xref: /kernel/linux/linux-5.10/drivers/of/property.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 *			   Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras	August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 *    {engebret|bergner}@us.ibm.com
15 *
16 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 *  Grant Likely.
20 */
21
22#define pr_fmt(fmt)	"OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/string.h>
28#include <linux/moduleparam.h>
29
30#include "of_private.h"
31
32/**
33 * of_graph_is_present() - check graph's presence
34 * @node: pointer to device_node containing graph port
35 *
36 * Return: True if @node has a port or ports (with a port) sub-node,
37 * false otherwise.
38 */
39bool of_graph_is_present(const struct device_node *node)
40{
41	struct device_node *ports, *port;
42
43	ports = of_get_child_by_name(node, "ports");
44	if (ports)
45		node = ports;
46
47	port = of_get_child_by_name(node, "port");
48	of_node_put(ports);
49	of_node_put(port);
50
51	return !!port;
52}
53EXPORT_SYMBOL(of_graph_is_present);
54
55/**
56 * of_property_count_elems_of_size - Count the number of elements in a property
57 *
58 * @np:		device node from which the property value is to be read.
59 * @propname:	name of the property to be searched.
60 * @elem_size:	size of the individual element
61 *
62 * Search for a property in a device node and count the number of elements of
63 * size elem_size in it.
64 *
65 * Return: The number of elements on sucess, -EINVAL if the property does not
66 * exist or its length does not match a multiple of elem_size and -ENODATA if
67 * the property does not have a value.
68 */
69int of_property_count_elems_of_size(const struct device_node *np,
70				const char *propname, int elem_size)
71{
72	struct property *prop = of_find_property(np, propname, NULL);
73
74	if (!prop)
75		return -EINVAL;
76	if (!prop->value)
77		return -ENODATA;
78
79	if (prop->length % elem_size != 0) {
80		pr_err("size of %s in node %pOF is not a multiple of %d\n",
81		       propname, np, elem_size);
82		return -EINVAL;
83	}
84
85	return prop->length / elem_size;
86}
87EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
88
89/**
90 * of_find_property_value_of_size
91 *
92 * @np:		device node from which the property value is to be read.
93 * @propname:	name of the property to be searched.
94 * @min:	minimum allowed length of property value
95 * @max:	maximum allowed length of property value (0 means unlimited)
96 * @len:	if !=NULL, actual length is written to here
97 *
98 * Search for a property in a device node and valid the requested size.
99 *
100 * Return: The property value on success, -EINVAL if the property does not
101 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
102 * property data is too small or too large.
103 *
104 */
105static void *of_find_property_value_of_size(const struct device_node *np,
106			const char *propname, u32 min, u32 max, size_t *len)
107{
108	struct property *prop = of_find_property(np, propname, NULL);
109
110	if (!prop)
111		return ERR_PTR(-EINVAL);
112	if (!prop->value)
113		return ERR_PTR(-ENODATA);
114	if (prop->length < min)
115		return ERR_PTR(-EOVERFLOW);
116	if (max && prop->length > max)
117		return ERR_PTR(-EOVERFLOW);
118
119	if (len)
120		*len = prop->length;
121
122	return prop->value;
123}
124
125/**
126 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
127 *
128 * @np:		device node from which the property value is to be read.
129 * @propname:	name of the property to be searched.
130 * @index:	index of the u32 in the list of values
131 * @out_value:	pointer to return value, modified only if no error.
132 *
133 * Search for a property in a device node and read nth 32-bit value from
134 * it.
135 *
136 * Return: 0 on success, -EINVAL if the property does not exist,
137 * -ENODATA if property does not have a value, and -EOVERFLOW if the
138 * property data isn't large enough.
139 *
140 * The out_value is modified only if a valid u32 value can be decoded.
141 */
142int of_property_read_u32_index(const struct device_node *np,
143				       const char *propname,
144				       u32 index, u32 *out_value)
145{
146	const u32 *val = of_find_property_value_of_size(np, propname,
147					((index + 1) * sizeof(*out_value)),
148					0,
149					NULL);
150
151	if (IS_ERR(val))
152		return PTR_ERR(val);
153
154	*out_value = be32_to_cpup(((__be32 *)val) + index);
155	return 0;
156}
157EXPORT_SYMBOL_GPL(of_property_read_u32_index);
158
159/**
160 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
161 *
162 * @np:		device node from which the property value is to be read.
163 * @propname:	name of the property to be searched.
164 * @index:	index of the u64 in the list of values
165 * @out_value:	pointer to return value, modified only if no error.
166 *
167 * Search for a property in a device node and read nth 64-bit value from
168 * it.
169 *
170 * Return: 0 on success, -EINVAL if the property does not exist,
171 * -ENODATA if property does not have a value, and -EOVERFLOW if the
172 * property data isn't large enough.
173 *
174 * The out_value is modified only if a valid u64 value can be decoded.
175 */
176int of_property_read_u64_index(const struct device_node *np,
177				       const char *propname,
178				       u32 index, u64 *out_value)
179{
180	const u64 *val = of_find_property_value_of_size(np, propname,
181					((index + 1) * sizeof(*out_value)),
182					0, NULL);
183
184	if (IS_ERR(val))
185		return PTR_ERR(val);
186
187	*out_value = be64_to_cpup(((__be64 *)val) + index);
188	return 0;
189}
190EXPORT_SYMBOL_GPL(of_property_read_u64_index);
191
192/**
193 * of_property_read_variable_u8_array - Find and read an array of u8 from a
194 * property, with bounds on the minimum and maximum array size.
