1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17#define pr_fmt(fmt) "OF: " fmt 18 19#include <linux/bitmap.h> 20#include <linux/console.h> 21#include <linux/ctype.h> 22#include <linux/cpu.h> 23#include <linux/module.h> 24#include <linux/of.h> 25#include <linux/of_device.h> 26#include <linux/of_graph.h> 27#include <linux/spinlock.h> 28#include <linux/slab.h> 29#include <linux/string.h> 30#include <linux/proc_fs.h> 31 32#include "of_private.h" 33 34LIST_HEAD(aliases_lookup); 35 36struct device_node *of_root; 37EXPORT_SYMBOL(of_root); 38struct device_node *of_chosen; 39struct device_node *of_aliases; 40struct device_node *of_stdout; 41static const char *of_stdout_options; 42 43struct kset *of_kset; 44 45/* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51DEFINE_MUTEX(of_mutex); 52 53/* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56DEFINE_RAW_SPINLOCK(devtree_lock); 57 58bool of_node_name_eq(const struct device_node *np, const char *name) 59{ 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70} 71EXPORT_SYMBOL(of_node_name_eq); 72 73bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74{ 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79} 80EXPORT_SYMBOL(of_node_name_prefix); 81 82static bool __of_node_is_type(const struct device_node *np, const char *type) 83{ 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87} 88 89int of_bus_n_addr_cells(struct device_node *np) 90{ 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99} 100 101int of_n_addr_cells(struct device_node *np) 102{ 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107} 108EXPORT_SYMBOL(of_n_addr_cells); 109 110int of_bus_n_size_cells(struct device_node *np) 111{ 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120} 121 122int of_n_size_cells(struct device_node *np) 123{ 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128} 129EXPORT_SYMBOL(of_n_size_cells); 130 131#ifdef CONFIG_NUMA 132int __weak of_node_to_nid(struct device_node *np) 133{ 134 return NUMA_NO_NODE; 135} 136#endif 137 138#define OF_PHANDLE_CACHE_BITS 7 139#define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143static u32 of_phandle_cache_hash(phandle handle) 144{ 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146} 147 148/* 149 * Caller must hold devtree_lock. 150 */ 151void __of_phandle_cache_inv_entry(phandle handle) 152{ 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164} 165 166void __init of_core_init(void) 167{ 168 struct device_node *np; 169 170 171 /* Create the kset, and register existing nodes */ 172 mutex_lock(&of_mutex); 173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 174 if (!of_kset) { 175 mutex_unlock(&of_mutex); 176 pr_err("failed to register existing nodes\n"); 177 return; 178 } 179 for_each_of_allnodes(np) { 180 __of_attach_node_sysfs(np); 181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 183 } 184 mutex_unlock(&of_mutex); 185 186 /* Symlink in /proc as required by userspace ABI */ 187 if (of_root) 188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 189} 190 191static struct property *__of_find_property(const struct device_node *np, 192 const char *name, int *lenp) 193{ 194 struct property *pp; 195 196 if (!np) 197 return NULL; 198 199 for (pp = np->properties; pp; pp = pp->next) { 200 if (of_prop_cmp(pp->name, name) == 0) { 201 if (lenp) 202 *lenp = pp->length; 203 break; 204 } 205 } 206 207 return pp; 208} 209 210struct property *of_find_property(const struct device_node *np, 211 const char *name, 212 int *lenp) 213{ 214 struct property *pp; 215 unsigned long flags; 216 217 raw_spin_lock_irqsave(&devtree_lock, flags); 218 pp = __of_find_property(np, name, lenp); 219 raw_spin_unlock_irqrestore(&devtree_lock, flags); 220 221 return pp; 222} 223EXPORT_SYMBOL(of_find_property); 224 225struct device_node *__of_find_all_nodes(struct device_node *prev) 226{ 227 struct device_node *np; 228 if (!prev) { 229 np = of_root; 230 } else if (prev->child) { 231 np = prev->child; 232 } else { 233 /* Walk back up looking for a sibling, or the end of the structure */ 234 np = prev; 235 while (np->parent && !np->sibling) 236 np = np->parent; 237 np = np->sibling; /* Might be null at the end of the tree */ 238 } 239 return np; 240} 241 242/** 243 * of_find_all_nodes - Get next node in global list 244 * @prev: Previous node or NULL to start iteration 245 * of_node_put() will be called on it 246 * 247 * Return: A node pointer with refcount incremented, use 248 * of_node_put() on it when done. 249 */ 250struct device_node *of_find_all_nodes(struct device_node *prev) 251{ 252 struct device_node *np; 253 unsigned long flags; 254 255 raw_spin_lock_irqsave(&devtree_lock, flags); 256 np = __of_find_all_nodes(prev); 257 of_node_get(np); 258 of_node_put(prev); 259 raw_spin_unlock_irqrestore(&devtree_lock, flags); 260 return np; 261} 262EXPORT_SYMBOL(of_find_all_nodes); 263 264/* 265 * Find a property with a given name for a given node 266 * and return the value. 267 */ 268const void *__of_get_property(const struct device_node *np, 269 const char *name, int *lenp) 270{ 271 struct property *pp = __of_find_property(np, name, lenp); 272 273 return pp ? pp->value : NULL; 274} 275 276/* 277 * Find a property with a given name for a given node 278 * and return the value. 279 */ 280const void *of_get_property(const struct device_node *np, const char *name, 281 int *lenp) 282{ 283 struct property *pp = of_find_property(np, name, lenp); 284 285 return pp ? pp->value : NULL; 286} 287EXPORT_SYMBOL(of_get_property); 288 289/* 290 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 291 * 292 * @cpu: logical cpu index of a core/thread 293 * @phys_id: physical identifier of a core/thread 294 * 295 * CPU logical to physical index mapping is architecture specific. 296 * However this __weak function provides a default match of physical 297 * id to logical cpu index. phys_id provided here is usually values read 298 * from the device tree which must match the hardware internal registers. 299 * 300 * Returns true if the physical identifier and the logical cpu index 301 * correspond to the same core/thread, false otherwise. 302 */ 303bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 304{ 305 return (u32)phys_id == cpu; 306} 307 308/* 309 * Checks if the given "prop_name" property holds the physical id of the 310 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 311 * NULL, local thread number within the core is returned in it. 312 */ 313static bool __of_find_n_match_cpu_property(struct device_node *cpun, 314 const char *prop_name, int cpu, unsigned int *thread) 315{ 316 const __be32 *cell; 317 int ac, prop_len, tid; 318 u64 hwid; 319 320 ac = of_n_addr_cells(cpun); 321 cell = of_get_property(cpun, prop_name, &prop_len); 322 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 323 return true; 324 if (!cell || !ac) 325 return false; 326 prop_len /= sizeof(*cell) * ac; 327 for (tid = 0; tid < prop_len; tid++) { 328 hwid = of_read_number(cell, ac); 329 if (arch_match_cpu_phys_id(cpu, hwid)) { 330 if (thread) 331 *thread = tid; 332 return true; 333 } 334 cell += ac; 335 } 336 return false; 337} 338 339/* 340 * arch_find_n_match_cpu_physical_id - See if the given device node is 341 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 342 * else false. If 'thread' is non-NULL, the local thread number within the 343 * core is returned in it. 344 */ 345bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 346 int cpu, unsigned int *thread) 347{ 348 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 349 * for thread ids on PowerPC. If it doesn't exist fallback to 350 * standard "reg" property. 351 */ 352 if (IS_ENABLED(CONFIG_PPC) && 353 __of_find_n_match_cpu_property(cpun, 354 "ibm,ppc-interrupt-server#s", 355 cpu, thread)) 356 return true; 357 358 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 359} 360 361/** 362 * of_get_cpu_node - Get device node associated with the given logical CPU 363 * 364 * @cpu: CPU number(logical index) for which device node is required 365 * @thread: if not NULL, local thread number within the physical core is 366 * returned 367 * 368 * The main purpose of this function is to retrieve the device node for the 369 * given logical CPU index. It should be used to initialize the of_node in 370 * cpu device. Once of_node in cpu device is populated, all the further 371 * references can use that instead. 