1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/atomic.h>
8#include <linux/ctype.h>
9#include <linux/delay.h>
10#include <linux/err.h>
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/nvme.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16#include <linux/wait.h>
17#include <linux/inet.h>
18#include <asm/unaligned.h>
19
20#include <rdma/ib_verbs.h>
21#include <rdma/rdma_cm.h>
22#include <rdma/rw.h>
23#include <rdma/ib_cm.h>
24
25#include <linux/nvme-rdma.h>
26#include "nvmet.h"
27
28/*
29 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
30 */
31#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
32#define NVMET_RDMA_MAX_INLINE_SGE		4
33#define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
34
35/* Assume mpsmin == device_page_size == 4KB */
36#define NVMET_RDMA_MAX_MDTS			8
37#define NVMET_RDMA_MAX_METADATA_MDTS		5
38
39struct nvmet_rdma_srq;
40
41struct nvmet_rdma_cmd {
42	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
43	struct ib_cqe		cqe;
44	struct ib_recv_wr	wr;
45	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
46	struct nvme_command     *nvme_cmd;
47	struct nvmet_rdma_queue	*queue;
48	struct nvmet_rdma_srq   *nsrq;
49};
50
51enum {
52	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
53	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
54};
55
56struct nvmet_rdma_rsp {
57	struct ib_sge		send_sge;
58	struct ib_cqe		send_cqe;
59	struct ib_send_wr	send_wr;
60
61	struct nvmet_rdma_cmd	*cmd;
62	struct nvmet_rdma_queue	*queue;
63
64	struct ib_cqe		read_cqe;
65	struct ib_cqe		write_cqe;
66	struct rdma_rw_ctx	rw;
67
68	struct nvmet_req	req;
69
70	bool			allocated;
71	u8			n_rdma;
72	u32			flags;
73	u32			invalidate_rkey;
74
75	struct list_head	wait_list;
76	struct list_head	free_list;
77};
78
79enum nvmet_rdma_queue_state {
80	NVMET_RDMA_Q_CONNECTING,
81	NVMET_RDMA_Q_LIVE,
82	NVMET_RDMA_Q_DISCONNECTING,
83};
84
85struct nvmet_rdma_queue {
86	struct rdma_cm_id	*cm_id;
87	struct ib_qp		*qp;
88	struct nvmet_port	*port;
89	struct ib_cq		*cq;
90	atomic_t		sq_wr_avail;
91	struct nvmet_rdma_device *dev;
92	struct nvmet_rdma_srq   *nsrq;
93	spinlock_t		state_lock;
94	enum nvmet_rdma_queue_state state;
95	struct nvmet_cq		nvme_cq;
96	struct nvmet_sq		nvme_sq;
97
98	struct nvmet_rdma_rsp	*rsps;
99	struct list_head	free_rsps;
100	spinlock_t		rsps_lock;
101	struct nvmet_rdma_cmd	*cmds;
102
103	struct work_struct	release_work;
104	struct list_head	rsp_wait_list;
105	struct list_head	rsp_wr_wait_list;
106	spinlock_t		rsp_wr_wait_lock;
107
108	int			idx;
109	int			host_qid;
110	int			comp_vector;
111	int			recv_queue_size;
112	int			send_queue_size;
113
114	struct list_head	queue_list;
115};
116
117struct nvmet_rdma_port {
118	struct nvmet_port	*nport;
119	struct sockaddr_storage addr;
120	struct rdma_cm_id	*cm_id;
121	struct delayed_work	repair_work;
122};
123
124struct nvmet_rdma_srq {
125	struct ib_srq            *srq;
126	struct nvmet_rdma_cmd    *cmds;
127	struct nvmet_rdma_device *ndev;
128};
129
130struct nvmet_rdma_device {
131	struct ib_device	*device;
132	struct ib_pd		*pd;
133	struct nvmet_rdma_srq	**srqs;
134	int			srq_count;
135	size_t			srq_size;
136	struct kref		ref;
137	struct list_head	entry;
138	int			inline_data_size;
139	int			inline_page_count;
140};
141
142static bool nvmet_rdma_use_srq;
143module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
144MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
145
146static int srq_size_set(const char *val, const struct kernel_param *kp);
147static const struct kernel_param_ops srq_size_ops = {
148	.set = srq_size_set,
149	.get = param_get_int,
150};
151
152static int nvmet_rdma_srq_size = 1024;
153module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
154MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
155
156static DEFINE_IDA(nvmet_rdma_queue_ida);
157static LIST_HEAD(nvmet_rdma_queue_list);
158static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
159
160static LIST_HEAD(device_list);
161static DEFINE_MUTEX(device_list_mutex);
162
163static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
164static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
165static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
166static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
167static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
168static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
169static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
170static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
171				struct nvmet_rdma_rsp *r);
172static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
173				struct nvmet_rdma_rsp *r);
174
175static const struct nvmet_fabrics_ops nvmet_rdma_ops;
176
177static int srq_size_set(const char *val, const struct kernel_param *kp)
178{
179	int n = 0, ret;
180
181	ret = kstrtoint(val, 10, &n);
182	if (ret != 0 || n < 256)
183		return -EINVAL;
184
185	return param_set_int(val, kp);
186}
187
188static int num_pages(int len)
189{
190	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
191}
192
193static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
194{
195	return nvme_is_write(rsp->req.cmd) &&
196		rsp->req.transfer_len &&
197		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
198}
199
200static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
201{
202	return !nvme_is_write(rsp->req.cmd) &&
203		rsp->req.transfer_len &&
204		!rsp->req.cqe->status &&
205		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
206}
207
208static inline struct nvmet_rdma_rsp *
209nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
210{
211	struct nvmet_rdma_rsp *rsp;
212	unsigned long flags;
213
214	spin_lock_irqsave(&queue->rsps_lock, flags);
215	rsp = list_first_entry_or_null(&queue->free_rsps,
216				struct nvmet_rdma_rsp, free_list);
217	if (likely(rsp))
218		list_del(&rsp->free_list);
219	spin_unlock_irqrestore(&queue->rsps_lock, flags);
220
221	if (unlikely(!rsp)) {
222		int ret;
223
224		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
225		if (unlikely(!rsp))
226			return NULL;
227		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
228		if (unlikely(ret)) {
229			kfree(rsp);
230			return NULL;
231		}
232
233		rsp->allocated = true;
234	}
235
236	return rsp;
237}
238
239static inline void
240nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
241{
242	unsigned long flags;
243
244	if (unlikely(rsp->allocated)) {
245		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
246		kfree(rsp);
247		return;
248	}
249
250	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
251	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
252	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
253}
254
255static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
256				struct nvmet_rdma_cmd *c)
257{
258	struct scatterlist *sg;
259	struct ib_sge *sge;
260	int i;
261
262	if (!ndev->inline_data_size)
263		return;
264
265	sg = c->inline_sg;
266	sge = &c->sge[1];
267
268	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
269		if (sge->length)
270			ib_dma_unmap_page(ndev->device, sge->addr,
271					sge->length, DMA_FROM_DEVICE);
272		if (sg_page(sg))
273			__free_page(sg_page(sg));
274	}
275}
276
277static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
278				struct nvmet_rdma_cmd *c)
279{
280	struct scatterlist *sg;
281	struct ib_sge *sge;
282	struct page *pg;
283	int len;
284	int i;
285
286	if (!ndev->inline_data_size)
287		return 0;
288
289	sg = c->inline_sg;
290	sg_init_table(sg, ndev->inline_page_count);
291	sge = &c->sge[1];
292	len = ndev->inline_data_size;
293
294	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
295		pg = alloc_page(GFP_KERNEL);
296		if (!pg)
297			goto out_err;
298		sg_assign_page(sg, pg);
299		sge->addr = ib_dma_map_page(ndev->device,
300			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
301		if (ib_dma_mapping_error(ndev->device, sge->addr))
302			goto out_err;
303		sge->length = min_t(int, len, PAGE_SIZE);
