PAGE_SHIFT; 6257 } 6258 } else { 6259 align_order = PAGE_SHIFT; 6260 } 6261 6262 ret = pci_dev_str_match(dev, p, &p); 6263 if (ret == 1) { 6264 *resize = true; 6265 align = 1ULL << align_order; 6266 break; 6267 } else if (ret < 0) { 6268 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6269 p); 6270 break; 6271 } 6272 6273 if (*p != ';' && *p != ',') { 6274 /* End of param or invalid format */ 6275 break; 6276 } 6277 p++; 6278 } 6279out: 6280 spin_unlock(&resource_alignment_lock); 6281 return align; 6282} 6283 6284static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6285 resource_size_t align, bool resize) 6286{ 6287 struct resource *r = &dev->resource[bar]; 6288 resource_size_t size; 6289 6290 if (!(r->flags & IORESOURCE_MEM)) 6291 return; 6292 6293 if (r->flags & IORESOURCE_PCI_FIXED) { 6294 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6295 bar, r, (unsigned long long)align); 6296 return; 6297 } 6298 6299 size = resource_size(r); 6300 if (size >= align) 6301 return; 6302 6303 /* 6304 * Increase the alignment of the resource. There are two ways we 6305 * can do this: 6306 * 6307 * 1) Increase the size of the resource. BARs are aligned on their 6308 * size, so when we reallocate space for this resource, we'll 6309 * allocate it with the larger alignment. This also prevents 6310 * assignment of any other BARs inside the alignment region, so 6311 * if we're requesting page alignment, this means no other BARs 6312 * will share the page. 6313 * 6314 * The disadvantage is that this makes the resource larger than 6315 * the hardware BAR, which may break drivers that compute things 6316 * based on the resource size, e.g., to find registers at a 6317 * fixed offset before the end of the BAR. 6318 * 6319 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6320 * set r->start to the desired alignment. By itself this 6321 * doesn't prevent other BARs being put inside the alignment 6322 * region, but if we realign *every* resource of every device in 6323 * the system, none of them will share an alignment region. 6324 * 6325 * When the user has requested alignment for only some devices via 6326 * the "pci=resource_alignment" argument, "resize" is true and we 6327 * use the first method. Otherwise we assume we're aligning all 6328 * devices and we use the second. 6329 */ 6330 6331 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6332 bar, r, (unsigned long long)align); 6333 6334 if (resize) { 6335 r->start = 0; 6336 r->end = align - 1; 6337 } else { 6338 r->flags &= ~IORESOURCE_SIZEALIGN; 6339 r->flags |= IORESOURCE_STARTALIGN; 6340 r->start = align; 6341 r->end = r->start + size - 1; 6342 } 6343 r->flags |= IORESOURCE_UNSET; 6344} 6345 6346/* 6347 * This function disables memory decoding and releases memory resources 6348 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6349 * It also rounds up size to specified alignment. 6350 * Later on, the kernel will assign page-aligned memory resource back 6351 * to the device. 6352 */ 6353void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6354{ 6355 int i; 6356 struct resource *r; 6357 resource_size_t align; 6358 u16 command; 6359 bool resize = false; 6360 6361 /* 6362 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6363 * 3.4.1.11. Their resources are allocated from the space 6364 * described by the VF BARx register in the PF's SR-IOV capability. 6365 * We can't influence their alignment here. 6366 */ 6367 if (dev->is_virtfn) 6368 return; 6369 6370 /* check if specified PCI is target device to reassign */ 6371 align = pci_specified_resource_alignment(dev, &resize); 6372 if (!align) 6373 return; 6374 6375 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6376 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6377 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6378 return; 6379 } 6380 6381 pci_read_config_word(dev, PCI_COMMAND, &command); 6382 command &= ~PCI_COMMAND_MEMORY; 6383 pci_write_config_word(dev, PCI_COMMAND, command); 6384 6385 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6386 pci_request_resource_alignment(dev, i, align, resize); 6387 6388 /* 6389 * Need to disable bridge's resource window, 6390 * to enable the kernel to reassign new resource 6391 * window later on. 6392 */ 6393 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6394 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6395 r = &dev->resource[i]; 6396 if (!