xref: /kernel/linux/linux-5.10/drivers/of/base.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras	August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 *    {engebret|bergner}@us.ibm.com
10 *
11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 *  Grant Likely.
15 */
16
17#define pr_fmt(fmt)	"OF: " fmt
18
19#include <linux/bitmap.h>
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/string.h>
30#include <linux/proc_fs.h>
31
32#include "of_private.h"
33
34LIST_HEAD(aliases_lookup);
35
36struct device_node *of_root;
37EXPORT_SYMBOL(of_root);
38struct device_node *of_chosen;
39struct device_node *of_aliases;
40struct device_node *of_stdout;
41static const char *of_stdout_options;
42
43struct kset *of_kset;
44
45/*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51DEFINE_MUTEX(of_mutex);
52
53/* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56DEFINE_RAW_SPINLOCK(devtree_lock);
57
58bool of_node_name_eq(const struct device_node *np, const char *name)
59{
60	const char *node_name;
61	size_t len;
62
63	if (!np)
64		return false;
65
66	node_name = kbasename(np->full_name);
67	len = strchrnul(node_name, '@') - node_name;
68
69	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70}
71EXPORT_SYMBOL(of_node_name_eq);
72
73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74{
75	if (!np)
76		return false;
77
78	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79}
80EXPORT_SYMBOL(of_node_name_prefix);
81
82static bool __of_node_is_type(const struct device_node *np, const char *type)
83{
84	const char *match = __of_get_property(np, "device_type", NULL);
85
86	return np && match && type && !strcmp(match, type);
87}
88
89int of_bus_n_addr_cells(struct device_node *np)
90{
91	u32 cells;
92
93	for (; np; np = np->parent)
94		if (!of_property_read_u32(np, "#address-cells", &cells))
95			return cells;
96
97	/* No #address-cells property for the root node */
98	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99}
100
101int of_n_addr_cells(struct device_node *np)
102{
103	if (np->parent)
104		np = np->parent;
105
106	return of_bus_n_addr_cells(np);
107}
108EXPORT_SYMBOL(of_n_addr_cells);
109
110int of_bus_n_size_cells(struct device_node *np)
111{
112	u32 cells;
113
114	for (; np; np = np->parent)
115		if (!of_property_read_u32(np, "#size-cells", &cells))
116			return cells;
117
118	/* No #size-cells property for the root node */
119	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120}
121
122int of_n_size_cells(struct device_node *np)
123{
124	if (np->parent)
125		np = np->parent;
126
127	return of_bus_n_size_cells(np);
128}
129EXPORT_SYMBOL(of_n_size_cells);
130
131#ifdef CONFIG_NUMA
132int __weak of_node_to_nid(struct device_node *np)
133{
134	return NUMA_NO_NODE;
135}
136#endif
137
138#define OF_PHANDLE_CACHE_BITS	7
139#define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140
141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142
143static u32 of_phandle_cache_hash(phandle handle)
144{
145	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146}
147
148/*
149 * Caller must hold devtree_lock.
150 */
151void __of_phandle_cache_inv_entry(phandle handle)
152{
153	u32 handle_hash;
154	struct device_node *np;
155
156	if (!handle)
157		return;
158
159	handle_hash = of_phandle_cache_hash(handle);
160
161	np = phandle_cache[handle_hash];
162	if (np && handle == np->phandle)
163		phandle_cache[handle_hash] = NULL;
164}
165
166void __init of_core_init(void)
167{
168	struct device_node *np;
169
170
171	/* Create the kset, and register existing nodes */
172	mutex_lock(&of_mutex);
173	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174	if (!of_kset) {
175		mutex_unlock(&of_mutex);
176		pr_err("failed to register existing nodes\n");
177		return;
178	}
179	for_each_of_allnodes(np) {
180		__of_attach_node_sysfs(np);
181		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183	}
184	mutex_unlock(&of_mutex);
185
186	/* Symlink in /proc as required by userspace ABI */
187	if (of_root)
188		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189}
190
191static struct property *__of_find_property(const struct device_node *np,
192					   const char *name, int *lenp)
193{
194	struct property *pp;
195
196	if (!np)
197		return NULL;
198
199	for (pp = np->properties; pp; pp = pp->next) {
200		if (of_prop_cmp(pp->name, name) == 0) {
201			if (lenp)
202				*lenp = pp->length;
203			break;
204		}
205	}
206
207	return pp;
208}
209
210struct property *of_find_property(const struct device_node *np,
211				  const char *name,
212				  int *lenp)
213{
214	struct property *pp;
215	unsigned long flags;
216
217	raw_spin_lock_irqsave(&devtree_lock, flags);
218	pp = __of_find_property(np, name, lenp);
219	raw_spin_unlock_irqrestore(&devtree_lock, flags);
220
221	return pp;
222}
223EXPORT_SYMBOL(of_find_property);
224
225struct device_node *__of_find_all_nodes(struct device_node *prev)
226{
227	struct device_node *np;
228	if (!prev) {
229		np = of_root;
230	} else if (prev->child) {
231		np = prev->child;
232	} else {
233		/* Walk back up looking for a sibling, or the end of the structure */
234		np = prev;
235		while (np->parent && !np->sibling)
236			np = np->parent;
237		np = np->sibling; /* Might be null at the end of the tree */
238	}
239	return np;
240}
241
242/**
243 * of_find_all_nodes - Get next node in global list
244 * @prev:	Previous node or NULL to start iteration
245 *		of_node_put() will be called on it
246 *
247 * Return: A node pointer with refcount incremented, use
248 * of_node_put() on it when done.
249 */
250struct device_node *of_find_all_nodes(struct device_node *prev)
251{
252	struct device_node *np;
253	unsigned long flags;
254
255	raw_spin_lock_irqsave(&devtree_lock, flags);
256	np = __of_find_all_nodes(prev);
257	of_node_get(np);
258	of_node_put(prev);
259	raw_spin_unlock_irqrestore(&devtree_lock, flags);
260	return np;
261}
262EXPORT_SYMBOL(of_find_all_nodes);
263
264/*
265 * Find a property with a given name for a given node
266 * and return the value.
267 */
268const void *__of_get_property(const struct device_node *np,
269			      const char *name, int *lenp)
270{
271	struct property *pp = __of_find_property(np, name, lenp);
272
273	return pp ? pp->value : NULL;
274}
275
276/*
277 * Find a property with a given name for a given node
278 * and return the value.
279 */
280const void *of_get_property(const struct device_node *np, const char *name,
281			    int *lenp)
282{
283	struct property *pp = of_find_property(np, name, lenp);
284
285	return pp ? pp->value : NULL;
286}
287EXPORT_SYMBOL(of_get_property);
288
289/*
290 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
291 *
292 * @cpu: logical cpu index of a core/thread
293 * @phys_id: physical identifier of a core/thread
294 *
295 * CPU logical to physical index mapping is architecture specific.
296 * However this __weak function provides a default match of physical
297 * id to logical cpu index. phys_id provided here is usually values read
298 * from the device tree which must match the hardware internal registers.
299 *
300 * Returns true if the physical identifier and the logical cpu index
301 * correspond to the same core/thread, false otherwise.
302 */
303bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
304{
305	return (u32)phys_id == cpu;
306}
307
308/*
309 * Checks if the given "prop_name" property holds the physical id of the
310 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
311 * NULL, local thread number within the core is returned in it.
312 */
313static bool __of_find_n_match_cpu_property(struct device_node *cpun,
314			const char *prop_name, int cpu, unsigned int *thread)
315{
316	const __be32 *cell;
317	int ac, prop_len, tid;
318	u64 hwid;
319
320	ac = of_n_addr_cells(cpun);
321	cell = of_get_property(cpun, prop_name, &prop_len);
322	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
323		return true;
324	if (!cell || !ac)
325		return false;
326	prop_len /= sizeof(*cell) * ac;
327	for (tid = 0; tid < prop_len; tid++) {
328		hwid = of_read_number(cell, ac);
329		if (arch_match_cpu_phys_id(cpu, hwid)) {
330			if (thread)
331				*thread = tid;
332			return true;
333		}
334		cell += ac;
335	}
336	return false;
337}
338
339/*
340 * arch_find_n_match_cpu_physical_id - See if the given device node is
341 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
342 * else false.  If 'thread' is non-NULL, the local thread number within the
343 * core is returned in it.
344 */
345bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346					      int cpu, unsigned int *thread)
347{
348	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
349	 * for thread ids on PowerPC. If it doesn't exist fallback to
350	 * standard "reg" property.
