1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *    Interfaces to retrieve and set PDC Stable options (firmware)
4 *
5 *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6 *
7 *    DEV NOTE: the PDC Procedures reference states that:
8 *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
9 *    96 bytes of Stable Storage is optional [...]. Failure to provide the
10 *    optional locations from 96 to 192 results in the loss of certain
11 *    functionality during boot."
12 *
13 *    Since locations between 96 and 192 are the various paths, most (if not
14 *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
15 *    following code can deal with just 96 bytes of Stable Storage, and all
16 *    sizes between 96 and 192 bytes (provided they are multiple of struct
17 *    device_path size, eg: 128, 160 and 192) to provide full information.
18 *    One last word: there's one path we can always count on: the primary path.
19 *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
20 *
21 *    The first OS-dependent area should always be available. Obviously, this is
22 *    not true for the other one. Also bear in mind that reading/writing from/to
23 *    osdep2 is much more expensive than from/to osdep1.
24 *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
25 *    2 bytes of storage available right after OSID. That's a total of 4 bytes
26 *    sacrificed: -ETOOLAZY :P
27 *
28 *    The current policy wrt file permissions is:
29 *	- write: root only
30 *	- read: (reading triggers PDC calls) ? root only : everyone
31 *    The rationale is that PDC calls could hog (DoS) the machine.
32 *
33 *	TODO:
34 *	- timer/fastsize write calls
35 */
36
37#undef PDCS_DEBUG
38#ifdef PDCS_DEBUG
39#define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
40#else
41#define DPRINTK(fmt, args...)
42#endif
43
44#include <linux/module.h>
45#include <linux/init.h>
46#include <linux/kernel.h>
47#include <linux/string.h>
48#include <linux/capability.h>
49#include <linux/ctype.h>
50#include <linux/sysfs.h>
51#include <linux/kobject.h>
52#include <linux/device.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55
56#include <asm/pdc.h>
57#include <asm/page.h>
58#include <linux/uaccess.h>
59#include <asm/hardware.h>
60
61#define PDCS_VERSION	"0.30"
62#define PDCS_PREFIX	"PDC Stable Storage"
63
64#define PDCS_ADDR_PPRI	0x00
65#define PDCS_ADDR_OSID	0x40
66#define PDCS_ADDR_OSD1	0x48
67#define PDCS_ADDR_DIAG	0x58
68#define PDCS_ADDR_FSIZ	0x5C
69#define PDCS_ADDR_PCON	0x60
70#define PDCS_ADDR_PALT	0x80
71#define PDCS_ADDR_PKBD	0xA0
72#define PDCS_ADDR_OSD2	0xE0
73
74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
76MODULE_LICENSE("GPL");
77MODULE_VERSION(PDCS_VERSION);
78
79/* holds Stable Storage size. Initialized once and for all, no lock needed */
80static unsigned long pdcs_size __read_mostly;
81
82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
83static u16 pdcs_osid __read_mostly;
84
85/* This struct defines what we need to deal with a parisc pdc path entry */
86struct pdcspath_entry {
87	rwlock_t rw_lock;		/* to protect path entry access */
88	short ready;			/* entry record is valid if != 0 */
89	unsigned long addr;		/* entry address in stable storage */
90	char *name;			/* entry name */
91	struct device_path devpath;	/* device path in parisc representation */
92	struct device *dev;		/* corresponding device */
93	struct kobject kobj;
94};
95
96struct pdcspath_attribute {
97	struct attribute attr;
98	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
99	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
100};
101
102#define PDCSPATH_ENTRY(_addr, _name) \
103struct pdcspath_entry pdcspath_entry_##_name = { \
104	.ready = 0, \
105	.addr = _addr, \
106	.name = __stringify(_name), \
107};
108
109#define PDCS_ATTR(_name, _mode, _show, _store) \
110struct kobj_attribute pdcs_attr_##_name = { \
111	.attr = {.name = __stringify(_name), .mode = _mode}, \
112	.show = _show, \
113	.store = _store, \
114};
115
116#define PATHS_ATTR(_name, _mode, _show, _store) \
117struct pdcspath_attribute paths_attr_##_name = { \
118	.attr = {.name = __stringify(_name), .mode = _mode}, \
119	.show = _show, \
120	.store = _store, \
121};
122
123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
124#define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
125
126/**
127 * pdcspath_fetch - This function populates the path entry structs.
