xref: /kernel/linux/linux-5.10/drivers/of/fdt.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9#define pr_fmt(fmt)	"OF: fdt: " fmt
10
11#include <linux/crc32.h>
12#include <linux/kernel.h>
13#include <linux/initrd.h>
14#include <linux/memblock.h>
15#include <linux/mutex.h>
16#include <linux/of.h>
17#include <linux/of_fdt.h>
18#include <linux/of_reserved_mem.h>
19#include <linux/sizes.h>
20#include <linux/string.h>
21#include <linux/errno.h>
22#include <linux/slab.h>
23#include <linux/libfdt.h>
24#include <linux/debugfs.h>
25#include <linux/serial_core.h>
26#include <linux/sysfs.h>
27#include <linux/random.h>
28
29#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
30#include <asm/page.h>
31
32#include "of_private.h"
33
34/*
35 * of_fdt_limit_memory - limit the number of regions in the /memory node
36 * @limit: maximum entries
37 *
38 * Adjust the flattened device tree to have at most 'limit' number of
39 * memory entries in the /memory node. This function may be called
40 * any time after initial_boot_param is set.
41 */
42void __init of_fdt_limit_memory(int limit)
43{
44	int memory;
45	int len;
46	const void *val;
47	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49	const __be32 *addr_prop;
50	const __be32 *size_prop;
51	int root_offset;
52	int cell_size;
53
54	root_offset = fdt_path_offset(initial_boot_params, "/");
55	if (root_offset < 0)
56		return;
57
58	addr_prop = fdt_getprop(initial_boot_params, root_offset,
59				"#address-cells", NULL);
60	if (addr_prop)
61		nr_address_cells = fdt32_to_cpu(*addr_prop);
62
63	size_prop = fdt_getprop(initial_boot_params, root_offset,
64				"#size-cells", NULL);
65	if (size_prop)
66		nr_size_cells = fdt32_to_cpu(*size_prop);
67
68	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69
70	memory = fdt_path_offset(initial_boot_params, "/memory");
71	if (memory > 0) {
72		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73		if (len > limit*cell_size) {
74			len = limit*cell_size;
75			pr_debug("Limiting number of entries to %d\n", limit);
76			fdt_setprop(initial_boot_params, memory, "reg", val,
77					len);
78		}
79	}
80}
81
82static bool of_fdt_device_is_available(const void *blob, unsigned long node)
83{
84	const char *status = fdt_getprop(blob, node, "status", NULL);
85
86	if (!status)
87		return true;
88
89	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
90		return true;
91
92	return false;
93}
94
95static void *unflatten_dt_alloc(void **mem, unsigned long size,
96				       unsigned long align)
97{
98	void *res;
99
100	*mem = PTR_ALIGN(*mem, align);
101	res = *mem;
102	*mem += size;
103
104	return res;
105}
106
107static void populate_properties(const void *blob,
108				int offset,
109				void **mem,
110				struct device_node *np,
111				const char *nodename,
112				bool dryrun)
113{
114	struct property *pp, **pprev = NULL;
115	int cur;
116	bool has_name = false;
117
118	pprev = &np->properties;
119	for (cur = fdt_first_property_offset(blob, offset);
120	     cur >= 0;
121	     cur = fdt_next_property_offset(blob, cur)) {
122		const __be32 *val;
123		const char *pname;
124		u32 sz;
125
126		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
127		if (!val) {
128			pr_warn("Cannot locate property at 0x%x\n", cur);
129			continue;
130		}
131
132		if (!pname) {
133			pr_warn("Cannot find property name at 0x%x\n", cur);
134			continue;
135		}
136
137		if (!strcmp(pname, "name"))
138			has_name = true;
139
140		pp = unflatten_dt_alloc(mem, sizeof(struct property),
141					__alignof__(struct property));
142		if (dryrun)
143			continue;
144
145		/* We accept flattened tree phandles either in
146		 * ePAPR-style "phandle" properties, or the
147		 * legacy "linux,phandle" properties.  If both
148		 * appear and have different values, things
149		 * will get weird. Don't do that.