351	 */
352	if (IS_ENABLED(CONFIG_PPC) &&
353	    __of_find_n_match_cpu_property(cpun,
354					   "ibm,ppc-interrupt-server#s",
355					   cpu, thread))
356		return true;
357
358	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359}
360
361/**
362 * of_get_cpu_node - Get device node associated with the given logical CPU
363 *
364 * @cpu: CPU number(logical index) for which device node is required
365 * @thread: if not NULL, local thread number within the physical core is
366 *          returned
367 *
368 * The main purpose of this function is to retrieve the device node for the
369 * given logical CPU index. It should be used to initialize the of_node in
370 * cpu device. Once of_node in cpu device is populated, all the further
371 * references can use that instead.
372 *
373 * CPU logical to physical index mapping is architecture specific and is built
374 * before booting secondary cores. This function uses arch_match_cpu_phys_id
375 * which can be overridden by architecture specific implementation.
376 *
377 * Return: A node pointer for the logical cpu with refcount incremented, use
378 * of_node_put() on it when done. Returns NULL if not found.
379 */
380struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
381{
382	struct device_node *cpun;
383
384	for_each_of_cpu_node(cpun) {
385		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386			return cpun;
387	}
388	return NULL;
389}
390EXPORT_SYMBOL(of_get_cpu_node);
391
392/**
393 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
394 *
395 * @cpu_node: Pointer to the device_node for CPU.
396 *
397 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
398 * CPU is not found.
399 */
400int of_cpu_node_to_id(struct device_node *cpu_node)
401{
402	int cpu;
403	bool found = false;
404	struct device_node *np;
405
406	for_each_possible_cpu(cpu) {
407		np = of_cpu_device_node_get(cpu);
408		found = (cpu_node == np);
409		of_node_put(np);
410		if (found)
411			return cpu;
412	}
413
414	return -ENODEV;
415}
416EXPORT_SYMBOL(of_cpu_node_to_id);
417
418/**
419 * of_get_cpu_state_node - Get CPU's idle state node at the given index
420 *
421 * @cpu_node: The device node for the CPU
422 * @index: The index in the list of the idle states
423 *
424 * Two generic methods can be used to describe a CPU's idle states, either via
425 * a flattened description through the "cpu-idle-states" binding or via the
426 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
427 * bindings. This function check for both and returns the idle state node for
428 * the requested index.
429 *
430 * Return: An idle state node if found at @index. The refcount is incremented
431 * for it, so call of_node_put() on it when done. Returns NULL if not found.
432 */
433struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
434					  int index)
435{
436	struct of_phandle_args args;
437	int err;
438
439	err = of_parse_phandle_with_args(cpu_node, "power-domains",
440					"#power-domain-cells", 0, &args);
441	if (!err) {
442		struct device_node *state_node =
443			of_parse_phandle(args.np, "domain-idle-states", index);
444
445		of_node_put(args.np);
446		if (state_node)
447			return state_node;
448	}
449
450	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
451}
452EXPORT_SYMBOL(of_get_cpu_state_node);
453
454/**
455 * __of_device_is_compatible() - Check if the node matches given constraints
456 * @device: pointer to node
457 * @compat: required compatible string, NULL or "" for any match
458 * @type: required device_type value, NULL or "" for any match
459 * @name: required node name, NULL or "" for any match
460 *
461 * Checks if the given @compat, @type and @name strings match the
462 * properties of the given @device. A constraints can be skipped by
463 * passing NULL or an empty string as the constraint.
464 *
465 * Returns 0 for no match, and a positive integer on match. The return
466 * value is a relative score with larger values indicating better
467 * matches. The score is weighted for the most specific compatible value
468 * to get the highest score. Matching type is next, followed by matching
469 * name. Practically speaking, this results in the following priority
470 * order for matches:
471 *
472 * 1. specific compatible && type && name
473 * 2. specific compatible && type
474 * 3. specific compatible && name
475 * 4. specific compatible
476 * 5. general compatible && type && name
477 * 6. general compatible && type
478 * 7. general compatible && name
479 * 8. general compatible
480 * 9. type && name
481 * 10. type
482 * 11. name
483 */
484static int __of_device_is_compatible(const struct device_node *device,
485				     const char *compat, const char *type, const char *name)
486{
487	struct property *prop;
488	const char *cp;
489	int index = 0, score = 0;
490
491	/* Compatible match has highest priority */
492	if (compat && compat[0]) {
493		prop = __of_find_property(device, "compatible", NULL);
494		for (cp = of_prop_next_string(prop, NULL); cp;
495		     cp = of_prop_next_string(prop, cp), index++) {
496			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
497				score = INT_MAX/2 - (index << 2);
498				break;
499			}
500		}
501		if (!score)
502			return 0;
503	}
504
505	/* Matching type is better than matching name */
506	if (type && type[0]) {
507		if (!__of_node_is_type(device, type))
508			return 0;
509		score += 2;
510	}
511
512	/* Matching name is a bit better than not */
513	if (name && name[0]) {
514		if (!of_node_name_eq(device, name))
515			return 0;
516		score++;
517	}
518
519	return score;
520}
521
522/** Checks if the given "compat" string matches one of the strings in
523 * the device's "compatible" property
524 */
525int of_device_is_compatible(const struct device_node *device,
526		const char *compat)
527{
528	unsigned long flags;
529	int res;
530
531	raw_spin_lock_irqsave(&devtree_lock, flags);
532	res = __of_device_is_compatible(device, compat, NULL, NULL);
533	raw_spin_unlock_irqrestore(&devtree_lock, flags);
534	return res;
535}
536EXPORT_SYMBOL(of_device_is_compatible);
537
538/** Checks if the device is compatible with any of the entries in
539 *  a NULL terminated array of strings. Returns the best match
540 *  score or 0.
541 */
542int of_device_compatible_match(struct device_node *device,
543			       const char *const *compat)
544{
545	unsigned int tmp, score = 0;
546
547	if (!compat)
548		return 0;
549
550	while (*compat) {
551		tmp = of_device_is_compatible(device, *compat);
552		if (tmp > score)
553			score = tmp;
554		compat++;
555	}
556
557	return score;
558}
559
560/**
561 * of_machine_is_compatible - Test root of device tree for a given compatible value
562 * @compat: compatible string to look for in root node's compatible property.
563 *
564 * Return: A positive integer if the root node has the given value in its
565 * compatible property.
566 */
567int of_machine_is_compatible(const char *compat)
568{
569	struct device_node *root;
570	int rc = 0;
571
572	root = of_find_node_by_path("/");
573	if (root) {
574		rc = of_device_is_compatible(root, compat);
575		of_node_put(root);
576	}
577	return rc;
578}
579EXPORT_SYMBOL(of_machine_is_compatible);
580
581/**
582 *  __of_device_is_available - check if a device is available for use
583 *
584 *  @device: Node to check for availability, with locks already held
585 *
586 *  Return: True if the status property is absent or set to "okay" or "ok",
587 *  false otherwise
588 */
589static bool __of_device_is_available(const struct device_node *device)
590{
591	const char *status;
592	int statlen;
593
594	if (!device)
595		return false;
596
597	status = __of_get_property(device, "status", &statlen);
598	if (status == NULL)
599		return true;
600
601	if (statlen > 0) {
602		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
603			return true;
604	}
605
606	return false;
607}
608
609/**
610 *  of_device_is_available - check if a device is available for use
611 *
612 *  @device: Node to check for availability
613 *
614 *  Return: True if the status property is absent or set to "okay" or "ok",
615 *  false otherwise
616 */
617bool of_device_is_available(const struct device_node *device)
618{
619	unsigned long flags;
620	bool res;
621
622	raw_spin_lock_irqsave(&devtree_lock, flags);
623	res = __of_device_is_available(device);
624	raw_spin_unlock_irqrestore(&devtree_lock, flags);
625	return res;
626
627}
628EXPORT_SYMBOL(of_device_is_available);
629
630/**
631 *  of_device_is_big_endian - check if a device has BE registers
632 *
633 *  @device: Node to check for endianness
634 *
635 *  Return: True if the device has a "big-endian" property, or if the kernel
636 *  was compiled for BE *and* the device has a "native-endian" property.
637 *  Returns false otherwise.
638 *
639 *  Callers would nominally use ioread32be/iowrite32be if
640 *  of_device_is_big_endian() == true, or readl/writel otherwise.