372 * 373 * CPU logical to physical index mapping is architecture specific and is built 374 * before booting secondary cores. This function uses arch_match_cpu_phys_id 375 * which can be overridden by architecture specific implementation. 376 * 377 * Return: A node pointer for the logical cpu with refcount incremented, use 378 * of_node_put() on it when done. Returns NULL if not found. 379 */ 380struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 381{ 382 struct device_node *cpun; 383 384 for_each_of_cpu_node(cpun) { 385 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 386 return cpun; 387 } 388 return NULL; 389} 390EXPORT_SYMBOL(of_get_cpu_node); 391 392/** 393 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 394 * 395 * @cpu_node: Pointer to the device_node for CPU. 396 * 397 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the 398 * CPU is not found. 399 */ 400int of_cpu_node_to_id(struct device_node *cpu_node) 401{ 402 int cpu; 403 bool found = false; 404 struct device_node *np; 405 406 for_each_possible_cpu(cpu) { 407 np = of_cpu_device_node_get(cpu); 408 found = (cpu_node == np); 409 of_node_put(np); 410 if (found) 411 return cpu; 412 } 413 414 return -ENODEV; 415} 416EXPORT_SYMBOL(of_cpu_node_to_id); 417 418/** 419 * of_get_cpu_state_node - Get CPU's idle state node at the given index 420 * 421 * @cpu_node: The device node for the CPU 422 * @index: The index in the list of the idle states 423 * 424 * Two generic methods can be used to describe a CPU's idle states, either via 425 * a flattened description through the "cpu-idle-states" binding or via the 426 * hierarchical layout, using the "power-domains" and the "domain-idle-states" 427 * bindings. This function check for both and returns the idle state node for 428 * the requested index. 429 * 430 * Return: An idle state node if found at @index. The refcount is incremented 431 * for it, so call of_node_put() on it when done. Returns NULL if not found. 432 */ 433struct device_node *of_get_cpu_state_node(struct device_node *cpu_node, 434 int index) 435{ 436 struct of_phandle_args args; 437 int err; 438 439 err = of_parse_phandle_with_args(cpu_node, "power-domains", 440 "#power-domain-cells", 0, &args); 441 if (!err) { 442 struct device_node *state_node = 443 of_parse_phandle(args.np, "domain-idle-states", index); 444 445 of_node_put(args.np); 446 if (state_node) 447 return state_node; 448 } 449 450 return of_parse_phandle(cpu_node, "cpu-idle-states", index); 451} 452EXPORT_SYMBOL(of_get_cpu_state_node); 453 454/** 455 * __of_device_is_compatible() - Check if the node matches given constraints 456 * @device: pointer to node 457 * @compat: required compatible string, NULL or "" for any match 458 * @type: required device_type value, NULL or "" for any match 459 * @name: required node name, NULL or "" for any match 460 * 461 * Checks if the given @compat, @type and @name strings match the 462 * properties of the given @device. A constraints can be skipped by 463 * passing NULL or an empty string as the constraint. 464 * 465 * Returns 0 for no match, and a positive integer on match. The return 466 * value is a relative score with larger values indicating better 467 * matches. The score is weighted for the most specific compatible value 468 * to get the highest score. Matching type is next, followed by matching 469 * name. Practically speaking, this results in the following priority 470 * order for matches: 471 * 472 * 1. specific compatible && type && name 473 * 2. specific compatible && type 474 * 3. specific compatible && name 475 * 4. specific compatible 476 * 5. general compatible && type && name 477 * 6. general compatible && type 478 * 7. general compatible && name 479 * 8. general compatible 480 * 9. type && name 481 * 10. type 482 * 11. name 483 */ 484static int __of_device_is_compatible(const struct device_node *device, 485 const char *compat, const char *type, const char *name) 486{ 487 struct property *prop; 488 const char *cp; 489 int index = 0, score = 0; 490 491 /* Compatible match has highest priority */ 492 if (compat && compat[0]) { 493 prop = __of_find_property(device, "compatible", NULL); 494 for (cp = of_prop_next_string(prop, NULL); cp; 495 cp = of_prop_next_string(prop, cp), index++) { 496 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 497 score = INT_MAX/2 - (index << 2); 498 break; 499 } 500 } 501 if (!score) 502 return 0; 503 } 504 505 /* Matching type is better than matching name */ 506 if (type && type[0]) { 507 if (!__of_node_is_type(device, type)) 508 return 0; 509 score += 2; 510 } 511 512 /* Matching name is a bit better than not */ 513 if (name && name[0]) { 514 if (!of_node_name_eq(device, name)) 515 return 0; 516 score++; 517 } 518 519 return score; 520} 521 522/** Checks if the given "compat" string matches one of the strings in 523 * the device's "compatible" property 524 */ 525int of_device_is_compatible(const struct device_node *device, 526 const char *compat) 527{ 528 unsigned long flags; 529 int res; 530 531 raw_spin_lock_irqsave(&devtree_lock, flags); 532 res = __of_device_is_compatible(device, compat, NULL, NULL); 533 raw_spin_unlock_irqrestore(&devtree_lock, flags); 534 return res; 535} 536EXPORT_SYMBOL(of_device_is_compatible); 537 538/** Checks if the device is compatible with any of the entries in 539 * a NULL terminated array of strings. Returns the best match 540 * score or 0. 541 */ 542int of_device_compatible_match(struct device_node *device, 543 const char *const *compat) 544{ 545 unsigned int tmp, score = 0; 546 547 if (!compat) 548 return 0; 549 550 while (*compat) { 551 tmp = of_device_is_compatible(device, *compat); 552 if (tmp > score) 553 score = tmp; 554 compat++; 555 } 556 557 return score; 558} 559 560/** 561 * of_machine_is_compatible - Test root of device tree for a given compatible value 562 * @compat: compatible string to look for in root node's compatible property. 563 * 564 * Return: A positive integer if the root node has the given value in its 565 * compatible property. 566 */ 567int of_machine_is_compatible(const char *compat) 568{ 569 struct device_node *root; 570 int rc = 0; 571 572 root = of_find_node_by_path("/"); 573 if (root) { 574 rc = of_device_is_compatible(root, compat); 575 of_node_put(root); 576 } 577 return rc; 578} 579EXPORT_SYMBOL(of_machine_is_compatible); 580 581/** 582 * __of_device_is_available - check if a device is available for use 583 * 584 * @device: Node to check for availability, with locks already held 585 * 586 * Return: True if the status property is absent or set to "okay" or "ok", 587 * false otherwise 588 */ 589static bool __of_device_is_available(const struct device_node *device) 590{ 591 const char *status; 592 int statlen; 593 594 if (!device) 595 return false; 596 597 status = __of_get_property(device, "status", &statlen); 598 if (status == NULL) 599 return true; 600 601 if (statlen > 0) { 602 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 603 return true; 604 } 605 606 return false; 607} 608 609/** 610 * of_device_is_available - check if a device is available for use 611 * 612 * @device: Node to check for availability 613 * 614 * Return: True if the status property is absent or set to "okay" or "ok", 615 * false otherwise 616 */ 617bool of_device_is_available(const struct device_node *device) 618{ 619 unsigned long flags; 620 bool res; 621 622 raw_spin_lock_irqsave(&devtree_lock, flags); 623 res = __of_device_is_available(device); 624 raw_spin_unlock_irqrestore(&devtree_lock, flags); 625 return res; 626 627} 628EXPORT_SYMBOL(of_device_is_available); 629 630/** 631 * of_device_is_big_endian - check if a device has BE registers 632 * 633 * @device: Node to check for endianness 634 * 635 * Return: True if the device has a "big-endian" property, or if the kernel 636 * was compiled for BE *and* the device has a "native-endian" property. 637 * Returns false otherwise. 638 * 639 * Callers would nominally use ioread32be/iowrite32be if 640 * of_device_is_big_endian() == true, or readl/writel otherwise. 