150		 */
151		if (!strcmp(pname, "phandle") ||
152		    !strcmp(pname, "linux,phandle")) {
153			if (!np->phandle)
154				np->phandle = be32_to_cpup(val);
155		}
156
157		/* And we process the "ibm,phandle" property
158		 * used in pSeries dynamic device tree
159		 * stuff
160		 */
161		if (!strcmp(pname, "ibm,phandle"))
162			np->phandle = be32_to_cpup(val);
163
164		pp->name   = (char *)pname;
165		pp->length = sz;
166		pp->value  = (__be32 *)val;
167		*pprev     = pp;
168		pprev      = &pp->next;
169	}
170
171	/* With version 0x10 we may not have the name property,
172	 * recreate it here from the unit name if absent
173	 */
174	if (!has_name) {
175		const char *p = nodename, *ps = p, *pa = NULL;
176		int len;
177
178		while (*p) {
179			if ((*p) == '@')
180				pa = p;
181			else if ((*p) == '/')
182				ps = p + 1;
183			p++;
184		}
185
186		if (pa < ps)
187			pa = p;
188		len = (pa - ps) + 1;
189		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
190					__alignof__(struct property));
191		if (!dryrun) {
192			pp->name   = "name";
193			pp->length = len;
194			pp->value  = pp + 1;
195			*pprev     = pp;
196			pprev      = &pp->next;
197			memcpy(pp->value, ps, len - 1);
198			((char *)pp->value)[len - 1] = 0;
199			pr_debug("fixed up name for %s -> %s\n",
200				 nodename, (char *)pp->value);
201		}
202	}
203
204	if (!dryrun)
205		*pprev = NULL;
206}
207
208static bool populate_node(const void *blob,
209			  int offset,
210			  void **mem,
211			  struct device_node *dad,
212			  struct device_node **pnp,
213			  bool dryrun)
214{
215	struct device_node *np;
216	const char *pathp;
217	unsigned int l, allocl;
218
219	pathp = fdt_get_name(blob, offset, &l);
220	if (!pathp) {
221		*pnp = NULL;
222		return false;
223	}
224
225	allocl = ++l;
226
227	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
228				__alignof__(struct device_node));
229	if (!dryrun) {
230		char *fn;
231		of_node_init(np);
232		np->full_name = fn = ((char *)np) + sizeof(*np);
233
234		memcpy(fn, pathp, l);
235
236		if (dad != NULL) {
237			np->parent = dad;
238			np->sibling = dad->child;
239			dad->child = np;
240		}
241	}
242
243	populate_properties(blob, offset, mem, np, pathp, dryrun);
244	if (!dryrun) {
245		np->name = of_get_property(np, "name", NULL);
246		if (!np->name)
247			np->name = "<NULL>";
248	}
249
250	*pnp = np;
251	return true;
252}
253
254static void reverse_nodes(struct device_node *parent)
255{
256	struct device_node *child, *next;
257
258	/* In-depth first */
259	child = parent->child;
260	while (child) {
261		reverse_nodes(child);
262
263		child = child->sibling;
264	}
265
266	/* Reverse the nodes in the child list */
267	child = parent->child;
268	parent->child = NULL;
269	while (child) {
270		next = child->sibling;
271
272		child->sibling = parent->child;
273		parent->child = child;
274		child = next;
275	}
276}
277
278/**
279 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
280 * @blob: The parent device tree blob
281 * @mem: Memory chunk to use for allocating device nodes and properties
282 * @dad: Parent struct device_node
283 * @nodepp: The device_node tree created by the call
284 *
285 * Return: The size of unflattened device tree or error code
286 */
287static int unflatten_dt_nodes(const void *blob,
288			      void *mem,
289			      struct device_node *dad,
290			      struct device_node **nodepp)
291{
292	struct device_node *root;
293	int offset = 0, depth = 0, initial_depth = 0;
294#define FDT_MAX_DEPTH	64
295	struct device_node *nps[FDT_MAX_DEPTH];
296	void *base = mem;
297	bool dryrun = !base;
298
299	if (nodepp)
300		*nodepp = NULL;
301
302	/*
303	 * We're unflattening device sub-tree if @dad is valid. There are
304	 * possibly multiple nodes in the first level of depth. We need
305	 * set @depth to 1 to make fdt_next_node() happy as it bails
306	 * immediately when negative @depth is found. Otherwise, the device
307	 * nodes except the first one won't be unflattened successfully.
