1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3** ccio-dma.c:
4**	DMA management routines for first generation cache-coherent machines.
5**	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
6**
7**	(c) Copyright 2000 Grant Grundler
8**	(c) Copyright 2000 Ryan Bradetich
9**	(c) Copyright 2000 Hewlett-Packard Company
10**
11**
12**
13**  "Real Mode" operation refers to U2/Uturn chip operation.
14**  U2/Uturn were designed to perform coherency checks w/o using
15**  the I/O MMU - basically what x86 does.
16**
17**  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
18**      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
19**      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
20**
21**  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
22**
23**  Drawbacks of using Real Mode are:
24**	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
25**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
26**	o Ability to do scatter/gather in HW is lost.
27**	o Doesn't work under PCX-U/U+ machines since they didn't follow
28**        the coherency design originally worked out. Only PCX-W does.
29*/
30
31#include <linux/types.h>
32#include <linux/kernel.h>
33#include <linux/init.h>
34#include <linux/mm.h>
35#include <linux/spinlock.h>
36#include <linux/slab.h>
37#include <linux/string.h>
38#include <linux/pci.h>
39#include <linux/reboot.h>
40#include <linux/proc_fs.h>
41#include <linux/seq_file.h>
42#include <linux/dma-map-ops.h>
43#include <linux/scatterlist.h>
44#include <linux/iommu-helper.h>
45#include <linux/export.h>
46
47#include <asm/byteorder.h>
48#include <asm/cache.h>		/* for L1_CACHE_BYTES */
49#include <linux/uaccess.h>
50#include <asm/page.h>
51#include <asm/dma.h>
52#include <asm/io.h>
53#include <asm/hardware.h>       /* for register_module() */
54#include <asm/parisc-device.h>
55
56#include "iommu.h"
57
58/*
59** Choose "ccio" since that's what HP-UX calls it.
60** Make it easier for folks to migrate from one to the other :^)
61*/
62#define MODULE_NAME "ccio"
63
64#undef DEBUG_CCIO_RES
65#undef DEBUG_CCIO_RUN
66#undef DEBUG_CCIO_INIT
67#undef DEBUG_CCIO_RUN_SG
68
69#ifdef CONFIG_PROC_FS
70/* depends on proc fs support. But costs CPU performance. */
71#undef CCIO_COLLECT_STATS
72#endif
73
74#include <asm/runway.h>		/* for proc_runway_root */
75
76#ifdef DEBUG_CCIO_INIT
77#define DBG_INIT(x...)  printk(x)
78#else
79#define DBG_INIT(x...)
80#endif
81
82#ifdef DEBUG_CCIO_RUN
83#define DBG_RUN(x...)   printk(x)
84#else
85#define DBG_RUN(x...)
86#endif
87
88#ifdef DEBUG_CCIO_RES
89#define DBG_RES(x...)   printk(x)
90#else
91#define DBG_RES(x...)
92#endif
93
94#ifdef DEBUG_CCIO_RUN_SG
95#define DBG_RUN_SG(x...) printk(x)
96#else
97#define DBG_RUN_SG(x...)
98#endif
99
100#define CCIO_INLINE	inline
101#define WRITE_U32(value, addr) __raw_writel(value, addr)
102#define READ_U32(addr) __raw_readl(addr)
103
104#define U2_IOA_RUNWAY 0x580
105#define U2_BC_GSC     0x501
106#define UTURN_IOA_RUNWAY 0x581
107#define UTURN_BC_GSC     0x502
108
109#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
110#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
111#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
112
113struct ioa_registers {
114        /* Runway Supervisory Set */
115        int32_t    unused1[12];
116        uint32_t   io_command;             /* Offset 12 */
117        uint32_t   io_status;              /* Offset 13 */
118        uint32_t   io_control;             /* Offset 14 */
119        int32_t    unused2[1];
120
121        /* Runway Auxiliary Register Set */
122        uint32_t   io_err_resp;            /* Offset  0 */
123        uint32_t   io_err_info;            /* Offset  1 */
124        uint32_t   io_err_req;             /* Offset  2 */
125        uint32_t   io_err_resp_hi;         /* Offset  3 */
126        uint32_t   io_tlb_entry_m;         /* Offset  4 */
127        uint32_t   io_tlb_entry_l;         /* Offset  5 */
128        uint32_t   unused3[1];
129        uint32_t   io_pdir_base;           /* Offset  7 */
130        uint32_t   io_io_low_hv;           /* Offset  8 */
131        uint32_t   io_io_high_hv;          /* Offset  9 */
132        uint32_t   unused4[1];
133        uint32_t   io_chain_id_mask;       /* Offset 11 */
134        uint32_t   unused5[2];
135        uint32_t   io_io_low;              /* Offset 14 */
136        uint32_t   io_io_high;             /* Offset 15 */
137};
138
139/*
140** IOA Registers
141** -------------
142**
143** Runway IO_CONTROL Register (+0x38)
144**
145** The Runway IO_CONTROL register controls the forwarding of transactions.
146**
147** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
148** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
149**
150** o mode field indicates the address translation of transactions
151**   forwarded from Runway to GSC+:
152**       Mode Name     Value        Definition
153**       Off (default)   0          Opaque to matching addresses.
154**       Include         1          Transparent for matching addresses.
155**       Peek            3          Map matching addresses.
156**
157**       + "Off" mode: Runway transactions which match the I/O range
158**         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
159**       + "Include" mode: all addresses within the I/O range specified
160**         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
161**         forwarded. This is the I/O Adapter's normal operating mode.
162**       + "Peek" mode: used during system configuration to initialize the
163**         GSC+ bus. Runway Write_Shorts in the address range specified by
164**         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
165**         *AND* the GSC+ address is remapped to the Broadcast Physical
166**         Address space by setting the 14 high order address bits of the
167**         32 bit GSC+ address to ones.
168**
169** o TLB field affects transactions which are forwarded from GSC+ to Runway.
170**   "Real" mode is the poweron default.
171**
172**   TLB Mode  Value  Description
173**   Real        0    No TLB translation. Address is directly mapped and the
174**                    virtual address is composed of selected physical bits.
