1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Functions for working with the Flattened Device Tree data format 4 * 5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp 6 * benh@kernel.crashing.org 7 */ 8 9#define pr_fmt(fmt) "OF: fdt: " fmt 10 11#include <linux/crc32.h> 12#include <linux/kernel.h> 13#include <linux/initrd.h> 14#include <linux/memblock.h> 15#include <linux/mutex.h> 16#include <linux/of.h> 17#include <linux/of_fdt.h> 18#include <linux/of_reserved_mem.h> 19#include <linux/sizes.h> 20#include <linux/string.h> 21#include <linux/errno.h> 22#include <linux/slab.h> 23#include <linux/libfdt.h> 24#include <linux/debugfs.h> 25#include <linux/serial_core.h> 26#include <linux/sysfs.h> 27#include <linux/random.h> 28 29#include <asm/setup.h> /* for COMMAND_LINE_SIZE */ 30#include <asm/page.h> 31 32#include "of_private.h" 33 34/* 35 * of_fdt_limit_memory - limit the number of regions in the /memory node 36 * @limit: maximum entries 37 * 38 * Adjust the flattened device tree to have at most 'limit' number of 39 * memory entries in the /memory node. This function may be called 40 * any time after initial_boot_param is set. 41 */ 42void __init of_fdt_limit_memory(int limit) 43{ 44 int memory; 45 int len; 46 const void *val; 47 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 48 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 49 const __be32 *addr_prop; 50 const __be32 *size_prop; 51 int root_offset; 52 int cell_size; 53 54 root_offset = fdt_path_offset(initial_boot_params, "/"); 55 if (root_offset < 0) 56 return; 57 58 addr_prop = fdt_getprop(initial_boot_params, root_offset, 59 "#address-cells", NULL); 60 if (addr_prop) 61 nr_address_cells = fdt32_to_cpu(*addr_prop); 62 63 size_prop = fdt_getprop(initial_boot_params, root_offset, 64 "#size-cells", NULL); 65 if (size_prop) 66 nr_size_cells = fdt32_to_cpu(*size_prop); 67 68 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells); 69 70 memory = fdt_path_offset(initial_boot_params, "/memory"); 71 if (memory > 0) { 72 val = fdt_getprop(initial_boot_params, memory, "reg", &len); 73 if (len > limit*cell_size) { 74 len = limit*cell_size; 75 pr_debug("Limiting number of entries to %d\n", limit); 76 fdt_setprop(initial_boot_params, memory, "reg", val, 77 len); 78 } 79 } 80} 81 82static bool of_fdt_device_is_available(const void *blob, unsigned long node) 83{ 84 const char *status = fdt_getprop(blob, node, "status", NULL); 85 86 if (!status) 87 return true; 88 89 if (!strcmp(status, "ok") || !strcmp(status, "okay")) 90 return true; 91 92 return false; 93} 94 95static void *unflatten_dt_alloc(void **mem, unsigned long size, 96 unsigned long align) 97{ 98 void *res; 99 100 *mem = PTR_ALIGN(*mem, align); 101 res = *mem; 102 *mem += size; 103 104 return res; 105} 106 107static void populate_properties(const void *blob, 108 int offset, 109 void **mem, 110 struct device_node *np, 111 const char *nodename, 112 bool dryrun) 113{ 114 struct property *pp, **pprev = NULL; 115 int cur; 116 bool has_name = false; 117 118 pprev = &np->properties; 119 for (cur = fdt_first_property_offset(blob, offset); 120 cur >= 0; 121 cur = fdt_next_property_offset(blob, cur)) { 122 const __be32 *val; 123 const char *pname; 124 u32 sz; 125 126 val = fdt_getprop_by_offset(blob, cur, &pname, &sz); 127 if (!val) { 128 pr_warn("Cannot locate property at 0x%x\n", cur); 129 continue; 130 } 131 132 if (!pname) { 133 pr_warn("Cannot find property name at 0x%x\n", cur); 134 continue; 135 } 136 137 if (!strcmp(pname, "name")) 138 has_name = true; 139 140 pp = unflatten_dt_alloc(mem, sizeof(struct property), 141 __alignof__(struct property)); 142 if (dryrun) 143 continue; 144 145 /* We accept flattened tree phandles either in 146 * ePAPR-style "phandle" properties, or the 147 * legacy "linux,phandle" properties. If both 148 * appear and have different values, things 149 * will get weird. Don't do that. 150 */ 151 if (!strcmp(pname, "phandle") || 152 !strcmp(pname, "linux,phandle")) { 153 if (!np->phandle) 154 np->phandle = be32_to_cpup(val); 155 } 156 157 /* And we process the "ibm,phandle" property 158 * used in pSeries dynamic device tree 159 * stuff 160 */ 161 if (!strcmp(pname, "ibm,phandle")) 162 np->phandle = be32_to_cpup(val); 163 164 pp->name = (char *)pname; 165 pp->length = sz; 166 pp->value = (__be32 *)val; 167 *pprev = pp; 168 pprev = &pp->next; 169 } 170 171 /* With version 0x10 we may