1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7#include <linux/device.h>
8#include <linux/interrupt.h>
9#include <linux/irq.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/msi.h>
13#include <linux/pci.h>
14#include <linux/srcu.h>
15#include <linux/rculist.h>
16#include <linux/rcupdate.h>
17
18#include <asm/irqdomain.h>
19#include <asm/device.h>
20#include <asm/msi.h>
21#include <asm/msidef.h>
22
23#define VMD_CFGBAR	0
24#define VMD_MEMBAR1	2
25#define VMD_MEMBAR2	4
26
27#define PCI_REG_VMCAP		0x40
28#define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
29#define PCI_REG_VMCONFIG	0x44
30#define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
31#define PCI_REG_VMLOCK		0x70
32#define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
33
34#define MB2_SHADOW_OFFSET	0x2000
35#define MB2_SHADOW_SIZE		16
36
37enum vmd_features {
38	/*
39	 * Device may contain registers which hint the physical location of the
40	 * membars, in order to allow proper address translation during
41	 * resource assignment to enable guest virtualization
42	 */
43	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
44
45	/*
46	 * Device may provide root port configuration information which limits
47	 * bus numbering
48	 */
49	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
50
51	/*
52	 * Device contains physical location shadow registers in
53	 * vendor-specific capability space
54	 */
55	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
56};
57
58/*
59 * Lock for manipulating VMD IRQ lists.
60 */
61static DEFINE_RAW_SPINLOCK(list_lock);
62
63/**
64 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
65 * @node:	list item for parent traversal.
66 * @irq:	back pointer to parent.
67 * @enabled:	true if driver enabled IRQ
68 * @virq:	the virtual IRQ value provided to the requesting driver.
69 *
70 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
71 * a VMD IRQ using this structure.
72 */
73struct vmd_irq {
74	struct list_head	node;
75	struct vmd_irq_list	*irq;
76	bool			enabled;
77	unsigned int		virq;
78};
79
80/**
81 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
82 * @irq_list:	the list of irq's the VMD one demuxes to.
83 * @srcu:	SRCU struct for local synchronization.
84 * @count:	number of child IRQs assigned to this vector; used to track
85 *		sharing.
86 */
87struct vmd_irq_list {
88	struct list_head	irq_list;
89	struct srcu_struct	srcu;
90	unsigned int		count;
91};
92
93struct vmd_dev {
94	struct pci_dev		*dev;
95
96	spinlock_t		cfg_lock;
97	char __iomem		*cfgbar;
98
99	int msix_count;
100	struct vmd_irq_list	*irqs;
101
102	struct pci_sysdata	sysdata;
103	struct resource		resources[3];
104	struct irq_domain	*irq_domain;
105	struct pci_bus		*bus;
106	u8			busn_start;
107};
108
109static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
110{
111	return container_of(bus->sysdata, struct vmd_dev, sysdata);
112}
113
114static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
115					   struct vmd_irq_list *irqs)
116{
117	return irqs - vmd->irqs;
118}
119
120/*
121 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
122 * but the MSI entry for the hardware it's driving will be programmed with a
123 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
124 * domain into one of its own, and the VMD driver de-muxes these for the
125 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
126 * and irq_chip to set this up.
127 */
128static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
129{
130	struct vmd_irq *vmdirq = data->chip_data;
131	struct vmd_irq_list *irq = vmdirq->irq;
132	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
133
134	msg->address_hi = MSI_ADDR_BASE_HI;
135	msg->address_lo = MSI_ADDR_BASE_LO |
136			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
137	msg->data = 0;
138}
139
140/*
141 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
142 */
143static void vmd_irq_enable(struct irq_data *data)
144{
145	struct vmd_irq *vmdirq = data->chip_data;
146	unsigned long flags;
147
148	raw_spin_lock_irqsave(&list_lock, flags);
149	WARN_ON(vmdirq->enabled);
150	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
151	vmdirq->enabled = true;
152	raw_spin_unlock_irqrestore(&list_lock, flags);
153
154	data->chip->irq_unmask(data);
155}
156
157static void vmd_irq_disable(struct irq_data *data)
158{
159	struct vmd_irq *vmdirq = data->chip_data;
160	unsigned long flags;
161
162	data->chip->irq_mask(data);
163
164	raw_spin_lock_irqsave(&list_lock, flags);
165	if (vmdirq->enabled) {
166		list_del_rcu(&vmdirq->node);
167		vmdirq->enabled = false;
168	}
169	raw_spin_unlock_irqrestore(&list_lock, flags);
170}
171
172/*
173 * XXX: Stubbed until we develop acceptable way to not create conflicts with
174 * other devices sharing the same vector.