175**   Error       1    Software fills the TLB manually.
176**   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
177**
178**
179** IO_IO_LOW_HV	  +0x60 (HV dependent)
180** IO_IO_HIGH_HV  +0x64 (HV dependent)
181** IO_IO_LOW      +0x78	(Architected register)
182** IO_IO_HIGH     +0x7c	(Architected register)
183**
184** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
185** I/O Adapter address space, respectively.
186**
187** 0  ... 7 | 8 ... 15 |  16   ...   31 |
188** 11111111 | 11111111 |      address   |
189**
190** Each LOW/HIGH pair describes a disjoint address space region.
191** (2 per GSC+ port). Each incoming Runway transaction address is compared
192** with both sets of LOW/HIGH registers. If the address is in the range
193** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
194** for forwarded to the respective GSC+ bus.
195** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
196** an address space region.
197**
198** In order for a Runway address to reside within GSC+ extended address space:
199**	Runway Address [0:7]    must identically compare to 8'b11111111
200**	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
201** 	Runway Address [12:23]  must be greater than or equal to
202**	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
203**	Runway Address [24:39]  is not used in the comparison.
204**
205** When the Runway transaction is forwarded to GSC+, the GSC+ address is
206** as follows:
207**	GSC+ Address[0:3]	4'b1111
208**	GSC+ Address[4:29]	Runway Address[12:37]
209**	GSC+ Address[30:31]	2'b00
210**
211** All 4 Low/High registers must be initialized (by PDC) once the lower bus
212** is interrogated and address space is defined. The operating system will
213** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
214** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
215** and IO_IO_HIGH registers should not be subsequently altered by the OS.
216**
217** Writes to both sets of registers will take effect immediately, bypassing
218** the queues, which ensures that subsequent Runway transactions are checked
219** against the updated bounds values. However reads are queued, introducing
220** the possibility of a read being bypassed by a subsequent write to the same
221** register. This sequence can be avoided by having software wait for read
222** returns before issuing subsequent writes.
223*/
224
225struct ioc {
226	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
227	u8  *res_map;	                /* resource map, bit == pdir entry */
228	u64 *pdir_base;	                /* physical base address */
229	u32 pdir_size; 			/* bytes, function of IOV Space size */
230	u32 res_hint;	                /* next available IOVP -
231					   circular search */
232	u32 res_size;		    	/* size of resource map in bytes */
233	spinlock_t res_lock;
234
235#ifdef CCIO_COLLECT_STATS
236#define CCIO_SEARCH_SAMPLE 0x100
237	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
238	unsigned long avg_idx;		  /* current index into avg_search */
239	unsigned long used_pages;
240	unsigned long msingle_calls;
241	unsigned long msingle_pages;
242	unsigned long msg_calls;
243	unsigned long msg_pages;
244	unsigned long usingle_calls;
245	unsigned long usingle_pages;
246	unsigned long usg_calls;
247	unsigned long usg_pages;
248#endif
249	unsigned short cujo20_bug;
250
251	/* STUFF We don't need in performance path */
252	u32 chainid_shift; 		/* specify bit location of chain_id */
253	struct ioc *next;		/* Linked list of discovered iocs */
254	const char *name;		/* device name from firmware */
255	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
256	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
257	struct resource mmio_region[2]; /* The "routed" MMIO regions */
258};
259
260static struct ioc *ioc_list;
261static int ioc_count;
262
263/**************************************************************
264*
265*   I/O Pdir Resource Management
266*
267*   Bits set in the resource map are in use.
268*   Each bit can represent a number of pages.
269*   LSbs represent lower addresses (IOVA's).
270*
271*   This was was copied from sba_iommu.c. Don't try to unify
272*   the two resource managers unless a way to have different
273*   allocation policies is also adjusted. We'd like to avoid
274*   I/O TLB thrashing by having resource allocation policy
275*   match the I/O TLB replacement policy.
276*
277***************************************************************/
278#define IOVP_SIZE PAGE_SIZE
279#define IOVP_SHIFT PAGE_SHIFT
280#define IOVP_MASK PAGE_MASK
281
282/* Convert from IOVP to IOVA and vice versa. */
283#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
284#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
285
286#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
287#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
288#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
289
290/*
291** Don't worry about the 150% average search length on a miss.
292** If the search wraps around, and passes the res_hint, it will
293** cause the kernel to panic anyhow.
294*/
295#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
296       for(; res_ptr < res_end; ++res_ptr) { \
297		int ret;\
298		unsigned int idx;\
299		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
300		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
301		if ((0 == (*res_ptr & mask)) && !ret) { \
302			*res_ptr |= mask; \
303			res_idx = idx;\
304			ioc->res_hint = res_idx + (size >> 3); \
305			goto resource_found; \
306		} \
307	}
308
309#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
310       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
311       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
312       CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
313       res_ptr = (u##size *)&(ioc)->res_map[0]; \
314       CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
315
316/*
317** Find available bit in this ioa's resource map.
318** Use a "circular" search:
319**   o Most IOVA's are "temporary" - avg search time should be small.
320** o keep a history of what happened for debugging
321** o KISS.
322**
323** Perf optimizations:
324** o search for log2(size) bits at a time.
325** o search for available resource bits using byte/word/whatever.
326** o use different search for "large" (eg > 4 pages) or "very large"
327**   (eg > 16 pages) mappings.
328*/
329
330/**
331 * ccio_alloc_range - Allocate pages in the ioc's resource map.
332 * @ioc: The I/O Controller.
333 * @pages_needed: The requested number of pages to be mapped into the
334 * I/O Pdir...
335 *
336 * This function searches the resource map of the ioc to locate a range
337 * of available pages for the requested size.
338 */
339static int
340ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
341{
342	unsigned int pages_needed = size >> IOVP_SHIFT;
343	unsigned int res_idx;
344	unsigned long boundary_size;
345#ifdef CCIO_COLLECT_STATS
346	unsigned long cr_start = mfctl(16);
347#endif
348
349	BUG_ON(pages_needed == 0);
350	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
351
352	DBG_RES("%s() size: %d pages_needed %d\n",
353		__func__, size, pages_needed);
354
355	/*
356	** "seek and ye shall find"...praying never hurts either...