not have the name property, 172 * recreate it here from the unit name if absent 173 */ 174 if (!has_name) { 175 const char *p = nodename, *ps = p, *pa = NULL; 176 int len; 177 178 while (*p) { 179 if ((*p) == '@') 180 pa = p; 181 else if ((*p) == '/') 182 ps = p + 1; 183 p++; 184 } 185 186 if (pa < ps) 187 pa = p; 188 len = (pa - ps) + 1; 189 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, 190 __alignof__(struct property)); 191 if (!dryrun) { 192 pp->name = "name"; 193 pp->length = len; 194 pp->value = pp + 1; 195 *pprev = pp; 196 pprev = &pp->next; 197 memcpy(pp->value, ps, len - 1); 198 ((char *)pp->value)[len - 1] = 0; 199 pr_debug("fixed up name for %s -> %s\n", 200 nodename, (char *)pp->value); 201 } 202 } 203 204 if (!dryrun) 205 *pprev = NULL; 206} 207 208static bool populate_node(const void *blob, 209 int offset, 210 void **mem, 211 struct device_node *dad, 212 struct device_node **pnp, 213 bool dryrun) 214{ 215 struct device_node *np; 216 const char *pathp; 217 unsigned int l, allocl; 218 219 pathp = fdt_get_name(blob, offset, &l); 220 if (!pathp) { 221 *pnp = NULL; 222 return false; 223 } 224 225 allocl = ++l; 226 227 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl, 228 __alignof__(struct device_node)); 229 if (!dryrun) { 230 char *fn; 231 of_node_init(np); 232 np->full_name = fn = ((char *)np) + sizeof(*np); 233 234 memcpy(fn, pathp, l); 235 236 if (dad != NULL) { 237 np->parent = dad; 238 np->sibling = dad->child; 239 dad->child = np; 240 } 241 } 242 243 populate_properties(blob, offset, mem, np, pathp, dryrun); 244 if (!dryrun) { 245 np->name = of_get_property(np, "name", NULL); 246 if (!np->name) 247 np->name = "<NULL>"; 248 } 249 250 *pnp = np; 251 return true; 252} 253 254static void reverse_nodes(struct device_node *parent) 255{ 256 struct device_node *child, *next; 257 258 /* In-depth first */ 259 child = parent->child; 260 while (child) { 261 reverse_nodes(child); 262 263 child = child->sibling; 264 } 265 266 /* Reverse the nodes in the child list */ 267 child = parent->child; 268 parent->child = NULL; 269 while (child) { 270 next = child->sibling; 271 272 child->sibling = parent->child; 273 parent->child = child; 274 child = next; 275 } 276} 277 278/** 279 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree 280 * @blob: The parent device tree blob 281 * @mem: Memory chunk to use for allocating device nodes and properties 282 * @dad: Parent struct device_node 283 * @nodepp: The device_node tree created by the call 284 * 285 * Return: The size of unflattened device tree or error code 286 */ 287static int unflatten_dt_nodes(const void *blob, 288 void *mem, 289 struct device_node *dad, 290 struct device_node **nodepp) 291{ 292 struct device_node *root; 293 int offset = 0, depth = 0, initial_depth = 0; 294#define FDT_MAX_DEPTH 64 295 struct device_node *nps[FDT_MAX_DEPTH]; 296 void *base = mem; 297 bool dryrun = !base; 298 299 if (nodepp) 300 *nodepp = NULL; 301 302 /* 303 * We're unflattening device sub-tree if @dad is valid. There are 304 * possibly multiple nodes in the first level of depth. We need 305 * set @depth to 1 to make fdt_next_node() happy as it bails 306 * immediately when negative @depth is found. Otherwise, the device 307 * nodes except the first one won't be unflattened successfully. 308 */ 309 if (dad) 310 depth = initial_depth = 1; 311 312 root = dad; 313 nps[depth] = dad; 314 315 for (offset = 0; 316 offset >= 0 && depth >= initial_depth; 317 offset = fdt_next_node(blob, offset, &depth)) { 318 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1)) 319 continue; 320 321 if (!IS_ENABLED(CONFIG_OF_KOBJ) && 322 !of_fdt_device_is_available(blob, offset)) 323 continue; 324 325 if (!populate_node(blob, offset, &mem, nps[depth], 326 &nps[depth+1], dryrun)) 327 return mem - base; 328 329 if (!dryrun && nodepp && !*nodepp) 330 *nodepp = nps[depth+1]; 331 if (!dryrun && !root) 332 root = nps[depth+1]; 333 } 334 335 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { 336 pr_err("Error %d processing FDT\n", offset); 337 return -EINVAL; 338 } 339 340 /* 341 * Reverse the child list. Some drivers assumes node order matches .dts 342 * node order 343 */ 344 if (!dryrun) 345 reverse_nodes(root); 346 347 return mem - base; 348} 349 350/** 351 * __unflatten_device_tree - create tree of device_nodes from flat blob 352 * @blob: The blob to expand 353 * @dad: Parent device node 354 * @mynodes: The device_node tree created by the call 355 * @dt_alloc: An allocator that provides a virtual address to memory 356 * for the resulting tree 357 * @detached: if true set OF_DETACHED on @mynodes 358 * 359 * unflattens a device-tree, creating the tree of struct device_node. It also 360 * fills the "name" and "type" pointers of the nodes so the normal device-tree 361 * walking functions can be used. 362 * 363 * Return: NULL on failure or the memory chunk containing the unflattened 364 * device tree on success. 