(r->flags & IORESOURCE_MEM)) 6397 continue; 6398 r->flags |= IORESOURCE_UNSET; 6399 r->end = resource_size(r) - 1; 6400 r->start = 0; 6401 } 6402 pci_disable_bridge_window(dev); 6403 } 6404} 6405 6406static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6407{ 6408 size_t count = 0; 6409 6410 spin_lock(&resource_alignment_lock); 6411 if (resource_alignment_param) 6412 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6413 spin_unlock(&resource_alignment_lock); 6414 6415 /* 6416 * When set by the command line, resource_alignment_param will not 6417 * have a trailing line feed, which is ugly. So conditionally add 6418 * it here. 6419 */ 6420 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6421 buf[count - 1] = '\n'; 6422 buf[count++] = 0; 6423 } 6424 6425 return count; 6426} 6427 6428static ssize_t resource_alignment_store(struct bus_type *bus, 6429 const char *buf, size_t count) 6430{ 6431 char *param = kstrndup(buf, count, GFP_KERNEL); 6432 6433 if (!param) 6434 return -ENOMEM; 6435 6436 spin_lock(&resource_alignment_lock); 6437 kfree(resource_alignment_param); 6438 resource_alignment_param = param; 6439 spin_unlock(&resource_alignment_lock); 6440 return count; 6441} 6442 6443static BUS_ATTR_RW(resource_alignment); 6444 6445static int __init pci_resource_alignment_sysfs_init(void) 6446{ 6447 return bus_create_file(&pci_bus_type, 6448 &bus_attr_resource_alignment); 6449} 6450late_initcall(pci_resource_alignment_sysfs_init); 6451 6452static void pci_no_domains(void) 6453{ 6454#ifdef CONFIG_PCI_DOMAINS 6455 pci_domains_supported = 0; 6456#endif 6457} 6458 6459#ifdef CONFIG_PCI_DOMAINS_GENERIC 6460static atomic_t __domain_nr = ATOMIC_INIT(-1); 6461 6462static int pci_get_new_domain_nr(void) 6463{ 6464 return atomic_inc_return(&__domain_nr); 6465} 6466 6467static int of_pci_bus_find_domain_nr(struct device *parent) 6468{ 6469 static int use_dt_domains = -1; 6470 int domain = -1; 6471 6472 if (parent) 6473 domain = of_get_pci_domain_nr(parent->of_node); 6474 6475 /* 6476 * Check DT domain and use_dt_domains values. 6477 * 6478 * If DT domain property is valid (domain >= 0) and 6479 * use_dt_domains != 0, the DT assignment is valid since this means 6480 * we have not previously allocated a domain number by using 6481 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6482 * 1, to indicate that we have just assigned a domain number from 6483 * DT. 6484 * 6485 * If DT domain property value is not valid (ie domain < 0), and we 6486 * have not previously assigned a domain number from DT 6487 * (use_dt_domains != 1) we should assign a domain number by 6488 * using the: 6489 * 6490 * pci_get_new_domain_nr() 6491 * 6492 * API and update the use_dt_domains value to keep track of method we 6493 * are using to assign domain numbers (use_dt_domains = 0). 6494 * 6495 * All other combinations imply we have a platform that is trying 6496 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6497 * which is a recipe for domain mishandling and it is prevented by 6498 * invalidating the domain value (domain = -1) and printing a 6499 * corresponding error. 6500 */ 6501 if (domain >= 0 && use_dt_domains) { 6502 use_dt_domains = 1; 6503 } else if (domain < 0 && use_dt_domains != 1) { 6504 use_dt_domains = 0; 6505 domain = pci_get_new_domain_nr(); 6506 } else { 6507 if (parent) 6508 pr_err("Node %pOF has ", parent->of_node); 6509 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6510 domain = -1; 6511 } 6512 6513 return domain; 6514} 6515 6516int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6517{ 6518 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6519 acpi_pci_bus_find_domain_nr(bus); 6520} 6521#endif 6522 6523/** 6524 * pci_ext_cfg_avail - can we access extended PCI config space? 