357	** ggg sacrifices another 710 to the computer gods.
358	*/
359
360	boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
361
362	if (pages_needed <= 8) {
363		/*
364		 * LAN traffic will not thrash the TLB IFF the same NIC
365		 * uses 8 adjacent pages to map separate payload data.
366		 * ie the same byte in the resource bit map.
367		 */
368#if 0
369		/* FIXME: bit search should shift it's way through
370		 * an unsigned long - not byte at a time. As it is now,
371		 * we effectively allocate this byte to this mapping.
372		 */
373		unsigned long mask = ~(~0UL >> pages_needed);
374		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
375#else
376		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
377#endif
378	} else if (pages_needed <= 16) {
379		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
380	} else if (pages_needed <= 32) {
381		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
382#ifdef __LP64__
383	} else if (pages_needed <= 64) {
384		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
385#endif
386	} else {
387		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
388		       __FILE__,  __func__, pages_needed);
389	}
390
391	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
392	      __func__);
393
394resource_found:
395
396	DBG_RES("%s() res_idx %d res_hint: %d\n",
397		__func__, res_idx, ioc->res_hint);
398
399#ifdef CCIO_COLLECT_STATS
400	{
401		unsigned long cr_end = mfctl(16);
402		unsigned long tmp = cr_end - cr_start;
403		/* check for roll over */
404		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
405	}
406	ioc->avg_search[ioc->avg_idx++] = cr_start;
407	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
408	ioc->used_pages += pages_needed;
409#endif
410	/*
411	** return the bit address.
412	*/
413	return res_idx << 3;
414}
415
416#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
417        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
418        BUG_ON((*res_ptr & mask) != mask); \
419        *res_ptr &= ~(mask);
420
421/**
422 * ccio_free_range - Free pages from the ioc's resource map.
423 * @ioc: The I/O Controller.
424 * @iova: The I/O Virtual Address.
425 * @pages_mapped: The requested number of pages to be freed from the
426 * I/O Pdir.
427 *
428 * This function frees the resouces allocated for the iova.
429 */
430static void
431ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
432{
433	unsigned long iovp = CCIO_IOVP(iova);
434	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
435
436	BUG_ON(pages_mapped == 0);
437	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
438	BUG_ON(pages_mapped > BITS_PER_LONG);
439
440	DBG_RES("%s():  res_idx: %d pages_mapped %d\n",
441		__func__, res_idx, pages_mapped);
442
443#ifdef CCIO_COLLECT_STATS
444	ioc->used_pages -= pages_mapped;
445#endif
446
447	if(pages_mapped <= 8) {
448#if 0
449		/* see matching comments in alloc_range */
450		unsigned long mask = ~(~0UL >> pages_mapped);
451		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
452#else
453		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
454#endif
455	} else if(pages_mapped <= 16) {
456		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
457	} else if(pages_mapped <= 32) {
458		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
459#ifdef __LP64__
460	} else if(pages_mapped <= 64) {
461		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
462#endif
463	} else {
464		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
465		      __func__);
466	}
467}
468
469/****************************************************************
470**
471**          CCIO dma_ops support routines
472**
473*****************************************************************/
474
475typedef unsigned long space_t;
476#define KERNEL_SPACE 0
477
478/*
479** DMA "Page Type" and Hints
480** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
481**   set for subcacheline DMA transfers since we don't want to damage the
482**   other part of a cacheline.
483** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
484**   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
485**   data can avoid this if the mapping covers full cache lines.
486** o STOP_MOST is needed for atomicity across cachelines.
487**   Apparently only "some EISA devices" need this.
488**   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
489**   to use this hint iff the EISA devices needs this feature.
490**   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
491** o PREFETCH should *not* be set for cases like Multiple PCI devices
492**   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
493**   device can be fetched and multiply DMA streams will thrash the
494**   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
495**   and Invalidation of Prefetch Entries".
496**
497** FIXME: the default hints need to be per GSC device - not global.
498**
499** HP-UX dorks: linux device driver programming model is totally different
500**    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
501**    do special things to work on non-coherent platforms...linux has to
502**    be much more careful with this.
503*/
504#define IOPDIR_VALID    0x01UL
505#define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
506#ifdef CONFIG_EISA
507#define HINT_STOP_MOST  0x04UL	/* LSL support */
508#else
509#define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
510#endif
511#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
512#define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
513
514
515/*
516** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
517** ccio_alloc_consistent() depends on this to get SAFE_DMA
518** when it passes in BIDIRECTIONAL flag.
519*/
520static u32 hint_lookup[] = {
521	[PCI_DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
522	[PCI_DMA_TODEVICE]	= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
523	[PCI_DMA_FROMDEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
524};
525
526/**
527 * ccio_io_pdir_entry - Initialize an I/O Pdir.
528 * @pdir_ptr: A pointer into I/O Pdir.
529 * @sid: The Space Identifier.
530 * @vba: The virtual address.
531 * @hints: The DMA Hint.
532 *
533 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
534 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
535 * entry consists of 8 bytes as shown below (MSB == bit 0):
536 *
537 *
538 * WORD 0:
539 * +------+----------------+-----------------------------------------------+
540 * | Phys | Virtual Index  |               Phys                            |
541 * | 0:3  |     0:11       |               4:19                            |
542 * |4 bits|   12 bits      |              16 bits                          |
543 * +------+----------------+-----------------------------------------------+
544 * WORD 1:
545 * +-----------------------+-----------------------------------------------+
546 * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
547 * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
548 * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
549 * +-----------------------+-----------------------------------------------+
550 *
551 * The virtual index field is filled with the results of the LCI
552 * (Load Coherence Index) instruction.  The 8 bits used for the virtual
553 * index are bits 12:19 of the value returned by LCI.