128 * @entry: A pointer to an allocated pdcspath_entry.
129 *
130 * The general idea is that you don't read from the Stable Storage every time
131 * you access the files provided by the facilities. We store a copy of the
132 * content of the stable storage WRT various paths in these structs. We read
133 * these structs when reading the files, and we will write to these structs when
134 * writing to the files, and only then write them back to the Stable Storage.
135 *
136 * This function expects to be called with @entry->rw_lock write-hold.
137 */
138static int
139pdcspath_fetch(struct pdcspath_entry *entry)
140{
141	struct device_path *devpath;
142
143	if (!entry)
144		return -EINVAL;
145
146	devpath = &entry->devpath;
147
148	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
149			entry, devpath, entry->addr);
150
151	/* addr, devpath and count must be word aligned */
152	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
153		return -EIO;
154
155	/* Find the matching device.
156	   NOTE: hardware_path overlays with device_path, so the nice cast can
157	   be used */
158	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
159
160	entry->ready = 1;
161
162	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
163
164	return 0;
165}
166
167/**
168 * pdcspath_store - This function writes a path to stable storage.
169 * @entry: A pointer to an allocated pdcspath_entry.
170 *
171 * It can be used in two ways: either by passing it a preset devpath struct
172 * containing an already computed hardware path, or by passing it a device
173 * pointer, from which it'll find out the corresponding hardware path.
174 * For now we do not handle the case where there's an error in writing to the
175 * Stable Storage area, so you'd better not mess up the data :P
176 *
177 * This function expects to be called with @entry->rw_lock write-hold.
178 */
179static void
180pdcspath_store(struct pdcspath_entry *entry)
181{
182	struct device_path *devpath;
183
184	BUG_ON(!entry);
185
186	devpath = &entry->devpath;
187
188	/* We expect the caller to set the ready flag to 0 if the hardware
189	   path struct provided is invalid, so that we know we have to fill it.
190	   First case, we don't have a preset hwpath... */
191	if (!entry->ready) {
192		/* ...but we have a device, map it */
193		BUG_ON(!entry->dev);
194		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
195	}
196	/* else, we expect the provided hwpath to be valid. */
197
198	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
199			entry, devpath, entry->addr);
200
201	/* addr, devpath and count must be word aligned */
202	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
203		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
204				"It is likely that the Stable Storage data has been corrupted.\n"
205				"Please check it carefully upon next reboot.\n", __func__);
206
207	/* kobject is already registered */
208	entry->ready = 2;
209
210	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
211}
212
213/**
214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
215 * @entry: An allocated and populated pdscpath_entry struct.
216 * @buf: The output buffer to write to.
217 *
218 * We will call this function to format the output of the hwpath attribute file.
219 */
220static ssize_t
221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
222{
223	char *out = buf;
224	struct device_path *devpath;
225	short i;
226
227	if (!entry || !buf)
228		return -EINVAL;
229
230	read_lock(&entry->rw_lock);
231	devpath = &entry->devpath;
232	i = entry->ready;
233	read_unlock(&entry->rw_lock);
234
235	if (!i)	/* entry is not ready */
236		return -ENODATA;
237
238	for (i = 0; i < 6; i++) {
239		if (devpath->bc[i] >= 128)
240			continue;
241		out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
242	}
243	out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
244
245	return out - buf;
246}
247
248/**
249 * pdcspath_hwpath_write - This function handles hardware path modifying.
250 * @entry: An allocated and populated pdscpath_entry struct.
251 * @buf: The input buffer to read from.
252 * @count: The number of bytes to be read.
253 *
254 * We will call this function to change the current hardware path.
255 * Hardware paths are to be given '/'-delimited, without brackets.
256 * We make sure that the provided path actually maps to an existing
257 * device, BUT nothing would prevent some foolish user to set the path to some
258 * PCI bridge or even a CPU...
259 * A better work around would be to make sure we are at the end of a device tree
260 * for instance, but it would be IMHO beyond the simple scope of that driver.
261 * The aim is to provide a facility. Data correctness is left to userland.
