1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13#include <linux/clk.h> 14#include <linux/errno.h> 15#include <linux/err.h> 16#include <linux/slab.h> 17#include <linux/device.h> 18#include <linux/export.h> 19#include <linux/pm_domain.h> 20#include <linux/regulator/consumer.h> 21 22#include "opp.h" 23 24/* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29LIST_HEAD(opp_tables); 30/* Lock to allow exclusive modification to the device and opp lists */ 31DEFINE_MUTEX(opp_table_lock); 32 33static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35{ 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43} 44 45static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46{ 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63} 64 65/** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76struct opp_table *_find_opp_table(struct device *dev) 77{ 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90} 91 92/** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102{ 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109} 110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112/** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120{ 121 if (IS_ERR_OR_NULL(opp)) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127} 128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130/** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138{ 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145} 146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148/** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159{ 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166} 167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169/** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176{ 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189} 190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192/** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199{ 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259} 260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262/** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271{ 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274} 275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277/** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285{ 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299} 300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302int _get_opp_count(struct opp_table *opp_table) 303{ 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317} 318 319/** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326int dev_pm_opp_get_opp_count(struct device *dev) 327{ 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343} 344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346/** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372{ 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401} 402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404/** 405 * dev_pm_opp_find_level_exact() - search for an exact level 406 * @dev: device for which we do this operation 407 * @level: level to search for 408 * 409 * Return: Searches for exact match in the opp table and returns pointer to the 410 * matching opp if found, else returns ERR_PTR in case of error and should 411 * be handled using IS_ERR. Error return values can be: 412 * EINVAL: for bad pointer 413 * ERANGE: no match found for search 414 * ENODEV: if device not found in list of registered devices 415 * 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after 417 * use. 418 */ 419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 420 unsigned int level) 421{ 422 struct opp_table *opp_table; 423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 424 425 opp_table = _find_opp_table(dev); 426 if (IS_ERR(opp_table)) { 427 int r = PTR_ERR(opp_table); 428 429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 430 return ERR_PTR(r); 431 } 432 433 mutex_lock(&opp_table->lock); 434 435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 436 if (temp_opp->level == level) { 437 opp = temp_opp; 438 439 /* Increment the reference count of OPP */ 440 dev_pm_opp_get(opp); 441 break; 442 } 443 } 444 445 mutex_unlock(&opp_table->lock); 446 dev_pm_opp_put_opp_table(opp_table); 447 448 return opp; 449} 450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 451 452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 453 unsigned long *freq) 454{ 455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 456 457 mutex_lock(&opp_table->lock); 458 459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 460 if (temp_opp->available && temp_opp->rate >= *freq) { 461 opp = temp_opp; 462 *freq = opp->rate; 463 464 /* Increment the reference count of OPP */ 465 dev_pm_opp_get(opp); 466 break; 467 } 468 } 469 470 mutex_unlock(&opp_table->lock); 471 472 return opp; 473} 474 475/** 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 477 * @dev: device for which we do this operation 478 * @freq: Start frequency 479 * 480 * Search for the matching ceil *available* OPP from a starting freq 481 * for a device. 482 * 483 * Return: matching *opp and refreshes *freq accordingly, else returns 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 485 * values can be: 486 * EINVAL: for bad pointer 487 * ERANGE: no match found for search 488 * ENODEV: if device not found in list of registered devices 489 * 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after 491 * use. 492 */ 493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 494 unsigned long *freq) 495{ 496 struct opp_table *opp_table; 497 struct dev_pm_opp *opp; 498 499 if (!dev || !freq) { 500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 501 return ERR_PTR(-EINVAL); 502 } 503 504 opp_table = _find_opp_table(dev); 505 if (IS_ERR(opp_table)) 506 return ERR_CAST(opp_table); 507 508 opp = _find_freq_ceil(opp_table, freq); 509 510 dev_pm_opp_put_opp_table(opp_table); 511 512 return opp; 513} 514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 515 516/** 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 518 * @dev: device for which we do this operation 519 * @freq: Start frequency 520 * 521 * Search for the matching floor *available* OPP from a starting freq 522 * for a device. 523 * 524 * Return: matching *opp and refreshes *freq accordingly, else returns 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 526 * values can be: 527 * EINVAL: for bad pointer 528 * ERANGE: no match found for search 529 * ENODEV: if device not found in list of registered devices 530 * 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after 532 * use. 533 */ 534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 535 unsigned long *freq) 536{ 537 struct opp_table *opp_table; 538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 539 540 if (!dev || !freq) { 541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 542 return ERR_PTR(-EINVAL); 543 } 544 545 opp_table = _find_opp_table(dev); 546 if (IS_ERR(opp_table)) 547 return ERR_CAST(opp_table); 548 549 mutex_lock(&opp_table->lock); 550 551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 552 if (temp_opp->available) { 553 /* go to the next node, before choosing prev */ 554 if (temp_opp->rate > *freq) 555 break; 556 else 557 opp = temp_opp; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) 563 dev_pm_opp_get(opp); 564 mutex_unlock(&opp_table->lock); 565 dev_pm_opp_put_opp_table(opp_table); 566 567 if (!IS_ERR(opp)) 568 *freq = opp->rate; 569 570 return opp; 571} 572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 573 574/** 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 576 * target voltage. 577 * @dev: Device for which we do this operation. 578 * @u_volt: Target voltage. 