175 */
176static int vmd_irq_set_affinity(struct irq_data *data,
177				const struct cpumask *dest, bool force)
178{
179	return -EINVAL;
180}
181
182static struct irq_chip vmd_msi_controller = {
183	.name			= "VMD-MSI",
184	.irq_enable		= vmd_irq_enable,
185	.irq_disable		= vmd_irq_disable,
186	.irq_compose_msi_msg	= vmd_compose_msi_msg,
187	.irq_set_affinity	= vmd_irq_set_affinity,
188};
189
190static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
191				     msi_alloc_info_t *arg)
192{
193	return 0;
194}
195
196/*
197 * XXX: We can be even smarter selecting the best IRQ once we solve the
198 * affinity problem.
199 */
200static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
201{
202	int i, best = 1;
203	unsigned long flags;
204
205	if (vmd->msix_count == 1)
206		return &vmd->irqs[0];
207
208	/*
209	 * White list for fast-interrupt handlers. All others will share the
210	 * "slow" interrupt vector.
211	 */
212	switch (msi_desc_to_pci_dev(desc)->class) {
213	case PCI_CLASS_STORAGE_EXPRESS:
214		break;
215	default:
216		return &vmd->irqs[0];
217	}
218
219	raw_spin_lock_irqsave(&list_lock, flags);
220	for (i = 1; i < vmd->msix_count; i++)
221		if (vmd->irqs[i].count < vmd->irqs[best].count)
222			best = i;
223	vmd->irqs[best].count++;
224	raw_spin_unlock_irqrestore(&list_lock, flags);
225
226	return &vmd->irqs[best];
227}
228
229static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
230			unsigned int virq, irq_hw_number_t hwirq,
231			msi_alloc_info_t *arg)
232{
233	struct msi_desc *desc = arg->desc;
234	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
235	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
236	unsigned int index, vector;
237
238	if (!vmdirq)
239		return -ENOMEM;
240
241	INIT_LIST_HEAD(&vmdirq->node);
242	vmdirq->irq = vmd_next_irq(vmd, desc);
243	vmdirq->virq = virq;
244	index = index_from_irqs(vmd, vmdirq->irq);
245	vector = pci_irq_vector(vmd->dev, index);
246
247	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
248			    handle_untracked_irq, vmd, NULL);
249	return 0;
250}
251
252static void vmd_msi_free(struct irq_domain *domain,
253			struct msi_domain_info *info, unsigned int virq)
254{
255	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
256	unsigned long flags;
257
258	synchronize_srcu(&vmdirq->irq->srcu);
259
260	/* XXX: Potential optimization to rebalance */
261	raw_spin_lock_irqsave(&list_lock, flags);
262	vmdirq->irq->count--;
263	raw_spin_unlock_irqrestore(&list_lock, flags);
264
265	kfree(vmdirq);
266}
267
268static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
269			   int nvec, msi_alloc_info_t *arg)
270{
271	struct pci_dev *pdev = to_pci_dev(dev);
272	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
273
274	if (nvec > vmd->msix_count)
275		return vmd->msix_count;
276
277	memset(arg, 0, sizeof(*arg));
278	return 0;
279}
280
281static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
282{
283	arg->desc = desc;
284}
285
286static struct msi_domain_ops vmd_msi_domain_ops = {
287	.get_hwirq	= vmd_get_hwirq,
288	.msi_init	= vmd_msi_init,
289	.msi_free	= vmd_msi_free,
290	.msi_prepare	= vmd_msi_prepare,
291	.set_desc	= vmd_set_desc,
292};
293
294static struct msi_domain_info vmd_msi_domain_info = {
295	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
296			  MSI_FLAG_PCI_MSIX,
297	.ops		= &vmd_msi_domain_ops,
298	.chip		= &vmd_msi_controller,
299};
300
301static int vmd_create_irq_domain(struct vmd_dev *vmd)
302{
303	struct fwnode_handle *fn;
304
305	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
306	if (!fn)
307		return -ENODEV;
308
309	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
310	if (!vmd->irq_domain) {
311		irq_domain_free_fwnode(fn);
312		return -ENODEV;
313	}
314
315	return 0;
316}
317
318static void vmd_remove_irq_domain(struct vmd_dev *vmd)
319{
320	if (vmd->irq_domain) {
321		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
322
323		irq_domain_remove(vmd->irq_domain);
324		irq_domain_free_fwnode(fn);
325	}
326}
327
328static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
329				  unsigned int devfn, int reg, int len)
330{
331	char __iomem *addr = vmd->cfgbar +
332			     ((bus->number - vmd->busn_start) << 20) +
333			     (devfn << 12) + reg;
334
335	if ((addr - vmd->cfgbar) + len >=
336	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
337		return NULL;
338
339	return addr;
340}
341
342/*
343 * CPU may deadlock if config space is not serialized on some versions of this
344 * hardware, so all config space access is done under a spinlock.