554 */
555static void CCIO_INLINE
556ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
557		   unsigned long hints)
558{
559	register unsigned long pa;
560	register unsigned long ci; /* coherent index */
561
562	/* We currently only support kernel addresses */
563	BUG_ON(sid != KERNEL_SPACE);
564
565	/*
566	** WORD 1 - low order word
567	** "hints" parm includes the VALID bit!
568	** "dep" clobbers the physical address offset bits as well.
569	*/
570	pa = lpa(vba);
571	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
572	((u32 *)pdir_ptr)[1] = (u32) pa;
573
574	/*
575	** WORD 0 - high order word
576	*/
577
578#ifdef __LP64__
579	/*
580	** get bits 12:15 of physical address
581	** shift bits 16:31 of physical address
582	** and deposit them
583	*/
584	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
585	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
586	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
587#else
588	pa = 0;
589#endif
590	/*
591	** get CPU coherency index bits
592	** Grab virtual index [0:11]
593	** Deposit virt_idx bits into I/O PDIR word
594	*/
595	asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
596	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
597	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
598
599	((u32 *)pdir_ptr)[0] = (u32) pa;
600
601
602	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
603	**        PCX-U/U+ do. (eg C200/C240)
604	**        PCX-T'? Don't know. (eg C110 or similar K-class)
605	**
606	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
607	**
608	** "Since PCX-U employs an offset hash that is incompatible with
609	** the real mode coherence index generation of U2, the PDIR entry
610	** must be flushed to memory to retain coherence."
611	*/
612	asm_io_fdc(pdir_ptr);
613	asm_io_sync();
614}
615
616/**
617 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
618 * @ioc: The I/O Controller.
619 * @iovp: The I/O Virtual Page.
620 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
621 *
622 * Purge invalid I/O PDIR entries from the I/O TLB.
623 *
624 * FIXME: Can we change the byte_cnt to pages_mapped?
625 */
626static CCIO_INLINE void
627ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
628{
629	u32 chain_size = 1 << ioc->chainid_shift;
630
631	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
632	byte_cnt += chain_size;
633
634	while(byte_cnt > chain_size) {
635		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
636		iovp += chain_size;
637		byte_cnt -= chain_size;
638	}
639}
640
641/**
642 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
643 * @ioc: The I/O Controller.
644 * @iova: The I/O Virtual Address.
645 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
646 *
647 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
648 * TLB entries.
649 *
650 * FIXME: at some threshold it might be "cheaper" to just blow
651 *        away the entire I/O TLB instead of individual entries.
652 *
653 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
654 *        PDIR entry - just once for each possible TLB entry.
655 *        (We do need to maker I/O PDIR entries invalid regardless).
656 *
657 * FIXME: Can we change byte_cnt to pages_mapped?
658 */
659static CCIO_INLINE void
660ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
661{
662	u32 iovp = (u32)CCIO_IOVP(iova);
663	size_t saved_byte_cnt;
664
665	/* round up to nearest page size */
666	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
667
668	while(byte_cnt > 0) {
669		/* invalidate one page at a time */
670		unsigned int idx = PDIR_INDEX(iovp);
671		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
672
673		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
674		pdir_ptr[7] = 0;	/* clear only VALID bit */
675		/*
676		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
677		**   PCX-U/U+ do. (eg C200/C240)
678		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
679		*/
680		asm_io_fdc(pdir_ptr);
681
682		iovp     += IOVP_SIZE;
683		byte_cnt -= IOVP_SIZE;
684	}
685
686	asm_io_sync();
687	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
688}
689
690/****************************************************************
691**
692**          CCIO dma_ops
693**
694*****************************************************************/
695
696/**
697 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
698 * @dev: The PCI device.
699 * @mask: A bit mask describing the DMA address range of the device.
700 */
701static int
702ccio_dma_supported(struct device *dev, u64 mask)
703{
704	if(dev == NULL) {
705		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
706		BUG();
707		return 0;
708	}
709
710	/* only support 32-bit or better devices (ie PCI/GSC) */
711	return (int)(mask >= 0xffffffffUL);
712}
713
714/**
715 * ccio_map_single - Map an address range into the IOMMU.
716 * @dev: The PCI device.
717 * @addr: The start address of the DMA region.
718 * @size: The length of the DMA region.
719 * @direction: The direction of the DMA transaction (to/from device).
720 *
721 * This function implements the pci_map_single function.
722 */
723static dma_addr_t
724ccio_map_single(struct device *dev, void *addr, size_t size,
725		enum dma_data_direction direction)
726{
727	int idx;
728	struct ioc *ioc;
729	unsigned long flags;
730	dma_addr_t iovp;
731	dma_addr_t offset;
732	u64 *pdir_start;
733	unsigned long hint = hint_lookup[(int)direction];
734
735	BUG_ON(!dev);
736	ioc = GET_IOC(dev);
737	if (!ioc)
738		return DMA_MAPPING_ERROR;
739
740	BUG_ON(size <= 0);
741
742	/* save offset bits */
743	offset = ((unsigned long) addr) & ~IOVP_MASK;
744
745	/* round up to nearest IOVP_SIZE */
746	size = ALIGN(size + offset, IOVP_SIZE);
747	spin_lock_irqsave(&ioc->res_lock, flags);
748
749#ifdef CCIO_COLLECT_STATS
750	ioc->msingle_calls++;
751	ioc->msingle_pages += size >> IOVP_SHIFT;
752#endif
753
754	idx = ccio_alloc_range(ioc, dev, size);
755	iovp = (dma_addr_t)MKIOVP(idx);
756
757	pdir_start = &(ioc->pdir_base[idx]);
758
759	DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
760		__func__, addr, (long)iovp | offset, size);
761
762	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
763	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
764		hint |= HINT_SAFE_DMA;
765
766	while(size > 0) {
767		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
768
769		DBG_RUN(" pdir %p %08x%08x\n",
770			pdir_start,
771			(u32) (((u32 *) pdir_start)[0]),
772			(u32) (((u32 *) pdir_start)[1]));
773		++pdir_start;
774		addr += IOVP_SIZE;
775		size -= IOVP_SIZE;
776	}
777
778	spin_unlock_irqrestore(&ioc->res_lock, flags);
779
780	/* form complete address */
781	return CCIO_IOVA(iovp, offset);
782}
783
784
785static dma_addr_t
786ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
787		size_t size, enum dma_data_direction direction,
788		unsigned long attrs)
789{
790	return ccio_map_single(dev, page_address(page) + offset, size,
791			direction);
792}
793
794
795/**
796 * ccio_unmap_page - Unmap an address range from the IOMMU.
