xref: /kernel/linux/linux-5.10/drivers/nvme/host/tcp.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <linux/err.h>
11#include <linux/nvme-tcp.h>
12#include <net/sock.h>
13#include <net/tcp.h>
14#include <linux/blk-mq.h>
15#include <crypto/hash.h>
16#include <net/busy_poll.h>
17
18#include "nvme.h"
19#include "fabrics.h"
20
21struct nvme_tcp_queue;
22
23/* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization.  Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
28 */
29static int so_priority;
30module_param(so_priority, int, 0644);
31MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33#ifdef CONFIG_DEBUG_LOCK_ALLOC
34/* lockdep can detect a circular dependency of the form
35 *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36 * because dependencies are tracked for both nvme-tcp and user contexts. Using
37 * a separate class prevents lockdep from conflating nvme-tcp socket use with
38 * user-space socket API use.
39 */
40static struct lock_class_key nvme_tcp_sk_key[2];
41static struct lock_class_key nvme_tcp_slock_key[2];
42
43static void nvme_tcp_reclassify_socket(struct socket *sock)
44{
45	struct sock *sk = sock->sk;
46
47	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48		return;
49
50	switch (sk->sk_family) {
51	case AF_INET:
52		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53					      &nvme_tcp_slock_key[0],
54					      "sk_lock-AF_INET-NVME",
55					      &nvme_tcp_sk_key[0]);
56		break;
57	case AF_INET6:
58		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59					      &nvme_tcp_slock_key[1],
60					      "sk_lock-AF_INET6-NVME",
61					      &nvme_tcp_sk_key[1]);
62		break;
63	default:
64		WARN_ON_ONCE(1);
65	}
66}
67#else
68static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69#endif
70
71enum nvme_tcp_send_state {
72	NVME_TCP_SEND_CMD_PDU = 0,
73	NVME_TCP_SEND_H2C_PDU,
74	NVME_TCP_SEND_DATA,
75	NVME_TCP_SEND_DDGST,
76};
77
78struct nvme_tcp_request {
79	struct nvme_request	req;
80	void			*pdu;
81	struct nvme_tcp_queue	*queue;
82	u32			data_len;
83	u32			pdu_len;
84	u32			pdu_sent;
85	u16			ttag;
86	struct list_head	entry;
87	struct llist_node	lentry;
88	__le32			ddgst;
89
90	struct bio		*curr_bio;
91	struct iov_iter		iter;
92
93	/* send state */
94	size_t			offset;
95	size_t			data_sent;
96	enum nvme_tcp_send_state state;
97};
98
99enum nvme_tcp_queue_flags {
100	NVME_TCP_Q_ALLOCATED	= 0,
101	NVME_TCP_Q_LIVE		= 1,
102	NVME_TCP_Q_POLLING	= 2,
103};
104
105enum nvme_tcp_recv_state {
106	NVME_TCP_RECV_PDU = 0,
107	NVME_TCP_RECV_DATA,
108	NVME_TCP_RECV_DDGST,
109};
110
111struct nvme_tcp_ctrl;
112struct nvme_tcp_queue {
113	struct socket		*sock;
114	struct work_struct	io_work;
115	int			io_cpu;
116
117	struct mutex		queue_lock;
118	struct mutex		send_mutex;
119	struct llist_head	req_list;
120	struct list_head	send_list;
121
122	/* recv state */
123	void			*pdu;
124	int			pdu_remaining;
125	int			pdu_offset;
126	size_t			data_remaining;
127	size_t			ddgst_remaining;
128	unsigned int		nr_cqe;
129
130	/* send state */
131	struct nvme_tcp_request *request;
132
133	int			queue_size;
134	size_t			cmnd_capsule_len;
135	struct nvme_tcp_ctrl	*ctrl;
136	unsigned long		flags;
137	bool			rd_enabled;
138
139	bool			hdr_digest;
140	bool			data_digest;
141	struct ahash_request	*rcv_hash;
142	struct ahash_request	*snd_hash;
143	__le32			exp_ddgst;
144	__le32			recv_ddgst;
145
146	struct page_frag_cache	pf_cache;
147
148	void (*state_change)(struct sock *);
149	void (*data_ready)(struct sock *);
150	void (*write_space)(struct sock *);
151};
152
153struct nvme_tcp_ctrl {
154	/* read only in the hot path */
155	struct nvme_tcp_queue	*queues;
156	struct blk_mq_tag_set	tag_set;
157
158	/* other member variables */
159	struct list_head	list;
160	struct blk_mq_tag_set	admin_tag_set;
161	struct sockaddr_storage addr;
162	struct sockaddr_storage src_addr;
163	struct nvme_ctrl	ctrl;
164
165	struct work_struct	err_work;
166	struct delayed_work	connect_work;
167	struct nvme_tcp_request async_req;
168	u32			io_queues[HCTX_MAX_TYPES];
169};
170
171static LIST_HEAD(nvme_tcp_ctrl_list);
172static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
173static struct workqueue_struct *nvme_tcp_wq;
174static const struct blk_mq_ops nvme_tcp_mq_ops;
175static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
176static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
177
178static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
179{
180	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
181}
182
183static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
184{
185	return queue - queue->ctrl->queues;
186}
187
188static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
189{
190	u32 queue_idx = nvme_tcp_queue_id(queue);
191
192	if (queue_idx == 0)
193		return queue->ctrl->admin_tag_set.tags[queue_idx];
194	return queue->ctrl->tag_set.tags[queue_idx - 1];
195}
196
197static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
198{
199	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
200}
201
202static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
203{
204	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
205}
206
207static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
208{
209	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
210}
211
212static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
213{
214	return req == &req->queue->ctrl->async_req;
215}
216
217static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
218{
219	struct request *rq;
220
221	if (unlikely(nvme_tcp_async_req(req)))
222		return false; /* async events don't have a request */
223
224	rq = blk_mq_rq_from_pdu(req);
225
226	return rq_data_dir(rq) == WRITE && req->data_len &&
227		req->data_len <= nvme_tcp_inline_data_size(req->queue);
228}
229
230static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
231{
232	return req->iter.bvec->bv_page;
233}
234
235static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
236{
237	return req->iter.bvec->bv_offset + req->iter.iov_offset;
238}
239
240static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
241{
242	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
243			req->pdu_len - req->pdu_sent);
244}
245
246static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
247{
248	return req->iter.iov_offset;
249}
250
251static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
252{
253	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
254			req->pdu_len - req->pdu_sent : 0;
255}
256
257static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
258		int len)
259{
260	return nvme_tcp_pdu_data_left(req) <= len;
261}
262
263static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
264		unsigned int dir)
265{
266	struct request *rq = blk_mq_rq_from_pdu(req);
267	struct bio_vec *vec;
268	unsigned int size;
269	int nsegs;
270	size_t offset;
271
272	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
273		vec = &rq->special_vec;
274		nsegs = 1;
275		size = blk_rq_payload_bytes(rq);
276		offset = 0;
277	} else {
278		struct bio *bio = req->curr_bio;
279
280		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
281		nsegs = bio_segments(bio);
282		size = bio->bi_iter.bi_size;
283		offset = bio->bi_iter.bi_bvec_done;
284	}
285
286	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
287	req->iter.iov_offset = offset;
288}
289
290static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
291		int len)
292{
293	req->data_sent += len;
294	req->pdu_sent += len;
295	iov_iter_advance(&req->iter, len);
296	if (!iov_iter_count(&req->iter) &&
297	    req->data_sent < req->data_len) {
298		req->curr_bio = req->curr_bio->bi_next;
299		nvme_tcp_init_iter(req, WRITE);
300	}
301}
302
303static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
304{
305	int ret;
306
307	/* drain the send queue as much as we can... */
308	do {
309		ret = nvme_tcp_try_send(queue);
310	} while (ret > 0);
311}
312
313static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
314{
315	return !list_empty(&queue->send_list) ||
316		!llist_empty(&queue->req_list);
317}
318
319static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
320		bool sync, bool last)
321{
322	struct nvme_tcp_queue *queue = req->queue;
323	bool empty;
324
325	empty = llist_add(&req->lentry, &queue->req_list) &&
326		list_empty(&queue->send_list) && !queue->request;
327
328	/*
329	 * if we're the first on the send_list and we can try to send
330	 * directly, otherwise queue io_work. Also, only do that if we
331	 * are on the same cpu, so we don't introduce contention.