579 * 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 581 * 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be 583 * handled using IS_ERR. 584 * 585 * Error return values can be: 586 * EINVAL: bad parameters 587 * 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after 589 * use. 590 */ 591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 592 unsigned long u_volt) 593{ 594 struct opp_table *opp_table; 595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 596 597 if (!dev || !u_volt) { 598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 599 u_volt); 600 return ERR_PTR(-EINVAL); 601 } 602 603 opp_table = _find_opp_table(dev); 604 if (IS_ERR(opp_table)) 605 return ERR_CAST(opp_table); 606 607 mutex_lock(&opp_table->lock); 608 609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 610 if (temp_opp->available) { 611 if (temp_opp->supplies[0].u_volt > u_volt) 612 break; 613 opp = temp_opp; 614 } 615 } 616 617 /* Increment the reference count of OPP */ 618 if (!IS_ERR(opp)) 619 dev_pm_opp_get(opp); 620 621 mutex_unlock(&opp_table->lock); 622 dev_pm_opp_put_opp_table(opp_table); 623 624 return opp; 625} 626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 627 628static int _set_opp_voltage(struct device *dev, struct regulator *reg, 629 struct dev_pm_opp_supply *supply) 630{ 631 int ret; 632 633 /* Regulator not available for device */ 634 if (IS_ERR(reg)) { 635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 636 PTR_ERR(reg)); 637 return 0; 638 } 639 640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 641 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 642 643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 644 supply->u_volt, supply->u_volt_max); 645 if (ret) 646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 647 __func__, supply->u_volt_min, supply->u_volt, 648 supply->u_volt_max, ret); 649 650 return ret; 651} 652 653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 654 unsigned long freq) 655{ 656 int ret; 657 658 ret = clk_set_rate(clk, freq); 659 if (ret) { 660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 661 ret); 662 } 663 664 return ret; 665} 666 667static int _generic_set_opp_regulator(struct opp_table *opp_table, 668 struct device *dev, 669 unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673{ 674 struct regulator *reg = opp_table->regulators[0]; 675 int ret; 676 677 /* This function only supports single regulator per device */ 678 if (WARN_ON(opp_table->regulator_count > 1)) { 679 dev_err(dev, "multiple regulators are not supported\n"); 680 return -EINVAL; 681 } 682 683 /* Scaling up? Scale voltage before frequency */ 684 if (freq >= old_freq) { 685 ret = _set_opp_voltage(dev, reg, new_supply); 686 if (ret) 687 goto restore_voltage; 688 } 689 690 /* Change frequency */ 691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 692 if (ret) 693 goto restore_voltage; 694 695 /* Scaling down? Scale voltage after frequency */ 696 if (freq < old_freq) { 697 ret = _set_opp_voltage(dev, reg, new_supply); 698 if (ret) 699 goto restore_freq; 700 } 701 702 /* 703 * Enable the regulator after setting its voltages, otherwise it breaks 704 * some boot-enabled regulators. 705 */ 706 if (unlikely(!opp_table->enabled)) { 707 ret = regulator_enable(reg); 708 if (ret < 0) 709 dev_warn(dev, "Failed to enable regulator: %d", ret); 710 } 711 712 return 0; 713 714restore_freq: 715 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 716 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 717 __func__, old_freq); 718restore_voltage: 719 /* This shouldn't harm even if the voltages weren't updated earlier */ 720 if (old_supply) 721 _set_opp_voltage(dev, reg, old_supply); 722 723 return ret; 724} 725 726static int _set_opp_bw(const struct opp_table *opp_table, 727 struct dev_pm_opp *opp, struct device *dev, bool remove) 728{ 729 u32 avg, peak; 730 int i, ret; 731 732 if (!opp_table->paths) 733 return 0; 734 735 for (i = 0; i < opp_table->path_count; i++) { 736 if (remove) { 737 avg = 0; 738 peak = 0; 739 } else { 740 avg = opp->bandwidth[i].avg; 741 peak = opp->bandwidth[i].peak; 742 } 743 ret = icc_set_bw(opp_table->paths[i], avg, peak); 744 if (ret) { 745 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 746 remove ? "remove" : "set", i, ret); 747 return ret; 748 } 749 } 750 751 return 0; 752} 753 754static int _set_opp_custom(const struct opp_table *opp_table, 755 struct device *dev, unsigned long old_freq, 756 unsigned long freq, 757 struct dev_pm_opp_supply *old_supply, 758 struct dev_pm_opp_supply *new_supply) 759{ 760 struct dev_pm_set_opp_data *data; 761 int size; 762 763 data = opp_table->set_opp_data; 764 data->regulators = opp_table->regulators; 765 data->regulator_count = opp_table->regulator_count; 766 data->clk = opp_table->clk; 767 data->dev = dev; 768 769 data->old_opp.rate = old_freq; 770 size = sizeof(*old_supply) * opp_table->regulator_count; 771 if (!old_supply) 772 memset(data->old_opp.supplies, 0, size); 773 else 774 memcpy(data->old_opp.supplies, old_supply, size); 775 776 data->new_opp.rate = freq; 777 memcpy(data->new_opp.supplies, new_supply, size); 778 779 return opp_table->set_opp(data); 780} 781 782static int _set_required_opp(struct device *dev, struct device *pd_dev, 783 struct dev_pm_opp *opp, int i) 784{ 785 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 786 int ret; 787 788 if (!pd_dev) 789 return 0; 790 791 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 792 if (ret) { 793 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 794 dev_name(pd_dev), pstate, ret); 795 } 796 797 return ret; 798} 799 800/* This is only called for PM domain for now */ 801static int _set_required_opps(struct device *dev, 802 struct opp_table *opp_table, 803 struct dev_pm_opp *opp, bool up) 804{ 805 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 806 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 807 int i, ret = 0; 808 809 if (!required_opp_tables) 810 return 0; 811 812 /* Single genpd case */ 813 if (!genpd_virt_devs) 814 return _set_required_opp(dev, dev, opp, 0); 815 816 /* Multiple genpd case */ 817 818 /* 819 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 820 * after it is freed from another thread. 821 */ 822 mutex_lock(&opp_table->genpd_virt_dev_lock); 823 824 /* Scaling up? Set required OPPs in normal order, else reverse */ 825 if (up) { 826 for (i = 0; i < opp_table->required_opp_count; i++) { 827 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 828 if (ret) 829 break; 830 } 831 } else { 832 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 833 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 834 if (ret) 835 break; 836 } 837 } 838 839 mutex_unlock(&opp_table->genpd_virt_dev_lock); 840 841 return ret; 842} 843 844/** 845 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp 846 * @dev: device for which we do this operation 847 * @opp: opp based on which the bandwidth levels are to be configured 848 * 849 * This configures the bandwidth to the levels specified by the OPP. However 850 * if the OPP specified is NULL the bandwidth levels are cleared out. 851 * 852 * Return: 0 on success or a negative error value. 853 */ 854int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp) 855{ 856 struct opp_table *opp_table; 857 int ret; 858 859 opp_table = _find_opp_table(dev); 860 if (IS_ERR(opp_table)) { 861 dev_err(dev, "%s: device opp table doesn't exist\n", __func__); 862 return PTR_ERR(opp_table); 863 } 864 865 if (opp) 866 ret = _set_opp_bw(opp_table, opp, dev, false); 867 else 868 ret = _set_opp_bw(opp_table, NULL, dev, true); 869 870 dev_pm_opp_put_opp_table(opp_table); 871 return ret; 872} 873EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw); 874 875static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table) 876{ 877 int ret; 878 879 if (!opp_table->enabled) 880 return 0; 881 882 /* 883 * Some drivers need to support cases where some platforms may 884 * have OPP table for the device, while others don't and 885 * opp_set_rate() just needs to behave like clk_set_rate(). 