641 */ 642bool of_device_is_big_endian(const struct device_node *device) 643{ 644 if (of_property_read_bool(device, "big-endian")) 645 return true; 646 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 647 of_property_read_bool(device, "native-endian")) 648 return true; 649 return false; 650} 651EXPORT_SYMBOL(of_device_is_big_endian); 652 653/** 654 * of_get_parent - Get a node's parent if any 655 * @node: Node to get parent 656 * 657 * Return: A node pointer with refcount incremented, use 658 * of_node_put() on it when done. 659 */ 660struct device_node *of_get_parent(const struct device_node *node) 661{ 662 struct device_node *np; 663 unsigned long flags; 664 665 if (!node) 666 return NULL; 667 668 raw_spin_lock_irqsave(&devtree_lock, flags); 669 np = of_node_get(node->parent); 670 raw_spin_unlock_irqrestore(&devtree_lock, flags); 671 return np; 672} 673EXPORT_SYMBOL(of_get_parent); 674 675/** 676 * of_get_next_parent - Iterate to a node's parent 677 * @node: Node to get parent of 678 * 679 * This is like of_get_parent() except that it drops the 680 * refcount on the passed node, making it suitable for iterating 681 * through a node's parents. 682 * 683 * Return: A node pointer with refcount incremented, use 684 * of_node_put() on it when done. 685 */ 686struct device_node *of_get_next_parent(struct device_node *node) 687{ 688 struct device_node *parent; 689 unsigned long flags; 690 691 if (!node) 692 return NULL; 693 694 raw_spin_lock_irqsave(&devtree_lock, flags); 695 parent = of_node_get(node->parent); 696 of_node_put(node); 697 raw_spin_unlock_irqrestore(&devtree_lock, flags); 698 return parent; 699} 700EXPORT_SYMBOL(of_get_next_parent); 701 702static struct device_node *__of_get_next_child(const struct device_node *node, 703 struct device_node *prev) 704{ 705 struct device_node *next; 706 707 if (!node) 708 return NULL; 709 710 next = prev ? prev->sibling : node->child; 711 for (; next; next = next->sibling) 712 if (of_node_get(next)) 713 break; 714 of_node_put(prev); 715 return next; 716} 717#define __for_each_child_of_node(parent, child) \ 718 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 719 child = __of_get_next_child(parent, child)) 720 721/** 722 * of_get_next_child - Iterate a node childs 723 * @node: parent node 724 * @prev: previous child of the parent node, or NULL to get first 725 * 726 * Return: A node pointer with refcount incremented, use of_node_put() on 727 * it when done. Returns NULL when prev is the last child. Decrements the 728 * refcount of prev. 729 */ 730struct device_node *of_get_next_child(const struct device_node *node, 731 struct device_node *prev) 732{ 733 struct device_node *next; 734 unsigned long flags; 735 736 raw_spin_lock_irqsave(&devtree_lock, flags); 737 next = __of_get_next_child(node, prev); 738 raw_spin_unlock_irqrestore(&devtree_lock, flags); 739 return next; 740} 741EXPORT_SYMBOL(of_get_next_child); 742 743/** 744 * of_get_next_available_child - Find the next available child node 745 * @node: parent node 746 * @prev: previous child of the parent node, or NULL to get first 747 * 748 * This function is like of_get_next_child(), except that it 749 * automatically skips any disabled nodes (i.e. status = "disabled"). 750 */ 751struct device_node *of_get_next_available_child(const struct device_node *node, 752 struct device_node *prev) 753{ 754 struct device_node *next; 755 unsigned long flags; 756 757 if (!node) 758 return NULL; 759 760 raw_spin_lock_irqsave(&devtree_lock, flags); 761 next = prev ? prev->sibling : node->child; 762 for (; next; next = next->sibling) { 763 if (!__of_device_is_available(next)) 764 continue; 765 if (of_node_get(next)) 766 break; 767 } 768 of_node_put(prev); 769 raw_spin_unlock_irqrestore(&devtree_lock, flags); 770 return next; 771} 772EXPORT_SYMBOL(of_get_next_available_child); 773 774/** 775 * of_get_next_cpu_node - Iterate on cpu nodes 776 * @prev: previous child of the /cpus node, or NULL to get first 777 * 778 * Return: A cpu node pointer with refcount incremented, use of_node_put() 779 * on it when done. Returns NULL when prev is the last child. Decrements 780 * the refcount of prev. 781 */ 782struct device_node *of_get_next_cpu_node(struct device_node *prev) 783{ 784 struct device_node *next = NULL; 785 unsigned long flags; 786 struct device_node *node; 787 788 if (!prev) 789 node = of_find_node_by_path("/cpus"); 790 791 raw_spin_lock_irqsave(&devtree_lock, flags); 792 if (prev) 793 next = prev->sibling; 794 else if (node) { 795 next = node->child; 796 of_node_put(node); 797 } 798 for (; next; next = next->sibling) { 799 if (!(of_node_name_eq(next, "cpu") || 800 __of_node_is_type(next, "cpu"))) 801 continue; 802 if (of_node_get(next)) 803 break; 804 } 805 of_node_put(prev); 806 raw_spin_unlock_irqrestore(&devtree_lock, flags); 807 return next; 808} 809EXPORT_SYMBOL(of_get_next_cpu_node); 810 811/** 812 * of_get_compatible_child - Find compatible child node 813 * @parent: parent node 814 * @compatible: compatible string 815 * 816 * Lookup child node whose compatible property contains the given compatible 817 * string. 818 * 819 * Return: a node pointer with refcount incremented, use of_node_put() on it 820 * when done; or NULL if not found. 821 */ 822struct device_node *of_get_compatible_child(const struct device_node *parent, 823 const char *compatible) 824{ 825 struct device_node *child; 826 827 for_each_child_of_node(parent, child) { 828 if (of_device_is_compatible(child, compatible)) 829 break; 830 } 831 832 return child; 833} 834EXPORT_SYMBOL(of_get_compatible_child); 835 836/** 837 * of_get_child_by_name - Find the child node by name for a given parent 838 * @node: parent node 839 * @name: child name to look for. 840 * 841 * This function looks for child node for given matching name 842 * 843 * Return: A node pointer if found, with refcount incremented, use 844 * of_node_put() on it when done. 845 * Returns NULL if node is not found. 846 */ 847struct device_node *of_get_child_by_name(const struct device_node *node, 848 const char *name) 849{ 850 struct device_node *child; 851 852 for_each_child_of_node(node, child) 853 if (of_node_name_eq(child, name)) 854 break; 855 return child; 856} 857EXPORT_SYMBOL(of_get_child_by_name); 858 859struct device_node *__of_find_node_by_path(struct device_node *parent, 860 const char *path) 861{ 862 struct device_node *child; 863 int len; 864 865 len = strcspn(path, "/:"); 866 if (!len) 867 return NULL; 868 869 __for_each_child_of_node(parent, child) { 870 const char *name = kbasename(child->full_name); 871 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 872 return child; 873 } 874 return NULL; 875} 876 877struct device_node *__of_find_node_by_full_path(struct device_node *node, 878 const char *path) 879{ 880 const char *separator = strchr(path, ':'); 881 882 while (node && *path == '/') { 883 struct device_node *tmp = node; 884 885 path++; /* Increment past '/' delimiter */ 886 node = __of_find_node_by_path(node, path); 887 of_node_put(tmp); 888 path = strchrnul(path, '/'); 889 if (separator && separator < path) 890 break; 891 } 892 return node; 893} 894 895/** 896 * of_find_node_opts_by_path - Find a node matching a full OF path 897 * @path: Either the full path to match, or if the path does not 898 * start with '/', the name of a property of the /aliases 899 * node (an alias). In the case of an alias, the node 900 * matching the alias' value will be returned. 901 * @opts: Address of a pointer into which to store the start of 902 * an options string appended to the end of the path with 903 * a ':' separator. 