6525 * 6526 * Returns 1 if we can access PCI extended config space (offsets 6527 * greater than 0xff). This is the default implementation. Architecture 6528 * implementations can override this. 6529 */ 6530int __weak pci_ext_cfg_avail(void) 6531{ 6532 return 1; 6533} 6534 6535void __weak pci_fixup_cardbus(struct pci_bus *bus) 6536{ 6537} 6538EXPORT_SYMBOL(pci_fixup_cardbus); 6539 6540static int __init pci_setup(char *str) 6541{ 6542 while (str) { 6543 char *k = strchr(str, ','); 6544 if (k) 6545 *k++ = 0; 6546 if (*str && (str = pcibios_setup(str)) && *str) { 6547 if (!strcmp(str, "nomsi")) { 6548 pci_no_msi(); 6549 } else if (!strncmp(str, "noats", 5)) { 6550 pr_info("PCIe: ATS is disabled\n"); 6551 pcie_ats_disabled = true; 6552 } else if (!strcmp(str, "noaer")) { 6553 pci_no_aer(); 6554 } else if (!strcmp(str, "earlydump")) { 6555 pci_early_dump = true; 6556 } else if (!strncmp(str, "realloc=", 8)) { 6557 pci_realloc_get_opt(str + 8); 6558 } else if (!strncmp(str, "realloc", 7)) { 6559 pci_realloc_get_opt("on"); 6560 } else if (!strcmp(str, "nodomains")) { 6561 pci_no_domains(); 6562 } else if (!strncmp(str, "noari", 5)) { 6563 pcie_ari_disabled = true; 6564 } else if (!strncmp(str, "cbiosize=", 9)) { 6565 pci_cardbus_io_size = memparse(str + 9, &str); 6566 } else if (!strncmp(str, "cbmemsize=", 10)) { 6567 pci_cardbus_mem_size = memparse(str + 10, &str); 6568 } else if (!strncmp(str, "resource_alignment=", 19)) { 6569 resource_alignment_param = str + 19; 6570 } else if (!strncmp(str, "ecrc=", 5)) { 6571 pcie_ecrc_get_policy(str + 5); 6572 } else if (!strncmp(str, "hpiosize=", 9)) { 6573 pci_hotplug_io_size = memparse(str + 9, &str); 6574 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6575 pci_hotplug_mmio_size = memparse(str + 11, &str); 6576 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6577 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6578 } else if (!strncmp(str, "hpmemsize=", 10)) { 6579 pci_hotplug_mmio_size = memparse(str + 10, &str); 6580 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6581 } else if (!strncmp(str, "hpbussize=", 10)) { 6582 pci_hotplug_bus_size = 6583 simple_strtoul(str + 10, &str, 0); 6584 if (pci_hotplug_bus_size > 0xff) 6585 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6586 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6587 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6588 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6589 pcie_bus_config = PCIE_BUS_SAFE; 6590 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6591 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6592 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6593 pcie_bus_config = PCIE_BUS_PEER2PEER; 6594 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6595 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6596 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6597 disable_acs_redir_param = str + 18; 6598 } else { 6599 pr_err("PCI: Unknown option `%s'\n", str); 6600 } 6601 } 6602 str = k; 6603 } 6604 return 0; 6605} 6606early_param("pci", pci_setup); 6607 6608/* 6609 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6610 * in pci_setup(), above, to point to data in the __initdata section which 6611 * will be freed after the init sequence is complete. We can't allocate memory 6612 * in pci_setup() because some architectures do not have any memory allocation 6613 * service available during an early_param() call. So we allocate memory and 6614 * copy the variable here before the init section is freed. 6615 * 6616 */ 6617static int __init pci_realloc_setup_params(void) 6618{ 6619 resource_alignment_param = kstrdup(resource_alignment_param, 6620 GFP_KERNEL); 6621 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6622 6623 return 0; 6624} 6625pure_initcall(pci_realloc_setup_params); 6626