886 */ 887 if (!_get_opp_count(opp_table)) 888 return 0; 889 890 ret = _set_opp_bw(opp_table, NULL, dev, true); 891 if (ret) 892 return ret; 893 894 if (opp_table->regulators) 895 regulator_disable(opp_table->regulators[0]); 896 897 ret = _set_required_opps(dev, opp_table, NULL, false); 898 899 opp_table->enabled = false; 900 return ret; 901} 902 903/** 904 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 905 * @dev: device for which we do this operation 906 * @target_freq: frequency to achieve 907 * 908 * This configures the power-supplies to the levels specified by the OPP 909 * corresponding to the target_freq, and programs the clock to a value <= 910 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 911 * provided by the opp, should have already rounded to the target OPP's 912 * frequency. 913 */ 914int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 915{ 916 struct opp_table *opp_table; 917 unsigned long freq, old_freq, temp_freq; 918 struct dev_pm_opp *old_opp, *opp; 919 struct clk *clk; 920 int ret; 921 922 opp_table = _find_opp_table(dev); 923 if (IS_ERR(opp_table)) { 924 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 925 return PTR_ERR(opp_table); 926 } 927 928 if (unlikely(!target_freq)) { 929 ret = _opp_set_rate_zero(dev, opp_table); 930 goto put_opp_table; 931 } 932 933 clk = opp_table->clk; 934 if (IS_ERR(clk)) { 935 dev_err(dev, "%s: No clock available for the device\n", 936 __func__); 937 ret = PTR_ERR(clk); 938 goto put_opp_table; 939 } 940 941 freq = clk_round_rate(clk, target_freq); 942 if ((long)freq <= 0) 943 freq = target_freq; 944 945 old_freq = clk_get_rate(clk); 946 947 /* Return early if nothing to do */ 948 if (opp_table->enabled && old_freq == freq) { 949 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 950 __func__, freq); 951 ret = 0; 952 goto put_opp_table; 953 } 954 955 /* 956 * For IO devices which require an OPP on some platforms/SoCs 957 * while just needing to scale the clock on some others 958 * we look for empty OPP tables with just a clock handle and 959 * scale only the clk. This makes dev_pm_opp_set_rate() 960 * equivalent to a clk_set_rate() 961 */ 962 if (!_get_opp_count(opp_table)) { 963 ret = _generic_set_opp_clk_only(dev, clk, freq); 964 goto put_opp_table; 965 } 966 967 temp_freq = old_freq; 968 old_opp = _find_freq_ceil(opp_table, &temp_freq); 969 if (IS_ERR(old_opp)) { 970 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 971 __func__, old_freq, PTR_ERR(old_opp)); 972 } 973 974 temp_freq = freq; 975 opp = _find_freq_ceil(opp_table, &temp_freq); 976 if (IS_ERR(opp)) { 977 ret = PTR_ERR(opp); 978 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 979 __func__, freq, ret); 980 goto put_old_opp; 981 } 982 983 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 984 old_freq, freq); 985 986 /* Scaling up? Configure required OPPs before frequency */ 987 if (freq >= old_freq) { 988 ret = _set_required_opps(dev, opp_table, opp, true); 989 if (ret) 990 goto put_opp; 991 } 992 993 if (opp_table->set_opp) { 994 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 995 IS_ERR(old_opp) ? NULL : old_opp->supplies, 996 opp->supplies); 997 } else if (opp_table->regulators) { 998 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 999 IS_ERR(old_opp) ? NULL : old_opp->supplies, 1000 opp->supplies); 1001 } else { 1002 /* Only frequency scaling */ 1003 ret = _generic_set_opp_clk_only(dev, clk, freq); 1004 } 1005 1006 /* Scaling down? Configure required OPPs after frequency */ 1007 if (!ret && freq < old_freq) { 1008 ret = _set_required_opps(dev, opp_table, opp, false); 1009 if (ret) 1010 dev_err(dev, "Failed to set required opps: %d\n", ret); 1011 } 1012 1013 if (!ret) { 1014 ret = _set_opp_bw(opp_table, opp, dev, false); 1015 if (!ret) 1016 opp_table->enabled = true; 1017 } 1018 1019put_opp: 1020 dev_pm_opp_put(opp); 1021put_old_opp: 1022 if (!IS_ERR(old_opp)) 1023 dev_pm_opp_put(old_opp); 1024put_opp_table: 1025 dev_pm_opp_put_opp_table(opp_table); 1026 return ret; 1027} 1028EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1029 1030/* OPP-dev Helpers */ 1031static void _remove_opp_dev(struct opp_device *opp_dev, 1032 struct opp_table *opp_table) 1033{ 1034 opp_debug_unregister(opp_dev, opp_table); 1035 list_del(&opp_dev->node); 1036 kfree(opp_dev); 1037} 1038 1039static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 1040 struct opp_table *opp_table) 1041{ 1042 struct opp_device *opp_dev; 1043 1044 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1045 if (!opp_dev) 1046 return NULL; 1047 1048 /* Initialize opp-dev */ 1049 opp_dev->dev = dev; 1050 1051 list_add(&opp_dev->node, &opp_table->dev_list); 1052 1053 /* Create debugfs entries for the opp_table */ 1054 opp_debug_register(opp_dev, opp_table); 1055 1056 return opp_dev; 1057} 1058 1059struct opp_device *_add_opp_dev(const struct device *dev, 1060 struct opp_table *opp_table) 1061{ 1062 struct opp_device *opp_dev; 1063 1064 mutex_lock(&opp_table->lock); 1065 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 1066 mutex_unlock(&opp_table->lock); 1067 1068 return opp_dev; 1069} 1070 1071static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1072{ 1073 struct opp_table *opp_table; 1074 struct opp_device *opp_dev; 1075 int ret; 1076 1077 /* 1078 * Allocate a new OPP table. In the infrequent case where a new 1079 * device is needed to be added, we pay this penalty. 1080 */ 1081 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1082 if (!opp_table) 1083 return ERR_PTR(-ENOMEM); 1084 1085 mutex_init(&opp_table->lock); 1086 mutex_init(&opp_table->genpd_virt_dev_lock); 1087 INIT_LIST_HEAD(&opp_table->dev_list); 1088 1089 /* Mark regulator count uninitialized */ 1090 opp_table->regulator_count = -1; 1091 1092 opp_dev = _add_opp_dev(dev, opp_table); 1093 if (!opp_dev) { 1094 ret = -ENOMEM; 1095 goto err; 1096 } 1097 1098 _of_init_opp_table(opp_table, dev, index); 1099 1100 /* Find clk for the device */ 1101 opp_table->clk = clk_get(dev, NULL); 1102 if (IS_ERR(opp_table->clk)) { 1103 ret = PTR_ERR(opp_table->clk); 1104 if (ret == -EPROBE_DEFER) 1105 goto remove_opp_dev; 1106 1107 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1108 } 1109 1110 /* Find interconnect path(s) for the device */ 1111 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1112 if (ret) { 1113 if (ret == -EPROBE_DEFER) 1114 goto put_clk; 1115 1116 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1117 __func__, ret); 1118 } 1119 1120 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1121 INIT_LIST_HEAD(&opp_table->opp_list); 1122 kref_init(&opp_table->kref); 1123 1124 /* Secure the device table modification */ 1125 list_add(&opp_table->node, &opp_tables); 1126 return opp_table; 1127 1128put_clk: 1129 if (!IS_ERR(opp_table->clk)) 1130 clk_put(opp_table->clk); 1131remove_opp_dev: 1132 _remove_opp_dev(opp_dev, opp_table); 1133err: 1134 kfree(opp_table); 1135 return ERR_PTR(ret); 1136} 1137 1138void _get_opp_table_kref(struct opp_table *opp_table) 1139{ 1140 kref_get(&opp_table->kref); 1141} 1142 1143static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 1144{ 1145 struct opp_table *opp_table; 1146 1147 /* Hold our table modification lock here */ 1148 mutex_lock(&opp_table_lock); 1149 1150 opp_table = _find_opp_table_unlocked(dev); 1151 if (!IS_ERR(opp_table)) 1152 goto unlock; 1153 1154 opp_table = _managed_opp(dev, index); 1155 if (opp_table) { 1156 if (!