xref: /kernel/linux/linux-5.10/drivers/nvme/host/fc.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4 */
5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6#include <linux/module.h>
7#include <linux/parser.h>
8#include <uapi/scsi/fc/fc_fs.h>
9#include <uapi/scsi/fc/fc_els.h>
10#include <linux/delay.h>
11#include <linux/overflow.h>
12
13#include "nvme.h"
14#include "fabrics.h"
15#include <linux/nvme-fc-driver.h>
16#include <linux/nvme-fc.h>
17#include "fc.h"
18#include <scsi/scsi_transport_fc.h>
19
20/* *************************** Data Structures/Defines ****************** */
21
22
23enum nvme_fc_queue_flags {
24	NVME_FC_Q_CONNECTED = 0,
25	NVME_FC_Q_LIVE,
26};
27
28#define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
29#define NVME_FC_DEFAULT_RECONNECT_TMO	2	/* delay between reconnects
30						 * when connected and a
31						 * connection failure.
32						 */
33
34struct nvme_fc_queue {
35	struct nvme_fc_ctrl	*ctrl;
36	struct device		*dev;
37	struct blk_mq_hw_ctx	*hctx;
38	void			*lldd_handle;
39	size_t			cmnd_capsule_len;
40	u32			qnum;
41	u32			rqcnt;
42	u32			seqno;
43
44	u64			connection_id;
45	atomic_t		csn;
46
47	unsigned long		flags;
48} __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
49
50enum nvme_fcop_flags {
51	FCOP_FLAGS_TERMIO	= (1 << 0),
52	FCOP_FLAGS_AEN		= (1 << 1),
53};
54
55struct nvmefc_ls_req_op {
56	struct nvmefc_ls_req	ls_req;
57
58	struct nvme_fc_rport	*rport;
59	struct nvme_fc_queue	*queue;
60	struct request		*rq;
61	u32			flags;
62
63	int			ls_error;
64	struct completion	ls_done;
65	struct list_head	lsreq_list;	/* rport->ls_req_list */
66	bool			req_queued;
67};
68
69struct nvmefc_ls_rcv_op {
70	struct nvme_fc_rport		*rport;
71	struct nvmefc_ls_rsp		*lsrsp;
72	union nvmefc_ls_requests	*rqstbuf;
73	union nvmefc_ls_responses	*rspbuf;
74	u16				rqstdatalen;
75	bool				handled;
76	dma_addr_t			rspdma;
77	struct list_head		lsrcv_list;	/* rport->ls_rcv_list */
78} __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
79
80enum nvme_fcpop_state {
81	FCPOP_STATE_UNINIT	= 0,
82	FCPOP_STATE_IDLE	= 1,
83	FCPOP_STATE_ACTIVE	= 2,
84	FCPOP_STATE_ABORTED	= 3,
85	FCPOP_STATE_COMPLETE	= 4,
86};
87
88struct nvme_fc_fcp_op {
89	struct nvme_request	nreq;		/*
90						 * nvme/host/core.c
91						 * requires this to be
92						 * the 1st element in the
93						 * private structure
94						 * associated with the
95						 * request.
96						 */
97	struct nvmefc_fcp_req	fcp_req;
98
99	struct nvme_fc_ctrl	*ctrl;
100	struct nvme_fc_queue	*queue;
101	struct request		*rq;
102
103	atomic_t		state;
104	u32			flags;
105	u32			rqno;
106	u32			nents;
107
108	struct nvme_fc_cmd_iu	cmd_iu;
109	struct nvme_fc_ersp_iu	rsp_iu;
110};
111
112struct nvme_fcp_op_w_sgl {
113	struct nvme_fc_fcp_op	op;
114	struct scatterlist	sgl[NVME_INLINE_SG_CNT];
115	uint8_t			priv[];
116};
117
118struct nvme_fc_lport {
119	struct nvme_fc_local_port	localport;
120
121	struct ida			endp_cnt;
122	struct list_head		port_list;	/* nvme_fc_port_list */
123	struct list_head		endp_list;
124	struct device			*dev;	/* physical device for dma */
125	struct nvme_fc_port_template	*ops;
126	struct kref			ref;
127	atomic_t                        act_rport_cnt;
128} __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
129
130struct nvme_fc_rport {
131	struct nvme_fc_remote_port	remoteport;
132
133	struct list_head		endp_list; /* for lport->endp_list */
134	struct list_head		ctrl_list;
135	struct list_head		ls_req_list;
136	struct list_head		ls_rcv_list;
137	struct list_head		disc_list;
138	struct device			*dev;	/* physical device for dma */
139	struct nvme_fc_lport		*lport;
140	spinlock_t			lock;
141	struct kref			ref;
142	atomic_t                        act_ctrl_cnt;
143	unsigned long			dev_loss_end;
144	struct work_struct		lsrcv_work;
145} __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
146
147/* fc_ctrl flags values - specified as bit positions */
148#define ASSOC_ACTIVE		0
149#define ASSOC_FAILED		1
150#define FCCTRL_TERMIO		2
151
152struct nvme_fc_ctrl {
153	spinlock_t		lock;
154	struct nvme_fc_queue	*queues;
155	struct device		*dev;
156	struct nvme_fc_lport	*lport;
157	struct nvme_fc_rport	*rport;
158	u32			cnum;
159
160	bool			ioq_live;
161	u64			association_id;
162	struct nvmefc_ls_rcv_op	*rcv_disconn;
163
164	struct list_head	ctrl_list;	/* rport->ctrl_list */
165
166	struct blk_mq_tag_set	admin_tag_set;
167	struct blk_mq_tag_set	tag_set;
168
169	struct work_struct	ioerr_work;
170	struct delayed_work	connect_work;
171
172	struct kref		ref;
173	unsigned long		flags;
174	u32			iocnt;
175	wait_queue_head_t	ioabort_wait;
176
177	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
178
179	struct nvme_ctrl	ctrl;
180};
181
182static inline struct nvme_fc_ctrl *
183to_fc_ctrl(struct nvme_ctrl *ctrl)
184{
185	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
186}
187
188static inline struct nvme_fc_lport *
189localport_to_lport(struct nvme_fc_local_port *portptr)
190{
191	return container_of(portptr, struct nvme_fc_lport, localport);
192}
193
194static inline struct nvme_fc_rport *
195remoteport_to_rport(struct nvme_fc_remote_port *portptr)
196{
197	return container_of(portptr, struct nvme_fc_rport, remoteport);
198}
199
200static inline struct nvmefc_ls_req_op *
201ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
202{
203	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
204}
205
206static inline struct nvme_fc_fcp_op *
207fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
208{
209	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
210}
211
212
213
214/* *************************** Globals **************************** */
215
216
217static DEFINE_SPINLOCK(nvme_fc_lock);
218
219static LIST_HEAD(nvme_fc_lport_list);
220static DEFINE_IDA(nvme_fc_local_port_cnt);
221static DEFINE_IDA(nvme_fc_ctrl_cnt);
222
223static struct workqueue_struct *nvme_fc_wq;
224
225static bool nvme_fc_waiting_to_unload;
226static DECLARE_COMPLETION(nvme_fc_unload_proceed);
227
228/*
229 * These items are short-term. They will eventually be moved into
230 * a generic FC class. See comments in module init.
231 */
232static struct device *fc_udev_device;
233
234static void nvme_fc_complete_rq(struct request *rq);
235
236/* *********************** FC-NVME Port Management ************************ */
237
238static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
239			struct nvme_fc_queue *, unsigned int);
240
241static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
242
243
244static void
245nvme_fc_free_lport(struct kref *ref)
246{
247	struct nvme_fc_lport *lport =
248		container_of(ref, struct nvme_fc_lport, ref);
249	unsigned long flags;
250
251	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
252	WARN_ON(!list_empty(&lport->endp_list));
253
254	/* remove from transport list */
255	spin_lock_irqsave(&nvme_fc_lock, flags);
256	list_del(&lport->port_list);
257	if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
258		complete(&nvme_fc_unload_proceed);
259	spin_unlock_irqrestore(&nvme_fc_lock, flags);
260
261	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
262	ida_destroy(&lport->endp_cnt);
263
264	put_device(lport->dev);
265
266	kfree(lport);
267}
268
269static void
270nvme_fc_lport_put(struct nvme_fc_lport *lport)
271{
272	kref_put(&lport->ref, nvme_fc_free_lport);
273}
274
275static int
276nvme_fc_lport_get(struct nvme_fc_lport *lport)
277{
278	return kref_get_unless_zero(&lport->ref);
279}
280
281
282static struct nvme_fc_lport *
283nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
284			struct nvme_fc_port_template *ops,
285			struct device *dev)
286{
287	struct nvme_fc_lport *lport;
288	unsigned long flags;
289
290	spin_lock_irqsave(&nvme_fc_lock, flags);
291
292	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
293		if (lport->localport.node_name != pinfo->node_name ||
294		    lport->localport.port_name != pinfo->port_name)
295			continue;
296
297		if (lport->dev != dev) {
298			lport = ERR_PTR(-EXDEV);
299			goto out_done;
300		}
301
302		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
303			lport = ERR_PTR(-EEXIST);
304			goto out_done;
305		}
306
307		if (!nvme_fc_lport_get(lport)) {
308			/*
309			 * fails if ref cnt already 0. If so,
310			 * act as if lport already deleted
311			 */
312			lport = NULL;
313			goto out_done;
314		}
315
316		/* resume the lport */
317
318		lport->ops = ops;
319		lport->localport.port_role = pinfo->port_role;
320		lport->localport.port_id = pinfo->port_id;
321		lport->localport.port_state = FC_OBJSTATE_ONLINE;
322
323		spin_unlock_irqrestore(&nvme_fc_lock, flags);
324
325		return lport;
326	}
327
328	lport = NULL;
329
330out_done:
331	spin_unlock_irqrestore(&nvme_fc_lock, flags);
332
333	return lport;
334}
335
336/**
337 * nvme_fc_register_localport - transport entry point called by an
338 *                              LLDD to register the existence of a NVME
339 *                              host FC port.
340 * @pinfo:     pointer to information about the port to be registered
341 * @template:  LLDD entrypoints and operational parameters for the port
342 * @dev:       physical hardware device node port corresponds to. Will be
343 *             used for DMA mappings
344 * @portptr:   pointer to a local port pointer. Upon success, the routine
345 *             will allocate a nvme_fc_local_port structure and place its
346 *             address in the local port pointer. Upon failure, local port
347 *             pointer will be set to 0.
348 *
349 * Returns:
350 * a completion status. Must be 0 upon success; a negative errno
351 * (ex: -ENXIO) upon failure.
352 */
353int
354nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
355			struct nvme_fc_port_template *template,
356			struct device *dev,
357			struct nvme_fc_local_port **portptr)
358{
359	struct nvme_fc_lport *newrec;
360	unsigned long flags;
361	int ret, idx;
362
363	if (!template->localport_delete || !template->remoteport_delete ||
364	    !template->ls_req || !template->fcp_io ||
365	    !template->ls_abort || !template->fcp_abort ||
366	    !template->max_hw_queues || !template->max_sgl_segments ||
367	    !template->max_dif_sgl_segments || !template->dma_boundary) {
368		ret = -EINVAL;
369		goto out_reghost_failed;
370	}
371
372	/*
373	 * look to see if there is already a localport that had been
374	 * deregistered and in the process of waiting for all the
375	 * references to fully be removed.  If the references haven't
376	 * expired, we can simply re-enable the localport. Remoteports
377	 * and controller reconnections should resume naturally.
378	 */
379	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
380
381	/* found an lport, but something about its state is bad */
382	if (IS_ERR(newrec)) {
383		ret = PTR_ERR(newrec);
384		goto out_reghost_failed;
385
386	/* found existing lport, which was resumed */
387	} else if (newrec) {
388		*portptr = &newrec->localport;
389		return 0;
390	}
391
392	/* nothing found - allocate a new localport struct */
393
394	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
395			 GFP_KERNEL);
396	if (!newrec) {
397		ret = -ENOMEM;
398		goto out_reghost_failed;
399	}
400
401	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
402	if (idx < 0) {
403		ret = -ENOSPC;
404		goto out_fail_kfree;
405	}
406
407	if (!get_device(dev) && dev) {
408		ret = -ENODEV;
409		goto out_ida_put;
410	}
411
412	INIT_LIST_HEAD(&newrec->port_list);
413	INIT_LIST_HEAD(&newrec->endp_list);
414	kref_init(&newrec->ref);
415	atomic_set(&newrec->act_rport_cnt, 0);
416	newrec->ops = template;
417	newrec->dev = dev;
418	ida_init(&newrec->endp_cnt);
419	if (template->local_priv_sz)
420		newrec->localport.private = &newrec[1];
421	else
422		newrec->localport.private = NULL;
423	newrec->localport.node_name = pinfo->node_name;
424	newrec->localport.port_name = pinfo->port_name;
425	newrec->localport.port_role = pinfo->port_role;
426	newrec->localport.port_id = pinfo->port_id;
427	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
428	newrec->localport.port_num = idx;
429
430	spin_lock_irqsave(&nvme_fc_lock, flags);
431	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
432	spin_unlock_irqrestore(&nvme_fc_lock, flags);
433
434	if (dev)
435		dma_set_seg_boundary(dev, template->dma_boundary);
436
437	*portptr = &newrec->localport;
438	return 0;
439
440out_ida_put:
441	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
442out_fail_kfree:
443	kfree(newrec);
444out_reghost_failed:
445	*portptr = NULL;
446
447	return ret;
448}
449EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
450
451/**
452 * nvme_fc_unregister_localport - transport entry point called by an
453 *                              LLDD to deregister/remove a previously
454 *                              registered a NVME host FC port.
455 * @portptr: pointer to the (registered) local port that is to be deregistered.
456 *
457 * Returns:
458 * a completion status. Must be 0 upon success; a negative errno
459 * (ex: -ENXIO) upon failure.
