xref: /kernel/linux/linux-5.10/drivers/opp/core.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 *	Nishanth Menon
7 *	Romit Dasgupta
8 *	Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34					struct opp_table *opp_table)
35{
36	struct opp_device *opp_dev;
37
38	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39		if (opp_dev->dev == dev)
40			return opp_dev;
41
42	return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47	struct opp_table *opp_table;
48	bool found;
49
50	list_for_each_entry(opp_table, &opp_tables, node) {
51		mutex_lock(&opp_table->lock);
52		found = !!_find_opp_dev(dev, opp_table);
53		mutex_unlock(&opp_table->lock);
54
55		if (found) {
56			_get_opp_table_kref(opp_table);
57
58			return opp_table;
59		}
60	}
61
62	return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev:	device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78	struct opp_table *opp_table;
79
80	if (IS_ERR_OR_NULL(dev)) {
81		pr_err("%s: Invalid parameters\n", __func__);
82		return ERR_PTR(-EINVAL);
83	}
84
85	mutex_lock(&opp_table_lock);
86	opp_table = _find_opp_table_unlocked(dev);
87	mutex_unlock(&opp_table_lock);
88
89	return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp:	opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103	if (IS_ERR_OR_NULL(opp)) {
104		pr_err("%s: Invalid parameters\n", __func__);
105		return 0;
106	}
107
108	return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp:	opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121	if (IS_ERR_OR_NULL(opp)) {
122		pr_err("%s: Invalid parameters\n", __func__);
123		return 0;
124	}
125
126	return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp:	opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140		pr_err("%s: Invalid parameters\n", __func__);
141		return 0;
142	}
143
144	return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161		pr_err("%s: Invalid parameters\n", __func__);
162		return false;
163	}
164
165	return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev:	device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177	struct opp_table *opp_table;
178	unsigned long clock_latency_ns;
179
180	opp_table = _find_opp_table(dev);
181	if (IS_ERR(opp_table))
182		return 0;
183
184	clock_latency_ns = opp_table->clock_latency_ns_max;
185
186	dev_pm_opp_put_opp_table(opp_table);
187
188	return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200	struct opp_table *opp_table;
201	struct dev_pm_opp *opp;
202	struct regulator *reg;
203	unsigned long latency_ns = 0;
204	int ret, i, count;
205	struct {
206		unsigned long min;
207		unsigned long max;
208	} *uV;
209
210	opp_table = _find_opp_table(dev);
211	if (IS_ERR(opp_table))
212		return 0;
213
214	/* Regulator may not be required for the device */
215	if (!opp_table->regulators)
216		goto put_opp_table;
217
218	count = opp_table->regulator_count;
219
220	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221	if (!uV)
222		goto put_opp_table;
223
224	mutex_lock(&opp_table->lock);
225
226	for (i = 0; i < count; i++) {
227		uV[i].min = ~0;
228		uV[i].max = 0;
229
230		list_for_each_entry(opp, &opp_table->opp_list, node) {
231			if (!opp->available)
232				continue;
233
234			if (opp->supplies[i].u_volt_min < uV[i].min)
235				uV[i].min = opp->supplies[i].u_volt_min;
236			if (opp->supplies[i].u_volt_max > uV[i].max)
237				uV[i].max = opp->supplies[i].u_volt_max;
238		}
239	}
240
241	mutex_unlock(&opp_table->lock);
242
243	/*
244	 * The caller needs to ensure that opp_table (and hence the regulator)
245	 * isn't freed, while we are executing this routine.
246	 */
247	for (i = 0; i < count; i++) {
248		reg = opp_table->regulators[i];
249		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250		if (ret > 0)
251			latency_ns += ret * 1000;
252	}
253
254	kfree(uV);
255put_opp_table:
256	dev_pm_opp_put_opp_table(opp_table);
257
258	return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 *					     nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272	return dev_pm_opp_get_max_volt_latency(dev) +
273		dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev:	device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286	struct opp_table *opp_table;
287	unsigned long freq = 0;
288
289	opp_table = _find_opp_table(dev);
290	if (IS_ERR(opp_table))
291		return 0;
292
293	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296	dev_pm_opp_put_opp_table(opp_table);
297
298	return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304	struct dev_pm_opp *opp;
305	int count = 0;
306
307	mutex_lock(&opp_table->lock);
308
309	list_for_each_entry(opp, &opp_table->opp_list, node) {
310		if (opp->available)
311			count++;
312	}
313
314	mutex_unlock(&opp_table->lock);
315
316	return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev:	device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328	struct opp_table *opp_table;
329	int count;
330
331	opp_table = _find_opp_table(dev);
332	if (IS_ERR(opp_table)) {
333		count = PTR_ERR(opp_table);
334		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335			__func__, count);
336		return count;
337	}
338
339	count = _get_opp_count(opp_table);
340	dev_pm_opp_put_opp_table(opp_table);
341
342	return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev:		device for which we do this operation
349 * @freq:		frequency to search for
350 * @available:		true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL:	for bad pointer
356 * ERANGE:	no match found for search
357 * ENODEV:	if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370					      unsigned long freq,
371					      bool available)
372{
373	struct opp_table *opp_table;
374	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376	opp_table = _find_opp_table(dev);
377	if (IS_ERR(opp_table)) {
378		int r = PTR_ERR(opp_table);
379
380		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381		return ERR_PTR(r);
382	}
383
384	mutex_lock(&opp_table->lock);
385
386	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387		if (temp_opp->available == available &&
388				temp_opp->rate == freq) {
389			opp = temp_opp;
390
391			/* Increment the reference count of OPP */
392			dev_pm_opp_get(opp);
393			break;
394		}
395	}
396
397	mutex_unlock(&opp_table->lock);
398	dev_pm_opp_put_opp_table(opp_table);
399
400	return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev:		device for which we do this operation
407 * @level:		level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL:	for bad pointer
413 * ERANGE:	no match found for search
414 * ENODEV:	if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420					       unsigned int level)
421{
422	struct opp_table *opp_table;
423	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425	opp_table = _find_opp_table(dev);
426	if (IS_ERR(opp_table)) {
427		int r = PTR_ERR(opp_table);
428
429		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430		return ERR_PTR(r);
431	}
432
433	mutex_lock(&opp_table->lock);
434
435	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436		if (temp_opp->level == level) {
437			opp = temp_opp;
438
439			/* Increment the reference count of OPP */
440			dev_pm_opp_get(opp);
441			break;
442		}
443	}
444
445	mutex_unlock(&opp_table->lock);
446	dev_pm_opp_put_opp_table(opp_table);
447
448	return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453						   unsigned long *freq)
454{
455	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457	mutex_lock(&opp_table->lock);
458
459	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460		if (temp_opp->available && temp_opp->rate >= *freq) {
461			opp = temp_opp;
462			*freq = opp->rate;
463
464			/* Increment the reference count of OPP */
465			dev_pm_opp_get(opp);
466			break;
467		}
468	}
469
470	mutex_unlock(&opp_table->lock);
471
472	return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev:	device for which we do this operation
478 * @freq:	Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL:	for bad pointer
487 * ERANGE:	no match found for search
488 * ENODEV:	if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494					     unsigned long *freq)
495{
496	struct opp_table *opp_table;
497	struct dev_pm_opp *opp;
498
499	if (!dev || !freq) {
500		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501		return ERR_PTR(-EINVAL);
502	}
503
504	opp_table = _find_opp_table(dev);
505	if (IS_ERR(opp_table))
506		return ERR_CAST(opp_table);
507
508	opp = _find_freq_ceil(opp_table, freq);
509
510	dev_pm_opp_put_opp_table(opp_table);
511
512	return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev:	device for which we do this operation
519 * @freq:	Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL:	for bad pointer
528 * ERANGE:	no match found for search
529 * ENODEV:	if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535					      unsigned long *freq)
536{
537	struct opp_table *opp_table;
538	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540	if (!dev || !freq) {
541		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542		return ERR_PTR(-EINVAL);
543	}
544
545	opp_table = _find_opp_table(dev);
546	if (IS_ERR(opp_table))
547		return ERR_CAST(opp_table);
548
549	mutex_lock(&opp_table->lock);
550
551	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552		if (temp_opp->available) {
553			/* go to the next node, before choosing prev */
554			if (temp_opp->rate > *freq)
555				break;
556			else
557				opp = temp_opp;
558		}
559	}
560
561	/* Increment the reference count of OPP */
562	if (!IS_ERR(opp))
563		dev_pm_opp_get(opp);
564	mutex_unlock(&opp_table->lock);
565	dev_pm_opp_put_opp_table(opp_table);
566
567	if (!IS_ERR(opp))
568		*freq = opp->rate;
569
570	return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 *					 target voltage.