797 * @dev: The PCI device.
798 * @addr: The start address of the DMA region.
799 * @size: The length of the DMA region.
800 * @direction: The direction of the DMA transaction (to/from device).
801 */
802static void
803ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
804		enum dma_data_direction direction, unsigned long attrs)
805{
806	struct ioc *ioc;
807	unsigned long flags;
808	dma_addr_t offset = iova & ~IOVP_MASK;
809
810	BUG_ON(!dev);
811	ioc = GET_IOC(dev);
812	if (!ioc) {
813		WARN_ON(!ioc);
814		return;
815	}
816
817	DBG_RUN("%s() iovp 0x%lx/%x\n",
818		__func__, (long)iova, size);
819
820	iova ^= offset;        /* clear offset bits */
821	size += offset;
822	size = ALIGN(size, IOVP_SIZE);
823
824	spin_lock_irqsave(&ioc->res_lock, flags);
825
826#ifdef CCIO_COLLECT_STATS
827	ioc->usingle_calls++;
828	ioc->usingle_pages += size >> IOVP_SHIFT;
829#endif
830
831	ccio_mark_invalid(ioc, iova, size);
832	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
833	spin_unlock_irqrestore(&ioc->res_lock, flags);
834}
835
836/**
837 * ccio_alloc - Allocate a consistent DMA mapping.
838 * @dev: The PCI device.
839 * @size: The length of the DMA region.
840 * @dma_handle: The DMA address handed back to the device (not the cpu).
841 *
842 * This function implements the pci_alloc_consistent function.
843 */
844static void *
845ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
846		unsigned long attrs)
847{
848      void *ret;
849#if 0
850/* GRANT Need to establish hierarchy for non-PCI devs as well
851** and then provide matching gsc_map_xxx() functions for them as well.
852*/
853	if(!hwdev) {
854		/* only support PCI */
855		*dma_handle = 0;
856		return 0;
857	}
858#endif
859        ret = (void *) __get_free_pages(flag, get_order(size));
860
861	if (ret) {
862		memset(ret, 0, size);
863		*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
864	}
865
866	return ret;
867}
868
869/**
870 * ccio_free - Free a consistent DMA mapping.
871 * @dev: The PCI device.
872 * @size: The length of the DMA region.
873 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
874 * @dma_handle: The device address returned from the ccio_alloc_consistent.
875 *
876 * This function implements the pci_free_consistent function.
877 */
878static void
879ccio_free(struct device *dev, size_t size, void *cpu_addr,
880		dma_addr_t dma_handle, unsigned long attrs)
881{
882	ccio_unmap_page(dev, dma_handle, size, 0, 0);
883	free_pages((unsigned long)cpu_addr, get_order(size));
884}
885
886/*
887** Since 0 is a valid pdir_base index value, can't use that
888** to determine if a value is valid or not. Use a flag to indicate
889** the SG list entry contains a valid pdir index.
890*/
891#define PIDE_FLAG 0x80000000UL
892
893#ifdef CCIO_COLLECT_STATS
894#define IOMMU_MAP_STATS
895#endif
896#include "iommu-helpers.h"
897
898/**
899 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
900 * @dev: The PCI device.
901 * @sglist: The scatter/gather list to be mapped in the IOMMU.
902 * @nents: The number of entries in the scatter/gather list.
903 * @direction: The direction of the DMA transaction (to/from device).
904 *
905 * This function implements the pci_map_sg function.
906 */
907static int
908ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
909	    enum dma_data_direction direction, unsigned long attrs)
910{
911	struct ioc *ioc;
912	int coalesced, filled = 0;
913	unsigned long flags;
914	unsigned long hint = hint_lookup[(int)direction];
915	unsigned long prev_len = 0, current_len = 0;
916	int i;
917
918	BUG_ON(!dev);
919	ioc = GET_IOC(dev);
920	if (!ioc)
921		return 0;
922
923	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
924
925	/* Fast path single entry scatterlists. */
926	if (nents == 1) {
927		sg_dma_address(sglist) = ccio_map_single(dev,
928				sg_virt(sglist), sglist->length,
929				direction);
930		sg_dma_len(sglist) = sglist->length;
931		return 1;
932	}
933
934	for(i = 0; i < nents; i++)
935		prev_len += sglist[i].length;
936
937	spin_lock_irqsave(&ioc->res_lock, flags);
938
939#ifdef CCIO_COLLECT_STATS
940	ioc->msg_calls++;
941#endif
942
943	/*
944	** First coalesce the chunks and allocate I/O pdir space
945	**
946	** If this is one DMA stream, we can properly map using the
947	** correct virtual address associated with each DMA page.
948	** w/o this association, we wouldn't have coherent DMA!
949	** Access to the virtual address is what forces a two pass algorithm.
950	*/
951	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
952
953	/*
954	** Program the I/O Pdir
955	**
956	** map the virtual addresses to the I/O Pdir
957	** o dma_address will contain the pdir index
958	** o dma_len will contain the number of bytes to map
959	** o page/offset contain the virtual address.
960	*/
961	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
962
963	spin_unlock_irqrestore(&ioc->res_lock, flags);
964
965	BUG_ON(coalesced != filled);
966
967	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
968
969	for (i = 0; i < filled; i++)
970		current_len += sg_dma_len(sglist + i);
971
972	BUG_ON(current_len != prev_len);
973
974	return filled;
975}
976
977/**
978 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
979 * @dev: The PCI device.
980 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
981 * @nents: The number of entries in the scatter/gather list.
982 * @direction: The direction of the DMA transaction (to/from device).
983 *
984 * This function implements the pci_unmap_sg function.