904 * 905 * Valid paths: 906 * * /foo/bar Full path 907 * * foo Valid alias 908 * * foo/bar Valid alias + relative path 909 * 910 * Return: A node pointer with refcount incremented, use 911 * of_node_put() on it when done. 912 */ 913struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 914{ 915 struct device_node *np = NULL; 916 struct property *pp; 917 unsigned long flags; 918 const char *separator = strchr(path, ':'); 919 920 if (opts) 921 *opts = separator ? separator + 1 : NULL; 922 923 if (strcmp(path, "/") == 0) 924 return of_node_get(of_root); 925 926 /* The path could begin with an alias */ 927 if (*path != '/') { 928 int len; 929 const char *p = separator; 930 931 if (!p) 932 p = strchrnul(path, '/'); 933 len = p - path; 934 935 /* of_aliases must not be NULL */ 936 if (!of_aliases) 937 return NULL; 938 939 for_each_property_of_node(of_aliases, pp) { 940 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 941 np = of_find_node_by_path(pp->value); 942 break; 943 } 944 } 945 if (!np) 946 return NULL; 947 path = p; 948 } 949 950 /* Step down the tree matching path components */ 951 raw_spin_lock_irqsave(&devtree_lock, flags); 952 if (!np) 953 np = of_node_get(of_root); 954 np = __of_find_node_by_full_path(np, path); 955 raw_spin_unlock_irqrestore(&devtree_lock, flags); 956 return np; 957} 958EXPORT_SYMBOL(of_find_node_opts_by_path); 959 960/** 961 * of_find_node_by_name - Find a node by its "name" property 962 * @from: The node to start searching from or NULL; the node 963 * you pass will not be searched, only the next one 964 * will. Typically, you pass what the previous call 965 * returned. of_node_put() will be called on @from. 966 * @name: The name string to match against 967 * 968 * Return: A node pointer with refcount incremented, use 969 * of_node_put() on it when done. 970 */ 971struct device_node *of_find_node_by_name(struct device_node *from, 972 const char *name) 973{ 974 struct device_node *np; 975 unsigned long flags; 976 977 raw_spin_lock_irqsave(&devtree_lock, flags); 978 for_each_of_allnodes_from(from, np) 979 if (of_node_name_eq(np, name) && of_node_get(np)) 980 break; 981 of_node_put(from); 982 raw_spin_unlock_irqrestore(&devtree_lock, flags); 983 return np; 984} 985EXPORT_SYMBOL(of_find_node_by_name); 986 987/** 988 * of_find_node_by_type - Find a node by its "device_type" property 989 * @from: The node to start searching from, or NULL to start searching 990 * the entire device tree. The node you pass will not be 991 * searched, only the next one will; typically, you pass 992 * what the previous call returned. of_node_put() will be 993 * called on from for you. 994 * @type: The type string to match against 995 * 996 * Return: A node pointer with refcount incremented, use 997 * of_node_put() on it when done. 998 */ 999struct device_node *of_find_node_by_type(struct device_node *from, 1000 const char *type) 1001{ 1002 struct device_node *np; 1003 unsigned long flags; 1004 1005 raw_spin_lock_irqsave(&devtree_lock, flags); 1006 for_each_of_allnodes_from(from, np) 1007 if (__of_node_is_type(np, type) && of_node_get(np)) 1008 break; 1009 of_node_put(from); 1010 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1011 return np; 1012} 1013EXPORT_SYMBOL(of_find_node_by_type); 1014 1015/** 1016 * of_find_compatible_node - Find a node based on type and one of the 1017 * tokens in its "compatible" property 1018 * @from: The node to start searching from or NULL, the node 1019 * you pass will not be searched, only the next one 1020 * will; typically, you pass what the previous call 1021 * returned. of_node_put() will be called on it 1022 * @type: The type string to match "device_type" or NULL to ignore 1023 * @compatible: The string to match to one of the tokens in the device 1024 * "compatible" list. 1025 * 1026 * Return: A node pointer with refcount incremented, use 1027 * of_node_put() on it when done. 1028 */ 1029struct device_node *of_find_compatible_node(struct device_node *from, 1030 const char *type, const char *compatible) 1031{ 1032 struct device_node *np; 1033 unsigned long flags; 1034 1035 raw_spin_lock_irqsave(&devtree_lock, flags); 1036 for_each_of_allnodes_from(from, np) 1037 if (__of_device_is_compatible(np, compatible, type, NULL) && 1038 of_node_get(np)) 1039 break; 1040 of_node_put(from); 1041 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1042 return np; 1043} 1044EXPORT_SYMBOL(of_find_compatible_node); 1045 1046/** 1047 * of_find_node_with_property - Find a node which has a property with 1048 * the given name. 1049 * @from: The node to start searching from or NULL, the node 1050 * you pass will not be searched, only the next one 1051 * will; typically, you pass what the previous call 1052 * returned. of_node_put() will be called on it 1053 * @prop_name: The name of the property to look for. 1054 * 1055 * Return: A node pointer with refcount incremented, use 1056 * of_node_put() on it when done. 1057 */ 1058struct device_node *of_find_node_with_property(struct device_node *from, 1059 const char *prop_name) 1060{ 1061 struct device_node *np; 1062 struct property *pp; 1063 unsigned long flags; 1064 1065 raw_spin_lock_irqsave(&devtree_lock, flags); 1066 for_each_of_allnodes_from(from, np) { 1067 for (pp = np->properties; pp; pp = pp->next) { 1068 if (of_prop_cmp(pp->name, prop_name) == 0) { 1069 of_node_get(np); 1070 goto out; 1071 } 1072 } 1073 } 1074out: 1075 of_node_put(from); 1076 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1077 return np; 1078} 1079EXPORT_SYMBOL(of_find_node_with_property); 1080 1081static 1082const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1083 const struct device_node *node) 1084{ 1085 const struct of_device_id *best_match = NULL; 1086 int score, best_score = 0; 1087 1088 if (!matches) 1089 return NULL; 1090 1091 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1092 score = __of_device_is_compatible(node, matches->compatible, 1093 matches->type, matches->name); 1094 if (score > best_score) { 1095 best_match = matches; 1096 best_score = score; 1097 } 1098 } 1099 1100 return best_match; 1101} 1102 1103/** 1104 * of_match_node - Tell if a device_node has a matching of_match structure 1105 * @matches: array of of device match structures to search in 1106 * @node: the of device structure to match against 1107 * 1108 * Low level utility function used by device matching. 1109 */ 1110const struct of_device_id *of_match_node(const struct of_device_id *matches, 1111 const struct device_node *node) 1112{ 1113 const struct of_device_id *match; 1114 unsigned long flags; 1115 1116 raw_spin_lock_irqsave(&devtree_lock, flags); 1117 match = __of_match_node(matches, node); 1118 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1119 return match; 1120} 1121EXPORT_SYMBOL(of_match_node); 1122 1123/** 1124 * of_find_matching_node_and_match - Find a node based on an of_device_id 1125 * match table. 1126 * @from: The node to start searching from or NULL, the node 1127 * you pass will not be searched, only the next one 1128 * will; typically, you pass what the previous call 1129 * returned. of_node_put() will be called on it 1130 * @matches: array of of device match structures to search in 1131 * @match: Updated to point at the matches entry which matched 1132 * 1133 * Return: A node pointer with refcount incremented, use 1134 * of_node_put() on it when done. 1135 */ 1136struct device_node *of_find_matching_node_and_match(struct device_node *from, 1137 const struct of_device_id *matches, 1138 const struct of_device_id **match) 1139{ 1140 struct device_node *np; 1141 const struct of_device_id *m; 1142 unsigned long flags; 1143 1144 if (match) 1145 *match = NULL; 1146 1147 raw_spin_lock_irqsave(&devtree_lock, flags); 1148 for_each_of_allnodes_from(from, np) { 1149 m = __of_match_node(matches, np); 1150 if (m && of_node_get(np)) { 1151 if (match) 1152 *match = m; 1153 break; 1154 } 1155 } 1156 of_node_put(from); 1157 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1158 return np; 1159} 1160EXPORT_SYMBOL(of_find_matching_node_and_match); 1161 1162/** 1163 * of_modalias_node - Lookup appropriate modalias for a device node 1164 * @node: pointer to a device tree node 1165 * @modalias: Pointer to buffer that modalias value will be copied into 1166 * @len: Length of modalias value 1167 * 1168 * Based on the value of the compatible property, this routine will attempt 1169 * to choose an appropriate modalias value for a particular device tree node. 1170 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1171 * from the first entry in the compatible list property. 1172 * 1173 * Return: This routine returns 0 on success, <0 on failure. 