195 *
196 * @np:		device node from which the property value is to be read.
197 * @propname:	name of the property to be searched.
198 * @out_values:	pointer to found values.
199 * @sz_min:	minimum number of array elements to read
200 * @sz_max:	maximum number of array elements to read, if zero there is no
201 *		upper limit on the number of elements in the dts entry but only
202 *		sz_min will be read.
203 *
204 * Search for a property in a device node and read 8-bit value(s) from
205 * it.
206 *
207 * dts entry of array should be like:
208 *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
209 *
210 * Return: The number of elements read on success, -EINVAL if the property
211 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
212 * if the property data is smaller than sz_min or longer than sz_max.
213 *
214 * The out_values is modified only if a valid u8 value can be decoded.
215 */
216int of_property_read_variable_u8_array(const struct device_node *np,
217					const char *propname, u8 *out_values,
218					size_t sz_min, size_t sz_max)
219{
220	size_t sz, count;
221	const u8 *val = of_find_property_value_of_size(np, propname,
222						(sz_min * sizeof(*out_values)),
223						(sz_max * sizeof(*out_values)),
224						&sz);
225
226	if (IS_ERR(val))
227		return PTR_ERR(val);
228
229	if (!sz_max)
230		sz = sz_min;
231	else
232		sz /= sizeof(*out_values);
233
234	count = sz;
235	while (count--)
236		*out_values++ = *val++;
237
238	return sz;
239}
240EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
241
242/**
243 * of_property_read_variable_u16_array - Find and read an array of u16 from a
244 * property, with bounds on the minimum and maximum array size.
245 *
246 * @np:		device node from which the property value is to be read.
247 * @propname:	name of the property to be searched.
248 * @out_values:	pointer to found values.
249 * @sz_min:	minimum number of array elements to read
250 * @sz_max:	maximum number of array elements to read, if zero there is no
251 *		upper limit on the number of elements in the dts entry but only
252 *		sz_min will be read.
253 *
254 * Search for a property in a device node and read 16-bit value(s) from
255 * it.
256 *
257 * dts entry of array should be like:
258 *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
259 *
260 * Return: The number of elements read on success, -EINVAL if the property
261 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
262 * if the property data is smaller than sz_min or longer than sz_max.
263 *
264 * The out_values is modified only if a valid u16 value can be decoded.
265 */
266int of_property_read_variable_u16_array(const struct device_node *np,
267					const char *propname, u16 *out_values,
268					size_t sz_min, size_t sz_max)
269{
270	size_t sz, count;
271	const __be16 *val = of_find_property_value_of_size(np, propname,
272						(sz_min * sizeof(*out_values)),
273						(sz_max * sizeof(*out_values)),
274						&sz);
275
276	if (IS_ERR(val))
277		return PTR_ERR(val);
278
279	if (!sz_max)
280		sz = sz_min;
281	else
282		sz /= sizeof(*out_values);
283
284	count = sz;
285	while (count--)
286		*out_values++ = be16_to_cpup(val++);
287
288	return sz;
289}
290EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
291
292/**
293 * of_property_read_variable_u32_array - Find and read an array of 32 bit
294 * integers from a property, with bounds on the minimum and maximum array size.
295 *
296 * @np:		device node from which the property value is to be read.
297 * @propname:	name of the property to be searched.
298 * @out_values:	pointer to return found values.
299 * @sz_min:	minimum number of array elements to read
300 * @sz_max:	maximum number of array elements to read, if zero there is no
301 *		upper limit on the number of elements in the dts entry but only
302 *		sz_min will be read.
303 *
304 * Search for a property in a device node and read 32-bit value(s) from
305 * it.
306 *
307 * Return: The number of elements read on success, -EINVAL if the property
308 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
309 * if the property data is smaller than sz_min or longer than sz_max.
310 *
311 * The out_values is modified only if a valid u32 value can be decoded.
312 */
313int of_property_read_variable_u32_array(const struct device_node *np,
314			       const char *propname, u32 *out_values,
315			       size_t sz_min, size_t sz_max)
316{
317	size_t sz, count;
318	const __be32 *val = of_find_property_value_of_size(np, propname,
319						(sz_min * sizeof(*out_values)),
320						(sz_max * sizeof(*out_values)),
321						&sz);
322
323	if (IS_ERR(val))
324		return PTR_ERR(val);
325
326	if (!sz_max)
327		sz = sz_min;
328	else
329		sz /= sizeof(*out_values);
330
331	count = sz;
332	while (count--)
333		*out_values++ = be32_to_cpup(val++);
334
335	return sz;
336}
337EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
338
339/**
340 * of_property_read_u64 - Find and read a 64 bit integer from a property
341 * @np:		device node from which the property value is to be read.
342 * @propname:	name of the property to be searched.
343 * @out_value:	pointer to return value, modified only if return value is 0.
344 *
345 * Search for a property in a device node and read a 64-bit value from
346 * it.
347 *
348 * Return: 0 on success, -EINVAL if the property does not exist,
349 * -ENODATA if property does not have a value, and -EOVERFLOW if the
350 * property data isn't large enough.
351 *
352 * The out_value is modified only if a valid u64 value can be decoded.
353 */
354int of_property_read_u64(const struct device_node *np, const char *propname,
355			 u64 *out_value)
356{
357	const __be32 *val = of_find_property_value_of_size(np, propname,
358						sizeof(*out_value),
359						0,
360						NULL);
361
362	if (IS_ERR(val))
363		return PTR_ERR(val);
364
365	*out_value = of_read_number(val, 2);
366	return 0;
367}
368EXPORT_SYMBOL_GPL(of_property_read_u64);
369
370/**
371 * of_property_read_variable_u64_array - Find and read an array of 64 bit
372 * integers from a property, with bounds on the minimum and maximum array size.