577 * @dev:	Device for which we do this operation.
578 * @u_volt:	Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL:	bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592						     unsigned long u_volt)
593{
594	struct opp_table *opp_table;
595	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597	if (!dev || !u_volt) {
598		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599			u_volt);
600		return ERR_PTR(-EINVAL);
601	}
602
603	opp_table = _find_opp_table(dev);
604	if (IS_ERR(opp_table))
605		return ERR_CAST(opp_table);
606
607	mutex_lock(&opp_table->lock);
608
609	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610		if (temp_opp->available) {
611			if (temp_opp->supplies[0].u_volt > u_volt)
612				break;
613			opp = temp_opp;
614		}
615	}
616
617	/* Increment the reference count of OPP */
618	if (!IS_ERR(opp))
619		dev_pm_opp_get(opp);
620
621	mutex_unlock(&opp_table->lock);
622	dev_pm_opp_put_opp_table(opp_table);
623
624	return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629			    struct dev_pm_opp_supply *supply)
630{
631	int ret;
632
633	/* Regulator not available for device */
634	if (IS_ERR(reg)) {
635		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636			PTR_ERR(reg));
637		return 0;
638	}
639
640	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644					    supply->u_volt, supply->u_volt_max);
645	if (ret)
646		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647			__func__, supply->u_volt_min, supply->u_volt,
648			supply->u_volt_max, ret);
649
650	return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654					    unsigned long freq)
655{
656	int ret;
657
658	ret = clk_set_rate(clk, freq);
659	if (ret) {
660		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661			ret);
662	}
663
664	return ret;
665}
666
667static int _generic_set_opp_regulator(struct opp_table *opp_table,
668				      struct device *dev,
669				      unsigned long old_freq,
670				      unsigned long freq,
671				      struct dev_pm_opp_supply *old_supply,
672				      struct dev_pm_opp_supply *new_supply)
673{
674	struct regulator *reg = opp_table->regulators[0];
675	int ret;
676
677	/* This function only supports single regulator per device */
678	if (WARN_ON(opp_table->regulator_count > 1)) {
679		dev_err(dev, "multiple regulators are not supported\n");
680		return -EINVAL;
681	}
682
683	/* Scaling up? Scale voltage before frequency */
684	if (freq >= old_freq) {
685		ret = _set_opp_voltage(dev, reg, new_supply);
686		if (ret)
687			goto restore_voltage;
688	}
689
690	/* Change frequency */
691	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692	if (ret)
693		goto restore_voltage;
694
695	/* Scaling down? Scale voltage after frequency */
696	if (freq < old_freq) {
697		ret = _set_opp_voltage(dev, reg, new_supply);
698		if (ret)
699			goto restore_freq;
700	}
701
702	/*
703	 * Enable the regulator after setting its voltages, otherwise it breaks
704	 * some boot-enabled regulators.
705	 */
706	if (unlikely(!opp_table->enabled)) {
707		ret = regulator_enable(reg);
708		if (ret < 0)
709			dev_warn(dev, "Failed to enable regulator: %d", ret);
710	}
711
712	return 0;
713
714restore_freq:
715	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717			__func__, old_freq);
718restore_voltage:
719	/* This shouldn't harm even if the voltages weren't updated earlier */
720	if (old_supply)
721		_set_opp_voltage(dev, reg, old_supply);
722
723	return ret;
724}
725
726static int _set_opp_bw(const struct opp_table *opp_table,
727		       struct dev_pm_opp *opp, struct device *dev, bool remove)
728{
729	u32 avg, peak;
730	int i, ret;
731
732	if (!opp_table->paths)
733		return 0;
734
735	for (i = 0; i < opp_table->path_count; i++) {
736		if (remove) {
737			avg = 0;
738			peak = 0;
739		} else {
740			avg = opp->bandwidth[i].avg;
741			peak = opp->bandwidth[i].peak;
742		}
743		ret = icc_set_bw(opp_table->paths[i], avg, peak);
744		if (ret) {
745			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746				remove ? "remove" : "set", i, ret);
747			return ret;
748		}
749	}
750
751	return 0;
752}
753
754static int _set_opp_custom(const struct opp_table *opp_table,
755			   struct device *dev, unsigned long old_freq,
756			   unsigned long freq,
757			   struct dev_pm_opp_supply *old_supply,
758			   struct dev_pm_opp_supply *new_supply)
759{
760	struct dev_pm_set_opp_data *data;
761	int size;
762
763	data = opp_table->set_opp_data;
764	data->regulators = opp_table->regulators;
765	data->regulator_count = opp_table->regulator_count;
766	data->clk = opp_table->clk;
767	data->dev = dev;
768
769	data->old_opp.rate = old_freq;
770	size = sizeof(*old_supply) * opp_table->regulator_count;
771	if (!old_supply)
772		memset(data->old_opp.supplies, 0, size);
773	else
774		memcpy(data->old_opp.supplies, old_supply, size);
775
776	data->new_opp.rate = freq;
777	memcpy(data->new_opp.supplies, new_supply, size);
778
779	return opp_table->set_opp(data);
780}
781
782static int _set_required_opp(struct device *dev, struct device *pd_dev,
783			     struct dev_pm_opp *opp, int i)
784{
785	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786	int ret;
787
788	if (!pd_dev)
789		return 0;
790
791	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792	if (ret) {
793		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794			dev_name(pd_dev), pstate, ret);
795	}
796
797	return ret;
798}
799
800/* This is only called for PM domain for now */
801static int _set_required_opps(struct device *dev,
802			      struct opp_table *opp_table,
803			      struct dev_pm_opp *opp, bool up)
804{
805	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807	int i, ret = 0;
808
809	if (!required_opp_tables)
810		return 0;
811
812	/* Single genpd case */
813	if (!genpd_virt_devs)
814		return _set_required_opp(dev, dev, opp, 0);
815
816	/* Multiple genpd case */
817
818	/*
819	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820	 * after it is freed from another thread.
821	 */
822	mutex_lock(&opp_table->genpd_virt_dev_lock);
823
824	/* Scaling up? Set required OPPs in normal order, else reverse */
825	if (up) {
826		for (i = 0; i < opp_table->required_opp_count; i++) {
827			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828			if (ret)
829				break;
830		}
831	} else {
832		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834			if (ret)
835				break;
836		}
837	}
838
839	mutex_unlock(&opp_table->genpd_virt_dev_lock);
840
841	return ret;
842}
843
844/**
845 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846 * @dev:	device for which we do this operation
847 * @opp:	opp based on which the bandwidth levels are to be configured
848 *
849 * This configures the bandwidth to the levels specified by the OPP. However
850 * if the OPP specified is NULL the bandwidth levels are cleared out.
851 *
852 * Return: 0 on success or a negative error value.
