1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * This is the core of the buffer management. Each 12 * CPU buffer is processed and entered into the 13 * global event buffer. Such processing is necessary 14 * in several circumstances, mentioned below. 15 * 16 * The processing does the job of converting the 17 * transitory EIP value into a persistent dentry/offset 18 * value that the profiler can record at its leisure. 19 * 20 * See fs/dcookies.c for a description of the dentry/offset 21 * objects. 22 */ 23 24#include <linux/file.h> 25#include <linux/mm.h> 26#include <linux/workqueue.h> 27#include <linux/notifier.h> 28#include <linux/dcookies.h> 29#include <linux/profile.h> 30#include <linux/module.h> 31#include <linux/fs.h> 32#include <linux/oprofile.h> 33#include <linux/sched.h> 34#include <linux/sched/mm.h> 35#include <linux/sched/task.h> 36#include <linux/gfp.h> 37 38#include "oprofile_stats.h" 39#include "event_buffer.h" 40#include "cpu_buffer.h" 41#include "buffer_sync.h" 42 43static LIST_HEAD(dying_tasks); 44static LIST_HEAD(dead_tasks); 45static cpumask_var_t marked_cpus; 46static DEFINE_SPINLOCK(task_mortuary); 47static void process_task_mortuary(void); 48 49/* Take ownership of the task struct and place it on the 50 * list for processing. Only after two full buffer syncs 51 * does the task eventually get freed, because by then 52 * we are sure we will not reference it again. 53 * Can be invoked from softirq via RCU callback due to 54 * call_rcu() of the task struct, hence the _irqsave. 55 */ 56static int 57task_free_notify(struct notifier_block *self, unsigned long val, void *data) 58{ 59 unsigned long flags; 60 struct task_struct *task = data; 61 spin_lock_irqsave(&task_mortuary, flags); 62 list_add(&task->tasks, &dying_tasks); 63 spin_unlock_irqrestore(&task_mortuary, flags); 64 return NOTIFY_OK; 65} 66 67 68/* The task is on its way out. A sync of the buffer means we can catch 69 * any remaining samples for this task. 70 */ 71static int 72task_exit_notify(struct notifier_block *self, unsigned long val, void *data) 73{ 74 /* To avoid latency problems, we only process the current CPU, 75 * hoping that most samples for the task are on this CPU 76 */ 77 sync_buffer(raw_smp_processor_id()); 78 return 0; 79} 80 81 82/* The task is about to try a do_munmap(). We peek at what it's going to 83 * do, and if it's an executable region, process the samples first, so 84 * we don't lose any. This does not have to be exact, it's a QoI issue 85 * only. 86 */ 87static int 88munmap_notify(struct notifier_block *self, unsigned long val, void *data) 89{ 90 unsigned long addr = (unsigned long)data; 91 struct mm_struct *mm = current->mm; 92 struct vm_area_struct *mpnt; 93 94 mmap_read_lock(mm); 95 96 mpnt = find_vma(mm, addr); 97 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 98 mmap_read_unlock(mm); 99 /* To avoid latency problems, we only process the current CPU, 100 * hoping that most samples for the task are on this CPU 101 */ 102 sync_buffer(raw_smp_processor_id()); 103 return 0; 104 } 105 106 mmap_read_unlock(mm); 107 return 0; 108} 109 110 111/* We need to be told about new modules so we don't attribute to a previously 112 * loaded module, or drop the samples on the floor. 