308	 */
309	if (dad)
310		depth = initial_depth = 1;
311
312	root = dad;
313	nps[depth] = dad;
314
315	for (offset = 0;
316	     offset >= 0 && depth >= initial_depth;
317	     offset = fdt_next_node(blob, offset, &depth)) {
318		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
319			continue;
320
321		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
322		    !of_fdt_device_is_available(blob, offset))
323			continue;
324
325		if (!populate_node(blob, offset, &mem, nps[depth],
326				   &nps[depth+1], dryrun))
327			return mem - base;
328
329		if (!dryrun && nodepp && !*nodepp)
330			*nodepp = nps[depth+1];
331		if (!dryrun && !root)
332			root = nps[depth+1];
333	}
334
335	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
336		pr_err("Error %d processing FDT\n", offset);
337		return -EINVAL;
338	}
339
340	/*
341	 * Reverse the child list. Some drivers assumes node order matches .dts
342	 * node order
343	 */
344	if (!dryrun)
345		reverse_nodes(root);
346
347	return mem - base;
348}
349
350/**
351 * __unflatten_device_tree - create tree of device_nodes from flat blob
352 * @blob: The blob to expand
353 * @dad: Parent device node
354 * @mynodes: The device_node tree created by the call
355 * @dt_alloc: An allocator that provides a virtual address to memory
356 * for the resulting tree
357 * @detached: if true set OF_DETACHED on @mynodes
358 *
359 * unflattens a device-tree, creating the tree of struct device_node. It also
360 * fills the "name" and "type" pointers of the nodes so the normal device-tree
361 * walking functions can be used.
362 *
363 * Return: NULL on failure or the memory chunk containing the unflattened
364 * device tree on success.
365 */
366void *__unflatten_device_tree(const void *blob,
367			      struct device_node *dad,
368			      struct device_node **mynodes,
369			      void *(*dt_alloc)(u64 size, u64 align),
370			      bool detached)
371{
372	int size;
373	void *mem;
374
375	pr_debug(" -> unflatten_device_tree()\n");
376
377	if (!blob) {
378		pr_debug("No device tree pointer\n");
379		return NULL;
380	}
381
382	pr_debug("Unflattening device tree:\n");
383	pr_debug("magic: %08x\n", fdt_magic(blob));
384	pr_debug("size: %08x\n", fdt_totalsize(blob));
385	pr_debug("version: %08x\n", fdt_version(blob));
386
387	if (fdt_check_header(blob)) {
388		pr_err("Invalid device tree blob header\n");
389		return NULL;
390	}
391
392	/* First pass, scan for size */
393	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
394	if (size < 0)
395		return NULL;
396
397	size = ALIGN(size, 4);
398	pr_debug("  size is %d, allocating...\n", size);
399
400	/* Allocate memory for the expanded device tree */
401	mem = dt_alloc(size + 4, __alignof__(struct device_node));
402	if (!mem)
403		return NULL;
404
405	memset(mem, 0, size);
406
407	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
408
409	pr_debug("  unflattening %p...\n", mem);
410
411	/* Second pass, do actual unflattening */
412	unflatten_dt_nodes(blob, mem, dad, mynodes);
413	if (be32_to_cpup(mem + size) != 0xdeadbeef)
414		pr_warn("End of tree marker overwritten: %08x\n",
415			be32_to_cpup(mem + size));
416
417	if (detached && mynodes) {
418		of_node_set_flag(*mynodes, OF_DETACHED);
419		pr_debug("unflattened tree is detached\n");
420	}
421
422	pr_debug(" <- unflatten_device_tree()\n");
423	return mem;
424}
425
426static void *kernel_tree_alloc(u64 size, u64 align)
427{
428	return kzalloc(size, GFP_KERNEL);
429}
430
431static DEFINE_MUTEX(of_fdt_unflatten_mutex);
432
433/**
434 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
435 * @blob: Flat device tree blob
436 * @dad: Parent device node
437 * @mynodes: The device tree created by the call
438 *
439 * unflattens the device-tree passed by the firmware, creating the
440 * tree of struct device_node. It also fills the "name" and "type"
441 * pointers of the nodes so the normal device-tree walking functions
442 * can be used.
443 *
444 * Return: NULL on failure or the memory chunk containing the unflattened
445 * device tree on success.