853 */
854int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
855{
856	struct opp_table *opp_table;
857	int ret;
858
859	opp_table = _find_opp_table(dev);
860	if (IS_ERR(opp_table)) {
861		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862		return PTR_ERR(opp_table);
863	}
864
865	if (opp)
866		ret = _set_opp_bw(opp_table, opp, dev, false);
867	else
868		ret = _set_opp_bw(opp_table, NULL, dev, true);
869
870	dev_pm_opp_put_opp_table(opp_table);
871	return ret;
872}
873EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
874
875static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
876{
877	int ret;
878
879	if (!opp_table->enabled)
880		return 0;
881
882	/*
883	 * Some drivers need to support cases where some platforms may
884	 * have OPP table for the device, while others don't and
885	 * opp_set_rate() just needs to behave like clk_set_rate().
886	 */
887	if (!_get_opp_count(opp_table))
888		return 0;
889
890	ret = _set_opp_bw(opp_table, NULL, dev, true);
891	if (ret)
892		return ret;
893
894	if (opp_table->regulators)
895		regulator_disable(opp_table->regulators[0]);
896
897	ret = _set_required_opps(dev, opp_table, NULL, false);
898
899	opp_table->enabled = false;
900	return ret;
901}
902
903/**
904 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905 * @dev:	 device for which we do this operation
906 * @target_freq: frequency to achieve
907 *
908 * This configures the power-supplies to the levels specified by the OPP
909 * corresponding to the target_freq, and programs the clock to a value <=
910 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911 * provided by the opp, should have already rounded to the target OPP's
912 * frequency.
913 */
914int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
915{
916	struct opp_table *opp_table;
917	unsigned long freq, old_freq, temp_freq;
918	struct dev_pm_opp *old_opp, *opp;
919	struct clk *clk;
920	int ret;
921
922	opp_table = _find_opp_table(dev);
923	if (IS_ERR(opp_table)) {
924		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925		return PTR_ERR(opp_table);
926	}
927
928	if (unlikely(!target_freq)) {
929		ret = _opp_set_rate_zero(dev, opp_table);
930		goto put_opp_table;
931	}
932
933	clk = opp_table->clk;
934	if (IS_ERR(clk)) {
935		dev_err(dev, "%s: No clock available for the device\n",
936			__func__);
937		ret = PTR_ERR(clk);
938		goto put_opp_table;
939	}
940
941	freq = clk_round_rate(clk, target_freq);
942	if ((long)freq <= 0)
943		freq = target_freq;
944
945	old_freq = clk_get_rate(clk);
946
947	/* Return early if nothing to do */
948	if (opp_table->enabled && old_freq == freq) {
949		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950			__func__, freq);
951		ret = 0;
952		goto put_opp_table;
953	}
954
955	/*
956	 * For IO devices which require an OPP on some platforms/SoCs
957	 * while just needing to scale the clock on some others
958	 * we look for empty OPP tables with just a clock handle and
959	 * scale only the clk. This makes dev_pm_opp_set_rate()
960	 * equivalent to a clk_set_rate()
961	 */
962	if (!_get_opp_count(opp_table)) {
963		ret = _generic_set_opp_clk_only(dev, clk, freq);
964		goto put_opp_table;
965	}
966
967	temp_freq = old_freq;
968	old_opp = _find_freq_ceil(opp_table, &temp_freq);
969	if (IS_ERR(old_opp)) {
970		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971			__func__, old_freq, PTR_ERR(old_opp));
972	}
973
974	temp_freq = freq;
975	opp = _find_freq_ceil(opp_table, &temp_freq);
976	if (IS_ERR(opp)) {
977		ret = PTR_ERR(opp);
978		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979			__func__, freq, ret);
980		goto put_old_opp;
981	}
982
983	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984		old_freq, freq);
985
986	/* Scaling up? Configure required OPPs before frequency */
987	if (freq >= old_freq) {
988		ret = _set_required_opps(dev, opp_table, opp, true);
989		if (ret)
990			goto put_opp;
991	}
992
993	if (opp_table->set_opp) {
994		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
996				      opp->supplies);
997	} else if (opp_table->regulators) {
998		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000						 opp->supplies);
1001	} else {
1002		/* Only frequency scaling */
1003		ret = _generic_set_opp_clk_only(dev, clk, freq);
1004	}
1005
1006	/* Scaling down? Configure required OPPs after frequency */
1007	if (!ret && freq < old_freq) {
1008		ret = _set_required_opps(dev, opp_table, opp, false);
1009		if (ret)
1010			dev_err(dev, "Failed to set required opps: %d\n", ret);
1011	}
1012
1013	if (!ret) {
1014		ret = _set_opp_bw(opp_table, opp, dev, false);
1015		if (!ret)
1016			opp_table->enabled = true;
1017	}
1018
1019put_opp:
1020	dev_pm_opp_put(opp);
1021put_old_opp:
1022	if (!IS_ERR(old_opp))
1023		dev_pm_opp_put(old_opp);
1024put_opp_table:
1025	dev_pm_opp_put_opp_table(opp_table);
1026	return ret;
1027}
1028EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1029
1030/* OPP-dev Helpers */
1031static void _remove_opp_dev(struct opp_device *opp_dev,
1032			    struct opp_table *opp_table)
1033{
1034	opp_debug_unregister(opp_dev, opp_table);
1035	list_del(&opp_dev->node);
1036	kfree(opp_dev);
1037}
1038
1039static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1040						struct opp_table *opp_table)
1041{
1042	struct opp_device *opp_dev;
1043
1044	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045	if (!opp_dev)
1046		return NULL;
1047
1048	/* Initialize opp-dev */
1049	opp_dev->dev = dev;
1050
1051	list_add(&opp_dev->node, &opp_table->dev_list);
1052
1053	/* Create debugfs entries for the opp_table */
1054	opp_debug_register(opp_dev, opp_table);
1055
1056	return opp_dev;
1057}
1058
1059struct opp_device *_add_opp_dev(const struct device *dev,
1060				struct opp_table *opp_table)
1061{
1062	struct opp_device *opp_dev;
1063
1064	mutex_lock(&opp_table->lock);
1065	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1066	mutex_unlock(&opp_table->lock);
1067
1068	return opp_dev;
1069}
1070
1071static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1072{
1073	struct opp_table *opp_table;
1074	struct opp_device *opp_dev;
1075	int ret;
1076
1077	/*
1078	 * Allocate a new OPP table. In the infrequent case where a new
1079	 * device is needed to be added, we pay this penalty.