641 */
642bool of_device_is_big_endian(const struct device_node *device)
643{
644	if (of_property_read_bool(device, "big-endian"))
645		return true;
646	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
647	    of_property_read_bool(device, "native-endian"))
648		return true;
649	return false;
650}
651EXPORT_SYMBOL(of_device_is_big_endian);
652
653/**
654 * of_get_parent - Get a node's parent if any
655 * @node:	Node to get parent
656 *
657 * Return: A node pointer with refcount incremented, use
658 * of_node_put() on it when done.
659 */
660struct device_node *of_get_parent(const struct device_node *node)
661{
662	struct device_node *np;
663	unsigned long flags;
664
665	if (!node)
666		return NULL;
667
668	raw_spin_lock_irqsave(&devtree_lock, flags);
669	np = of_node_get(node->parent);
670	raw_spin_unlock_irqrestore(&devtree_lock, flags);
671	return np;
672}
673EXPORT_SYMBOL(of_get_parent);
674
675/**
676 * of_get_next_parent - Iterate to a node's parent
677 * @node:	Node to get parent of
678 *
679 * This is like of_get_parent() except that it drops the
680 * refcount on the passed node, making it suitable for iterating
681 * through a node's parents.
682 *
683 * Return: A node pointer with refcount incremented, use
684 * of_node_put() on it when done.
685 */
686struct device_node *of_get_next_parent(struct device_node *node)
687{
688	struct device_node *parent;
689	unsigned long flags;
690
691	if (!node)
692		return NULL;
693
694	raw_spin_lock_irqsave(&devtree_lock, flags);
695	parent = of_node_get(node->parent);
696	of_node_put(node);
697	raw_spin_unlock_irqrestore(&devtree_lock, flags);
698	return parent;
699}
700EXPORT_SYMBOL(of_get_next_parent);
701
702static struct device_node *__of_get_next_child(const struct device_node *node,
703						struct device_node *prev)
704{
705	struct device_node *next;
706
707	if (!node)
708		return NULL;
709
710	next = prev ? prev->sibling : node->child;
711	for (; next; next = next->sibling)
712		if (of_node_get(next))
713			break;
714	of_node_put(prev);
715	return next;
716}
717#define __for_each_child_of_node(parent, child) \
718	for (child = __of_get_next_child(parent, NULL); child != NULL; \
719	     child = __of_get_next_child(parent, child))
720
721/**
722 * of_get_next_child - Iterate a node childs
723 * @node:	parent node
724 * @prev:	previous child of the parent node, or NULL to get first
725 *
726 * Return: A node pointer with refcount incremented, use of_node_put() on
727 * it when done. Returns NULL when prev is the last child. Decrements the
728 * refcount of prev.
729 */
730struct device_node *of_get_next_child(const struct device_node *node,
731	struct device_node *prev)
732{
733	struct device_node *next;
734	unsigned long flags;
735
736	raw_spin_lock_irqsave(&devtree_lock, flags);
737	next = __of_get_next_child(node, prev);
738	raw_spin_unlock_irqrestore(&devtree_lock, flags);
739	return next;
740}
741EXPORT_SYMBOL(of_get_next_child);
742
743/**
744 * of_get_next_available_child - Find the next available child node
745 * @node:	parent node
746 * @prev:	previous child of the parent node, or NULL to get first
747 *
748 * This function is like of_get_next_child(), except that it
749 * automatically skips any disabled nodes (i.e. status = "disabled").
750 */
751struct device_node *of_get_next_available_child(const struct device_node *node,
752	struct device_node *prev)
753{
754	struct device_node *next;
755	unsigned long flags;
756
757	if (!node)
758		return NULL;
759
760	raw_spin_lock_irqsave(&devtree_lock, flags);
761	next = prev ? prev->sibling : node->child;
762	for (; next; next = next->sibling) {
763		if (!__of_device_is_available(next))
764			continue;
765		if (of_node_get(next))
766			break;
767	}
768	of_node_put(prev);
769	raw_spin_unlock_irqrestore(&devtree_lock, flags);
770	return next;
771}
772EXPORT_SYMBOL(of_get_next_available_child);
773
774/**
775 * of_get_next_cpu_node - Iterate on cpu nodes
776 * @prev:	previous child of the /cpus node, or NULL to get first
777 *
778 * Return: A cpu node pointer with refcount incremented, use of_node_put()
779 * on it when done. Returns NULL when prev is the last child. Decrements
780 * the refcount of prev.
781 */
782struct device_node *of_get_next_cpu_node(struct device_node *prev)
783{
784	struct device_node *next = NULL;
785	unsigned long flags;
786	struct device_node *node;
787
788	if (!prev)
789		node = of_find_node_by_path("/cpus");
790
791	raw_spin_lock_irqsave(&devtree_lock, flags);
792	if (prev)
793		next = prev->sibling;
794	else if (node) {
795		next = node->child;
796		of_node_put(node);
797	}
798	for (; next; next = next->sibling) {
799		if (!(of_node_name_eq(next, "cpu") ||
800		      __of_node_is_type(next, "cpu")))
801			continue;
802		if (of_node_get(next))
803			break;
804	}
805	of_node_put(prev);
806	raw_spin_unlock_irqrestore(&devtree_lock, flags);
807	return next;
808}
809EXPORT_SYMBOL(of_get_next_cpu_node);
810
811/**
812 * of_get_compatible_child - Find compatible child node
813 * @parent:	parent node
814 * @compatible:	compatible string
815 *
816 * Lookup child node whose compatible property contains the given compatible
817 * string.
818 *
819 * Return: a node pointer with refcount incremented, use of_node_put() on it
820 * when done; or NULL if not found.
821 */
822struct device_node *of_get_compatible_child(const struct device_node *parent,
823				const char *compatible)
824{
825	struct device_node *child;
826
827	for_each_child_of_node(parent, child) {
828		if (of_device_is_compatible(child, compatible))
829			break;
830	}
831
832	return child;
833}
834EXPORT_SYMBOL(of_get_compatible_child);
835
836/**
837 * of_get_child_by_name - Find the child node by name for a given parent
838 * @node:	parent node
839 * @name:	child name to look for.
840 *
841 * This function looks for child node for given matching name
842 *
843 * Return: A node pointer if found, with refcount incremented, use
844 * of_node_put() on it when done.
845 * Returns NULL if node is not found.
846 */
847struct device_node *of_get_child_by_name(const struct device_node *node,
848				const char *name)
849{
850	struct device_node *child;
851
852	for_each_child_of_node(node, child)
853		if (of_node_name_eq(child, name))
854			break;
855	return child;
856}
857EXPORT_SYMBOL(of_get_child_by_name);
858
859struct device_node *__of_find_node_by_path(struct device_node *parent,
860						const char *path)
861{
862	struct device_node *child;
863	int len;
864
865	len = strcspn(path, "/:");
866	if (!len)
867		return NULL;
868
869	__for_each_child_of_node(parent, child) {
870		const char *name = kbasename(child->full_name);
871		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
872			return child;
873	}
874	return NULL;
875}
876
877struct device_node *__of_find_node_by_full_path(struct device_node *node,
878						const char *path)
879{
880	const char *separator = strchr(path, ':');
881
882	while (node && *path == '/') {
883		struct device_node *tmp = node;
884
885		path++; /* Increment past '/' delimiter */
886		node = __of_find_node_by_path(node, path);
887		of_node_put(tmp);
888		path = strchrnul(path, '/');
889		if (separator && separator < path)
890			break;
891	}
892	return node;
893}
894
895/**
896 * of_find_node_opts_by_path - Find a node matching a full OF path
897 * @path: Either the full path to match, or if the path does not
898 *       start with '/', the name of a property of the /aliases
899 *       node (an alias).  In the case of an alias, the node
900 *       matching the alias' value will be returned.
901 * @opts: Address of a pointer into which to store the start of
902 *       an options string appended to the end of the path with
903 *       a ':' separator.
904 *
905 * Valid paths:
906 *  * /foo/bar	Full path
907 *  * foo	Valid alias
908 *  * foo/bar	Valid alias + relative path
909 *
910 * Return: A node pointer with refcount incremented, use
911 * of_node_put() on it when done.