304		sge->lkey = ndev->pd->local_dma_lkey;
305		len -= sge->length;
306	}
307
308	return 0;
309out_err:
310	for (; i >= 0; i--, sg--, sge--) {
311		if (sge->length)
312			ib_dma_unmap_page(ndev->device, sge->addr,
313					sge->length, DMA_FROM_DEVICE);
314		if (sg_page(sg))
315			__free_page(sg_page(sg));
316	}
317	return -ENOMEM;
318}
319
320static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
321			struct nvmet_rdma_cmd *c, bool admin)
322{
323	/* NVMe command / RDMA RECV */
324	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
325	if (!c->nvme_cmd)
326		goto out;
327
328	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
329			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
330	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
331		goto out_free_cmd;
332
333	c->sge[0].length = sizeof(*c->nvme_cmd);
334	c->sge[0].lkey = ndev->pd->local_dma_lkey;
335
336	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
337		goto out_unmap_cmd;
338
339	c->cqe.done = nvmet_rdma_recv_done;
340
341	c->wr.wr_cqe = &c->cqe;
342	c->wr.sg_list = c->sge;
343	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
344
345	return 0;
346
347out_unmap_cmd:
348	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
349			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
350out_free_cmd:
351	kfree(c->nvme_cmd);
352
353out:
354	return -ENOMEM;
355}
356
357static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
358		struct nvmet_rdma_cmd *c, bool admin)
359{
360	if (!admin)
361		nvmet_rdma_free_inline_pages(ndev, c);
362	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
363				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
364	kfree(c->nvme_cmd);
365}
366
367static struct nvmet_rdma_cmd *
368nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
369		int nr_cmds, bool admin)
370{
371	struct nvmet_rdma_cmd *cmds;
372	int ret = -EINVAL, i;
373
374	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
375	if (!cmds)
376		goto out;
377
378	for (i = 0; i < nr_cmds; i++) {
379		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
380		if (ret)
381			goto out_free;
382	}
383
384	return cmds;
385
386out_free:
387	while (--i >= 0)
388		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
389	kfree(cmds);
390out:
391	return ERR_PTR(ret);
392}
393
394static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
395		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
396{
397	int i;
398
399	for (i = 0; i < nr_cmds; i++)
400		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
401	kfree(cmds);
402}
403
404static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
405		struct nvmet_rdma_rsp *r)
406{
407	/* NVMe CQE / RDMA SEND */
408	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
409	if (!r->req.cqe)
410		goto out;
411
412	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
413			sizeof(*r->req.cqe), DMA_TO_DEVICE);
414	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
415		goto out_free_rsp;
416
417	if (!ib_uses_virt_dma(ndev->device))
418		r->req.p2p_client = &ndev->device->dev;
419	r->send_sge.length = sizeof(*r->req.cqe);
420	r->send_sge.lkey = ndev->pd->local_dma_lkey;
421
422	r->send_cqe.done = nvmet_rdma_send_done;
423
424	r->send_wr.wr_cqe = &r->send_cqe;
425	r->send_wr.sg_list = &r->send_sge;
426	r->send_wr.num_sge = 1;
427	r->send_wr.send_flags = IB_SEND_SIGNALED;
428
429	/* Data In / RDMA READ */
430	r->read_cqe.done = nvmet_rdma_read_data_done;
431	/* Data Out / RDMA WRITE */
432	r->write_cqe.done = nvmet_rdma_write_data_done;
433
434	return 0;
435
436out_free_rsp:
437	kfree(r->req.cqe);
438out:
439	return -ENOMEM;
440}
441
442static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
443		struct nvmet_rdma_rsp *r)
444{
445	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
446				sizeof(*r->req.cqe), DMA_TO_DEVICE);
447	kfree(r->req.cqe);
448}
449
450static int
451nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
452{
453	struct nvmet_rdma_device *ndev = queue->dev;
454	int nr_rsps = queue->recv_queue_size * 2;
455	int ret = -EINVAL, i;
456
457	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
458			GFP_KERNEL);
459	if (!queue->rsps)
460		goto out;
461
462	for (i = 0; i < nr_rsps; i++) {
463		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
464
465		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
466		if (ret)
467			goto out_free;
468
469		list_add_tail(&rsp->free_list, &queue->free_rsps);
470	}
471
472	return 0;
473
474out_free:
475	while (--i >= 0) {
476		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
477
478		list_del(&rsp->free_list);
479		nvmet_rdma_free_rsp(ndev, rsp);
480	}
481	kfree(queue->rsps);
482out:
483	return ret;
484}
485
486static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
487{
488	struct nvmet_rdma_device *ndev = queue->dev;
489	int i, nr_rsps = queue->recv_queue_size * 2;
490
491	for (i = 0; i < nr_rsps; i++) {
492		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
493
494		list_del(&rsp->free_list);
495		nvmet_rdma_free_rsp(ndev, rsp);
496	}
497	kfree(queue->rsps);
498}
499
500static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
501		struct nvmet_rdma_cmd *cmd)
502{
503	int ret;
504
505	ib_dma_sync_single_for_device(ndev->device,
506		cmd->sge[0].addr, cmd->sge[0].length,
507		DMA_FROM_DEVICE);
508
509	if (cmd->nsrq)
510		ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
511	else
512		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
513
514	if (unlikely(ret))
515		pr_err("post_recv cmd failed\n");
516
517	return ret;
518}
519
520static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
521{
522	spin_lock(&queue->rsp_wr_wait_lock);
523	while (!list_empty(&queue->rsp_wr_wait_list)) {
524		struct nvmet_rdma_rsp *rsp;
525		bool ret;
526
527		rsp = list_entry(queue->rsp_wr_wait_list.next,
528				struct nvmet_rdma_rsp, wait_list);
529		list_del(&rsp->wait_list);
530
531		spin_unlock(&queue->rsp_wr_wait_lock);
532		ret = nvmet_rdma_execute_command(rsp);
533		spin_lock(&queue->rsp_wr_wait_lock);
534
535		if (!ret) {
536			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
537			break;
538		}
539	}
540	spin_unlock(&queue->rsp_wr_wait_lock);
541}
542
543static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
544{
545	struct ib_mr_status mr_status;
546	int ret;
547	u16 status = 0;
548
549	ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
550	if (ret) {
551		pr_err("ib_check_mr_status failed, ret %d\n", ret);
552		return NVME_SC_INVALID_PI;
553	}
554
555	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
556		switch (mr_status.sig_err.err_type) {
557		case IB_SIG_BAD_GUARD:
558			status = NVME_SC_GUARD_CHECK;
559			break;
560		case IB_SIG_BAD_REFTAG:
561			status = NVME_SC_REFTAG_CHECK;
562			break;
563		case IB_SIG_BAD_APPTAG:
564			status = NVME_SC_APPTAG_CHECK;
565			break;
566		}
567		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
568		       mr_status.sig_err.err_type,
569		       mr_status.sig_err.expected,
570		       mr_status.sig_err.actual);
571	}
572
573	return status;
574}
575
576static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
577		struct nvme_command *cmd, struct ib_sig_domain *domain,
578		u16 control, u8 pi_type)
579{
580	domain->sig_type = IB_SIG_TYPE_T10_DIF;
581	domain->sig.dif.bg_type = IB_T10DIF_CRC;
582	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
583	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
584	if (control & NVME_RW_PRINFO_PRCHK_REF)
585		domain->sig.dif.ref_remap = true;
586
587	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
588	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
589	domain->sig.dif.app_escape = true;
590	if (pi_type == NVME_NS_DPS_PI_TYPE3)
591		domain->sig.dif.ref_escape = true;
592}
593
594static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
595				     struct ib_sig_attrs *sig_attrs)
596{
597	struct nvme_command *cmd = req->cmd;
598	u16 control = le16_to_cpu(cmd->rw.control);
599	u8 pi_type = req->ns->pi_type;