460 */
461int
462nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
463{
464	struct nvme_fc_lport *lport = localport_to_lport(portptr);
465	unsigned long flags;
466
467	if (!portptr)
468		return -EINVAL;
469
470	spin_lock_irqsave(&nvme_fc_lock, flags);
471
472	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
473		spin_unlock_irqrestore(&nvme_fc_lock, flags);
474		return -EINVAL;
475	}
476	portptr->port_state = FC_OBJSTATE_DELETED;
477
478	spin_unlock_irqrestore(&nvme_fc_lock, flags);
479
480	if (atomic_read(&lport->act_rport_cnt) == 0)
481		lport->ops->localport_delete(&lport->localport);
482
483	nvme_fc_lport_put(lport);
484
485	return 0;
486}
487EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
488
489/*
490 * TRADDR strings, per FC-NVME are fixed format:
491 *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
492 * udev event will only differ by prefix of what field is
493 * being specified:
494 *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
495 *  19 + 43 + null_fudge = 64 characters
496 */
497#define FCNVME_TRADDR_LENGTH		64
498
499static void
500nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
501		struct nvme_fc_rport *rport)
502{
503	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
504	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
505	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
506
507	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
508		return;
509
510	snprintf(hostaddr, sizeof(hostaddr),
511		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
512		lport->localport.node_name, lport->localport.port_name);
513	snprintf(tgtaddr, sizeof(tgtaddr),
514		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
515		rport->remoteport.node_name, rport->remoteport.port_name);
516	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
517}
518
519static void
520nvme_fc_free_rport(struct kref *ref)
521{
522	struct nvme_fc_rport *rport =
523		container_of(ref, struct nvme_fc_rport, ref);
524	struct nvme_fc_lport *lport =
525			localport_to_lport(rport->remoteport.localport);
526	unsigned long flags;
527
528	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
529	WARN_ON(!list_empty(&rport->ctrl_list));
530
531	/* remove from lport list */
532	spin_lock_irqsave(&nvme_fc_lock, flags);
533	list_del(&rport->endp_list);
534	spin_unlock_irqrestore(&nvme_fc_lock, flags);
535
536	WARN_ON(!list_empty(&rport->disc_list));
537	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
538
539	kfree(rport);
540
541	nvme_fc_lport_put(lport);
542}
543
544static void
545nvme_fc_rport_put(struct nvme_fc_rport *rport)
546{
547	kref_put(&rport->ref, nvme_fc_free_rport);
548}
549
550static int
551nvme_fc_rport_get(struct nvme_fc_rport *rport)
552{
553	return kref_get_unless_zero(&rport->ref);
554}
555
556static void
557nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
558{
559	switch (ctrl->ctrl.state) {
560	case NVME_CTRL_NEW:
561	case NVME_CTRL_CONNECTING:
562		/*
563		 * As all reconnects were suppressed, schedule a
564		 * connect.
565		 */
566		dev_info(ctrl->ctrl.device,
567			"NVME-FC{%d}: connectivity re-established. "
568			"Attempting reconnect\n", ctrl->cnum);
569
570		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
571		break;
572
573	case NVME_CTRL_RESETTING:
574		/*
575		 * Controller is already in the process of terminating the
576		 * association. No need to do anything further. The reconnect
577		 * step will naturally occur after the reset completes.
578		 */
579		break;
580
581	default:
582		/* no action to take - let it delete */
583		break;
584	}
585}
586
587static struct nvme_fc_rport *
588nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
589				struct nvme_fc_port_info *pinfo)
590{
591	struct nvme_fc_rport *rport;
592	struct nvme_fc_ctrl *ctrl;
593	unsigned long flags;
594
595	spin_lock_irqsave(&nvme_fc_lock, flags);
596
597	list_for_each_entry(rport, &lport->endp_list, endp_list) {
598		if (rport->remoteport.node_name != pinfo->node_name ||
599		    rport->remoteport.port_name != pinfo->port_name)
600			continue;
601
602		if (!nvme_fc_rport_get(rport)) {
603			rport = ERR_PTR(-ENOLCK);
604			goto out_done;
605		}
606
607		spin_unlock_irqrestore(&nvme_fc_lock, flags);
608
609		spin_lock_irqsave(&rport->lock, flags);
610
611		/* has it been unregistered */
612		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
613			/* means lldd called us twice */
614			spin_unlock_irqrestore(&rport->lock, flags);
615			nvme_fc_rport_put(rport);
616			return ERR_PTR(-ESTALE);
617		}
618
619		rport->remoteport.port_role = pinfo->port_role;
620		rport->remoteport.port_id = pinfo->port_id;
621		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
622		rport->dev_loss_end = 0;
623
624		/*
625		 * kick off a reconnect attempt on all associations to the
626		 * remote port. A successful reconnects will resume i/o.
627		 */
628		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
629			nvme_fc_resume_controller(ctrl);
630
631		spin_unlock_irqrestore(&rport->lock, flags);
632
633		return rport;
634	}
635
636	rport = NULL;
637
638out_done:
639	spin_unlock_irqrestore(&nvme_fc_lock, flags);
640
641	return rport;
642}
643
644static inline void
645__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
646			struct nvme_fc_port_info *pinfo)
647{
648	if (pinfo->dev_loss_tmo)
649		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
650	else
651		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
652}
653
654/**
655 * nvme_fc_register_remoteport - transport entry point called by an
656 *                              LLDD to register the existence of a NVME
657 *                              subsystem FC port on its fabric.
658 * @localport: pointer to the (registered) local port that the remote
659 *             subsystem port is connected to.
660 * @pinfo:     pointer to information about the port to be registered
661 * @portptr:   pointer to a remote port pointer. Upon success, the routine
662 *             will allocate a nvme_fc_remote_port structure and place its
663 *             address in the remote port pointer. Upon failure, remote port
664 *             pointer will be set to 0.
665 *
666 * Returns:
667 * a completion status. Must be 0 upon success; a negative errno
668 * (ex: -ENXIO) upon failure.
669 */
670int
671nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
672				struct nvme_fc_port_info *pinfo,
673				struct nvme_fc_remote_port **portptr)
674{
675	struct nvme_fc_lport *lport = localport_to_lport(localport);
676	struct nvme_fc_rport *newrec;
677	unsigned long flags;
678	int ret, idx;
679
680	if (!nvme_fc_lport_get(lport)) {
681		ret = -ESHUTDOWN;
682		goto out_reghost_failed;
683	}
684
685	/*
686	 * look to see if there is already a remoteport that is waiting
687	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
688	 * If so, transition to it and reconnect.
689	 */
690	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
691
692	/* found an rport, but something about its state is bad */
693	if (IS_ERR(newrec)) {
694		ret = PTR_ERR(newrec);
695		goto out_lport_put;
696
697	/* found existing rport, which was resumed */
698	} else if (newrec) {
699		nvme_fc_lport_put(lport);
700		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
701		nvme_fc_signal_discovery_scan(lport, newrec);
702		*portptr = &newrec->remoteport;
703		return 0;
704	}
705
706	/* nothing found - allocate a new remoteport struct */
707
708	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
709			 GFP_KERNEL);
710	if (!newrec) {
711		ret = -ENOMEM;
712		goto out_lport_put;
713	}
714
715	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
716	if (idx < 0) {
717		ret = -ENOSPC;
718		goto out_kfree_rport;
719	}
720
721	INIT_LIST_HEAD(&newrec->endp_list);
722	INIT_LIST_HEAD(&newrec->ctrl_list);
723	INIT_LIST_HEAD(&newrec->ls_req_list);
724	INIT_LIST_HEAD(&newrec->disc_list);
725	kref_init(&newrec->ref);
726	atomic_set(&newrec->act_ctrl_cnt, 0);
727	spin_lock_init(&newrec->lock);
728	newrec->remoteport.localport = &lport->localport;
729	INIT_LIST_HEAD(&newrec->ls_rcv_list);
730	newrec->dev = lport->dev;
731	newrec->lport = lport;
732	if (lport->ops->remote_priv_sz)
733		newrec->remoteport.private = &newrec[1];
734	else
735		newrec->remoteport.private = NULL;
736	newrec->remoteport.port_role = pinfo->port_role;
737	newrec->remoteport.node_name = pinfo->node_name;
738	newrec->remoteport.port_name = pinfo->port_name;
739	newrec->remoteport.port_id = pinfo->port_id;
740	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
741	newrec->remoteport.port_num = idx;
742	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
743	INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
744
745	spin_lock_irqsave(&nvme_fc_lock, flags);
746	list_add_tail(&newrec->endp_list, &lport->endp_list);
747	spin_unlock_irqrestore(&nvme_fc_lock, flags);
748
749	nvme_fc_signal_discovery_scan(lport, newrec);
750
751	*portptr = &newrec->remoteport;
752	return 0;
753
754out_kfree_rport:
755	kfree(newrec);
756out_lport_put:
757	nvme_fc_lport_put(lport);
758out_reghost_failed:
759	*portptr = NULL;
760	return ret;
761}
762EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
763
764static int
765nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
766{
767	struct nvmefc_ls_req_op *lsop;
768	unsigned long flags;
769
770restart:
771	spin_lock_irqsave(&rport->lock, flags);
772
773	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
774		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
775			lsop->flags |= FCOP_FLAGS_TERMIO;
776			spin_unlock_irqrestore(&rport->lock, flags);
777			rport->lport->ops->ls_abort(&rport->lport->localport,
778						&rport->remoteport,
779						&lsop->ls_req);
780			goto restart;
781		}
782	}
783	spin_unlock_irqrestore(&rport->lock, flags);
784
785	return 0;
786}
787
788static void
789nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
790{
791	dev_info(ctrl->ctrl.device,
792		"NVME-FC{%d}: controller connectivity lost. Awaiting "
793		"Reconnect", ctrl->cnum);
794
795	switch (ctrl->ctrl.state) {
796	case NVME_CTRL_NEW:
797	case NVME_CTRL_LIVE:
798		/*
799		 * Schedule a controller reset. The reset will terminate the
800		 * association and schedule the reconnect timer.  Reconnects
801		 * will be attempted until either the ctlr_loss_tmo
802		 * (max_retries * connect_delay) expires or the remoteport's
803		 * dev_loss_tmo expires.
804		 */
805		if (nvme_reset_ctrl(&ctrl->ctrl)) {
806			dev_warn(ctrl->ctrl.device,
807				"NVME-FC{%d}: Couldn't schedule reset.\n",
808				ctrl->cnum);
809			nvme_delete_ctrl(&ctrl->ctrl);
810		}
811		break;
812
813	case NVME_CTRL_CONNECTING:
814		/*
815		 * The association has already been terminated and the
816		 * controller is attempting reconnects.  No need to do anything
817		 * futher.  Reconnects will be attempted until either the
818		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
819		 * remoteport's dev_loss_tmo expires.
820		 */
821		break;
822
823	case NVME_CTRL_RESETTING:
824		/*
825		 * Controller is already in the process of terminating the
826		 * association.  No need to do anything further. The reconnect
827		 * step will kick in naturally after the association is
828		 * terminated.
829		 */
830		break;
831
832	case NVME_CTRL_DELETING:
833	case NVME_CTRL_DELETING_NOIO:
834	default:
835		/* no action to take - let it delete */
836		break;
837	}
838}
839
840/**
841 * nvme_fc_unregister_remoteport - transport entry point called by an
842 *                              LLDD to deregister/remove a previously
843 *                              registered a NVME subsystem FC port.
844 * @portptr: pointer to the (registered) remote port that is to be
845 *           deregistered.
846 *
847 * Returns:
848 * a completion status. Must be 0 upon success; a negative errno
849 * (ex: -ENXIO) upon failure.
850 */
851int
852nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
853{
854	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
855	struct nvme_fc_ctrl *ctrl;
856	unsigned long flags;
857
858	if (!portptr)
859		return -EINVAL;
860
861	spin_lock_irqsave(&rport->lock, flags);
862
863	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
864		spin_unlock_irqrestore(&rport->lock, flags);
865		return -EINVAL;
866	}
867	portptr->port_state = FC_OBJSTATE_DELETED;
868
869	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
870
871	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
872		/* if dev_loss_tmo==0, dev loss is immediate */
873		if (!portptr->dev_loss_tmo) {
874			dev_warn(ctrl->ctrl.device,
875				"NVME-FC{%d}: controller connectivity lost.\n",
876				ctrl->cnum);
877			nvme_delete_ctrl(&ctrl->ctrl);
878		} else
879			nvme_fc_ctrl_connectivity_loss(ctrl);
880	}
881
882	spin_unlock_irqrestore(&rport->lock, flags);
883
884	nvme_fc_abort_lsops(rport);
885
886	if (atomic_read(&rport->act_ctrl_cnt) == 0)
887		rport->lport->ops->remoteport_delete(portptr);
888
889	/*
890	 * release the reference, which will allow, if all controllers
891	 * go away, which should only occur after dev_loss_tmo occurs,
892	 * for the rport to be torn down.
893	 */
894	nvme_fc_rport_put(rport);
895
896	return 0;
897}
898EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
899
900/**
901 * nvme_fc_rescan_remoteport - transport entry point called by an
902 *                              LLDD to request a nvme device rescan.
903 * @remoteport: pointer to the (registered) remote port that is to be
904 *              rescanned.
905 *
906 * Returns: N/A
907 */
908void
909nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
910{
911	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
912
913	nvme_fc_signal_discovery_scan(rport->lport, rport);
914}
915EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
916
917int
918nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
919			u32 dev_loss_tmo)
920{
921	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
922	unsigned long flags;
923
924	spin_lock_irqsave(&rport->lock, flags);
925
926	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
927		spin_unlock_irqrestore(&rport->lock, flags);
928		return -EINVAL;
929	}
930
931	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
932	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
933
934	spin_unlock_irqrestore(&rport->lock, flags);
935
936	return 0;
937}
938EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
939
940
941/* *********************** FC-NVME DMA Handling **************************** */
942
943/*
944 * The fcloop device passes in a NULL device pointer. Real LLD's will
945 * pass in a valid device pointer. If NULL is passed to the dma mapping
946 * routines, depending on the platform, it may or may not succeed, and
947 * may crash.
948 *
949 * As such:
950 * Wrapper all the dma routines and check the dev pointer.
951 *
952 * If simple mappings (return just a dma address, we'll noop them,
953 * returning a dma address of 0.
954 *
955 * On more complex mappings (dma_map_sg), a pseudo routine fills
956 * in the scatter list, setting all dma addresses to 0.