985 */
986static void
987ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
988	      enum dma_data_direction direction, unsigned long attrs)
989{
990	struct ioc *ioc;
991
992	BUG_ON(!dev);
993	ioc = GET_IOC(dev);
994	if (!ioc) {
995		WARN_ON(!ioc);
996		return;
997	}
998
999	DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1000		__func__, nents, sg_virt(sglist), sglist->length);
1001
1002#ifdef CCIO_COLLECT_STATS
1003	ioc->usg_calls++;
1004#endif
1005
1006	while (nents && sg_dma_len(sglist)) {
1007
1008#ifdef CCIO_COLLECT_STATS
1009		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1010#endif
1011		ccio_unmap_page(dev, sg_dma_address(sglist),
1012				  sg_dma_len(sglist), direction, 0);
1013		++sglist;
1014		nents--;
1015	}
1016
1017	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1018}
1019
1020static const struct dma_map_ops ccio_ops = {
1021	.dma_supported =	ccio_dma_supported,
1022	.alloc =		ccio_alloc,
1023	.free =			ccio_free,
1024	.map_page =		ccio_map_page,
1025	.unmap_page =		ccio_unmap_page,
1026	.map_sg = 		ccio_map_sg,
1027	.unmap_sg = 		ccio_unmap_sg,
1028	.get_sgtable =		dma_common_get_sgtable,
1029	.alloc_pages =		dma_common_alloc_pages,
1030	.free_pages =		dma_common_free_pages,
1031};
1032
1033#ifdef CONFIG_PROC_FS
1034static int ccio_proc_info(struct seq_file *m, void *p)
1035{
1036	struct ioc *ioc = ioc_list;
1037
1038	while (ioc != NULL) {
1039		unsigned int total_pages = ioc->res_size << 3;
1040#ifdef CCIO_COLLECT_STATS
1041		unsigned long avg = 0, min, max;
1042		int j;
1043#endif
1044
1045		seq_printf(m, "%s\n", ioc->name);
1046
1047		seq_printf(m, "Cujo 2.0 bug    : %s\n",
1048			   (ioc->cujo20_bug ? "yes" : "no"));
1049
1050		seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1051			   total_pages * 8, total_pages);
1052
1053#ifdef CCIO_COLLECT_STATS
1054		seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1055			   total_pages - ioc->used_pages, ioc->used_pages,
1056			   (int)(ioc->used_pages * 100 / total_pages));
1057#endif
1058
1059		seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1060			   ioc->res_size, total_pages);
1061
1062#ifdef CCIO_COLLECT_STATS
1063		min = max = ioc->avg_search[0];
1064		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1065			avg += ioc->avg_search[j];
1066			if(ioc->avg_search[j] > max)
1067				max = ioc->avg_search[j];
1068			if(ioc->avg_search[j] < min)
1069				min = ioc->avg_search[j];
1070		}
1071		avg /= CCIO_SEARCH_SAMPLE;
1072		seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1073			   min, avg, max);
1074
1075		seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1076			   ioc->msingle_calls, ioc->msingle_pages,
1077			   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1078
1079		/* KLUGE - unmap_sg calls unmap_page for each mapped page */
1080		min = ioc->usingle_calls - ioc->usg_calls;
1081		max = ioc->usingle_pages - ioc->usg_pages;
1082		seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1083			   min, max, (int)((max * 1000)/min));
1084
1085		seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1086			   ioc->msg_calls, ioc->msg_pages,
1087			   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1088
1089		seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1090			   ioc->usg_calls, ioc->usg_pages,
1091			   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1092#endif	/* CCIO_COLLECT_STATS */
1093
1094		ioc = ioc->next;
1095	}
1096
1097	return 0;
1098}
1099
1100static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1101{
1102	struct ioc *ioc = ioc_list;
1103
1104	while (ioc != NULL) {
1105		seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1106			     ioc->res_size, false);
1107		seq_putc(m, '\n');
1108		ioc = ioc->next;
1109		break; /* XXX - remove me */
1110	}
1111
1112	return 0;
1113}
1114#endif /* CONFIG_PROC_FS */
1115
1116/**
1117 * ccio_find_ioc - Find the ioc in the ioc_list
1118 * @hw_path: The hardware path of the ioc.
1119 *
1120 * This function searches the ioc_list for an ioc that matches
1121 * the provide hardware path.
1122 */
1123static struct ioc * ccio_find_ioc(int hw_path)
1124{
1125	int i;
1126	struct ioc *ioc;
1127
1128	ioc = ioc_list;
1129	for (i = 0; i < ioc_count; i++) {
1130		if (ioc->hw_path == hw_path)
1131			return ioc;
1132
1133		ioc = ioc->next;
1134	}
1135
1136	return NULL;
1137}
1138
1139/**
1140 * ccio_get_iommu - Find the iommu which controls this device
1141 * @dev: The parisc device.
1142 *
1143 * This function searches through the registered IOMMU's and returns
1144 * the appropriate IOMMU for the device based on its hardware path.
1145 */
1146void * ccio_get_iommu(const struct parisc_device *dev)
1147{
1148	dev = find_pa_parent_type(dev, HPHW_IOA);
1149	if (!dev)
1150		return NULL;
1151
1152	return ccio_find_ioc(dev->hw_path);
1153}
1154
1155#define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1156
1157/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1158 * to/from certain pages.  To avoid this happening, we mark these pages
1159 * as `used', and ensure that nothing will try to allocate from them.
1160 */
1161void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1162{
1163	unsigned int idx;
1164	struct parisc_device *dev = parisc_parent(cujo);
1165	struct ioc *ioc = ccio_get_iommu(dev);
1166	u8 *res_ptr;
1167
1168	ioc->cujo20_bug = 1;
1169	res_ptr = ioc->res_map;
1170	idx = PDIR_INDEX(iovp) >> 3;
1171
1172	while (idx < ioc->res_size) {
1173 		res_ptr[idx] |= 0xff;
1174		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1175	}
1176}
1177
1178#if 0
1179/* GRANT -  is this needed for U2 or not? */
1180
1181/*
1182** Get the size of the I/O TLB for this I/O MMU.