600	struct blk_integrity *bi;
601
602	bi = bdev_get_integrity(req->ns->bdev);
603
604	memset(sig_attrs, 0, sizeof(*sig_attrs));
605
606	if (control & NVME_RW_PRINFO_PRACT) {
607		/* for WRITE_INSERT/READ_STRIP no wire domain */
608		sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
609		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
610					  pi_type);
611		/* Clear the PRACT bit since HCA will generate/verify the PI */
612		control &= ~NVME_RW_PRINFO_PRACT;
613		cmd->rw.control = cpu_to_le16(control);
614		/* PI is added by the HW */
615		req->transfer_len += req->metadata_len;
616	} else {
617		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
618		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
619					  pi_type);
620		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
621					  pi_type);
622	}
623
624	if (control & NVME_RW_PRINFO_PRCHK_REF)
625		sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
626	if (control & NVME_RW_PRINFO_PRCHK_GUARD)
627		sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
628	if (control & NVME_RW_PRINFO_PRCHK_APP)
629		sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
630}
631
632static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
633				  struct ib_sig_attrs *sig_attrs)
634{
635	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
636	struct nvmet_req *req = &rsp->req;
637	int ret;
638
639	if (req->metadata_len)
640		ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
641			cm_id->port_num, req->sg, req->sg_cnt,
642			req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
643			addr, key, nvmet_data_dir(req));
644	else
645		ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
646				       req->sg, req->sg_cnt, 0, addr, key,
647				       nvmet_data_dir(req));
648
649	return ret;
650}
651
652static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
653{
654	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
655	struct nvmet_req *req = &rsp->req;
656
657	if (req->metadata_len)
658		rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
659			cm_id->port_num, req->sg, req->sg_cnt,
660			req->metadata_sg, req->metadata_sg_cnt,
661			nvmet_data_dir(req));
662	else
663		rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
664				    req->sg, req->sg_cnt, nvmet_data_dir(req));
665}
666
667static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
668{
669	struct nvmet_rdma_queue *queue = rsp->queue;
670
671	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
672
673	if (rsp->n_rdma)
674		nvmet_rdma_rw_ctx_destroy(rsp);
675
676	if (rsp->req.sg != rsp->cmd->inline_sg)
677		nvmet_req_free_sgls(&rsp->req);
678
679	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
680		nvmet_rdma_process_wr_wait_list(queue);
681
682	nvmet_rdma_put_rsp(rsp);
683}
684
685static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
686{
687	if (queue->nvme_sq.ctrl) {
688		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
689	} else {
690		/*
691		 * we didn't setup the controller yet in case
692		 * of admin connect error, just disconnect and
693		 * cleanup the queue
694		 */
695		nvmet_rdma_queue_disconnect(queue);
696	}
697}
698
699static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
700{
701	struct nvmet_rdma_rsp *rsp =
702		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
703	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
704
705	nvmet_rdma_release_rsp(rsp);
706
707	if (unlikely(wc->status != IB_WC_SUCCESS &&
708		     wc->status != IB_WC_WR_FLUSH_ERR)) {
709		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
710			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
711		nvmet_rdma_error_comp(queue);
712	}
713}
714
715static void nvmet_rdma_queue_response(struct nvmet_req *req)
716{
717	struct nvmet_rdma_rsp *rsp =
718		container_of(req, struct nvmet_rdma_rsp, req);
719	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
720	struct ib_send_wr *first_wr;
721
722	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
723		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
724		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
725	} else {
726		rsp->send_wr.opcode = IB_WR_SEND;
727	}
728
729	if (nvmet_rdma_need_data_out(rsp)) {
730		if (rsp->req.metadata_len)
731			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
732					cm_id->port_num, &rsp->write_cqe, NULL);
733		else
734			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
735					cm_id->port_num, NULL, &rsp->send_wr);
736	} else {
737		first_wr = &rsp->send_wr;
738	}
739
740	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
741
742	ib_dma_sync_single_for_device(rsp->queue->dev->device,
743		rsp->send_sge.addr, rsp->send_sge.length,
744		DMA_TO_DEVICE);
745
746	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
747		pr_err("sending cmd response failed\n");
748		nvmet_rdma_release_rsp(rsp);
749	}
750}
751
752static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
753{
754	struct nvmet_rdma_rsp *rsp =
755		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
756	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
757	u16 status = 0;
758
759	WARN_ON(rsp->n_rdma <= 0);
760	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
761	rsp->n_rdma = 0;
762
763	if (unlikely(wc->status != IB_WC_SUCCESS)) {
764		nvmet_rdma_rw_ctx_destroy(rsp);
765		nvmet_req_uninit(&rsp->req);
766		nvmet_rdma_release_rsp(rsp);
767		if (wc->status != IB_WC_WR_FLUSH_ERR) {
768			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
769				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
770			nvmet_rdma_error_comp(queue);
771		}
772		return;
773	}
774
775	if (rsp->req.metadata_len)
776		status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
777	nvmet_rdma_rw_ctx_destroy(rsp);
778
779	if (unlikely(status))
780		nvmet_req_complete(&rsp->req, status);
781	else
782		rsp->req.execute(&rsp->req);
783}
784
785static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
786{
787	struct nvmet_rdma_rsp *rsp =
788		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
789	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
790	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
791	u16 status;
792
793	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
794		return;
795
796	WARN_ON(rsp->n_rdma <= 0);
797	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
798	rsp->n_rdma = 0;
799
800	if (unlikely(wc->status != IB_WC_SUCCESS)) {
801		nvmet_rdma_rw_ctx_destroy(rsp);
802		nvmet_req_uninit(&rsp->req);
803		nvmet_rdma_release_rsp(rsp);
804		if (wc->status != IB_WC_WR_FLUSH_ERR) {
805			pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
806				ib_wc_status_msg(wc->status), wc->status);
807			nvmet_rdma_error_comp(queue);
808		}
809		return;
810	}
811
812	/*
813	 * Upon RDMA completion check the signature status
814	 * - if succeeded send good NVMe response
815	 * - if failed send bad NVMe response with appropriate error
816	 */
817	status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
818	if (unlikely(status))
819		rsp->req.cqe->status = cpu_to_le16(status << 1);
820	nvmet_rdma_rw_ctx_destroy(rsp);
821
822	if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
823		pr_err("sending cmd response failed\n");
824		nvmet_rdma_release_rsp(rsp);
825	}
826}
827
828static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
829		u64 off)
830{
831	int sg_count = num_pages(len);
832	struct scatterlist *sg;
833	int i;
834
835	sg = rsp->cmd->inline_sg;
836	for (i = 0; i < sg_count; i++, sg++) {
837		if (i < sg_count - 1)
838			sg_unmark_end(sg);
839		else
840			sg_mark_end(sg);
841		sg->offset = off;
842		sg->length = min_t(int, len, PAGE_SIZE - off);
843		len -= sg->length;
844		if (!i)
845			off = 0;
846	}
847
848	rsp->req.sg = rsp->cmd->inline_sg;
849	rsp->req.sg_cnt = sg_count;
850}
851
852static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
853{
854	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
855	u64 off = le64_to_cpu(sgl->addr);
856	u32 len = le32_to_cpu(sgl->length);