1080	 */
1081	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1082	if (!opp_table)
1083		return ERR_PTR(-ENOMEM);
1084
1085	mutex_init(&opp_table->lock);
1086	mutex_init(&opp_table->genpd_virt_dev_lock);
1087	INIT_LIST_HEAD(&opp_table->dev_list);
1088
1089	/* Mark regulator count uninitialized */
1090	opp_table->regulator_count = -1;
1091
1092	opp_dev = _add_opp_dev(dev, opp_table);
1093	if (!opp_dev) {
1094		ret = -ENOMEM;
1095		goto err;
1096	}
1097
1098	_of_init_opp_table(opp_table, dev, index);
1099
1100	/* Find clk for the device */
1101	opp_table->clk = clk_get(dev, NULL);
1102	if (IS_ERR(opp_table->clk)) {
1103		ret = PTR_ERR(opp_table->clk);
1104		if (ret == -EPROBE_DEFER)
1105			goto remove_opp_dev;
1106
1107		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1108	}
1109
1110	/* Find interconnect path(s) for the device */
1111	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1112	if (ret) {
1113		if (ret == -EPROBE_DEFER)
1114			goto put_clk;
1115
1116		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1117			 __func__, ret);
1118	}
1119
1120	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1121	INIT_LIST_HEAD(&opp_table->opp_list);
1122	kref_init(&opp_table->kref);
1123
1124	/* Secure the device table modification */
1125	list_add(&opp_table->node, &opp_tables);
1126	return opp_table;
1127
1128put_clk:
1129	if (!IS_ERR(opp_table->clk))
1130		clk_put(opp_table->clk);
1131remove_opp_dev:
1132	_remove_opp_dev(opp_dev, opp_table);
1133err:
1134	kfree(opp_table);
1135	return ERR_PTR(ret);
1136}
1137
1138void _get_opp_table_kref(struct opp_table *opp_table)
1139{
1140	kref_get(&opp_table->kref);
1141}
1142
1143static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1144{
1145	struct opp_table *opp_table;
1146
1147	/* Hold our table modification lock here */
1148	mutex_lock(&opp_table_lock);
1149
1150	opp_table = _find_opp_table_unlocked(dev);
1151	if (!IS_ERR(opp_table))
1152		goto unlock;
1153
1154	opp_table = _managed_opp(dev, index);
1155	if (opp_table) {
1156		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1157			dev_pm_opp_put_opp_table(opp_table);
1158			opp_table = ERR_PTR(-ENOMEM);
1159		}
1160		goto unlock;
1161	}
1162
1163	opp_table = _allocate_opp_table(dev, index);
1164
1165unlock:
1166	mutex_unlock(&opp_table_lock);
1167
1168	return opp_table;
1169}
1170
1171struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1172{
1173	return _opp_get_opp_table(dev, 0);
1174}
1175EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1176
1177struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1178						   int index)
1179{
1180	return _opp_get_opp_table(dev, index);
1181}
1182
1183static void _opp_table_kref_release(struct kref *kref)
1184{
1185	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1186	struct opp_device *opp_dev, *temp;
1187	int i;
1188
1189	/* Drop the lock as soon as we can */
1190	list_del(&opp_table->node);
1191	mutex_unlock(&opp_table_lock);
1192
1193	_of_clear_opp_table(opp_table);
1194
1195	/* Release clk */
1196	if (!IS_ERR(opp_table->clk))
1197		clk_put(opp_table->clk);
1198
1199	if (opp_table->paths) {
1200		for (i = 0; i < opp_table->path_count; i++)
1201			icc_put(opp_table->paths[i]);
1202		kfree(opp_table->paths);
1203	}
1204
1205	WARN_ON(!list_empty(&opp_table->opp_list));
1206
1207	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1208		/*
1209		 * The OPP table is getting removed, drop the performance state
1210		 * constraints.
1211		 */
1212		if (opp_table->genpd_performance_state)
1213			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1214
1215		_remove_opp_dev(opp_dev, opp_table);
1216	}
1217
1218	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1219	mutex_destroy(&opp_table->lock);
1220	kfree(opp_table);
1221}
1222
1223void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1224{
1225	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1226		       &opp_table_lock);
1227}
1228EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1229
1230void _opp_free(struct dev_pm_opp *opp)
1231{
1232	kfree(opp);
1233}
1234
1235static void _opp_kref_release(struct dev_pm_opp *opp,
1236			      struct opp_table *opp_table)
1237{
1238	/*
1239	 * Notify the changes in the availability of the operable
1240	 * frequency/voltage list.
1241	 */
1242	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1243	_of_opp_free_required_opps(opp_table, opp);
1244	opp_debug_remove_one(opp);
1245	list_del(&opp->node);
1246	kfree(opp);
1247}
1248
1249static void _opp_kref_release_unlocked(struct kref *kref)
1250{
1251	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1252	struct opp_table *opp_table = opp->opp_table;
1253
1254	_opp_kref_release(opp, opp_table);
1255}
1256
1257static void _opp_kref_release_locked(struct kref *kref)
1258{
1259	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1260	struct opp_table *opp_table = opp->opp_table;
1261
1262	_opp_kref_release(opp, opp_table);
1263	mutex_unlock(&opp_table->lock);
1264}
1265
1266void dev_pm_opp_get(struct dev_pm_opp *opp)
1267{
1268	kref_get(&opp->kref);
1269}
1270
1271void dev_pm_opp_put(struct dev_pm_opp *opp)
1272{
1273	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1274		       &opp->opp_table->lock);
1275}
1276EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1277
1278static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1279{
1280	kref_put(&opp->kref, _opp_kref_release_unlocked);
1281}
1282
1283/**
1284 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1285 * @dev:	device for which we do this operation
1286 * @freq:	OPP to remove with matching 'freq'
1287 *
1288 * This function removes an opp from the opp table.
1289 */
1290void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1291{
1292	struct dev_pm_opp *opp;
1293	struct opp_table *opp_table;
1294	bool found = false;
1295
1296	opp_table = _find_opp_table(dev);
1297	if (IS_ERR(opp_table))
1298		return;
1299
1300	mutex_lock(&opp_table->lock);
1301
1302	list_for_each_entry(opp, &opp_table->opp_list, node) {
1303		if (opp->rate == freq) {
1304			found = true;
1305			break;
1306		}
1307	}
1308
1309	mutex_unlock(&opp_table->lock);
1310
1311	if (found) {
1312		dev_pm_opp_put(opp);
1313
1314		/* Drop the reference taken by dev_pm_opp_add() */
1315		dev_pm_opp_put_opp_table(opp_table);
1316	} else {
1317		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1318			 __func__, freq);
1319	}
1320
1321	/* Drop the reference taken by _find_opp_table() */
1322	dev_pm_opp_put_opp_table(opp_table);
1323}
1324EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1325
1326bool _opp_remove_all_static(struct opp_table *opp_table)
1327{
1328	struct dev_pm_opp *opp, *tmp;
1329	bool ret = true;
1330
1331	mutex_lock(&opp_table->lock);
1332
1333	if (!opp_table->parsed_static_opps) {
1334		ret = false;
1335		goto unlock;
1336	}
1337
1338	if (--opp_table->parsed_static_opps)
1339		goto unlock;
1340
1341	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1342		if (!opp->dynamic)
1343			dev_pm_opp_put_unlocked(opp);
1344	}
1345
1346unlock:
1347	mutex_unlock(&opp_table->lock);
1348
1349	return ret;
1350}
1351
1352/**
1353 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1354 * @dev:	device for which we do this operation
1355 *
1356 * This function removes all dynamically created OPPs from the opp table.
1357 */
1358void dev_pm_opp_remove_all_dynamic(struct device *dev)
1359{
1360	struct opp_table *opp_table;
1361	struct dev_pm_opp *opp, *temp;
1362	int count = 0;
1363
1364	opp_table = _find_opp_table(dev);
1365	if (IS_ERR(opp_table))
1366		return;
1367
1368	mutex_lock(&opp_table->lock);
1369	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1370		if (opp->dynamic) {
1371			dev_pm_opp_put_unlocked(opp);
1372			count++;
1373		}
1374	}
1375	mutex_unlock(&opp_table->lock);
1376
1377	/* Drop the references taken by dev_pm_opp_add() */
1378	while (count--)
1379		dev_pm_opp_put_opp_table(opp_table);
1380
1381	/* Drop the reference taken by _find_opp_table() */
1382	dev_pm_opp_put_opp_table(opp_table);
1383}
1384EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1385
1386struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1387{
1388	struct dev_pm_opp *opp;
1389	int supply_count, supply_size, icc_size;
1390
1391	/* Allocate space for at least one supply */
1392	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1393	supply_size = sizeof(*opp->supplies) * supply_count;
1394	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1395
1396	/* allocate new OPP node and supplies structures */
1397	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1398
1399	if (!opp)
1400		return NULL;
1401
1402	/* Put the supplies at the end of the OPP structure as an empty array */
1403	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1404	if (icc_size)
1405		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1406	INIT_LIST_HEAD(&opp->node);
1407
1408	return opp;
1409}
1410
1411static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1412					 struct opp_table *opp_table)
1413{
1414	struct regulator *reg;
1415	int i;
1416
1417	if (!opp_table->regulators)
1418		return true;
1419
1420	for (i = 0; i < opp_table->regulator_count; i++) {
1421		reg = opp_table->regulators[i];
1422
1423		if (!regulator_is_supported_voltage(reg,
1424					opp->supplies[i].u_volt_min,
1425					opp->supplies[i].u_volt_max)) {
1426			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1427				__func__, opp->supplies[i].u_volt_min,
1428				opp->supplies[i].u_volt_max);
1429			return false;
1430		}
1431	}
1432
1433	return true;
1434}
1435
1436int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1437{
1438	if (opp1->rate != opp2->rate)
1439		return opp1->rate < opp2->rate ? -1 : 1;
1440	if (opp1->bandwidth && opp2->bandwidth &&
1441	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1442		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1443	if (opp1->level != opp2->level)
1444		return opp1->level < opp2->level ? -1 : 1;
1445	return 0;
1446}
1447
1448static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1449			     struct opp_table *opp_table,
1450			     struct list_head **head)
1451{
1452	struct dev_pm_opp *opp;
1453	int opp_cmp;
1454
1455	/*
1456	 * Insert new OPP in order of increasing frequency and discard if
1457	 * already present.