_add_opp_dev_unlocked(dev, opp_table)) { 1157 dev_pm_opp_put_opp_table(opp_table); 1158 opp_table = ERR_PTR(-ENOMEM); 1159 } 1160 goto unlock; 1161 } 1162 1163 opp_table = _allocate_opp_table(dev, index); 1164 1165unlock: 1166 mutex_unlock(&opp_table_lock); 1167 1168 return opp_table; 1169} 1170 1171struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1172{ 1173 return _opp_get_opp_table(dev, 0); 1174} 1175EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1176 1177struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 1178 int index) 1179{ 1180 return _opp_get_opp_table(dev, index); 1181} 1182 1183static void _opp_table_kref_release(struct kref *kref) 1184{ 1185 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1186 struct opp_device *opp_dev, *temp; 1187 int i; 1188 1189 /* Drop the lock as soon as we can */ 1190 list_del(&opp_table->node); 1191 mutex_unlock(&opp_table_lock); 1192 1193 _of_clear_opp_table(opp_table); 1194 1195 /* Release clk */ 1196 if (!IS_ERR(opp_table->clk)) 1197 clk_put(opp_table->clk); 1198 1199 if (opp_table->paths) { 1200 for (i = 0; i < opp_table->path_count; i++) 1201 icc_put(opp_table->paths[i]); 1202 kfree(opp_table->paths); 1203 } 1204 1205 WARN_ON(!list_empty(&opp_table->opp_list)); 1206 1207 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1208 /* 1209 * The OPP table is getting removed, drop the performance state 1210 * constraints. 1211 */ 1212 if (opp_table->genpd_performance_state) 1213 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1214 1215 _remove_opp_dev(opp_dev, opp_table); 1216 } 1217 1218 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1219 mutex_destroy(&opp_table->lock); 1220 kfree(opp_table); 1221} 1222 1223void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1224{ 1225 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1226 &opp_table_lock); 1227} 1228EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1229 1230void _opp_free(struct dev_pm_opp *opp) 1231{ 1232 kfree(opp); 1233} 1234 1235static void _opp_kref_release(struct dev_pm_opp *opp, 1236 struct opp_table *opp_table) 1237{ 1238 /* 1239 * Notify the changes in the availability of the operable 1240 * frequency/voltage list. 1241 */ 1242 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1243 _of_opp_free_required_opps(opp_table, opp); 1244 opp_debug_remove_one(opp); 1245 list_del(&opp->node); 1246 kfree(opp); 1247} 1248 1249static void _opp_kref_release_unlocked(struct kref *kref) 1250{ 1251 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1252 struct opp_table *opp_table = opp->opp_table; 1253 1254 _opp_kref_release(opp, opp_table); 1255} 1256 1257static void _opp_kref_release_locked(struct kref *kref) 1258{ 1259 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1260 struct opp_table *opp_table = opp->opp_table; 1261 1262 _opp_kref_release(opp, opp_table); 1263 mutex_unlock(&opp_table->lock); 1264} 1265 1266void dev_pm_opp_get(struct dev_pm_opp *opp) 1267{ 1268 kref_get(&opp->kref); 1269} 1270 1271void dev_pm_opp_put(struct dev_pm_opp *opp) 1272{ 1273 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1274 &opp->opp_table->lock); 1275} 1276EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1277 1278static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1279{ 1280 kref_put(&opp->kref, _opp_kref_release_unlocked); 1281} 1282 1283/** 1284 * dev_pm_opp_remove() - Remove an OPP from OPP table 1285 * @dev: device for which we do this operation 1286 * @freq: OPP to remove with matching 'freq' 1287 * 1288 * This function removes an opp from the opp table. 1289 */ 1290void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1291{ 1292 struct dev_pm_opp *opp; 1293 struct opp_table *opp_table; 1294 bool found = false; 1295 1296 opp_table = _find_opp_table(dev); 1297 if (IS_ERR(opp_table)) 1298 return; 1299 1300 mutex_lock(&opp_table->lock); 1301 1302 list_for_each_entry(opp, &opp_table->opp_list, node) { 1303 if (opp->rate == freq) { 1304 found = true; 1305 break; 1306 } 1307 } 1308 1309 mutex_unlock(&opp_table->lock); 1310 1311 if (found) { 1312 dev_pm_opp_put(opp); 1313 1314 /* Drop the reference taken by dev_pm_opp_add() */ 1315 dev_pm_opp_put_opp_table(opp_table); 1316 } else { 1317 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1318 __func__, freq); 1319 } 1320 1321 /* Drop the reference taken by _find_opp_table() */ 1322 dev_pm_opp_put_opp_table(opp_table); 1323} 1324EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1325 1326bool _opp_remove_all_static(struct opp_table *opp_table) 1327{ 1328 struct dev_pm_opp *opp, *tmp; 1329 bool ret = true; 1330 1331 mutex_lock(&opp_table->lock); 1332 1333 if (!opp_table->parsed_static_opps) { 1334 ret = false; 1335 goto unlock; 1336 } 1337 1338 if (--opp_table->parsed_static_opps) 1339 goto unlock; 1340 1341 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1342 if (!opp->dynamic) 1343 dev_pm_opp_put_unlocked(opp); 1344 } 1345 1346unlock: 1347 mutex_unlock(&opp_table->lock); 1348 1349 return ret; 1350} 1351 1352/** 1353 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1354 * @dev: device for which we do this operation 1355 * 1356 * This function removes all dynamically created OPPs from the opp table. 1357 */ 1358void dev_pm_opp_remove_all_dynamic(struct device *dev) 1359{ 1360 struct opp_table *opp_table; 1361 struct dev_pm_opp *opp, *temp; 1362 int count = 0; 1363 1364 opp_table = _find_opp_table(dev); 1365 if (IS_ERR(opp_table)) 1366 return; 1367 1368 mutex_lock(&opp_table->lock); 1369 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1370 if (opp->dynamic) { 1371 dev_pm_opp_put_unlocked(opp); 1372 count++; 1373 } 1374 } 1375 mutex_unlock(&opp_table->lock); 1376 1377 /* Drop the references taken by dev_pm_opp_add() */ 1378 while (count--) 1379 dev_pm_opp_put_opp_table(opp_table); 1380 1381 /* Drop the reference taken by _find_opp_table() */ 1382 dev_pm_opp_put_opp_table(opp_table); 1383} 1384EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1385 1386struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1387{ 1388 struct dev_pm_opp *opp; 1389 int supply_count, supply_size, icc_size; 1390 1391 /* Allocate space for at least one supply */ 1392 supply_count = table->regulator_count > 0 ? table->regulator_count : 1; 1393 supply_size = sizeof(*opp->supplies) * supply_count; 1394 icc_size = sizeof(*opp->bandwidth) * table->path_count; 1395 1396 /* allocate new OPP node and supplies structures */ 1397 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL); 1398 1399 if (!opp) 1400 return NULL; 1401 1402 /* Put the supplies at the end of the OPP structure as an empty array */ 1403 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1404 if (icc_size) 1405 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count); 1406 INIT_LIST_HEAD(&opp->node); 1407 1408 return opp; 1409} 1410 1411static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1412 struct opp_table *opp_table) 1413{ 1414 struct regulator *reg; 1415 int i; 1416 1417 if (!opp_table->regulators) 1418 return true; 1419 1420 for (i = 0; i < opp_table->regulator_count; i++) { 1421 reg = opp_table->regulators[i]; 1422 1423 if (!regulator_is_supported_voltage(reg, 1424 opp->supplies[i].u_volt_min, 1425 opp->supplies[i].u_volt_max)) { 1426 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1427 __func__, opp->supplies[i].u_volt_min, 1428 opp->supplies[i].u_volt_max); 1429 return false; 1430 } 1431 } 1432 1433 return true; 1434} 1435 1436int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1437{ 1438 if (opp1->rate != opp2->rate) 1439 return opp1->rate < opp2->rate ? -1 : 1; 1440 if (opp1->bandwidth && opp2->bandwidth && 1441 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak) 1442 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1; 1443 if (opp1->level != opp2->level) 1444 return opp1->level < opp2->level ? -1 : 1; 1445 return 0; 1446} 1447 1448static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1449 struct opp_table *opp_table, 1450 struct list_head **head) 1451{ 1452 struct dev_pm_opp *opp; 1453 int opp_cmp; 1454 1455 /* 1456 * Insert new OPP in order of increasing frequency and discard if 1457 * already present. 