446 */
447void *of_fdt_unflatten_tree(const unsigned long *blob,
448			    struct device_node *dad,
449			    struct device_node **mynodes)
450{
451	void *mem;
452
453	mutex_lock(&of_fdt_unflatten_mutex);
454	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
455				      true);
456	mutex_unlock(&of_fdt_unflatten_mutex);
457
458	return mem;
459}
460EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
461
462/* Everything below here references initial_boot_params directly. */
463int __initdata dt_root_addr_cells;
464int __initdata dt_root_size_cells;
465
466void *initial_boot_params __ro_after_init;
467
468#ifdef CONFIG_OF_EARLY_FLATTREE
469
470static u32 of_fdt_crc32;
471
472/**
473 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
474 */
475static int __init __reserved_mem_reserve_reg(unsigned long node,
476					     const char *uname)
477{
478	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
479	phys_addr_t base, size;
480	int len;
481	const __be32 *prop;
482	int first = 1;
483	bool nomap;
484
485	prop = of_get_flat_dt_prop(node, "reg", &len);
486	if (!prop)
487		return -ENOENT;
488
489	if (len && len % t_len != 0) {
490		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
491		       uname);
492		return -EINVAL;
493	}
494
495	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
496
497	while (len >= t_len) {
498		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
499		size = dt_mem_next_cell(dt_root_size_cells, &prop);
500
501		if (size &&
502		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
503			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
504				uname, &base, (unsigned long)(size / SZ_1M));
505		else
506			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
507				uname, &base, (unsigned long)(size / SZ_1M));
508
509		len -= t_len;
510		if (first) {
511			fdt_reserved_mem_save_node(node, uname, base, size);
512			first = 0;
513		}
514	}
515	return 0;
516}
517
518/**
519 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
520 * in /reserved-memory matches the values supported by the current implementation,
521 * also check if ranges property has been provided
522 */
523static int __init __reserved_mem_check_root(unsigned long node)
524{
525	const __be32 *prop;
526
527	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
528	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
529		return -EINVAL;
530
531	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
532	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
533		return -EINVAL;
534
535	prop = of_get_flat_dt_prop(node, "ranges", NULL);
536	if (!prop)
537		return -EINVAL;
538	return 0;
539}
540
541/**
542 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
543 */
544static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
545					  int depth, void *data)
546{
547	static int found;
548	int err;
549
550	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
551		if (__reserved_mem_check_root(node) != 0) {
552			pr_err("Reserved memory: unsupported node format, ignoring\n");
553			/* break scan */
554			return 1;
555		}
556		found = 1;
557		/* scan next node */
558		return 0;
559	} else if (!found) {
560		/* scan next node */
561		return 0;
562	} else if (found && depth < 2) {
563		/* scanning of /reserved-memory has been finished */
564		return 1;
565	}
566
567	if (!of_fdt_device_is_available(initial_boot_params, node))
568		return 0;
569
570	err = __reserved_mem_reserve_reg(node, uname);
571	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
572		fdt_reserved_mem_save_node(node, uname, 0, 0);
573
574	/* scan next node */
575	return 0;
576}
577
578/**
579 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
580 *
581 * This function grabs memory from early allocator for device exclusive use
582 * defined in device tree structures. It should be called by arch specific code
583 * once the early allocator (i.e. memblock) has been fully activated.
584 */
585void __init early_init_fdt_scan_reserved_mem(void)
586{
587	int n;
588	u64 base, size;
589
590	if (!initial_boot_params)
591		return;
592
593	/* Process header /memreserve/ fields */
594	for (n = 0; ; n++) {
595		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
596		if (!size)
597			break;
598		early_init_dt_reserve_memory_arch(base, size, false);
599	}
600
601	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
602	fdt_init_reserved_mem();
603}
604
605/**
606 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
607 */
608void __init early_init_fdt_reserve_self(void)
609{
610	if (!initial_boot_params)
611		return;
612
613	/* Reserve the dtb region */
614	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
615					  fdt_totalsize(initial_boot_params),
616					  false);
617}
618
619/**
620 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
621 * @it: callback function
622 * @data: context data pointer
623 *
624 * This function is used to scan the flattened device-tree, it is
625 * used to extract the memory information at boot before we can
626 * unflatten the tree
627 */
628int __init of_scan_flat_dt(int (*it)(unsigned long node,
629				     const char *uname, int depth,
630				     void *data),
631			   void *data)
632{
633	const void *blob = initial_boot_params;
634	const char *pathp;
635	int offset, rc = 0, depth = -1;
636
637	if (!blob)
638		return 0;
639
640	for (offset = fdt_next_node(blob, -1, &depth);
641	     offset >= 0 && depth >= 0 && !rc;
642	     offset = fdt_next_node(blob, offset, &depth)) {
643
644		pathp = fdt_get_name(blob, offset, NULL);
645		rc = it(offset, pathp, depth, data);
646	}
647	return rc;
648}
649
650/**
651 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
652 * @it: callback function
653 * @data: context data pointer
654 *
655 * This function is used to scan sub-nodes of a node.