113 */ 114static int 115module_load_notify(struct notifier_block *self, unsigned long val, void *data) 116{ 117#ifdef CONFIG_MODULES 118 if (val != MODULE_STATE_COMING) 119 return NOTIFY_DONE; 120 121 /* FIXME: should we process all CPU buffers ? */ 122 mutex_lock(&buffer_mutex); 123 add_event_entry(ESCAPE_CODE); 124 add_event_entry(MODULE_LOADED_CODE); 125 mutex_unlock(&buffer_mutex); 126#endif 127 return NOTIFY_OK; 128} 129 130 131static struct notifier_block task_free_nb = { 132 .notifier_call = task_free_notify, 133}; 134 135static struct notifier_block task_exit_nb = { 136 .notifier_call = task_exit_notify, 137}; 138 139static struct notifier_block munmap_nb = { 140 .notifier_call = munmap_notify, 141}; 142 143static struct notifier_block module_load_nb = { 144 .notifier_call = module_load_notify, 145}; 146 147static void free_all_tasks(void) 148{ 149 /* make sure we don't leak task structs */ 150 process_task_mortuary(); 151 process_task_mortuary(); 152} 153 154int sync_start(void) 155{ 156 int err; 157 158 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL)) 159 return -ENOMEM; 160 161 err = task_handoff_register(&task_free_nb); 162 if (err) 163 goto out1; 164 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 165 if (err) 166 goto out2; 167 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 168 if (err) 169 goto out3; 170 err = register_module_notifier(&module_load_nb); 171 if (err) 172 goto out4; 173 174 start_cpu_work(); 175 176out: 177 return err; 178out4: 179 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 180out3: 181 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 182out2: 183 task_handoff_unregister(&task_free_nb); 184 free_all_tasks(); 185out1: 186 free_cpumask_var(marked_cpus); 187 goto out; 188} 189 190 191void sync_stop(void) 192{ 193 end_cpu_work(); 194 unregister_module_notifier(&module_load_nb); 195 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 196 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 197 task_handoff_unregister(&task_free_nb); 198 barrier(); /* do all of the above first */ 199 200 flush_cpu_work(); 201 202 free_all_tasks(); 203 free_cpumask_var(marked_cpus); 204} 205 206 207/* Optimisation. We can manage without taking the dcookie sem 208 * because we cannot reach this code without at least one 209 * dcookie user still being registered (namely, the reader 210 * of the event buffer). */ 211static inline unsigned long fast_get_dcookie(const struct path *path) 212{ 213 unsigned long cookie; 214 215 if (path->dentry->d_flags & DCACHE_COOKIE) 216 return (unsigned long)path->dentry; 217 get_dcookie(path, &cookie); 218 return cookie; 219} 220 221 222/* Look up the dcookie for the task's mm->exe_file, 223 * which corresponds loosely to "application name". This is 224 * not strictly necessary but allows oprofile to associate 225 * shared-library samples with particular applications 226 */ 227static unsigned long get_exec_dcookie(struct mm_struct *mm) 228{ 229 unsigned long cookie = NO_COOKIE; 230 struct file *exe_file; 231 232 if (!mm) 233 goto done; 234 235 exe_file = get_mm_exe_file(mm); 236 if (!exe_file) 237 goto done; 238 239 cookie = fast_get_dcookie(&exe_file->f_path); 240 fput(exe_file); 241done: 242 return cookie; 243} 244 245 246/* Convert the EIP value of a sample into a persistent dentry/offset 247 * pair that can then be added to the global event buffer. We make 248 * sure to do this lookup before a mm->mmap modification happens so 249 * we don't lose track. 250 * 251 * The caller must ensure the mm is not nil (ie: not a kernel thread). 252 */ 253static unsigned long 254lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) 255{ 256 unsigned long cookie = NO_COOKIE; 257 struct vm_area_struct *vma; 258 259 mmap_read_lock(mm); 260 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 261 262 if (addr < vma->vm_start || addr >= vma->vm_end) 263 continue; 264 265 if (vma->vm_file) { 266 cookie = fast_get_dcookie(&vma->vm_file->f_path); 267 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 268 vma->vm_start; 269 } else { 270 /* must be an anonymous map */ 271 *offset = addr; 272 } 273 274 break; 275 } 276 277 if (!vma) 278 cookie = INVALID_COOKIE; 279 mmap_read_unlock(mm); 280 281 return cookie; 282} 