1458 * 1459 * Need to use &opp_table->opp_list in the condition part of the 'for' 1460 * loop, don't replace it with head otherwise it will become an infinite 1461 * loop. 1462 */ 1463 list_for_each_entry(opp, &opp_table->opp_list, node) { 1464 opp_cmp = _opp_compare_key(new_opp, opp); 1465 if (opp_cmp > 0) { 1466 *head = &opp->node; 1467 continue; 1468 } 1469 1470 if (opp_cmp < 0) 1471 return 0; 1472 1473 /* Duplicate OPPs */ 1474 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1475 __func__, opp->rate, opp->supplies[0].u_volt, 1476 opp->available, new_opp->rate, 1477 new_opp->supplies[0].u_volt, new_opp->available); 1478 1479 /* Should we compare voltages for all regulators here ? */ 1480 return opp->available && 1481 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1482 } 1483 1484 return 0; 1485} 1486 1487/* 1488 * Returns: 1489 * 0: On success. And appropriate error message for duplicate OPPs. 1490 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1491 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1492 * sure we don't print error messages unnecessarily if different parts of 1493 * kernel try to initialize the OPP table. 1494 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1495 * should be considered an error by the callers of _opp_add(). 1496 */ 1497int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1498 struct opp_table *opp_table, bool rate_not_available) 1499{ 1500 struct list_head *head; 1501 int ret; 1502 1503 mutex_lock(&opp_table->lock); 1504 head = &opp_table->opp_list; 1505 1506 if (likely(!rate_not_available)) { 1507 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1508 if (ret) { 1509 mutex_unlock(&opp_table->lock); 1510 return ret; 1511 } 1512 } 1513 1514 list_add(&new_opp->node, head); 1515 mutex_unlock(&opp_table->lock); 1516 1517 new_opp->opp_table = opp_table; 1518 kref_init(&new_opp->kref); 1519 1520 opp_debug_create_one(new_opp, opp_table); 1521 1522 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1523 new_opp->available = false; 1524 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1525 __func__, new_opp->rate); 1526 } 1527 1528 return 0; 1529} 1530 1531/** 1532 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1533 * @opp_table: OPP table 1534 * @dev: device for which we do this operation 1535 * @freq: Frequency in Hz for this OPP 1536 * @u_volt: Voltage in uVolts for this OPP 1537 * @dynamic: Dynamically added OPPs. 1538 * 1539 * This function adds an opp definition to the opp table and returns status. 1540 * The opp is made available by default and it can be controlled using 1541 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1542 * 1543 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1544 * and freed by dev_pm_opp_of_remove_table. 1545 * 1546 * Return: 1547 * 0 On success OR 1548 * Duplicate OPPs (both freq and volt are same) and opp->available 1549 * -EEXIST Freq are same and volt are different OR 1550 * Duplicate OPPs (both freq and volt are same) and !opp->available 1551 * -ENOMEM Memory allocation failure 1552 */ 1553int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1554 unsigned long freq, long u_volt, bool dynamic) 1555{ 1556 struct dev_pm_opp *new_opp; 1557 unsigned long tol; 1558 int ret; 1559 1560 new_opp = _opp_allocate(opp_table); 1561 if (!new_opp) 1562 return -ENOMEM; 1563 1564 /* populate the opp table */ 1565 new_opp->rate = freq; 1566 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1567 new_opp->supplies[0].u_volt = u_volt; 1568 new_opp->supplies[0].u_volt_min = u_volt - tol; 1569 new_opp->supplies[0].u_volt_max = u_volt + tol; 1570 new_opp->available = true; 1571 new_opp->dynamic = dynamic; 1572 1573 ret = _opp_add(dev, new_opp, opp_table, false); 1574 if (ret) { 1575 /* Don't return error for duplicate OPPs */ 1576 if (ret == -EBUSY) 1577 ret = 0; 1578 goto free_opp; 1579 } 1580 1581 /* 1582 * Notify the changes in the availability of the operable 1583 * frequency/voltage list. 1584 */ 1585 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1586 return 0; 1587 1588free_opp: 1589 _opp_free(new_opp); 1590 1591 return ret; 1592} 1593 1594/** 1595 * dev_pm_opp_set_supported_hw() - Set supported platforms 1596 * @dev: Device for which supported-hw has to be set. 1597 * @versions: Array of hierarchy of versions to match. 1598 * @count: Number of elements in the array. 1599 * 1600 * This is required only for the V2 bindings, and it enables a platform to 1601 * specify the hierarchy of versions it supports. OPP layer will then enable 1602 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1603 * property. 1604 */ 1605struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1606 const u32 *versions, unsigned int count) 1607{ 1608 struct opp_table *opp_table; 1609 1610 opp_table = dev_pm_opp_get_opp_table(dev); 1611 if (IS_ERR(opp_table)) 1612 return opp_table; 1613 1614 /* Make sure there are no concurrent readers while updating opp_table */ 1615 WARN_ON(!list_empty(&opp_table->opp_list)); 1616 1617 /* Another CPU that shares the OPP table has set the property ? */ 1618 if (opp_table->supported_hw) 1619 return opp_table; 1620 1621 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1622 GFP_KERNEL); 1623 if (!opp_table->supported_hw) { 1624 dev_pm_opp_put_opp_table(opp_table); 1625 return ERR_PTR(-ENOMEM); 1626 } 1627 1628 opp_table->supported_hw_count = count; 1629 1630 return opp_table; 1631} 1632EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1633 1634/** 1635 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1636 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1637 * 1638 * This is required only for the V2 bindings, and is called for a matching 1639 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1640 * will not be freed. 1641 */ 1642void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1643{ 1644 /* Make sure there are no concurrent readers while updating opp_table */ 1645 WARN_ON(!list_empty(&opp_table->opp_list)); 1646 1647 kfree(opp_table->supported_hw); 1648 opp_table->supported_hw = NULL; 1649 opp_table->supported_hw_count = 0; 1650 1651 dev_pm_opp_put_opp_table(opp_table); 1652} 1653EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1654 1655/** 1656 * dev_pm_opp_set_prop_name() - Set prop-extn name 1657 * @dev: Device for which the prop-name has to be set. 1658 * @name: name to postfix to properties. 1659 * 1660 * This is required only for the V2 bindings, and it enables a platform to 1661 * specify the extn to be used for certain property names. The properties to 1662 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1663 * should postfix the property name with -<name> while looking for them. 1664 */ 1665struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1666{ 1667 struct opp_table *opp_table; 1668 1669 opp_table = dev_pm_opp_get_opp_table(dev); 1670 if (IS_ERR(opp_table)) 1671 return opp_table; 1672 1673 /* Make sure there are no concurrent readers while updating opp_table */ 1674 WARN_ON(!list_empty(&opp_table->opp_list)); 1675 1676 /* Another CPU that shares the OPP table has set the property ? */ 1677 if (opp_table->prop_name) 1678 return opp_table; 1679 1680 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1681 if (!opp_table->prop_name) { 1682 dev_pm_opp_put_opp_table(opp_table); 1683 return ERR_PTR(-ENOMEM); 1684 } 1685 1686 return opp_table; 1687} 1688EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1689 1690/** 1691 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1692 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1693 * 1694 * This is required only for the V2 bindings, and is called for a matching 1695 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1696 * will not be freed. 