332	 */
333	if (queue->io_cpu == raw_smp_processor_id() &&
334	    sync && empty && mutex_trylock(&queue->send_mutex)) {
335		nvme_tcp_send_all(queue);
336		mutex_unlock(&queue->send_mutex);
337	}
338
339	if (last && nvme_tcp_queue_more(queue))
340		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
341}
342
343static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
344{
345	struct nvme_tcp_request *req;
346	struct llist_node *node;
347
348	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
349		req = llist_entry(node, struct nvme_tcp_request, lentry);
350		list_add(&req->entry, &queue->send_list);
351	}
352}
353
354static inline struct nvme_tcp_request *
355nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
356{
357	struct nvme_tcp_request *req;
358
359	req = list_first_entry_or_null(&queue->send_list,
360			struct nvme_tcp_request, entry);
361	if (!req) {
362		nvme_tcp_process_req_list(queue);
363		req = list_first_entry_or_null(&queue->send_list,
364				struct nvme_tcp_request, entry);
365		if (unlikely(!req))
366			return NULL;
367	}
368
369	list_del(&req->entry);
370	return req;
371}
372
373static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
374		__le32 *dgst)
375{
376	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
377	crypto_ahash_final(hash);
378}
379
380static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
381		struct page *page, off_t off, size_t len)
382{
383	struct scatterlist sg;
384
385	sg_init_marker(&sg, 1);
386	sg_set_page(&sg, page, len, off);
387	ahash_request_set_crypt(hash, &sg, NULL, len);
388	crypto_ahash_update(hash);
389}
390
391static inline void nvme_tcp_hdgst(struct ahash_request *hash,
392		void *pdu, size_t len)
393{
394	struct scatterlist sg;
395
396	sg_init_one(&sg, pdu, len);
397	ahash_request_set_crypt(hash, &sg, pdu + len, len);
398	crypto_ahash_digest(hash);
399}
400
401static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
402		void *pdu, size_t pdu_len)
403{
404	struct nvme_tcp_hdr *hdr = pdu;
405	__le32 recv_digest;
406	__le32 exp_digest;
407
408	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
409		dev_err(queue->ctrl->ctrl.device,
410			"queue %d: header digest flag is cleared\n",
411			nvme_tcp_queue_id(queue));
412		return -EPROTO;
413	}
414
415	recv_digest = *(__le32 *)(pdu + hdr->hlen);
416	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
417	exp_digest = *(__le32 *)(pdu + hdr->hlen);
418	if (recv_digest != exp_digest) {
419		dev_err(queue->ctrl->ctrl.device,
420			"header digest error: recv %#x expected %#x\n",
421			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
422		return -EIO;
423	}
424
425	return 0;
426}
427
428static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
429{
430	struct nvme_tcp_hdr *hdr = pdu;
431	u8 digest_len = nvme_tcp_hdgst_len(queue);
432	u32 len;
433
434	len = le32_to_cpu(hdr->plen) - hdr->hlen -
435		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
436
437	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
438		dev_err(queue->ctrl->ctrl.device,
439			"queue %d: data digest flag is cleared\n",
440		nvme_tcp_queue_id(queue));
441		return -EPROTO;
442	}
443	crypto_ahash_init(queue->rcv_hash);
444
445	return 0;
446}
447
448static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
449		struct request *rq, unsigned int hctx_idx)
450{
451	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
452
453	page_frag_free(req->pdu);
454}
455
456static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
457		struct request *rq, unsigned int hctx_idx,
458		unsigned int numa_node)
459{
460	struct nvme_tcp_ctrl *ctrl = set->driver_data;
461	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
462	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
463	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
464	u8 hdgst = nvme_tcp_hdgst_len(queue);
465
466	req->pdu = page_frag_alloc(&queue->pf_cache,
467		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
468		GFP_KERNEL | __GFP_ZERO);
469	if (!req->pdu)
470		return -ENOMEM;
471
472	req->queue = queue;
473	nvme_req(rq)->ctrl = &ctrl->ctrl;
474
475	return 0;
476}
477
478static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
479		unsigned int hctx_idx)
480{
481	struct nvme_tcp_ctrl *ctrl = data;
482	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
483
484	hctx->driver_data = queue;
485	return 0;
486}
487
488static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
489		unsigned int hctx_idx)
490{
491	struct nvme_tcp_ctrl *ctrl = data;
492	struct nvme_tcp_queue *queue = &ctrl->queues[0];
493
494	hctx->driver_data = queue;
495	return 0;
496}
497
498static enum nvme_tcp_recv_state
499nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
500{
501	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
502		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
503		NVME_TCP_RECV_DATA;
504}
505
506static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
507{
508	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
509				nvme_tcp_hdgst_len(queue);
510	queue->pdu_offset = 0;
511	queue->data_remaining = -1;
512	queue->ddgst_remaining = 0;
513}
514
515static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
516{
517	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
518		return;
519
520	dev_warn(ctrl->device, "starting error recovery\n");
521	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
522}
523
524static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
525		struct nvme_completion *cqe)
526{
527	struct request *rq;
528
529	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
530	if (!rq) {
531		dev_err(queue->ctrl->ctrl.device,
532			"got bad cqe.command_id %#x on queue %d\n",
533			cqe->command_id, nvme_tcp_queue_id(queue));
534		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
535		return -EINVAL;
536	}
537
538	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
539		nvme_complete_rq(rq);
540	queue->nr_cqe++;
541
542	return 0;
543}
544
545static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
546		struct nvme_tcp_data_pdu *pdu)
547{
548	struct request *rq;
549
550	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
551	if (!rq) {
552		dev_err(queue->ctrl->ctrl.device,
553			"got bad c2hdata.command_id %#x on queue %d\n",
554			pdu->command_id, nvme_tcp_queue_id(queue));
555		return -ENOENT;
556	}
557
558	if (!blk_rq_payload_bytes(rq)) {
559		dev_err(queue->ctrl->ctrl.device,
560			"queue %d tag %#x unexpected data\n",
561			nvme_tcp_queue_id(queue), rq->tag);
562		return -EIO;
563	}
564
565	queue->data_remaining = le32_to_cpu(pdu->data_length);
566
567	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
568	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
569		dev_err(queue->ctrl->ctrl.device,
570			"queue %d tag %#x SUCCESS set but not last PDU\n",
571			nvme_tcp_queue_id(queue), rq->tag);
572		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
573		return -EPROTO;
574	}
575
576	return 0;
577}
578
579static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
580		struct nvme_tcp_rsp_pdu *pdu)
581{
582	struct nvme_completion *cqe = &pdu->cqe;
583	int ret = 0;
584
585	/*
586	 * AEN requests are special as they don't time out and can
587	 * survive any kind of queue freeze and often don't respond to
588	 * aborts.  We don't even bother to allocate a struct request
589	 * for them but rather special case them here.
590	 */
591	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
592				     cqe->command_id)))
593		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
594				&cqe->result);
595	else
596		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
597
598	return ret;
599}
600
601static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
602		struct nvme_tcp_r2t_pdu *pdu)
603{
604	struct nvme_tcp_data_pdu *data = req->pdu;
605	struct nvme_tcp_queue *queue = req->queue;
606	struct request *rq = blk_mq_rq_from_pdu(req);
607	u8 hdgst = nvme_tcp_hdgst_len(queue);
608	u8 ddgst = nvme_tcp_ddgst_len(queue);
609
610	req->pdu_len = le32_to_cpu(pdu->r2t_length);
611	req->pdu_sent = 0;
612
613	if (unlikely(!req->pdu_len)) {
614		dev_err(queue->ctrl->ctrl.device,
615			"req %d r2t len is %u, probably a bug...\n",
616			rq->tag, req->pdu_len);
617		return -EPROTO;
618	}
619
620	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
621		dev_err(queue->ctrl->ctrl.device,
622			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
623			rq->tag, req->pdu_len, req->data_len,
624			req->data_sent);
625		return -EPROTO;
626	}
627
628	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
629		dev_err(queue->ctrl->ctrl.device,
630			"req %d unexpected r2t offset %u (expected %zu)\n",
631			rq->tag, le32_to_cpu(pdu->r2t_offset),
632			req->data_sent);
633		return -EPROTO;
634	}
635
636	memset(data, 0, sizeof(*data));
637	data->hdr.type = nvme_tcp_h2c_data;
638	data->hdr.flags = NVME_TCP_F_DATA_LAST;
639	if (queue->hdr_digest)
640		data->hdr.flags |= NVME_TCP_F_HDGST;
641	if (queue->data_digest)
642		data->hdr.flags |= NVME_TCP_F_DDGST;
643	data->hdr.hlen = sizeof(*data);
644	data->hdr.pdo = data->hdr.hlen + hdgst;
645	data->hdr.plen =
646		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
647	data->ttag = pdu->ttag;
648	data->command_id = nvme_cid(rq);
649	data->data_offset = pdu->r2t_offset;
650	data->data_length = cpu_to_le32(req->pdu_len);
651	return 0;
652}
653