656 */
657int __init of_scan_flat_dt_subnodes(unsigned long parent,
658				    int (*it)(unsigned long node,
659					      const char *uname,
660					      void *data),
661				    void *data)
662{
663	const void *blob = initial_boot_params;
664	int node;
665
666	fdt_for_each_subnode(node, blob, parent) {
667		const char *pathp;
668		int rc;
669
670		pathp = fdt_get_name(blob, node, NULL);
671		rc = it(node, pathp, data);
672		if (rc)
673			return rc;
674	}
675	return 0;
676}
677
678/**
679 * of_get_flat_dt_subnode_by_name - get the subnode by given name
680 *
681 * @node: the parent node
682 * @uname: the name of subnode
683 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
684 */
685
686int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
687{
688	return fdt_subnode_offset(initial_boot_params, node, uname);
689}
690
691/**
692 * of_get_flat_dt_root - find the root node in the flat blob
693 */
694unsigned long __init of_get_flat_dt_root(void)
695{
696	return 0;
697}
698
699/**
700 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
701 *
702 * This function can be used within scan_flattened_dt callback to get
703 * access to properties
704 */
705const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
706				       int *size)
707{
708	return fdt_getprop(initial_boot_params, node, name, size);
709}
710
711/**
712 * of_fdt_is_compatible - Return true if given node from the given blob has
713 * compat in its compatible list
714 * @blob: A device tree blob
715 * @node: node to test
716 * @compat: compatible string to compare with compatible list.
717 *
718 * Return: a non-zero value on match with smaller values returned for more
719 * specific compatible values.
720 */
721static int of_fdt_is_compatible(const void *blob,
722		      unsigned long node, const char *compat)
723{
724	const char *cp;
725	int cplen;
726	unsigned long l, score = 0;
727
728	cp = fdt_getprop(blob, node, "compatible", &cplen);
729	if (cp == NULL)
730		return 0;
731	while (cplen > 0) {
732		score++;
733		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
734			return score;
735		l = strlen(cp) + 1;
736		cp += l;
737		cplen -= l;
738	}
739
740	return 0;
741}
742
743/**
744 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
745 * @node: node to test
746 * @compat: compatible string to compare with compatible list.
747 */
748int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
749{
750	return of_fdt_is_compatible(initial_boot_params, node, compat);
751}
752
753/**
754 * of_flat_dt_match - Return true if node matches a list of compatible values
755 */
756static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
757{
758	unsigned int tmp, score = 0;
759
760	if (!compat)
761		return 0;
762
763	while (*compat) {
764		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
765		if (tmp && (score == 0 || (tmp < score)))
766			score = tmp;
767		compat++;
768	}
769
770	return score;
771}
772
773/**
774 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
775 */
776uint32_t __init of_get_flat_dt_phandle(unsigned long node)
777{
778	return fdt_get_phandle(initial_boot_params, node);
779}
780
781struct fdt_scan_status {
782	const char *name;
783	int namelen;
784	int depth;
785	int found;
786	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
787	void *data;
788};
789
790const char * __init of_flat_dt_get_machine_name(void)
791{
792	const char *name;
793	unsigned long dt_root = of_get_flat_dt_root();
794
795	name = of_get_flat_dt_prop(dt_root, "model", NULL);
796	if (!name)
797		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
798	return name;
799}
800
801/**
802 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
803 *
804 * @default_match: A machine specific ptr to return in case of no match.