345 */
346static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
347			int len, u32 *value)
348{
349	struct vmd_dev *vmd = vmd_from_bus(bus);
350	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
351	unsigned long flags;
352	int ret = 0;
353
354	if (!addr)
355		return -EFAULT;
356
357	spin_lock_irqsave(&vmd->cfg_lock, flags);
358	switch (len) {
359	case 1:
360		*value = readb(addr);
361		break;
362	case 2:
363		*value = readw(addr);
364		break;
365	case 4:
366		*value = readl(addr);
367		break;
368	default:
369		ret = -EINVAL;
370		break;
371	}
372	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
373	return ret;
374}
375
376/*
377 * VMD h/w converts non-posted config writes to posted memory writes. The
378 * read-back in this function forces the completion so it returns only after
379 * the config space was written, as expected.
380 */
381static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
382			 int len, u32 value)
383{
384	struct vmd_dev *vmd = vmd_from_bus(bus);
385	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
386	unsigned long flags;
387	int ret = 0;
388
389	if (!addr)
390		return -EFAULT;
391
392	spin_lock_irqsave(&vmd->cfg_lock, flags);
393	switch (len) {
394	case 1:
395		writeb(value, addr);
396		readb(addr);
397		break;
398	case 2:
399		writew(value, addr);
400		readw(addr);
401		break;
402	case 4:
403		writel(value, addr);
404		readl(addr);
405		break;
406	default:
407		ret = -EINVAL;
408		break;
409	}
410	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
411	return ret;
412}
413
414static struct pci_ops vmd_ops = {
415	.read		= vmd_pci_read,
416	.write		= vmd_pci_write,
417};
418
419static void vmd_attach_resources(struct vmd_dev *vmd)
420{
421	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
422	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
423}
424
425static void vmd_detach_resources(struct vmd_dev *vmd)
426{
427	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
428	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
429}
430
431/*
432 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
433 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
434 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
435 * currently reserved.
436 */
437static int vmd_find_free_domain(void)
438{
439	int domain = 0xffff;
440	struct pci_bus *bus = NULL;
441
442	while ((bus = pci_find_next_bus(bus)) != NULL)
443		domain = max_t(int, domain, pci_domain_nr(bus));
444	return domain + 1;
445}
446
447static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
448				resource_size_t *offset1,
449				resource_size_t *offset2)
450{
451	struct pci_dev *dev = vmd->dev;
452	u64 phys1, phys2;
453
454	if (native_hint) {
455		u32 vmlock;
456		int ret;
457
458		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
459		if (ret || vmlock == ~0)
460			return -ENODEV;
461
462		if (MB2_SHADOW_EN(vmlock)) {
463			void __iomem *membar2;
464
465			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
466			if (!membar2)
467				return -ENOMEM;
468			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
469			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
470			pci_iounmap(dev, membar2);
471		} else
472			return 0;
473	} else {
474		/* Hypervisor-Emulated Vendor-Specific Capability */
475		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
476		u32 reg, regu;
477
478		pci_read_config_dword(dev, pos + 4, &reg);
479
480		/* "SHDW" */
481		if (pos && reg == 0x53484457) {
482			pci_read_config_dword(dev, pos + 8, &reg);
483			pci_read_config_dword(dev, pos + 12, &regu);
484			phys1 = (u64) regu << 32 | reg;
485
486			pci_read_config_dword(dev, pos + 16, &reg);
487			pci_read_config_dword(dev, pos + 20, &regu);
488			phys2 = (u64) regu << 32 | reg;
489		} else
490			return 0;
491	}
492
493	*offset1 = dev->resource[VMD_MEMBAR1].start -
494			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
495	*offset2 = dev->resource[VMD_MEMBAR2].start -
496			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
497
498	return 0;
499}
500
501static int vmd_get_bus_number_start(struct vmd_dev *vmd)
502{
503	struct pci_dev *dev = vmd->dev;
504	u16 reg;
505
506	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
507	if (BUS_RESTRICT_CAP(reg)) {
508		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
509
510		switch (BUS_RESTRICT_CFG(reg)) {
511		case 0:
512			vmd->busn_start = 0;
513			break;
514		case 1:
515			vmd->busn_start = 128;
516			break;
517		case 2:
518			vmd->busn_start = 224;
519			break;
520		default:
521			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
522				BUS_RESTRICT_CFG(reg));
523			return -ENODEV;
524		}
525	}
526
527	return 0;
528}
529
530static irqreturn_t vmd_irq(int irq, void *data)