654static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
655		struct nvme_tcp_r2t_pdu *pdu)
656{
657	struct nvme_tcp_request *req;
658	struct request *rq;
659	int ret;
660
661	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
662	if (!rq) {
663		dev_err(queue->ctrl->ctrl.device,
664			"got bad r2t.command_id %#x on queue %d\n",
665			pdu->command_id, nvme_tcp_queue_id(queue));
666		return -ENOENT;
667	}
668	req = blk_mq_rq_to_pdu(rq);
669
670	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
671	if (unlikely(ret))
672		return ret;
673
674	req->state = NVME_TCP_SEND_H2C_PDU;
675	req->offset = 0;
676
677	nvme_tcp_queue_request(req, false, true);
678
679	return 0;
680}
681
682static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
683		unsigned int *offset, size_t *len)
684{
685	struct nvme_tcp_hdr *hdr;
686	char *pdu = queue->pdu;
687	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
688	int ret;
689
690	ret = skb_copy_bits(skb, *offset,
691		&pdu[queue->pdu_offset], rcv_len);
692	if (unlikely(ret))
693		return ret;
694
695	queue->pdu_remaining -= rcv_len;
696	queue->pdu_offset += rcv_len;
697	*offset += rcv_len;
698	*len -= rcv_len;
699	if (queue->pdu_remaining)
700		return 0;
701
702	hdr = queue->pdu;
703	if (queue->hdr_digest) {
704		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
705		if (unlikely(ret))
706			return ret;
707	}
708
709
710	if (queue->data_digest) {
711		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
712		if (unlikely(ret))
713			return ret;
714	}
715
716	switch (hdr->type) {
717	case nvme_tcp_c2h_data:
718		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
719	case nvme_tcp_rsp:
720		nvme_tcp_init_recv_ctx(queue);
721		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
722	case nvme_tcp_r2t:
723		nvme_tcp_init_recv_ctx(queue);
724		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
725	default:
726		dev_err(queue->ctrl->ctrl.device,
727			"unsupported pdu type (%d)\n", hdr->type);
728		return -EINVAL;
729	}
730}
731
732static inline void nvme_tcp_end_request(struct request *rq, u16 status)
733{
734	union nvme_result res = {};
735
736	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
737		nvme_complete_rq(rq);
738}
739
740static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
741			      unsigned int *offset, size_t *len)
742{
743	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
744	struct request *rq =
745		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
746	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
747
748	while (true) {
749		int recv_len, ret;
750
751		recv_len = min_t(size_t, *len, queue->data_remaining);
752		if (!recv_len)
753			break;
754
755		if (!iov_iter_count(&req->iter)) {
756			req->curr_bio = req->curr_bio->bi_next;
757
758			/*
759			 * If we don`t have any bios it means that controller
760			 * sent more data than we requested, hence error
761			 */
762			if (!req->curr_bio) {
763				dev_err(queue->ctrl->ctrl.device,
764					"queue %d no space in request %#x",
765					nvme_tcp_queue_id(queue), rq->tag);
766				nvme_tcp_init_recv_ctx(queue);
767				return -EIO;
768			}
769			nvme_tcp_init_iter(req, READ);
770		}
771
772		/* we can read only from what is left in this bio */
773		recv_len = min_t(size_t, recv_len,
774				iov_iter_count(&req->iter));
775
776		if (queue->data_digest)
777			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
778				&req->iter, recv_len, queue->rcv_hash);
779		else
780			ret = skb_copy_datagram_iter(skb, *offset,
781					&req->iter, recv_len);
782		if (ret) {
783			dev_err(queue->ctrl->ctrl.device,
784				"queue %d failed to copy request %#x data",
785				nvme_tcp_queue_id(queue), rq->tag);
786			return ret;
787		}
788
789		*len -= recv_len;
790		*offset += recv_len;
791		queue->data_remaining -= recv_len;
792	}
793
794	if (!queue->data_remaining) {
795		if (queue->data_digest) {
796			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
797			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
798		} else {
799			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
800				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
801				queue->nr_cqe++;
802			}
803			nvme_tcp_init_recv_ctx(queue);
804		}
805	}
806
807	return 0;
808}
809
810static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
811		struct sk_buff *skb, unsigned int *offset, size_t *len)
812{
813	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
814	char *ddgst = (char *)&queue->recv_ddgst;
815	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
816	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
817	int ret;
818
819	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
820	if (unlikely(ret))
821		return ret;
822
823	queue->ddgst_remaining -= recv_len;
824	*offset += recv_len;
825	*len -= recv_len;
826	if (queue->ddgst_remaining)
827		return 0;
828
829	if (queue->recv_ddgst != queue->exp_ddgst) {
830		dev_err(queue->ctrl->ctrl.device,
831			"data digest error: recv %#x expected %#x\n",
832			le32_to_cpu(queue->recv_ddgst),
833			le32_to_cpu(queue->exp_ddgst));
834		return -EIO;
835	}
836
837	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
838		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
839					pdu->command_id);
840
841		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
842		queue->nr_cqe++;
843	}
844
845	nvme_tcp_init_recv_ctx(queue);
846	return 0;
847}
848
849static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
850			     unsigned int offset, size_t len)
851{
852	struct nvme_tcp_queue *queue = desc->arg.data;
853	size_t consumed = len;
854	int result;
855
856	while (len) {
857		switch (nvme_tcp_recv_state(queue)) {
858		case NVME_TCP_RECV_PDU:
859			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
860			break;
861		case NVME_TCP_RECV_DATA:
862			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
863			break;
864		case NVME_TCP_RECV_DDGST:
865			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
866			break;
867		default:
868			result = -EFAULT;
869		}
870		if (result) {
871			dev_err(queue->ctrl->ctrl.device,
872				"receive failed:  %d\n", result);
873			queue->rd_enabled = false;
874			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
875			return result;
876		}
877	}
878
879	return consumed;
880}
881
882static void nvme_tcp_data_ready(struct sock *sk)
883{
884	struct nvme_tcp_queue *queue;
885
886	read_lock_bh(&sk->sk_callback_lock);
887	queue = sk->sk_user_data;
888	if (likely(queue && queue->rd_enabled) &&
889	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
890		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
891	read_unlock_bh(&sk->sk_callback_lock);
892}
893
894static void nvme_tcp_write_space(struct sock *sk)
895{
896	struct nvme_tcp_queue *queue;
897
898	read_lock_bh(&sk->sk_callback_lock);
899	queue = sk->sk_user_data;
900	if (likely(queue && sk_stream_is_writeable(sk))) {
901		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
902		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
903	}
904	read_unlock_bh(&sk->sk_callback_lock);
905}
906
907static void nvme_tcp_state_change(struct sock *sk)
908{
909	struct nvme_tcp_queue *queue;
910
911	read_lock_bh(&sk->sk_callback_lock);
912	queue = sk->sk_user_data;
913	if (!queue)
914		goto done;
915
916	switch (sk->sk_state) {
917	case TCP_CLOSE:
918	case TCP_CLOSE_WAIT:
919	case TCP_LAST_ACK:
920	case TCP_FIN_WAIT1:
921	case TCP_FIN_WAIT2:
922		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
923		break;
924	default:
925		dev_info(queue->ctrl->ctrl.device,
926			"queue %d socket state %d\n",
927			nvme_tcp_queue_id(queue), sk->sk_state);
928	}
929
930	queue->state_change(sk);
931done:
932	read_unlock_bh(&sk->sk_callback_lock);
933}
934
935static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
936{
937	queue->request = NULL;
938}
939
940static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
941{
942	if (nvme_tcp_async_req(req)) {
943		union nvme_result res = {};
944
945		nvme_complete_async_event(&req->queue->ctrl->ctrl,
946				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
947	} else {
948		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
949				NVME_SC_HOST_PATH_ERROR);
950	}
951}
952
953static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
954{
955	struct nvme_tcp_queue *queue = req->queue;
956	int req_data_len = req->data_len;
957
958	while (true) {
959		struct page *page = nvme_tcp_req_cur_page(req);
960		size_t offset = nvme_tcp_req_cur_offset(req);
961		size_t len = nvme_tcp_req_cur_length(req);
962		bool last = nvme_tcp_pdu_last_send(req, len);
963		int req_data_sent = req->data_sent;
964		int ret, flags = MSG_DONTWAIT;
965
966		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
967			flags |= MSG_EOR;
968		else
969			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
970
971		if (sendpage_ok(page)) {
972			ret = kernel_sendpage(queue->sock, page, offset, len,
973					flags);
974		} else {
975			ret = sock_no_sendpage(queue->sock, page, offset, len,
976					flags);
977		}
978		if (ret <= 0)
979			return ret;
980
981		if (queue->data_digest)
982			nvme_tcp_ddgst_update(queue->snd_hash, page,
983					offset, ret);
984
985		/*
986		 * update the request iterator except for the last payload send
987		 * in the request where we don't want to modify it as we may
988		 * compete with the RX path completing the request.