912 */
913struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
914{
915	struct device_node *np = NULL;
916	struct property *pp;
917	unsigned long flags;
918	const char *separator = strchr(path, ':');
919
920	if (opts)
921		*opts = separator ? separator + 1 : NULL;
922
923	if (strcmp(path, "/") == 0)
924		return of_node_get(of_root);
925
926	/* The path could begin with an alias */
927	if (*path != '/') {
928		int len;
929		const char *p = separator;
930
931		if (!p)
932			p = strchrnul(path, '/');
933		len = p - path;
934
935		/* of_aliases must not be NULL */
936		if (!of_aliases)
937			return NULL;
938
939		for_each_property_of_node(of_aliases, pp) {
940			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
941				np = of_find_node_by_path(pp->value);
942				break;
943			}
944		}
945		if (!np)
946			return NULL;
947		path = p;
948	}
949
950	/* Step down the tree matching path components */
951	raw_spin_lock_irqsave(&devtree_lock, flags);
952	if (!np)
953		np = of_node_get(of_root);
954	np = __of_find_node_by_full_path(np, path);
955	raw_spin_unlock_irqrestore(&devtree_lock, flags);
956	return np;
957}
958EXPORT_SYMBOL(of_find_node_opts_by_path);
959
960/**
961 * of_find_node_by_name - Find a node by its "name" property
962 * @from:	The node to start searching from or NULL; the node
963 *		you pass will not be searched, only the next one
964 *		will. Typically, you pass what the previous call
965 *		returned. of_node_put() will be called on @from.
966 * @name:	The name string to match against
967 *
968 * Return: A node pointer with refcount incremented, use
969 * of_node_put() on it when done.
970 */
971struct device_node *of_find_node_by_name(struct device_node *from,
972	const char *name)
973{
974	struct device_node *np;
975	unsigned long flags;
976
977	raw_spin_lock_irqsave(&devtree_lock, flags);
978	for_each_of_allnodes_from(from, np)
979		if (of_node_name_eq(np, name) && of_node_get(np))
980			break;
981	of_node_put(from);
982	raw_spin_unlock_irqrestore(&devtree_lock, flags);
983	return np;
984}
985EXPORT_SYMBOL(of_find_node_by_name);
986
987/**
988 * of_find_node_by_type - Find a node by its "device_type" property
989 * @from:	The node to start searching from, or NULL to start searching
990 *		the entire device tree. The node you pass will not be
991 *		searched, only the next one will; typically, you pass
992 *		what the previous call returned. of_node_put() will be
993 *		called on from for you.
994 * @type:	The type string to match against
995 *
996 * Return: A node pointer with refcount incremented, use
997 * of_node_put() on it when done.
998 */
999struct device_node *of_find_node_by_type(struct device_node *from,
1000	const char *type)
1001{
1002	struct device_node *np;
1003	unsigned long flags;
1004
1005	raw_spin_lock_irqsave(&devtree_lock, flags);
1006	for_each_of_allnodes_from(from, np)
1007		if (__of_node_is_type(np, type) && of_node_get(np))
1008			break;
1009	of_node_put(from);
1010	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1011	return np;
1012}
1013EXPORT_SYMBOL(of_find_node_by_type);
1014
1015/**
1016 * of_find_compatible_node - Find a node based on type and one of the
1017 *                                tokens in its "compatible" property
1018 * @from:	The node to start searching from or NULL, the node
1019 *		you pass will not be searched, only the next one
1020 *		will; typically, you pass what the previous call
1021 *		returned. of_node_put() will be called on it
1022 * @type:	The type string to match "device_type" or NULL to ignore
1023 * @compatible:	The string to match to one of the tokens in the device
1024 *		"compatible" list.
1025 *
1026 * Return: A node pointer with refcount incremented, use
1027 * of_node_put() on it when done.
1028 */
1029struct device_node *of_find_compatible_node(struct device_node *from,
1030	const char *type, const char *compatible)
1031{
1032	struct device_node *np;
1033	unsigned long flags;
1034
1035	raw_spin_lock_irqsave(&devtree_lock, flags);
1036	for_each_of_allnodes_from(from, np)
1037		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1038		    of_node_get(np))
1039			break;
1040	of_node_put(from);
1041	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1042	return np;
1043}
1044EXPORT_SYMBOL(of_find_compatible_node);
1045
1046/**
1047 * of_find_node_with_property - Find a node which has a property with
1048 *                              the given name.
1049 * @from:	The node to start searching from or NULL, the node
1050 *		you pass will not be searched, only the next one
1051 *		will; typically, you pass what the previous call
1052 *		returned. of_node_put() will be called on it
1053 * @prop_name:	The name of the property to look for.
1054 *
1055 * Return: A node pointer with refcount incremented, use
1056 * of_node_put() on it when done.
1057 */
1058struct device_node *of_find_node_with_property(struct device_node *from,
1059	const char *prop_name)
1060{
1061	struct device_node *np;
1062	struct property *pp;
1063	unsigned long flags;
1064
1065	raw_spin_lock_irqsave(&devtree_lock, flags);
1066	for_each_of_allnodes_from(from, np) {
1067		for (pp = np->properties; pp; pp = pp->next) {
1068			if (of_prop_cmp(pp->name, prop_name) == 0) {
1069				of_node_get(np);
1070				goto out;
1071			}
1072		}
1073	}
1074out:
1075	of_node_put(from);
1076	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077	return np;
1078}
1079EXPORT_SYMBOL(of_find_node_with_property);
1080
1081static
1082const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1083					   const struct device_node *node)
1084{
1085	const struct of_device_id *best_match = NULL;
1086	int score, best_score = 0;
1087
1088	if (!matches)
1089		return NULL;
1090
1091	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1092		score = __of_device_is_compatible(node, matches->compatible,
1093						  matches->type, matches->name);
1094		if (score > best_score) {
1095			best_match = matches;
1096			best_score = score;
1097		}
1098	}
1099
1100	return best_match;
1101}
1102
1103/**
1104 * of_match_node - Tell if a device_node has a matching of_match structure
1105 * @matches:	array of of device match structures to search in
1106 * @node:	the of device structure to match against
1107 *
1108 * Low level utility function used by device matching.
1109 */
1110const struct of_device_id *of_match_node(const struct of_device_id *matches,
1111					 const struct device_node *node)
1112{
1113	const struct of_device_id *match;
1114	unsigned long flags;
1115
1116	raw_spin_lock_irqsave(&devtree_lock, flags);
1117	match = __of_match_node(matches, node);
1118	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1119	return match;
1120}
1121EXPORT_SYMBOL(of_match_node);
1122
1123/**
1124 * of_find_matching_node_and_match - Find a node based on an of_device_id
1125 *				     match table.
1126 * @from:	The node to start searching from or NULL, the node
1127 *		you pass will not be searched, only the next one
1128 *		will; typically, you pass what the previous call
1129 *		returned. of_node_put() will be called on it
1130 * @matches:	array of of device match structures to search in
1131 * @match:	Updated to point at the matches entry which matched
1132 *
1133 * Return: A node pointer with refcount incremented, use
1134 * of_node_put() on it when done.
1135 */
1136struct device_node *of_find_matching_node_and_match(struct device_node *from,
1137					const struct of_device_id *matches,
1138					const struct of_device_id **match)
1139{
1140	struct device_node *np;
1141	const struct of_device_id *m;
1142	unsigned long flags;
1143
1144	if (match)
1145		*match = NULL;
1146
1147	raw_spin_lock_irqsave(&devtree_lock, flags);
1148	for_each_of_allnodes_from(from, np) {
1149		m = __of_match_node(matches, np);
1150		if (m && of_node_get(np)) {
1151			if (match)
1152				*match = m;
1153			break;
1154		}
1155	}
1156	of_node_put(from);
1157	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1158	return np;
1159}
1160EXPORT_SYMBOL(of_find_matching_node_and_match);
1161
1162/**
1163 * of_modalias_node - Lookup appropriate modalias for a device node
1164 * @node:	pointer to a device tree node
1165 * @modalias:	Pointer to buffer that modalias value will be copied into
1166 * @len:	Length of modalias value
1167 *
1168 * Based on the value of the compatible property, this routine will attempt
1169 * to choose an appropriate modalias value for a particular device tree node.
1170 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1171 * from the first entry in the compatible list property.
1172 *
1173 * Return: This routine returns 0 on success, <0 on failure.
1174 */
1175int of_modalias_node(struct device_node *node, char *modalias, int len)
1176{
1177	const char *compatible, *p;
1178	int cplen;
1179
1180	compatible = of_get_property(node, "compatible", &cplen);
1181	if (!compatible || strlen(compatible) > cplen)
1182		return -ENODEV;
1183	p = strchr(compatible, ',');
1184	strlcpy(modalias, p ? p + 1 : compatible, len);
1185	return 0;
1186}
1187EXPORT_SYMBOL_GPL(of_modalias_node);
1188
1189/**
1190 * of_find_node_by_phandle - Find a node given a phandle
1191 * @handle:	phandle of the node to find
1192 *
1193 * Return: A node pointer with refcount incremented, use
1194 * of_node_put() on it when done.