805 * @get_next_compat: callback function to return next compatible match table.
806 *
807 * Iterate through machine match tables to find the best match for the machine
808 * compatible string in the FDT.
809 */
810const void * __init of_flat_dt_match_machine(const void *default_match,
811		const void * (*get_next_compat)(const char * const**))
812{
813	const void *data = NULL;
814	const void *best_data = default_match;
815	const char *const *compat;
816	unsigned long dt_root;
817	unsigned int best_score = ~1, score = 0;
818
819	dt_root = of_get_flat_dt_root();
820	while ((data = get_next_compat(&compat))) {
821		score = of_flat_dt_match(dt_root, compat);
822		if (score > 0 && score < best_score) {
823			best_data = data;
824			best_score = score;
825		}
826	}
827	if (!best_data) {
828		const char *prop;
829		int size;
830
831		pr_err("\n unrecognized device tree list:\n[ ");
832
833		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
834		if (prop) {
835			while (size > 0) {
836				printk("'%s' ", prop);
837				size -= strlen(prop) + 1;
838				prop += strlen(prop) + 1;
839			}
840		}
841		printk("]\n\n");
842		return NULL;
843	}
844
845	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
846
847	return best_data;
848}
849
850#ifdef CONFIG_BLK_DEV_INITRD
851static void __early_init_dt_declare_initrd(unsigned long start,
852					   unsigned long end)
853{
854	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
855	 * enabled since __va() is called too early. ARM64 does make use
856	 * of phys_initrd_start/phys_initrd_size so we can skip this
857	 * conversion.
858	 */
859	if (!IS_ENABLED(CONFIG_ARM64)) {
860		initrd_start = (unsigned long)__va(start);
861		initrd_end = (unsigned long)__va(end);
862		initrd_below_start_ok = 1;
863	}
864}
865
866/**
867 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
868 * @node: reference to node containing initrd location ('chosen')
869 */
870static void __init early_init_dt_check_for_initrd(unsigned long node)
871{
872	u64 start, end;
873	int len;
874	const __be32 *prop;
875
876	pr_debug("Looking for initrd properties... ");
877
878	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
879	if (!prop)
880		return;
881	start = of_read_number(prop, len/4);
882
883	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
884	if (!prop)
885		return;
886	end = of_read_number(prop, len/4);
887
888	__early_init_dt_declare_initrd(start, end);
889	phys_initrd_start = start;
890	phys_initrd_size = end - start;
891
892	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
893		 (unsigned long long)start, (unsigned long long)end);
894}
895#else
896static inline void early_init_dt_check_for_initrd(unsigned long node)
897{
898}
899#endif /* CONFIG_BLK_DEV_INITRD */
900
901#ifdef CONFIG_SERIAL_EARLYCON
902
903int __init early_init_dt_scan_chosen_stdout(void)
904{
905	int offset;
906	const char *p, *q, *options = NULL;
907	int l;
908	const struct earlycon_id **p_match;
909	const void *fdt = initial_boot_params;
910
911	offset = fdt_path_offset(fdt, "/chosen");
912	if (offset < 0)
913		offset = fdt_path_offset(fdt, "/chosen@0");
914	if (offset < 0)
915		return -ENOENT;
916
917	p = fdt_getprop(fdt, offset, "stdout-path", &l);
918	if (!p)
919		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
920	if (!p || !l)
921		return -ENOENT;
922
923	q = strchrnul(p, ':');
924	if (*q != '\0')
925		options = q + 1;
926	l = q - p;
927
928	/* Get the node specified by stdout-path */
929	offset = fdt_path_offset_namelen(fdt, p, l);
930	if (offset < 0) {
931		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
932		return 0;
933	}
934
935	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
936	     p_match++) {
937		const struct earlycon_id *match = *p_match;
938
939		if (!match->compatible[0])
940			continue;
941
942		if (fdt_node_check_compatible(fdt, offset, match->compatible))
943			continue;
944
945		if (of_setup_earlycon(match, offset, options) == 0)
946			return 0;
947	}
948	return -ENODEV;
949}
950#endif
951
952/**
953 * early_init_dt_scan_root - fetch the top level address and size cells
954 */
955int __init early_init_dt_scan_root(unsigned long node, const char *uname,
956				   int depth, void *data)
957{
958	const __be32 *prop;
959
960	if (depth != 0)
961		return 0;
962
963	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
964	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
965
966	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
967	if (prop)
968		dt_root_size_cells = be32_to_cpup(prop);
969	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
970
971	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
972	if (prop)
973		dt_root_addr_cells = be32_to_cpup(prop);
974	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
975
976	/* break now */
977	return 1;
978}
979
980u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
981{
982	const __be32 *p = *cellp;
983
984	*cellp = p + s;
985	return of_read_number(p, s);