989		 */
990		if (req_data_sent + ret < req_data_len)
991			nvme_tcp_advance_req(req, ret);
992
993		/* fully successful last send in current PDU */
994		if (last && ret == len) {
995			if (queue->data_digest) {
996				nvme_tcp_ddgst_final(queue->snd_hash,
997					&req->ddgst);
998				req->state = NVME_TCP_SEND_DDGST;
999				req->offset = 0;
1000			} else {
1001				nvme_tcp_done_send_req(queue);
1002			}
1003			return 1;
1004		}
1005	}
1006	return -EAGAIN;
1007}
1008
1009static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1010{
1011	struct nvme_tcp_queue *queue = req->queue;
1012	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1013	bool inline_data = nvme_tcp_has_inline_data(req);
1014	u8 hdgst = nvme_tcp_hdgst_len(queue);
1015	int len = sizeof(*pdu) + hdgst - req->offset;
1016	int flags = MSG_DONTWAIT;
1017	int ret;
1018
1019	if (inline_data || nvme_tcp_queue_more(queue))
1020		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1021	else
1022		flags |= MSG_EOR;
1023
1024	if (queue->hdr_digest && !req->offset)
1025		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1026
1027	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1028			offset_in_page(pdu) + req->offset, len,  flags);
1029	if (unlikely(ret <= 0))
1030		return ret;
1031
1032	len -= ret;
1033	if (!len) {
1034		if (inline_data) {
1035			req->state = NVME_TCP_SEND_DATA;
1036			if (queue->data_digest)
1037				crypto_ahash_init(queue->snd_hash);
1038			nvme_tcp_init_iter(req, WRITE);
1039		} else {
1040			nvme_tcp_done_send_req(queue);
1041		}
1042		return 1;
1043	}
1044	req->offset += ret;
1045
1046	return -EAGAIN;
1047}
1048
1049static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1050{
1051	struct nvme_tcp_queue *queue = req->queue;
1052	struct nvme_tcp_data_pdu *pdu = req->pdu;
1053	u8 hdgst = nvme_tcp_hdgst_len(queue);
1054	int len = sizeof(*pdu) - req->offset + hdgst;
1055	int ret;
1056
1057	if (queue->hdr_digest && !req->offset)
1058		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1059
1060	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1061			offset_in_page(pdu) + req->offset, len,
1062			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1063	if (unlikely(ret <= 0))
1064		return ret;
1065
1066	len -= ret;
1067	if (!len) {
1068		req->state = NVME_TCP_SEND_DATA;
1069		if (queue->data_digest)
1070			crypto_ahash_init(queue->snd_hash);
1071		if (!req->data_sent)
1072			nvme_tcp_init_iter(req, WRITE);
1073		return 1;
1074	}
1075	req->offset += ret;
1076
1077	return -EAGAIN;
1078}
1079
1080static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1081{
1082	struct nvme_tcp_queue *queue = req->queue;
1083	size_t offset = req->offset;
1084	int ret;
1085	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1086	struct kvec iov = {
1087		.iov_base = (u8 *)&req->ddgst + req->offset,
1088		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1089	};
1090
1091	if (nvme_tcp_queue_more(queue))
1092		msg.msg_flags |= MSG_MORE;
1093	else
1094		msg.msg_flags |= MSG_EOR;
1095
1096	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1097	if (unlikely(ret <= 0))
1098		return ret;
1099
1100	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1101		nvme_tcp_done_send_req(queue);
1102		return 1;
1103	}
1104
1105	req->offset += ret;
1106	return -EAGAIN;
1107}
1108
1109static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1110{
1111	struct nvme_tcp_request *req;
1112	int ret = 1;
1113
1114	if (!queue->request) {
1115		queue->request = nvme_tcp_fetch_request(queue);
1116		if (!queue->request)
1117			return 0;
1118	}
1119	req = queue->request;
1120
1121	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1122		ret = nvme_tcp_try_send_cmd_pdu(req);
1123		if (ret <= 0)
1124			goto done;
1125		if (!nvme_tcp_has_inline_data(req))
1126			return ret;
1127	}
1128
1129	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1130		ret = nvme_tcp_try_send_data_pdu(req);
1131		if (ret <= 0)
1132			goto done;
1133	}
1134
1135	if (req->state == NVME_TCP_SEND_DATA) {
1136		ret = nvme_tcp_try_send_data(req);
1137		if (ret <= 0)
1138			goto done;
1139	}
1140
1141	if (req->state == NVME_TCP_SEND_DDGST)
1142		ret = nvme_tcp_try_send_ddgst(req);
1143done:
1144	if (ret == -EAGAIN) {
1145		ret = 0;
1146	} else if (ret < 0) {
1147		dev_err(queue->ctrl->ctrl.device,
1148			"failed to send request %d\n", ret);
1149		nvme_tcp_fail_request(queue->request);
1150		nvme_tcp_done_send_req(queue);
1151	}
1152	return ret;
1153}
1154
1155static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1156{
1157	struct socket *sock = queue->sock;
1158	struct sock *sk = sock->sk;
1159	read_descriptor_t rd_desc;
1160	int consumed;
1161
1162	rd_desc.arg.data = queue;
1163	rd_desc.count = 1;
1164	lock_sock(sk);
1165	queue->nr_cqe = 0;
1166	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1167	release_sock(sk);
1168	return consumed;
1169}
1170
1171static void nvme_tcp_io_work(struct work_struct *w)
1172{
1173	struct nvme_tcp_queue *queue =
1174		container_of(w, struct nvme_tcp_queue, io_work);
1175	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1176
1177	do {
1178		bool pending = false;
1179		int result;
1180
1181		if (mutex_trylock(&queue->send_mutex)) {
1182			result = nvme_tcp_try_send(queue);
1183			mutex_unlock(&queue->send_mutex);
1184			if (result > 0)
1185				pending = true;
1186			else if (unlikely(result < 0))
1187				break;
1188		}
1189
1190		result = nvme_tcp_try_recv(queue);
1191		if (result > 0)
1192			pending = true;
1193		else if (unlikely(result < 0))
1194			return;
1195
1196		if (!pending || !queue->rd_enabled)
1197			return;
1198
1199	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1200
1201	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1202}
1203
1204static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1205{
1206	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1207
1208	ahash_request_free(queue->rcv_hash);
1209	ahash_request_free(queue->snd_hash);
1210	crypto_free_ahash(tfm);
1211}
1212
1213static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1214{
1215	struct crypto_ahash *tfm;
1216
1217	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1218	if (IS_ERR(tfm))
1219		return PTR_ERR(tfm);
1220
1221	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1222	if (!queue->snd_hash)
1223		goto free_tfm;
1224	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1225
1226	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1227	if (!queue->rcv_hash)
1228		goto free_snd_hash;
1229	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1230
1231	return 0;
1232free_snd_hash:
1233	ahash_request_free(queue->snd_hash);
1234free_tfm:
1235	crypto_free_ahash(tfm);
1236	return -ENOMEM;
1237}
1238
1239static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1240{
1241	struct nvme_tcp_request *async = &ctrl->async_req;
1242
1243	page_frag_free(async->pdu);
1244}
1245
1246static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1247{
1248	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1249	struct nvme_tcp_request *async = &ctrl->async_req;
1250	u8 hdgst = nvme_tcp_hdgst_len(queue);
1251
1252	async->pdu = page_frag_alloc(&queue->pf_cache,
1253		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1254		GFP_KERNEL | __GFP_ZERO);
1255	if (!async->pdu)
1256		return -ENOMEM;
1257
1258	async->queue = &ctrl->queues[0];
1259	return 0;
1260}
1261
1262static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1263{
1264	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1265	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1266
1267	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1268		return;
1269
1270	if (queue->hdr_digest || queue->data_digest)
1271		nvme_tcp_free_crypto(queue);
1272
1273	sock_release(queue->sock);
1274	kfree(queue->pdu);
1275	mutex_destroy(&queue->queue_lock);
1276}
1277
1278static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1279{
1280	struct nvme_tcp_icreq_pdu *icreq;
1281	struct nvme_tcp_icresp_pdu *icresp;
1282	struct msghdr msg = {};
1283	struct kvec iov;
1284	bool ctrl_hdgst, ctrl_ddgst;
1285	int ret;
1286
1287	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1288	if (!icreq)
1289		return -ENOMEM;
1290
1291	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1292	if (!icresp) {
1293		ret = -ENOMEM;
1294		goto free_icreq;
1295	}
1296
1297	icreq->hdr.type = nvme_tcp_icreq;
1298	icreq->hdr.hlen = sizeof(*icreq);
1299	icreq->hdr.pdo = 0;
1300	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1301	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1302	icreq->maxr2t = 0; /* single inflight r2t supported */
1303	icreq->hpda = 0; /* no alignment constraint */
1304	if (queue->hdr_digest)
1305		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1306	if (queue->data_digest)
1307		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1308
1309	iov.iov_base = icreq;
1310	iov.iov_len = sizeof(*icreq);
1311	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1312	if (ret < 0)
1313		goto free_icresp;
1314
1315	memset(&msg, 0, sizeof(msg));
1316	iov.iov_base = icresp;
1317	iov.iov_len = sizeof(*icresp);
1318	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1319			iov.iov_len, msg.msg_flags);
1320	if (ret < 0)
1321		goto free_icresp;
1322
1323	ret = -EINVAL;
1324	if (icresp->hdr.type != nvme_tcp_icresp) {
1325		pr_err("queue %d: bad type returned %d\n",
1326			nvme_tcp_queue_id(queue), icresp->hdr.type);
1327		goto free_icresp;
1328	}
1329
1330	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1331		pr_err("queue %d: bad pdu length returned %d\n",
1332			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1333		goto free_icresp;
1334	}
1335
1336	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1337		pr_err("queue %d: bad pfv returned %d\n",
1338			nvme_tcp_queue_id(queue), icresp->pfv);
1339		goto free_icresp;
1340	}
1341
1342	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1343	if ((queue->data_digest && !ctrl_ddgst) ||
1344	    (!queue->data_digest && ctrl_ddgst)) {
1345		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1346			nvme_tcp_queue_id(queue),
1347			queue->data_digest ? "enabled" : "disabled",
1348			ctrl_ddgst ? "enabled" : "disabled");
1349		goto free_icresp;
1350	}
1351
1352	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1353	if ((queue->hdr_digest && !ctrl_hdgst) ||
1354	    (!queue->hdr_digest && ctrl_hdgst)) {
1355		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1356			nvme_tcp_queue_id(queue),
1357			queue->hdr_digest ? "enabled" : "disabled",
1358			ctrl_hdgst ? "enabled" : "disabled");
1359		goto free_icresp;
1360	}
1361
1362	if (icresp->cpda != 0) {
1363		pr_err("queue %d: unsupported cpda returned %d\n",
1364			nvme_tcp_queue_id(queue), icresp->cpda);
1365		goto free_icresp;
1366	}
1367
1368	ret = 0;
1369free_icresp:
1370	kfree(icresp);
1371free_icreq:
1372	kfree(icreq);
1373	return ret;
1374}
1375
1376static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1377{
1378	return nvme_tcp_queue_id(queue) == 0;
1379}
1380
1381static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1382{
1383	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1384	int qid = nvme_tcp_queue_id(queue);
1385
1386	return !nvme_tcp_admin_queue(queue) &&
1387		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1388}
1389
1390static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1391{
1392	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1393	int qid = nvme_tcp_queue_id(queue);
1394
1395	return !nvme_tcp_admin_queue(queue) &&
1396		!nvme_tcp_default_queue(queue) &&
1397		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1398			  ctrl->io_queues[HCTX_TYPE_READ];
1399}
1400
1401static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1402{
1403	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1404	int qid = nvme_tcp_queue_id(queue);
1405
1406	return !nvme_tcp_admin_queue(queue) &&
1407		!nvme_tcp_default_queue(queue) &&
1408		!nvme_tcp_read_queue(queue) &&
1409		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1410			  ctrl->io_queues[HCTX_TYPE_READ] +
1411			  ctrl->io_queues[HCTX_TYPE_POLL];
1412}
1413
1414static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1415{
1416	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1417	int qid = nvme_tcp_queue_id(queue);
1418	int n = 0;
1419
1420	if (nvme_tcp_default_queue(queue))
1421		n = qid - 1;
1422	else if (nvme_tcp_read_queue(queue))
1423		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1424	else if (nvme_tcp_poll_queue(queue))
1425		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1426				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1427	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1428}
1429
1430static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1431		int qid, size_t queue_size)
1432{
1433	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1434	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1435	int ret, rcv_pdu_size;
1436
1437	mutex_init(&queue->queue_lock);
1438	queue->ctrl = ctrl;
1439	init_llist_head(&queue->req_list);
1440	INIT_LIST_HEAD(&queue->send_list);
1441	mutex_init(&queue->send_mutex);
1442	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1443	queue->queue_size = queue_size;
1444
1445	if (qid > 0)
1446		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1447	else
1448		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1449						NVME_TCP_ADMIN_CCSZ;
1450
1451	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1452			IPPROTO_TCP, &queue->sock);
1453	if (ret) {
1454		dev_err(nctrl->device,
1455			"failed to create socket: %d\n", ret);
1456		goto err_destroy_mutex;
1457	}
1458
1459	nvme_tcp_reclassify_socket(queue->sock);
1460
1461	/* Single syn retry */
1462	tcp_sock_set_syncnt(queue->sock->sk, 1);
1463
1464	/* Set TCP no delay */
1465	tcp_sock_set_nodelay(queue->sock->sk);
1466
1467	/*
1468	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1469	 * close. This is done to prevent stale data from being sent should
1470	 * the network connection be restored before TCP times out.