1458	 *
1459	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1460	 * loop, don't replace it with head otherwise it will become an infinite
1461	 * loop.
1462	 */
1463	list_for_each_entry(opp, &opp_table->opp_list, node) {
1464		opp_cmp = _opp_compare_key(new_opp, opp);
1465		if (opp_cmp > 0) {
1466			*head = &opp->node;
1467			continue;
1468		}
1469
1470		if (opp_cmp < 0)
1471			return 0;
1472
1473		/* Duplicate OPPs */
1474		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1475			 __func__, opp->rate, opp->supplies[0].u_volt,
1476			 opp->available, new_opp->rate,
1477			 new_opp->supplies[0].u_volt, new_opp->available);
1478
1479		/* Should we compare voltages for all regulators here ? */
1480		return opp->available &&
1481		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1482	}
1483
1484	return 0;
1485}
1486
1487/*
1488 * Returns:
1489 * 0: On success. And appropriate error message for duplicate OPPs.
1490 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1491 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1492 *  sure we don't print error messages unnecessarily if different parts of
1493 *  kernel try to initialize the OPP table.
1494 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1495 *  should be considered an error by the callers of _opp_add().
1496 */
1497int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1498	     struct opp_table *opp_table, bool rate_not_available)
1499{
1500	struct list_head *head;
1501	int ret;
1502
1503	mutex_lock(&opp_table->lock);
1504	head = &opp_table->opp_list;
1505
1506	if (likely(!rate_not_available)) {
1507		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1508		if (ret) {
1509			mutex_unlock(&opp_table->lock);
1510			return ret;
1511		}
1512	}
1513
1514	list_add(&new_opp->node, head);
1515	mutex_unlock(&opp_table->lock);
1516
1517	new_opp->opp_table = opp_table;
1518	kref_init(&new_opp->kref);
1519
1520	opp_debug_create_one(new_opp, opp_table);
1521
1522	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1523		new_opp->available = false;
1524		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1525			 __func__, new_opp->rate);
1526	}
1527
1528	return 0;
1529}
1530
1531/**
1532 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1533 * @opp_table:	OPP table
1534 * @dev:	device for which we do this operation
1535 * @freq:	Frequency in Hz for this OPP
1536 * @u_volt:	Voltage in uVolts for this OPP
1537 * @dynamic:	Dynamically added OPPs.
1538 *
1539 * This function adds an opp definition to the opp table and returns status.
1540 * The opp is made available by default and it can be controlled using
1541 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1542 *
1543 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1544 * and freed by dev_pm_opp_of_remove_table.
1545 *
1546 * Return:
1547 * 0		On success OR
1548 *		Duplicate OPPs (both freq and volt are same) and opp->available
1549 * -EEXIST	Freq are same and volt are different OR
1550 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1551 * -ENOMEM	Memory allocation failure
1552 */
1553int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1554		unsigned long freq, long u_volt, bool dynamic)
1555{
1556	struct dev_pm_opp *new_opp;
1557	unsigned long tol;
1558	int ret;
1559
1560	new_opp = _opp_allocate(opp_table);
1561	if (!new_opp)
1562		return -ENOMEM;
1563
1564	/* populate the opp table */
1565	new_opp->rate = freq;
1566	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1567	new_opp->supplies[0].u_volt = u_volt;
1568	new_opp->supplies[0].u_volt_min = u_volt - tol;
1569	new_opp->supplies[0].u_volt_max = u_volt + tol;
1570	new_opp->available = true;
1571	new_opp->dynamic = dynamic;
1572
1573	ret = _opp_add(dev, new_opp, opp_table, false);
1574	if (ret) {
1575		/* Don't return error for duplicate OPPs */
1576		if (ret == -EBUSY)
1577			ret = 0;
1578		goto free_opp;
1579	}
1580
1581	/*
1582	 * Notify the changes in the availability of the operable
1583	 * frequency/voltage list.
1584	 */
1585	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1586	return 0;
1587
1588free_opp:
1589	_opp_free(new_opp);
1590
1591	return ret;
1592}
1593
1594/**
1595 * dev_pm_opp_set_supported_hw() - Set supported platforms
1596 * @dev: Device for which supported-hw has to be set.
1597 * @versions: Array of hierarchy of versions to match.
1598 * @count: Number of elements in the array.
1599 *
1600 * This is required only for the V2 bindings, and it enables a platform to
1601 * specify the hierarchy of versions it supports. OPP layer will then enable
1602 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1603 * property.
1604 */
1605struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1606			const u32 *versions, unsigned int count)
1607{
1608	struct opp_table *opp_table;
1609
1610	opp_table = dev_pm_opp_get_opp_table(dev);
1611	if (IS_ERR(opp_table))
1612		return opp_table;
1613
1614	/* Make sure there are no concurrent readers while updating opp_table */
1615	WARN_ON(!list_empty(&opp_table->opp_list));
1616
1617	/* Another CPU that shares the OPP table has set the property ? */
1618	if (opp_table->supported_hw)
1619		return opp_table;
1620
1621	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1622					GFP_KERNEL);
1623	if (!opp_table->supported_hw) {
1624		dev_pm_opp_put_opp_table(opp_table);
1625		return ERR_PTR(-ENOMEM);
1626	}
1627
1628	opp_table->supported_hw_count = count;
1629
1630	return opp_table;
1631}
1632EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1633
1634/**
1635 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1636 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1637 *
1638 * This is required only for the V2 bindings, and is called for a matching
1639 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1640 * will not be freed.
1641 */
1642void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1643{
1644	/* Make sure there are no concurrent readers while updating opp_table */
1645	WARN_ON(!list_empty(&opp_table->opp_list));
1646
1647	kfree(opp_table->supported_hw);
1648	opp_table->supported_hw = NULL;
1649	opp_table->supported_hw_count = 0;
1650
1651	dev_pm_opp_put_opp_table(opp_table);
1652}
1653EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1654
1655/**
1656 * dev_pm_opp_set_prop_name() - Set prop-extn name
1657 * @dev: Device for which the prop-name has to be set.
1658 * @name: name to postfix to properties.
1659 *
1660 * This is required only for the V2 bindings, and it enables a platform to
1661 * specify the extn to be used for certain property names. The properties to
1662 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1663 * should postfix the property name with -<name> while looking for them.