262 */
263static ssize_t
264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
265{
266	struct hardware_path hwpath;
267	unsigned short i;
268	char in[64], *temp;
269	struct device *dev;
270	int ret;
271
272	if (!entry || !buf || !count)
273		return -EINVAL;
274
275	/* We'll use a local copy of buf */
276	count = min_t(size_t, count, sizeof(in)-1);
277	strncpy(in, buf, count);
278	in[count] = '\0';
279
280	/* Let's clean up the target. 0xff is a blank pattern */
281	memset(&hwpath, 0xff, sizeof(hwpath));
282
283	/* First, pick the mod field (the last one of the input string) */
284	if (!(temp = strrchr(in, '/')))
285		return -EINVAL;
286
287	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
288	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
289	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
290
291	/* Then, loop for each delimiter, making sure we don't have too many.
292	   we write the bc fields in a down-top way. No matter what, we stop
293	   before writing the last field. If there are too many fields anyway,
294	   then the user is a moron and it'll be caught up later when we'll
295	   check the consistency of the given hwpath. */
296	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
297		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
298		in[temp-in] = '\0';
299		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
300	}
301
302	/* Store the final field */
303	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
304	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
305
306	/* Now we check that the user isn't trying to lure us */
307	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
308		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
309			"hardware path: %s\n", __func__, entry->name, buf);
310		return -EINVAL;
311	}
312
313	/* So far so good, let's get in deep */
314	write_lock(&entry->rw_lock);
315	entry->ready = 0;
316	entry->dev = dev;
317
318	/* Now, dive in. Write back to the hardware */
319	pdcspath_store(entry);
320
321	/* Update the symlink to the real device */
322	sysfs_remove_link(&entry->kobj, "device");
323	write_unlock(&entry->rw_lock);
324
325	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
326	WARN_ON(ret);
327
328	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
329		entry->name, buf);
330
331	return count;
332}
333
334/**
335 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
336 * @entry: An allocated and populated pdscpath_entry struct.
337 * @buf: The output buffer to write to.
338 *
339 * We will call this function to format the output of the layer attribute file.
340 */
341static ssize_t
342pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
343{
344	char *out = buf;
345	struct device_path *devpath;
346	short i;
347
348	if (!entry || !buf)
349		return -EINVAL;
350
351	read_lock(&entry->rw_lock);
352	devpath = &entry->devpath;
353	i = entry->ready;
354	read_unlock(&entry->rw_lock);
355
356	if (!i)	/* entry is not ready */
357		return -ENODATA;
358
359	for (i = 0; i < 6 && devpath->layers[i]; i++)
360		out += sprintf(out, "%u ", devpath->layers[i]);
361
362	out += sprintf(out, "\n");
363
364	return out - buf;
365}
366
367/**
368 * pdcspath_layer_write - This function handles extended layer modifying.
369 * @entry: An allocated and populated pdscpath_entry struct.
370 * @buf: The input buffer to read from.
371 * @count: The number of bytes to be read.
372 *
373 * We will call this function to change the current layer value.
374 * Layers are to be given '.'-delimited, without brackets.
375 * XXX beware we are far less checky WRT input data provided than for hwpath.
376 * Potential harm can be done, since there's no way to check the validity of
377 * the layer fields.
378 */
379static ssize_t
380pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
381{
382	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
383	unsigned short i;
384	char in[64], *temp;
385
386	if (!entry || !buf || !count)
387		return -EINVAL;
388
389	/* We'll use a local copy of buf */
390	count = min_t(size_t, count, sizeof(in)-1);
391	strncpy(in, buf, count);
392	in[count] = '\0';
393
394	/* Let's clean up the target. 0 is a blank pattern */
395	memset(&layers, 0, sizeof(layers));
396
397	/* First, pick the first layer */
398	if (unlikely(!isdigit(*in)))
399		return -EINVAL;
400	layers[0] = simple_strtoul(in, NULL, 10);
401	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
402
403	temp = in;
404	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
405		if (unlikely(!isdigit(*(++temp))))
406			return -EINVAL;
407		layers[i] = simple_strtoul(temp, NULL, 10);
408		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
409	}
410
411	/* So far so good, let's get in deep */
412	write_lock(&entry->rw_lock);
413
414	/* First, overwrite the current layers with the new ones, not touching
415	   the hardware path. */
416	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
417
418	/* Now, dive in. Write back to the hardware */
419	pdcspath_store(entry);
420	write_unlock(&entry->rw_lock);
421
422	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
423		entry->name, buf);
424
425	return count;
426}
427
428/**
429 * pdcspath_attr_show - Generic read function call wrapper.
430 * @kobj: The kobject to get info from.
431 * @attr: The attribute looked upon.
432 * @buf: The output buffer.