986}
987
988/**
989 * early_init_dt_scan_memory - Look for and parse memory nodes
990 */
991int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
992				     int depth, void *data)
993{
994	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
995	const __be32 *reg, *endp;
996	int l;
997	bool hotpluggable;
998
999	/* We are scanning "memory" nodes only */
1000	if (type == NULL || strcmp(type, "memory") != 0)
1001		return 0;
1002
1003	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1004	if (reg == NULL)
1005		reg = of_get_flat_dt_prop(node, "reg", &l);
1006	if (reg == NULL)
1007		return 0;
1008
1009	endp = reg + (l / sizeof(__be32));
1010	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1011
1012	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1013
1014	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1015		u64 base, size;
1016
1017		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1018		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1019
1020		if (size == 0)
1021			continue;
1022		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1023		    (unsigned long long)size);
1024
1025		early_init_dt_add_memory_arch(base, size);
1026
1027		if (!hotpluggable)
1028			continue;
1029
1030		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1031			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1032				base, base + size);
1033	}
1034
1035	return 0;
1036}
1037
1038int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1039				     int depth, void *data)
1040{
1041	int l;
1042	const char *p;
1043	const void *rng_seed;
1044
1045	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1046
1047	if (depth != 1 || !data ||
1048	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1049		return 0;
1050
1051	early_init_dt_check_for_initrd(node);
1052
1053	/* Retrieve command line */
1054	p = of_get_flat_dt_prop(node, "bootargs", &l);
1055	if (p != NULL && l > 0)
1056		strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1057
1058	/*
1059	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1060	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1061	 * is set in which case we override whatever was found earlier.
1062	 */
1063#ifdef CONFIG_CMDLINE
1064#if defined(CONFIG_CMDLINE_EXTEND)
1065	strlcat(data, " ", COMMAND_LINE_SIZE);
1066	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1067#elif defined(CONFIG_CMDLINE_FORCE)
1068	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1069#else
1070	/* No arguments from boot loader, use kernel's  cmdl*/
1071	if (!((char *)data)[0])
1072		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1073#endif
1074#endif /* CONFIG_CMDLINE */
1075
1076	pr_debug("Command line is: %s\n", (char *)data);
1077
1078	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1079	if (rng_seed && l > 0) {
1080		add_bootloader_randomness(rng_seed, l);
1081
1082		/* try to clear seed so it won't be found. */
1083		fdt_nop_property(initial_boot_params, node, "rng-seed");
1084
1085		/* update CRC check value */
1086		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1087				fdt_totalsize(initial_boot_params));
1088	}
1089
1090	/* break now */
1091	return 1;
1092}
1093
1094#ifndef MIN_MEMBLOCK_ADDR
1095#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1096#endif
1097#ifndef MAX_MEMBLOCK_ADDR
1098#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1099#endif
1100
1101void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1102{
1103	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1104
1105	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1106		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1107			base, base + size);
1108		return;
1109	}
1110
1111	if (!PAGE_ALIGNED(base)) {
1112		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1113		base = PAGE_ALIGN(base);
1114	}
1115	size &= PAGE_MASK;
1116
1117	if (base > MAX_MEMBLOCK_ADDR) {
1118		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1119			base, base + size);
1120		return;
1121	}
1122
1123	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1124		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1125			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1126		size = MAX_MEMBLOCK_ADDR - base + 1;
1127	}
1128
1129	if (base + size < phys_offset) {
1130		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1131			base, base + size);
1132		return;
1133	}
1134	if (base < phys_offset) {
1135		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1136			base, phys_offset);
1137		size -= phys_offset - base;
1138		base = phys_offset;
1139	}
1140	memblock_add(base, size);
1141}
1142
1143int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1144{
1145	return memblock_mark_hotplug(base, size);
1146}
1147
1148int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1149					phys_addr_t size, bool nomap)
1150{
1151	if (nomap) {
1152		/*
1153		 * If the memory is already reserved (by another region), we
1154		 * should not allow it to be marked nomap.