365 */ 366void *__unflatten_device_tree(const void *blob, 367 struct device_node *dad, 368 struct device_node **mynodes, 369 void *(*dt_alloc)(u64 size, u64 align), 370 bool detached) 371{ 372 int size; 373 void *mem; 374 375 pr_debug(" -> unflatten_device_tree()\n"); 376 377 if (!blob) { 378 pr_debug("No device tree pointer\n"); 379 return NULL; 380 } 381 382 pr_debug("Unflattening device tree:\n"); 383 pr_debug("magic: %08x\n", fdt_magic(blob)); 384 pr_debug("size: %08x\n", fdt_totalsize(blob)); 385 pr_debug("version: %08x\n", fdt_version(blob)); 386 387 if (fdt_check_header(blob)) { 388 pr_err("Invalid device tree blob header\n"); 389 return NULL; 390 } 391 392 /* First pass, scan for size */ 393 size = unflatten_dt_nodes(blob, NULL, dad, NULL); 394 if (size < 0) 395 return NULL; 396 397 size = ALIGN(size, 4); 398 pr_debug(" size is %d, allocating...\n", size); 399 400 /* Allocate memory for the expanded device tree */ 401 mem = dt_alloc(size + 4, __alignof__(struct device_node)); 402 if (!mem) 403 return NULL; 404 405 memset(mem, 0, size); 406 407 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); 408 409 pr_debug(" unflattening %p...\n", mem); 410 411 /* Second pass, do actual unflattening */ 412 unflatten_dt_nodes(blob, mem, dad, mynodes); 413 if (be32_to_cpup(mem + size) != 0xdeadbeef) 414 pr_warn("End of tree marker overwritten: %08x\n", 415 be32_to_cpup(mem + size)); 416 417 if (detached && mynodes) { 418 of_node_set_flag(*mynodes, OF_DETACHED); 419 pr_debug("unflattened tree is detached\n"); 420 } 421 422 pr_debug(" <- unflatten_device_tree()\n"); 423 return mem; 424} 425 426static void *kernel_tree_alloc(u64 size, u64 align) 427{ 428 return kzalloc(size, GFP_KERNEL); 429} 430 431static DEFINE_MUTEX(of_fdt_unflatten_mutex); 432 433/** 434 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob 435 * @blob: Flat device tree blob 436 * @dad: Parent device node 437 * @mynodes: The device tree created by the call 438 * 439 * unflattens the device-tree passed by the firmware, creating the 440 * tree of struct device_node. It also fills the "name" and "type" 441 * pointers of the nodes so the normal device-tree walking functions 442 * can be used. 443 * 444 * Return: NULL on failure or the memory chunk containing the unflattened 445 * device tree on success. 446 */ 447void *of_fdt_unflatten_tree(const unsigned long *blob, 448 struct device_node *dad, 449 struct device_node **mynodes) 450{ 451 void *mem; 452 453 mutex_lock(&of_fdt_unflatten_mutex); 454 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, 455 true); 456 mutex_unlock(&of_fdt_unflatten_mutex); 457 458 return mem; 459} 460EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); 461 462/* Everything below here references initial_boot_params directly. */ 463int __initdata dt_root_addr_cells; 464int __initdata dt_root_size_cells; 465 466void *initial_boot_params __ro_after_init; 467 468#ifdef CONFIG_OF_EARLY_FLATTREE 469 470static u32 of_fdt_crc32; 471 472/** 473 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property 474 */ 475static int __init __reserved_mem_reserve_reg(unsigned long node, 476 const char *uname) 477{ 478 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); 479 phys_addr_t base, size; 480 int len; 481 const __be32 *prop; 482 int first = 1; 483 bool nomap; 484 485 prop = of_get_flat_dt_prop(node, "reg", &len); 486 if (!prop) 487 return -ENOENT; 488 489 if (len && len % t_len != 0) { 490 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", 491 uname); 492 return -EINVAL; 493 } 494 495 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; 496 497 while (len >= t_len) { 498 base = dt_mem_next_cell(dt_root_addr_cells, &prop); 499 size = dt_mem_next_cell(dt_root_size_cells, &prop); 500 501 if (size && 502 early_init_dt_reserve_memory_arch(base, size, nomap) == 0) 503 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n", 