1183**
1184** If spa_shift is non-zero (ie probably U2),
1185** then calculate the I/O TLB size using spa_shift.
1186**
1187** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1188** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1189** I think only Java (K/D/R-class too?) systems don't do this.
1190*/
1191static int
1192ccio_get_iotlb_size(struct parisc_device *dev)
1193{
1194	if (dev->spa_shift == 0) {
1195		panic("%s() : Can't determine I/O TLB size.\n", __func__);
1196	}
1197	return (1 << dev->spa_shift);
1198}
1199#else
1200
1201/* Uturn supports 256 TLB entries */
1202#define CCIO_CHAINID_SHIFT	8
1203#define CCIO_CHAINID_MASK	0xff
1204#endif /* 0 */
1205
1206/* We *can't* support JAVA (T600). Venture there at your own risk. */
1207static const struct parisc_device_id ccio_tbl[] __initconst = {
1208	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1209	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1210	{ 0, }
1211};
1212
1213static int ccio_probe(struct parisc_device *dev);
1214
1215static struct parisc_driver ccio_driver __refdata = {
1216	.name =		"ccio",
1217	.id_table =	ccio_tbl,
1218	.probe =	ccio_probe,
1219};
1220
1221/**
1222 * ccio_ioc_init - Initialize the I/O Controller
1223 * @ioc: The I/O Controller.
1224 *
1225 * Initialize the I/O Controller which includes setting up the
1226 * I/O Page Directory, the resource map, and initalizing the
1227 * U2/Uturn chip into virtual mode.
1228 */
1229static void __init
1230ccio_ioc_init(struct ioc *ioc)
1231{
1232	int i;
1233	unsigned int iov_order;
1234	u32 iova_space_size;
1235
1236	/*
1237	** Determine IOVA Space size from memory size.
1238	**
1239	** Ideally, PCI drivers would register the maximum number
1240	** of DMA they can have outstanding for each device they
1241	** own.  Next best thing would be to guess how much DMA
1242	** can be outstanding based on PCI Class/sub-class. Both
1243	** methods still require some "extra" to support PCI
1244	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1245	*/
1246
1247	iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1248
1249	/* limit IOVA space size to 1MB-1GB */
1250
1251	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1252		iova_space_size =  1 << (20 - PAGE_SHIFT);
1253#ifdef __LP64__
1254	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1255		iova_space_size =  1 << (30 - PAGE_SHIFT);
1256#endif
1257	}
1258
1259	/*
1260	** iova space must be log2() in size.
1261	** thus, pdir/res_map will also be log2().
1262	*/
1263
1264	/* We could use larger page sizes in order to *decrease* the number
1265	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1266	**
1267	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1268	**   since the pages must also be physically contiguous - typically
1269	**   this is the case under linux."
1270	*/
1271
1272	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1273
1274	/* iova_space_size is now bytes, not pages */
1275	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1276
1277	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1278
1279	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1280
1281	/* Verify it's a power of two */
1282	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1283
1284	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1285			__func__, ioc->ioc_regs,
1286			(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1287			iova_space_size>>20,
1288			iov_order + PAGE_SHIFT);
1289
1290	ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1291						 get_order(ioc->pdir_size));
1292	if(NULL == ioc->pdir_base) {
1293		panic("%s() could not allocate I/O Page Table\n", __func__);
1294	}
1295	memset(ioc->pdir_base, 0, ioc->pdir_size);
1296
1297	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1298	DBG_INIT(" base %p\n", ioc->pdir_base);
1299
1300	/* resource map size dictated by pdir_size */
1301 	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1302	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1303
1304	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1305					      get_order(ioc->res_size));
1306	if(NULL == ioc->res_map) {
1307		panic("%s() could not allocate resource map\n", __func__);
1308	}
1309	memset(ioc->res_map, 0, ioc->res_size);
1310
1311	/* Initialize the res_hint to 16 */
1312	ioc->res_hint = 16;
1313
1314	/* Initialize the spinlock */
1315	spin_lock_init(&ioc->res_lock);
1316
1317	/*
1318	** Chainid is the upper most bits of an IOVP used to determine
1319	** which TLB entry an IOVP will use.
1320	*/
1321	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1322	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1323
1324	/*
1325	** Initialize IOA hardware
1326	*/
1327	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1328		  &ioc->ioc_regs->io_chain_id_mask);
1329
1330	WRITE_U32(virt_to_phys(ioc->pdir_base),
1331		  &ioc->ioc_regs->io_pdir_base);
1332
1333	/*
1334	** Go to "Virtual Mode"
1335	*/
1336	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1337
1338	/*
1339	** Initialize all I/O TLB entries to 0 (Valid bit off).
1340	*/
1341	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1342	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1343
1344	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1345		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1346			  &ioc->ioc_regs->io_command);
1347	}
1348}
1349
1350static void __init
1351ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1352{
1353	int result;
1354
1355	res->parent = NULL;
1356	res->flags = IORESOURCE_MEM;
1357	/*
1358	 * bracing ((signed) ...) are required for 64bit kernel because
1359	 * we only want to sign extend the lower 16 bits of the register.
1360	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1361	 */
1362	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1363	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1364	res->name = name;
1365	/*
1366	 * Check if this MMIO range is disable
1367	 */
1368	if (res->end + 1 == res->start)
1369		return;
1370
1371	/* On some platforms (e.g. K-Class), we have already registered
1372	 * resources for devices reported by firmware. Some are children
1373	 * of ccio.
1374	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1375	 */
1376	result = insert_resource(&iomem_resource, res);
1377	if (result < 0) {
1378		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1379			__func__, (unsigned long)res->start, (unsigned long)res->end);
1380	}
1381}
1382
1383static int __init ccio_init_resources(struct ioc *ioc)
1384{
1385	struct resource *res = ioc->mmio_region;
1386	char *name = kmalloc(14, GFP_KERNEL);
1387	if (unlikely(!name))
1388		return -ENOMEM;
1389	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1390
1391	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1392	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1393	return 0;
1394}
1395
1396static int new_ioc_area(struct resource *res, unsigned long size,
1397		unsigned long min, unsigned long max, unsigned long align)
1398{
1399	if (max <= min)
1400		return -EBUSY;
1401
1402	res->start = (max - size + 1) &~ (align - 1);
1403	res->end = res->start + size;
1404
1405	/* We might be trying to expand the MMIO range to include
1406	 * a child device that has already registered it's MMIO space.