957 */
958
959static inline dma_addr_t
960fc_dma_map_single(struct device *dev, void *ptr, size_t size,
961		enum dma_data_direction dir)
962{
963	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
964}
965
966static inline int
967fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
968{
969	return dev ? dma_mapping_error(dev, dma_addr) : 0;
970}
971
972static inline void
973fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
974	enum dma_data_direction dir)
975{
976	if (dev)
977		dma_unmap_single(dev, addr, size, dir);
978}
979
980static inline void
981fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
982		enum dma_data_direction dir)
983{
984	if (dev)
985		dma_sync_single_for_cpu(dev, addr, size, dir);
986}
987
988static inline void
989fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
990		enum dma_data_direction dir)
991{
992	if (dev)
993		dma_sync_single_for_device(dev, addr, size, dir);
994}
995
996/* pseudo dma_map_sg call */
997static int
998fc_map_sg(struct scatterlist *sg, int nents)
999{
1000	struct scatterlist *s;
1001	int i;
1002
1003	WARN_ON(nents == 0 || sg[0].length == 0);
1004
1005	for_each_sg(sg, s, nents, i) {
1006		s->dma_address = 0L;
1007#ifdef CONFIG_NEED_SG_DMA_LENGTH
1008		s->dma_length = s->length;
1009#endif
1010	}
1011	return nents;
1012}
1013
1014static inline int
1015fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1016		enum dma_data_direction dir)
1017{
1018	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1019}
1020
1021static inline void
1022fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1023		enum dma_data_direction dir)
1024{
1025	if (dev)
1026		dma_unmap_sg(dev, sg, nents, dir);
1027}
1028
1029/* *********************** FC-NVME LS Handling **************************** */
1030
1031static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1032static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1033
1034static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1035
1036static void
1037__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1038{
1039	struct nvme_fc_rport *rport = lsop->rport;
1040	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1041	unsigned long flags;
1042
1043	spin_lock_irqsave(&rport->lock, flags);
1044
1045	if (!lsop->req_queued) {
1046		spin_unlock_irqrestore(&rport->lock, flags);
1047		return;
1048	}
1049
1050	list_del(&lsop->lsreq_list);
1051
1052	lsop->req_queued = false;
1053
1054	spin_unlock_irqrestore(&rport->lock, flags);
1055
1056	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1057				  (lsreq->rqstlen + lsreq->rsplen),
1058				  DMA_BIDIRECTIONAL);
1059
1060	nvme_fc_rport_put(rport);
1061}
1062
1063static int
1064__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1065		struct nvmefc_ls_req_op *lsop,
1066		void (*done)(struct nvmefc_ls_req *req, int status))
1067{
1068	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1069	unsigned long flags;
1070	int ret = 0;
1071
1072	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1073		return -ECONNREFUSED;
1074
1075	if (!nvme_fc_rport_get(rport))
1076		return -ESHUTDOWN;
1077
1078	lsreq->done = done;
1079	lsop->rport = rport;
1080	lsop->req_queued = false;
1081	INIT_LIST_HEAD(&lsop->lsreq_list);
1082	init_completion(&lsop->ls_done);
1083
1084	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1085				  lsreq->rqstlen + lsreq->rsplen,
1086				  DMA_BIDIRECTIONAL);
1087	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1088		ret = -EFAULT;
1089		goto out_putrport;
1090	}
1091	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1092
1093	spin_lock_irqsave(&rport->lock, flags);
1094
1095	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1096
1097	lsop->req_queued = true;
1098
1099	spin_unlock_irqrestore(&rport->lock, flags);
1100
1101	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1102					&rport->remoteport, lsreq);
1103	if (ret)
1104		goto out_unlink;
1105
1106	return 0;
1107
1108out_unlink:
1109	lsop->ls_error = ret;
1110	spin_lock_irqsave(&rport->lock, flags);
1111	lsop->req_queued = false;
1112	list_del(&lsop->lsreq_list);
1113	spin_unlock_irqrestore(&rport->lock, flags);
1114	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1115				  (lsreq->rqstlen + lsreq->rsplen),
1116				  DMA_BIDIRECTIONAL);
1117out_putrport:
1118	nvme_fc_rport_put(rport);
1119
1120	return ret;
1121}
1122
1123static void
1124nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1125{
1126	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1127
1128	lsop->ls_error = status;
1129	complete(&lsop->ls_done);
1130}
1131
1132static int
1133nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1134{
1135	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1136	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1137	int ret;
1138
1139	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1140
1141	if (!ret) {
1142		/*
1143		 * No timeout/not interruptible as we need the struct
1144		 * to exist until the lldd calls us back. Thus mandate
1145		 * wait until driver calls back. lldd responsible for
1146		 * the timeout action
1147		 */
1148		wait_for_completion(&lsop->ls_done);
1149
1150		__nvme_fc_finish_ls_req(lsop);
1151
1152		ret = lsop->ls_error;
1153	}
1154
1155	if (ret)
1156		return ret;
1157
1158	/* ACC or RJT payload ? */
1159	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1160		return -ENXIO;
1161
1162	return 0;
1163}
1164
1165static int
1166nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1167		struct nvmefc_ls_req_op *lsop,
1168		void (*done)(struct nvmefc_ls_req *req, int status))
1169{
1170	/* don't wait for completion */
1171
1172	return __nvme_fc_send_ls_req(rport, lsop, done);
1173}
1174
1175static int
1176nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1177	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1178{
1179	struct nvmefc_ls_req_op *lsop;
1180	struct nvmefc_ls_req *lsreq;
1181	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1182	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1183	unsigned long flags;
1184	int ret, fcret = 0;
1185
1186	lsop = kzalloc((sizeof(*lsop) +
1187			 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1188			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1189	if (!lsop) {
1190		dev_info(ctrl->ctrl.device,
1191			"NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1192			ctrl->cnum);
1193		ret = -ENOMEM;
1194		goto out_no_memory;
1195	}
1196
1197	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1198	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1199	lsreq = &lsop->ls_req;
1200	if (ctrl->lport->ops->lsrqst_priv_sz)
1201		lsreq->private = &assoc_acc[1];
1202	else
1203		lsreq->private = NULL;
1204
1205	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1206	assoc_rqst->desc_list_len =
1207			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1208
1209	assoc_rqst->assoc_cmd.desc_tag =
1210			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1211	assoc_rqst->assoc_cmd.desc_len =
1212			fcnvme_lsdesc_len(
1213				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1214
1215	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1216	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1217	/* Linux supports only Dynamic controllers */
1218	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1219	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1220	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1221		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1222	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1223		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1224
1225	lsop->queue = queue;
1226	lsreq->rqstaddr = assoc_rqst;
1227	lsreq->rqstlen = sizeof(*assoc_rqst);
1228	lsreq->rspaddr = assoc_acc;
1229	lsreq->rsplen = sizeof(*assoc_acc);
1230	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1231
1232	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1233	if (ret)
1234		goto out_free_buffer;
1235
1236	/* process connect LS completion */
1237
1238	/* validate the ACC response */
1239	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1240		fcret = VERR_LSACC;
1241	else if (assoc_acc->hdr.desc_list_len !=
1242			fcnvme_lsdesc_len(
1243				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1244		fcret = VERR_CR_ASSOC_ACC_LEN;
1245	else if (assoc_acc->hdr.rqst.desc_tag !=
1246			cpu_to_be32(FCNVME_LSDESC_RQST))
1247		fcret = VERR_LSDESC_RQST;
1248	else if (assoc_acc->hdr.rqst.desc_len !=
1249			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1250		fcret = VERR_LSDESC_RQST_LEN;
1251	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1252		fcret = VERR_CR_ASSOC;
1253	else if (assoc_acc->associd.desc_tag !=
1254			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1255		fcret = VERR_ASSOC_ID;
1256	else if (assoc_acc->associd.desc_len !=
1257			fcnvme_lsdesc_len(
1258				sizeof(struct fcnvme_lsdesc_assoc_id)))
1259		fcret = VERR_ASSOC_ID_LEN;
1260	else if (assoc_acc->connectid.desc_tag !=
1261			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1262		fcret = VERR_CONN_ID;
1263	else if (assoc_acc->connectid.desc_len !=
1264			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1265		fcret = VERR_CONN_ID_LEN;
1266
1267	if (fcret) {
1268		ret = -EBADF;
1269		dev_err(ctrl->dev,
1270			"q %d Create Association LS failed: %s\n",
1271			queue->qnum, validation_errors[fcret]);
1272	} else {
1273		spin_lock_irqsave(&ctrl->lock, flags);
1274		ctrl->association_id =
1275			be64_to_cpu(assoc_acc->associd.association_id);
1276		queue->connection_id =
1277			be64_to_cpu(assoc_acc->connectid.connection_id);
1278		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1279		spin_unlock_irqrestore(&ctrl->lock, flags);
1280	}
1281
1282out_free_buffer:
1283	kfree(lsop);
1284out_no_memory:
1285	if (ret)
1286		dev_err(ctrl->dev,
1287			"queue %d connect admin queue failed (%d).\n",
1288			queue->qnum, ret);
1289	return ret;
1290}
1291
1292static int
1293nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1294			u16 qsize, u16 ersp_ratio)
1295{
1296	struct nvmefc_ls_req_op *lsop;
1297	struct nvmefc_ls_req *lsreq;
1298	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1299	struct fcnvme_ls_cr_conn_acc *conn_acc;
1300	int ret, fcret = 0;
1301
1302	lsop = kzalloc((sizeof(*lsop) +
1303			 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1304			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1305	if (!lsop) {
1306		dev_info(ctrl->ctrl.device,
1307			"NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1308			ctrl->cnum);
1309		ret = -ENOMEM;
1310		goto out_no_memory;
1311	}
1312
1313	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1314	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1315	lsreq = &lsop->ls_req;
1316	if (ctrl->lport->ops->lsrqst_priv_sz)
1317		lsreq->private = (void *)&conn_acc[1];
1318	else
1319		lsreq->private = NULL;
1320
1321	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1322	conn_rqst->desc_list_len = cpu_to_be32(
1323				sizeof(struct fcnvme_lsdesc_assoc_id) +
1324				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1325
1326	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1327	conn_rqst->associd.desc_len =
1328			fcnvme_lsdesc_len(
1329				sizeof(struct fcnvme_lsdesc_assoc_id));
1330	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1331	conn_rqst->connect_cmd.desc_tag =
1332			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1333	conn_rqst->connect_cmd.desc_len =
1334			fcnvme_lsdesc_len(
1335				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1336	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1337	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1338	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1339
1340	lsop->queue = queue;
1341	lsreq->rqstaddr = conn_rqst;
1342	lsreq->rqstlen = sizeof(*conn_rqst);
1343	lsreq->rspaddr = conn_acc;
1344	lsreq->rsplen = sizeof(*conn_acc);
1345	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1346
1347	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1348	if (ret)
1349		goto out_free_buffer;
1350
1351	/* process connect LS completion */
1352
1353	/* validate the ACC response */
1354	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1355		fcret = VERR_LSACC;
1356	else if (conn_acc->hdr.desc_list_len !=
1357			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1358		fcret = VERR_CR_CONN_ACC_LEN;
1359	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1360		fcret = VERR_LSDESC_RQST;
1361	else if (conn_acc->hdr.rqst.desc_len !=
1362			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1363		fcret = VERR_LSDESC_RQST_LEN;
1364	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1365		fcret = VERR_CR_CONN;
1366	else if (conn_acc->connectid.desc_tag !=
1367			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1368		fcret = VERR_CONN_ID;
1369	else if (conn_acc->connectid.desc_len !=
1370			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1371		fcret = VERR_CONN_ID_LEN;
1372
1373	if (fcret) {
1374		ret = -EBADF;
1375		dev_err(ctrl->dev,
1376			"q %d Create I/O Connection LS failed: %s\n",
1377			queue->qnum, validation_errors[fcret]);
1378	} else {
1379		queue->connection_id =
1380			be64_to_cpu(conn_acc->connectid.connection_id);
1381		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1382	}
1383
1384out_free_buffer:
1385	kfree(lsop);
1386out_no_memory:
1387	if (ret)
1388		dev_err(ctrl->dev,
1389			"queue %d connect I/O queue failed (%d).\n",
1390			queue->qnum, ret);
1391	return ret;
1392}
1393
1394static void
1395nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1396{
1397	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1398
1399	__nvme_fc_finish_ls_req(lsop);
1400
1401	/* fc-nvme initiator doesn't care about success or failure of cmd */
1402
1403	kfree(lsop);
1404}
1405
1406/*
1407 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1408 * the FC-NVME Association.  Terminating the association also
1409 * terminates the FC-NVME connections (per queue, both admin and io
1410 * queues) that are part of the association. E.g. things are torn
1411 * down, and the related FC-NVME Association ID and Connection IDs
1412 * become invalid.
1413 *
1414 * The behavior of the fc-nvme initiator is such that it's
1415 * understanding of the association and connections will implicitly
1416 * be torn down. The action is implicit as it may be due to a loss of
1417 * connectivity with the fc-nvme target, so you may never get a
1418 * response even if you tried.  As such, the action of this routine
1419 * is to asynchronously send the LS, ignore any results of the LS, and
1420 * continue on with terminating the association. If the fc-nvme target
1421 * is present and receives the LS, it too can tear down.