504 uname, &base, (unsigned long)(size / SZ_1M)); 505 else 506 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n", 507 uname, &base, (unsigned long)(size / SZ_1M)); 508 509 len -= t_len; 510 if (first) { 511 fdt_reserved_mem_save_node(node, uname, base, size); 512 first = 0; 513 } 514 } 515 return 0; 516} 517 518/** 519 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided 520 * in /reserved-memory matches the values supported by the current implementation, 521 * also check if ranges property has been provided 522 */ 523static int __init __reserved_mem_check_root(unsigned long node) 524{ 525 const __be32 *prop; 526 527 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 528 if (!prop || be32_to_cpup(prop) != dt_root_size_cells) 529 return -EINVAL; 530 531 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 532 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) 533 return -EINVAL; 534 535 prop = of_get_flat_dt_prop(node, "ranges", NULL); 536 if (!prop) 537 return -EINVAL; 538 return 0; 539} 540 541/** 542 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory 543 */ 544static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname, 545 int depth, void *data) 546{ 547 static int found; 548 int err; 549 550 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) { 551 if (__reserved_mem_check_root(node) != 0) { 552 pr_err("Reserved memory: unsupported node format, ignoring\n"); 553 /* break scan */ 554 return 1; 555 } 556 found = 1; 557 /* scan next node */ 558 return 0; 559 } else if (!found) { 560 /* scan next node */ 561 return 0; 562 } else if (found && depth < 2) { 563 /* scanning of /reserved-memory has been finished */ 564 return 1; 565 } 566 567 if (!of_fdt_device_is_available(initial_boot_params, node)) 568 return 0; 569 570 err = __reserved_mem_reserve_reg(node, uname); 571 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL)) 572 fdt_reserved_mem_save_node(node, uname, 0, 0); 573 574 /* scan next node */ 575 return 0; 576} 577 578/** 579 * early_init_fdt_scan_reserved_mem() - create reserved memory regions 580 * 581 * This function grabs memory from early allocator for device exclusive use 582 * defined in device tree structures. It should be called by arch specific code 583 * once the early allocator (i.e. memblock) has been fully activated. 584 */ 585void __init early_init_fdt_scan_reserved_mem(void) 586{ 587 int n; 588 u64 base, size; 589 590 if (!initial_boot_params) 591 return; 592 593 /* Process header /memreserve/ fields */ 594 for (n = 0; ; n++) { 595 fdt_get_mem_rsv(initial_boot_params, n, &base, &size); 596 if (!size) 597 break; 598 early_init_dt_reserve_memory_arch(base, size, false); 599 } 600 601 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL); 602 fdt_init_reserved_mem(); 603} 604 605/** 606 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob 607 */ 608void __init early_init_fdt_reserve_self(void) 609{ 610 if (!initial_boot_params) 611 return; 612 613 /* Reserve the dtb region */ 614 early_init_dt_reserve_memory_arch(__pa(initial_boot_params), 615 fdt_totalsize(initial_boot_params), 616 false); 617} 618 619/** 620 * of_scan_flat_dt - scan flattened tree blob and call callback on each. 621 * @it: callback function 622 * @data: context data pointer 623 * 624 * This function is used to scan the flattened device-tree, it is 625 * used to extract the memory information at boot before we can 626 * unflatten the tree 627 */ 628int __init of_scan_flat_dt(int (*it)(unsigned long node, 629 const char *uname, int depth, 630 void *data), 631 void *data) 632{ 633 const void *blob = initial_boot_params; 634 const char *pathp; 635 int offset, rc = 0, depth = -1; 636 637 if (!blob) 638 return 0; 639 640 for (offset = fdt_next_node(blob, -1, &depth); 641 offset >= 0 && depth >= 0 && !rc; 642 offset = fdt_next_node(blob, offset, &depth)) { 643 644 pathp = fdt_get_name(blob, offset, NULL); 645 rc = it(offset, pathp, depth, data); 646 } 647 return rc; 648} 649 650/** 651 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. 