531{
532	struct vmd_irq_list *irqs = data;
533	struct vmd_irq *vmdirq;
534	int idx;
535
536	idx = srcu_read_lock(&irqs->srcu);
537	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
538		generic_handle_irq(vmdirq->virq);
539	srcu_read_unlock(&irqs->srcu, idx);
540
541	return IRQ_HANDLED;
542}
543
544static int vmd_alloc_irqs(struct vmd_dev *vmd)
545{
546	struct pci_dev *dev = vmd->dev;
547	int i, err;
548
549	vmd->msix_count = pci_msix_vec_count(dev);
550	if (vmd->msix_count < 0)
551		return -ENODEV;
552
553	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
554						PCI_IRQ_MSIX);
555	if (vmd->msix_count < 0)
556		return vmd->msix_count;
557
558	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
559				 GFP_KERNEL);
560	if (!vmd->irqs)
561		return -ENOMEM;
562
563	for (i = 0; i < vmd->msix_count; i++) {
564		err = init_srcu_struct(&vmd->irqs[i].srcu);
565		if (err)
566			return err;
567
568		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
569		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
570				       vmd_irq, IRQF_NO_THREAD,
571				       "vmd", &vmd->irqs[i]);
572		if (err)
573			return err;
574	}
575
576	return 0;
577}
578
579static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
580{
581	struct pci_sysdata *sd = &vmd->sysdata;
582	struct resource *res;
583	u32 upper_bits;
584	unsigned long flags;
585	LIST_HEAD(resources);
586	resource_size_t offset[2] = {0};
587	resource_size_t membar2_offset = 0x2000;
588	struct pci_bus *child;
589	int ret;
590
591	/*
592	 * Shadow registers may exist in certain VMD device ids which allow
593	 * guests to correctly assign host physical addresses to the root ports
594	 * and child devices. These registers will either return the host value
595	 * or 0, depending on an enable bit in the VMD device.
596	 */
597	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
598		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
599		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
600		if (ret)
601			return ret;
602	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
603		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
604		if (ret)
605			return ret;
606	}
607
608	/*
609	 * Certain VMD devices may have a root port configuration option which
610	 * limits the bus range to between 0-127, 128-255, or 224-255
611	 */
612	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
613		ret = vmd_get_bus_number_start(vmd);
614		if (ret)
615			return ret;
616	}
617
618	res = &vmd->dev->resource[VMD_CFGBAR];
619	vmd->resources[0] = (struct resource) {
620		.name  = "VMD CFGBAR",
621		.start = vmd->busn_start,
622		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
623		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
624	};
625
626	/*
627	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
628	 * put 32-bit resources in the window.
629	 *
630	 * There's no hardware reason why a 64-bit window *couldn't*
631	 * contain a 32-bit resource, but pbus_size_mem() computes the
632	 * bridge window size assuming a 64-bit window will contain no
633	 * 32-bit resources.  __pci_assign_resource() enforces that
634	 * artificial restriction to make sure everything will fit.
635	 *
636	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
637	 * if its address is <4GB so that we can convert it to a 32-bit
638	 * resource.  To be visible to the host OS, all VMD endpoints must
639	 * be initially configured by platform BIOS, which includes setting
640	 * up these resources.  We can assume the device is configured
641	 * according to the platform needs.
642	 */
643	res = &vmd->dev->resource[VMD_MEMBAR1];
644	upper_bits = upper_32_bits(res->end);
645	flags = res->flags & ~IORESOURCE_SIZEALIGN;
646	if (!upper_bits)
647		flags &= ~IORESOURCE_MEM_64;
648	vmd->resources[1] = (struct resource) {
649		.name  = "VMD MEMBAR1",
650		.start = res->start,
651		.end   = res->end,
652		.flags = flags,
653		.parent = res,
654	};
655
656	res = &vmd->dev->resource[VMD_MEMBAR2];
657	upper_bits = upper_32_bits(res->end);
658	flags = res->flags & ~IORESOURCE_SIZEALIGN;
659	if (!upper_bits)
660		flags &= ~IORESOURCE_MEM_64;
661	vmd->resources[2] = (struct resource) {
662		.name  = "VMD MEMBAR2",
663		.start = res->start + membar2_offset,
664		.end   = res->end,
665		.flags = flags,
666		.parent = res,
667	};
668
669	sd->vmd_dev = vmd->dev;
670	sd->domain = vmd_find_free_domain();
671	if (sd->domain < 0)
672		return sd->domain;
673
674	sd->node = pcibus_to_node(vmd->dev->bus);
675
676	ret = vmd_create_irq_domain(vmd);
677	if (ret)
678		return ret;
679
680	/*
681	 * Override the irq domain bus token so the domain can be distinguished
682	 * from a regular PCI/MSI domain.