1471	 */
1472	sock_no_linger(queue->sock->sk);
1473
1474	if (so_priority > 0)
1475		sock_set_priority(queue->sock->sk, so_priority);
1476
1477	/* Set socket type of service */
1478	if (nctrl->opts->tos >= 0)
1479		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1480
1481	/* Set 10 seconds timeout for icresp recvmsg */
1482	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1483
1484	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1485	nvme_tcp_set_queue_io_cpu(queue);
1486	queue->request = NULL;
1487	queue->data_remaining = 0;
1488	queue->ddgst_remaining = 0;
1489	queue->pdu_remaining = 0;
1490	queue->pdu_offset = 0;
1491	sk_set_memalloc(queue->sock->sk);
1492
1493	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1494		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1495			sizeof(ctrl->src_addr));
1496		if (ret) {
1497			dev_err(nctrl->device,
1498				"failed to bind queue %d socket %d\n",
1499				qid, ret);
1500			goto err_sock;
1501		}
1502	}
1503
1504	queue->hdr_digest = nctrl->opts->hdr_digest;
1505	queue->data_digest = nctrl->opts->data_digest;
1506	if (queue->hdr_digest || queue->data_digest) {
1507		ret = nvme_tcp_alloc_crypto(queue);
1508		if (ret) {
1509			dev_err(nctrl->device,
1510				"failed to allocate queue %d crypto\n", qid);
1511			goto err_sock;
1512		}
1513	}
1514
1515	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1516			nvme_tcp_hdgst_len(queue);
1517	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1518	if (!queue->pdu) {
1519		ret = -ENOMEM;
1520		goto err_crypto;
1521	}
1522
1523	dev_dbg(nctrl->device, "connecting queue %d\n",
1524			nvme_tcp_queue_id(queue));
1525
1526	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1527		sizeof(ctrl->addr), 0);
1528	if (ret) {
1529		dev_err(nctrl->device,
1530			"failed to connect socket: %d\n", ret);
1531		goto err_rcv_pdu;
1532	}
1533
1534	ret = nvme_tcp_init_connection(queue);
1535	if (ret)
1536		goto err_init_connect;
1537
1538	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1539
1540	return 0;
1541
1542err_init_connect:
1543	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1544err_rcv_pdu:
1545	kfree(queue->pdu);
1546err_crypto:
1547	if (queue->hdr_digest || queue->data_digest)
1548		nvme_tcp_free_crypto(queue);
1549err_sock:
1550	sock_release(queue->sock);
1551	queue->sock = NULL;
1552err_destroy_mutex:
1553	mutex_destroy(&queue->queue_lock);
1554	return ret;
1555}
1556
1557static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1558{
1559	struct socket *sock = queue->sock;
1560
1561	write_lock_bh(&sock->sk->sk_callback_lock);
1562	sock->sk->sk_user_data  = NULL;
1563	sock->sk->sk_data_ready = queue->data_ready;
1564	sock->sk->sk_state_change = queue->state_change;
1565	sock->sk->sk_write_space  = queue->write_space;
1566	write_unlock_bh(&sock->sk->sk_callback_lock);
1567}
1568
1569static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1570{
1571	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1572	nvme_tcp_restore_sock_ops(queue);
1573	cancel_work_sync(&queue->io_work);
1574}
1575
1576static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1577{
1578	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1579	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1580
1581	mutex_lock(&queue->queue_lock);
1582	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1583		__nvme_tcp_stop_queue(queue);
1584	mutex_unlock(&queue->queue_lock);
1585}
1586
1587static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1588{
1589	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1590	queue->sock->sk->sk_user_data = queue;
1591	queue->state_change = queue->sock->sk->sk_state_change;
1592	queue->data_ready = queue->sock->sk->sk_data_ready;
1593	queue->write_space = queue->sock->sk->sk_write_space;
1594	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1595	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1596	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1597#ifdef CONFIG_NET_RX_BUSY_POLL
1598	queue->sock->sk->sk_ll_usec = 1;
1599#endif
1600	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1601}
1602
1603static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1604{
1605	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1606	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1607	int ret;
1608
1609	queue->rd_enabled = true;
1610	nvme_tcp_init_recv_ctx(queue);
1611	nvme_tcp_setup_sock_ops(queue);
1612
1613	if (idx)
1614		ret = nvmf_connect_io_queue(nctrl, idx, false);
1615	else
1616		ret = nvmf_connect_admin_queue(nctrl);
1617
1618	if (!ret) {
1619		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1620	} else {
1621		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1622			__nvme_tcp_stop_queue(queue);
1623		dev_err(nctrl->device,
1624			"failed to connect queue: %d ret=%d\n", idx, ret);
1625	}
1626	return ret;
1627}
1628
1629static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1630		bool admin)
1631{
1632	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1633	struct blk_mq_tag_set *set;
1634	int ret;
1635
1636	if (admin) {
1637		set = &ctrl->admin_tag_set;
1638		memset(set, 0, sizeof(*set));
1639		set->ops = &nvme_tcp_admin_mq_ops;
1640		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1641		set->reserved_tags = 2; /* connect + keep-alive */
1642		set->numa_node = nctrl->numa_node;
1643		set->flags = BLK_MQ_F_BLOCKING;
1644		set->cmd_size = sizeof(struct nvme_tcp_request);
1645		set->driver_data = ctrl;
1646		set->nr_hw_queues = 1;
1647		set->timeout = ADMIN_TIMEOUT;
1648	} else {
1649		set = &ctrl->tag_set;
1650		memset(set, 0, sizeof(*set));
1651		set->ops = &nvme_tcp_mq_ops;
1652		set->queue_depth = nctrl->sqsize + 1;
1653		set->reserved_tags = 1; /* fabric connect */
1654		set->numa_node = nctrl->numa_node;
1655		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1656		set->cmd_size = sizeof(struct nvme_tcp_request);
1657		set->driver_data = ctrl;
1658		set->nr_hw_queues = nctrl->queue_count - 1;
1659		set->timeout = NVME_IO_TIMEOUT;
1660		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1661	}
1662
1663	ret = blk_mq_alloc_tag_set(set);
1664	if (ret)
1665		return ERR_PTR(ret);
1666
1667	return set;
1668}
1669
1670static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1671{
1672	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1673		cancel_work_sync(&ctrl->async_event_work);
1674		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1675		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1676	}
1677
1678	nvme_tcp_free_queue(ctrl, 0);
1679}
1680
1681static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1682{
1683	int i;
1684
1685	for (i = 1; i < ctrl->queue_count; i++)
1686		nvme_tcp_free_queue(ctrl, i);
1687}
1688
1689static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1690{
1691	int i;
1692
1693	for (i = 1; i < ctrl->queue_count; i++)
1694		nvme_tcp_stop_queue(ctrl, i);
1695}
1696
1697static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1698{
1699	int i, ret = 0;
1700
1701	for (i = 1; i < ctrl->queue_count; i++) {
1702		ret = nvme_tcp_start_queue(ctrl, i);
1703		if (ret)
1704			goto out_stop_queues;
1705	}
1706
1707	return 0;
1708
1709out_stop_queues:
1710	for (i--; i >= 1; i--)
1711		nvme_tcp_stop_queue(ctrl, i);
1712	return ret;
1713}
1714
1715static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1716{
1717	int ret;
1718
1719	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1720	if (ret)
1721		return ret;
1722
1723	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1724	if (ret)
1725		goto out_free_queue;
1726
1727	return 0;
1728
1729out_free_queue:
1730	nvme_tcp_free_queue(ctrl, 0);
1731	return ret;
1732}
1733
1734static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1735{
1736	int i, ret;
1737
1738	for (i = 1; i < ctrl->queue_count; i++) {
1739		ret = nvme_tcp_alloc_queue(ctrl, i,
1740				ctrl->sqsize + 1);
1741		if (ret)
1742			goto out_free_queues;
1743	}
1744
1745	return 0;
1746
1747out_free_queues:
1748	for (i--; i >= 1; i--)
1749		nvme_tcp_free_queue(ctrl, i);
1750
1751	return ret;
1752}
1753
1754static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1755{
1756	unsigned int nr_io_queues;
1757
1758	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1759	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1760	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1761
1762	return nr_io_queues;
1763}
1764
1765static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1766		unsigned int nr_io_queues)
1767{
1768	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1769	struct nvmf_ctrl_options *opts = nctrl->opts;
1770
1771	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1772		/*
1773		 * separate read/write queues
1774		 * hand out dedicated default queues only after we have
1775		 * sufficient read queues.