1174 */ 1175int of_modalias_node(struct device_node *node, char *modalias, int len) 1176{ 1177 const char *compatible, *p; 1178 int cplen; 1179 1180 compatible = of_get_property(node, "compatible", &cplen); 1181 if (!compatible || strlen(compatible) > cplen) 1182 return -ENODEV; 1183 p = strchr(compatible, ','); 1184 strlcpy(modalias, p ? p + 1 : compatible, len); 1185 return 0; 1186} 1187EXPORT_SYMBOL_GPL(of_modalias_node); 1188 1189/** 1190 * of_find_node_by_phandle - Find a node given a phandle 1191 * @handle: phandle of the node to find 1192 * 1193 * Return: A node pointer with refcount incremented, use 1194 * of_node_put() on it when done. 1195 */ 1196struct device_node *of_find_node_by_phandle(phandle handle) 1197{ 1198 struct device_node *np = NULL; 1199 unsigned long flags; 1200 u32 handle_hash; 1201 1202 if (!handle) 1203 return NULL; 1204 1205 handle_hash = of_phandle_cache_hash(handle); 1206 1207 raw_spin_lock_irqsave(&devtree_lock, flags); 1208 1209 if (phandle_cache[handle_hash] && 1210 handle == phandle_cache[handle_hash]->phandle) 1211 np = phandle_cache[handle_hash]; 1212 1213 if (!np) { 1214 for_each_of_allnodes(np) 1215 if (np->phandle == handle && 1216 !of_node_check_flag(np, OF_DETACHED)) { 1217 phandle_cache[handle_hash] = np; 1218 break; 1219 } 1220 } 1221 1222 of_node_get(np); 1223 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1224 return np; 1225} 1226EXPORT_SYMBOL(of_find_node_by_phandle); 1227 1228void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1229{ 1230 int i; 1231 printk("%s %pOF", msg, args->np); 1232 for (i = 0; i < args->args_count; i++) { 1233 const char delim = i ? ',' : ':'; 1234 1235 pr_cont("%c%08x", delim, args->args[i]); 1236 } 1237 pr_cont("\n"); 1238} 1239 1240int of_phandle_iterator_init(struct of_phandle_iterator *it, 1241 const struct device_node *np, 1242 const char *list_name, 1243 const char *cells_name, 1244 int cell_count) 1245{ 1246 const __be32 *list; 1247 int size; 1248 1249 memset(it, 0, sizeof(*it)); 1250 1251 /* 1252 * one of cell_count or cells_name must be provided to determine the 1253 * argument length. 1254 */ 1255 if (cell_count < 0 && !cells_name) 1256 return -EINVAL; 1257 1258 list = of_get_property(np, list_name, &size); 1259 if (!list) 1260 return -ENOENT; 1261 1262 it->cells_name = cells_name; 1263 it->cell_count = cell_count; 1264 it->parent = np; 1265 it->list_end = list + size / sizeof(*list); 1266 it->phandle_end = list; 1267 it->cur = list; 1268 1269 return 0; 1270} 1271EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1272 1273int of_phandle_iterator_next(struct of_phandle_iterator *it) 1274{ 1275 uint32_t count = 0; 1276 1277 if (it->node) { 1278 of_node_put(it->node); 1279 it->node = NULL; 1280 } 1281 1282 if (!it->cur || it->phandle_end >= it->list_end) 1283 return -ENOENT; 1284 1285 it->cur = it->phandle_end; 1286 1287 /* If phandle is 0, then it is an empty entry with no arguments. */ 1288 it->phandle = be32_to_cpup(it->cur++); 1289 1290 if (it->phandle) { 1291 1292 /* 1293 * Find the provider node and parse the #*-cells property to 1294 * determine the argument length. 1295 */ 1296 it->node = of_find_node_by_phandle(it->phandle); 1297 1298 if (it->cells_name) { 1299 if (!it->node) { 1300 pr_err("%pOF: could not find phandle\n", 1301 it->parent); 1302 goto err; 1303 } 1304 1305 if (of_property_read_u32(it->node, it->cells_name, 1306 &count)) { 1307 /* 1308 * If both cell_count and cells_name is given, 1309 * fall back to cell_count in absence 1310 * of the cells_name property 1311 */ 1312 if (it->cell_count >= 0) { 1313 count = it->cell_count; 1314 } else { 1315 pr_err("%pOF: could not get %s for %pOF\n", 1316 it->parent, 1317 it->cells_name, 1318 it->node); 1319 goto err; 1320 } 1321 } 1322 } else { 1323 count = it->cell_count; 1324 } 1325 1326 /* 1327 * Make sure that the arguments actually fit in the remaining 1328 * property data length 1329 */ 1330 if (it->cur + count > it->list_end) { 1331 if (it->cells_name) 1332 pr_err("%pOF: %s = %d found %td\n", 1333 it->parent, it->cells_name, 1334 count, it->list_end - it->cur); 1335 else 1336 pr_err("%pOF: phandle %s needs %d, found %td\n", 1337 it->parent, of_node_full_name(it->node), 1338 count, it->list_end - it->cur); 1339 goto err; 1340 } 1341 } 1342 1343 it->phandle_end = it->cur + count; 1344 it->cur_count = count; 1345 1346 return 0; 1347 1348err: 1349 if (it->node) { 1350 of_node_put(it->node); 1351 it->node = NULL; 1352 } 1353 1354 return -EINVAL; 1355} 1356EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1357 1358int of_phandle_iterator_args(struct of_phandle_iterator *it, 1359 uint32_t *args, 1360 int size) 1361{ 1362 int i, count; 1363 1364 count = it->cur_count; 1365 1366 if (WARN_ON(size < count)) 1367 count = size; 1368 1369 for (i = 0; i < count; i++) 1370 args[i] = be32_to_cpup(it->cur++); 1371 1372 return count; 1373} 1374 1375static int __of_parse_phandle_with_args(const struct device_node *np, 1376 const char *list_name, 1377 const char *cells_name, 1378 int cell_count, int index, 1379 struct of_phandle_args *out_args) 1380{ 1381 struct of_phandle_iterator it; 1382 int rc, cur_index = 0; 1383 1384 /* Loop over the phandles until all the requested entry is found */ 1385 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1386 /* 1387 * All of the error cases bail out of the loop, so at 1388 * this point, the parsing is successful. If the requested 1389 * index matches, then fill the out_args structure and return, 1390 * or return -ENOENT for an empty entry. 1391 */ 1392 rc = -ENOENT; 1393 if (cur_index == index) { 1394 if (!it.phandle) 1395 goto err; 1396 1397 if (out_args) { 1398 int c; 1399 1400 c = of_phandle_iterator_args(&it, 1401 out_args->args, 1402 MAX_PHANDLE_ARGS); 1403 out_args->np = it.node; 1404 out_args->args_count = c; 1405 } else { 1406 of_node_put(it.node); 1407 } 1408 1409 /* Found it! return success */ 1410 return 0; 1411 } 1412 1413 cur_index++; 1414 } 1415 1416 /* 1417 * Unlock node before returning result; will be one of: 1418 * -ENOENT : index is for empty phandle 1419 * -EINVAL : parsing error on data 1420 */ 1421 1422 err: 1423 of_node_put(it.node); 1424 return rc; 1425} 1426 1427/** 1428 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1429 * @np: Pointer to device node holding phandle property 1430 * @phandle_name: Name of property holding a phandle value 1431 * @index: For properties holding a table of phandles, this is the index into 1432 * the table 1433 * 1434 * Return: The device_node pointer with refcount incremented. Use 1435 * of_node_put() on it when done. 1436 */ 1437struct device_node *of_parse_phandle(const struct device_node *np, 1438 const char *phandle_name, int index) 1439{ 1440 struct of_phandle_args args; 1441 1442 if (index < 0) 1443 return NULL; 1444 1445 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1446 index, &args)) 1447 return NULL; 1448 1449 return args.np; 1450} 1451EXPORT_SYMBOL(of_parse_phandle); 1452 1453/** 1454 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1455 * @np: pointer to a device tree node containing a list 1456 * @list_name: property name that contains a list 1457 * @cells_name: property name that specifies phandles' arguments count 1458 * @index: index of a phandle to parse out 1459 * @out_args: optional pointer to output arguments structure (will be filled) 1460 * 1461 * This function is useful to parse lists of phandles and their arguments. 1462 * Returns 0 on success and fills out_args, on error returns appropriate 1463 * errno value. 1464 * 1465 * Caller is responsible to call of_node_put() on the returned out_args->np 1466 * pointer. 