1422 */
1423static void
1424nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1425{
1426	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1427	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1428	struct nvmefc_ls_req_op *lsop;
1429	struct nvmefc_ls_req *lsreq;
1430	int ret;
1431
1432	lsop = kzalloc((sizeof(*lsop) +
1433			sizeof(*discon_rqst) + sizeof(*discon_acc) +
1434			ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1435	if (!lsop) {
1436		dev_info(ctrl->ctrl.device,
1437			"NVME-FC{%d}: send Disconnect Association "
1438			"failed: ENOMEM\n",
1439			ctrl->cnum);
1440		return;
1441	}
1442
1443	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1444	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1445	lsreq = &lsop->ls_req;
1446	if (ctrl->lport->ops->lsrqst_priv_sz)
1447		lsreq->private = (void *)&discon_acc[1];
1448	else
1449		lsreq->private = NULL;
1450
1451	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1452				ctrl->association_id);
1453
1454	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1455				nvme_fc_disconnect_assoc_done);
1456	if (ret)
1457		kfree(lsop);
1458}
1459
1460static void
1461nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1462{
1463	struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1464	struct nvme_fc_rport *rport = lsop->rport;
1465	struct nvme_fc_lport *lport = rport->lport;
1466	unsigned long flags;
1467
1468	spin_lock_irqsave(&rport->lock, flags);
1469	list_del(&lsop->lsrcv_list);
1470	spin_unlock_irqrestore(&rport->lock, flags);
1471
1472	fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1473				sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1474	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1475			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1476
1477	kfree(lsop);
1478
1479	nvme_fc_rport_put(rport);
1480}
1481
1482static void
1483nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1484{
1485	struct nvme_fc_rport *rport = lsop->rport;
1486	struct nvme_fc_lport *lport = rport->lport;
1487	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1488	int ret;
1489
1490	fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1491				  sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1492
1493	ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1494				     lsop->lsrsp);
1495	if (ret) {
1496		dev_warn(lport->dev,
1497			"LLDD rejected LS RSP xmt: LS %d status %d\n",
1498			w0->ls_cmd, ret);
1499		nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1500		return;
1501	}
1502}
1503
1504static struct nvme_fc_ctrl *
1505nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1506		      struct nvmefc_ls_rcv_op *lsop)
1507{
1508	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1509					&lsop->rqstbuf->rq_dis_assoc;
1510	struct nvme_fc_ctrl *ctrl, *ret = NULL;
1511	struct nvmefc_ls_rcv_op *oldls = NULL;
1512	u64 association_id = be64_to_cpu(rqst->associd.association_id);
1513	unsigned long flags;
1514
1515	spin_lock_irqsave(&rport->lock, flags);
1516
1517	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1518		if (!nvme_fc_ctrl_get(ctrl))
1519			continue;
1520		spin_lock(&ctrl->lock);
1521		if (association_id == ctrl->association_id) {
1522			oldls = ctrl->rcv_disconn;
1523			ctrl->rcv_disconn = lsop;
1524			ret = ctrl;
1525		}
1526		spin_unlock(&ctrl->lock);
1527		if (ret)
1528			/* leave the ctrl get reference */
1529			break;
1530		nvme_fc_ctrl_put(ctrl);
1531	}
1532
1533	spin_unlock_irqrestore(&rport->lock, flags);
1534
1535	/* transmit a response for anything that was pending */
1536	if (oldls) {
1537		dev_info(rport->lport->dev,
1538			"NVME-FC{%d}: Multiple Disconnect Association "
1539			"LS's received\n", ctrl->cnum);
1540		/* overwrite good response with bogus failure */
1541		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1542						sizeof(*oldls->rspbuf),
1543						rqst->w0.ls_cmd,
1544						FCNVME_RJT_RC_UNAB,
1545						FCNVME_RJT_EXP_NONE, 0);
1546		nvme_fc_xmt_ls_rsp(oldls);
1547	}
1548
1549	return ret;
1550}
1551
1552/*
1553 * returns true to mean LS handled and ls_rsp can be sent
1554 * returns false to defer ls_rsp xmt (will be done as part of
1555 *     association termination)
1556 */
1557static bool
1558nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1559{
1560	struct nvme_fc_rport *rport = lsop->rport;
1561	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1562					&lsop->rqstbuf->rq_dis_assoc;
1563	struct fcnvme_ls_disconnect_assoc_acc *acc =
1564					&lsop->rspbuf->rsp_dis_assoc;
1565	struct nvme_fc_ctrl *ctrl = NULL;
1566	int ret = 0;
1567
1568	memset(acc, 0, sizeof(*acc));
1569
1570	ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1571	if (!ret) {
1572		/* match an active association */
1573		ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1574		if (!ctrl)
1575			ret = VERR_NO_ASSOC;
1576	}
1577
1578	if (ret) {
1579		dev_info(rport->lport->dev,
1580			"Disconnect LS failed: %s\n",
1581			validation_errors[ret]);
1582		lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1583					sizeof(*acc), rqst->w0.ls_cmd,
1584					(ret == VERR_NO_ASSOC) ?
1585						FCNVME_RJT_RC_INV_ASSOC :
1586						FCNVME_RJT_RC_LOGIC,
1587					FCNVME_RJT_EXP_NONE, 0);
1588		return true;
1589	}
1590
1591	/* format an ACCept response */
1592
1593	lsop->lsrsp->rsplen = sizeof(*acc);
1594
1595	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1596			fcnvme_lsdesc_len(
1597				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1598			FCNVME_LS_DISCONNECT_ASSOC);
1599
1600	/*
1601	 * the transmit of the response will occur after the exchanges
1602	 * for the association have been ABTS'd by
1603	 * nvme_fc_delete_association().
1604	 */
1605
1606	/* fail the association */
1607	nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1608
1609	/* release the reference taken by nvme_fc_match_disconn_ls() */
1610	nvme_fc_ctrl_put(ctrl);
1611
1612	return false;
1613}
1614
1615/*
1616 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1617 * returns true if a response should be sent afterward, false if rsp will
1618 * be sent asynchronously.
1619 */
1620static bool
1621nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1622{
1623	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1624	bool ret = true;
1625
1626	lsop->lsrsp->nvme_fc_private = lsop;
1627	lsop->lsrsp->rspbuf = lsop->rspbuf;
1628	lsop->lsrsp->rspdma = lsop->rspdma;
1629	lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1630	/* Be preventative. handlers will later set to valid length */
1631	lsop->lsrsp->rsplen = 0;
1632
1633	/*
1634	 * handlers:
1635	 *   parse request input, execute the request, and format the
1636	 *   LS response
1637	 */
1638	switch (w0->ls_cmd) {
1639	case FCNVME_LS_DISCONNECT_ASSOC:
1640		ret = nvme_fc_ls_disconnect_assoc(lsop);
1641		break;
1642	case FCNVME_LS_DISCONNECT_CONN:
1643		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1644				sizeof(*lsop->rspbuf), w0->ls_cmd,
1645				FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1646		break;
1647	case FCNVME_LS_CREATE_ASSOCIATION:
1648	case FCNVME_LS_CREATE_CONNECTION:
1649		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1650				sizeof(*lsop->rspbuf), w0->ls_cmd,
1651				FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1652		break;
1653	default:
1654		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1655				sizeof(*lsop->rspbuf), w0->ls_cmd,
1656				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1657		break;
1658	}
1659
1660	return(ret);
1661}
1662
1663static void
1664nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1665{
1666	struct nvme_fc_rport *rport =
1667		container_of(work, struct nvme_fc_rport, lsrcv_work);
1668	struct fcnvme_ls_rqst_w0 *w0;
1669	struct nvmefc_ls_rcv_op *lsop;
1670	unsigned long flags;
1671	bool sendrsp;
1672
1673restart:
1674	sendrsp = true;
1675	spin_lock_irqsave(&rport->lock, flags);
1676	list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1677		if (lsop->handled)
1678			continue;
1679
1680		lsop->handled = true;
1681		if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1682			spin_unlock_irqrestore(&rport->lock, flags);
1683			sendrsp = nvme_fc_handle_ls_rqst(lsop);
1684		} else {
1685			spin_unlock_irqrestore(&rport->lock, flags);
1686			w0 = &lsop->rqstbuf->w0;
1687			lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1688						lsop->rspbuf,
1689						sizeof(*lsop->rspbuf),
1690						w0->ls_cmd,
1691						FCNVME_RJT_RC_UNAB,
1692						FCNVME_RJT_EXP_NONE, 0);
1693		}
1694		if (sendrsp)
1695			nvme_fc_xmt_ls_rsp(lsop);
1696		goto restart;
1697	}
1698	spin_unlock_irqrestore(&rport->lock, flags);
1699}
1700
1701/**
1702 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1703 *                       upon the reception of a NVME LS request.
1704 *
1705 * The nvme-fc layer will copy payload to an internal structure for
1706 * processing.  As such, upon completion of the routine, the LLDD may
1707 * immediately free/reuse the LS request buffer passed in the call.
1708 *
1709 * If this routine returns error, the LLDD should abort the exchange.
1710 *
1711 * @remoteport: pointer to the (registered) remote port that the LS
1712 *              was received from. The remoteport is associated with
1713 *              a specific localport.
1714 * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1715 *              used to reference the exchange corresponding to the LS
1716 *              when issuing an ls response.
1717 * @lsreqbuf:   pointer to the buffer containing the LS Request
1718 * @lsreqbuf_len: length, in bytes, of the received LS request
1719 */
1720int
1721nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1722			struct nvmefc_ls_rsp *lsrsp,
1723			void *lsreqbuf, u32 lsreqbuf_len)
1724{
1725	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1726	struct nvme_fc_lport *lport = rport->lport;
1727	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1728	struct nvmefc_ls_rcv_op *lsop;
1729	unsigned long flags;
1730	int ret;
1731
1732	nvme_fc_rport_get(rport);
1733
1734	/* validate there's a routine to transmit a response */
1735	if (!lport->ops->xmt_ls_rsp) {
1736		dev_info(lport->dev,
1737			"RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1738			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1739				nvmefc_ls_names[w0->ls_cmd] : "");
1740		ret = -EINVAL;
1741		goto out_put;
1742	}
1743
1744	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1745		dev_info(lport->dev,
1746			"RCV %s LS failed: payload too large\n",
1747			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1748				nvmefc_ls_names[w0->ls_cmd] : "");
1749		ret = -E2BIG;
1750		goto out_put;
1751	}
1752
1753	lsop = kzalloc(sizeof(*lsop) +
1754			sizeof(union nvmefc_ls_requests) +
1755			sizeof(union nvmefc_ls_responses),
1756			GFP_KERNEL);
1757	if (!lsop) {
1758		dev_info(lport->dev,
1759			"RCV %s LS failed: No memory\n",
1760			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1761				nvmefc_ls_names[w0->ls_cmd] : "");
1762		ret = -ENOMEM;
1763		goto out_put;
1764	}
1765	lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1766	lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1767
1768	lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1769					sizeof(*lsop->rspbuf),
1770					DMA_TO_DEVICE);
1771	if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1772		dev_info(lport->dev,
1773			"RCV %s LS failed: DMA mapping failure\n",
1774			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1775				nvmefc_ls_names[w0->ls_cmd] : "");
1776		ret = -EFAULT;
1777		goto out_free;
1778	}
1779
1780	lsop->rport = rport;
1781	lsop->lsrsp = lsrsp;
1782
1783	memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1784	lsop->rqstdatalen = lsreqbuf_len;
1785
1786	spin_lock_irqsave(&rport->lock, flags);
1787	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1788		spin_unlock_irqrestore(&rport->lock, flags);
1789		ret = -ENOTCONN;
1790		goto out_unmap;
1791	}
1792	list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1793	spin_unlock_irqrestore(&rport->lock, flags);
1794
1795	schedule_work(&rport->lsrcv_work);
1796
1797	return 0;
1798
1799out_unmap:
1800	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1801			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1802out_free:
1803	kfree(lsop);
1804out_put:
1805	nvme_fc_rport_put(rport);
1806	return ret;
1807}
1808EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1809
1810
1811/* *********************** NVME Ctrl Routines **************************** */
1812
1813static void
1814__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1815		struct nvme_fc_fcp_op *op)
1816{
1817	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1818				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1819	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1820				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1821
1822	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1823}
1824
1825static void
1826nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1827		unsigned int hctx_idx)
1828{
1829	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1830
1831	return __nvme_fc_exit_request(set->driver_data, op);
1832}
1833
1834static int
1835__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1836{
1837	unsigned long flags;
1838	int opstate;
1839
1840	spin_lock_irqsave(&ctrl->lock, flags);
1841	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1842	if (opstate != FCPOP_STATE_ACTIVE)
1843		atomic_set(&op->state, opstate);
1844	else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1845		op->flags |= FCOP_FLAGS_TERMIO;
1846		ctrl->iocnt++;
1847	}
1848	spin_unlock_irqrestore(&ctrl->lock, flags);
1849
1850	if (opstate != FCPOP_STATE_ACTIVE)
1851		return -ECANCELED;
1852
1853	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1854					&ctrl->rport->remoteport,
1855					op->queue->lldd_handle,
1856					&op->fcp_req);
1857
1858	return 0;
1859}
1860
1861static void
1862nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1863{
1864	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1865	int i;
1866
1867	/* ensure we've initialized the ops once */
1868	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1869		return;
1870
1871	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1872		__nvme_fc_abort_op(ctrl, aen_op);
1873}
1874
1875static inline void
1876__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1877		struct nvme_fc_fcp_op *op, int opstate)
1878{
1879	unsigned long flags;
1880
1881	if (opstate == FCPOP_STATE_ABORTED) {
1882		spin_lock_irqsave(&ctrl->lock, flags);
1883		if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1884		    op->flags & FCOP_FLAGS_TERMIO) {
1885			if (!--ctrl->iocnt)
1886				wake_up(&ctrl->ioabort_wait);
1887		}
1888		spin_unlock_irqrestore(&ctrl->lock, flags);
1889	}
1890}
1891
1892static void
1893nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1894{
1895	struct nvme_fc_ctrl *ctrl =
1896			container_of(work, struct nvme_fc_ctrl, ioerr_work);
1897
1898	nvme_fc_error_recovery(ctrl, "transport detected io error");
1899}
1900
1901static void
1902nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1903{
1904	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1905	struct request *rq = op->rq;
1906	struct nvmefc_fcp_req *freq = &op->fcp_req;
1907	struct nvme_fc_ctrl *ctrl = op->ctrl;
1908	struct nvme_fc_queue *queue = op->queue;
1909	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1910	struct nvme_command *sqe = &op->cmd_iu.sqe;
1911	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1912	union nvme_result result;
1913	bool terminate_assoc = true;
1914	int opstate;
1915
1916	/*
1917	 * WARNING:
1918	 * The current linux implementation of a nvme controller
1919	 * allocates a single tag set for all io queues and sizes
1920	 * the io queues to fully hold all possible tags. Thus, the
1921	 * implementation does not reference or care about the sqhd
1922	 * value as it never needs to use the sqhd/sqtail pointers
1923	 * for submission pacing.
1924	 *
1925	 * This affects the FC-NVME implementation in two ways:
1926	 * 1) As the value doesn't matter, we don't need to waste
1927	 *    cycles extracting it from ERSPs and stamping it in the
1928	 *    cases where the transport fabricates CQEs on successful
1929	 *    completions.
1930	 * 2) The FC-NVME implementation requires that delivery of
1931	 *    ERSP completions are to go back to the nvme layer in order
1932	 *    relative to the rsn, such that the sqhd value will always
1933	 *    be "in order" for the nvme layer. As the nvme layer in
1934	 *    linux doesn't care about sqhd, there's no need to return
1935	 *    them in order.
1936	 *
1937	 * Additionally:
1938	 * As the core nvme layer in linux currently does not look at
1939	 * every field in the cqe - in cases where the FC transport must
1940	 * fabricate a CQE, the following fields will not be set as they
1941	 * are not referenced:
1942	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1943	 *
1944	 * Failure or error of an individual i/o, in a transport
1945	 * detected fashion unrelated to the nvme completion status,
1946	 * potentially cause the initiator and target sides to get out
1947	 * of sync on SQ head/tail (aka outstanding io count allowed).
1948	 * Per FC-NVME spec, failure of an individual command requires
1949	 * the connection to be terminated, which in turn requires the
1950	 * association to be terminated.
1951	 */
1952
1953	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1954
1955	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1956				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1957
1958	if (opstate == FCPOP_STATE_ABORTED)
1959		status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1960	else if (freq->status) {
1961		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1962		dev_info(ctrl->ctrl.device,
1963			"NVME-FC{%d}: io failed due to lldd error %d\n",
1964			ctrl->cnum, freq->status);
1965	}
1966
1967	/*
1968	 * For the linux implementation, if we have an unsuccesful
1969	 * status, they blk-mq layer can typically be called with the
1970	 * non-zero status and the content of the cqe isn't important.