1776		 */
1777		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1778		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1779		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1780			min(opts->nr_write_queues, nr_io_queues);
1781		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1782	} else {
1783		/*
1784		 * shared read/write queues
1785		 * either no write queues were requested, or we don't have
1786		 * sufficient queue count to have dedicated default queues.
1787		 */
1788		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1789			min(opts->nr_io_queues, nr_io_queues);
1790		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1791	}
1792
1793	if (opts->nr_poll_queues && nr_io_queues) {
1794		/* map dedicated poll queues only if we have queues left */
1795		ctrl->io_queues[HCTX_TYPE_POLL] =
1796			min(opts->nr_poll_queues, nr_io_queues);
1797	}
1798}
1799
1800static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1801{
1802	unsigned int nr_io_queues;
1803	int ret;
1804
1805	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1806	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1807	if (ret)
1808		return ret;
1809
1810	if (nr_io_queues == 0) {
1811		dev_err(ctrl->device,
1812			"unable to set any I/O queues\n");
1813		return -ENOMEM;
1814	}
1815
1816	ctrl->queue_count = nr_io_queues + 1;
1817	dev_info(ctrl->device,
1818		"creating %d I/O queues.\n", nr_io_queues);
1819
1820	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1821
1822	return __nvme_tcp_alloc_io_queues(ctrl);
1823}
1824
1825static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1826{
1827	nvme_tcp_stop_io_queues(ctrl);
1828	if (remove) {
1829		blk_cleanup_queue(ctrl->connect_q);
1830		blk_mq_free_tag_set(ctrl->tagset);
1831	}
1832	nvme_tcp_free_io_queues(ctrl);
1833}
1834
1835static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1836{
1837	int ret;
1838
1839	ret = nvme_tcp_alloc_io_queues(ctrl);
1840	if (ret)
1841		return ret;
1842
1843	if (new) {
1844		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1845		if (IS_ERR(ctrl->tagset)) {
1846			ret = PTR_ERR(ctrl->tagset);
1847			goto out_free_io_queues;
1848		}
1849
1850		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1851		if (IS_ERR(ctrl->connect_q)) {
1852			ret = PTR_ERR(ctrl->connect_q);
1853			goto out_free_tag_set;
1854		}
1855	}
1856
1857	ret = nvme_tcp_start_io_queues(ctrl);
1858	if (ret)
1859		goto out_cleanup_connect_q;
1860
1861	if (!new) {
1862		nvme_start_freeze(ctrl);
1863		nvme_start_queues(ctrl);
1864		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1865			/*
1866			 * If we timed out waiting for freeze we are likely to
1867			 * be stuck.  Fail the controller initialization just
1868			 * to be safe.
1869			 */
1870			ret = -ENODEV;
1871			nvme_unfreeze(ctrl);
1872			goto out_wait_freeze_timed_out;
1873		}
1874		blk_mq_update_nr_hw_queues(ctrl->tagset,
1875			ctrl->queue_count - 1);
1876		nvme_unfreeze(ctrl);
1877	}
1878
1879	return 0;
1880
1881out_wait_freeze_timed_out:
1882	nvme_stop_queues(ctrl);
1883	nvme_sync_io_queues(ctrl);
1884	nvme_tcp_stop_io_queues(ctrl);
1885out_cleanup_connect_q:
1886	nvme_cancel_tagset(ctrl);
1887	if (new)
1888		blk_cleanup_queue(ctrl->connect_q);
1889out_free_tag_set:
1890	if (new)
1891		blk_mq_free_tag_set(ctrl->tagset);
1892out_free_io_queues:
1893	nvme_tcp_free_io_queues(ctrl);
1894	return ret;
1895}
1896
1897static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1898{
1899	nvme_tcp_stop_queue(ctrl, 0);
1900	if (remove) {
1901		blk_cleanup_queue(ctrl->admin_q);
1902		blk_cleanup_queue(ctrl->fabrics_q);
1903		blk_mq_free_tag_set(ctrl->admin_tagset);
1904	}
1905	nvme_tcp_free_admin_queue(ctrl);
1906}
1907
1908static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1909{
1910	int error;
1911
1912	error = nvme_tcp_alloc_admin_queue(ctrl);
1913	if (error)
1914		return error;
1915
1916	if (new) {
1917		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1918		if (IS_ERR(ctrl->admin_tagset)) {
1919			error = PTR_ERR(ctrl->admin_tagset);
1920			goto out_free_queue;
1921		}
1922
1923		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1924		if (IS_ERR(ctrl->fabrics_q)) {
1925			error = PTR_ERR(ctrl->fabrics_q);
1926			goto out_free_tagset;
1927		}
1928
1929		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1930		if (IS_ERR(ctrl->admin_q)) {
1931			error = PTR_ERR(ctrl->admin_q);
1932			goto out_cleanup_fabrics_q;
1933		}
1934	}
1935
1936	error = nvme_tcp_start_queue(ctrl, 0);
1937	if (error)
1938		goto out_cleanup_queue;
1939
1940	error = nvme_enable_ctrl(ctrl);
1941	if (error)
1942		goto out_stop_queue;
1943
1944	nvme_start_admin_queue(ctrl);
1945
1946	error = nvme_init_identify(ctrl);
1947	if (error)
1948		goto out_quiesce_queue;
1949
1950	return 0;
1951
1952out_quiesce_queue:
1953	nvme_stop_admin_queue(ctrl);
1954	blk_sync_queue(ctrl->admin_q);
1955out_stop_queue:
1956	nvme_tcp_stop_queue(ctrl, 0);
1957	nvme_cancel_admin_tagset(ctrl);
1958out_cleanup_queue:
1959	if (new)
1960		blk_cleanup_queue(ctrl->admin_q);
1961out_cleanup_fabrics_q:
1962	if (new)
1963		blk_cleanup_queue(ctrl->fabrics_q);
1964out_free_tagset:
1965	if (new)
1966		blk_mq_free_tag_set(ctrl->admin_tagset);
1967out_free_queue:
1968	nvme_tcp_free_admin_queue(ctrl);
1969	return error;
1970}
1971
1972static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1973		bool remove)
1974{
1975	nvme_stop_admin_queue(ctrl);
1976	blk_sync_queue(ctrl->admin_q);
1977	nvme_tcp_stop_queue(ctrl, 0);
1978	if (ctrl->admin_tagset) {
1979		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1980			nvme_cancel_request, ctrl);
1981		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1982	}
1983	if (remove)
1984		nvme_start_admin_queue(ctrl);
1985	nvme_tcp_destroy_admin_queue(ctrl, remove);
1986}
1987
1988static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1989		bool remove)
1990{
1991	if (ctrl->queue_count <= 1)
1992		return;
1993	nvme_stop_admin_queue(ctrl);
1994	nvme_stop_queues(ctrl);
1995	nvme_sync_io_queues(ctrl);
1996	nvme_tcp_stop_io_queues(ctrl);
1997	if (ctrl->tagset) {
1998		blk_mq_tagset_busy_iter(ctrl->tagset,
1999			nvme_cancel_request, ctrl);
2000		blk_mq_tagset_wait_completed_request(ctrl->tagset);
2001	}
2002	if (remove)
2003		nvme_start_queues(ctrl);
2004	nvme_tcp_destroy_io_queues(ctrl, remove);
2005}
2006
2007static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2008{
2009	/* If we are resetting/deleting then do nothing */
2010	if (ctrl->state != NVME_CTRL_CONNECTING) {
2011		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2012			ctrl->state == NVME_CTRL_LIVE);
2013		return;
2014	}
2015
2016	if (nvmf_should_reconnect(ctrl)) {
2017		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2018			ctrl->opts->reconnect_delay);
2019		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2020				ctrl->opts->reconnect_delay * HZ);
2021	} else {
2022		dev_info(ctrl->device, "Removing controller...\n");
2023		nvme_delete_ctrl(ctrl);
2024	}
2025}
2026
2027static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2028{
2029	struct nvmf_ctrl_options *opts = ctrl->opts;
2030	int ret;
2031
2032	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2033	if (ret)
2034		return ret;
2035
2036	if (ctrl->icdoff) {
2037		dev_err(ctrl->device, "icdoff is not supported!\n");
2038		goto destroy_admin;
2039	}
2040
2041	if (opts->queue_size > ctrl->sqsize + 1)
2042		dev_warn(ctrl->device,
2043			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2044			opts->queue_size, ctrl->sqsize + 1);
2045
2046	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2047		dev_warn(ctrl->device,
2048			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2049			ctrl->sqsize + 1, ctrl->maxcmd);
2050		ctrl->sqsize = ctrl->maxcmd - 1;
2051	}
2052
2053	if (ctrl->queue_count > 1) {
2054		ret = nvme_tcp_configure_io_queues(ctrl, new);
2055		if (ret)
2056			goto destroy_admin;
2057	}
2058
2059	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2060		/*
2061		 * state change failure is ok if we started ctrl delete,
2062		 * unless we're during creation of a new controller to
2063		 * avoid races with teardown flow.