1195 */
1196struct device_node *of_find_node_by_phandle(phandle handle)
1197{
1198	struct device_node *np = NULL;
1199	unsigned long flags;
1200	u32 handle_hash;
1201
1202	if (!handle)
1203		return NULL;
1204
1205	handle_hash = of_phandle_cache_hash(handle);
1206
1207	raw_spin_lock_irqsave(&devtree_lock, flags);
1208
1209	if (phandle_cache[handle_hash] &&
1210	    handle == phandle_cache[handle_hash]->phandle)
1211		np = phandle_cache[handle_hash];
1212
1213	if (!np) {
1214		for_each_of_allnodes(np)
1215			if (np->phandle == handle &&
1216			    !of_node_check_flag(np, OF_DETACHED)) {
1217				phandle_cache[handle_hash] = np;
1218				break;
1219			}
1220	}
1221
1222	of_node_get(np);
1223	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1224	return np;
1225}
1226EXPORT_SYMBOL(of_find_node_by_phandle);
1227
1228void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1229{
1230	int i;
1231	printk("%s %pOF", msg, args->np);
1232	for (i = 0; i < args->args_count; i++) {
1233		const char delim = i ? ',' : ':';
1234
1235		pr_cont("%c%08x", delim, args->args[i]);
1236	}
1237	pr_cont("\n");
1238}
1239
1240int of_phandle_iterator_init(struct of_phandle_iterator *it,
1241		const struct device_node *np,
1242		const char *list_name,
1243		const char *cells_name,
1244		int cell_count)
1245{
1246	const __be32 *list;
1247	int size;
1248
1249	memset(it, 0, sizeof(*it));
1250
1251	/*
1252	 * one of cell_count or cells_name must be provided to determine the
1253	 * argument length.
1254	 */
1255	if (cell_count < 0 && !cells_name)
1256		return -EINVAL;
1257
1258	list = of_get_property(np, list_name, &size);
1259	if (!list)
1260		return -ENOENT;
1261
1262	it->cells_name = cells_name;
1263	it->cell_count = cell_count;
1264	it->parent = np;
1265	it->list_end = list + size / sizeof(*list);
1266	it->phandle_end = list;
1267	it->cur = list;
1268
1269	return 0;
1270}
1271EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1272
1273int of_phandle_iterator_next(struct of_phandle_iterator *it)
1274{
1275	uint32_t count = 0;
1276
1277	if (it->node) {
1278		of_node_put(it->node);
1279		it->node = NULL;
1280	}
1281
1282	if (!it->cur || it->phandle_end >= it->list_end)
1283		return -ENOENT;
1284
1285	it->cur = it->phandle_end;
1286
1287	/* If phandle is 0, then it is an empty entry with no arguments. */
1288	it->phandle = be32_to_cpup(it->cur++);
1289
1290	if (it->phandle) {
1291
1292		/*
1293		 * Find the provider node and parse the #*-cells property to
1294		 * determine the argument length.
1295		 */
1296		it->node = of_find_node_by_phandle(it->phandle);
1297
1298		if (it->cells_name) {
1299			if (!it->node) {
1300				pr_err("%pOF: could not find phandle\n",
1301				       it->parent);
1302				goto err;
1303			}
1304
1305			if (of_property_read_u32(it->node, it->cells_name,
1306						 &count)) {
1307				/*
1308				 * If both cell_count and cells_name is given,
1309				 * fall back to cell_count in absence
1310				 * of the cells_name property
1311				 */
1312				if (it->cell_count >= 0) {
1313					count = it->cell_count;
1314				} else {
1315					pr_err("%pOF: could not get %s for %pOF\n",
1316					       it->parent,
1317					       it->cells_name,
1318					       it->node);
1319					goto err;
1320				}
1321			}
1322		} else {
1323			count = it->cell_count;
1324		}
1325
1326		/*
1327		 * Make sure that the arguments actually fit in the remaining
1328		 * property data length
1329		 */
1330		if (it->cur + count > it->list_end) {
1331			if (it->cells_name)
1332				pr_err("%pOF: %s = %d found %td\n",
1333					it->parent, it->cells_name,
1334					count, it->list_end - it->cur);
1335			else
1336				pr_err("%pOF: phandle %s needs %d, found %td\n",
1337					it->parent, of_node_full_name(it->node),
1338					count, it->list_end - it->cur);
1339			goto err;
1340		}
1341	}
1342
1343	it->phandle_end = it->cur + count;
1344	it->cur_count = count;
1345
1346	return 0;
1347
1348err:
1349	if (it->node) {
1350		of_node_put(it->node);
1351		it->node = NULL;
1352	}
1353
1354	return -EINVAL;
1355}
1356EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1357
1358int of_phandle_iterator_args(struct of_phandle_iterator *it,
1359			     uint32_t *args,
1360			     int size)
1361{
1362	int i, count;
1363
1364	count = it->cur_count;
1365
1366	if (WARN_ON(size < count))
1367		count = size;
1368
1369	for (i = 0; i < count; i++)
1370		args[i] = be32_to_cpup(it->cur++);
1371
1372	return count;
1373}
1374
1375static int __of_parse_phandle_with_args(const struct device_node *np,
1376					const char *list_name,
1377					const char *cells_name,
1378					int cell_count, int index,
1379					struct of_phandle_args *out_args)
1380{
1381	struct of_phandle_iterator it;
1382	int rc, cur_index = 0;
1383
1384	/* Loop over the phandles until all the requested entry is found */
1385	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1386		/*
1387		 * All of the error cases bail out of the loop, so at
1388		 * this point, the parsing is successful. If the requested
1389		 * index matches, then fill the out_args structure and return,
1390		 * or return -ENOENT for an empty entry.
1391		 */
1392		rc = -ENOENT;
1393		if (cur_index == index) {
1394			if (!it.phandle)
1395				goto err;
1396
1397			if (out_args) {
1398				int c;
1399
1400				c = of_phandle_iterator_args(&it,
1401							     out_args->args,
1402							     MAX_PHANDLE_ARGS);
1403				out_args->np = it.node;
1404				out_args->args_count = c;
1405			} else {
1406				of_node_put(it.node);
1407			}
1408
1409			/* Found it! return success */
1410			return 0;
1411		}
1412
1413		cur_index++;
1414	}
1415
1416	/*
1417	 * Unlock node before returning result; will be one of:
1418	 * -ENOENT : index is for empty phandle
1419	 * -EINVAL : parsing error on data
1420	 */
1421
1422 err:
1423	of_node_put(it.node);
1424	return rc;
1425}
1426
1427/**
1428 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1429 * @np: Pointer to device node holding phandle property
1430 * @phandle_name: Name of property holding a phandle value
1431 * @index: For properties holding a table of phandles, this is the index into
1432 *         the table
1433 *
1434 * Return: The device_node pointer with refcount incremented.  Use
1435 * of_node_put() on it when done.
1436 */
1437struct device_node *of_parse_phandle(const struct device_node *np,
1438				     const char *phandle_name, int index)
1439{
1440	struct of_phandle_args args;
1441
1442	if (index < 0)
1443		return NULL;
1444
1445	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1446					 index, &args))
1447		return NULL;
1448
1449	return args.np;
1450}
1451EXPORT_SYMBOL(of_parse_phandle);
1452
1453/**
1454 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1455 * @np:		pointer to a device tree node containing a list
1456 * @list_name:	property name that contains a list
1457 * @cells_name:	property name that specifies phandles' arguments count
1458 * @index:	index of a phandle to parse out
1459 * @out_args:	optional pointer to output arguments structure (will be filled)
1460 *
1461 * This function is useful to parse lists of phandles and their arguments.
1462 * Returns 0 on success and fills out_args, on error returns appropriate
1463 * errno value.
1464 *
1465 * Caller is responsible to call of_node_put() on the returned out_args->np
1466 * pointer.
1467 *
1468 * Example::
1469 *
1470 *  phandle1: node1 {
1471 *	#list-cells = <2>;
1472 *  };
1473 *
1474 *  phandle2: node2 {
1475 *	#list-cells = <1>;
1476 *  };
1477 *
1478 *  node3 {
1479 *	list = <&phandle1 1 2 &phandle2 3>;
1480 *  };
1481 *
1482 * To get a device_node of the ``node2`` node you may call this:
1483 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1484 */
1485int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1486				const char *cells_name, int index,
1487				struct of_phandle_args *out_args)
1488{
1489	int cell_count = -1;
1490
1491	if (index < 0)
1492		return -EINVAL;
1493
1494	/* If cells_name is NULL we assume a cell count of 0 */
1495	if (!cells_name)
1496		cell_count = 0;
1497
1498	return __of_parse_phandle_with_args(np, list_name, cells_name,
1499					    cell_count, index, out_args);
1500}
1501EXPORT_SYMBOL(of_parse_phandle_with_args);
1502
1503/**
1504 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1505 * @np:		pointer to a device tree node containing a list
1506 * @list_name:	property name that contains a list
1507 * @stem_name:	stem of property names that specify phandles' arguments count
1508 * @index:	index of a phandle to parse out
1509 * @out_args:	optional pointer to output arguments structure (will be filled)
1510 *
1511 * This function is useful to parse lists of phandles and their arguments.