1971	 */
1972	if (status)
1973		goto done;
1974
1975	/*
1976	 * command completed successfully relative to the wire
1977	 * protocol. However, validate anything received and
1978	 * extract the status and result from the cqe (create it
1979	 * where necessary).
1980	 */
1981
1982	switch (freq->rcv_rsplen) {
1983
1984	case 0:
1985	case NVME_FC_SIZEOF_ZEROS_RSP:
1986		/*
1987		 * No response payload or 12 bytes of payload (which
1988		 * should all be zeros) are considered successful and
1989		 * no payload in the CQE by the transport.
1990		 */
1991		if (freq->transferred_length !=
1992		    be32_to_cpu(op->cmd_iu.data_len)) {
1993			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1994			dev_info(ctrl->ctrl.device,
1995				"NVME-FC{%d}: io failed due to bad transfer "
1996				"length: %d vs expected %d\n",
1997				ctrl->cnum, freq->transferred_length,
1998				be32_to_cpu(op->cmd_iu.data_len));
1999			goto done;
2000		}
2001		result.u64 = 0;
2002		break;
2003
2004	case sizeof(struct nvme_fc_ersp_iu):
2005		/*
2006		 * The ERSP IU contains a full completion with CQE.
2007		 * Validate ERSP IU and look at cqe.
2008		 */
2009		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2010					(freq->rcv_rsplen / 4) ||
2011			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
2012					freq->transferred_length ||
2013			     op->rsp_iu.ersp_result ||
2014			     sqe->common.command_id != cqe->command_id)) {
2015			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2016			dev_info(ctrl->ctrl.device,
2017				"NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2018				"iu len %d, xfr len %d vs %d, status code "
2019				"%d, cmdid %d vs %d\n",
2020				ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2021				be32_to_cpu(op->rsp_iu.xfrd_len),
2022				freq->transferred_length,
2023				op->rsp_iu.ersp_result,
2024				sqe->common.command_id,
2025				cqe->command_id);
2026			goto done;
2027		}
2028		result = cqe->result;
2029		status = cqe->status;
2030		break;
2031
2032	default:
2033		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2034		dev_info(ctrl->ctrl.device,
2035			"NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2036			"len %d\n",
2037			ctrl->cnum, freq->rcv_rsplen);
2038		goto done;
2039	}
2040
2041	terminate_assoc = false;
2042
2043done:
2044	if (op->flags & FCOP_FLAGS_AEN) {
2045		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2046		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2047		atomic_set(&op->state, FCPOP_STATE_IDLE);
2048		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
2049		nvme_fc_ctrl_put(ctrl);
2050		goto check_error;
2051	}
2052
2053	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2054	if (!nvme_try_complete_req(rq, status, result))
2055		nvme_fc_complete_rq(rq);
2056
2057check_error:
2058	if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2059		queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2060}
2061
2062static int
2063__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2064		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2065		struct request *rq, u32 rqno)
2066{
2067	struct nvme_fcp_op_w_sgl *op_w_sgl =
2068		container_of(op, typeof(*op_w_sgl), op);
2069	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2070	int ret = 0;
2071
2072	memset(op, 0, sizeof(*op));
2073	op->fcp_req.cmdaddr = &op->cmd_iu;
2074	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2075	op->fcp_req.rspaddr = &op->rsp_iu;
2076	op->fcp_req.rsplen = sizeof(op->rsp_iu);
2077	op->fcp_req.done = nvme_fc_fcpio_done;
2078	op->ctrl = ctrl;
2079	op->queue = queue;
2080	op->rq = rq;
2081	op->rqno = rqno;
2082
2083	cmdiu->format_id = NVME_CMD_FORMAT_ID;
2084	cmdiu->fc_id = NVME_CMD_FC_ID;
2085	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2086	if (queue->qnum)
2087		cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2088					(NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2089	else
2090		cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2091
2092	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2093				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2094	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2095		dev_err(ctrl->dev,
2096			"FCP Op failed - cmdiu dma mapping failed.\n");
2097		ret = -EFAULT;
2098		goto out_on_error;
2099	}
2100
2101	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2102				&op->rsp_iu, sizeof(op->rsp_iu),
2103				DMA_FROM_DEVICE);
2104	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2105		dev_err(ctrl->dev,
2106			"FCP Op failed - rspiu dma mapping failed.\n");
2107		ret = -EFAULT;
2108	}
2109
2110	atomic_set(&op->state, FCPOP_STATE_IDLE);
2111out_on_error:
2112	return ret;
2113}
2114
2115static int
2116nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2117		unsigned int hctx_idx, unsigned int numa_node)
2118{
2119	struct nvme_fc_ctrl *ctrl = set->driver_data;
2120	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2121	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2122	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2123	int res;
2124
2125	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2126	if (res)
2127		return res;
2128	op->op.fcp_req.first_sgl = op->sgl;
2129	op->op.fcp_req.private = &op->priv[0];
2130	nvme_req(rq)->ctrl = &ctrl->ctrl;
2131	return res;
2132}
2133
2134static int
2135nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2136{
2137	struct nvme_fc_fcp_op *aen_op;
2138	struct nvme_fc_cmd_iu *cmdiu;
2139	struct nvme_command *sqe;
2140	void *private = NULL;
2141	int i, ret;
2142
2143	aen_op = ctrl->aen_ops;
2144	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2145		if (ctrl->lport->ops->fcprqst_priv_sz) {
2146			private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2147						GFP_KERNEL);
2148			if (!private)
2149				return -ENOMEM;
2150		}
2151
2152		cmdiu = &aen_op->cmd_iu;
2153		sqe = &cmdiu->sqe;
2154		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2155				aen_op, (struct request *)NULL,
2156				(NVME_AQ_BLK_MQ_DEPTH + i));
2157		if (ret) {
2158			kfree(private);
2159			return ret;
2160		}
2161
2162		aen_op->flags = FCOP_FLAGS_AEN;
2163		aen_op->fcp_req.private = private;
2164
2165		memset(sqe, 0, sizeof(*sqe));
2166		sqe->common.opcode = nvme_admin_async_event;
2167		/* Note: core layer may overwrite the sqe.command_id value */
2168		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2169	}
2170	return 0;
2171}
2172
2173static void
2174nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2175{
2176	struct nvme_fc_fcp_op *aen_op;
2177	int i;
2178
2179	cancel_work_sync(&ctrl->ctrl.async_event_work);
2180	aen_op = ctrl->aen_ops;
2181	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2182		__nvme_fc_exit_request(ctrl, aen_op);
2183
2184		kfree(aen_op->fcp_req.private);
2185		aen_op->fcp_req.private = NULL;
2186	}
2187}
2188
2189static inline void
2190__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2191		unsigned int qidx)
2192{
2193	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2194
2195	hctx->driver_data = queue;
2196	queue->hctx = hctx;
2197}
2198
2199static int
2200nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2201		unsigned int hctx_idx)
2202{
2203	struct nvme_fc_ctrl *ctrl = data;
2204
2205	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2206
2207	return 0;
2208}
2209
2210static int
2211nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2212		unsigned int hctx_idx)
2213{
2214	struct nvme_fc_ctrl *ctrl = data;
2215
2216	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2217
2218	return 0;
2219}
2220
2221static void
2222nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2223{
2224	struct nvme_fc_queue *queue;
2225
2226	queue = &ctrl->queues[idx];
2227	memset(queue, 0, sizeof(*queue));
2228	queue->ctrl = ctrl;
2229	queue->qnum = idx;
2230	atomic_set(&queue->csn, 0);
2231	queue->dev = ctrl->dev;
2232
2233	if (idx > 0)
2234		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2235	else
2236		queue->cmnd_capsule_len = sizeof(struct nvme_command);
2237
2238	/*
2239	 * Considered whether we should allocate buffers for all SQEs
2240	 * and CQEs and dma map them - mapping their respective entries
2241	 * into the request structures (kernel vm addr and dma address)
2242	 * thus the driver could use the buffers/mappings directly.
2243	 * It only makes sense if the LLDD would use them for its
2244	 * messaging api. It's very unlikely most adapter api's would use
2245	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2246	 * structures were used instead.
2247	 */
2248}
2249
2250/*
2251 * This routine terminates a queue at the transport level.
2252 * The transport has already ensured that all outstanding ios on
2253 * the queue have been terminated.
2254 * The transport will send a Disconnect LS request to terminate
2255 * the queue's connection. Termination of the admin queue will also
2256 * terminate the association at the target.
2257 */
2258static void
2259nvme_fc_free_queue(struct nvme_fc_queue *queue)
2260{
2261	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2262		return;
2263
2264	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2265	/*
2266	 * Current implementation never disconnects a single queue.
2267	 * It always terminates a whole association. So there is never
2268	 * a disconnect(queue) LS sent to the target.
2269	 */
2270
2271	queue->connection_id = 0;
2272	atomic_set(&queue->csn, 0);
2273}
2274
2275static void
2276__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2277	struct nvme_fc_queue *queue, unsigned int qidx)
2278{
2279	if (ctrl->lport->ops->delete_queue)
2280		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2281				queue->lldd_handle);
2282	queue->lldd_handle = NULL;
2283}
2284
2285static void
2286nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2287{
2288	int i;
2289
2290	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2291		nvme_fc_free_queue(&ctrl->queues[i]);
2292}
2293
2294static int
2295__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2296	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2297{
2298	int ret = 0;
2299
2300	queue->lldd_handle = NULL;
2301	if (ctrl->lport->ops->create_queue)
2302		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2303				qidx, qsize, &queue->lldd_handle);
2304
2305	return ret;
2306}
2307
2308static void
2309nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2310{
2311	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2312	int i;
2313
2314	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2315		__nvme_fc_delete_hw_queue(ctrl, queue, i);
2316}
2317
2318static int
2319nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2320{
2321	struct nvme_fc_queue *queue = &ctrl->queues[1];
2322	int i, ret;
2323
2324	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2325		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2326		if (ret)
2327			goto delete_queues;
2328	}
2329
2330	return 0;
2331
2332delete_queues:
2333	for (; i > 0; i--)
2334		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2335	return ret;
2336}
2337
2338static int
2339nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2340{
2341	int i, ret = 0;
2342
2343	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2344		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2345					(qsize / 5));
2346		if (ret)
2347			break;
2348		ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
2349		if (ret)
2350			break;
2351
2352		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2353	}
2354
2355	return ret;
2356}
2357
2358static void
2359nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2360{
2361	int i;
2362
2363	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2364		nvme_fc_init_queue(ctrl, i);
2365}
2366
2367static void
2368nvme_fc_ctrl_free(struct kref *ref)
2369{
2370	struct nvme_fc_ctrl *ctrl =
2371		container_of(ref, struct nvme_fc_ctrl, ref);
2372	unsigned long flags;
2373
2374	if (ctrl->ctrl.tagset) {
2375		blk_cleanup_queue(ctrl->ctrl.connect_q);
2376		blk_mq_free_tag_set(&ctrl->tag_set);
2377	}
2378
2379	/* remove from rport list */
2380	spin_lock_irqsave(&ctrl->rport->lock, flags);
2381	list_del(&ctrl->ctrl_list);
2382	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2383
2384	nvme_start_admin_queue(&ctrl->ctrl);
2385	blk_cleanup_queue(ctrl->ctrl.admin_q);
2386	blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2387	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2388
2389	kfree(ctrl->queues);
2390
2391	put_device(ctrl->dev);
2392	nvme_fc_rport_put(ctrl->rport);
2393
2394	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2395	if (ctrl->ctrl.opts)
2396		nvmf_free_options(ctrl->ctrl.opts);
2397	kfree(ctrl);
2398}
2399
2400static void
2401nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2402{
2403	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2404}
2405
2406static int
2407nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2408{
2409	return kref_get_unless_zero(&ctrl->ref);
2410}
2411
2412/*
2413 * All accesses from nvme core layer done - can now free the
2414 * controller. Called after last nvme_put_ctrl() call
2415 */
2416static void
2417nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2418{
2419	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2420
2421	WARN_ON(nctrl != &ctrl->ctrl);
2422
2423	nvme_fc_ctrl_put(ctrl);
2424}
2425
2426/*
2427 * This routine is used by the transport when it needs to find active
2428 * io on a queue that is to be terminated. The transport uses
2429 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2430 * this routine to kill them on a 1 by 1 basis.
2431 *
2432 * As FC allocates FC exchange for each io, the transport must contact
2433 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2434 * After terminating the exchange the LLDD will call the transport's
2435 * normal io done path for the request, but it will have an aborted
2436 * status. The done path will return the io request back to the block
2437 * layer with an error status.
2438 */
2439static bool
2440nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2441{
2442	struct nvme_ctrl *nctrl = data;
2443	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2444	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2445
2446	op->nreq.flags |= NVME_REQ_CANCELLED;
2447	__nvme_fc_abort_op(ctrl, op);
2448	return true;
2449}
2450
2451/*
2452 * This routine runs through all outstanding commands on the association
2453 * and aborts them.  This routine is typically be called by the
2454 * delete_association routine. It is also called due to an error during
2455 * reconnect. In that scenario, it is most likely a command that initializes
2456 * the controller, including fabric Connect commands on io queues, that
2457 * may have timed out or failed thus the io must be killed for the connect
2458 * thread to see the error.
2459 */
2460static void
2461__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2462{
2463	int q;
2464
2465	/*
2466	 * if aborting io, the queues are no longer good, mark them
2467	 * all as not live.
2468	 */
2469	if (ctrl->ctrl.queue_count > 1) {
2470		for (q = 1; q < ctrl->ctrl.queue_count; q++)
2471			clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2472	}
2473	clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2474
2475	/*
2476	 * If io queues are present, stop them and terminate all outstanding
2477	 * ios on them. As FC allocates FC exchange for each io, the
2478	 * transport must contact the LLDD to terminate the exchange,
2479	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2480	 * to tell us what io's are busy and invoke a transport routine
2481	 * to kill them with the LLDD.  After terminating the exchange
2482	 * the LLDD will call the transport's normal io done path, but it
2483	 * will have an aborted status. The done path will return the
2484	 * io requests back to the block layer as part of normal completions
2485	 * (but with error status).
2486	 */
2487	if (ctrl->ctrl.queue_count > 1) {
2488		nvme_stop_queues(&ctrl->ctrl);
2489		nvme_sync_io_queues(&ctrl->ctrl);
2490		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2491				nvme_fc_terminate_exchange, &ctrl->ctrl);
2492		blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2493		if (start_queues)
2494			nvme_start_queues(&ctrl->ctrl);
2495	}
2496
2497	/*
2498	 * Other transports, which don't have link-level contexts bound
2499	 * to sqe's, would try to gracefully shutdown the controller by
2500	 * writing the registers for shutdown and polling (call
2501	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2502	 * just aborted and we will wait on those contexts, and given
2503	 * there was no indication of how live the controlelr is on the
2504	 * link, don't send more io to create more contexts for the
2505	 * shutdown. Let the controller fail via keepalive failure if
2506	 * its still present.