2064		 */
2065		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2066			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2067		WARN_ON_ONCE(new);
2068		ret = -EINVAL;
2069		goto destroy_io;
2070	}
2071
2072	nvme_start_ctrl(ctrl);
2073	return 0;
2074
2075destroy_io:
2076	if (ctrl->queue_count > 1) {
2077		nvme_stop_queues(ctrl);
2078		nvme_sync_io_queues(ctrl);
2079		nvme_tcp_stop_io_queues(ctrl);
2080		nvme_cancel_tagset(ctrl);
2081		nvme_tcp_destroy_io_queues(ctrl, new);
2082	}
2083destroy_admin:
2084	nvme_stop_admin_queue(ctrl);
2085	blk_sync_queue(ctrl->admin_q);
2086	nvme_tcp_stop_queue(ctrl, 0);
2087	nvme_cancel_admin_tagset(ctrl);
2088	nvme_tcp_destroy_admin_queue(ctrl, new);
2089	return ret;
2090}
2091
2092static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2093{
2094	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2095			struct nvme_tcp_ctrl, connect_work);
2096	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2097
2098	++ctrl->nr_reconnects;
2099
2100	if (nvme_tcp_setup_ctrl(ctrl, false))
2101		goto requeue;
2102
2103	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2104			ctrl->nr_reconnects);
2105
2106	ctrl->nr_reconnects = 0;
2107
2108	return;
2109
2110requeue:
2111	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2112			ctrl->nr_reconnects);
2113	nvme_tcp_reconnect_or_remove(ctrl);
2114}
2115
2116static void nvme_tcp_error_recovery_work(struct work_struct *work)
2117{
2118	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2119				struct nvme_tcp_ctrl, err_work);
2120	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2121
2122	nvme_stop_keep_alive(ctrl);
2123	flush_work(&ctrl->async_event_work);
2124	nvme_tcp_teardown_io_queues(ctrl, false);
2125	/* unquiesce to fail fast pending requests */
2126	nvme_start_queues(ctrl);
2127	nvme_tcp_teardown_admin_queue(ctrl, false);
2128	nvme_start_admin_queue(ctrl);
2129
2130	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2131		/* state change failure is ok if we started ctrl delete */
2132		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2133			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2134		return;
2135	}
2136
2137	nvme_tcp_reconnect_or_remove(ctrl);
2138}
2139
2140static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2141{
2142	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2143	nvme_stop_admin_queue(ctrl);
2144	if (shutdown)
2145		nvme_shutdown_ctrl(ctrl);
2146	else
2147		nvme_disable_ctrl(ctrl);
2148	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2149}
2150
2151static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2152{
2153	nvme_tcp_teardown_ctrl(ctrl, true);
2154}
2155
2156static void nvme_reset_ctrl_work(struct work_struct *work)
2157{
2158	struct nvme_ctrl *ctrl =
2159		container_of(work, struct nvme_ctrl, reset_work);
2160
2161	nvme_stop_ctrl(ctrl);
2162	nvme_tcp_teardown_ctrl(ctrl, false);
2163
2164	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2165		/* state change failure is ok if we started ctrl delete */
2166		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2167			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2168		return;
2169	}
2170
2171	if (nvme_tcp_setup_ctrl(ctrl, false))
2172		goto out_fail;
2173
2174	return;
2175
2176out_fail:
2177	++ctrl->nr_reconnects;
2178	nvme_tcp_reconnect_or_remove(ctrl);
2179}
2180
2181static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2182{
2183	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2184	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2185}
2186
2187static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2188{
2189	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2190
2191	if (list_empty(&ctrl->list))
2192		goto free_ctrl;
2193
2194	mutex_lock(&nvme_tcp_ctrl_mutex);
2195	list_del(&ctrl->list);
2196	mutex_unlock(&nvme_tcp_ctrl_mutex);
2197
2198	nvmf_free_options(nctrl->opts);
2199free_ctrl:
2200	kfree(ctrl->queues);
2201	kfree(ctrl);
2202}
2203
2204static void nvme_tcp_set_sg_null(struct nvme_command *c)
2205{
2206	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2207
2208	sg->addr = 0;
2209	sg->length = 0;
2210	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2211			NVME_SGL_FMT_TRANSPORT_A;
2212}
2213
2214static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2215		struct nvme_command *c, u32 data_len)
2216{
2217	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2218
2219	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2220	sg->length = cpu_to_le32(data_len);
2221	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2222}
2223
2224static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2225		u32 data_len)
2226{
2227	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2228
2229	sg->addr = 0;
2230	sg->length = cpu_to_le32(data_len);
2231	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2232			NVME_SGL_FMT_TRANSPORT_A;
2233}
2234
2235static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2236{
2237	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2238	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2239	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2240	struct nvme_command *cmd = &pdu->cmd;
2241	u8 hdgst = nvme_tcp_hdgst_len(queue);
2242
2243	memset(pdu, 0, sizeof(*pdu));
2244	pdu->hdr.type = nvme_tcp_cmd;
2245	if (queue->hdr_digest)
2246		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2247	pdu->hdr.hlen = sizeof(*pdu);
2248	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2249
2250	cmd->common.opcode = nvme_admin_async_event;
2251	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2252	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2253	nvme_tcp_set_sg_null(cmd);
2254
2255	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2256	ctrl->async_req.offset = 0;
2257	ctrl->async_req.curr_bio = NULL;
2258	ctrl->async_req.data_len = 0;
2259
2260	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2261}
2262
2263static void nvme_tcp_complete_timed_out(struct request *rq)
2264{
2265	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2266	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2267
2268	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2269	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2270		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2271		blk_mq_complete_request(rq);
2272	}
2273}
2274
2275static enum blk_eh_timer_return
2276nvme_tcp_timeout(struct request *rq, bool reserved)
2277{
2278	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2279	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2280	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2281
2282	dev_warn(ctrl->device,
2283		"queue %d: timeout request %#x type %d\n",
2284		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2285
2286	if (ctrl->state != NVME_CTRL_LIVE) {
2287		/*
2288		 * If we are resetting, connecting or deleting we should
2289		 * complete immediately because we may block controller
2290		 * teardown or setup sequence
2291		 * - ctrl disable/shutdown fabrics requests
2292		 * - connect requests
2293		 * - initialization admin requests
2294		 * - I/O requests that entered after unquiescing and
2295		 *   the controller stopped responding
2296		 *
2297		 * All other requests should be cancelled by the error
2298		 * recovery work, so it's fine that we fail it here.
2299		 */
2300		nvme_tcp_complete_timed_out(rq);
2301		return BLK_EH_DONE;
2302	}
2303
2304	/*
2305	 * LIVE state should trigger the normal error recovery which will
2306	 * handle completing this request.
2307	 */
2308	nvme_tcp_error_recovery(ctrl);
2309	return BLK_EH_RESET_TIMER;
2310}
2311
2312static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2313			struct request *rq)
2314{
2315	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2316	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2317	struct nvme_command *c = &pdu->cmd;
2318
2319	c->common.flags |= NVME_CMD_SGL_METABUF;
2320
2321	if (!blk_rq_nr_phys_segments(rq))
2322		nvme_tcp_set_sg_null(c);
2323	else if (rq_data_dir(rq) == WRITE &&
2324	    req->data_len <= nvme_tcp_inline_data_size(queue))
2325		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2326	else
2327		nvme_tcp_set_sg_host_data(c, req->data_len);
2328
2329	return 0;
2330}
2331
2332static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2333		struct request *rq)
2334{
2335	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2336	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2337	struct nvme_tcp_queue *queue = req->queue;
2338	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2339	blk_status_t ret;
2340
2341	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2342	if (ret)
2343		return ret;
2344
2345	req->state = NVME_TCP_SEND_CMD_PDU;
2346	req->offset = 0;
2347	req->data_sent = 0;
2348	req->pdu_len = 0;
2349	req->pdu_sent = 0;
2350	req->data_len = blk_rq_nr_phys_segments(rq) ?