1664 */
1665struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1666{
1667	struct opp_table *opp_table;
1668
1669	opp_table = dev_pm_opp_get_opp_table(dev);
1670	if (IS_ERR(opp_table))
1671		return opp_table;
1672
1673	/* Make sure there are no concurrent readers while updating opp_table */
1674	WARN_ON(!list_empty(&opp_table->opp_list));
1675
1676	/* Another CPU that shares the OPP table has set the property ? */
1677	if (opp_table->prop_name)
1678		return opp_table;
1679
1680	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1681	if (!opp_table->prop_name) {
1682		dev_pm_opp_put_opp_table(opp_table);
1683		return ERR_PTR(-ENOMEM);
1684	}
1685
1686	return opp_table;
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1689
1690/**
1691 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1692 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1693 *
1694 * This is required only for the V2 bindings, and is called for a matching
1695 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1696 * will not be freed.
1697 */
1698void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1699{
1700	/* Make sure there are no concurrent readers while updating opp_table */
1701	WARN_ON(!list_empty(&opp_table->opp_list));
1702
1703	kfree(opp_table->prop_name);
1704	opp_table->prop_name = NULL;
1705
1706	dev_pm_opp_put_opp_table(opp_table);
1707}
1708EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1709
1710static int _allocate_set_opp_data(struct opp_table *opp_table)
1711{
1712	struct dev_pm_set_opp_data *data;
1713	int len, count = opp_table->regulator_count;
1714
1715	if (WARN_ON(!opp_table->regulators))
1716		return -EINVAL;
1717
1718	/* space for set_opp_data */
1719	len = sizeof(*data);
1720
1721	/* space for old_opp.supplies and new_opp.supplies */
1722	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1723
1724	data = kzalloc(len, GFP_KERNEL);
1725	if (!data)
1726		return -ENOMEM;
1727
1728	data->old_opp.supplies = (void *)(data + 1);
1729	data->new_opp.supplies = data->old_opp.supplies + count;
1730
1731	opp_table->set_opp_data = data;
1732
1733	return 0;
1734}
1735
1736static void _free_set_opp_data(struct opp_table *opp_table)
1737{
1738	kfree(opp_table->set_opp_data);
1739	opp_table->set_opp_data = NULL;
1740}
1741
1742/**
1743 * dev_pm_opp_set_regulators() - Set regulator names for the device
1744 * @dev: Device for which regulator name is being set.
1745 * @names: Array of pointers to the names of the regulator.
1746 * @count: Number of regulators.
1747 *
1748 * In order to support OPP switching, OPP layer needs to know the name of the
1749 * device's regulators, as the core would be required to switch voltages as
1750 * well.
1751 *
1752 * This must be called before any OPPs are initialized for the device.
1753 */
1754struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1755					    const char * const names[],
1756					    unsigned int count)
1757{
1758	struct opp_table *opp_table;
1759	struct regulator *reg;
1760	int ret, i;
1761
1762	opp_table = dev_pm_opp_get_opp_table(dev);
1763	if (IS_ERR(opp_table))
1764		return opp_table;
1765
1766	/* This should be called before OPPs are initialized */
1767	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1768		ret = -EBUSY;
1769		goto err;
1770	}
1771
1772	/* Another CPU that shares the OPP table has set the regulators ? */
1773	if (opp_table->regulators)
1774		return opp_table;
1775
1776	opp_table->regulators = kmalloc_array(count,
1777					      sizeof(*opp_table->regulators),
1778					      GFP_KERNEL);
1779	if (!opp_table->regulators) {
1780		ret = -ENOMEM;
1781		goto err;
1782	}
1783
1784	for (i = 0; i < count; i++) {
1785		reg = regulator_get_optional(dev, names[i]);
1786		if (IS_ERR(reg)) {
1787			ret = PTR_ERR(reg);
1788			if (ret != -EPROBE_DEFER)
1789				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1790					__func__, names[i], ret);
1791			goto free_regulators;
1792		}
1793
1794		opp_table->regulators[i] = reg;
1795	}
1796
1797	opp_table->regulator_count = count;
1798
1799	/* Allocate block only once to pass to set_opp() routines */
1800	ret = _allocate_set_opp_data(opp_table);
1801	if (ret)
1802		goto free_regulators;
1803
1804	return opp_table;
1805
1806free_regulators:
1807	while (i != 0)
1808		regulator_put(opp_table->regulators[--i]);
1809
1810	kfree(opp_table->regulators);
1811	opp_table->regulators = NULL;
1812	opp_table->regulator_count = -1;
1813err:
1814	dev_pm_opp_put_opp_table(opp_table);
1815
1816	return ERR_PTR(ret);
1817}
1818EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1819
1820/**
1821 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1822 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1823 */
1824void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1825{
1826	int i;
1827
1828	if (!opp_table->regulators)
1829		goto put_opp_table;
1830
1831	/* Make sure there are no concurrent readers while updating opp_table */
1832	WARN_ON(!list_empty(&opp_table->opp_list));
1833
1834	if (opp_table->enabled) {
1835		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1836			regulator_disable(opp_table->regulators[i]);
1837	}
1838
1839	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1840		regulator_put(opp_table->regulators[i]);
1841
1842	_free_set_opp_data(opp_table);
1843
1844	kfree(opp_table->regulators);
1845	opp_table->regulators = NULL;
1846	opp_table->regulator_count = -1;
1847
1848put_opp_table:
1849	dev_pm_opp_put_opp_table(opp_table);
1850}
1851EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1852
1853/**
1854 * dev_pm_opp_set_clkname() - Set clk name for the device
1855 * @dev: Device for which clk name is being set.
1856 * @name: Clk name.
1857 *
1858 * In order to support OPP switching, OPP layer needs to get pointer to the
1859 * clock for the device. Simple cases work fine without using this routine (i.e.
1860 * by passing connection-id as NULL), but for a device with multiple clocks
1861 * available, the OPP core needs to know the exact name of the clk to use.
1862 *
1863 * This must be called before any OPPs are initialized for the device.
1864 */
1865struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1866{
1867	struct opp_table *opp_table;
1868	int ret;
1869
1870	opp_table = dev_pm_opp_get_opp_table(dev);
1871	if (IS_ERR(opp_table))
1872		return opp_table;
1873
1874	/* This should be called before OPPs are initialized */
1875	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1876		ret = -EBUSY;
1877		goto err;
1878	}
1879
1880	/* Already have default clk set, free it */
1881	if (!IS_ERR(opp_table->clk))
1882		clk_put(opp_table->clk);
1883
1884	/* Find clk for the device */
1885	opp_table->clk = clk_get(dev, name);
1886	if (IS_ERR(opp_table->clk)) {
1887		ret = PTR_ERR(opp_table->clk);
1888		if (ret != -EPROBE_DEFER) {
1889			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1890				ret);
1891		}
1892		goto err;
1893	}
1894
1895	return opp_table;
1896
1897err:
1898	dev_pm_opp_put_opp_table(opp_table);
1899
1900	return ERR_PTR(ret);
1901}
1902EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1903
1904/**
1905 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1906 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1907 */
1908void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1909{
1910	/* Make sure there are no concurrent readers while updating opp_table */
1911	WARN_ON(!list_empty(&opp_table->opp_list));
1912
1913	clk_put(opp_table->clk);
1914	opp_table->clk = ERR_PTR(-EINVAL);
1915
1916	dev_pm_opp_put_opp_table(opp_table);
1917}
1918EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1919
1920/**
1921 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1922 * @dev: Device for which the helper is getting registered.
1923 * @set_opp: Custom set OPP helper.
1924 *
1925 * This is useful to support complex platforms (like platforms with multiple
1926 * regulators per device), instead of the generic OPP set rate helper.
1927 *
1928 * This must be called before any OPPs are initialized for the device.