1512 * Returns 0 on success and fills out_args, on error returns appropriate errno
1513 * value. The difference between this function and of_parse_phandle_with_args()
1514 * is that this API remaps a phandle if the node the phandle points to has
1515 * a <@stem_name>-map property.
1516 *
1517 * Caller is responsible to call of_node_put() on the returned out_args->np
1518 * pointer.
1519 *
1520 * Example::
1521 *
1522 *  phandle1: node1 {
1523 *  	#list-cells = <2>;
1524 *  };
1525 *
1526 *  phandle2: node2 {
1527 *  	#list-cells = <1>;
1528 *  };
1529 *
1530 *  phandle3: node3 {
1531 *  	#list-cells = <1>;
1532 *  	list-map = <0 &phandle2 3>,
1533 *  		   <1 &phandle2 2>,
1534 *  		   <2 &phandle1 5 1>;
1535 *  	list-map-mask = <0x3>;
1536 *  };
1537 *
1538 *  node4 {
1539 *  	list = <&phandle1 1 2 &phandle3 0>;
1540 *  };
1541 *
1542 * To get a device_node of the ``node2`` node you may call this:
1543 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1544 */
1545int of_parse_phandle_with_args_map(const struct device_node *np,
1546				   const char *list_name,
1547				   const char *stem_name,
1548				   int index, struct of_phandle_args *out_args)
1549{
1550	char *cells_name, *map_name = NULL, *mask_name = NULL;
1551	char *pass_name = NULL;
1552	struct device_node *cur, *new = NULL;
1553	const __be32 *map, *mask, *pass;
1554	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1555	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1556	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1557	const __be32 *match_array = initial_match_array;
1558	int i, ret, map_len, match;
1559	u32 list_size, new_size;
1560
1561	if (index < 0)
1562		return -EINVAL;
1563
1564	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1565	if (!cells_name)
1566		return -ENOMEM;
1567
1568	ret = -ENOMEM;
1569	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1570	if (!map_name)
1571		goto free;
1572
1573	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1574	if (!mask_name)
1575		goto free;
1576
1577	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1578	if (!pass_name)
1579		goto free;
1580
1581	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1582					   out_args);
1583	if (ret)
1584		goto free;
1585
1586	/* Get the #<list>-cells property */
1587	cur = out_args->np;
1588	ret = of_property_read_u32(cur, cells_name, &list_size);
1589	if (ret < 0)
1590		goto put;
1591
1592	/* Precalculate the match array - this simplifies match loop */
1593	for (i = 0; i < list_size; i++)
1594		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1595
1596	ret = -EINVAL;
1597	while (cur) {
1598		/* Get the <list>-map property */
1599		map = of_get_property(cur, map_name, &map_len);
1600		if (!map) {
1601			ret = 0;
1602			goto free;
1603		}
1604		map_len /= sizeof(u32);
1605
1606		/* Get the <list>-map-mask property (optional) */
1607		mask = of_get_property(cur, mask_name, NULL);
1608		if (!mask)
1609			mask = dummy_mask;
1610		/* Iterate through <list>-map property */
1611		match = 0;
1612		while (map_len > (list_size + 1) && !match) {
1613			/* Compare specifiers */
1614			match = 1;
1615			for (i = 0; i < list_size; i++, map_len--)
1616				match &= !((match_array[i] ^ *map++) & mask[i]);
1617
1618			of_node_put(new);
1619			new = of_find_node_by_phandle(be32_to_cpup(map));
1620			map++;
1621			map_len--;
1622
1623			/* Check if not found */
1624			if (!new)
1625				goto put;
1626
1627			if (!of_device_is_available(new))
1628				match = 0;
1629
1630			ret = of_property_read_u32(new, cells_name, &new_size);
1631			if (ret)
1632				goto put;
1633
1634			/* Check for malformed properties */
1635			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1636				goto put;
1637			if (map_len < new_size)
1638				goto put;
1639
1640			/* Move forward by new node's #<list>-cells amount */
1641			map += new_size;
1642			map_len -= new_size;
1643		}
1644		if (!match)
1645			goto put;
1646
1647		/* Get the <list>-map-pass-thru property (optional) */
1648		pass = of_get_property(cur, pass_name, NULL);
1649		if (!pass)
1650			pass = dummy_pass;
1651
1652		/*
1653		 * Successfully parsed a <list>-map translation; copy new
1654		 * specifier into the out_args structure, keeping the
1655		 * bits specified in <list>-map-pass-thru.
1656		 */
1657		match_array = map - new_size;
1658		for (i = 0; i < new_size; i++) {
1659			__be32 val = *(map - new_size + i);
1660
1661			if (i < list_size) {
1662				val &= ~pass[i];
1663				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1664			}
1665
1666			out_args->args[i] = be32_to_cpu(val);
1667		}
1668		out_args->args_count = list_size = new_size;
1669		/* Iterate again with new provider */
1670		out_args->np = new;
1671		of_node_put(cur);
1672		cur = new;
1673		new = NULL;
1674	}
1675put:
1676	of_node_put(cur);
1677	of_node_put(new);
1678free:
1679	kfree(mask_name);
1680	kfree(map_name);
1681	kfree(cells_name);
1682	kfree(pass_name);
1683
1684	return ret;
1685}
1686EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1687
1688/**
1689 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1690 * @np:		pointer to a device tree node containing a list
1691 * @list_name:	property name that contains a list
1692 * @cell_count: number of argument cells following the phandle
1693 * @index:	index of a phandle to parse out
1694 * @out_args:	optional pointer to output arguments structure (will be filled)
1695 *
1696 * This function is useful to parse lists of phandles and their arguments.
1697 * Returns 0 on success and fills out_args, on error returns appropriate
1698 * errno value.
1699 *
1700 * Caller is responsible to call of_node_put() on the returned out_args->np
1701 * pointer.
1702 *
1703 * Example::
1704 *
1705 *  phandle1: node1 {
1706 *  };
1707 *
1708 *  phandle2: node2 {
1709 *  };
1710 *
1711 *  node3 {
1712 *  	list = <&phandle1 0 2 &phandle2 2 3>;
1713 *  };
1714 *
1715 * To get a device_node of the ``node2`` node you may call this:
1716 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1717 */
1718int of_parse_phandle_with_fixed_args(const struct device_node *np,
1719				const char *list_name, int cell_count,
1720				int index, struct of_phandle_args *out_args)
1721{
1722	if (index < 0)
1723		return -EINVAL;
1724	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1725					   index, out_args);
1726}
1727EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1728
1729/**
1730 * of_count_phandle_with_args() - Find the number of phandles references in a property
1731 * @np:		pointer to a device tree node containing a list
1732 * @list_name:	property name that contains a list
1733 * @cells_name:	property name that specifies phandles' arguments count
1734 *
1735 * Return: The number of phandle + argument tuples within a property. It
1736 * is a typical pattern to encode a list of phandle and variable
1737 * arguments into a single property. The number of arguments is encoded
1738 * by a property in the phandle-target node. For example, a gpios
1739 * property would contain a list of GPIO specifies consisting of a
1740 * phandle and 1 or more arguments. The number of arguments are
1741 * determined by the #gpio-cells property in the node pointed to by the
1742 * phandle.
1743 */
1744int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1745				const char *cells_name)
1746{
1747	struct of_phandle_iterator it;
1748	int rc, cur_index = 0;
1749
1750	/*
1751	 * If cells_name is NULL we assume a cell count of 0. This makes
1752	 * counting the phandles trivial as each 32bit word in the list is a
1753	 * phandle and no arguments are to consider. So we don't iterate through
1754	 * the list but just use the length to determine the phandle count.