2351				blk_rq_payload_bytes(rq) : 0;
2352	req->curr_bio = rq->bio;
2353
2354	if (rq_data_dir(rq) == WRITE &&
2355	    req->data_len <= nvme_tcp_inline_data_size(queue))
2356		req->pdu_len = req->data_len;
2357	else if (req->curr_bio)
2358		nvme_tcp_init_iter(req, READ);
2359
2360	pdu->hdr.type = nvme_tcp_cmd;
2361	pdu->hdr.flags = 0;
2362	if (queue->hdr_digest)
2363		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2364	if (queue->data_digest && req->pdu_len) {
2365		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2366		ddgst = nvme_tcp_ddgst_len(queue);
2367	}
2368	pdu->hdr.hlen = sizeof(*pdu);
2369	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2370	pdu->hdr.plen =
2371		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2372
2373	ret = nvme_tcp_map_data(queue, rq);
2374	if (unlikely(ret)) {
2375		nvme_cleanup_cmd(rq);
2376		dev_err(queue->ctrl->ctrl.device,
2377			"Failed to map data (%d)\n", ret);
2378		return ret;
2379	}
2380
2381	return 0;
2382}
2383
2384static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2385{
2386	struct nvme_tcp_queue *queue = hctx->driver_data;
2387
2388	if (!llist_empty(&queue->req_list))
2389		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2390}
2391
2392static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2393		const struct blk_mq_queue_data *bd)
2394{
2395	struct nvme_ns *ns = hctx->queue->queuedata;
2396	struct nvme_tcp_queue *queue = hctx->driver_data;
2397	struct request *rq = bd->rq;
2398	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2399	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2400	blk_status_t ret;
2401
2402	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2403		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2404
2405	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2406	if (unlikely(ret))
2407		return ret;
2408
2409	blk_mq_start_request(rq);
2410
2411	nvme_tcp_queue_request(req, true, bd->last);
2412
2413	return BLK_STS_OK;
2414}
2415
2416static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2417{
2418	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2419	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2420
2421	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2422		/* separate read/write queues */
2423		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2424			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2425		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2426		set->map[HCTX_TYPE_READ].nr_queues =
2427			ctrl->io_queues[HCTX_TYPE_READ];
2428		set->map[HCTX_TYPE_READ].queue_offset =
2429			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2430	} else {
2431		/* shared read/write queues */
2432		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2433			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2434		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2435		set->map[HCTX_TYPE_READ].nr_queues =
2436			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2437		set->map[HCTX_TYPE_READ].queue_offset = 0;
2438	}
2439	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2440	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2441
2442	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2443		/* map dedicated poll queues only if we have queues left */
2444		set->map[HCTX_TYPE_POLL].nr_queues =
2445				ctrl->io_queues[HCTX_TYPE_POLL];
2446		set->map[HCTX_TYPE_POLL].queue_offset =
2447			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2448			ctrl->io_queues[HCTX_TYPE_READ];
2449		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2450	}
2451
2452	dev_info(ctrl->ctrl.device,
2453		"mapped %d/%d/%d default/read/poll queues.\n",
2454		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2455		ctrl->io_queues[HCTX_TYPE_READ],
2456		ctrl->io_queues[HCTX_TYPE_POLL]);
2457
2458	return 0;
2459}
2460
2461static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2462{
2463	struct nvme_tcp_queue *queue = hctx->driver_data;
2464	struct sock *sk = queue->sock->sk;
2465
2466	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2467		return 0;
2468
2469	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2470	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2471		sk_busy_loop(sk, true);
2472	nvme_tcp_try_recv(queue);
2473	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2474	return queue->nr_cqe;
2475}
2476
2477static const struct blk_mq_ops nvme_tcp_mq_ops = {
2478	.queue_rq	= nvme_tcp_queue_rq,
2479	.commit_rqs	= nvme_tcp_commit_rqs,
2480	.complete	= nvme_complete_rq,
2481	.init_request	= nvme_tcp_init_request,
2482	.exit_request	= nvme_tcp_exit_request,
2483	.init_hctx	= nvme_tcp_init_hctx,
2484	.timeout	= nvme_tcp_timeout,
2485	.map_queues	= nvme_tcp_map_queues,
2486	.poll		= nvme_tcp_poll,
2487};
2488
2489static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2490	.queue_rq	= nvme_tcp_queue_rq,
2491	.complete	= nvme_complete_rq,
2492	.init_request	= nvme_tcp_init_request,
2493	.exit_request	= nvme_tcp_exit_request,
2494	.init_hctx	= nvme_tcp_init_admin_hctx,
2495	.timeout	= nvme_tcp_timeout,
2496};
2497
2498static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2499	.name			= "tcp",
2500	.module			= THIS_MODULE,
2501	.flags			= NVME_F_FABRICS,
2502	.reg_read32		= nvmf_reg_read32,
2503	.reg_read64		= nvmf_reg_read64,
2504	.reg_write32		= nvmf_reg_write32,
2505	.free_ctrl		= nvme_tcp_free_ctrl,
2506	.submit_async_event	= nvme_tcp_submit_async_event,
2507	.delete_ctrl		= nvme_tcp_delete_ctrl,
2508	.get_address		= nvmf_get_address,
2509	.stop_ctrl		= nvme_tcp_stop_ctrl,
2510};
2511
2512static bool
2513nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2514{
2515	struct nvme_tcp_ctrl *ctrl;
2516	bool found = false;
2517
2518	mutex_lock(&nvme_tcp_ctrl_mutex);
2519	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2520		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2521		if (found)
2522			break;
2523	}
2524	mutex_unlock(&nvme_tcp_ctrl_mutex);
2525
2526	return found;
2527}
2528
2529static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2530		struct nvmf_ctrl_options *opts)
2531{
2532	struct nvme_tcp_ctrl *ctrl;
2533	int ret;
2534
2535	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2536	if (!ctrl)
2537		return ERR_PTR(-ENOMEM);
2538
2539	INIT_LIST_HEAD(&ctrl->list);
2540	ctrl->ctrl.opts = opts;
2541	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2542				opts->nr_poll_queues + 1;
2543	ctrl->ctrl.sqsize = opts->queue_size - 1;
2544	ctrl->ctrl.kato = opts->kato;
2545
2546	INIT_DELAYED_WORK(&ctrl->connect_work,
2547			nvme_tcp_reconnect_ctrl_work);
2548	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2549	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2550
2551	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2552		opts->trsvcid =
2553			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2554		if (!opts->trsvcid) {
2555			ret = -ENOMEM;
2556			goto out_free_ctrl;
2557		}
2558		opts->mask |= NVMF_OPT_TRSVCID;
2559	}
2560
2561	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2562			opts->traddr, opts->trsvcid, &ctrl->addr);
2563	if (ret) {
2564		pr_err("malformed address passed: %s:%s\n",
2565			opts->traddr, opts->trsvcid);
2566		goto out_free_ctrl;
2567	}
2568
2569	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2570		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2571			opts->host_traddr, NULL, &ctrl->src_addr);
2572		if (ret) {
2573			pr_err("malformed src address passed: %s\n",
2574			       opts->host_traddr);
2575			goto out_free_ctrl;
2576		}
2577	}
2578
2579	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2580		ret = -EALREADY;
2581		goto out_free_ctrl;
2582	}
2583
2584	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2585				GFP_KERNEL);
2586	if (!ctrl->queues) {
2587		ret = -ENOMEM;
2588		goto out_free_ctrl;
2589	}
2590
2591	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2592	if (ret)
2593		goto out_kfree_queues;
2594
2595	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2596		WARN_ON_ONCE(1);
2597		ret = -EINTR;
2598		goto out_uninit_ctrl;
2599	}
2600
2601	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2602	if (ret)
2603		goto out_uninit_ctrl;
2604
2605	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2606		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2607
2608	mutex_lock(&nvme_tcp_ctrl_mutex);
2609	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2610	mutex_unlock(&nvme_tcp_ctrl_mutex);
2611
2612	return &ctrl->ctrl;
2613
2614out_uninit_ctrl:
2615	nvme_uninit_ctrl(&ctrl->ctrl);
2616	nvme_put_ctrl(&ctrl->ctrl);
2617	if (ret > 0)
2618		ret = -EIO;
2619	return ERR_PTR(ret);
2620out_kfree_queues:
2621	kfree(ctrl->queues);
2622out_free_ctrl:
2623	kfree(ctrl);
2624	return ERR_PTR(ret);
2625}
2626
2627static struct nvmf_transport_ops nvme_tcp_transport = {
2628	.name		= "tcp",
2629	.module		= THIS_MODULE,
2630	.required_opts	= NVMF_OPT_TRADDR,
2631	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2632			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2633			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2634			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2635			  NVMF_OPT_TOS,
2636	.create_ctrl	= nvme_tcp_create_ctrl,
2637};
2638
2639static int __init nvme_tcp_init_module(void)
2640{
2641	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2642			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2643	if (!nvme_tcp_wq)
2644		return -ENOMEM;
2645
2646	nvmf_register_transport(&nvme_tcp_transport);
2647	return 0;
2648}
2649
2650static void __exit nvme_tcp_cleanup_module(void)
2651{
2652	struct nvme_tcp_ctrl *ctrl;
2653
2654	nvmf_unregister_transport(&nvme_tcp_transport);
2655
2656	mutex_lock(&nvme_tcp_ctrl_mutex);
2657	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2658		nvme_delete_ctrl(&ctrl->ctrl);
2659	mutex_unlock(&nvme_tcp_ctrl_mutex);
2660	flush_workqueue(nvme_delete_wq);
2661
2662	destroy_workqueue(nvme_tcp_wq);
2663}
2664
2665module_init(nvme_tcp_init_module);
2666module_exit(nvme_tcp_cleanup_module);
2667
2668MODULE_LICENSE("GPL v2");
2669