1929 */
1930struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1931			int (*set_opp)(struct dev_pm_set_opp_data *data))
1932{
1933	struct opp_table *opp_table;
1934
1935	if (!set_opp)
1936		return ERR_PTR(-EINVAL);
1937
1938	opp_table = dev_pm_opp_get_opp_table(dev);
1939	if (IS_ERR(opp_table))
1940		return opp_table;
1941
1942	/* This should be called before OPPs are initialized */
1943	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1944		dev_pm_opp_put_opp_table(opp_table);
1945		return ERR_PTR(-EBUSY);
1946	}
1947
1948	/* Another CPU that shares the OPP table has set the helper ? */
1949	if (!opp_table->set_opp)
1950		opp_table->set_opp = set_opp;
1951
1952	return opp_table;
1953}
1954EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1955
1956/**
1957 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1958 *					   set_opp helper
1959 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1960 *
1961 * Release resources blocked for platform specific set_opp helper.
1962 */
1963void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1964{
1965	/* Make sure there are no concurrent readers while updating opp_table */
1966	WARN_ON(!list_empty(&opp_table->opp_list));
1967
1968	opp_table->set_opp = NULL;
1969	dev_pm_opp_put_opp_table(opp_table);
1970}
1971EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1972
1973static void _opp_detach_genpd(struct opp_table *opp_table)
1974{
1975	int index;
1976
1977	if (!opp_table->genpd_virt_devs)
1978		return;
1979
1980	for (index = 0; index < opp_table->required_opp_count; index++) {
1981		if (!opp_table->genpd_virt_devs[index])
1982			continue;
1983
1984		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1985		opp_table->genpd_virt_devs[index] = NULL;
1986	}
1987
1988	kfree(opp_table->genpd_virt_devs);
1989	opp_table->genpd_virt_devs = NULL;
1990}
1991
1992/**
1993 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1994 * @dev: Consumer device for which the genpd is getting attached.
1995 * @names: Null terminated array of pointers containing names of genpd to attach.
1996 * @virt_devs: Pointer to return the array of virtual devices.
1997 *
1998 * Multiple generic power domains for a device are supported with the help of
1999 * virtual genpd devices, which are created for each consumer device - genpd
2000 * pair. These are the device structures which are attached to the power domain
2001 * and are required by the OPP core to set the performance state of the genpd.
2002 * The same API also works for the case where single genpd is available and so
2003 * we don't need to support that separately.
2004 *
2005 * This helper will normally be called by the consumer driver of the device
2006 * "dev", as only that has details of the genpd names.
2007 *
2008 * This helper needs to be called once with a list of all genpd to attach.
2009 * Otherwise the original device structure will be used instead by the OPP core.
2010 *
2011 * The order of entries in the names array must match the order in which
2012 * "required-opps" are added in DT.
2013 */
2014struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2015		const char **names, struct device ***virt_devs)
2016{
2017	struct opp_table *opp_table;
2018	struct device *virt_dev;
2019	int index = 0, ret = -EINVAL;
2020	const char **name = names;
2021
2022	opp_table = dev_pm_opp_get_opp_table(dev);
2023	if (IS_ERR(opp_table))
2024		return opp_table;
2025
2026	if (opp_table->genpd_virt_devs)
2027		return opp_table;
2028
2029	/*
2030	 * If the genpd's OPP table isn't already initialized, parsing of the
2031	 * required-opps fail for dev. We should retry this after genpd's OPP
2032	 * table is added.
2033	 */
2034	if (!opp_table->required_opp_count) {
2035		ret = -EPROBE_DEFER;
2036		goto put_table;
2037	}
2038
2039	mutex_lock(&opp_table->genpd_virt_dev_lock);
2040
2041	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2042					     sizeof(*opp_table->genpd_virt_devs),
2043					     GFP_KERNEL);
2044	if (!opp_table->genpd_virt_devs)
2045		goto unlock;
2046
2047	while (*name) {
2048		if (index >= opp_table->required_opp_count) {
2049			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2050				*name, opp_table->required_opp_count, index);
2051			goto err;
2052		}
2053
2054		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2055		if (IS_ERR_OR_NULL(virt_dev)) {
2056			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2057			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2058			goto err;
2059		}
2060
2061		opp_table->genpd_virt_devs[index] = virt_dev;
2062		index++;
2063		name++;
2064	}
2065
2066	if (virt_devs)
2067		*virt_devs = opp_table->genpd_virt_devs;
2068	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2069
2070	return opp_table;
2071
2072err:
2073	_opp_detach_genpd(opp_table);
2074unlock:
2075	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2076
2077put_table:
2078	dev_pm_opp_put_opp_table(opp_table);
2079
2080	return ERR_PTR(ret);
2081}
2082EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2083
2084/**
2085 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2086 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2087 *
2088 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2089 * OPP table.
2090 */
2091void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2092{
2093	/*
2094	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2095	 * used in parallel.
2096	 */
2097	mutex_lock(&opp_table->genpd_virt_dev_lock);
2098	_opp_detach_genpd(opp_table);
2099	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2100
2101	dev_pm_opp_put_opp_table(opp_table);
2102}
2103EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2104
2105/**
2106 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2107 * @src_table: OPP table which has dst_table as one of its required OPP table.
2108 * @dst_table: Required OPP table of the src_table.
2109 * @pstate: Current performance state of the src_table.
2110 *
2111 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2112 * "required-opps" property of the OPP (present in @src_table) which has
2113 * performance state set to @pstate.
2114 *
2115 * Return: Zero or positive performance state on success, otherwise negative
2116 * value on errors.
2117 */
2118int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2119				       struct opp_table *dst_table,
2120				       unsigned int pstate)
2121{
2122	struct dev_pm_opp *opp;
2123	int dest_pstate = -EINVAL;
2124	int i;
2125
2126	/*
2127	 * Normally the src_table will have the "required_opps" property set to
2128	 * point to one of the OPPs in the dst_table, but in some cases the
2129	 * genpd and its master have one to one mapping of performance states
2130	 * and so none of them have the "required-opps" property set. Return the
2131	 * pstate of the src_table as it is in such cases.
2132	 */
2133	if (!src_table->required_opp_count)
2134		return pstate;
2135
2136	for (i = 0; i < src_table->required_opp_count; i++) {
2137		if (src_table->required_opp_tables[i]->np == dst_table->np)
2138			break;
2139	}
2140
2141	if (unlikely(i == src_table->required_opp_count)) {
2142		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2143		       __func__, src_table, dst_table);
2144		return -EINVAL;
2145	}
2146
2147	mutex_lock(&src_table->lock);
2148
2149	list_for_each_entry(opp, &src_table->opp_list, node) {
2150		if (opp->pstate == pstate) {
2151			dest_pstate = opp->required_opps[i]->pstate;
2152			goto unlock;
2153		}
2154	}
2155
2156	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2157	       dst_table);
2158
2159unlock:
2160	mutex_unlock(&src_table->lock);
2161
2162	return dest_pstate;
2163}
2164
2165/**
2166 * dev_pm_opp_add()  - Add an OPP table from a table definitions
2167 * @dev:	device for which we do this operation
2168 * @freq:	Frequency in Hz for this OPP
2169 * @u_volt:	Voltage in uVolts for this OPP
2170 *
2171 * This function adds an opp definition to the opp table and returns status.
2172 * The opp is made available by default and it can be controlled using
2173 * dev_pm_opp_enable/disable functions.
2174 *
2175 * Return:
2176 * 0		On success OR
2177 *		Duplicate OPPs (both freq and volt are same) and opp->available
2178 * -EEXIST	Freq are same and volt are different OR
2179 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2180 * -ENOMEM	Memory allocation failure
2181 */
2182int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2183{
2184	struct opp_table *opp_table;
2185	int ret;
2186
2187	opp_table = dev_pm_opp_get_opp_table(dev);
2188	if (IS_ERR(opp_table))
2189		return PTR_ERR(opp_table);
2190
2191	/* Fix regulator count for dynamic OPPs */
2192	opp_table->regulator_count = 1;
2193
2194	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2195	if (ret)
2196		dev_pm_opp_put_opp_table(opp_table);
2197
2198	return ret;
2199}
2200EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2201
2202/**
2203 * _opp_set_availability() - helper to set the availability of an opp
2204 * @dev:		device for which we do this operation
2205 * @freq:		OPP frequency to modify availability
2206 * @availability_req:	availability status requested for this opp
2207 *
2208 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2209 * which is isolated here.