1755	 */
1756	if (!cells_name) {
1757		const __be32 *list;
1758		int size;
1759
1760		list = of_get_property(np, list_name, &size);
1761		if (!list)
1762			return -ENOENT;
1763
1764		return size / sizeof(*list);
1765	}
1766
1767	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1768	if (rc)
1769		return rc;
1770
1771	while ((rc = of_phandle_iterator_next(&it)) == 0)
1772		cur_index += 1;
1773
1774	if (rc != -ENOENT)
1775		return rc;
1776
1777	return cur_index;
1778}
1779EXPORT_SYMBOL(of_count_phandle_with_args);
1780
1781/**
1782 * __of_add_property - Add a property to a node without lock operations
1783 * @np:		Caller's Device Node
1784 * @prob:	Property to add
1785 */
1786int __of_add_property(struct device_node *np, struct property *prop)
1787{
1788	struct property **next;
1789
1790	prop->next = NULL;
1791	next = &np->properties;
1792	while (*next) {
1793		if (strcmp(prop->name, (*next)->name) == 0)
1794			/* duplicate ! don't insert it */
1795			return -EEXIST;
1796
1797		next = &(*next)->next;
1798	}
1799	*next = prop;
1800
1801	return 0;
1802}
1803
1804/**
1805 * of_add_property - Add a property to a node
1806 * @np:		Caller's Device Node
1807 * @prob:	Property to add
1808 */
1809int of_add_property(struct device_node *np, struct property *prop)
1810{
1811	unsigned long flags;
1812	int rc;
1813
1814	mutex_lock(&of_mutex);
1815
1816	raw_spin_lock_irqsave(&devtree_lock, flags);
1817	rc = __of_add_property(np, prop);
1818	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1819
1820	if (!rc)
1821		__of_add_property_sysfs(np, prop);
1822
1823	mutex_unlock(&of_mutex);
1824
1825	if (!rc)
1826		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1827
1828	return rc;
1829}
1830
1831int __of_remove_property(struct device_node *np, struct property *prop)
1832{
1833	struct property **next;
1834
1835	for (next = &np->properties; *next; next = &(*next)->next) {
1836		if (*next == prop)
1837			break;
1838	}
1839	if (*next == NULL)
1840		return -ENODEV;
1841
1842	/* found the node */
1843	*next = prop->next;
1844	prop->next = np->deadprops;
1845	np->deadprops = prop;
1846
1847	return 0;
1848}
1849
1850/**
1851 * of_remove_property - Remove a property from a node.
1852 * @np:		Caller's Device Node
1853 * @prob:	Property to remove
1854 *
1855 * Note that we don't actually remove it, since we have given out
1856 * who-knows-how-many pointers to the data using get-property.
1857 * Instead we just move the property to the "dead properties"
1858 * list, so it won't be found any more.
1859 */
1860int of_remove_property(struct device_node *np, struct property *prop)
1861{
1862	unsigned long flags;
1863	int rc;
1864
1865	if (!prop)
1866		return -ENODEV;
1867
1868	mutex_lock(&of_mutex);
1869
1870	raw_spin_lock_irqsave(&devtree_lock, flags);
1871	rc = __of_remove_property(np, prop);
1872	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1873
1874	if (!rc)
1875		__of_remove_property_sysfs(np, prop);
1876
1877	mutex_unlock(&of_mutex);
1878
1879	if (!rc)
1880		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1881
1882	return rc;
1883}
1884EXPORT_SYMBOL_GPL(of_remove_property);
1885
1886int __of_update_property(struct device_node *np, struct property *newprop,
1887		struct property **oldpropp)
1888{
1889	struct property **next, *oldprop;
1890
1891	for (next = &np->properties; *next; next = &(*next)->next) {
1892		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1893			break;
1894	}
1895	*oldpropp = oldprop = *next;
1896
1897	if (oldprop) {
1898		/* replace the node */
1899		newprop->next = oldprop->next;
1900		*next = newprop;
1901		oldprop->next = np->deadprops;
1902		np->deadprops = oldprop;
1903	} else {
1904		/* new node */
1905		newprop->next = NULL;
1906		*next = newprop;
1907	}
1908
1909	return 0;
1910}
1911
1912/*
1913 * of_update_property - Update a property in a node, if the property does
1914 * not exist, add it.
1915 *
1916 * Note that we don't actually remove it, since we have given out
1917 * who-knows-how-many pointers to the data using get-property.
1918 * Instead we just move the property to the "dead properties" list,
1919 * and add the new property to the property list
1920 */
1921int of_update_property(struct device_node *np, struct property *newprop)
1922{
1923	struct property *oldprop;
1924	unsigned long flags;
1925	int rc;
1926
1927	if (!newprop->name)
1928		return -EINVAL;
1929
1930	mutex_lock(&of_mutex);
1931
1932	raw_spin_lock_irqsave(&devtree_lock, flags);
1933	rc = __of_update_property(np, newprop, &oldprop);
1934	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1935
1936	if (!rc)
1937		__of_update_property_sysfs(np, newprop, oldprop);
1938
1939	mutex_unlock(&of_mutex);
1940
1941	if (!rc)
1942		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1943
1944	return rc;
1945}
1946
1947static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1948			 int id, const char *stem, int stem_len)
1949{
1950	ap->np = np;
1951	ap->id = id;
1952	strncpy(ap->stem, stem, stem_len);
1953	ap->stem[stem_len] = 0;
1954	list_add_tail(&ap->link, &aliases_lookup);
1955	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1956		 ap->alias, ap->stem, ap->id, np);
1957}
1958
1959/**
1960 * of_alias_scan - Scan all properties of the 'aliases' node
1961 * @dt_alloc:	An allocator that provides a virtual address to memory
1962 *		for storing the resulting tree
1963 *
1964 * The function scans all the properties of the 'aliases' node and populates
1965 * the global lookup table with the properties.  It returns the
1966 * number of alias properties found, or an error code in case of failure.
1967 */
1968void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1969{
1970	struct property *pp;
1971
1972	of_aliases = of_find_node_by_path("/aliases");
1973	of_chosen = of_find_node_by_path("/chosen");
1974	if (of_chosen == NULL)
1975		of_chosen = of_find_node_by_path("/chosen@0");
1976
1977	if (of_chosen) {
1978		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1979		const char *name = NULL;
1980
1981		if (of_property_read_string(of_chosen, "stdout-path", &name))
1982			of_property_read_string(of_chosen, "linux,stdout-path",
1983						&name);
1984		if (IS_ENABLED(CONFIG_PPC) && !name)
1985			of_property_read_string(of_aliases, "stdout", &name);
1986		if (name)
1987			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1988	}
1989
1990	if (!of_aliases)
1991		return;
1992
1993	for_each_property_of_node(of_aliases, pp) {
1994		const char *start = pp->name;
1995		const char *end = start + strlen(start);
1996		struct device_node *np;
1997		struct alias_prop *ap;
1998		int id, len;
1999
2000		/* Skip those we do not want to proceed */
2001		if (!strcmp(pp->name, "name") ||
2002		    !strcmp(pp->name, "phandle") ||
2003		    !strcmp(pp->name, "linux,phandle"))
2004			continue;
2005
2006		np = of_find_node_by_path(pp->value);
2007		if (!np)
2008			continue;
2009
2010		/* walk the alias backwards to extract the id and work out
2011		 * the 'stem' string */
2012		while (isdigit(*(end-1)) && end > start)
2013			end--;
2014		len = end - start;
2015
2016		if (kstrtoint(end, 10, &id) < 0)
2017			continue;
2018
2019		/* Allocate an alias_prop with enough space for the stem */
2020		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2021		if (!ap)
2022			continue;
2023		memset(ap, 0, sizeof(*ap) + len + 1);
2024		ap->alias = start;
2025		of_alias_add(ap, np, id, start, len);
2026	}
2027}
2028
2029/**
2030 * of_alias_get_id - Get alias id for the given device_node
2031 * @np:		Pointer to the given device_node
2032 * @stem:	Alias stem of the given device_node
2033 *
2034 * The function travels the lookup table to get the alias id for the given
2035 * device_node and alias stem.
2036 *
2037 * Return: The alias id if found.
2038 */
2039int of_alias_get_id(struct device_node *np, const char *stem)
2040{
2041	struct alias_prop *app;
2042	int id = -ENODEV;
2043
2044	mutex_lock(&of_mutex);
2045	list_for_each_entry(app, &aliases_lookup, link) {
2046		if (strcmp(app->stem, stem) != 0)
2047			continue;
2048
2049		if (np == app->np) {
2050			id = app->id;
2051			break;
2052		}
2053	}
2054	mutex_unlock(&of_mutex);
2055
2056	return id;
2057}
2058EXPORT_SYMBOL_GPL(of_alias_get_id);
2059
2060/**
2061 * of_alias_get_alias_list - Get alias list for the given device driver
2062 * @matches:	Array of OF device match structures to search in
2063 * @stem:	Alias stem of the given device_node
2064 * @bitmap:	Bitmap field pointer
2065 * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2066 *
2067 * The function travels the lookup table to record alias ids for the given
2068 * device match structures and alias stem.