283 284static unsigned long last_cookie = INVALID_COOKIE; 285 286static void add_cpu_switch(int i) 287{ 288 add_event_entry(ESCAPE_CODE); 289 add_event_entry(CPU_SWITCH_CODE); 290 add_event_entry(i); 291 last_cookie = INVALID_COOKIE; 292} 293 294static void add_kernel_ctx_switch(unsigned int in_kernel) 295{ 296 add_event_entry(ESCAPE_CODE); 297 if (in_kernel) 298 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 299 else 300 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 301} 302 303static void 304add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) 305{ 306 add_event_entry(ESCAPE_CODE); 307 add_event_entry(CTX_SWITCH_CODE); 308 add_event_entry(task->pid); 309 add_event_entry(cookie); 310 /* Another code for daemon back-compat */ 311 add_event_entry(ESCAPE_CODE); 312 add_event_entry(CTX_TGID_CODE); 313 add_event_entry(task->tgid); 314} 315 316 317static void add_cookie_switch(unsigned long cookie) 318{ 319 add_event_entry(ESCAPE_CODE); 320 add_event_entry(COOKIE_SWITCH_CODE); 321 add_event_entry(cookie); 322} 323 324 325static void add_trace_begin(void) 326{ 327 add_event_entry(ESCAPE_CODE); 328 add_event_entry(TRACE_BEGIN_CODE); 329} 330 331static void add_data(struct op_entry *entry, struct mm_struct *mm) 332{ 333 unsigned long code, pc, val; 334 unsigned long cookie; 335 off_t offset; 336 337 if (!op_cpu_buffer_get_data(entry, &code)) 338 return; 339 if (!op_cpu_buffer_get_data(entry, &pc)) 340 return; 341 if (!op_cpu_buffer_get_size(entry)) 342 return; 343 344 if (mm) { 345 cookie = lookup_dcookie(mm, pc, &offset); 346 347 if (cookie == NO_COOKIE) 348 offset = pc; 349 if (cookie == INVALID_COOKIE) { 350 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 351 offset = pc; 352 } 353 if (cookie != last_cookie) { 354 add_cookie_switch(cookie); 355 last_cookie = cookie; 356 } 357 } else 358 offset = pc; 359 360 add_event_entry(ESCAPE_CODE); 361 add_event_entry(code); 362 add_event_entry(offset); /* Offset from Dcookie */ 363 364 while (op_cpu_buffer_get_data(entry, &val)) 365 add_event_entry(val); 366} 367 368static inline void add_sample_entry(unsigned long offset, unsigned long event) 369{ 370 add_event_entry(offset); 371 add_event_entry(event); 372} 373 374 375/* 376 * Add a sample to the global event buffer. If possible the 377 * sample is converted into a persistent dentry/offset pair 378 * for later lookup from userspace. Return 0 on failure. 379 */ 380static int 381add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) 382{ 383 unsigned long cookie; 384 off_t offset; 385 386 if (in_kernel) { 387 add_sample_entry(s->eip, s->event); 388 return 1; 389 } 390 391 /* add userspace sample */ 392 393 if (!mm) { 394 atomic_inc(&oprofile_stats.sample_lost_no_mm); 395 return 0; 396 } 397 398 cookie = lookup_dcookie(mm, s->eip, &offset); 399 400 if (cookie == INVALID_COOKIE) { 401 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 402 return 0; 403 } 404 405 if (cookie != last_cookie) { 406 add_cookie_switch(cookie); 407 last_cookie = cookie; 408 } 409 410 add_sample_entry(offset, s->event); 411 412 return 1; 413} 414 415 416static void release_mm(struct mm_struct *mm) 417{ 418 if (!mm) 419 return; 420 mmput(mm); 421} 422 423static inline int is_code(unsigned long val) 424{ 425 return val == ESCAPE_CODE; 426} 427 428 429/* Move tasks along towards death. Any tasks on dead_tasks 430 * will definitely have no remaining references in any 431 * CPU buffers at this point, because we use two lists, 432 * and to have reached the list, it must have gone through 433 * one full sync already. 