857
858	if (!nvme_is_write(rsp->req.cmd)) {
859		rsp->req.error_loc =
860			offsetof(struct nvme_common_command, opcode);
861		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
862	}
863
864	if (off + len > rsp->queue->dev->inline_data_size) {
865		pr_err("invalid inline data offset!\n");
866		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
867	}
868
869	/* no data command? */
870	if (!len)
871		return 0;
872
873	nvmet_rdma_use_inline_sg(rsp, len, off);
874	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
875	rsp->req.transfer_len += len;
876	return 0;
877}
878
879static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
880		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
881{
882	u64 addr = le64_to_cpu(sgl->addr);
883	u32 key = get_unaligned_le32(sgl->key);
884	struct ib_sig_attrs sig_attrs;
885	int ret;
886
887	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
888
889	/* no data command? */
890	if (!rsp->req.transfer_len)
891		return 0;
892
893	if (rsp->req.metadata_len)
894		nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
895
896	ret = nvmet_req_alloc_sgls(&rsp->req);
897	if (unlikely(ret < 0))
898		goto error_out;
899
900	ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
901	if (unlikely(ret < 0))
902		goto error_out;
903	rsp->n_rdma += ret;
904
905	if (invalidate) {
906		rsp->invalidate_rkey = key;
907		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
908	}
909
910	return 0;
911
912error_out:
913	rsp->req.transfer_len = 0;
914	return NVME_SC_INTERNAL;
915}
916
917static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
918{
919	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
920
921	switch (sgl->type >> 4) {
922	case NVME_SGL_FMT_DATA_DESC:
923		switch (sgl->type & 0xf) {
924		case NVME_SGL_FMT_OFFSET:
925			return nvmet_rdma_map_sgl_inline(rsp);
926		default:
927			pr_err("invalid SGL subtype: %#x\n", sgl->type);
928			rsp->req.error_loc =
929				offsetof(struct nvme_common_command, dptr);
930			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
931		}
932	case NVME_KEY_SGL_FMT_DATA_DESC:
933		switch (sgl->type & 0xf) {
934		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
935			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
936		case NVME_SGL_FMT_ADDRESS:
937			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
938		default:
939			pr_err("invalid SGL subtype: %#x\n", sgl->type);
940			rsp->req.error_loc =
941				offsetof(struct nvme_common_command, dptr);
942			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
943		}
944	default:
945		pr_err("invalid SGL type: %#x\n", sgl->type);
946		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
947		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
948	}
949}
950
951static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
952{
953	struct nvmet_rdma_queue *queue = rsp->queue;
954
955	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
956			&queue->sq_wr_avail) < 0)) {
957		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
958				1 + rsp->n_rdma, queue->idx,
959				queue->nvme_sq.ctrl->cntlid);
960		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
961		return false;
962	}
963
964	if (nvmet_rdma_need_data_in(rsp)) {
965		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
966				queue->cm_id->port_num, &rsp->read_cqe, NULL))
967			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
968	} else {
969		rsp->req.execute(&rsp->req);
970	}
971
972	return true;
973}
974
975static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
976		struct nvmet_rdma_rsp *cmd)
977{
978	u16 status;
979
980	ib_dma_sync_single_for_cpu(queue->dev->device,
981		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
982		DMA_FROM_DEVICE);
983	ib_dma_sync_single_for_cpu(queue->dev->device,
984		cmd->send_sge.addr, cmd->send_sge.length,
985		DMA_TO_DEVICE);
986
987	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
988			&queue->nvme_sq, &nvmet_rdma_ops))
989		return;
990
991	status = nvmet_rdma_map_sgl(cmd);
992	if (status)
993		goto out_err;
994
995	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
996		spin_lock(&queue->rsp_wr_wait_lock);
997		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
998		spin_unlock(&queue->rsp_wr_wait_lock);
999	}
1000
1001	return;
1002
1003out_err:
1004	nvmet_req_complete(&cmd->req, status);
1005}
1006
1007static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1008{
1009	struct nvmet_rdma_cmd *cmd =
1010		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1011	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1012	struct nvmet_rdma_rsp *rsp;
1013
1014	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1016			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1017				wc->wr_cqe, ib_wc_status_msg(wc->status),
1018				wc->status);
1019			nvmet_rdma_error_comp(queue);
1020		}
1021		return;
1022	}
1023
1024	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1025		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1026		nvmet_rdma_error_comp(queue);
1027		return;
1028	}
1029
1030	cmd->queue = queue;
1031	rsp = nvmet_rdma_get_rsp(queue);
1032	if (unlikely(!rsp)) {
1033		/*
1034		 * we get here only under memory pressure,
1035		 * silently drop and have the host retry
1036		 * as we can't even fail it.
1037		 */
1038		nvmet_rdma_post_recv(queue->dev, cmd);
1039		return;
1040	}
1041	rsp->queue = queue;
1042	rsp->cmd = cmd;
1043	rsp->flags = 0;
1044	rsp->req.cmd = cmd->nvme_cmd;
1045	rsp->req.port = queue->port;
1046	rsp->n_rdma = 0;
1047
1048	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1049		unsigned long flags;
1050
1051		spin_lock_irqsave(&queue->state_lock, flags);
1052		if (queue->state == NVMET_RDMA_Q_CONNECTING)
1053			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1054		else
1055			nvmet_rdma_put_rsp(rsp);
1056		spin_unlock_irqrestore(&queue->state_lock, flags);
1057		return;
1058	}
1059
1060	nvmet_rdma_handle_command(queue, rsp);
1061}
1062
1063static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1064{
1065	nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1066			     false);
1067	ib_destroy_srq(nsrq->srq);
1068
1069	kfree(nsrq);
1070}
1071
1072static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1073{
1074	int i;
1075
1076	if (!ndev->srqs)
1077		return;
1078
1079	for (i = 0; i < ndev->srq_count; i++)
1080		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1081
1082	kfree(ndev->srqs);
1083}
1084
1085static struct nvmet_rdma_srq *
1086nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1087{
1088	struct ib_srq_init_attr srq_attr = { NULL, };
1089	size_t srq_size = ndev->srq_size;
1090	struct nvmet_rdma_srq *nsrq;
1091	struct ib_srq *srq;
1092	int ret, i;
1093
1094	nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1095	if (!nsrq)
1096		return ERR_PTR(-ENOMEM);
1097
1098	srq_attr.attr.max_wr = srq_size;
1099	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1100	srq_attr.attr.srq_limit = 0;
1101	srq_attr.srq_type = IB_SRQT_BASIC;
1102	srq = ib_create_srq(ndev->pd, &srq_attr);
1103	if (IS_ERR(srq)) {
1104		ret = PTR_ERR(srq);
1105		goto out_free;
1106	}
1107
1108	nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1109	if (IS_ERR(nsrq->cmds)) {
1110		ret = PTR_ERR(nsrq->cmds);
1111		goto out_destroy_srq;
1112	}
1113
1114	nsrq->srq = srq;
1115	nsrq->ndev = ndev;
1116
1117	for (i = 0; i < srq_size; i++) {
1118		nsrq->cmds[i].nsrq = nsrq;
1119		ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1120		if (ret)
1121			goto out_free_cmds;
1122	}
1123
1124	return nsrq;
1125
1126out_free_cmds:
1127	nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1128out_destroy_srq:
1129	ib_destroy_srq(srq);
1130out_free:
1131	kfree(nsrq);
1132	return ERR_PTR(ret);
1133}
1134
1135static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1136{
1137	int i, ret;
1138
1139	if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1140		/*
1141		 * If SRQs aren't supported we just go ahead and use normal
1142		 * non-shared receive queues.