1697 */ 1698void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1699{ 1700 /* Make sure there are no concurrent readers while updating opp_table */ 1701 WARN_ON(!list_empty(&opp_table->opp_list)); 1702 1703 kfree(opp_table->prop_name); 1704 opp_table->prop_name = NULL; 1705 1706 dev_pm_opp_put_opp_table(opp_table); 1707} 1708EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1709 1710static int _allocate_set_opp_data(struct opp_table *opp_table) 1711{ 1712 struct dev_pm_set_opp_data *data; 1713 int len, count = opp_table->regulator_count; 1714 1715 if (WARN_ON(!opp_table->regulators)) 1716 return -EINVAL; 1717 1718 /* space for set_opp_data */ 1719 len = sizeof(*data); 1720 1721 /* space for old_opp.supplies and new_opp.supplies */ 1722 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1723 1724 data = kzalloc(len, GFP_KERNEL); 1725 if (!data) 1726 return -ENOMEM; 1727 1728 data->old_opp.supplies = (void *)(data + 1); 1729 data->new_opp.supplies = data->old_opp.supplies + count; 1730 1731 opp_table->set_opp_data = data; 1732 1733 return 0; 1734} 1735 1736static void _free_set_opp_data(struct opp_table *opp_table) 1737{ 1738 kfree(opp_table->set_opp_data); 1739 opp_table->set_opp_data = NULL; 1740} 1741 1742/** 1743 * dev_pm_opp_set_regulators() - Set regulator names for the device 1744 * @dev: Device for which regulator name is being set. 1745 * @names: Array of pointers to the names of the regulator. 1746 * @count: Number of regulators. 1747 * 1748 * In order to support OPP switching, OPP layer needs to know the name of the 1749 * device's regulators, as the core would be required to switch voltages as 1750 * well. 1751 * 1752 * This must be called before any OPPs are initialized for the device. 1753 */ 1754struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1755 const char * const names[], 1756 unsigned int count) 1757{ 1758 struct opp_table *opp_table; 1759 struct regulator *reg; 1760 int ret, i; 1761 1762 opp_table = dev_pm_opp_get_opp_table(dev); 1763 if (IS_ERR(opp_table)) 1764 return opp_table; 1765 1766 /* This should be called before OPPs are initialized */ 1767 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1768 ret = -EBUSY; 1769 goto err; 1770 } 1771 1772 /* Another CPU that shares the OPP table has set the regulators ? */ 1773 if (opp_table->regulators) 1774 return opp_table; 1775 1776 opp_table->regulators = kmalloc_array(count, 1777 sizeof(*opp_table->regulators), 1778 GFP_KERNEL); 1779 if (!opp_table->regulators) { 1780 ret = -ENOMEM; 1781 goto err; 1782 } 1783 1784 for (i = 0; i < count; i++) { 1785 reg = regulator_get_optional(dev, names[i]); 1786 if (IS_ERR(reg)) { 1787 ret = PTR_ERR(reg); 1788 if (ret != -EPROBE_DEFER) 1789 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1790 __func__, names[i], ret); 1791 goto free_regulators; 1792 } 1793 1794 opp_table->regulators[i] = reg; 1795 } 1796 1797 opp_table->regulator_count = count; 1798 1799 /* Allocate block only once to pass to set_opp() routines */ 1800 ret = _allocate_set_opp_data(opp_table); 1801 if (ret) 1802 goto free_regulators; 1803 1804 return opp_table; 1805 1806free_regulators: 1807 while (i != 0) 1808 regulator_put(opp_table->regulators[--i]); 1809 1810 kfree(opp_table->regulators); 1811 opp_table->regulators = NULL; 1812 opp_table->regulator_count = -1; 1813err: 1814 dev_pm_opp_put_opp_table(opp_table); 1815 1816 return ERR_PTR(ret); 1817} 1818EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1819 1820/** 1821 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1822 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1823 */ 1824void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1825{ 1826 int i; 1827 1828 if (!opp_table->regulators) 1829 goto put_opp_table; 1830 1831 /* Make sure there are no concurrent readers while updating opp_table */ 1832 WARN_ON(!list_empty(&opp_table->opp_list)); 1833 1834 if (opp_table->enabled) { 1835 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1836 regulator_disable(opp_table->regulators[i]); 1837 } 1838 1839 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1840 regulator_put(opp_table->regulators[i]); 1841 1842 _free_set_opp_data(opp_table); 1843 1844 kfree(opp_table->regulators); 1845 opp_table->regulators = NULL; 1846 opp_table->regulator_count = -1; 1847 1848put_opp_table: 1849 dev_pm_opp_put_opp_table(opp_table); 1850} 1851EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1852 1853/** 1854 * dev_pm_opp_set_clkname() - Set clk name for the device 1855 * @dev: Device for which clk name is being set. 1856 * @name: Clk name. 1857 * 1858 * In order to support OPP switching, OPP layer needs to get pointer to the 1859 * clock for the device. Simple cases work fine without using this routine (i.e. 1860 * by passing connection-id as NULL), but for a device with multiple clocks 1861 * available, the OPP core needs to know the exact name of the clk to use. 1862 * 1863 * This must be called before any OPPs are initialized for the device. 1864 */ 1865struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1866{ 1867 struct opp_table *opp_table; 1868 int ret; 1869 1870 opp_table = dev_pm_opp_get_opp_table(dev); 1871 if (IS_ERR(opp_table)) 1872 return opp_table; 1873 1874 /* This should be called before OPPs are initialized */ 1875 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1876 ret = -EBUSY; 1877 goto err; 1878 } 1879 1880 /* Already have default clk set, free it */ 1881 if (!IS_ERR(opp_table->clk)) 1882 clk_put(opp_table->clk); 1883 1884 /* Find clk for the device */ 1885 opp_table->clk = clk_get(dev, name); 1886 if (IS_ERR(opp_table->clk)) { 1887 ret = PTR_ERR(opp_table->clk); 1888 if (ret != -EPROBE_DEFER) { 1889 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1890 ret); 1891 } 1892 goto err; 1893 } 1894 1895 return opp_table; 1896 1897err: 1898 dev_pm_opp_put_opp_table(opp_table); 1899 1900 return ERR_PTR(ret); 1901} 1902EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1903 1904/** 1905 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1906 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1907 */ 1908void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1909{ 1910 /* Make sure there are no concurrent readers while updating opp_table */ 1911 WARN_ON(!list_empty(&opp_table->opp_list)); 1912 1913 clk_put(opp_table->clk); 1914 opp_table->clk = ERR_PTR(-EINVAL); 1915 1916 dev_pm_opp_put_opp_table(opp_table); 1917} 1918EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1919 1920/** 1921 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1922 * @dev: Device for which the helper is getting registered. 1923 * @set_opp: Custom set OPP helper. 1924 * 1925 * This is useful to support complex platforms (like platforms with multiple 1926 * regulators per device), instead of the generic OPP set rate helper. 1927 * 1928 * This must be called before any OPPs are initialized for the device. 1929 */ 1930struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1931 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1932{ 1933 struct opp_table *opp_table; 1934 1935 if (!set_opp) 1936 return ERR_PTR(-EINVAL); 1937 1938 opp_table = dev_pm_opp_get_opp_table(dev); 1939 if (IS_ERR(opp_table)) 1940 return opp_table; 1941 1942 /* This should be called before OPPs are initialized */ 1943 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1944 dev_pm_opp_put_opp_table(opp_table); 1945 return ERR_PTR(-EBUSY); 1946 } 1947 1948 /* Another CPU that shares the OPP table has set the helper ? */ 1949 if (!opp_table->set_opp) 1950 opp_table->set_opp = set_opp; 1951 1952 return opp_table; 1953} 1954EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1955 1956/** 1957 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1958 * set_opp helper 1959 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1960 * 1961 * Release resources blocked for platform specific set_opp helper. 