652 * @it: callback function 653 * @data: context data pointer 654 * 655 * This function is used to scan sub-nodes of a node. 656 */ 657int __init of_scan_flat_dt_subnodes(unsigned long parent, 658 int (*it)(unsigned long node, 659 const char *uname, 660 void *data), 661 void *data) 662{ 663 const void *blob = initial_boot_params; 664 int node; 665 666 fdt_for_each_subnode(node, blob, parent) { 667 const char *pathp; 668 int rc; 669 670 pathp = fdt_get_name(blob, node, NULL); 671 rc = it(node, pathp, data); 672 if (rc) 673 return rc; 674 } 675 return 0; 676} 677 678/** 679 * of_get_flat_dt_subnode_by_name - get the subnode by given name 680 * 681 * @node: the parent node 682 * @uname: the name of subnode 683 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none 684 */ 685 686int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) 687{ 688 return fdt_subnode_offset(initial_boot_params, node, uname); 689} 690 691/** 692 * of_get_flat_dt_root - find the root node in the flat blob 693 */ 694unsigned long __init of_get_flat_dt_root(void) 695{ 696 return 0; 697} 698 699/** 700 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr 701 * 702 * This function can be used within scan_flattened_dt callback to get 703 * access to properties 704 */ 705const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, 706 int *size) 707{ 708 return fdt_getprop(initial_boot_params, node, name, size); 709} 710 711/** 712 * of_fdt_is_compatible - Return true if given node from the given blob has 713 * compat in its compatible list 714 * @blob: A device tree blob 715 * @node: node to test 716 * @compat: compatible string to compare with compatible list. 717 * 718 * Return: a non-zero value on match with smaller values returned for more 719 * specific compatible values. 720 */ 721static int of_fdt_is_compatible(const void *blob, 722 unsigned long node, const char *compat) 723{ 724 const char *cp; 725 int cplen; 726 unsigned long l, score = 0; 727 728 cp = fdt_getprop(blob, node, "compatible", &cplen); 729 if (cp == NULL) 730 return 0; 731 while (cplen > 0) { 732 score++; 733 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 734 return score; 735 l = strlen(cp) + 1; 736 cp += l; 737 cplen -= l; 738 } 739 740 return 0; 741} 742 743/** 744 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list 745 * @node: node to test 746 * @compat: compatible string to compare with compatible list. 747 */ 748int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) 749{ 750 return of_fdt_is_compatible(initial_boot_params, node, compat); 751} 752 753/** 754 * of_flat_dt_match - Return true if node matches a list of compatible values 755 */ 756static int __init of_flat_dt_match(unsigned long node, const char *const *compat) 757{ 758 unsigned int tmp, score = 0; 759 760 if (!compat) 761 return 0; 762 763 while (*compat) { 764 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat); 765 if (tmp && (score == 0 || (tmp < score))) 766 score = tmp; 767 compat++; 768 } 769 770 return score; 771} 772 773/** 774 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle 775 */ 776uint32_t __init of_get_flat_dt_phandle(unsigned long node) 777{ 778 return fdt_get_phandle(initial_boot_params, node); 779} 780 781struct fdt_scan_status { 782 const char *name; 783 int namelen; 784 int depth; 785 int found; 786 int (*iterator)(unsigned long node, const char *uname, int depth, void *data); 787 void *data; 788}; 789 790const char * __init of_flat_dt_get_machine_name(void) 791{ 792 const char *name; 793 unsigned long dt_root = of_get_flat_dt_root(); 794 795 name = of_get_flat_dt_prop(dt_root, "model", NULL); 796 if (!name) 797 name = of_get_flat_dt_prop(dt_root, "compatible", NULL); 798 return name; 799} 800 801/** 802 * of_flat_dt_match_machine - Iterate match tables to find matching machine. 803 * 804 * @default_match: A machine specific ptr to return in case of no match. 805 * @get_next_compat: callback function to return next compatible match table. 806 * 807 * Iterate through machine match tables to find the best match for the machine 808 * compatible string in the FDT. 809 */ 810const void * __init of_flat_dt_match_machine(const void *default_match, 811 const void * (*get_next_compat)(const char * const**)) 812{ 813 const void *data = NULL; 814 const void *best_data = default_match; 815 const char *const *compat; 816 unsigned long dt_root; 817 unsigned int best_score = ~1, score = 0; 818 819 dt_root = of_get_flat_dt_root(); 820 while ((data = get_next_compat(&compat))) { 821 score = of_flat_dt_match(dt_root, compat); 822 if (score > 0 && score < best_score) { 823 best_data = data; 824 best_score = score; 825 } 826 } 827 if (!best_data) { 828 const char *prop; 829 int size; 830 831 pr_err("\n unrecognized device tree list:\n[ "); 