1143		 */
1144		pr_info("SRQ requested but not supported.\n");
1145		return 0;
1146	}
1147
1148	ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1149			     nvmet_rdma_srq_size);
1150	ndev->srq_count = min(ndev->device->num_comp_vectors,
1151			      ndev->device->attrs.max_srq);
1152
1153	ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1154	if (!ndev->srqs)
1155		return -ENOMEM;
1156
1157	for (i = 0; i < ndev->srq_count; i++) {
1158		ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1159		if (IS_ERR(ndev->srqs[i])) {
1160			ret = PTR_ERR(ndev->srqs[i]);
1161			goto err_srq;
1162		}
1163	}
1164
1165	return 0;
1166
1167err_srq:
1168	while (--i >= 0)
1169		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1170	kfree(ndev->srqs);
1171	return ret;
1172}
1173
1174static void nvmet_rdma_free_dev(struct kref *ref)
1175{
1176	struct nvmet_rdma_device *ndev =
1177		container_of(ref, struct nvmet_rdma_device, ref);
1178
1179	mutex_lock(&device_list_mutex);
1180	list_del(&ndev->entry);
1181	mutex_unlock(&device_list_mutex);
1182
1183	nvmet_rdma_destroy_srqs(ndev);
1184	ib_dealloc_pd(ndev->pd);
1185
1186	kfree(ndev);
1187}
1188
1189static struct nvmet_rdma_device *
1190nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1191{
1192	struct nvmet_rdma_port *port = cm_id->context;
1193	struct nvmet_port *nport = port->nport;
1194	struct nvmet_rdma_device *ndev;
1195	int inline_page_count;
1196	int inline_sge_count;
1197	int ret;
1198
1199	mutex_lock(&device_list_mutex);
1200	list_for_each_entry(ndev, &device_list, entry) {
1201		if (ndev->device->node_guid == cm_id->device->node_guid &&
1202		    kref_get_unless_zero(&ndev->ref))
1203			goto out_unlock;
1204	}
1205
1206	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1207	if (!ndev)
1208		goto out_err;
1209
1210	inline_page_count = num_pages(nport->inline_data_size);
1211	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1212				cm_id->device->attrs.max_recv_sge) - 1;
1213	if (inline_page_count > inline_sge_count) {
1214		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1215			nport->inline_data_size, cm_id->device->name,
1216			inline_sge_count * PAGE_SIZE);
1217		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1218		inline_page_count = inline_sge_count;
1219	}
1220	ndev->inline_data_size = nport->inline_data_size;
1221	ndev->inline_page_count = inline_page_count;
1222
1223	if (nport->pi_enable && !(cm_id->device->attrs.device_cap_flags &
1224				  IB_DEVICE_INTEGRITY_HANDOVER)) {
1225		pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1226			cm_id->device->name);
1227		nport->pi_enable = false;
1228	}
1229
1230	ndev->device = cm_id->device;
1231	kref_init(&ndev->ref);
1232
1233	ndev->pd = ib_alloc_pd(ndev->device, 0);
1234	if (IS_ERR(ndev->pd))
1235		goto out_free_dev;
1236
1237	if (nvmet_rdma_use_srq) {
1238		ret = nvmet_rdma_init_srqs(ndev);
1239		if (ret)
1240			goto out_free_pd;
1241	}
1242
1243	list_add(&ndev->entry, &device_list);
1244out_unlock:
1245	mutex_unlock(&device_list_mutex);
1246	pr_debug("added %s.\n", ndev->device->name);
1247	return ndev;
1248
1249out_free_pd:
1250	ib_dealloc_pd(ndev->pd);
1251out_free_dev:
1252	kfree(ndev);
1253out_err:
1254	mutex_unlock(&device_list_mutex);
1255	return NULL;
1256}
1257
1258static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1259{
1260	struct ib_qp_init_attr qp_attr;
1261	struct nvmet_rdma_device *ndev = queue->dev;
1262	int nr_cqe, ret, i, factor;
1263
1264	/*
1265	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1266	 */
1267	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1268
1269	queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1270				   queue->comp_vector, IB_POLL_WORKQUEUE);
1271	if (IS_ERR(queue->cq)) {
1272		ret = PTR_ERR(queue->cq);
1273		pr_err("failed to create CQ cqe= %d ret= %d\n",
1274		       nr_cqe + 1, ret);
1275		goto out;
1276	}
1277
1278	memset(&qp_attr, 0, sizeof(qp_attr));
1279	qp_attr.qp_context = queue;
1280	qp_attr.event_handler = nvmet_rdma_qp_event;
1281	qp_attr.send_cq = queue->cq;
1282	qp_attr.recv_cq = queue->cq;
1283	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1284	qp_attr.qp_type = IB_QPT_RC;
1285	/* +1 for drain */
1286	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1287	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1288				   1 << NVMET_RDMA_MAX_MDTS);
1289	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1290	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1291					ndev->device->attrs.max_send_sge);
1292
1293	if (queue->nsrq) {
1294		qp_attr.srq = queue->nsrq->srq;
1295	} else {
1296		/* +1 for drain */
1297		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1298		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1299	}
1300
1301	if (queue->port->pi_enable && queue->host_qid)
1302		qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1303
1304	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1305	if (ret) {
1306		pr_err("failed to create_qp ret= %d\n", ret);
1307		goto err_destroy_cq;
1308	}
1309	queue->qp = queue->cm_id->qp;
1310
1311	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1312
1313	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1314		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1315		 qp_attr.cap.max_send_wr, queue->cm_id);
1316
1317	if (!queue->nsrq) {
1318		for (i = 0; i < queue->recv_queue_size; i++) {
1319			queue->cmds[i].queue = queue;
1320			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1321			if (ret)
1322				goto err_destroy_qp;
1323		}
1324	}
1325
1326out:
1327	return ret;
1328
1329err_destroy_qp:
1330	rdma_destroy_qp(queue->cm_id);
1331err_destroy_cq:
1332	ib_cq_pool_put(queue->cq, nr_cqe + 1);
1333	goto out;
1334}
1335
1336static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1337{
1338	ib_drain_qp(queue->qp);
1339	if (queue->cm_id)
1340		rdma_destroy_id(queue->cm_id);
1341	ib_destroy_qp(queue->qp);
1342	ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1343		       queue->send_queue_size + 1);
1344}
1345
1346static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1347{
1348	pr_debug("freeing queue %d\n", queue->idx);
1349
1350	nvmet_sq_destroy(&queue->nvme_sq);
1351
1352	nvmet_rdma_destroy_queue_ib(queue);
1353	if (!queue->nsrq) {
1354		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1355				queue->recv_queue_size,
1356				!queue->host_qid);
1357	}
1358	nvmet_rdma_free_rsps(queue);
1359	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1360	kfree(queue);
1361}
1362
1363static void nvmet_rdma_release_queue_work(struct work_struct *w)
1364{
1365	struct nvmet_rdma_queue *queue =