2210 *
2211 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2212 * copy operation, returns 0 if no modification was done OR modification was
2213 * successful.
2214 */
2215static int _opp_set_availability(struct device *dev, unsigned long freq,
2216				 bool availability_req)
2217{
2218	struct opp_table *opp_table;
2219	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2220	int r = 0;
2221
2222	/* Find the opp_table */
2223	opp_table = _find_opp_table(dev);
2224	if (IS_ERR(opp_table)) {
2225		r = PTR_ERR(opp_table);
2226		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2227		return r;
2228	}
2229
2230	mutex_lock(&opp_table->lock);
2231
2232	/* Do we have the frequency? */
2233	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2234		if (tmp_opp->rate == freq) {
2235			opp = tmp_opp;
2236			break;
2237		}
2238	}
2239
2240	if (IS_ERR(opp)) {
2241		r = PTR_ERR(opp);
2242		goto unlock;
2243	}
2244
2245	/* Is update really needed? */
2246	if (opp->available == availability_req)
2247		goto unlock;
2248
2249	opp->available = availability_req;
2250
2251	dev_pm_opp_get(opp);
2252	mutex_unlock(&opp_table->lock);
2253
2254	/* Notify the change of the OPP availability */
2255	if (availability_req)
2256		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2257					     opp);
2258	else
2259		blocking_notifier_call_chain(&opp_table->head,
2260					     OPP_EVENT_DISABLE, opp);
2261
2262	dev_pm_opp_put(opp);
2263	goto put_table;
2264
2265unlock:
2266	mutex_unlock(&opp_table->lock);
2267put_table:
2268	dev_pm_opp_put_opp_table(opp_table);
2269	return r;
2270}
2271
2272/**
2273 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2274 * @dev:		device for which we do this operation
2275 * @freq:		OPP frequency to adjust voltage of
2276 * @u_volt:		new OPP target voltage
2277 * @u_volt_min:		new OPP min voltage
2278 * @u_volt_max:		new OPP max voltage
2279 *
2280 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2281 * copy operation, returns 0 if no modifcation was done OR modification was
2282 * successful.
2283 */
2284int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2285			      unsigned long u_volt, unsigned long u_volt_min,
2286			      unsigned long u_volt_max)
2287
2288{
2289	struct opp_table *opp_table;
2290	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2291	int r = 0;
2292
2293	/* Find the opp_table */
2294	opp_table = _find_opp_table(dev);
2295	if (IS_ERR(opp_table)) {
2296		r = PTR_ERR(opp_table);
2297		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2298		return r;
2299	}
2300
2301	mutex_lock(&opp_table->lock);
2302
2303	/* Do we have the frequency? */
2304	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2305		if (tmp_opp->rate == freq) {
2306			opp = tmp_opp;
2307			break;
2308		}
2309	}
2310
2311	if (IS_ERR(opp)) {
2312		r = PTR_ERR(opp);
2313		goto adjust_unlock;
2314	}
2315
2316	/* Is update really needed? */
2317	if (opp->supplies->u_volt == u_volt)
2318		goto adjust_unlock;
2319
2320	opp->supplies->u_volt = u_volt;
2321	opp->supplies->u_volt_min = u_volt_min;
2322	opp->supplies->u_volt_max = u_volt_max;
2323
2324	dev_pm_opp_get(opp);
2325	mutex_unlock(&opp_table->lock);
2326
2327	/* Notify the voltage change of the OPP */
2328	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2329				     opp);
2330
2331	dev_pm_opp_put(opp);
2332	goto adjust_put_table;
2333
2334adjust_unlock:
2335	mutex_unlock(&opp_table->lock);
2336adjust_put_table:
2337	dev_pm_opp_put_opp_table(opp_table);
2338	return r;
2339}
2340EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2341
2342/**
2343 * dev_pm_opp_enable() - Enable a specific OPP
2344 * @dev:	device for which we do this operation
2345 * @freq:	OPP frequency to enable
2346 *
2347 * Enables a provided opp. If the operation is valid, this returns 0, else the
2348 * corresponding error value. It is meant to be used for users an OPP available
2349 * after being temporarily made unavailable with dev_pm_opp_disable.
2350 *
2351 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2352 * copy operation, returns 0 if no modification was done OR modification was
2353 * successful.
2354 */
2355int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2356{
2357	return _opp_set_availability(dev, freq, true);
2358}
2359EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2360
2361/**
2362 * dev_pm_opp_disable() - Disable a specific OPP
2363 * @dev:	device for which we do this operation
2364 * @freq:	OPP frequency to disable
2365 *
2366 * Disables a provided opp. If the operation is valid, this returns
2367 * 0, else the corresponding error value. It is meant to be a temporary
2368 * control by users to make this OPP not available until the circumstances are
2369 * right to make it available again (with a call to dev_pm_opp_enable).
2370 *
2371 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2372 * copy operation, returns 0 if no modification was done OR modification was
2373 * successful.
2374 */
2375int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2376{
2377	return _opp_set_availability(dev, freq, false);
2378}
2379EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2380
2381/**
2382 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2383 * @dev:	Device for which notifier needs to be registered
2384 * @nb:		Notifier block to be registered
2385 *
2386 * Return: 0 on success or a negative error value.
2387 */
2388int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2389{
2390	struct opp_table *opp_table;
2391	int ret;
2392
2393	opp_table = _find_opp_table(dev);
2394	if (IS_ERR(opp_table))
2395		return PTR_ERR(opp_table);
2396
2397	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2398
2399	dev_pm_opp_put_opp_table(opp_table);
2400
2401	return ret;
2402}
2403EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2404
2405/**
2406 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2407 * @dev:	Device for which notifier needs to be unregistered
2408 * @nb:		Notifier block to be unregistered
2409 *
2410 * Return: 0 on success or a negative error value.
2411 */
2412int dev_pm_opp_unregister_notifier(struct device *dev,
2413				   struct notifier_block *nb)
2414{
2415	struct opp_table *opp_table;
2416	int ret;
2417
2418	opp_table = _find_opp_table(dev);
2419	if (IS_ERR(opp_table))
2420		return PTR_ERR(opp_table);
2421
2422	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2423
2424	dev_pm_opp_put_opp_table(opp_table);
2425
2426	return ret;
2427}
2428EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2429
2430/**
2431 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2432 * @dev:	device pointer used to lookup OPP table.
2433 *
2434 * Free both OPPs created using static entries present in DT and the
2435 * dynamically added entries.
2436 */
2437void dev_pm_opp_remove_table(struct device *dev)
2438{
2439	struct opp_table *opp_table;
2440
2441	/* Check for existing table for 'dev' */
2442	opp_table = _find_opp_table(dev);
2443	if (IS_ERR(opp_table)) {
2444		int error = PTR_ERR(opp_table);
2445
2446		if (error != -ENODEV)
2447			WARN(1, "%s: opp_table: %d\n",
2448			     IS_ERR_OR_NULL(dev) ?
2449					"Invalid device" : dev_name(dev),
2450			     error);
2451		return;
2452	}
2453
2454	/*
2455	 * Drop the extra reference only if the OPP table was successfully added
2456	 * with dev_pm_opp_of_add_table() earlier.
2457	 **/
2458	if (_opp_remove_all_static(opp_table))
2459		dev_pm_opp_put_opp_table(opp_table);
2460
2461	/* Drop reference taken by _find_opp_table() */
2462	dev_pm_opp_put_opp_table(opp_table);
2463}
2464EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2465