373 *
374 * @np:		device node from which the property value is to be read.
375 * @propname:	name of the property to be searched.
376 * @out_values:	pointer to found values.
377 * @sz_min:	minimum number of array elements to read
378 * @sz_max:	maximum number of array elements to read, if zero there is no
379 *		upper limit on the number of elements in the dts entry but only
380 *		sz_min will be read.
381 *
382 * Search for a property in a device node and read 64-bit value(s) from
383 * it.
384 *
385 * Return: The number of elements read on success, -EINVAL if the property
386 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
387 * if the property data is smaller than sz_min or longer than sz_max.
388 *
389 * The out_values is modified only if a valid u64 value can be decoded.
390 */
391int of_property_read_variable_u64_array(const struct device_node *np,
392			       const char *propname, u64 *out_values,
393			       size_t sz_min, size_t sz_max)
394{
395	size_t sz, count;
396	const __be32 *val = of_find_property_value_of_size(np, propname,
397						(sz_min * sizeof(*out_values)),
398						(sz_max * sizeof(*out_values)),
399						&sz);
400
401	if (IS_ERR(val))
402		return PTR_ERR(val);
403
404	if (!sz_max)
405		sz = sz_min;
406	else
407		sz /= sizeof(*out_values);
408
409	count = sz;
410	while (count--) {
411		*out_values++ = of_read_number(val, 2);
412		val += 2;
413	}
414
415	return sz;
416}
417EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
418
419/**
420 * of_property_read_string - Find and read a string from a property
421 * @np:		device node from which the property value is to be read.
422 * @propname:	name of the property to be searched.
423 * @out_string:	pointer to null terminated return string, modified only if
424 *		return value is 0.
425 *
426 * Search for a property in a device tree node and retrieve a null
427 * terminated string value (pointer to data, not a copy).
428 *
429 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
430 * property does not have a value, and -EILSEQ if the string is not
431 * null-terminated within the length of the property data.
432 *
433 * The out_string pointer is modified only if a valid string can be decoded.
434 */
435int of_property_read_string(const struct device_node *np, const char *propname,
436				const char **out_string)
437{
438	const struct property *prop = of_find_property(np, propname, NULL);
439	if (!prop)
440		return -EINVAL;
441	if (!prop->value)
442		return -ENODATA;
443	if (strnlen(prop->value, prop->length) >= prop->length)
444		return -EILSEQ;
445	*out_string = prop->value;
446	return 0;
447}
448EXPORT_SYMBOL_GPL(of_property_read_string);
449
450/**
451 * of_property_match_string() - Find string in a list and return index
452 * @np: pointer to node containing string list property
453 * @propname: string list property name
454 * @string: pointer to string to search for in string list
455 *
456 * This function searches a string list property and returns the index
457 * of a specific string value.
458 */
459int of_property_match_string(const struct device_node *np, const char *propname,
460			     const char *string)
461{
462	const struct property *prop = of_find_property(np, propname, NULL);
463	size_t l;
464	int i;
465	const char *p, *end;
466
467	if (!prop)
468		return -EINVAL;
469	if (!prop->value)
470		return -ENODATA;
471
472	p = prop->value;
473	end = p + prop->length;
474
475	for (i = 0; p < end; i++, p += l) {
476		l = strnlen(p, end - p) + 1;
477		if (p + l > end)
478			return -EILSEQ;
479		pr_debug("comparing %s with %s\n", string, p);
480		if (strcmp(string, p) == 0)
481			return i; /* Found it; return index */
482	}
483	return -ENODATA;
484}
485EXPORT_SYMBOL_GPL(of_property_match_string);
486
487/**
488 * of_property_read_string_helper() - Utility helper for parsing string properties
489 * @np:		device node from which the property value is to be read.
490 * @propname:	name of the property to be searched.
491 * @out_strs:	output array of string pointers.
492 * @sz:		number of array elements to read.
493 * @skip:	Number of strings to skip over at beginning of list.
494 *
495 * Don't call this function directly. It is a utility helper for the
496 * of_property_read_string*() family of functions.
497 */
498int of_property_read_string_helper(const struct device_node *np,
499				   const char *propname, const char **out_strs,
500				   size_t sz, int skip)
501{
502	const struct property *prop = of_find_property(np, propname, NULL);
503	int l = 0, i = 0;
504	const char *p, *end;
505
506	if (!prop)
507		return -EINVAL;
508	if (!prop->value)
509		return -ENODATA;
510	p = prop->value;
511	end = p + prop->length;
512
513	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
514		l = strnlen(p, end - p) + 1;
515		if (p + l > end)
516			return -EILSEQ;
517		if (out_strs && i >= skip)
518			*out_strs++ = p;
519	}
520	i -= skip;
521	return i <= 0 ? -ENODATA : i;
522}
523EXPORT_SYMBOL_GPL(of_property_read_string_helper);
524
525const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
526			       u32 *pu)
527{
528	const void *curv = cur;
529
530	if (!prop)
531		return NULL;
532
533	if (!cur) {
534		curv = prop->value;
535		goto out_val;
536	}
537
538	curv += sizeof(*cur);
539	if (curv >= prop->value + prop->length)
540		return NULL;
541
542out_val:
543	*pu = be32_to_cpup(curv);
544	return curv;
545}
546EXPORT_SYMBOL_GPL(of_prop_next_u32);
547
548const char *of_prop_next_string(struct property *prop, const char *cur)
549{
550	const void *curv = cur;
551
552	if (!prop)
553		return NULL;
554
555	if (!cur)
556		return prop->value;
557
558	curv += strlen(cur) + 1;
559	if (curv >= prop->value + prop->length)
560		return NULL;
561
562	return curv;
563}
564EXPORT_SYMBOL_GPL(of_prop_next_string);
565
566/**
567 * of_graph_parse_endpoint() - parse common endpoint node properties
568 * @node: pointer to endpoint device_node
569 * @endpoint: pointer to the OF endpoint data structure
570 *
571 * The caller should hold a reference to @node.