832 833 prop = of_get_flat_dt_prop(dt_root, "compatible", &size); 834 if (prop) { 835 while (size > 0) { 836 printk("'%s' ", prop); 837 size -= strlen(prop) + 1; 838 prop += strlen(prop) + 1; 839 } 840 } 841 printk("]\n\n"); 842 return NULL; 843 } 844 845 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); 846 847 return best_data; 848} 849 850#ifdef CONFIG_BLK_DEV_INITRD 851static void __early_init_dt_declare_initrd(unsigned long start, 852 unsigned long end) 853{ 854 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is 855 * enabled since __va() is called too early. ARM64 does make use 856 * of phys_initrd_start/phys_initrd_size so we can skip this 857 * conversion. 858 */ 859 if (!IS_ENABLED(CONFIG_ARM64)) { 860 initrd_start = (unsigned long)__va(start); 861 initrd_end = (unsigned long)__va(end); 862 initrd_below_start_ok = 1; 863 } 864} 865 866/** 867 * early_init_dt_check_for_initrd - Decode initrd location from flat tree 868 * @node: reference to node containing initrd location ('chosen') 869 */ 870static void __init early_init_dt_check_for_initrd(unsigned long node) 871{ 872 u64 start, end; 873 int len; 874 const __be32 *prop; 875 876 pr_debug("Looking for initrd properties... "); 877 878 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); 879 if (!prop) 880 return; 881 start = of_read_number(prop, len/4); 882 883 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); 884 if (!prop) 885 return; 886 end = of_read_number(prop, len/4); 887 888 __early_init_dt_declare_initrd(start, end); 889 phys_initrd_start = start; 890 phys_initrd_size = end - start; 891 892 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", 893 (unsigned long long)start, (unsigned long long)end); 894} 895#else 896static inline void early_init_dt_check_for_initrd(unsigned long node) 897{ 898} 899#endif /* CONFIG_BLK_DEV_INITRD */ 900 901#ifdef CONFIG_SERIAL_EARLYCON 902 903int __init early_init_dt_scan_chosen_stdout(void) 904{ 905 int offset; 906 const char *p, *q, *options = NULL; 907 int l; 908 const struct earlycon_id **p_match; 909 const void *fdt = initial_boot_params; 910 911 offset = fdt_path_offset(fdt, "/chosen"); 912 if (offset < 0) 913 offset = fdt_path_offset(fdt, "/chosen@0"); 914 if (offset < 0) 915 return -ENOENT; 916 917 p = fdt_getprop(fdt, offset, "stdout-path", &l); 918 if (!p) 919 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); 920 if (!p || !l) 921 return -ENOENT; 922 923 q = strchrnul(p, ':'); 924 if (*q != '\0') 925 options = q + 1; 926 l = q - p; 927 928 /* Get the node specified by stdout-path */ 929 offset = fdt_path_offset_namelen(fdt, p, l); 930 if (offset < 0) { 931 pr_warn("earlycon: stdout-path %.*s not found\n", l, p); 932 return 0; 933 } 934 935 for (p_match = __earlycon_table; p_match < __earlycon_table_end; 936 p_match++) { 937 const struct earlycon_id *match = *p_match; 938 939 if (!match->compatible[0]) 940 continue; 941 942 if (fdt_node_check_compatible(fdt, offset, match->compatible)) 943 continue; 944 945 if (of_setup_earlycon(match, offset, options) == 0) 946 return 0; 947 } 948 return -ENODEV; 949} 950#endif 951 952/** 953 * early_init_dt_scan_root - fetch the top level address and size cells 954 */ 955int __init early_init_dt_scan_root(unsigned long node, const char *uname, 956 int depth, void *data) 957{ 958 const __be32 *prop; 959 960 if (depth != 0) 961 return 0; 962 963 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 964 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 965 966 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 967 if (prop) 968 dt_root_size_cells = be32_to_cpup(prop); 969 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); 970 971 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 972 if (prop) 973 dt_root_addr_cells = be32_to_cpup(prop); 974 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); 975 976 /* break now */ 977 return 1; 978} 979 980u64 __init dt_mem_next_cell(int s, const __be32 **cellp) 981{ 982 const __be32 *p = *cellp; 983 984 *cellp = p + s; 985 return of_read_number(p, s); 986} 987 988/** 989 * early_init_dt_scan_memory - Look for and parse memory nodes 990 */ 991int __init early_init_dt_scan_memory(unsigned long node, const char *uname, 992 int depth, void *data) 993{ 994 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 995 const __be32 *reg, *endp; 996 int l; 997 bool hotpluggable; 998 999 /* We are scanning "memory" nodes