1467 * 1468 * Example:: 1469 * 1470 * phandle1: node1 { 1471 * #list-cells = <2>; 1472 * }; 1473 * 1474 * phandle2: node2 { 1475 * #list-cells = <1>; 1476 * }; 1477 * 1478 * node3 { 1479 * list = <&phandle1 1 2 &phandle2 3>; 1480 * }; 1481 * 1482 * To get a device_node of the ``node2`` node you may call this: 1483 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1484 */ 1485int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1486 const char *cells_name, int index, 1487 struct of_phandle_args *out_args) 1488{ 1489 int cell_count = -1; 1490 1491 if (index < 0) 1492 return -EINVAL; 1493 1494 /* If cells_name is NULL we assume a cell count of 0 */ 1495 if (!cells_name) 1496 cell_count = 0; 1497 1498 return __of_parse_phandle_with_args(np, list_name, cells_name, 1499 cell_count, index, out_args); 1500} 1501EXPORT_SYMBOL(of_parse_phandle_with_args); 1502 1503/** 1504 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1505 * @np: pointer to a device tree node containing a list 1506 * @list_name: property name that contains a list 1507 * @stem_name: stem of property names that specify phandles' arguments count 1508 * @index: index of a phandle to parse out 1509 * @out_args: optional pointer to output arguments structure (will be filled) 1510 * 1511 * This function is useful to parse lists of phandles and their arguments. 1512 * Returns 0 on success and fills out_args, on error returns appropriate errno 1513 * value. The difference between this function and of_parse_phandle_with_args() 1514 * is that this API remaps a phandle if the node the phandle points to has 1515 * a <@stem_name>-map property. 1516 * 1517 * Caller is responsible to call of_node_put() on the returned out_args->np 1518 * pointer. 1519 * 1520 * Example:: 1521 * 1522 * phandle1: node1 { 1523 * #list-cells = <2>; 1524 * }; 1525 * 1526 * phandle2: node2 { 1527 * #list-cells = <1>; 1528 * }; 1529 * 1530 * phandle3: node3 { 1531 * #list-cells = <1>; 1532 * list-map = <0 &phandle2 3>, 1533 * <1 &phandle2 2>, 1534 * <2 &phandle1 5 1>; 1535 * list-map-mask = <0x3>; 1536 * }; 1537 * 1538 * node4 { 1539 * list = <&phandle1 1 2 &phandle3 0>; 1540 * }; 1541 * 1542 * To get a device_node of the ``node2`` node you may call this: 1543 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1544 */ 1545int of_parse_phandle_with_args_map(const struct device_node *np, 1546 const char *list_name, 1547 const char *stem_name, 1548 int index, struct of_phandle_args *out_args) 1549{ 1550 char *cells_name, *map_name = NULL, *mask_name = NULL; 1551 char *pass_name = NULL; 1552 struct device_node *cur, *new = NULL; 1553 const __be32 *map, *mask, *pass; 1554 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1555 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1556 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1557 const __be32 *match_array = initial_match_array; 1558 int i, ret, map_len, match; 1559 u32 list_size, new_size; 1560 1561 if (index < 0) 1562 return -EINVAL; 1563 1564 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1565 if (!cells_name) 1566 return -ENOMEM; 1567 1568 ret = -ENOMEM; 1569 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1570 if (!map_name) 1571 goto free; 1572 1573 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1574 if (!mask_name) 1575 goto free; 1576 1577 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1578 if (!pass_name) 1579 goto free; 1580 1581 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1582 out_args); 1583 if (ret) 1584 goto free; 1585 1586 /* Get the #<list>-cells property */ 1587 cur = out_args->np; 1588 ret = of_property_read_u32(cur, cells_name, &list_size); 1589 if (ret < 0) 1590 goto put; 1591 1592 /* Precalculate the match array - this simplifies match loop */ 1593 for (i = 0; i < list_size; i++) 1594 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1595 1596 ret = -EINVAL; 1597 while (cur) { 1598 /* Get the <list>-map property */ 1599 map = of_get_property(cur, map_name, &map_len); 1600 if (!map) { 1601 ret = 0; 1602 goto free; 1603 } 1604 map_len /= sizeof(u32); 1605 1606 /* Get the <list>-map-mask property (optional) */ 1607 mask = of_get_property(cur, mask_name, NULL); 1608 if (!mask) 1609 mask = dummy_mask; 1610 /* Iterate through <list>-map property */ 1611 match = 0; 1612 while (map_len > (list_size + 1) && !match) { 1613 /* Compare specifiers */ 1614 match = 1; 1615 for (i = 0; i < list_size; i++, map_len--) 1616 match &= !((match_array[i] ^ *map++) & mask[i]); 1617 1618 of_node_put(new); 1619 new = of_find_node_by_phandle(be32_to_cpup(map)); 1620 map++; 1621 map_len--; 1622 1623 /* Check if not found */ 1624 if (!new) 1625 goto put; 1626 1627 if (!of_device_is_available(new)) 1628 match = 0; 1629 1630 ret = of_property_read_u32(new, cells_name, &new_size); 1631 if (ret) 1632 goto put; 1633 1634 /* Check for malformed properties */ 1635 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1636 goto put; 1637 if (map_len < new_size) 1638 goto put; 1639 1640 /* Move forward by new node's #<list>-cells amount */ 1641 map += new_size; 1642 map_len -= new_size; 1643 } 1644 if (!match) 1645 goto put; 1646 1647 /* Get the <list>-map-pass-thru property (optional) */ 1648 pass = of_get_property(cur, pass_name, NULL); 1649 if (!pass) 1650 pass = dummy_pass; 1651 1652 /* 1653 * Successfully parsed a <list>-map translation; copy new 1654 * specifier into the out_args structure, keeping the 1655 * bits specified in <list>-map-pass-thru. 1656 */ 1657 match_array = map - new_size; 1658 for (i = 0; i < new_size; i++) { 1659 __be32 val = *(map - new_size + i); 1660 1661 if (i < list_size) { 1662 val &= ~pass[i]; 1663 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1664 } 1665 1666 out_args->args[i] = be32_to_cpu(val); 1667 } 1668 out_args->args_count = list_size = new_size; 1669 /* Iterate again with new provider */ 1670 out_args->np = new; 1671 of_node_put(cur); 1672 cur = new; 1673 new = NULL; 1674 } 1675put: 1676 of_node_put(cur); 1677 of_node_put(new); 1678free: 1679 kfree(mask_name); 1680 kfree(map_name); 1681 kfree(cells_name); 1682 kfree(pass_name); 1683 1684 return ret; 1685} 1686EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1687 1688/** 1689 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1690 * @np: pointer to a device tree node containing a list 1691 * @list_name: property name that contains a list 1692 * @cell_count: number of argument cells following the phandle 1693 * @index: index of a phandle to parse out 1694 * @out_args: optional pointer to output arguments structure (will be filled) 1695 * 1696 * This function is useful to parse lists of phandles and their arguments. 1697 * Returns 0 on success and fills out_args, on error returns appropriate 1698 * errno value. 1699 * 1700 * Caller is responsible to call of_node_put() on the returned out_args->np 1701 * pointer. 1702 * 1703 * Example:: 1704 * 1705 * phandle1: node1 { 1706 * }; 1707 * 1708 * phandle2: node2 { 1709 * }; 1710 * 1711 * node3 { 1712 * list = <&phandle1 0 2 &phandle2 2 3>; 1713 * }; 1714 * 1715 * To get a device_node of the ``node2`` node you may call this: 1716 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1717 */ 1718int of_parse_phandle_with_fixed_args(const struct device_node *np, 1719 const char *list_name, int cell_count, 1720 int index, struct of_phandle_args *out_args) 1721{ 1722 if (index < 0) 1723 return -EINVAL; 1724 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1725 index, out_args); 1726} 1727EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1728 1729/** 1730 * of_count_phandle_with_args() - Find the number of phandles references in a property 1731 * @np: pointer to a device tree node containing a list 1732 * @list_name: property name that contains a list 1733 * @cells_name: property name that specifies phandles' arguments count 1734 * 1735 * Return: The number of phandle + argument tuples within a property. It 1736 * is a typical pattern to encode a list of phandle and variable 1737 * arguments into a single property. The number of arguments is encoded 1738 * by a property in the phandle-target node. For example, a gpios 1739 * property would contain a list of GPIO specifies consisting of a 1740 * phandle and 1 or more arguments. The number of arguments are 1741 * determined by the #gpio-cells property in the node pointed to by the 1742 * phandle. 1743 */ 1744int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1745 const char *cells_name) 1746{ 1747 struct of_phandle_iterator it; 1748 int rc, cur_index = 0; 1749 1750 /* 1751 * If cells_name is NULL we assume a cell count of 0. This makes 1752 * counting the phandles trivial as each 32bit word in the list is a 1753 * phandle and no arguments are to consider. So we don't iterate through 1754 * the list but just use the length to determine the phandle count. 