2069 *
2070 * Return:	0 or -ENOSYS when !CONFIG_OF or
2071 *		-EOVERFLOW if alias ID is greater then allocated nbits
2072 */
2073int of_alias_get_alias_list(const struct of_device_id *matches,
2074			     const char *stem, unsigned long *bitmap,
2075			     unsigned int nbits)
2076{
2077	struct alias_prop *app;
2078	int ret = 0;
2079
2080	/* Zero bitmap field to make sure that all the time it is clean */
2081	bitmap_zero(bitmap, nbits);
2082
2083	mutex_lock(&of_mutex);
2084	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2085	list_for_each_entry(app, &aliases_lookup, link) {
2086		pr_debug("%s: stem: %s, id: %d\n",
2087			 __func__, app->stem, app->id);
2088
2089		if (strcmp(app->stem, stem) != 0) {
2090			pr_debug("%s: stem comparison didn't pass %s\n",
2091				 __func__, app->stem);
2092			continue;
2093		}
2094
2095		if (of_match_node(matches, app->np)) {
2096			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2097
2098			if (app->id >= nbits) {
2099				pr_warn("%s: ID %d >= than bitmap field %d\n",
2100					__func__, app->id, nbits);
2101				ret = -EOVERFLOW;
2102			} else {
2103				set_bit(app->id, bitmap);
2104			}
2105		}
2106	}
2107	mutex_unlock(&of_mutex);
2108
2109	return ret;
2110}
2111EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2112
2113/**
2114 * of_alias_get_highest_id - Get highest alias id for the given stem
2115 * @stem:	Alias stem to be examined
2116 *
2117 * The function travels the lookup table to get the highest alias id for the
2118 * given alias stem.  It returns the alias id if found.
2119 */
2120int of_alias_get_highest_id(const char *stem)
2121{
2122	struct alias_prop *app;
2123	int id = -ENODEV;
2124
2125	mutex_lock(&of_mutex);
2126	list_for_each_entry(app, &aliases_lookup, link) {
2127		if (strcmp(app->stem, stem) != 0)
2128			continue;
2129
2130		if (app->id > id)
2131			id = app->id;
2132	}
2133	mutex_unlock(&of_mutex);
2134
2135	return id;
2136}
2137EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2138
2139/**
2140 * of_console_check() - Test and setup console for DT setup
2141 * @dn: Pointer to device node
2142 * @name: Name to use for preferred console without index. ex. "ttyS"
2143 * @index: Index to use for preferred console.
2144 *
2145 * Check if the given device node matches the stdout-path property in the
2146 * /chosen node. If it does then register it as the preferred console.
2147 *
2148 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2149 */
2150bool of_console_check(struct device_node *dn, char *name, int index)
2151{
2152	if (!dn || dn != of_stdout || console_set_on_cmdline)
2153		return false;
2154
2155	/*
2156	 * XXX: cast `options' to char pointer to suppress complication
2157	 * warnings: printk, UART and console drivers expect char pointer.
2158	 */
2159	return !add_preferred_console(name, index, (char *)of_stdout_options);
2160}
2161EXPORT_SYMBOL_GPL(of_console_check);
2162
2163/**
2164 * of_find_next_cache_node - Find a node's subsidiary cache
2165 * @np:	node of type "cpu" or "cache"
2166 *
2167 * Return: A node pointer with refcount incremented, use
2168 * of_node_put() on it when done.  Caller should hold a reference
2169 * to np.
2170 */
2171struct device_node *of_find_next_cache_node(const struct device_node *np)
2172{
2173	struct device_node *child, *cache_node;
2174
2175	cache_node = of_parse_phandle(np, "l2-cache", 0);
2176	if (!cache_node)
2177		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2178
2179	if (cache_node)
2180		return cache_node;
2181
2182	/* OF on pmac has nodes instead of properties named "l2-cache"
2183	 * beneath CPU nodes.
2184	 */
2185	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2186		for_each_child_of_node(np, child)
2187			if (of_node_is_type(child, "cache"))
2188				return child;
2189
2190	return NULL;
2191}
2192
2193/**
2194 * of_find_last_cache_level - Find the level at which the last cache is
2195 * 		present for the given logical cpu
2196 *
2197 * @cpu: cpu number(logical index) for which the last cache level is needed
2198 *
2199 * Return: The the level at which the last cache is present. It is exactly
2200 * same as  the total number of cache levels for the given logical cpu.
2201 */
2202int of_find_last_cache_level(unsigned int cpu)
2203{
2204	u32 cache_level = 0;
2205	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2206
2207	while (np) {
2208		prev = np;
2209		of_node_put(np);
2210		np = of_find_next_cache_node(np);
2211	}
2212
2213	of_property_read_u32(prev, "cache-level", &cache_level);
2214
2215	return cache_level;
2216}
2217
2218/**
2219 * of_map_id - Translate an ID through a downstream mapping.
2220 * @np: root complex device node.
2221 * @id: device ID to map.
2222 * @map_name: property name of the map to use.
2223 * @map_mask_name: optional property name of the mask to use.
2224 * @target: optional pointer to a target device node.
2225 * @id_out: optional pointer to receive the translated ID.
2226 *
2227 * Given a device ID, look up the appropriate implementation-defined
2228 * platform ID and/or the target device which receives transactions on that
2229 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2230 * @id_out may be NULL if only the other is required. If @target points to
2231 * a non-NULL device node pointer, only entries targeting that node will be
2232 * matched; if it points to a NULL value, it will receive the device node of
2233 * the first matching target phandle, with a reference held.
2234 *
2235 * Return: 0 on success or a standard error code on failure.
2236 */
2237int of_map_id(struct device_node *np, u32 id,
2238	       const char *map_name, const char *map_mask_name,
2239	       struct device_node **target, u32 *id_out)
2240{
2241	u32 map_mask, masked_id;
2242	int map_len;
2243	const __be32 *map = NULL;
2244
2245	if (!np || !map_name || (!target && !id_out))
2246		return -EINVAL;
2247
2248	map = of_get_property(np, map_name, &map_len);
2249	if (!map) {
2250		if (target)
2251			return -ENODEV;
2252		/* Otherwise, no map implies no translation */
2253		*id_out = id;
2254		return 0;
2255	}
2256
2257	if (!map_len || map_len % (4 * sizeof(*map))) {
2258		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2259			map_name, map_len);
2260		return -EINVAL;
2261	}
2262
2263	/* The default is to select all bits. */
2264	map_mask = 0xffffffff;
2265
2266	/*
2267	 * Can be overridden by "{iommu,msi}-map-mask" property.
2268	 * If of_property_read_u32() fails, the default is used.
2269	 */
2270	if (map_mask_name)
2271		of_property_read_u32(np, map_mask_name, &map_mask);
2272
2273	masked_id = map_mask & id;
2274	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2275		struct device_node *phandle_node;
2276		u32 id_base = be32_to_cpup(map + 0);
2277		u32 phandle = be32_to_cpup(map + 1);
2278		u32 out_base = be32_to_cpup(map + 2);
2279		u32 id_len = be32_to_cpup(map + 3);
2280
2281		if (id_base & ~map_mask) {
2282			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2283				np, map_name, map_name,
2284				map_mask, id_base);
2285			return -EFAULT;
2286		}
2287
2288		if (masked_id < id_base || masked_id >= id_base + id_len)
2289			continue;
2290
2291		phandle_node = of_find_node_by_phandle(phandle);
2292		if (!phandle_node)
2293			return -ENODEV;
2294
2295		if (target) {
2296			if (*target)
2297				of_node_put(phandle_node);
2298			else
2299				*target = phandle_node;
2300
2301			if (*target != phandle_node)
2302				continue;
2303		}
2304
2305		if (id_out)
2306			*id_out = masked_id - id_base + out_base;
2307
2308		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2309			np, map_name, map_mask, id_base, out_base,
2310			id_len, id, masked_id - id_base + out_base);
2311		return 0;
2312	}
2313
2314	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2315		id, target && *target ? *target : NULL);
2316
2317	/* Bypasses translation */
2318	if (id_out)
2319		*id_out = id;
2320	return 0;
2321}
2322EXPORT_SYMBOL_GPL(of_map_id);
2323