2507	 */
2508
2509	/*
2510	 * clean up the admin queue. Same thing as above.
2511	 */
2512	nvme_stop_admin_queue(&ctrl->ctrl);
2513	blk_sync_queue(ctrl->ctrl.admin_q);
2514	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2515				nvme_fc_terminate_exchange, &ctrl->ctrl);
2516	blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2517}
2518
2519static void
2520nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2521{
2522	/*
2523	 * if an error (io timeout, etc) while (re)connecting, the remote
2524	 * port requested terminating of the association (disconnect_ls)
2525	 * or an error (timeout or abort) occurred on an io while creating
2526	 * the controller.  Abort any ios on the association and let the
2527	 * create_association error path resolve things.
2528	 */
2529	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2530		__nvme_fc_abort_outstanding_ios(ctrl, true);
2531		set_bit(ASSOC_FAILED, &ctrl->flags);
2532		return;
2533	}
2534
2535	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2536	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2537		return;
2538
2539	dev_warn(ctrl->ctrl.device,
2540		"NVME-FC{%d}: transport association event: %s\n",
2541		ctrl->cnum, errmsg);
2542	dev_warn(ctrl->ctrl.device,
2543		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2544
2545	nvme_reset_ctrl(&ctrl->ctrl);
2546}
2547
2548static enum blk_eh_timer_return
2549nvme_fc_timeout(struct request *rq, bool reserved)
2550{
2551	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2552	struct nvme_fc_ctrl *ctrl = op->ctrl;
2553	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2554	struct nvme_command *sqe = &cmdiu->sqe;
2555
2556	/*
2557	 * Attempt to abort the offending command. Command completion
2558	 * will detect the aborted io and will fail the connection.
2559	 */
2560	dev_info(ctrl->ctrl.device,
2561		"NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2562		"x%08x/x%08x\n",
2563		ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2564		sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2565	if (__nvme_fc_abort_op(ctrl, op))
2566		nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2567
2568	/*
2569	 * the io abort has been initiated. Have the reset timer
2570	 * restarted and the abort completion will complete the io
2571	 * shortly. Avoids a synchronous wait while the abort finishes.
2572	 */
2573	return BLK_EH_RESET_TIMER;
2574}
2575
2576static int
2577nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2578		struct nvme_fc_fcp_op *op)
2579{
2580	struct nvmefc_fcp_req *freq = &op->fcp_req;
2581	int ret;
2582
2583	freq->sg_cnt = 0;
2584
2585	if (!blk_rq_nr_phys_segments(rq))
2586		return 0;
2587
2588	freq->sg_table.sgl = freq->first_sgl;
2589	ret = sg_alloc_table_chained(&freq->sg_table,
2590			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2591			NVME_INLINE_SG_CNT);
2592	if (ret)
2593		return -ENOMEM;
2594
2595	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2596	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2597	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2598				op->nents, rq_dma_dir(rq));
2599	if (unlikely(freq->sg_cnt <= 0)) {
2600		sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2601		freq->sg_cnt = 0;
2602		return -EFAULT;
2603	}
2604
2605	/*
2606	 * TODO: blk_integrity_rq(rq)  for DIF
2607	 */
2608	return 0;
2609}
2610
2611static void
2612nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2613		struct nvme_fc_fcp_op *op)
2614{
2615	struct nvmefc_fcp_req *freq = &op->fcp_req;
2616
2617	if (!freq->sg_cnt)
2618		return;
2619
2620	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2621			rq_dma_dir(rq));
2622
2623	sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2624
2625	freq->sg_cnt = 0;
2626}
2627
2628/*
2629 * In FC, the queue is a logical thing. At transport connect, the target
2630 * creates its "queue" and returns a handle that is to be given to the
2631 * target whenever it posts something to the corresponding SQ.  When an
2632 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2633 * command contained within the SQE, an io, and assigns a FC exchange
2634 * to it. The SQE and the associated SQ handle are sent in the initial
2635 * CMD IU sents on the exchange. All transfers relative to the io occur
2636 * as part of the exchange.  The CQE is the last thing for the io,
2637 * which is transferred (explicitly or implicitly) with the RSP IU
2638 * sent on the exchange. After the CQE is received, the FC exchange is
2639 * terminaed and the Exchange may be used on a different io.
2640 *
2641 * The transport to LLDD api has the transport making a request for a
2642 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2643 * resource and transfers the command. The LLDD will then process all
2644 * steps to complete the io. Upon completion, the transport done routine
2645 * is called.
2646 *
2647 * So - while the operation is outstanding to the LLDD, there is a link
2648 * level FC exchange resource that is also outstanding. This must be
2649 * considered in all cleanup operations.
2650 */
2651static blk_status_t
2652nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2653	struct nvme_fc_fcp_op *op, u32 data_len,
2654	enum nvmefc_fcp_datadir	io_dir)
2655{
2656	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2657	struct nvme_command *sqe = &cmdiu->sqe;
2658	int ret, opstate;
2659
2660	/*
2661	 * before attempting to send the io, check to see if we believe
2662	 * the target device is present
2663	 */
2664	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2665		return BLK_STS_RESOURCE;
2666
2667	if (!nvme_fc_ctrl_get(ctrl))
2668		return BLK_STS_IOERR;
2669
2670	/* format the FC-NVME CMD IU and fcp_req */
2671	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2672	cmdiu->data_len = cpu_to_be32(data_len);
2673	switch (io_dir) {
2674	case NVMEFC_FCP_WRITE:
2675		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2676		break;
2677	case NVMEFC_FCP_READ:
2678		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2679		break;
2680	case NVMEFC_FCP_NODATA:
2681		cmdiu->flags = 0;
2682		break;
2683	}
2684	op->fcp_req.payload_length = data_len;
2685	op->fcp_req.io_dir = io_dir;
2686	op->fcp_req.transferred_length = 0;
2687	op->fcp_req.rcv_rsplen = 0;
2688	op->fcp_req.status = NVME_SC_SUCCESS;
2689	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2690
2691	/*
2692	 * validate per fabric rules, set fields mandated by fabric spec
2693	 * as well as those by FC-NVME spec.
2694	 */
2695	WARN_ON_ONCE(sqe->common.metadata);
2696	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2697
2698	/*
2699	 * format SQE DPTR field per FC-NVME rules:
2700	 *    type=0x5     Transport SGL Data Block Descriptor
2701	 *    subtype=0xA  Transport-specific value
2702	 *    address=0
2703	 *    length=length of the data series
2704	 */
2705	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2706					NVME_SGL_FMT_TRANSPORT_A;
2707	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2708	sqe->rw.dptr.sgl.addr = 0;
2709
2710	if (!(op->flags & FCOP_FLAGS_AEN)) {
2711		ret = nvme_fc_map_data(ctrl, op->rq, op);
2712		if (ret < 0) {
2713			nvme_cleanup_cmd(op->rq);
2714			nvme_fc_ctrl_put(ctrl);
2715			if (ret == -ENOMEM || ret == -EAGAIN)
2716				return BLK_STS_RESOURCE;
2717			return BLK_STS_IOERR;
2718		}
2719	}
2720
2721	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2722				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2723
2724	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2725
2726	if (!(op->flags & FCOP_FLAGS_AEN))
2727		blk_mq_start_request(op->rq);
2728
2729	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2730	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2731					&ctrl->rport->remoteport,
2732					queue->lldd_handle, &op->fcp_req);
2733
2734	if (ret) {
2735		/*
2736		 * If the lld fails to send the command is there an issue with
2737		 * the csn value?  If the command that fails is the Connect,
2738		 * no - as the connection won't be live.  If it is a command
2739		 * post-connect, it's possible a gap in csn may be created.
2740		 * Does this matter?  As Linux initiators don't send fused
2741		 * commands, no.  The gap would exist, but as there's nothing
2742		 * that depends on csn order to be delivered on the target
2743		 * side, it shouldn't hurt.  It would be difficult for a
2744		 * target to even detect the csn gap as it has no idea when the
2745		 * cmd with the csn was supposed to arrive.
2746		 */
2747		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2748		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2749
2750		if (!(op->flags & FCOP_FLAGS_AEN)) {
2751			nvme_fc_unmap_data(ctrl, op->rq, op);
2752			nvme_cleanup_cmd(op->rq);
2753		}
2754
2755		nvme_fc_ctrl_put(ctrl);
2756
2757		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2758				ret != -EBUSY)
2759			return BLK_STS_IOERR;
2760
2761		return BLK_STS_RESOURCE;
2762	}
2763
2764	return BLK_STS_OK;
2765}
2766
2767static blk_status_t
2768nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2769			const struct blk_mq_queue_data *bd)
2770{
2771	struct nvme_ns *ns = hctx->queue->queuedata;
2772	struct nvme_fc_queue *queue = hctx->driver_data;
2773	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2774	struct request *rq = bd->rq;
2775	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2776	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2777	struct nvme_command *sqe = &cmdiu->sqe;
2778	enum nvmefc_fcp_datadir	io_dir;
2779	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2780	u32 data_len;
2781	blk_status_t ret;
2782
2783	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2784	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2785		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2786
2787	ret = nvme_setup_cmd(ns, rq, sqe);
2788	if (ret)
2789		return ret;
2790
2791	/*
2792	 * nvme core doesn't quite treat the rq opaquely. Commands such
2793	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2794	 * there is no actual payload to be transferred.
2795	 * To get it right, key data transmission on there being 1 or
2796	 * more physical segments in the sg list. If there is no
2797	 * physical segments, there is no payload.
2798	 */
2799	if (blk_rq_nr_phys_segments(rq)) {
2800		data_len = blk_rq_payload_bytes(rq);
2801		io_dir = ((rq_data_dir(rq) == WRITE) ?
2802					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2803	} else {
2804		data_len = 0;
2805		io_dir = NVMEFC_FCP_NODATA;
2806	}
2807
2808
2809	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2810}
2811
2812static void
2813nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2814{
2815	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2816	struct nvme_fc_fcp_op *aen_op;
2817	blk_status_t ret;
2818
2819	if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2820		return;
2821
2822	aen_op = &ctrl->aen_ops[0];
2823
2824	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2825					NVMEFC_FCP_NODATA);
2826	if (ret)
2827		dev_err(ctrl->ctrl.device,
2828			"failed async event work\n");
2829}
2830
2831static void
2832nvme_fc_complete_rq(struct request *rq)
2833{
2834	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2835	struct nvme_fc_ctrl *ctrl = op->ctrl;
2836
2837	atomic_set(&op->state, FCPOP_STATE_IDLE);
2838	op->flags &= ~FCOP_FLAGS_TERMIO;
2839
2840	nvme_fc_unmap_data(ctrl, rq, op);
2841	nvme_complete_rq(rq);
2842	nvme_fc_ctrl_put(ctrl);
2843}
2844
2845
2846static const struct blk_mq_ops nvme_fc_mq_ops = {
2847	.queue_rq	= nvme_fc_queue_rq,
2848	.complete	= nvme_fc_complete_rq,
2849	.init_request	= nvme_fc_init_request,
2850	.exit_request	= nvme_fc_exit_request,
2851	.init_hctx	= nvme_fc_init_hctx,
2852	.timeout	= nvme_fc_timeout,
2853};
2854
2855static int
2856nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2857{
2858	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2859	unsigned int nr_io_queues;
2860	int ret;
2861
2862	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2863				ctrl->lport->ops->max_hw_queues);
2864	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2865	if (ret) {
2866		dev_info(ctrl->ctrl.device,
2867			"set_queue_count failed: %d\n", ret);
2868		return ret;
2869	}
2870
2871	ctrl->ctrl.queue_count = nr_io_queues + 1;
2872	if (!nr_io_queues)
2873		return 0;
2874
2875	nvme_fc_init_io_queues(ctrl);
2876
2877	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2878	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2879	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2880	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2881	ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2882	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2883	ctrl->tag_set.cmd_size =
2884		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2885			    ctrl->lport->ops->fcprqst_priv_sz);
2886	ctrl->tag_set.driver_data = ctrl;
2887	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2888	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2889
2890	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2891	if (ret)
2892		return ret;
2893
2894	ctrl->ctrl.tagset = &ctrl->tag_set;
2895
2896	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2897	if (IS_ERR(ctrl->ctrl.connect_q)) {
2898		ret = PTR_ERR(ctrl->ctrl.connect_q);
2899		goto out_free_tag_set;
2900	}
2901
2902	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2903	if (ret)
2904		goto out_cleanup_blk_queue;
2905
2906	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2907	if (ret)
2908		goto out_delete_hw_queues;
2909
2910	ctrl->ioq_live = true;
2911
2912	return 0;
2913
2914out_delete_hw_queues:
2915	nvme_fc_delete_hw_io_queues(ctrl);
2916out_cleanup_blk_queue:
2917	blk_cleanup_queue(ctrl->ctrl.connect_q);
2918out_free_tag_set:
2919	blk_mq_free_tag_set(&ctrl->tag_set);
2920	nvme_fc_free_io_queues(ctrl);
2921
2922	/* force put free routine to ignore io queues */
2923	ctrl->ctrl.tagset = NULL;
2924
2925	return ret;
2926}
2927
2928static int
2929nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2930{
2931	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2932	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2933	unsigned int nr_io_queues;
2934	int ret;
2935
2936	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2937				ctrl->lport->ops->max_hw_queues);
2938	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2939	if (ret) {
2940		dev_info(ctrl->ctrl.device,
2941			"set_queue_count failed: %d\n", ret);
2942		return ret;
2943	}
2944
2945	if (!nr_io_queues && prior_ioq_cnt) {
2946		dev_info(ctrl->ctrl.device,
2947			"Fail Reconnect: At least 1 io queue "
2948			"required (was %d)\n", prior_ioq_cnt);
2949		return -ENOSPC;
2950	}
2951
2952	ctrl->ctrl.queue_count = nr_io_queues + 1;
2953	/* check for io queues existing */
2954	if (ctrl->ctrl.queue_count == 1)
2955		return 0;
2956
2957	if (prior_ioq_cnt != nr_io_queues) {
2958		dev_info(ctrl->ctrl.device,
2959			"reconnect: revising io queue count from %d to %d\n",
2960			prior_ioq_cnt, nr_io_queues);
2961		nvme_wait_freeze(&ctrl->ctrl);
2962		blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2963		nvme_unfreeze(&ctrl->ctrl);
2964	}
2965
2966	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2967	if (ret)
2968		goto out_free_io_queues;
2969
2970	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2971	if (ret)
2972		goto out_delete_hw_queues;
2973
2974	return 0;
2975
2976out_delete_hw_queues:
2977	nvme_fc_delete_hw_io_queues(ctrl);
2978out_free_io_queues:
2979	nvme_fc_free_io_queues(ctrl);
2980	return ret;
2981}
2982
2983static void
2984nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2985{
2986	struct nvme_fc_lport *lport = rport->lport;
2987
2988	atomic_inc(&lport->act_rport_cnt);
2989}
2990
2991static void
2992nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2993{
2994	struct nvme_fc_lport *lport = rport->lport;
2995	u32 cnt;
2996
2997	cnt = atomic_dec_return(&lport->act_rport_cnt);
2998	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2999		lport->ops->localport_delete(&lport->localport);
3000}
3001
3002static int
3003nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3004{
3005	struct nvme_fc_rport *rport = ctrl->rport;
3006	u32 cnt;
3007
3008	if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3009		return 1;
3010
3011	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3012	if (cnt == 1)
3013		nvme_fc_rport_active_on_lport(rport);
3014
3015	return 0;
3016}
3017
3018static int
3019nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3020{
3021	struct nvme_fc_rport *rport = ctrl->rport;
3022	struct nvme_fc_lport *lport = rport->lport;
3023	u32 cnt;
3024
3025	/* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3026
3027	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3028	if (cnt == 0) {
3029		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3030			lport->ops->remoteport_delete(&rport->remoteport);
3031		nvme_fc_rport_inactive_on_lport(rport);
3032	}
3033
3034	return 0;
3035}
3036
3037/*
3038 * This routine restarts the controller on the host side, and
3039 * on the link side, recreates the controller association.