572 */
573int of_graph_parse_endpoint(const struct device_node *node,
574			    struct of_endpoint *endpoint)
575{
576	struct device_node *port_node = of_get_parent(node);
577
578	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
579		  __func__, node);
580
581	memset(endpoint, 0, sizeof(*endpoint));
582
583	endpoint->local_node = node;
584	/*
585	 * It doesn't matter whether the two calls below succeed.
586	 * If they don't then the default value 0 is used.
587	 */
588	of_property_read_u32(port_node, "reg", &endpoint->port);
589	of_property_read_u32(node, "reg", &endpoint->id);
590
591	of_node_put(port_node);
592
593	return 0;
594}
595EXPORT_SYMBOL(of_graph_parse_endpoint);
596
597/**
598 * of_graph_get_port_by_id() - get the port matching a given id
599 * @parent: pointer to the parent device node
600 * @id: id of the port
601 *
602 * Return: A 'port' node pointer with refcount incremented. The caller
603 * has to use of_node_put() on it when done.
604 */
605struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
606{
607	struct device_node *node, *port;
608
609	node = of_get_child_by_name(parent, "ports");
610	if (node)
611		parent = node;
612
613	for_each_child_of_node(parent, port) {
614		u32 port_id = 0;
615
616		if (!of_node_name_eq(port, "port"))
617			continue;
618		of_property_read_u32(port, "reg", &port_id);
619		if (id == port_id)
620			break;
621	}
622
623	of_node_put(node);
624
625	return port;
626}
627EXPORT_SYMBOL(of_graph_get_port_by_id);
628
629/**
630 * of_graph_get_next_endpoint() - get next endpoint node
631 * @parent: pointer to the parent device node
632 * @prev: previous endpoint node, or NULL to get first
633 *
634 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
635 * of the passed @prev node is decremented.
636 */
637struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
638					struct device_node *prev)
639{
640	struct device_node *endpoint;
641	struct device_node *port;
642
643	if (!parent)
644		return NULL;
645
646	/*
647	 * Start by locating the port node. If no previous endpoint is specified
648	 * search for the first port node, otherwise get the previous endpoint
649	 * parent port node.
650	 */
651	if (!prev) {
652		struct device_node *node;
653
654		node = of_get_child_by_name(parent, "ports");
655		if (node)
656			parent = node;
657
658		port = of_get_child_by_name(parent, "port");
659		of_node_put(node);
660
661		if (!port) {
662			pr_err("graph: no port node found in %pOF\n", parent);
663			return NULL;
664		}
665	} else {
666		port = of_get_parent(prev);
667		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
668			      __func__, prev))
669			return NULL;
670	}
671
672	while (1) {
673		/*
674		 * Now that we have a port node, get the next endpoint by
675		 * getting the next child. If the previous endpoint is NULL this
676		 * will return the first child.
677		 */
678		endpoint = of_get_next_child(port, prev);
679		if (endpoint) {
680			of_node_put(port);
681			return endpoint;
682		}
683
684		/* No more endpoints under this port, try the next one. */
685		prev = NULL;
686
687		do {
688			port = of_get_next_child(parent, port);
689			if (!port)
690				return NULL;
691		} while (!of_node_name_eq(port, "port"));
692	}
693}
694EXPORT_SYMBOL(of_graph_get_next_endpoint);
695
696/**
697 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
698 * @parent: pointer to the parent device node
699 * @port_reg: identifier (value of reg property) of the parent port node
700 * @reg: identifier (value of reg property) of the endpoint node
701 *
702 * Return: An 'endpoint' node pointer which is identified by reg and at the same
703 * is the child of a port node identified by port_reg. reg and port_reg are
704 * ignored when they are -1. Use of_node_put() on the pointer when done.
705 */
706struct device_node *of_graph_get_endpoint_by_regs(
707	const struct device_node *parent, int port_reg, int reg)
708{
709	struct of_endpoint endpoint;
710	struct device_node *node = NULL;
711
712	for_each_endpoint_of_node(parent, node) {
713		of_graph_parse_endpoint(node, &endpoint);
714		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
715			((reg == -1) || (endpoint.id == reg)))
716			return node;
717	}
718
719	return NULL;
720}
721EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
722
723/**
724 * of_graph_get_remote_endpoint() - get remote endpoint node
725 * @node: pointer to a local endpoint device_node
726 *
727 * Return: Remote endpoint node associated with remote endpoint node linked
728 *	   to @node. Use of_node_put() on it when done.
729 */
730struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
731{
732	/* Get remote endpoint node. */
733	return of_parse_phandle(node, "remote-endpoint", 0);
734}
735EXPORT_SYMBOL(of_graph_get_remote_endpoint);
736
737/**
738 * of_graph_get_port_parent() - get port's parent node
739 * @node: pointer to a local endpoint device_node
740 *
741 * Return: device node associated with endpoint node linked
742 *	   to @node. Use of_node_put() on it when done.