1155		 */
1156		if (memblock_is_region_reserved(base, size))
1157			return -EBUSY;
1158
1159		return memblock_mark_nomap(base, size);
1160	}
1161	return memblock_reserve(base, size);
1162}
1163
1164static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1165{
1166	void *ptr = memblock_alloc(size, align);
1167
1168	if (!ptr)
1169		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1170		      __func__, size, align);
1171
1172	return ptr;
1173}
1174
1175bool __init early_init_dt_verify(void *params)
1176{
1177	if (!params)
1178		return false;
1179
1180	/* check device tree validity */
1181	if (fdt_check_header(params))
1182		return false;
1183
1184	/* Setup flat device-tree pointer */
1185	initial_boot_params = params;
1186	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1187				fdt_totalsize(initial_boot_params));
1188	return true;
1189}
1190
1191
1192void __init early_init_dt_scan_nodes(void)
1193{
1194	int rc = 0;
1195
1196	/* Retrieve various information from the /chosen node */
1197	rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1198	if (!rc)
1199		pr_warn("No chosen node found, continuing without\n");
1200
1201	/* Initialize {size,address}-cells info */
1202	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1203
1204	/* Setup memory, calling early_init_dt_add_memory_arch */
1205	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1206}
1207
1208bool __init early_init_dt_scan(void *params)
1209{
1210	bool status;
1211
1212	status = early_init_dt_verify(params);
1213	if (!status)
1214		return false;
1215
1216	early_init_dt_scan_nodes();
1217	return true;
1218}
1219
1220/**
1221 * unflatten_device_tree - create tree of device_nodes from flat blob
1222 *
1223 * unflattens the device-tree passed by the firmware, creating the
1224 * tree of struct device_node. It also fills the "name" and "type"
1225 * pointers of the nodes so the normal device-tree walking functions
1226 * can be used.
1227 */
1228void __init unflatten_device_tree(void)
1229{
1230	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1231				early_init_dt_alloc_memory_arch, false);
1232
1233	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1234	of_alias_scan(early_init_dt_alloc_memory_arch);
1235
1236	unittest_unflatten_overlay_base();
1237}
1238
1239/**
1240 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1241 *
1242 * Copies and unflattens the device-tree passed by the firmware, creating the
1243 * tree of struct device_node. It also fills the "name" and "type"
1244 * pointers of the nodes so the normal device-tree walking functions
1245 * can be used. This should only be used when the FDT memory has not been
1246 * reserved such is the case when the FDT is built-in to the kernel init
1247 * section. If the FDT memory is reserved already then unflatten_device_tree
1248 * should be used instead.
1249 */
1250void __init unflatten_and_copy_device_tree(void)
1251{
1252	int size;
1253	void *dt;
1254
1255	if (!initial_boot_params) {
1256		pr_warn("No valid device tree found, continuing without\n");
1257		return;
1258	}
1259
1260	size = fdt_totalsize(initial_boot_params);
1261	dt = early_init_dt_alloc_memory_arch(size,
1262					     roundup_pow_of_two(FDT_V17_SIZE));
1263
1264	if (dt) {
1265		memcpy(dt, initial_boot_params, size);
1266		initial_boot_params = dt;
1267	}
1268	unflatten_device_tree();
1269}
1270
1271#ifdef CONFIG_SYSFS
1272static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1273			       struct bin_attribute *bin_attr,
1274			       char *buf, loff_t off, size_t count)
1275{
1276	memcpy(buf, initial_boot_params + off, count);
1277	return count;
1278}
1279
1280static int __init of_fdt_raw_init(void)
1281{
1282	static struct bin_attribute of_fdt_raw_attr =
1283		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1284
1285	if (!initial_boot_params)
1286		return 0;
1287
1288	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1289				     fdt_totalsize(initial_boot_params))) {
1290		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1291		return 0;
1292	}
1293	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1294	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1295}
1296late_initcall(of_fdt_raw_init);
1297#endif
1298
1299#endif /* CONFIG_OF_EARLY_FLATTREE */
1300