3040 */
3041static int
3042nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3043{
3044	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3045	struct nvmefc_ls_rcv_op *disls = NULL;
3046	unsigned long flags;
3047	int ret;
3048	bool changed;
3049
3050	++ctrl->ctrl.nr_reconnects;
3051
3052	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3053		return -ENODEV;
3054
3055	if (nvme_fc_ctlr_active_on_rport(ctrl))
3056		return -ENOTUNIQ;
3057
3058	dev_info(ctrl->ctrl.device,
3059		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
3060		" rport wwpn 0x%016llx: NQN \"%s\"\n",
3061		ctrl->cnum, ctrl->lport->localport.port_name,
3062		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3063
3064	clear_bit(ASSOC_FAILED, &ctrl->flags);
3065
3066	/*
3067	 * Create the admin queue
3068	 */
3069
3070	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3071				NVME_AQ_DEPTH);
3072	if (ret)
3073		goto out_free_queue;
3074
3075	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3076				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3077	if (ret)
3078		goto out_delete_hw_queue;
3079
3080	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3081	if (ret)
3082		goto out_disconnect_admin_queue;
3083
3084	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3085
3086	/*
3087	 * Check controller capabilities
3088	 *
3089	 * todo:- add code to check if ctrl attributes changed from
3090	 * prior connection values
3091	 */
3092
3093	ret = nvme_enable_ctrl(&ctrl->ctrl);
3094	if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3095		goto out_disconnect_admin_queue;
3096
3097	ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3098	ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3099						(ilog2(SZ_4K) - 9);
3100
3101	nvme_start_admin_queue(&ctrl->ctrl);
3102
3103	ret = nvme_init_identify(&ctrl->ctrl);
3104	if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3105		goto out_disconnect_admin_queue;
3106
3107	/* sanity checks */
3108
3109	/* FC-NVME does not have other data in the capsule */
3110	if (ctrl->ctrl.icdoff) {
3111		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3112				ctrl->ctrl.icdoff);
3113		goto out_disconnect_admin_queue;
3114	}
3115
3116	/* FC-NVME supports normal SGL Data Block Descriptors */
3117
3118	if (opts->queue_size > ctrl->ctrl.maxcmd) {
3119		/* warn if maxcmd is lower than queue_size */
3120		dev_warn(ctrl->ctrl.device,
3121			"queue_size %zu > ctrl maxcmd %u, reducing "
3122			"to maxcmd\n",
3123			opts->queue_size, ctrl->ctrl.maxcmd);
3124		opts->queue_size = ctrl->ctrl.maxcmd;
3125	}
3126
3127	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
3128		/* warn if sqsize is lower than queue_size */
3129		dev_warn(ctrl->ctrl.device,
3130			"queue_size %zu > ctrl sqsize %u, reducing "
3131			"to sqsize\n",
3132			opts->queue_size, ctrl->ctrl.sqsize + 1);
3133		opts->queue_size = ctrl->ctrl.sqsize + 1;
3134	}
3135
3136	ret = nvme_fc_init_aen_ops(ctrl);
3137	if (ret)
3138		goto out_term_aen_ops;
3139
3140	/*
3141	 * Create the io queues
3142	 */
3143
3144	if (ctrl->ctrl.queue_count > 1) {
3145		if (!ctrl->ioq_live)
3146			ret = nvme_fc_create_io_queues(ctrl);
3147		else
3148			ret = nvme_fc_recreate_io_queues(ctrl);
3149	}
3150	if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3151		goto out_term_aen_ops;
3152
3153	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3154
3155	ctrl->ctrl.nr_reconnects = 0;
3156
3157	if (changed)
3158		nvme_start_ctrl(&ctrl->ctrl);
3159
3160	return 0;	/* Success */
3161
3162out_term_aen_ops:
3163	nvme_fc_term_aen_ops(ctrl);
3164out_disconnect_admin_queue:
3165	/* send a Disconnect(association) LS to fc-nvme target */
3166	nvme_fc_xmt_disconnect_assoc(ctrl);
3167	spin_lock_irqsave(&ctrl->lock, flags);
3168	ctrl->association_id = 0;
3169	disls = ctrl->rcv_disconn;
3170	ctrl->rcv_disconn = NULL;
3171	spin_unlock_irqrestore(&ctrl->lock, flags);
3172	if (disls)
3173		nvme_fc_xmt_ls_rsp(disls);
3174out_delete_hw_queue:
3175	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3176out_free_queue:
3177	nvme_fc_free_queue(&ctrl->queues[0]);
3178	clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3179	nvme_fc_ctlr_inactive_on_rport(ctrl);
3180
3181	return ret;
3182}
3183
3184
3185/*
3186 * This routine stops operation of the controller on the host side.
3187 * On the host os stack side: Admin and IO queues are stopped,
3188 *   outstanding ios on them terminated via FC ABTS.
3189 * On the link side: the association is terminated.
3190 */
3191static void
3192nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3193{
3194	struct nvmefc_ls_rcv_op *disls = NULL;
3195	unsigned long flags;
3196
3197	if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3198		return;
3199
3200	spin_lock_irqsave(&ctrl->lock, flags);
3201	set_bit(FCCTRL_TERMIO, &ctrl->flags);
3202	ctrl->iocnt = 0;
3203	spin_unlock_irqrestore(&ctrl->lock, flags);
3204
3205	__nvme_fc_abort_outstanding_ios(ctrl, false);
3206
3207	/* kill the aens as they are a separate path */
3208	nvme_fc_abort_aen_ops(ctrl);
3209
3210	/* wait for all io that had to be aborted */
3211	spin_lock_irq(&ctrl->lock);
3212	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3213	clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3214	spin_unlock_irq(&ctrl->lock);
3215
3216	nvme_fc_term_aen_ops(ctrl);
3217
3218	/*
3219	 * send a Disconnect(association) LS to fc-nvme target
3220	 * Note: could have been sent at top of process, but
3221	 * cleaner on link traffic if after the aborts complete.
3222	 * Note: if association doesn't exist, association_id will be 0
3223	 */
3224	if (ctrl->association_id)
3225		nvme_fc_xmt_disconnect_assoc(ctrl);
3226
3227	spin_lock_irqsave(&ctrl->lock, flags);
3228	ctrl->association_id = 0;
3229	disls = ctrl->rcv_disconn;
3230	ctrl->rcv_disconn = NULL;
3231	spin_unlock_irqrestore(&ctrl->lock, flags);
3232	if (disls)
3233		/*
3234		 * if a Disconnect Request was waiting for a response, send
3235		 * now that all ABTS's have been issued (and are complete).
3236		 */
3237		nvme_fc_xmt_ls_rsp(disls);
3238
3239	if (ctrl->ctrl.tagset) {
3240		nvme_fc_delete_hw_io_queues(ctrl);
3241		nvme_fc_free_io_queues(ctrl);
3242	}
3243
3244	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3245	nvme_fc_free_queue(&ctrl->queues[0]);
3246
3247	/* re-enable the admin_q so anything new can fast fail */
3248	nvme_start_admin_queue(&ctrl->ctrl);
3249
3250	/* resume the io queues so that things will fast fail */
3251	nvme_start_queues(&ctrl->ctrl);
3252
3253	nvme_fc_ctlr_inactive_on_rport(ctrl);
3254}
3255
3256static void
3257nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3258{
3259	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3260
3261	cancel_work_sync(&ctrl->ioerr_work);
3262	cancel_delayed_work_sync(&ctrl->connect_work);
3263	/*
3264	 * kill the association on the link side.  this will block
3265	 * waiting for io to terminate
3266	 */
3267	nvme_fc_delete_association(ctrl);
3268}
3269
3270static void
3271nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3272{
3273	struct nvme_fc_rport *rport = ctrl->rport;
3274	struct nvme_fc_remote_port *portptr = &rport->remoteport;
3275	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3276	bool recon = true;
3277
3278	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3279		return;
3280
3281	if (portptr->port_state == FC_OBJSTATE_ONLINE)
3282		dev_info(ctrl->ctrl.device,
3283			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3284			ctrl->cnum, status);
3285	else if (time_after_eq(jiffies, rport->dev_loss_end))
3286		recon = false;
3287
3288	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3289		if (portptr->port_state == FC_OBJSTATE_ONLINE)
3290			dev_info(ctrl->ctrl.device,
3291				"NVME-FC{%d}: Reconnect attempt in %ld "
3292				"seconds\n",
3293				ctrl->cnum, recon_delay / HZ);
3294		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3295			recon_delay = rport->dev_loss_end - jiffies;
3296
3297		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3298	} else {
3299		if (portptr->port_state == FC_OBJSTATE_ONLINE)
3300			dev_warn(ctrl->ctrl.device,
3301				"NVME-FC{%d}: Max reconnect attempts (%d) "
3302				"reached.\n",
3303				ctrl->cnum, ctrl->ctrl.nr_reconnects);
3304		else
3305			dev_warn(ctrl->ctrl.device,
3306				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
3307				"while waiting for remoteport connectivity.\n",
3308				ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3309					(ctrl->ctrl.opts->max_reconnects *
3310					 ctrl->ctrl.opts->reconnect_delay)));
3311		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3312	}
3313}
3314
3315static void
3316nvme_fc_reset_ctrl_work(struct work_struct *work)
3317{
3318	struct nvme_fc_ctrl *ctrl =
3319		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3320
3321	nvme_stop_ctrl(&ctrl->ctrl);
3322
3323	/* will block will waiting for io to terminate */
3324	nvme_fc_delete_association(ctrl);
3325
3326	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3327		dev_err(ctrl->ctrl.device,
3328			"NVME-FC{%d}: error_recovery: Couldn't change state "
3329			"to CONNECTING\n", ctrl->cnum);
3330
3331	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3332		if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3333			dev_err(ctrl->ctrl.device,
3334				"NVME-FC{%d}: failed to schedule connect "
3335				"after reset\n", ctrl->cnum);
3336		} else {
3337			flush_delayed_work(&ctrl->connect_work);
3338		}
3339	} else {
3340		nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3341	}
3342}
3343
3344
3345static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3346	.name			= "fc",
3347	.module			= THIS_MODULE,
3348	.flags			= NVME_F_FABRICS,
3349	.reg_read32		= nvmf_reg_read32,
3350	.reg_read64		= nvmf_reg_read64,
3351	.reg_write32		= nvmf_reg_write32,
3352	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
3353	.submit_async_event	= nvme_fc_submit_async_event,
3354	.delete_ctrl		= nvme_fc_delete_ctrl,
3355	.get_address		= nvmf_get_address,
3356};
3357
3358static void
3359nvme_fc_connect_ctrl_work(struct work_struct *work)
3360{
3361	int ret;
3362
3363	struct nvme_fc_ctrl *ctrl =
3364			container_of(to_delayed_work(work),
3365				struct nvme_fc_ctrl, connect_work);
3366
3367	ret = nvme_fc_create_association(ctrl);
3368	if (ret)
3369		nvme_fc_reconnect_or_delete(ctrl, ret);
3370	else
3371		dev_info(ctrl->ctrl.device,
3372			"NVME-FC{%d}: controller connect complete\n",
3373			ctrl->cnum);
3374}
3375
3376
3377static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3378	.queue_rq	= nvme_fc_queue_rq,
3379	.complete	= nvme_fc_complete_rq,
3380	.init_request	= nvme_fc_init_request,
3381	.exit_request	= nvme_fc_exit_request,
3382	.init_hctx	= nvme_fc_init_admin_hctx,
3383	.timeout	= nvme_fc_timeout,
3384};
3385
3386
3387/*
3388 * Fails a controller request if it matches an existing controller
3389 * (association) with the same tuple:
3390 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3391 *
3392 * The ports don't need to be compared as they are intrinsically
3393 * already matched by the port pointers supplied.
3394 */
3395static bool
3396nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3397		struct nvmf_ctrl_options *opts)
3398{
3399	struct nvme_fc_ctrl *ctrl;
3400	unsigned long flags;
3401	bool found = false;
3402
3403	spin_lock_irqsave(&rport->lock, flags);
3404	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3405		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3406		if (found)
3407			break;
3408	}
3409	spin_unlock_irqrestore(&rport->lock, flags);
3410
3411	return found;
3412}
3413
3414static struct nvme_ctrl *
3415nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3416	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3417{
3418	struct nvme_fc_ctrl *ctrl;
3419	unsigned long flags;
3420	int ret, idx, ctrl_loss_tmo;
3421
3422	if (!(rport->remoteport.port_role &
3423	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3424		ret = -EBADR;
3425		goto out_fail;
3426	}
3427
3428	if (!opts->duplicate_connect &&
3429	    nvme_fc_existing_controller(rport, opts)) {
3430		ret = -EALREADY;
3431		goto out_fail;
3432	}
3433
3434	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3435	if (!ctrl) {
3436		ret = -ENOMEM;
3437		goto out_fail;
3438	}
3439
3440	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3441	if (idx < 0) {
3442		ret = -ENOSPC;
3443		goto out_free_ctrl;
3444	}
3445
3446	/*
3447	 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3448	 * is being used, change to a shorter reconnect delay for FC.