433 */
434static ssize_t
435pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
436{
437	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
438	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
439	ssize_t ret = 0;
440
441	if (pdcs_attr->show)
442		ret = pdcs_attr->show(entry, buf);
443
444	return ret;
445}
446
447/**
448 * pdcspath_attr_store - Generic write function call wrapper.
449 * @kobj: The kobject to write info to.
450 * @attr: The attribute to be modified.
451 * @buf: The input buffer.
452 * @count: The size of the buffer.
453 */
454static ssize_t
455pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
456			const char *buf, size_t count)
457{
458	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
459	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
460	ssize_t ret = 0;
461
462	if (!capable(CAP_SYS_ADMIN))
463		return -EACCES;
464
465	if (pdcs_attr->store)
466		ret = pdcs_attr->store(entry, buf, count);
467
468	return ret;
469}
470
471static const struct sysfs_ops pdcspath_attr_ops = {
472	.show = pdcspath_attr_show,
473	.store = pdcspath_attr_store,
474};
475
476/* These are the two attributes of any PDC path. */
477static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
478static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
479
480static struct attribute *paths_subsys_attrs[] = {
481	&paths_attr_hwpath.attr,
482	&paths_attr_layer.attr,
483	NULL,
484};
485
486/* Specific kobject type for our PDC paths */
487static struct kobj_type ktype_pdcspath = {
488	.sysfs_ops = &pdcspath_attr_ops,
489	.default_attrs = paths_subsys_attrs,
490};
491
492/* We hard define the 4 types of path we expect to find */
493static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
494static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
495static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
496static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
497
498/* An array containing all PDC paths we will deal with */
499static struct pdcspath_entry *pdcspath_entries[] = {
500	&pdcspath_entry_primary,
501	&pdcspath_entry_alternative,
502	&pdcspath_entry_console,
503	&pdcspath_entry_keyboard,
504	NULL,
505};
506
507
508/* For more insight of what's going on here, refer to PDC Procedures doc,
509 * Section PDC_STABLE */
510
511/**
512 * pdcs_size_read - Stable Storage size output.
513 * @buf: The output buffer to write to.
514 */
515static ssize_t pdcs_size_read(struct kobject *kobj,
516			      struct kobj_attribute *attr,
517			      char *buf)
518{
519	char *out = buf;
520
521	if (!buf)
522		return -EINVAL;
523
524	/* show the size of the stable storage */
525	out += sprintf(out, "%ld\n", pdcs_size);
526
527	return out - buf;
528}
529
530/**
531 * pdcs_auto_read - Stable Storage autoboot/search flag output.
532 * @buf: The output buffer to write to.
533 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
534 */
535static ssize_t pdcs_auto_read(struct kobject *kobj,
536			      struct kobj_attribute *attr,
537			      char *buf, int knob)
538{
539	char *out = buf;
540	struct pdcspath_entry *pathentry;
541
542	if (!buf)
543		return -EINVAL;
544
545	/* Current flags are stored in primary boot path entry */
546	pathentry = &pdcspath_entry_primary;
547
548	read_lock(&pathentry->rw_lock);
549	out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
550					"On" : "Off");
551	read_unlock(&pathentry->rw_lock);
552
553	return out - buf;
554}
555
556/**
557 * pdcs_autoboot_read - Stable Storage autoboot flag output.
558 * @buf: The output buffer to write to.
559 */
560static ssize_t pdcs_autoboot_read(struct kobject *kobj,
561				  struct kobj_attribute *attr, char *buf)
562{
563	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
564}
565
566/**
567 * pdcs_autosearch_read - Stable Storage autoboot flag output.
568 * @buf: The output buffer to write to.
569 */
570static ssize_t pdcs_autosearch_read(struct kobject *kobj,
571				    struct kobj_attribute *attr, char *buf)
572{
573	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
574}
575
576/**
577 * pdcs_timer_read - Stable Storage timer count output (in seconds).
578 * @buf: The output buffer to write to.
579 *
580 * The value of the timer field correponds to a number of seconds in powers of 2.
581 */
582static ssize_t pdcs_timer_read(struct kobject *kobj,
583			       struct kobj_attribute *attr, char *buf)
584{
585	char *out = buf;
586	struct pdcspath_entry *pathentry;
587
588	if (!buf)
589		return -EINVAL;
590
591	/* Current flags are stored in primary boot path entry */
592	pathentry = &pdcspath_entry_primary;
593
594	/* print the timer value in seconds */
595	read_lock(&pathentry->rw_lock);
596	out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
597				(1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
598	read_unlock(&pathentry->rw_lock);
599
600	return out - buf;
601}
602
603/**
604 * pdcs_osid_read - Stable Storage OS ID register output.