1366		container_of(w, struct nvmet_rdma_queue, release_work);
1367	struct nvmet_rdma_device *dev = queue->dev;
1368
1369	nvmet_rdma_free_queue(queue);
1370
1371	kref_put(&dev->ref, nvmet_rdma_free_dev);
1372}
1373
1374static int
1375nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1376				struct nvmet_rdma_queue *queue)
1377{
1378	struct nvme_rdma_cm_req *req;
1379
1380	req = (struct nvme_rdma_cm_req *)conn->private_data;
1381	if (!req || conn->private_data_len == 0)
1382		return NVME_RDMA_CM_INVALID_LEN;
1383
1384	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1385		return NVME_RDMA_CM_INVALID_RECFMT;
1386
1387	queue->host_qid = le16_to_cpu(req->qid);
1388
1389	/*
1390	 * req->hsqsize corresponds to our recv queue size plus 1
1391	 * req->hrqsize corresponds to our send queue size
1392	 */
1393	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1394	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1395
1396	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1397		return NVME_RDMA_CM_INVALID_HSQSIZE;
1398
1399	/* XXX: Should we enforce some kind of max for IO queues? */
1400
1401	return 0;
1402}
1403
1404static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1405				enum nvme_rdma_cm_status status)
1406{
1407	struct nvme_rdma_cm_rej rej;
1408
1409	pr_debug("rejecting connect request: status %d (%s)\n",
1410		 status, nvme_rdma_cm_msg(status));
1411
1412	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1413	rej.sts = cpu_to_le16(status);
1414
1415	return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1416			   IB_CM_REJ_CONSUMER_DEFINED);
1417}
1418
1419static struct nvmet_rdma_queue *
1420nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1421		struct rdma_cm_id *cm_id,
1422		struct rdma_cm_event *event)
1423{
1424	struct nvmet_rdma_port *port = cm_id->context;
1425	struct nvmet_rdma_queue *queue;
1426	int ret;
1427
1428	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1429	if (!queue) {
1430		ret = NVME_RDMA_CM_NO_RSC;
1431		goto out_reject;
1432	}
1433
1434	ret = nvmet_sq_init(&queue->nvme_sq);
1435	if (ret) {
1436		ret = NVME_RDMA_CM_NO_RSC;
1437		goto out_free_queue;
1438	}
1439
1440	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1441	if (ret)
1442		goto out_destroy_sq;
1443
1444	/*
1445	 * Schedules the actual release because calling rdma_destroy_id from
1446	 * inside a CM callback would trigger a deadlock. (great API design..)
1447	 */
1448	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1449	queue->dev = ndev;
1450	queue->cm_id = cm_id;
1451	queue->port = port->nport;
1452
1453	spin_lock_init(&queue->state_lock);
1454	queue->state = NVMET_RDMA_Q_CONNECTING;
1455	INIT_LIST_HEAD(&queue->rsp_wait_list);
1456	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1457	spin_lock_init(&queue->rsp_wr_wait_lock);
1458	INIT_LIST_HEAD(&queue->free_rsps);
1459	spin_lock_init(&queue->rsps_lock);
1460	INIT_LIST_HEAD(&queue->queue_list);
1461
1462	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1463	if (queue->idx < 0) {
1464		ret = NVME_RDMA_CM_NO_RSC;
1465		goto out_destroy_sq;
1466	}
1467
1468	/*
1469	 * Spread the io queues across completion vectors,
1470	 * but still keep all admin queues on vector 0.
1471	 */
1472	queue->comp_vector = !queue->host_qid ? 0 :
1473		queue->idx % ndev->device->num_comp_vectors;
1474
1475
1476	ret = nvmet_rdma_alloc_rsps(queue);
1477	if (ret) {
1478		ret = NVME_RDMA_CM_NO_RSC;
1479		goto out_ida_remove;
1480	}
1481
1482	if (ndev->srqs) {
1483		queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1484	} else {
1485		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1486				queue->recv_queue_size,
1487				!queue->host_qid);
1488		if (IS_ERR(queue->cmds)) {
1489			ret = NVME_RDMA_CM_NO_RSC;
1490			goto out_free_responses;
1491		}
1492	}
1493
1494	ret = nvmet_rdma_create_queue_ib(queue);
1495	if (ret) {
1496		pr_err("%s: creating RDMA queue failed (%d).\n",
1497			__func__, ret);
1498		ret = NVME_RDMA_CM_NO_RSC;
1499		goto out_free_cmds;
1500	}
1501
1502	return queue;
1503
1504out_free_cmds:
1505	if (!queue->nsrq) {
1506		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1507				queue->recv_queue_size,
1508				!queue->host_qid);
1509	}
1510out_free_responses:
1511	nvmet_rdma_free_rsps(queue);
1512out_ida_remove:
1513	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1514out_destroy_sq:
1515	nvmet_sq_destroy(&queue->nvme_sq);
1516out_free_queue:
1517	kfree(queue);
1518out_reject:
1519	nvmet_rdma_cm_reject(cm_id, ret);
1520	return NULL;
1521}
1522
1523static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1524{
1525	struct nvmet_rdma_queue *queue = priv;
1526
1527	switch (event->event) {
1528	case IB_EVENT_COMM_EST:
1529		rdma_notify(queue->cm_id, event->event);
1530		break;
1531	case IB_EVENT_QP_LAST_WQE_REACHED:
1532		pr_debug("received last WQE reached event for queue=0x%p\n",
1533			 queue);
1534		break;
1535	default:
1536		pr_err("received IB QP event: %s (%d)\n",
1537		       ib_event_msg(event->event), event->event);
1538		break;
1539	}
1540}
1541
1542static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1543		struct nvmet_rdma_queue *queue,
1544		struct rdma_conn_param *p)
1545{
1546	struct rdma_conn_param  param = { };
1547	struct nvme_rdma_cm_rep priv = { };
1548	int ret = -ENOMEM;
1549
1550	param.rnr_retry_count = 7;
1551	param.flow_control = 1;
1552	param.initiator_depth = min_t(u8, p->initiator_depth,
1553		queue->dev->device->attrs.max_qp_init_rd_atom);
1554	param.private_data = &priv;
1555	param.private_data_len = sizeof(priv);
1556	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1557	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1558
1559	ret = rdma_accept(cm_id, &param);
1560	if (ret)
1561		pr_err("rdma_accept failed (error code = %d)\n", ret);
1562
1563	return ret;
1564}
1565
1566static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1567		struct rdma_cm_event *event)
1568{
1569	struct nvmet_rdma_device *ndev;
1570	struct nvmet_rdma_queue *queue;
1571	int ret = -EINVAL;
1572
1573	ndev = nvmet_rdma_find_get_device(cm_id);
1574	if (!ndev) {
1575		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1576		return -ECONNREFUSED;
1577	}
1578
1579	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1580	if (!queue) {
1581		ret = -ENOMEM;
1582		goto put_device;
1583	}
1584
1585	if (queue->host_qid == 0) {
1586		/* Let inflight controller teardown complete */
1587		flush_scheduled_work();
1588	}
1589
1590	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1591	if (ret) {
1592		/*
1593		 * Don't destroy the cm_id in free path, as we implicitly
1594		 * destroy the cm_id here with non-zero ret code.