1755 */ 1756 if (!cells_name) { 1757 const __be32 *list; 1758 int size; 1759 1760 list = of_get_property(np, list_name, &size); 1761 if (!list) 1762 return -ENOENT; 1763 1764 return size / sizeof(*list); 1765 } 1766 1767 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1768 if (rc) 1769 return rc; 1770 1771 while ((rc = of_phandle_iterator_next(&it)) == 0) 1772 cur_index += 1; 1773 1774 if (rc != -ENOENT) 1775 return rc; 1776 1777 return cur_index; 1778} 1779EXPORT_SYMBOL(of_count_phandle_with_args); 1780 1781/** 1782 * __of_add_property - Add a property to a node without lock operations 1783 * @np: Caller's Device Node 1784 * @prob: Property to add 1785 */ 1786int __of_add_property(struct device_node *np, struct property *prop) 1787{ 1788 struct property **next; 1789 1790 prop->next = NULL; 1791 next = &np->properties; 1792 while (*next) { 1793 if (strcmp(prop->name, (*next)->name) == 0) 1794 /* duplicate ! don't insert it */ 1795 return -EEXIST; 1796 1797 next = &(*next)->next; 1798 } 1799 *next = prop; 1800 1801 return 0; 1802} 1803 1804/** 1805 * of_add_property - Add a property to a node 1806 * @np: Caller's Device Node 1807 * @prob: Property to add 1808 */ 1809int of_add_property(struct device_node *np, struct property *prop) 1810{ 1811 unsigned long flags; 1812 int rc; 1813 1814 mutex_lock(&of_mutex); 1815 1816 raw_spin_lock_irqsave(&devtree_lock, flags); 1817 rc = __of_add_property(np, prop); 1818 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1819 1820 if (!rc) 1821 __of_add_property_sysfs(np, prop); 1822 1823 mutex_unlock(&of_mutex); 1824 1825 if (!rc) 1826 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1827 1828 return rc; 1829} 1830 1831int __of_remove_property(struct device_node *np, struct property *prop) 1832{ 1833 struct property **next; 1834 1835 for (next = &np->properties; *next; next = &(*next)->next) { 1836 if (*next == prop) 1837 break; 1838 } 1839 if (*next == NULL) 1840 return -ENODEV; 1841 1842 /* found the node */ 1843 *next = prop->next; 1844 prop->next = np->deadprops; 1845 np->deadprops = prop; 1846 1847 return 0; 1848} 1849 1850/** 1851 * of_remove_property - Remove a property from a node. 1852 * @np: Caller's Device Node 1853 * @prob: Property to remove 1854 * 1855 * Note that we don't actually remove it, since we have given out 1856 * who-knows-how-many pointers to the data using get-property. 1857 * Instead we just move the property to the "dead properties" 1858 * list, so it won't be found any more. 1859 */ 1860int of_remove_property(struct device_node *np, struct property *prop) 1861{ 1862 unsigned long flags; 1863 int rc; 1864 1865 if (!prop) 1866 return -ENODEV; 1867 1868 mutex_lock(&of_mutex); 1869 1870 raw_spin_lock_irqsave(&devtree_lock, flags); 1871 rc = __of_remove_property(np, prop); 1872 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1873 1874 if (!rc) 1875 __of_remove_property_sysfs(np, prop); 1876 1877 mutex_unlock(&of_mutex); 1878 1879 if (!rc) 1880 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1881 1882 return rc; 1883} 1884EXPORT_SYMBOL_GPL(of_remove_property); 1885 1886int __of_update_property(struct device_node *np, struct property *newprop, 1887 struct property **oldpropp) 1888{ 1889 struct property **next, *oldprop; 1890 1891 for (next = &np->properties; *next; next = &(*next)->next) { 1892 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1893 break; 1894 } 1895 *oldpropp = oldprop = *next; 1896 1897 if (oldprop) { 1898 /* replace the node */ 1899 newprop->next = oldprop->next; 1900 *next = newprop; 1901 oldprop->next = np->deadprops; 1902 np->deadprops = oldprop; 1903 } else { 1904 /* new node */ 1905 newprop->next = NULL; 1906 *next = newprop; 1907 } 1908 1909 return 0; 1910} 1911 1912/* 1913 * of_update_property - Update a property in a node, if the property does 1914 * not exist, add it. 1915 * 1916 * Note that we don't actually remove it, since we have given out 1917 * who-knows-how-many pointers to the data using get-property. 1918 * Instead we just move the property to the "dead properties" list, 1919 * and add the new property to the property list 1920 */ 1921int of_update_property(struct device_node *np, struct property *newprop) 1922{ 1923 struct property *oldprop; 1924 unsigned long flags; 1925 int rc; 1926 1927 if (!newprop->name) 1928 return -EINVAL; 1929 1930 mutex_lock(&of_mutex); 1931 1932 raw_spin_lock_irqsave(&devtree_lock, flags); 1933 rc = __of_update_property(np, newprop, &oldprop); 1934 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1935 1936 if (!rc) 1937 __of_update_property_sysfs(np, newprop, oldprop); 1938 1939 mutex_unlock(&of_mutex); 1940 1941 if (!rc) 1942 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1943 1944 return rc; 1945} 1946 1947static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1948 int id, const char *stem, int stem_len) 1949{ 1950 ap->np = np; 1951 ap->id = id; 1952 strncpy(ap->stem, stem, stem_len); 1953 ap->stem[stem_len] = 0; 1954 list_add_tail(&ap->link, &aliases_lookup); 1955 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1956 ap->alias, ap->stem, ap->id, np); 1957} 1958 1959/** 1960 * of_alias_scan - Scan all properties of the 'aliases' node 1961 * @dt_alloc: An allocator that provides a virtual address to memory 1962 * for storing the resulting tree 1963 * 1964 * The function scans all the properties of the 'aliases' node and populates 1965 * the global lookup table with the properties. It returns the 1966 * number of alias properties found, or an error code in case of failure. 1967 */ 1968void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1969{ 1970 struct property *pp; 1971 1972 of_aliases = of_find_node_by_path("/aliases"); 1973 of_chosen = of_find_node_by_path("/chosen"); 1974 if (of_chosen == NULL) 1975 of_chosen = of_find_node_by_path("/chosen@0"); 1976 1977 if (of_chosen) { 1978 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1979 const char *name = NULL; 1980 1981 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1982 of_property_read_string(of_chosen, "linux,stdout-path", 1983 &name); 1984 if (IS_ENABLED(CONFIG_PPC) && !name) 1985 of_property_read_string(of_aliases, "stdout", &name); 1986 if (name) 1987 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1988 } 1989 1990 if (!of_aliases) 1991 return; 1992 1993 for_each_property_of_node(of_aliases, pp) { 1994 const char *start = pp->name; 1995 const char *end = start + strlen(start); 1996 struct device_node *np; 1997 struct alias_prop *ap; 1998 int id, len; 1999 2000 /* Skip those we do not want to proceed */ 2001 if (!strcmp(pp->name, "name") || 2002 !strcmp(pp->name, "phandle") || 2003 !strcmp(pp->name, "linux,phandle")) 2004 continue; 2005 2006 np = of_find_node_by_path(pp->value); 2007 if (!np) 2008 continue; 2009 2010 /* walk the alias backwards to extract the id and work out 2011 * the 'stem' string */ 2012 while (isdigit(*(end-1)) && end > start) 2013 end--; 2014 len = end - start; 2015 2016 if (kstrtoint(end, 10, &id) < 0) 2017 continue; 2018 2019 /* Allocate an alias_prop with enough space for the stem */ 2020 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2021 if (!ap) 2022 continue; 2023 memset(ap, 0, sizeof(*ap) + len + 1); 2024 ap->alias = start; 2025 of_alias_add(ap, np, id, start, len); 2026 } 2027} 2028 2029/** 2030 * of_alias_get_id - Get alias id for the given device_node 2031 * @np: Pointer to the given device_node 2032 * @stem: Alias stem of the given device_node 2033 * 2034 * The function travels the lookup table to get the alias id for the given 2035 * device_node and alias stem. 2036 * 2037 * Return: The alias id if found. 