only */ 1000 if (type == NULL || strcmp(type, "memory") != 0) 1001 return 0; 1002 1003 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); 1004 if (reg == NULL) 1005 reg = of_get_flat_dt_prop(node, "reg", &l); 1006 if (reg == NULL) 1007 return 0; 1008 1009 endp = reg + (l / sizeof(__be32)); 1010 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); 1011 1012 pr_debug("memory scan node %s, reg size %d,\n", uname, l); 1013 1014 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { 1015 u64 base, size; 1016 1017 base = dt_mem_next_cell(dt_root_addr_cells, ®); 1018 size = dt_mem_next_cell(dt_root_size_cells, ®); 1019 1020 if (size == 0) 1021 continue; 1022 pr_debug(" - %llx , %llx\n", (unsigned long long)base, 1023 (unsigned long long)size); 1024 1025 early_init_dt_add_memory_arch(base, size); 1026 1027 if (!hotpluggable) 1028 continue; 1029 1030 if (early_init_dt_mark_hotplug_memory_arch(base, size)) 1031 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", 1032 base, base + size); 1033 } 1034 1035 return 0; 1036} 1037 1038int __init early_init_dt_scan_chosen(unsigned long node, const char *uname, 1039 int depth, void *data) 1040{ 1041 int l; 1042 const char *p; 1043 const void *rng_seed; 1044 1045 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); 1046 1047 if (depth != 1 || !data || 1048 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) 1049 return 0; 1050 1051 early_init_dt_check_for_initrd(node); 1052 1053 /* Retrieve command line */ 1054 p = of_get_flat_dt_prop(node, "bootargs", &l); 1055 if (p != NULL && l > 0) 1056 strlcpy(data, p, min(l, COMMAND_LINE_SIZE)); 1057 1058 /* 1059 * CONFIG_CMDLINE is meant to be a default in case nothing else 1060 * managed to set the command line, unless CONFIG_CMDLINE_FORCE 1061 * is set in which case we override whatever was found earlier. 1062 */ 1063#ifdef CONFIG_CMDLINE 1064#if defined(CONFIG_CMDLINE_EXTEND) 1065 strlcat(data, " ", COMMAND_LINE_SIZE); 1066 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1067#elif defined(CONFIG_CMDLINE_FORCE) 1068 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1069#else 1070 /* No arguments from boot loader, use kernel's cmdl*/ 1071 if (!((char *)data)[0]) 1072 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1073#endif 1074#endif /* CONFIG_CMDLINE */ 1075 1076 pr_debug("Command line is: %s\n", (char *)data); 1077 1078 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l); 1079 if (rng_seed && l > 0) { 1080 add_bootloader_randomness(rng_seed, l); 1081 1082 /* try to clear seed so it won't be found. */ 1083 fdt_nop_property(initial_boot_params, node, "rng-seed"); 1084 1085 /* update CRC check value */ 1086 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1087 fdt_totalsize(initial_boot_params)); 1088 } 1089 1090 /* break now */ 1091 return 1; 1092} 1093 1094#ifndef MIN_MEMBLOCK_ADDR 1095#define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) 1096#endif 1097#ifndef MAX_MEMBLOCK_ADDR 1098#define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) 1099#endif 1100 1101void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) 1102{ 1103 const u64 phys_offset = MIN_MEMBLOCK_ADDR; 1104 1105 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { 1106 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1107 base, base + size); 1108 return; 1109 } 1110 1111 if (!PAGE_ALIGNED(base)) { 1112 size -= PAGE_SIZE - (base & ~PAGE_MASK); 1113 base = PAGE_ALIGN(base); 1114 } 1115 size &= PAGE_MASK; 1116 1117 if (base > MAX_MEMBLOCK_ADDR) { 1118 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1119 base, base + size); 1120 return; 1121 } 1122 1123 if (base + size - 1 > MAX_MEMBLOCK_ADDR) { 1124 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", 1125 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); 1126 size = MAX_MEMBLOCK_ADDR - base + 1; 1127 } 1128 1129 if (base + size < phys_offset) { 1130 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1131 base, base + size); 1132 return; 1133 } 1134 if (base < phys_offset) { 1135 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", 1136 base, phys_offset); 1137 size -= phys_offset - base; 1138 base = phys_offset; 1139 } 1140 memblock_add(base, size); 1141} 1142 1143int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size) 1144{ 1145 return memblock_mark_hotplug(base, size); 1146} 1147 1148int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base, 1149 phys_addr_t size, bool nomap) 1150{ 1151 if (nomap) { 1152 /* 1153 * If the memory is already reserved (by another region), we 1154 * should not allow it to be marked nomap. 