1595		 */
1596		queue->cm_id = NULL;
1597		goto free_queue;
1598	}
1599
1600	mutex_lock(&nvmet_rdma_queue_mutex);
1601	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1602	mutex_unlock(&nvmet_rdma_queue_mutex);
1603
1604	return 0;
1605
1606free_queue:
1607	nvmet_rdma_free_queue(queue);
1608put_device:
1609	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1610
1611	return ret;
1612}
1613
1614static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1615{
1616	unsigned long flags;
1617
1618	spin_lock_irqsave(&queue->state_lock, flags);
1619	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1620		pr_warn("trying to establish a connected queue\n");
1621		goto out_unlock;
1622	}
1623	queue->state = NVMET_RDMA_Q_LIVE;
1624
1625	while (!list_empty(&queue->rsp_wait_list)) {
1626		struct nvmet_rdma_rsp *cmd;
1627
1628		cmd = list_first_entry(&queue->rsp_wait_list,
1629					struct nvmet_rdma_rsp, wait_list);
1630		list_del(&cmd->wait_list);
1631
1632		spin_unlock_irqrestore(&queue->state_lock, flags);
1633		nvmet_rdma_handle_command(queue, cmd);
1634		spin_lock_irqsave(&queue->state_lock, flags);
1635	}
1636
1637out_unlock:
1638	spin_unlock_irqrestore(&queue->state_lock, flags);
1639}
1640
1641static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1642{
1643	bool disconnect = false;
1644	unsigned long flags;
1645
1646	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1647
1648	spin_lock_irqsave(&queue->state_lock, flags);
1649	switch (queue->state) {
1650	case NVMET_RDMA_Q_CONNECTING:
1651		while (!list_empty(&queue->rsp_wait_list)) {
1652			struct nvmet_rdma_rsp *rsp;
1653
1654			rsp = list_first_entry(&queue->rsp_wait_list,
1655					       struct nvmet_rdma_rsp,
1656					       wait_list);
1657			list_del(&rsp->wait_list);
1658			nvmet_rdma_put_rsp(rsp);
1659		}
1660		fallthrough;
1661	case NVMET_RDMA_Q_LIVE:
1662		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1663		disconnect = true;
1664		break;
1665	case NVMET_RDMA_Q_DISCONNECTING:
1666		break;
1667	}
1668	spin_unlock_irqrestore(&queue->state_lock, flags);
1669
1670	if (disconnect) {
1671		rdma_disconnect(queue->cm_id);
1672		schedule_work(&queue->release_work);
1673	}
1674}
1675
1676static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1677{
1678	bool disconnect = false;
1679
1680	mutex_lock(&nvmet_rdma_queue_mutex);
1681	if (!list_empty(&queue->queue_list)) {
1682		list_del_init(&queue->queue_list);
1683		disconnect = true;
1684	}
1685	mutex_unlock(&nvmet_rdma_queue_mutex);
1686
1687	if (disconnect)
1688		__nvmet_rdma_queue_disconnect(queue);
1689}
1690
1691static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1692		struct nvmet_rdma_queue *queue)
1693{
1694	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1695
1696	mutex_lock(&nvmet_rdma_queue_mutex);
1697	if (!list_empty(&queue->queue_list))
1698		list_del_init(&queue->queue_list);
1699	mutex_unlock(&nvmet_rdma_queue_mutex);
1700
1701	pr_err("failed to connect queue %d\n", queue->idx);
1702	schedule_work(&queue->release_work);
1703}
1704
1705/**
1706 * nvme_rdma_device_removal() - Handle RDMA device removal
1707 * @cm_id:	rdma_cm id, used for nvmet port
1708 * @queue:      nvmet rdma queue (cm id qp_context)
1709 *
1710 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1711 * to unplug. Note that this event can be generated on a normal
1712 * queue cm_id and/or a device bound listener cm_id (where in this
1713 * case queue will be null).
1714 *
1715 * We registered an ib_client to handle device removal for queues,
1716 * so we only need to handle the listening port cm_ids. In this case
1717 * we nullify the priv to prevent double cm_id destruction and destroying
1718 * the cm_id implicitely by returning a non-zero rc to the callout.
1719 */
1720static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1721		struct nvmet_rdma_queue *queue)
1722{
1723	struct nvmet_rdma_port *port;
1724
1725	if (queue) {
1726		/*
1727		 * This is a queue cm_id. we have registered
1728		 * an ib_client to handle queues removal
1729		 * so don't interfear and just return.
1730		 */
1731		return 0;
1732	}
1733
1734	port = cm_id->context;
1735
1736	/*
1737	 * This is a listener cm_id. Make sure that
1738	 * future remove_port won't invoke a double
1739	 * cm_id destroy. use atomic xchg to make sure
1740	 * we don't compete with remove_port.
1741	 */
1742	if (xchg(&port->cm_id, NULL) != cm_id)
1743		return 0;
1744
1745	/*
1746	 * We need to return 1 so that the core will destroy
1747	 * it's own ID.  What a great API design..
1748	 */
1749	return 1;
1750}
1751
1752static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1753		struct rdma_cm_event *event)
1754{
1755	struct nvmet_rdma_queue *queue = NULL;
1756	int ret = 0;
1757
1758	if (cm_id->qp)
1759		queue = cm_id->qp->qp_context;
1760
1761	pr_debug("%s (%d): status %d id %p\n",
1762		rdma_event_msg(event->event), event->event,
1763		event->status, cm_id);
1764
1765	switch (event->event) {
1766	case RDMA_CM_EVENT_CONNECT_REQUEST:
1767		ret = nvmet_rdma_queue_connect(cm_id, event);
1768		break;
1769	case RDMA_CM_EVENT_ESTABLISHED:
1770		nvmet_rdma_queue_established(queue);
1771		break;
1772	case RDMA_CM_EVENT_ADDR_CHANGE:
1773		if (!queue) {
1774			struct nvmet_rdma_port *port = cm_id->context;
1775
1776			schedule_delayed_work(&port->repair_work, 0);
1777			break;
1778		}
1779		fallthrough;
1780	case RDMA_CM_EVENT_DISCONNECTED:
1781	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1782		nvmet_rdma_queue_disconnect(queue);
1783		break;
1784	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1785		ret = nvmet_rdma_device_removal(cm_id, queue);
1786		break;
1787	case RDMA_CM_EVENT_REJECTED:
1788		pr_debug("Connection rejected: %s\n",
1789			 rdma_reject_msg(cm_id, event->status));
1790		fallthrough;
1791	case RDMA_CM_EVENT_UNREACHABLE:
1792	case RDMA_CM_EVENT_CONNECT_ERROR:
1793		nvmet_rdma_queue_connect_fail(cm_id, queue);
1794		break;
1795	default:
1796		pr_err("received unrecognized RDMA CM event %d\n",
1797			event->event);
1798		break;
1799	}
1800
1801	return ret;
1802}
1803
1804static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1805{
1806	struct nvmet_rdma_queue *queue;
1807
1808restart:
1809	mutex_lock(&nvmet_rdma_queue_mutex);
1810	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1811		if (queue->nvme_sq.ctrl == ctrl) {
1812			list_del_init(&queue->queue_list);
1813			mutex_unlock(&nvmet_rdma_queue_mutex);
1814
1815			__nvmet_rdma_queue_disconnect(queue);
1816			goto restart;
1817		}
1818	}
1819	mutex_unlock(&nvmet_rdma_queue_mutex);
1820}
1821
1822static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1823{
1824	struct nvmet_rdma_queue *queue, *tmp;
1825	struct nvmet_port *nport = port->nport;
1826
1827	mutex_lock(&nvmet_rdma_queue_mutex);
1828	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1829				 queue_list) {
1830		if (queue->port != nport)
1831			continue;
1832
1833		list_del_init(&queue->queue_list);
1834		__nvmet_rdma_queue_disconnect(queue);
1835	}
1836	mutex_unlock(&nvmet_rdma_queue_mutex);
1837}
1838
1839static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1840{
1841	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1842
1843	if (cm_id)
1844		rdma_destroy_id(cm_id);
1845
1846	/*
1847	 * Destroy the remaining queues, which are not belong to any
1848	 * controller yet. Do it here after the RDMA-CM was destroyed
1849	 * guarantees that no new queue will be created.