743 */
744struct device_node *of_graph_get_port_parent(struct device_node *node)
745{
746	unsigned int depth;
747
748	if (!node)
749		return NULL;
750
751	/*
752	 * Preserve usecount for passed in node as of_get_next_parent()
753	 * will do of_node_put() on it.
754	 */
755	of_node_get(node);
756
757	/* Walk 3 levels up only if there is 'ports' node. */
758	for (depth = 3; depth && node; depth--) {
759		node = of_get_next_parent(node);
760		if (depth == 2 && !of_node_name_eq(node, "ports"))
761			break;
762	}
763	return node;
764}
765EXPORT_SYMBOL(of_graph_get_port_parent);
766
767/**
768 * of_graph_get_remote_port_parent() - get remote port's parent node
769 * @node: pointer to a local endpoint device_node
770 *
771 * Return: Remote device node associated with remote endpoint node linked
772 *	   to @node. Use of_node_put() on it when done.
773 */
774struct device_node *of_graph_get_remote_port_parent(
775			       const struct device_node *node)
776{
777	struct device_node *np, *pp;
778
779	/* Get remote endpoint node. */
780	np = of_graph_get_remote_endpoint(node);
781
782	pp = of_graph_get_port_parent(np);
783
784	of_node_put(np);
785
786	return pp;
787}
788EXPORT_SYMBOL(of_graph_get_remote_port_parent);
789
790/**
791 * of_graph_get_remote_port() - get remote port node
792 * @node: pointer to a local endpoint device_node
793 *
794 * Return: Remote port node associated with remote endpoint node linked
795 * to @node. Use of_node_put() on it when done.
796 */
797struct device_node *of_graph_get_remote_port(const struct device_node *node)
798{
799	struct device_node *np;
800
801	/* Get remote endpoint node. */
802	np = of_graph_get_remote_endpoint(node);
803	if (!np)
804		return NULL;
805	return of_get_next_parent(np);
806}
807EXPORT_SYMBOL(of_graph_get_remote_port);
808
809int of_graph_get_endpoint_count(const struct device_node *np)
810{
811	struct device_node *endpoint;
812	int num = 0;
813
814	for_each_endpoint_of_node(np, endpoint)
815		num++;
816
817	return num;
818}
819EXPORT_SYMBOL(of_graph_get_endpoint_count);
820
821/**
822 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
823 * @node: pointer to parent device_node containing graph port/endpoint
824 * @port: identifier (value of reg property) of the parent port node
825 * @endpoint: identifier (value of reg property) of the endpoint node
826 *
827 * Return: Remote device node associated with remote endpoint node linked
828 * to @node. Use of_node_put() on it when done.
829 */
830struct device_node *of_graph_get_remote_node(const struct device_node *node,
831					     u32 port, u32 endpoint)
832{
833	struct device_node *endpoint_node, *remote;
834
835	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
836	if (!endpoint_node) {
837		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
838			 port, endpoint, node);
839		return NULL;
840	}
841
842	remote = of_graph_get_remote_port_parent(endpoint_node);
843	of_node_put(endpoint_node);
844	if (!remote) {
845		pr_debug("no valid remote node\n");
846		return NULL;
847	}
848
849	if (!of_device_is_available(remote)) {
850		pr_debug("not available for remote node\n");
851		of_node_put(remote);
852		return NULL;
853	}
854
855	return remote;
856}
857EXPORT_SYMBOL(of_graph_get_remote_node);
858
859static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
860{
861	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
862}
863
864static void of_fwnode_put(struct fwnode_handle *fwnode)
865{
866	of_node_put(to_of_node(fwnode));
867}
868
869static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
870{
871	return of_device_is_available(to_of_node(fwnode));
872}
873
874static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
875				       const char *propname)
876{
877	return of_property_read_bool(to_of_node(fwnode), propname);
878}
879
880static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
881					     const char *propname,
882					     unsigned int elem_size, void *val,
883					     size_t nval)
884{
885	const struct device_node *node = to_of_node(fwnode);
886
887	if (!val)
888		return of_property_count_elems_of_size(node, propname,
889						       elem_size);
890
891	switch (elem_size) {
892	case sizeof(u8):
893		return of_property_read_u8_array(node, propname, val, nval);
894	case sizeof(u16):
895		return of_property_read_u16_array(node, propname, val, nval);
896	case sizeof(u32):
897		return of_property_read_u32_array(node, propname, val, nval);
898	case sizeof(u64):
899		return of_property_read_u64_array(node, propname, val, nval);
900	}
901
902	return -ENXIO;
903}
904
905static int
906of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
907				     const char *propname, const char **val,
908				     size_t nval)
909{
910	const struct device_node *node = to_of_node(fwnode);
911
912	return val ?