605 * @buf: The output buffer to write to.
606 */
607static ssize_t pdcs_osid_read(struct kobject *kobj,
608			      struct kobj_attribute *attr, char *buf)
609{
610	char *out = buf;
611
612	if (!buf)
613		return -EINVAL;
614
615	out += sprintf(out, "%s dependent data (0x%.4x)\n",
616		os_id_to_string(pdcs_osid), pdcs_osid);
617
618	return out - buf;
619}
620
621/**
622 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
623 * @buf: The output buffer to write to.
624 *
625 * This can hold 16 bytes of OS-Dependent data.
626 */
627static ssize_t pdcs_osdep1_read(struct kobject *kobj,
628				struct kobj_attribute *attr, char *buf)
629{
630	char *out = buf;
631	u32 result[4];
632
633	if (!buf)
634		return -EINVAL;
635
636	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
637		return -EIO;
638
639	out += sprintf(out, "0x%.8x\n", result[0]);
640	out += sprintf(out, "0x%.8x\n", result[1]);
641	out += sprintf(out, "0x%.8x\n", result[2]);
642	out += sprintf(out, "0x%.8x\n", result[3]);
643
644	return out - buf;
645}
646
647/**
648 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
649 * @buf: The output buffer to write to.
650 *
651 * I have NFC how to interpret the content of that register ;-).
652 */
653static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
654				    struct kobj_attribute *attr, char *buf)
655{
656	char *out = buf;
657	u32 result;
658
659	if (!buf)
660		return -EINVAL;
661
662	/* get diagnostic */
663	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
664		return -EIO;
665
666	out += sprintf(out, "0x%.4x\n", (result >> 16));
667
668	return out - buf;
669}
670
671/**
672 * pdcs_fastsize_read - Stable Storage FastSize register output.
673 * @buf: The output buffer to write to.
674 *
675 * This register holds the amount of system RAM to be tested during boot sequence.
676 */
677static ssize_t pdcs_fastsize_read(struct kobject *kobj,
678				  struct kobj_attribute *attr, char *buf)
679{
680	char *out = buf;
681	u32 result;
682
683	if (!buf)
684		return -EINVAL;
685
686	/* get fast-size */
687	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
688		return -EIO;
689
690	if ((result & 0x0F) < 0x0E)
691		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
692	else
693		out += sprintf(out, "All");
694	out += sprintf(out, "\n");
695
696	return out - buf;
697}
698
699/**
700 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
701 * @buf: The output buffer to write to.
702 *
703 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
704 */
705static ssize_t pdcs_osdep2_read(struct kobject *kobj,
706				struct kobj_attribute *attr, char *buf)
707{
708	char *out = buf;
709	unsigned long size;
710	unsigned short i;
711	u32 result;
712
713	if (unlikely(pdcs_size <= 224))
714		return -ENODATA;
715
716	size = pdcs_size - 224;
717
718	if (!buf)
719		return -EINVAL;
720
721	for (i=0; i<size; i+=4) {
722		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
723					sizeof(result)) != PDC_OK))
724			return -EIO;
725		out += sprintf(out, "0x%.8x\n", result);
726	}
727
728	return out - buf;
729}
730
731/**
732 * pdcs_auto_write - This function handles autoboot/search flag modifying.
733 * @buf: The input buffer to read from.
734 * @count: The number of bytes to be read.
735 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
736 *
737 * We will call this function to change the current autoboot flag.