1850	 */
1851	nvmet_rdma_destroy_port_queues(port);
1852}
1853
1854static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1855{
1856	struct sockaddr *addr = (struct sockaddr *)&port->addr;
1857	struct rdma_cm_id *cm_id;
1858	int ret;
1859
1860	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1861			RDMA_PS_TCP, IB_QPT_RC);
1862	if (IS_ERR(cm_id)) {
1863		pr_err("CM ID creation failed\n");
1864		return PTR_ERR(cm_id);
1865	}
1866
1867	/*
1868	 * Allow both IPv4 and IPv6 sockets to bind a single port
1869	 * at the same time.
1870	 */
1871	ret = rdma_set_afonly(cm_id, 1);
1872	if (ret) {
1873		pr_err("rdma_set_afonly failed (%d)\n", ret);
1874		goto out_destroy_id;
1875	}
1876
1877	ret = rdma_bind_addr(cm_id, addr);
1878	if (ret) {
1879		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1880		goto out_destroy_id;
1881	}
1882
1883	ret = rdma_listen(cm_id, 128);
1884	if (ret) {
1885		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1886		goto out_destroy_id;
1887	}
1888
1889	port->cm_id = cm_id;
1890	return 0;
1891
1892out_destroy_id:
1893	rdma_destroy_id(cm_id);
1894	return ret;
1895}
1896
1897static void nvmet_rdma_repair_port_work(struct work_struct *w)
1898{
1899	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1900			struct nvmet_rdma_port, repair_work);
1901	int ret;
1902
1903	nvmet_rdma_disable_port(port);
1904	ret = nvmet_rdma_enable_port(port);
1905	if (ret)
1906		schedule_delayed_work(&port->repair_work, 5 * HZ);
1907}
1908
1909static int nvmet_rdma_add_port(struct nvmet_port *nport)
1910{
1911	struct nvmet_rdma_port *port;
1912	__kernel_sa_family_t af;
1913	int ret;
1914
1915	port = kzalloc(sizeof(*port), GFP_KERNEL);
1916	if (!port)
1917		return -ENOMEM;
1918
1919	nport->priv = port;
1920	port->nport = nport;
1921	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1922
1923	switch (nport->disc_addr.adrfam) {
1924	case NVMF_ADDR_FAMILY_IP4:
1925		af = AF_INET;
1926		break;
1927	case NVMF_ADDR_FAMILY_IP6:
1928		af = AF_INET6;
1929		break;
1930	default:
1931		pr_err("address family %d not supported\n",
1932			nport->disc_addr.adrfam);
1933		ret = -EINVAL;
1934		goto out_free_port;
1935	}
1936
1937	if (nport->inline_data_size < 0) {
1938		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1939	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1940		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1941			nport->inline_data_size,
1942			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1943		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1944	}
1945
1946	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1947			nport->disc_addr.trsvcid, &port->addr);
1948	if (ret) {
1949		pr_err("malformed ip/port passed: %s:%s\n",
1950			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1951		goto out_free_port;
1952	}
1953
1954	ret = nvmet_rdma_enable_port(port);
1955	if (ret)
1956		goto out_free_port;
1957
1958	pr_info("enabling port %d (%pISpcs)\n",
1959		le16_to_cpu(nport->disc_addr.portid),
1960		(struct sockaddr *)&port->addr);
1961
1962	return 0;
1963
1964out_free_port:
1965	kfree(port);
1966	return ret;
1967}
1968
1969static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1970{
1971	struct nvmet_rdma_port *port = nport->priv;
1972
1973	cancel_delayed_work_sync(&port->repair_work);
1974	nvmet_rdma_disable_port(port);
1975	kfree(port);
1976}
1977
1978static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1979		struct nvmet_port *nport, char *traddr)
1980{
1981	struct nvmet_rdma_port *port = nport->priv;
1982	struct rdma_cm_id *cm_id = port->cm_id;
1983
1984	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1985		struct nvmet_rdma_rsp *rsp =
1986			container_of(req, struct nvmet_rdma_rsp, req);
1987		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1988		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1989
1990		sprintf(traddr, "%pISc", addr);
1991	} else {
1992		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1993	}
1994}
1995
1996static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1997{
1998	if (ctrl->pi_support)
1999		return NVMET_RDMA_MAX_METADATA_MDTS;
2000	return NVMET_RDMA_MAX_MDTS;
2001}
2002
2003static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2004	.owner			= THIS_MODULE,
2005	.type			= NVMF_TRTYPE_RDMA,
2006	.msdbd			= 1,
2007	.flags			= NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2008	.add_port		= nvmet_rdma_add_port,
2009	.remove_port		= nvmet_rdma_remove_port,
2010	.queue_response		= nvmet_rdma_queue_response,
2011	.delete_ctrl		= nvmet_rdma_delete_ctrl,
2012	.disc_traddr		= nvmet_rdma_disc_port_addr,
2013	.get_mdts		= nvmet_rdma_get_mdts,
2014};
2015
2016static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2017{
2018	struct nvmet_rdma_queue *queue, *tmp;
2019	struct nvmet_rdma_device *ndev;
2020	bool found = false;
2021
2022	mutex_lock(&device_list_mutex);
2023	list_for_each_entry(ndev, &device_list, entry) {
2024		if (ndev->device == ib_device) {
2025			found = true;
2026			break;
2027		}
2028	}
2029	mutex_unlock(&device_list_mutex);
2030
2031	if (!found)
2032		return;
2033
2034	/*
2035	 * IB Device that is used by nvmet controllers is being removed,
2036	 * delete all queues using this device.
2037	 */
2038	mutex_lock(&nvmet_rdma_queue_mutex);
2039	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2040				 queue_list) {
2041		if (queue->dev->device != ib_device)
2042			continue;
2043
2044		pr_info("Removing queue %d\n", queue->idx);
2045		list_del_init(&queue->queue_list);
2046		__nvmet_rdma_queue_disconnect(queue);
2047	}
2048	mutex_unlock(&nvmet_rdma_queue_mutex);
2049
2050	flush_scheduled_work();
2051}
2052
2053static struct ib_client nvmet_rdma_ib_client = {
2054	.name   = "nvmet_rdma",
2055	.remove = nvmet_rdma_remove_one
2056};
2057
2058static int __init nvmet_rdma_init(void)
2059{
2060	int ret;
2061
2062	ret = ib_register_client(&nvmet_rdma_ib_client);
2063	if (ret)
2064		return ret;
2065
2066	ret = nvmet_register_transport(&nvmet_rdma_ops);
2067	if (ret)
2068		goto err_ib_client;
2069
2070	return 0;
2071
2072err_ib_client:
2073	ib_unregister_client(&nvmet_rdma_ib_client);
2074	return ret;
2075}
2076
2077static void __exit nvmet_rdma_exit(void)
2078{
2079	nvmet_unregister_transport(&nvmet_rdma_ops);
2080	ib_unregister_client(&nvmet_rdma_ib_client);
2081	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2082	ida_destroy(&nvmet_rdma_queue_ida);
2083}
2084
2085module_init(nvmet_rdma_init);
2086module_exit(nvmet_rdma_exit);
2087
2088MODULE_LICENSE("GPL v2");
2089MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2090