1962 */ 1963void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1964{ 1965 /* Make sure there are no concurrent readers while updating opp_table */ 1966 WARN_ON(!list_empty(&opp_table->opp_list)); 1967 1968 opp_table->set_opp = NULL; 1969 dev_pm_opp_put_opp_table(opp_table); 1970} 1971EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1972 1973static void _opp_detach_genpd(struct opp_table *opp_table) 1974{ 1975 int index; 1976 1977 if (!opp_table->genpd_virt_devs) 1978 return; 1979 1980 for (index = 0; index < opp_table->required_opp_count; index++) { 1981 if (!opp_table->genpd_virt_devs[index]) 1982 continue; 1983 1984 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1985 opp_table->genpd_virt_devs[index] = NULL; 1986 } 1987 1988 kfree(opp_table->genpd_virt_devs); 1989 opp_table->genpd_virt_devs = NULL; 1990} 1991 1992/** 1993 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1994 * @dev: Consumer device for which the genpd is getting attached. 1995 * @names: Null terminated array of pointers containing names of genpd to attach. 1996 * @virt_devs: Pointer to return the array of virtual devices. 1997 * 1998 * Multiple generic power domains for a device are supported with the help of 1999 * virtual genpd devices, which are created for each consumer device - genpd 2000 * pair. These are the device structures which are attached to the power domain 2001 * and are required by the OPP core to set the performance state of the genpd. 2002 * The same API also works for the case where single genpd is available and so 2003 * we don't need to support that separately. 2004 * 2005 * This helper will normally be called by the consumer driver of the device 2006 * "dev", as only that has details of the genpd names. 2007 * 2008 * This helper needs to be called once with a list of all genpd to attach. 2009 * Otherwise the original device structure will be used instead by the OPP core. 2010 * 2011 * The order of entries in the names array must match the order in which 2012 * "required-opps" are added in DT. 2013 */ 2014struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 2015 const char **names, struct device ***virt_devs) 2016{ 2017 struct opp_table *opp_table; 2018 struct device *virt_dev; 2019 int index = 0, ret = -EINVAL; 2020 const char **name = names; 2021 2022 opp_table = dev_pm_opp_get_opp_table(dev); 2023 if (IS_ERR(opp_table)) 2024 return opp_table; 2025 2026 if (opp_table->genpd_virt_devs) 2027 return opp_table; 2028 2029 /* 2030 * If the genpd's OPP table isn't already initialized, parsing of the 2031 * required-opps fail for dev. We should retry this after genpd's OPP 2032 * table is added. 2033 */ 2034 if (!opp_table->required_opp_count) { 2035 ret = -EPROBE_DEFER; 2036 goto put_table; 2037 } 2038 2039 mutex_lock(&opp_table->genpd_virt_dev_lock); 2040 2041 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2042 sizeof(*opp_table->genpd_virt_devs), 2043 GFP_KERNEL); 2044 if (!opp_table->genpd_virt_devs) 2045 goto unlock; 2046 2047 while (*name) { 2048 if (index >= opp_table->required_opp_count) { 2049 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2050 *name, opp_table->required_opp_count, index); 2051 goto err; 2052 } 2053 2054 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2055 if (IS_ERR_OR_NULL(virt_dev)) { 2056 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV; 2057 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2058 goto err; 2059 } 2060 2061 opp_table->genpd_virt_devs[index] = virt_dev; 2062 index++; 2063 name++; 2064 } 2065 2066 if (virt_devs) 2067 *virt_devs = opp_table->genpd_virt_devs; 2068 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2069 2070 return opp_table; 2071 2072err: 2073 _opp_detach_genpd(opp_table); 2074unlock: 2075 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2076 2077put_table: 2078 dev_pm_opp_put_opp_table(opp_table); 2079 2080 return ERR_PTR(ret); 2081} 2082EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 2083 2084/** 2085 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 2086 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 2087 * 2088 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2089 * OPP table. 2090 */ 2091void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 2092{ 2093 /* 2094 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2095 * used in parallel. 2096 */ 2097 mutex_lock(&opp_table->genpd_virt_dev_lock); 2098 _opp_detach_genpd(opp_table); 2099 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2100 2101 dev_pm_opp_put_opp_table(opp_table); 2102} 2103EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 2104 2105/** 2106 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2107 * @src_table: OPP table which has dst_table as one of its required OPP table. 2108 * @dst_table: Required OPP table of the src_table. 2109 * @pstate: Current performance state of the src_table. 2110 * 2111 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2112 * "required-opps" property of the OPP (present in @src_table) which has 2113 * performance state set to @pstate. 2114 * 2115 * Return: Zero or positive performance state on success, otherwise negative 2116 * value on errors. 2117 */ 2118int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2119 struct opp_table *dst_table, 2120 unsigned int pstate) 2121{ 2122 struct dev_pm_opp *opp; 2123 int dest_pstate = -EINVAL; 2124 int i; 2125 2126 /* 2127 * Normally the src_table will have the "required_opps" property set to 2128 * point to one of the OPPs in the dst_table, but in some cases the 2129 * genpd and its master have one to one mapping of performance states 2130 * and so none of them have the "required-opps" property set. Return the 2131 * pstate of the src_table as it is in such cases. 2132 */ 2133 if (!src_table->required_opp_count) 2134 return pstate; 2135 2136 for (i = 0; i < src_table->required_opp_count; i++) { 2137 if (src_table->required_opp_tables[i]->np == dst_table->np) 2138 break; 2139 } 2140 2141 if (unlikely(i == src_table->required_opp_count)) { 2142 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2143 __func__, src_table, dst_table); 2144 return -EINVAL; 2145 } 2146 2147 mutex_lock(&src_table->lock); 2148 2149 list_for_each_entry(opp, &src_table->opp_list, node) { 2150 if (opp->pstate == pstate) { 2151 dest_pstate = opp->required_opps[i]->pstate; 2152 goto unlock; 2153 } 2154 } 2155 2156 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2157 dst_table); 2158 2159unlock: 2160 mutex_unlock(&src_table->lock); 2161 2162 return dest_pstate; 2163} 2164 2165/** 2166 * dev_pm_opp_add() - Add an OPP table from a table definitions 2167 * @dev: device for which we do this operation 2168 * @freq: Frequency in Hz for this OPP 2169 * @u_volt: Voltage in uVolts for this OPP 2170 * 2171 * This function adds an opp definition to the opp table and returns status. 2172 * The opp is made available by default and it can be controlled using 2173 * dev_pm_opp_enable/disable functions. 2174 * 2175 * Return: 2176 * 0 On success OR 2177 * Duplicate OPPs (both freq and volt are same) and opp->available 2178 * -EEXIST Freq are same and volt are different OR 2179 * Duplicate OPPs (both freq and volt are same) and !opp->available 2180 * -ENOMEM Memory allocation failure 2181 */ 2182int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2183{ 2184 struct opp_table *opp_table; 2185 int ret; 2186 2187 opp_table = dev_pm_opp_get_opp_table(dev); 2188 if (IS_ERR(opp_table)) 2189 return PTR_ERR(opp_table); 2190 2191 /* Fix regulator count for dynamic OPPs */ 2192 opp_table->regulator_count = 1; 2193 2194 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2195 if (ret) 2196 dev_pm_opp_put_opp_table(opp_table); 2197 2198 return ret; 2199} 2200EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2201 2202/** 2203 * _opp_set_availability() - helper to set the availability of an opp 2204 * @dev: device for which we do this operation 2205 * @freq: OPP frequency to modify availability 2206 * @availability_req: availability status requested for this opp 2207 * 2208 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2209 * which is isolated here. 2210 * 2211 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2212 * copy operation, returns 0 if no modification was done OR modification was 2213 * successful. 