913		of_property_read_string_array(node, propname, val, nval) :
914		of_property_count_strings(node, propname);
915}
916
917static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
918{
919	return kbasename(to_of_node(fwnode)->full_name);
920}
921
922static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
923{
924	/* Root needs no prefix here (its name is "/"). */
925	if (!to_of_node(fwnode)->parent)
926		return "";
927
928	return "/";
929}
930
931static struct fwnode_handle *
932of_fwnode_get_parent(const struct fwnode_handle *fwnode)
933{
934	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
935}
936
937static struct fwnode_handle *
938of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
939			      struct fwnode_handle *child)
940{
941	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
942							    to_of_node(child)));
943}
944
945static struct fwnode_handle *
946of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
947			       const char *childname)
948{
949	const struct device_node *node = to_of_node(fwnode);
950	struct device_node *child;
951
952	for_each_available_child_of_node(node, child)
953		if (of_node_name_eq(child, childname))
954			return of_fwnode_handle(child);
955
956	return NULL;
957}
958
959static int
960of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
961			     const char *prop, const char *nargs_prop,
962			     unsigned int nargs, unsigned int index,
963			     struct fwnode_reference_args *args)
964{
965	struct of_phandle_args of_args;
966	unsigned int i;
967	int ret;
968
969	if (nargs_prop)
970		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
971						 nargs_prop, index, &of_args);
972	else
973		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
974						       nargs, index, &of_args);
975	if (ret < 0)
976		return ret;
977	if (!args) {
978		of_node_put(of_args.np);
979		return 0;
980	}
981
982	args->nargs = of_args.args_count;
983	args->fwnode = of_fwnode_handle(of_args.np);
984
985	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
986		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
987
988	return 0;
989}
990
991static struct fwnode_handle *
992of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
993				  struct fwnode_handle *prev)
994{
995	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
996							   to_of_node(prev)));
997}
998
999static struct fwnode_handle *
1000of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1001{
1002	return of_fwnode_handle(
1003		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1004}
1005
1006static struct fwnode_handle *
1007of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1008{
1009	struct device_node *np;
1010
1011	/* Get the parent of the port */
1012	np = of_get_parent(to_of_node(fwnode));
1013	if (!np)
1014		return NULL;
1015
1016	/* Is this the "ports" node? If not, it's the port parent. */
1017	if (!of_node_name_eq(np, "ports"))
1018		return of_fwnode_handle(np);
1019
1020	return of_fwnode_handle(of_get_next_parent(np));
1021}
1022
1023static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1024					  struct fwnode_endpoint *endpoint)
1025{
1026	const struct device_node *node = to_of_node(fwnode);
1027	struct device_node *port_node = of_get_parent(node);
1028
1029	endpoint->local_fwnode = fwnode;
1030
1031	of_property_read_u32(port_node, "reg", &endpoint->port);
1032	of_property_read_u32(node, "reg", &endpoint->id);
1033
1034	of_node_put(port_node);
1035
1036	return 0;
1037}
1038
1039static const void *
1040of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1041				const struct device *dev)
1042{
1043	return of_device_get_match_data(dev);
1044}
1045
1046static bool of_is_ancestor_of(struct device_node *test_ancestor,
1047			      struct device_node *child)
1048{
1049	of_node_get(child);
1050	while (child) {
1051		if (child == test_ancestor) {
1052			of_node_put(child);
1053			return true;
1054		}
1055		child = of_get_next_parent(child);
1056	}
1057	return false;
1058}
1059
1060/**
1061 * of_get_next_parent_dev - Add device link to supplier from supplier phandle
1062 * @np: device tree node
1063 *
1064 * Given a device tree node (@np), this function finds its closest ancestor
1065 * device tree node that has a corresponding struct device.
1066 *
1067 * The caller of this function is expected to call put_device() on the returned
1068 * device when they are done.
1069 */
1070static struct device *of_get_next_parent_dev(struct device_node *np)
1071{
1072	struct device *dev = NULL;
1073
1074	of_node_get(np);
1075	do {
1076		np = of_get_next_parent(np);
1077		if (np)
1078			dev = get_dev_from_fwnode(&np->fwnode);
1079	} while (np && !dev);
1080	of_node_put(np);
1081	return dev;
1082}
1083
1084/**
1085 * of_link_to_phandle - Add device link to supplier from supplier phandle
1086 * @dev: consumer device
1087 * @sup_np: phandle to supplier device tree node
1088 *
1089 * Given a phandle to a supplier device tree node (@sup_np), this function
1090 * finds the device that owns the supplier device tree node and creates a
1091 * device link from @dev consumer device to the supplier device. This function
1092 * doesn't create device links for invalid scenarios such as trying to create a
1093 * link with a parent device as the consumer of its child device. In such
1094 * cases, it returns an error.
1095 *
1096 * Returns:
1097 * - 0 if link successfully created to supplier
1098 * - -EAGAIN if linking to the supplier should be reattempted
1099 * - -EINVAL if the supplier link is invalid and should not be created
1100 * - -ENODEV if there is no device that corresponds to the supplier phandle
1101 */
1102static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1103			      u32 dl_flags)
1104{
1105	struct device *sup_dev, *sup_par_dev;
1106	int ret = 0;
1107	struct device_node *tmp_np = sup_np;
1108
1109	of_node_get(sup_np);
1110	/*
1111	 * Find the device node that contains the supplier phandle.  It may be
1112	 * @sup_np or it may be an ancestor of @sup_np.
1113	 */
1114	while (sup_np) {
1115
1116		/* Don't allow linking to a disabled supplier */
1117		if (!of_device_is_available(sup_np)) {
1118			of_node_put(sup_np);
1119			sup_np = NULL;
1120		}
1121
1122		if (of_find_property(sup_np, "compatible", NULL))
1123			break;
1124
1125		sup_np = of_get_next_parent(sup_np);
1126	}
1127
1128	if (!sup_np) {
1129		dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1130		return -ENODEV;
1131	}
1132
1133	/*
1134	 * Don't allow linking a device node as a consumer of one of its
1135	 * descendant nodes. By definition, a child node can't be a functional
1136	 * dependency for the parent node.