2038 */ 2039int of_alias_get_id(struct device_node *np, const char *stem) 2040{ 2041 struct alias_prop *app; 2042 int id = -ENODEV; 2043 2044 mutex_lock(&of_mutex); 2045 list_for_each_entry(app, &aliases_lookup, link) { 2046 if (strcmp(app->stem, stem) != 0) 2047 continue; 2048 2049 if (np == app->np) { 2050 id = app->id; 2051 break; 2052 } 2053 } 2054 mutex_unlock(&of_mutex); 2055 2056 return id; 2057} 2058EXPORT_SYMBOL_GPL(of_alias_get_id); 2059 2060/** 2061 * of_alias_get_alias_list - Get alias list for the given device driver 2062 * @matches: Array of OF device match structures to search in 2063 * @stem: Alias stem of the given device_node 2064 * @bitmap: Bitmap field pointer 2065 * @nbits: Maximum number of alias IDs which can be recorded in bitmap 2066 * 2067 * The function travels the lookup table to record alias ids for the given 2068 * device match structures and alias stem. 2069 * 2070 * Return: 0 or -ENOSYS when !CONFIG_OF or 2071 * -EOVERFLOW if alias ID is greater then allocated nbits 2072 */ 2073int of_alias_get_alias_list(const struct of_device_id *matches, 2074 const char *stem, unsigned long *bitmap, 2075 unsigned int nbits) 2076{ 2077 struct alias_prop *app; 2078 int ret = 0; 2079 2080 /* Zero bitmap field to make sure that all the time it is clean */ 2081 bitmap_zero(bitmap, nbits); 2082 2083 mutex_lock(&of_mutex); 2084 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 2085 list_for_each_entry(app, &aliases_lookup, link) { 2086 pr_debug("%s: stem: %s, id: %d\n", 2087 __func__, app->stem, app->id); 2088 2089 if (strcmp(app->stem, stem) != 0) { 2090 pr_debug("%s: stem comparison didn't pass %s\n", 2091 __func__, app->stem); 2092 continue; 2093 } 2094 2095 if (of_match_node(matches, app->np)) { 2096 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 2097 2098 if (app->id >= nbits) { 2099 pr_warn("%s: ID %d >= than bitmap field %d\n", 2100 __func__, app->id, nbits); 2101 ret = -EOVERFLOW; 2102 } else { 2103 set_bit(app->id, bitmap); 2104 } 2105 } 2106 } 2107 mutex_unlock(&of_mutex); 2108 2109 return ret; 2110} 2111EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 2112 2113/** 2114 * of_alias_get_highest_id - Get highest alias id for the given stem 2115 * @stem: Alias stem to be examined 2116 * 2117 * The function travels the lookup table to get the highest alias id for the 2118 * given alias stem. It returns the alias id if found. 2119 */ 2120int of_alias_get_highest_id(const char *stem) 2121{ 2122 struct alias_prop *app; 2123 int id = -ENODEV; 2124 2125 mutex_lock(&of_mutex); 2126 list_for_each_entry(app, &aliases_lookup, link) { 2127 if (strcmp(app->stem, stem) != 0) 2128 continue; 2129 2130 if (app->id > id) 2131 id = app->id; 2132 } 2133 mutex_unlock(&of_mutex); 2134 2135 return id; 2136} 2137EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2138 2139/** 2140 * of_console_check() - Test and setup console for DT setup 2141 * @dn: Pointer to device node 2142 * @name: Name to use for preferred console without index. ex. "ttyS" 2143 * @index: Index to use for preferred console. 2144 * 2145 * Check if the given device node matches the stdout-path property in the 2146 * /chosen node. If it does then register it as the preferred console. 2147 * 2148 * Return: TRUE if console successfully setup. Otherwise return FALSE. 2149 */ 2150bool of_console_check(struct device_node *dn, char *name, int index) 2151{ 2152 if (!dn || dn != of_stdout || console_set_on_cmdline) 2153 return false; 2154 2155 /* 2156 * XXX: cast `options' to char pointer to suppress complication 2157 * warnings: printk, UART and console drivers expect char pointer. 2158 */ 2159 return !add_preferred_console(name, index, (char *)of_stdout_options); 2160} 2161EXPORT_SYMBOL_GPL(of_console_check); 2162 2163/** 2164 * of_find_next_cache_node - Find a node's subsidiary cache 2165 * @np: node of type "cpu" or "cache" 2166 * 2167 * Return: A node pointer with refcount incremented, use 2168 * of_node_put() on it when done. Caller should hold a reference 2169 * to np. 2170 */ 2171struct device_node *of_find_next_cache_node(const struct device_node *np) 2172{ 2173 struct device_node *child, *cache_node; 2174 2175 cache_node = of_parse_phandle(np, "l2-cache", 0); 2176 if (!cache_node) 2177 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2178 2179 if (cache_node) 2180 return cache_node; 2181 2182 /* OF on pmac has nodes instead of properties named "l2-cache" 2183 * beneath CPU nodes. 2184 */ 2185 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2186 for_each_child_of_node(np, child) 2187 if (of_node_is_type(child, "cache")) 2188 return child; 2189 2190 return NULL; 2191} 2192 2193/** 2194 * of_find_last_cache_level - Find the level at which the last cache is 2195 * present for the given logical cpu 2196 * 2197 * @cpu: cpu number(logical index) for which the last cache level is needed 2198 * 2199 * Return: The the level at which the last cache is present. It is exactly 2200 * same as the total number of cache levels for the given logical cpu. 2201 */ 2202int of_find_last_cache_level(unsigned int cpu) 2203{ 2204 u32 cache_level = 0; 2205 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2206 2207 while (np) { 2208 prev = np; 2209 of_node_put(np); 2210 np = of_find_next_cache_node(np); 2211 } 2212 2213 of_property_read_u32(prev, "cache-level", &cache_level); 2214 2215 return cache_level; 2216} 2217 2218/** 2219 * of_map_id - Translate an ID through a downstream mapping. 2220 * @np: root complex device node. 2221 * @id: device ID to map. 2222 * @map_name: property name of the map to use. 2223 * @map_mask_name: optional property name of the mask to use. 2224 * @target: optional pointer to a target device node. 2225 * @id_out: optional pointer to receive the translated ID. 2226 * 2227 * Given a device ID, look up the appropriate implementation-defined 2228 * platform ID and/or the target device which receives transactions on that 2229 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2230 * @id_out may be NULL if only the other is required. If @target points to 2231 * a non-NULL device node pointer, only entries targeting that node will be 2232 * matched; if it points to a NULL value, it will receive the device node of 2233 * the first matching target phandle, with a reference held. 2234 * 2235 * Return: 0 on success or a standard error code on failure. 2236 */ 2237int of_map_id(struct device_node *np, u32 id, 2238 const char *map_name, const char *map_mask_name, 2239 struct device_node **target, u32 *id_out) 2240{ 2241 u32 map_mask, masked_id; 2242 int map_len; 2243 const __be32 *map = NULL; 2244 2245 if (!np || !map_name || (!target && !id_out)) 2246 return -EINVAL; 2247 2248 map = of_get_property(np, map_name, &map_len); 2249 if (!map) { 2250 if (target) 2251 return -ENODEV; 2252 /* Otherwise, no map implies no translation */ 2253 *id_out = id; 2254 return 0; 2255 } 2256 2257 if (!map_len || map_len % (4 * sizeof(*map))) { 2258 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2259 map_name, map_len); 2260 return -EINVAL; 2261 } 2262 2263 /* The default is to select all bits. */ 2264 map_mask = 0xffffffff; 2265 2266 /* 2267 * Can be overridden by "{iommu,msi}-map-mask" property. 2268 * If of_property_read_u32() fails, the default is used. 2269 */ 2270 if (map_mask_name) 2271 of_property_read_u32(np, map_mask_name, &map_mask); 2272 2273 masked_id = map_mask & id; 2274 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2275 struct device_node *phandle_node; 2276 u32 id_base = be32_to_cpup(map + 0); 2277 u32 phandle = be32_to_cpup(map + 1); 2278 u32 out_base = be32_to_cpup(map + 2); 2279 u32 id_len = be32_to_cpup(map + 3); 2280 2281 if (id_base & ~map_mask) { 2282 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2283 np, map_name, map_name, 2284 map_mask, id_base); 2285 return -EFAULT; 2286 } 2287 2288 if (masked_id < id_base || masked_id >= id_base + id_len) 2289 continue; 2290 2291 phandle_node = of_find_node_by_phandle(phandle); 2292 if (!phandle_node) 2293 return -ENODEV; 2294 2295 if (target) { 2296 if (*target) 2297 of_node_put(phandle_node); 2298 else 2299 *target = phandle_node; 2300 2301 if (*target != phandle_node) 2302 continue; 2303 } 2304 2305 if (id_out) 2306 *id_out = masked_id - id_base + out_base; 2307 2308 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2309 np, map_name, map_mask, id_base, out_base, 2310 id_len, id, masked_id - id_base + out_base); 2311 return 0; 2312 } 2313 2314 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2315 id, target && *target ? *target : NULL); 2316 2317 /* Bypasses translation */ 2318 if (id_out) 2319 *id_out = id; 2320 return 0; 2321} 2322EXPORT_SYMBOL_GPL(of_map_id); 2323