2214 */ 2215static int _opp_set_availability(struct device *dev, unsigned long freq, 2216 bool availability_req) 2217{ 2218 struct opp_table *opp_table; 2219 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2220 int r = 0; 2221 2222 /* Find the opp_table */ 2223 opp_table = _find_opp_table(dev); 2224 if (IS_ERR(opp_table)) { 2225 r = PTR_ERR(opp_table); 2226 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2227 return r; 2228 } 2229 2230 mutex_lock(&opp_table->lock); 2231 2232 /* Do we have the frequency? */ 2233 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2234 if (tmp_opp->rate == freq) { 2235 opp = tmp_opp; 2236 break; 2237 } 2238 } 2239 2240 if (IS_ERR(opp)) { 2241 r = PTR_ERR(opp); 2242 goto unlock; 2243 } 2244 2245 /* Is update really needed? */ 2246 if (opp->available == availability_req) 2247 goto unlock; 2248 2249 opp->available = availability_req; 2250 2251 dev_pm_opp_get(opp); 2252 mutex_unlock(&opp_table->lock); 2253 2254 /* Notify the change of the OPP availability */ 2255 if (availability_req) 2256 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2257 opp); 2258 else 2259 blocking_notifier_call_chain(&opp_table->head, 2260 OPP_EVENT_DISABLE, opp); 2261 2262 dev_pm_opp_put(opp); 2263 goto put_table; 2264 2265unlock: 2266 mutex_unlock(&opp_table->lock); 2267put_table: 2268 dev_pm_opp_put_opp_table(opp_table); 2269 return r; 2270} 2271 2272/** 2273 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2274 * @dev: device for which we do this operation 2275 * @freq: OPP frequency to adjust voltage of 2276 * @u_volt: new OPP target voltage 2277 * @u_volt_min: new OPP min voltage 2278 * @u_volt_max: new OPP max voltage 2279 * 2280 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2281 * copy operation, returns 0 if no modifcation was done OR modification was 2282 * successful. 2283 */ 2284int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2285 unsigned long u_volt, unsigned long u_volt_min, 2286 unsigned long u_volt_max) 2287 2288{ 2289 struct opp_table *opp_table; 2290 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2291 int r = 0; 2292 2293 /* Find the opp_table */ 2294 opp_table = _find_opp_table(dev); 2295 if (IS_ERR(opp_table)) { 2296 r = PTR_ERR(opp_table); 2297 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2298 return r; 2299 } 2300 2301 mutex_lock(&opp_table->lock); 2302 2303 /* Do we have the frequency? */ 2304 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2305 if (tmp_opp->rate == freq) { 2306 opp = tmp_opp; 2307 break; 2308 } 2309 } 2310 2311 if (IS_ERR(opp)) { 2312 r = PTR_ERR(opp); 2313 goto adjust_unlock; 2314 } 2315 2316 /* Is update really needed? */ 2317 if (opp->supplies->u_volt == u_volt) 2318 goto adjust_unlock; 2319 2320 opp->supplies->u_volt = u_volt; 2321 opp->supplies->u_volt_min = u_volt_min; 2322 opp->supplies->u_volt_max = u_volt_max; 2323 2324 dev_pm_opp_get(opp); 2325 mutex_unlock(&opp_table->lock); 2326 2327 /* Notify the voltage change of the OPP */ 2328 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2329 opp); 2330 2331 dev_pm_opp_put(opp); 2332 goto adjust_put_table; 2333 2334adjust_unlock: 2335 mutex_unlock(&opp_table->lock); 2336adjust_put_table: 2337 dev_pm_opp_put_opp_table(opp_table); 2338 return r; 2339} 2340EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2341 2342/** 2343 * dev_pm_opp_enable() - Enable a specific OPP 2344 * @dev: device for which we do this operation 2345 * @freq: OPP frequency to enable 2346 * 2347 * Enables a provided opp. If the operation is valid, this returns 0, else the 2348 * corresponding error value. It is meant to be used for users an OPP available 2349 * after being temporarily made unavailable with dev_pm_opp_disable. 2350 * 2351 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2352 * copy operation, returns 0 if no modification was done OR modification was 2353 * successful. 2354 */ 2355int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2356{ 2357 return _opp_set_availability(dev, freq, true); 2358} 2359EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2360 2361/** 2362 * dev_pm_opp_disable() - Disable a specific OPP 2363 * @dev: device for which we do this operation 2364 * @freq: OPP frequency to disable 2365 * 2366 * Disables a provided opp. If the operation is valid, this returns 2367 * 0, else the corresponding error value. It is meant to be a temporary 2368 * control by users to make this OPP not available until the circumstances are 2369 * right to make it available again (with a call to dev_pm_opp_enable). 2370 * 2371 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2372 * copy operation, returns 0 if no modification was done OR modification was 2373 * successful. 2374 */ 2375int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2376{ 2377 return _opp_set_availability(dev, freq, false); 2378} 2379EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2380 2381/** 2382 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2383 * @dev: Device for which notifier needs to be registered 2384 * @nb: Notifier block to be registered 2385 * 2386 * Return: 0 on success or a negative error value. 2387 */ 2388int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2389{ 2390 struct opp_table *opp_table; 2391 int ret; 2392 2393 opp_table = _find_opp_table(dev); 2394 if (IS_ERR(opp_table)) 2395 return PTR_ERR(opp_table); 2396 2397 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2398 2399 dev_pm_opp_put_opp_table(opp_table); 2400 2401 return ret; 2402} 2403EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2404 2405/** 2406 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2407 * @dev: Device for which notifier needs to be unregistered 2408 * @nb: Notifier block to be unregistered 2409 * 2410 * Return: 0 on success or a negative error value. 2411 */ 2412int dev_pm_opp_unregister_notifier(struct device *dev, 2413 struct notifier_block *nb) 2414{ 2415 struct opp_table *opp_table; 2416 int ret; 2417 2418 opp_table = _find_opp_table(dev); 2419 if (IS_ERR(opp_table)) 2420 return PTR_ERR(opp_table); 2421 2422 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2423 2424 dev_pm_opp_put_opp_table(opp_table); 2425 2426 return ret; 2427} 2428EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2429 2430/** 2431 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2432 * @dev: device pointer used to lookup OPP table. 2433 * 2434 * Free both OPPs created using static entries present in DT and the 2435 * dynamically added entries. 2436 */ 2437void dev_pm_opp_remove_table(struct device *dev) 2438{ 2439 struct opp_table *opp_table; 2440 2441 /* Check for existing table for 'dev' */ 2442 opp_table = _find_opp_table(dev); 2443 if (IS_ERR(opp_table)) { 2444 int error = PTR_ERR(opp_table); 2445 2446 if (error != -ENODEV) 2447 WARN(1, "%s: opp_table: %d\n", 2448 IS_ERR_OR_NULL(dev) ? 2449 "Invalid device" : dev_name(dev), 2450 error); 2451 return; 2452 } 2453 2454 /* 2455 * Drop the extra reference only if the OPP table was successfully added 2456 * with dev_pm_opp_of_add_table() earlier. 2457 **/ 2458 if (_opp_remove_all_static(opp_table)) 2459 dev_pm_opp_put_opp_table(opp_table); 2460 2461 /* Drop reference taken by _find_opp_table() */ 2462 dev_pm_opp_put_opp_table(opp_table); 2463} 2464EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2465