1137	 */
1138	if (of_is_ancestor_of(dev->of_node, sup_np)) {
1139		dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1140		of_node_put(sup_np);
1141		return -EINVAL;
1142	}
1143	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1144	if (!sup_dev && of_node_check_flag(sup_np, OF_POPULATED)) {
1145		/* Early device without struct device. */
1146		dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1147			sup_np);
1148		of_node_put(sup_np);
1149		return -ENODEV;
1150	} else if (!sup_dev) {
1151		/*
1152		 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1153		 * cycles. So cycle detection isn't necessary and shouldn't be
1154		 * done.
1155		 */
1156		if (dl_flags & DL_FLAG_SYNC_STATE_ONLY) {
1157			of_node_put(sup_np);
1158			return -EAGAIN;
1159		}
1160
1161		sup_par_dev = of_get_next_parent_dev(sup_np);
1162
1163		if (sup_par_dev && device_is_dependent(dev, sup_par_dev)) {
1164			/* Cyclic dependency detected, don't try to link */
1165			dev_dbg(dev, "Not linking to %pOFP - cycle detected\n",
1166				sup_np);
1167			ret = -EINVAL;
1168		} else {
1169			/*
1170			 * Can't check for cycles or no cycles. So let's try
1171			 * again later.
1172			 */
1173			ret = -EAGAIN;
1174		}
1175
1176		of_node_put(sup_np);
1177		put_device(sup_par_dev);
1178		return ret;
1179	}
1180	of_node_put(sup_np);
1181	if (!device_link_add(dev, sup_dev, dl_flags))
1182		ret = -EINVAL;
1183	put_device(sup_dev);
1184	return ret;
1185}
1186
1187/**
1188 * parse_prop_cells - Property parsing function for suppliers
1189 *
1190 * @np:		Pointer to device tree node containing a list
1191 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1192 * @index:	For properties holding a list of phandles, this is the index
1193 *		into the list.
1194 * @list_name:	Property name that is known to contain list of phandle(s) to
1195 *		supplier(s)
1196 * @cells_name:	property name that specifies phandles' arguments count
1197 *
1198 * This is a helper function to parse properties that have a known fixed name
1199 * and are a list of phandles and phandle arguments.
1200 *
1201 * Returns:
1202 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1203 *   on it when done.
1204 * - NULL if no phandle found at index
1205 */
1206static struct device_node *parse_prop_cells(struct device_node *np,
1207					    const char *prop_name, int index,
1208					    const char *list_name,
1209					    const char *cells_name)
1210{
1211	struct of_phandle_args sup_args;
1212
1213	if (strcmp(prop_name, list_name))
1214		return NULL;
1215
1216	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1217				       &sup_args))
1218		return NULL;
1219
1220	return sup_args.np;
1221}
1222
1223#define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1224static struct device_node *parse_##fname(struct device_node *np,	  \
1225					const char *prop_name, int index) \
1226{									  \
1227	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1228}
1229
1230static int strcmp_suffix(const char *str, const char *suffix)
1231{
1232	unsigned int len, suffix_len;
1233
1234	len = strlen(str);
1235	suffix_len = strlen(suffix);
1236	if (len <= suffix_len)
1237		return -1;
1238	return strcmp(str + len - suffix_len, suffix);
1239}
1240
1241/**
1242 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1243 *
1244 * @np:		Pointer to device tree node containing a list
1245 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1246 * @index:	For properties holding a list of phandles, this is the index
1247 *		into the list.
1248 * @suffix:	Property suffix that is known to contain list of phandle(s) to
1249 *		supplier(s)
1250 * @cells_name:	property name that specifies phandles' arguments count
1251 *
1252 * This is a helper function to parse properties that have a known fixed suffix
1253 * and are a list of phandles and phandle arguments.
1254 *
1255 * Returns:
1256 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1257 *   on it when done.
1258 * - NULL if no phandle found at index
1259 */
1260static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1261					    const char *prop_name, int index,
1262					    const char *suffix,
1263					    const char *cells_name)
1264{
1265	struct of_phandle_args sup_args;
1266
1267	if (strcmp_suffix(prop_name, suffix))
1268		return NULL;
1269
1270	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1271				       &sup_args))
1272		return NULL;
1273
1274	return sup_args.np;
1275}
1276
1277#define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1278static struct device_node *parse_##fname(struct device_node *np,	     \
1279					const char *prop_name, int index)    \
1280{									     \
1281	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1282}
1283
1284/**
1285 * struct supplier_bindings - Property parsing functions for suppliers
1286 *
1287 * @parse_prop: function name
1288 *	parse_prop() finds the node corresponding to a supplier phandle
1289 * @parse_prop.np: Pointer to device node holding supplier phandle property
1290 * @parse_prop.prop_name: Name of property holding a phandle value
1291 * @parse_prop.index: For properties holding a list of phandles, this is the
1292 *		      index into the list
1293 *
1294 * Returns:
1295 * parse_prop() return values are
1296 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1297 *   on it when done.