1155 */ 1156 if (memblock_is_region_reserved(base, size)) 1157 return -EBUSY; 1158 1159 return memblock_mark_nomap(base, size); 1160 } 1161 return memblock_reserve(base, size); 1162} 1163 1164static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) 1165{ 1166 void *ptr = memblock_alloc(size, align); 1167 1168 if (!ptr) 1169 panic("%s: Failed to allocate %llu bytes align=0x%llx\n", 1170 __func__, size, align); 1171 1172 return ptr; 1173} 1174 1175bool __init early_init_dt_verify(void *params) 1176{ 1177 if (!params) 1178 return false; 1179 1180 /* check device tree validity */ 1181 if (fdt_check_header(params)) 1182 return false; 1183 1184 /* Setup flat device-tree pointer */ 1185 initial_boot_params = params; 1186 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1187 fdt_totalsize(initial_boot_params)); 1188 return true; 1189} 1190 1191 1192void __init early_init_dt_scan_nodes(void) 1193{ 1194 int rc = 0; 1195 1196 /* Retrieve various information from the /chosen node */ 1197 rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line); 1198 if (!rc) 1199 pr_warn("No chosen node found, continuing without\n"); 1200 1201 /* Initialize {size,address}-cells info */ 1202 of_scan_flat_dt(early_init_dt_scan_root, NULL); 1203 1204 /* Setup memory, calling early_init_dt_add_memory_arch */ 1205 of_scan_flat_dt(early_init_dt_scan_memory, NULL); 1206} 1207 1208bool __init early_init_dt_scan(void *params) 1209{ 1210 bool status; 1211 1212 status = early_init_dt_verify(params); 1213 if (!status) 1214 return false; 1215 1216 early_init_dt_scan_nodes(); 1217 return true; 1218} 1219 1220/** 1221 * unflatten_device_tree - create tree of device_nodes from flat blob 1222 * 1223 * unflattens the device-tree passed by the firmware, creating the 1224 * tree of struct device_node. It also fills the "name" and "type" 1225 * pointers of the nodes so the normal device-tree walking functions 1226 * can be used. 1227 */ 1228void __init unflatten_device_tree(void) 1229{ 1230 __unflatten_device_tree(initial_boot_params, NULL, &of_root, 1231 early_init_dt_alloc_memory_arch, false); 1232 1233 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ 1234 of_alias_scan(early_init_dt_alloc_memory_arch); 1235 1236 unittest_unflatten_overlay_base(); 1237} 1238 1239/** 1240 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob 1241 * 1242 * Copies and unflattens the device-tree passed by the firmware, creating the 1243 * tree of struct device_node. It also fills the "name" and "type" 1244 * pointers of the nodes so the normal device-tree walking functions 1245 * can be used. This should only be used when the FDT memory has not been 1246 * reserved such is the case when the FDT is built-in to the kernel init 1247 * section. If the FDT memory is reserved already then unflatten_device_tree 1248 * should be used instead. 1249 */ 1250void __init unflatten_and_copy_device_tree(void) 1251{ 1252 int size; 1253 void *dt; 1254 1255 if (!initial_boot_params) { 1256 pr_warn("No valid device tree found, continuing without\n"); 1257 return; 1258 } 1259 1260 size = fdt_totalsize(initial_boot_params); 1261 dt = early_init_dt_alloc_memory_arch(size, 1262 roundup_pow_of_two(FDT_V17_SIZE)); 1263 1264 if (dt) { 1265 memcpy(dt, initial_boot_params, size); 1266 initial_boot_params = dt; 1267 } 1268 unflatten_device_tree(); 1269} 1270 1271#ifdef CONFIG_SYSFS 1272static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, 1273 struct bin_attribute *bin_attr, 1274 char *buf, loff_t off, size_t count) 1275{ 1276 memcpy(buf, initial_boot_params + off, count); 1277 return count; 1278} 1279 1280static int __init of_fdt_raw_init(void) 1281{ 1282 static struct bin_attribute of_fdt_raw_attr = 1283 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); 1284 1285 if (!initial_boot_params) 1286 return 0; 1287 1288 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, 1289 fdt_totalsize(initial_boot_params))) { 1290 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); 1291 return 0; 1292 } 1293 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); 1294 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); 1295} 1296late_initcall(of_fdt_raw_init); 1297#endif 1298 1299#endif /* CONFIG_OF_EARLY_FLATTREE */ 1300