434 */ 435static void process_task_mortuary(void) 436{ 437 unsigned long flags; 438 LIST_HEAD(local_dead_tasks); 439 struct task_struct *task; 440 struct task_struct *ttask; 441 442 spin_lock_irqsave(&task_mortuary, flags); 443 444 list_splice_init(&dead_tasks, &local_dead_tasks); 445 list_splice_init(&dying_tasks, &dead_tasks); 446 447 spin_unlock_irqrestore(&task_mortuary, flags); 448 449 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 450 list_del(&task->tasks); 451 free_task(task); 452 } 453} 454 455 456static void mark_done(int cpu) 457{ 458 int i; 459 460 cpumask_set_cpu(cpu, marked_cpus); 461 462 for_each_online_cpu(i) { 463 if (!cpumask_test_cpu(i, marked_cpus)) 464 return; 465 } 466 467 /* All CPUs have been processed at least once, 468 * we can process the mortuary once 469 */ 470 process_task_mortuary(); 471 472 cpumask_clear(marked_cpus); 473} 474 475 476/* FIXME: this is not sufficient if we implement syscall barrier backtrace 477 * traversal, the code switch to sb_sample_start at first kernel enter/exit 478 * switch so we need a fifth state and some special handling in sync_buffer() 479 */ 480typedef enum { 481 sb_bt_ignore = -2, 482 sb_buffer_start, 483 sb_bt_start, 484 sb_sample_start, 485} sync_buffer_state; 486 487/* Sync one of the CPU's buffers into the global event buffer. 488 * Here we need to go through each batch of samples punctuated 489 * by context switch notes, taking the task's mmap_lock and doing 490 * lookup in task->mm->mmap to convert EIP into dcookie/offset 491 * value. 492 */ 493void sync_buffer(int cpu) 494{ 495 struct mm_struct *mm = NULL; 496 struct mm_struct *oldmm; 497 unsigned long val; 498 struct task_struct *new; 499 unsigned long cookie = 0; 500 int in_kernel = 1; 501 sync_buffer_state state = sb_buffer_start; 502 unsigned int i; 503 unsigned long available; 504 unsigned long flags; 505 struct op_entry entry; 506 struct op_sample *sample; 507 508 mutex_lock(&buffer_mutex); 509 510 add_cpu_switch(cpu); 511 512 op_cpu_buffer_reset(cpu); 513 available = op_cpu_buffer_entries(cpu); 514 515 for (i = 0; i < available; ++i) { 516 sample = op_cpu_buffer_read_entry(&entry, cpu); 517 if (!sample) 518 break; 519 520 if (is_code(sample->eip)) { 521 flags = sample->event; 522 if (flags & TRACE_BEGIN) { 523 state = sb_bt_start; 524 add_trace_begin(); 525 } 526 if (flags & KERNEL_CTX_SWITCH) { 527 /* kernel/userspace switch */ 528 in_kernel = flags & IS_KERNEL; 529 if (state == sb_buffer_start) 530 state = sb_sample_start; 531 add_kernel_ctx_switch(flags & IS_KERNEL); 532 } 533 if (flags & USER_CTX_SWITCH 534 && op_cpu_buffer_get_data(&entry, &val)) { 535 /* userspace context switch */ 536 new = (struct task_struct *)val; 537 oldmm = mm; 538 release_mm(oldmm); 539 mm = get_task_mm(new); 540 if (mm != oldmm) 541 cookie = get_exec_dcookie(mm); 542 add_user_ctx_switch(new, cookie); 543 } 544 if (op_cpu_buffer_get_size(&entry)) 545 add_data(&entry, mm); 546 continue; 547 } 548 549 if (state < sb_bt_start) 550 /* ignore sample */ 551 continue; 552 553 if (add_sample(mm, sample, in_kernel)) 554 continue; 555 556 /* ignore backtraces if failed to add a sample */ 557 if (state == sb_bt_start) { 558 state = sb_bt_ignore; 559 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 560 } 561 } 562 release_mm(mm); 563 564 mark_done(cpu); 565 566 mutex_unlock(&buffer_mutex); 567} 568 569/* The function can be used to add a buffer worth of data directly to 570 * the kernel buffer. The buffer is assumed to be a circular buffer. 571 * Take the entries from index start and end at index end, wrapping 572 * at max_entries. 573 */ 574void oprofile_put_buff(unsigned long *buf, unsigned int start, 575 unsigned int stop, unsigned int max) 576{ 577 int i; 578 579 i = start; 580 581 mutex_lock(&buffer_mutex); 582 while (i != stop) { 583 add_event_entry(buf[i++]); 584 585 if (i >= max) 586 i = 0; 587 } 588 589 mutex_unlock(&buffer_mutex); 590} 591 592