1298 * - NULL if no phandle found at index
1299 */
1300struct supplier_bindings {
1301	struct device_node *(*parse_prop)(struct device_node *np,
1302					  const char *prop_name, int index);
1303};
1304
1305DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1306DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1307DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1308DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1309DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1310DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1311DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1312DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1313DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1314DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1315DEFINE_SIMPLE_PROP(interrupts_extended, "interrupts-extended",
1316					"#interrupt-cells")
1317DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1318DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1319DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1320DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1321DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1322DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1323DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1324DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1325DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1326DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1327DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1328DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1329DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1330DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1331
1332static struct device_node *parse_gpios(struct device_node *np,
1333				       const char *prop_name, int index)
1334{
1335	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1336		return NULL;
1337
1338	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1339				       "#gpio-cells");
1340}
1341
1342static struct device_node *parse_iommu_maps(struct device_node *np,
1343					    const char *prop_name, int index)
1344{
1345	if (strcmp(prop_name, "iommu-map"))
1346		return NULL;
1347
1348	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1349}
1350
1351static const struct supplier_bindings of_supplier_bindings[] = {
1352	{ .parse_prop = parse_clocks, },
1353	{ .parse_prop = parse_interconnects, },
1354	{ .parse_prop = parse_iommus, },
1355	{ .parse_prop = parse_iommu_maps, },
1356	{ .parse_prop = parse_mboxes, },
1357	{ .parse_prop = parse_io_channels, },
1358	{ .parse_prop = parse_interrupt_parent, },
1359	{ .parse_prop = parse_dmas, },
1360	{ .parse_prop = parse_power_domains, },
1361	{ .parse_prop = parse_hwlocks, },
1362	{ .parse_prop = parse_extcon, },
1363	{ .parse_prop = parse_interrupts_extended, },
1364	{ .parse_prop = parse_nvmem_cells, },
1365	{ .parse_prop = parse_phys, },
1366	{ .parse_prop = parse_wakeup_parent, },
1367	{ .parse_prop = parse_pinctrl0, },
1368	{ .parse_prop = parse_pinctrl1, },
1369	{ .parse_prop = parse_pinctrl2, },
1370	{ .parse_prop = parse_pinctrl3, },
1371	{ .parse_prop = parse_pinctrl4, },
1372	{ .parse_prop = parse_pinctrl5, },
1373	{ .parse_prop = parse_pinctrl6, },
1374	{ .parse_prop = parse_pinctrl7, },
1375	{ .parse_prop = parse_pinctrl8, },
1376	{ .parse_prop = parse_regulators, },
1377	{ .parse_prop = parse_gpio, },
1378	{ .parse_prop = parse_gpios, },
1379	{}
1380};
1381
1382/**
1383 * of_link_property - Create device links to suppliers listed in a property
1384 * @dev: Consumer device
1385 * @con_np: The consumer device tree node which contains the property
1386 * @prop_name: Name of property to be parsed
1387 *
1388 * This function checks if the property @prop_name that is present in the
1389 * @con_np device tree node is one of the known common device tree bindings
1390 * that list phandles to suppliers. If @prop_name isn't one, this function
1391 * doesn't do anything.
1392 *
1393 * If @prop_name is one, this function attempts to create device links from the
1394 * consumer device @dev to all the devices of the suppliers listed in
1395 * @prop_name.
1396 *
1397 * Any failed attempt to create a device link will NOT result in an immediate
1398 * return.  of_link_property() must create links to all the available supplier
1399 * devices even when attempts to create a link to one or more suppliers fail.
1400 */
1401static int of_link_property(struct device *dev, struct device_node *con_np,
1402			     const char *prop_name)
1403{
1404	struct device_node *phandle;
1405	const struct supplier_bindings *s = of_supplier_bindings;
1406	unsigned int i = 0;
1407	bool matched = false;
1408	int ret = 0;
1409	u32 dl_flags;
1410
1411	if (dev->of_node == con_np)
1412		dl_flags = fw_devlink_get_flags();
1413	else
1414		dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1415
1416	/* Do not stop at first failed link, link all available suppliers. */
1417	while (!matched && s->parse_prop) {
1418		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1419			matched = true;
1420			i++;
1421			if (of_link_to_phandle(dev, phandle, dl_flags)
1422								== -EAGAIN)
1423				ret = -EAGAIN;
1424			of_node_put(phandle);
1425		}
1426		s++;
1427	}
1428	return ret;
1429}
1430
1431static int of_link_to_suppliers(struct device *dev,
1432				  struct device_node *con_np)
1433{
1434	struct device_node *child;
1435	struct property *p;
1436	int ret = 0;
1437
1438	for_each_property_of_node(con_np, p)
1439		if (of_link_property(dev, con_np, p->name))
1440			ret = -ENODEV;
1441
1442	for_each_available_child_of_node(con_np, child)
1443		if (of_link_to_suppliers(dev, child) && !ret)
1444			ret = -EAGAIN;
1445
1446	return ret;
1447}
1448
1449static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1450			       struct device *dev)
1451{
1452	if (unlikely(!is_of_node(fwnode)))
1453		return 0;
1454
1455	return of_link_to_suppliers(dev, to_of_node(fwnode));
1456}
1457
1458const struct fwnode_operations of_fwnode_ops = {
1459	.get = of_fwnode_get,
1460	.put = of_fwnode_put,
1461	.device_is_available = of_fwnode_device_is_available,
1462	.device_get_match_data = of_fwnode_device_get_match_data,
1463	.property_present = of_fwnode_property_present,
1464	.property_read_int_array = of_fwnode_property_read_int_array,
1465	.property_read_string_array = of_fwnode_property_read_string_array,
1466	.get_name = of_fwnode_get_name,
1467	.get_name_prefix = of_fwnode_get_name_prefix,
1468	.get_parent = of_fwnode_get_parent,
1469	.get_next_child_node = of_fwnode_get_next_child_node,
1470	.get_named_child_node = of_fwnode_get_named_child_node,
1471	.get_reference_args = of_fwnode_get_reference_args,
1472	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1473	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1474	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1475	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1476	.add_links = of_fwnode_add_links,
1477};
1478EXPORT_SYMBOL_GPL(of_fwnode_ops);
1479