738 * We expect a precise syntax:
739 *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
740 */
741static ssize_t pdcs_auto_write(struct kobject *kobj,
742			       struct kobj_attribute *attr, const char *buf,
743			       size_t count, int knob)
744{
745	struct pdcspath_entry *pathentry;
746	unsigned char flags;
747	char in[8], *temp;
748	char c;
749
750	if (!capable(CAP_SYS_ADMIN))
751		return -EACCES;
752
753	if (!buf || !count)
754		return -EINVAL;
755
756	/* We'll use a local copy of buf */
757	count = min_t(size_t, count, sizeof(in)-1);
758	strncpy(in, buf, count);
759	in[count] = '\0';
760
761	/* Current flags are stored in primary boot path entry */
762	pathentry = &pdcspath_entry_primary;
763
764	/* Be nice to the existing flag record */
765	read_lock(&pathentry->rw_lock);
766	flags = pathentry->devpath.flags;
767	read_unlock(&pathentry->rw_lock);
768
769	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
770
771	temp = skip_spaces(in);
772
773	c = *temp++ - '0';
774	if ((c != 0) && (c != 1))
775		goto parse_error;
776	if (c == 0)
777		flags &= ~knob;
778	else
779		flags |= knob;
780
781	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
782
783	/* So far so good, let's get in deep */
784	write_lock(&pathentry->rw_lock);
785
786	/* Change the path entry flags first */
787	pathentry->devpath.flags = flags;
788
789	/* Now, dive in. Write back to the hardware */
790	pdcspath_store(pathentry);
791	write_unlock(&pathentry->rw_lock);
792
793	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
794		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
795		(flags & knob) ? "On" : "Off");
796
797	return count;
798
799parse_error:
800	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
801	return -EINVAL;
802}
803
804/**
805 * pdcs_autoboot_write - This function handles autoboot flag modifying.
806 * @buf: The input buffer to read from.
807 * @count: The number of bytes to be read.
808 *
809 * We will call this function to change the current boot flags.
810 * We expect a precise syntax:
811 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
812 */
813static ssize_t pdcs_autoboot_write(struct kobject *kobj,
814				   struct kobj_attribute *attr,
815				   const char *buf, size_t count)
816{
817	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
818}
819
820/**
821 * pdcs_autosearch_write - This function handles autosearch flag modifying.
822 * @buf: The input buffer to read from.
823 * @count: The number of bytes to be read.
824 *
825 * We will call this function to change the current boot flags.
826 * We expect a precise syntax:
827 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
828 */
829static ssize_t pdcs_autosearch_write(struct kobject *kobj,
830				     struct kobj_attribute *attr,
831				     const char *buf, size_t count)
832{
833	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
834}
835
836/**
837 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
838 * @buf: The input buffer to read from.
839 * @count: The number of bytes to be read.
840 *
841 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
842 * write approach. It's up to userspace to deal with it when constructing
843 * its input buffer.
844 */
845static ssize_t pdcs_osdep1_write(struct kobject *kobj,
846				 struct kobj_attribute *attr,
847				 const char *buf, size_t count)
848{
849	u8 in[16];
850
851	if (!capable(CAP_SYS_ADMIN))
852		return -EACCES;
853
854	if (!buf || !count)
855		return -EINVAL;
856
857	if (unlikely(pdcs_osid != OS_ID_LINUX))
858		return -EPERM;
859
860	if (count > 16)
861		return -EMSGSIZE;
862
863	/* We'll use a local copy of buf */
864	memset(in, 0, 16);
865	memcpy(in, buf, count);
866
867	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
868		return -EIO;
869
870	return count;
871}
872
873/**
874 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
875 * @buf: The input buffer to read from.
876 * @count: The number of bytes to be read.
877 *
878 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
879 * byte-by-byte write approach. It's up to userspace to deal with it when
880 * constructing its input buffer.
881 */
882static ssize_t pdcs_osdep2_write(struct kobject *kobj,
883				 struct kobj_attribute *attr,
884				 const char *buf, size_t count)
885{
886	unsigned long size;
887	unsigned short i;
888	u8 in[4];
889
890	if (!capable(CAP_SYS_ADMIN))
891		return -EACCES;
892
893	if (!buf || !count)
894		return -EINVAL;
895
896	if (unlikely(pdcs_size <= 224))
897		return -ENOSYS;
898
899	if (unlikely(pdcs_osid != OS_ID_LINUX))
900		return -EPERM;
901
902	size = pdcs_size - 224;
903
904	if (count > size)
905		return -EMSGSIZE;
906
907	/* We'll use a local copy of buf */
908
909	for (i=0; i<count; i+=4) {
910		memset(in, 0, 4);
911		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
912		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
913					sizeof(in)) != PDC_OK))
914			return -EIO;
915	}
916
917	return count;
918}
919
920/* The remaining attributes. */
921static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
922static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
923static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
924static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
925static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
926static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
927static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
928static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
929static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
930
931static struct attribute *pdcs_subsys_attrs[] = {
932	&pdcs_attr_size.attr,
933	&pdcs_attr_autoboot.attr,
934	&pdcs_attr_autosearch.attr,
935	&pdcs_attr_timer.attr,
936	&pdcs_attr_osid.attr,
937	&pdcs_attr_osdep1.attr,
938	&pdcs_attr_diagnostic.attr,
939	&pdcs_attr_fastsize.attr,
940	&pdcs_attr_osdep2.attr,
941	NULL,
942};
943
944static const struct attribute_group pdcs_attr_group = {
945	.attrs = pdcs_subsys_attrs,
946};
947
948static struct kobject *stable_kobj;
949static struct kset *paths_kset;
950
951/**
952 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
953 *
954 * It creates kobjects corresponding to each path entry with nice sysfs
955 * links to the real device. This is where the magic takes place: when
956 * registering the subsystem attributes during module init, each kobject hereby
957 * created will show in the sysfs tree as a folder containing files as defined
958 * by path_subsys_attr[].