3449	 */
3450	if (opts->max_reconnects != -1 &&
3451	    opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3452	    opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3453		ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3454		opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3455		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3456						opts->reconnect_delay);
3457	}
3458
3459	ctrl->ctrl.opts = opts;
3460	ctrl->ctrl.nr_reconnects = 0;
3461	if (lport->dev)
3462		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3463	else
3464		ctrl->ctrl.numa_node = NUMA_NO_NODE;
3465	INIT_LIST_HEAD(&ctrl->ctrl_list);
3466	ctrl->lport = lport;
3467	ctrl->rport = rport;
3468	ctrl->dev = lport->dev;
3469	ctrl->cnum = idx;
3470	ctrl->ioq_live = false;
3471	init_waitqueue_head(&ctrl->ioabort_wait);
3472
3473	get_device(ctrl->dev);
3474	kref_init(&ctrl->ref);
3475
3476	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3477	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3478	INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3479	spin_lock_init(&ctrl->lock);
3480
3481	/* io queue count */
3482	ctrl->ctrl.queue_count = min_t(unsigned int,
3483				opts->nr_io_queues,
3484				lport->ops->max_hw_queues);
3485	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3486
3487	ctrl->ctrl.sqsize = opts->queue_size - 1;
3488	ctrl->ctrl.kato = opts->kato;
3489	ctrl->ctrl.cntlid = 0xffff;
3490
3491	ret = -ENOMEM;
3492	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3493				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3494	if (!ctrl->queues)
3495		goto out_free_ida;
3496
3497	nvme_fc_init_queue(ctrl, 0);
3498
3499	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3500	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3501	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3502	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3503	ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3504	ctrl->admin_tag_set.cmd_size =
3505		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3506			    ctrl->lport->ops->fcprqst_priv_sz);
3507	ctrl->admin_tag_set.driver_data = ctrl;
3508	ctrl->admin_tag_set.nr_hw_queues = 1;
3509	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3510	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3511
3512	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3513	if (ret)
3514		goto out_free_queues;
3515	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3516
3517	ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3518	if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3519		ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3520		goto out_free_admin_tag_set;
3521	}
3522
3523	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3524	if (IS_ERR(ctrl->ctrl.admin_q)) {
3525		ret = PTR_ERR(ctrl->ctrl.admin_q);
3526		goto out_cleanup_fabrics_q;
3527	}
3528
3529	/*
3530	 * Would have been nice to init io queues tag set as well.
3531	 * However, we require interaction from the controller
3532	 * for max io queue count before we can do so.
3533	 * Defer this to the connect path.
3534	 */
3535
3536	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3537	if (ret)
3538		goto out_cleanup_admin_q;
3539
3540	/* at this point, teardown path changes to ref counting on nvme ctrl */
3541
3542	spin_lock_irqsave(&rport->lock, flags);
3543	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3544	spin_unlock_irqrestore(&rport->lock, flags);
3545
3546	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3547	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3548		dev_err(ctrl->ctrl.device,
3549			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3550		goto fail_ctrl;
3551	}
3552
3553	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3554		dev_err(ctrl->ctrl.device,
3555			"NVME-FC{%d}: failed to schedule initial connect\n",
3556			ctrl->cnum);
3557		goto fail_ctrl;
3558	}
3559
3560	flush_delayed_work(&ctrl->connect_work);
3561
3562	dev_info(ctrl->ctrl.device,
3563		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3564		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3565
3566	return &ctrl->ctrl;
3567
3568fail_ctrl:
3569	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3570	cancel_work_sync(&ctrl->ioerr_work);
3571	cancel_work_sync(&ctrl->ctrl.reset_work);
3572	cancel_delayed_work_sync(&ctrl->connect_work);
3573
3574	ctrl->ctrl.opts = NULL;
3575
3576	/* initiate nvme ctrl ref counting teardown */
3577	nvme_uninit_ctrl(&ctrl->ctrl);
3578
3579	/* Remove core ctrl ref. */
3580	nvme_put_ctrl(&ctrl->ctrl);
3581
3582	/* as we're past the point where we transition to the ref
3583	 * counting teardown path, if we return a bad pointer here,
3584	 * the calling routine, thinking it's prior to the
3585	 * transition, will do an rport put. Since the teardown
3586	 * path also does a rport put, we do an extra get here to
3587	 * so proper order/teardown happens.
3588	 */
3589	nvme_fc_rport_get(rport);
3590
3591	return ERR_PTR(-EIO);
3592
3593out_cleanup_admin_q:
3594	blk_cleanup_queue(ctrl->ctrl.admin_q);
3595out_cleanup_fabrics_q:
3596	blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3597out_free_admin_tag_set:
3598	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3599out_free_queues:
3600	kfree(ctrl->queues);
3601out_free_ida:
3602	put_device(ctrl->dev);
3603	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3604out_free_ctrl:
3605	kfree(ctrl);
3606out_fail:
3607	/* exit via here doesn't follow ctlr ref points */
3608	return ERR_PTR(ret);
3609}
3610
3611
3612struct nvmet_fc_traddr {
3613	u64	nn;
3614	u64	pn;
3615};
3616
3617static int
3618__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3619{
3620	u64 token64;
3621
3622	if (match_u64(sstr, &token64))
3623		return -EINVAL;
3624	*val = token64;
3625
3626	return 0;
3627}
3628
3629/*
3630 * This routine validates and extracts the WWN's from the TRADDR string.
3631 * As kernel parsers need the 0x to determine number base, universally
3632 * build string to parse with 0x prefix before parsing name strings.
3633 */
3634static int
3635nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3636{
3637	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3638	substring_t wwn = { name, &name[sizeof(name)-1] };
3639	int nnoffset, pnoffset;
3640
3641	/* validate if string is one of the 2 allowed formats */
3642	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3643			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3644			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3645				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3646		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3647		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3648						NVME_FC_TRADDR_OXNNLEN;
3649	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3650			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3651			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3652				"pn-", NVME_FC_TRADDR_NNLEN))) {
3653		nnoffset = NVME_FC_TRADDR_NNLEN;
3654		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3655	} else
3656		goto out_einval;
3657
3658	name[0] = '0';
3659	name[1] = 'x';
3660	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3661
3662	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3663	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3664		goto out_einval;
3665
3666	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3667	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3668		goto out_einval;
3669
3670	return 0;
3671
3672out_einval:
3673	pr_warn("%s: bad traddr string\n", __func__);
3674	return -EINVAL;
3675}
3676
3677static struct nvme_ctrl *
3678nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3679{
3680	struct nvme_fc_lport *lport;
3681	struct nvme_fc_rport *rport;
3682	struct nvme_ctrl *ctrl;
3683	struct nvmet_fc_traddr laddr = { 0L, 0L };
3684	struct nvmet_fc_traddr raddr = { 0L, 0L };
3685	unsigned long flags;
3686	int ret;
3687
3688	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3689	if (ret || !raddr.nn || !raddr.pn)
3690		return ERR_PTR(-EINVAL);
3691
3692	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3693	if (ret || !laddr.nn || !laddr.pn)
3694		return ERR_PTR(-EINVAL);
3695
3696	/* find the host and remote ports to connect together */
3697	spin_lock_irqsave(&nvme_fc_lock, flags);
3698	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3699		if (lport->localport.node_name != laddr.nn ||
3700		    lport->localport.port_name != laddr.pn ||
3701		    lport->localport.port_state != FC_OBJSTATE_ONLINE)
3702			continue;
3703
3704		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3705			if (rport->remoteport.node_name != raddr.nn ||
3706			    rport->remoteport.port_name != raddr.pn ||
3707			    rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3708				continue;
3709
3710			/* if fail to get reference fall through. Will error */
3711			if (!nvme_fc_rport_get(rport))
3712				break;
3713
3714			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3715
3716			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3717			if (IS_ERR(ctrl))
3718				nvme_fc_rport_put(rport);
3719			return ctrl;
3720		}
3721	}
3722	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3723
3724	pr_warn("%s: %s - %s combination not found\n",
3725		__func__, opts->traddr, opts->host_traddr);
3726	return ERR_PTR(-ENOENT);
3727}
3728
3729
3730static struct nvmf_transport_ops nvme_fc_transport = {
3731	.name		= "fc",
3732	.module		= THIS_MODULE,
3733	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3734	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3735	.create_ctrl	= nvme_fc_create_ctrl,
3736};
3737
3738/* Arbitrary successive failures max. With lots of subsystems could be high */
3739#define DISCOVERY_MAX_FAIL	20
3740
3741static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3742		struct device_attribute *attr, const char *buf, size_t count)
3743{
3744	unsigned long flags;
3745	LIST_HEAD(local_disc_list);
3746	struct nvme_fc_lport *lport;
3747	struct nvme_fc_rport *rport;
3748	int failcnt = 0;
3749
3750	spin_lock_irqsave(&nvme_fc_lock, flags);
3751restart:
3752	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3753		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3754			if (!nvme_fc_lport_get(lport))
3755				continue;
3756			if (!nvme_fc_rport_get(rport)) {
3757				/*
3758				 * This is a temporary condition. Upon restart
3759				 * this rport will be gone from the list.
3760				 *
3761				 * Revert the lport put and retry.  Anything
3762				 * added to the list already will be skipped (as
3763				 * they are no longer list_empty).  Loops should
3764				 * resume at rports that were not yet seen.
3765				 */
3766				nvme_fc_lport_put(lport);
3767
3768				if (failcnt++ < DISCOVERY_MAX_FAIL)
3769					goto restart;
3770
3771				pr_err("nvme_discovery: too many reference "
3772				       "failures\n");
3773				goto process_local_list;
3774			}
3775			if (list_empty(&rport->disc_list))
3776				list_add_tail(&rport->disc_list,
3777					      &local_disc_list);
3778		}
3779	}
3780
3781process_local_list:
3782	while (!list_empty(&local_disc_list)) {
3783		rport = list_first_entry(&local_disc_list,
3784					 struct nvme_fc_rport, disc_list);
3785		list_del_init(&rport->disc_list);
3786		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3787
3788		lport = rport->lport;
3789		/* signal discovery. Won't hurt if it repeats */
3790		nvme_fc_signal_discovery_scan(lport, rport);
3791		nvme_fc_rport_put(rport);
3792		nvme_fc_lport_put(lport);
3793
3794		spin_lock_irqsave(&nvme_fc_lock, flags);
3795	}
3796	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3797
3798	return count;
3799}
3800static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3801
3802static struct attribute *nvme_fc_attrs[] = {
3803	&dev_attr_nvme_discovery.attr,
3804	NULL
3805};
3806
3807static struct attribute_group nvme_fc_attr_group = {
3808	.attrs = nvme_fc_attrs,
3809};
3810
3811static const struct attribute_group *nvme_fc_attr_groups[] = {
3812	&nvme_fc_attr_group,
3813	NULL
3814};
3815
3816static struct class fc_class = {
3817	.name = "fc",
3818	.dev_groups = nvme_fc_attr_groups,
3819	.owner = THIS_MODULE,
3820};
3821
3822static int __init nvme_fc_init_module(void)
3823{
3824	int ret;
3825
3826	nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3827	if (!nvme_fc_wq)
3828		return -ENOMEM;
3829
3830	/*
3831	 * NOTE:
3832	 * It is expected that in the future the kernel will combine
3833	 * the FC-isms that are currently under scsi and now being
3834	 * added to by NVME into a new standalone FC class. The SCSI
3835	 * and NVME protocols and their devices would be under this
3836	 * new FC class.
3837	 *
3838	 * As we need something to post FC-specific udev events to,
3839	 * specifically for nvme probe events, start by creating the
3840	 * new device class.  When the new standalone FC class is
3841	 * put in place, this code will move to a more generic
3842	 * location for the class.
3843	 */
3844	ret = class_register(&fc_class);
3845	if (ret) {
3846		pr_err("couldn't register class fc\n");
3847		goto out_destroy_wq;
3848	}
3849
3850	/*
3851	 * Create a device for the FC-centric udev events
3852	 */
3853	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3854				"fc_udev_device");
3855	if (IS_ERR(fc_udev_device)) {
3856		pr_err("couldn't create fc_udev device!\n");
3857		ret = PTR_ERR(fc_udev_device);
3858		goto out_destroy_class;
3859	}
3860
3861	ret = nvmf_register_transport(&nvme_fc_transport);
3862	if (ret)
3863		goto out_destroy_device;
3864
3865	return 0;
3866
3867out_destroy_device:
3868	device_destroy(&fc_class, MKDEV(0, 0));
3869out_destroy_class:
3870	class_unregister(&fc_class);
3871out_destroy_wq:
3872	destroy_workqueue(nvme_fc_wq);
3873
3874	return ret;
3875}
3876
3877static void
3878nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3879{
3880	struct nvme_fc_ctrl *ctrl;
3881
3882	spin_lock(&rport->lock);
3883	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3884		dev_warn(ctrl->ctrl.device,
3885			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3886			ctrl->cnum);
3887		nvme_delete_ctrl(&ctrl->ctrl);
3888	}
3889	spin_unlock(&rport->lock);
3890}
3891
3892static void
3893nvme_fc_cleanup_for_unload(void)
3894{
3895	struct nvme_fc_lport *lport;
3896	struct nvme_fc_rport *rport;
3897
3898	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3899		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3900			nvme_fc_delete_controllers(rport);
3901		}
3902	}
3903}
3904
3905static void __exit nvme_fc_exit_module(void)
3906{
3907	unsigned long flags;
3908	bool need_cleanup = false;
3909
3910	spin_lock_irqsave(&nvme_fc_lock, flags);
3911	nvme_fc_waiting_to_unload = true;
3912	if (!list_empty(&nvme_fc_lport_list)) {
3913		need_cleanup = true;
3914		nvme_fc_cleanup_for_unload();
3915	}
3916	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3917	if (need_cleanup) {
3918		pr_info("%s: waiting for ctlr deletes\n", __func__);
3919		wait_for_completion(&nvme_fc_unload_proceed);
3920		pr_info("%s: ctrl deletes complete\n", __func__);
3921	}
3922
3923	nvmf_unregister_transport(&nvme_fc_transport);
3924
3925	ida_destroy(&nvme_fc_local_port_cnt);
3926	ida_destroy(&nvme_fc_ctrl_cnt);
3927
3928	device_destroy(&fc_class, MKDEV(0, 0));
3929	class_unregister(&fc_class);
3930	destroy_workqueue(nvme_fc_wq);
3931}
3932
3933module_init(nvme_fc_init_module);
3934module_exit(nvme_fc_exit_module);
3935
3936MODULE_LICENSE("GPL v2");
3937