1407	 * Use "insert" instead of request_resource().
1408	 */
1409	if (!insert_resource(&iomem_resource, res))
1410		return 0;
1411
1412	return new_ioc_area(res, size, min, max - size, align);
1413}
1414
1415static int expand_ioc_area(struct resource *res, unsigned long size,
1416		unsigned long min, unsigned long max, unsigned long align)
1417{
1418	unsigned long start, len;
1419
1420	if (!res->parent)
1421		return new_ioc_area(res, size, min, max, align);
1422
1423	start = (res->start - size) &~ (align - 1);
1424	len = res->end - start + 1;
1425	if (start >= min) {
1426		if (!adjust_resource(res, start, len))
1427			return 0;
1428	}
1429
1430	start = res->start;
1431	len = ((size + res->end + align) &~ (align - 1)) - start;
1432	if (start + len <= max) {
1433		if (!adjust_resource(res, start, len))
1434			return 0;
1435	}
1436
1437	return -EBUSY;
1438}
1439
1440/*
1441 * Dino calls this function.  Beware that we may get called on systems
1442 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1443 * So it's legal to find no parent IOC.
1444 *
1445 * Some other issues: one of the resources in the ioc may be unassigned.
1446 */
1447int ccio_allocate_resource(const struct parisc_device *dev,
1448		struct resource *res, unsigned long size,
1449		unsigned long min, unsigned long max, unsigned long align)
1450{
1451	struct resource *parent = &iomem_resource;
1452	struct ioc *ioc = ccio_get_iommu(dev);
1453	if (!ioc)
1454		goto out;
1455
1456	parent = ioc->mmio_region;
1457	if (parent->parent &&
1458	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1459		return 0;
1460
1461	if ((parent + 1)->parent &&
1462	    !allocate_resource(parent + 1, res, size, min, max, align,
1463				NULL, NULL))
1464		return 0;
1465
1466	if (!expand_ioc_area(parent, size, min, max, align)) {
1467		__raw_writel(((parent->start)>>16) | 0xffff0000,
1468			     &ioc->ioc_regs->io_io_low);
1469		__raw_writel(((parent->end)>>16) | 0xffff0000,
1470			     &ioc->ioc_regs->io_io_high);
1471	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1472		parent++;
1473		__raw_writel(((parent->start)>>16) | 0xffff0000,
1474			     &ioc->ioc_regs->io_io_low_hv);
1475		__raw_writel(((parent->end)>>16) | 0xffff0000,
1476			     &ioc->ioc_regs->io_io_high_hv);
1477	} else {
1478		return -EBUSY;
1479	}
1480
1481 out:
1482	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1483}
1484
1485int ccio_request_resource(const struct parisc_device *dev,
1486		struct resource *res)
1487{
1488	struct resource *parent;
1489	struct ioc *ioc = ccio_get_iommu(dev);
1490
1491	if (!ioc) {
1492		parent = &iomem_resource;
1493	} else if ((ioc->mmio_region->start <= res->start) &&
1494			(res->end <= ioc->mmio_region->end)) {
1495		parent = ioc->mmio_region;
1496	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1497			(res->end <= (ioc->mmio_region + 1)->end)) {
1498		parent = ioc->mmio_region + 1;
1499	} else {
1500		return -EBUSY;
1501	}
1502
1503	/* "transparent" bus bridges need to register MMIO resources
1504	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1505	 * registered their resources in the PDC "bus walk" (See
1506	 * arch/parisc/kernel/inventory.c).
1507	 */
1508	return insert_resource(parent, res);
1509}
1510
1511/**
1512 * ccio_probe - Determine if ccio should claim this device.
1513 * @dev: The device which has been found
1514 *
1515 * Determine if ccio should claim this chip (return 0) or not (return 1).
1516 * If so, initialize the chip and tell other partners in crime they
1517 * have work to do.
1518 */
1519static int __init ccio_probe(struct parisc_device *dev)
1520{
1521	int i;
1522	struct ioc *ioc, **ioc_p = &ioc_list;
1523	struct pci_hba_data *hba;
1524
1525	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1526	if (ioc == NULL) {
1527		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1528		return -ENOMEM;
1529	}
1530
1531	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1532
1533	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1534		(unsigned long)dev->hpa.start);
1535
1536	for (i = 0; i < ioc_count; i++) {
1537		ioc_p = &(*ioc_p)->next;
1538	}
1539	*ioc_p = ioc;
1540
1541	ioc->hw_path = dev->hw_path;
1542	ioc->ioc_regs = ioremap(dev->hpa.start, 4096);
1543	if (!ioc->ioc_regs) {
1544		kfree(ioc);
1545		return -ENOMEM;
1546	}
1547	ccio_ioc_init(ioc);
1548	if (ccio_init_resources(ioc)) {
1549		iounmap(ioc->ioc_regs);
1550		kfree(ioc);
1551		return -ENOMEM;
1552	}
1553	hppa_dma_ops = &ccio_ops;
1554
1555	hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1556	/* if this fails, no I/O cards will work, so may as well bug */
1557	BUG_ON(hba == NULL);
1558
1559	hba->iommu = ioc;
1560	dev->dev.platform_data = hba;
1561
1562#ifdef CONFIG_PROC_FS
1563	if (ioc_count == 0) {
1564		proc_create_single(MODULE_NAME, 0, proc_runway_root,
1565				ccio_proc_info);
1566		proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1567				ccio_proc_bitmap_info);
1568	}
1569#endif
1570	ioc_count++;
1571	return 0;
1572}
1573
1574/**
1575 * ccio_init - ccio initialization procedure.
1576 *
1577 * Register this driver.
1578 */
1579void __init ccio_init(void)
1580{
1581	register_parisc_driver(&ccio_driver);
1582}
1583
1584