959 */
960static inline int __init
961pdcs_register_pathentries(void)
962{
963	unsigned short i;
964	struct pdcspath_entry *entry;
965	int err;
966
967	/* Initialize the entries rw_lock before anything else */
968	for (i = 0; (entry = pdcspath_entries[i]); i++)
969		rwlock_init(&entry->rw_lock);
970
971	for (i = 0; (entry = pdcspath_entries[i]); i++) {
972		write_lock(&entry->rw_lock);
973		err = pdcspath_fetch(entry);
974		write_unlock(&entry->rw_lock);
975
976		if (err < 0)
977			continue;
978
979		entry->kobj.kset = paths_kset;
980		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
981					   "%s", entry->name);
982		if (err) {
983			kobject_put(&entry->kobj);
984			return err;
985		}
986
987		/* kobject is now registered */
988		write_lock(&entry->rw_lock);
989		entry->ready = 2;
990		write_unlock(&entry->rw_lock);
991
992		/* Add a nice symlink to the real device */
993		if (entry->dev) {
994			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
995			WARN_ON(err);
996		}
997
998		kobject_uevent(&entry->kobj, KOBJ_ADD);
999	}
1000
1001	return 0;
1002}
1003
1004/**
1005 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1006 */
1007static inline void
1008pdcs_unregister_pathentries(void)
1009{
1010	unsigned short i;
1011	struct pdcspath_entry *entry;
1012
1013	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1014		read_lock(&entry->rw_lock);
1015		if (entry->ready >= 2)
1016			kobject_put(&entry->kobj);
1017		read_unlock(&entry->rw_lock);
1018	}
1019}
1020
1021/*
1022 * For now we register the stable subsystem with the firmware subsystem
1023 * and the paths subsystem with the stable subsystem
1024 */
1025static int __init
1026pdc_stable_init(void)
1027{
1028	int rc = 0, error = 0;
1029	u32 result;
1030
1031	/* find the size of the stable storage */
1032	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1033		return -ENODEV;
1034
1035	/* make sure we have enough data */
1036	if (pdcs_size < 96)
1037		return -ENODATA;
1038
1039	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1040
1041	/* get OSID */
1042	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1043		return -EIO;
1044
1045	/* the actual result is 16 bits away */
1046	pdcs_osid = (u16)(result >> 16);
1047
1048	/* For now we'll register the directory at /sys/firmware/stable */
1049	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1050	if (!stable_kobj) {
1051		rc = -ENOMEM;
1052		goto fail_firmreg;
1053	}
1054
1055	/* Don't forget the root entries */
1056	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1057
1058	/* register the paths kset as a child of the stable kset */
1059	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1060	if (!paths_kset) {
1061		rc = -ENOMEM;
1062		goto fail_ksetreg;
1063	}
1064
1065	/* now we create all "files" for the paths kset */
1066	if ((rc = pdcs_register_pathentries()))
1067		goto fail_pdcsreg;
1068
1069	return rc;
1070
1071fail_pdcsreg:
1072	pdcs_unregister_pathentries();
1073	kset_unregister(paths_kset);
1074
1075fail_ksetreg:
1076	kobject_put(stable_kobj);
1077
1078fail_firmreg:
1079	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1080	return rc;
1081}
1082
1083static void __exit
1084pdc_stable_exit(void)
1085{
1086	pdcs_unregister_pathentries();
1087	kset_unregister(paths_kset);
1088	kobject_put(stable_kobj);
1089}
1090
1091
1092module_init(pdc_stable_init);
1093module_exit(pdc_stable_exit);
1094