683	 */
684	irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
685
686	pci_add_resource(&resources, &vmd->resources[0]);
687	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
688	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
689
690	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
691				       &vmd_ops, sd, &resources);
692	if (!vmd->bus) {
693		pci_free_resource_list(&resources);
694		vmd_remove_irq_domain(vmd);
695		return -ENODEV;
696	}
697
698	vmd_attach_resources(vmd);
699	if (vmd->irq_domain)
700		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
701
702	pci_scan_child_bus(vmd->bus);
703	pci_assign_unassigned_bus_resources(vmd->bus);
704
705	/*
706	 * VMD root buses are virtual and don't return true on pci_is_pcie()
707	 * and will fail pcie_bus_configure_settings() early. It can instead be
708	 * run on each of the real root ports.
709	 */
710	list_for_each_entry(child, &vmd->bus->children, node)
711		pcie_bus_configure_settings(child);
712
713	pci_bus_add_devices(vmd->bus);
714
715	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
716			       "domain"), "Can't create symlink to domain\n");
717	return 0;
718}
719
720static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
721{
722	struct vmd_dev *vmd;
723	int err;
724
725	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
726		return -ENOMEM;
727
728	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
729	if (!vmd)
730		return -ENOMEM;
731
732	vmd->dev = dev;
733	err = pcim_enable_device(dev);
734	if (err < 0)
735		return err;
736
737	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
738	if (!vmd->cfgbar)
739		return -ENOMEM;
740
741	pci_set_master(dev);
742	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
743	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
744		return -ENODEV;
745
746	err = vmd_alloc_irqs(vmd);
747	if (err)
748		return err;
749
750	spin_lock_init(&vmd->cfg_lock);
751	pci_set_drvdata(dev, vmd);
752	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
753	if (err)
754		return err;
755
756	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
757		 vmd->sysdata.domain);
758	return 0;
759}
760
761static void vmd_cleanup_srcu(struct vmd_dev *vmd)
762{
763	int i;
764
765	for (i = 0; i < vmd->msix_count; i++)
766		cleanup_srcu_struct(&vmd->irqs[i].srcu);
767}
768
769static void vmd_remove(struct pci_dev *dev)
770{
771	struct vmd_dev *vmd = pci_get_drvdata(dev);
772
773	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
774	pci_stop_root_bus(vmd->bus);
775	pci_remove_root_bus(vmd->bus);
776	vmd_cleanup_srcu(vmd);
777	vmd_detach_resources(vmd);
778	vmd_remove_irq_domain(vmd);
779}
780
781#ifdef CONFIG_PM_SLEEP
782static int vmd_suspend(struct device *dev)
783{
784	struct pci_dev *pdev = to_pci_dev(dev);
785	struct vmd_dev *vmd = pci_get_drvdata(pdev);
786	int i;
787
788	for (i = 0; i < vmd->msix_count; i++)
789		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
790
791	return 0;
792}
793
794static int vmd_resume(struct device *dev)
795{
796	struct pci_dev *pdev = to_pci_dev(dev);
797	struct vmd_dev *vmd = pci_get_drvdata(pdev);
798	int err, i;
799
800	for (i = 0; i < vmd->msix_count; i++) {
801		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
802				       vmd_irq, IRQF_NO_THREAD,
803				       "vmd", &vmd->irqs[i]);
804		if (err)
805			return err;
806	}
807
808	return 0;
809}
810#endif
811static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
812
813static const struct pci_device_id vmd_ids[] = {
814	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
815		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
816	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
817		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
818				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
819	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
820		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
821				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
822	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
823		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
824				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
825	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
826		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
827				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
828	{0,}
829};
830MODULE_DEVICE_TABLE(pci, vmd_ids);
831
832static struct pci_driver vmd_drv = {
833	.name		= "vmd",
834	.id_table	= vmd_ids,
835	.probe		= vmd_probe,
836	.remove		= vmd_remove,
837	.driver		= {
838		.pm	= &vmd_dev_pm_ops,
839	},
840};
841module_pci_driver(vmd_drv);
842
843MODULE_AUTHOR("Intel Corporation");
844MODULE_LICENSE("GPL v2");
845MODULE_VERSION("0.6");
846