1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5#include <linux/scatterlist.h>
6#include <linux/memregion.h>
7#include <linux/highmem.h>
8#include <linux/sched.h>
9#include <linux/slab.h>
10#include <linux/hash.h>
11#include <linux/sort.h>
12#include <linux/io.h>
13#include <linux/nd.h>
14#include "nd-core.h"
15#include "nd.h"
16
17/*
18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19 * irrelevant.
20 */
21#include <linux/io-64-nonatomic-hi-lo.h>
22
23static DEFINE_PER_CPU(int, flush_idx);
24
25static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26		struct nd_region_data *ndrd)
27{
28	int i, j;
29
30	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33		struct resource *res = &nvdimm->flush_wpq[i];
34		unsigned long pfn = PHYS_PFN(res->start);
35		void __iomem *flush_page;
36
37		/* check if flush hints share a page */
38		for (j = 0; j < i; j++) {
39			struct resource *res_j = &nvdimm->flush_wpq[j];
40			unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42			if (pfn == pfn_j)
43				break;
44		}
45
46		if (j < i)
47			flush_page = (void __iomem *) ((unsigned long)
48					ndrd_get_flush_wpq(ndrd, dimm, j)
49					& PAGE_MASK);
50		else
51			flush_page = devm_nvdimm_ioremap(dev,
52					PFN_PHYS(pfn), PAGE_SIZE);
53		if (!flush_page)
54			return -ENXIO;
55		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56				+ (res->start & ~PAGE_MASK));
57	}
58
59	return 0;
60}
61
62int nd_region_activate(struct nd_region *nd_region)
63{
64	int i, j, num_flush = 0;
65	struct nd_region_data *ndrd;
66	struct device *dev = &nd_region->dev;
67	size_t flush_data_size = sizeof(void *);
68
69	nvdimm_bus_lock(&nd_region->dev);
70	for (i = 0; i < nd_region->ndr_mappings; i++) {
71		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72		struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75			nvdimm_bus_unlock(&nd_region->dev);
76			return -EBUSY;
77		}
78
79		/* at least one null hint slot per-dimm for the "no-hint" case */
80		flush_data_size += sizeof(void *);
81		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82		if (!nvdimm->num_flush)
83			continue;
84		flush_data_size += nvdimm->num_flush * sizeof(void *);
85	}
86	nvdimm_bus_unlock(&nd_region->dev);
87
88	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89	if (!ndrd)
90		return -ENOMEM;
91	dev_set_drvdata(dev, ndrd);
92
93	if (!num_flush)
94		return 0;
95
96	ndrd->hints_shift = ilog2(num_flush);
97	for (i = 0; i < nd_region->ndr_mappings; i++) {
98		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102		if (rc)
103			return rc;
104	}
105
106	/*
107	 * Clear out entries that are duplicates. This should prevent the
108	 * extra flushings.
109	 */
110	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111		/* ignore if NULL already */
112		if (!ndrd_get_flush_wpq(ndrd, i, 0))
113			continue;
114
115		for (j = i + 1; j < nd_region->ndr_mappings; j++)
116			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117			    ndrd_get_flush_wpq(ndrd, j, 0))
118				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119	}
120
121	return 0;
122}
123
124static void nd_region_release(struct device *dev)
125{
126	struct nd_region *nd_region = to_nd_region(dev);
127	u16 i;
128
129	for (i = 0; i < nd_region->ndr_mappings; i++) {
130		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131		struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133		put_device(&nvdimm->dev);
134	}
135	free_percpu(nd_region->lane);
136	memregion_free(nd_region->id);
137	if (is_nd_blk(dev))
138		kfree(to_nd_blk_region(dev));
139	else
140		kfree(nd_region);
141}
142
143struct nd_region *to_nd_region(struct device *dev)
144{
145	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
146
147	WARN_ON(dev->type->release != nd_region_release);
148	return nd_region;
149}
150EXPORT_SYMBOL_GPL(to_nd_region);
151
152struct device *nd_region_dev(struct nd_region *nd_region)
153{
154	if (!nd_region)
155		return NULL;
156	return &nd_region->dev;
157}
158EXPORT_SYMBOL_GPL(nd_region_dev);
159
160struct nd_blk_region *to_nd_blk_region(struct device *dev)
161{
162	struct nd_region *nd_region = to_nd_region(dev);
163
164	WARN_ON(!is_nd_blk(dev));
165	return container_of(nd_region, struct nd_blk_region, nd_region);
166}
167EXPORT_SYMBOL_GPL(to_nd_blk_region);
168
169void *nd_region_provider_data(struct nd_region *nd_region)
170{
171	return nd_region->provider_data;
172}
173EXPORT_SYMBOL_GPL(nd_region_provider_data);
174
175void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
176{
177	return ndbr->blk_provider_data;
178}
179EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
180
181void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
182{
183	ndbr->blk_provider_data = data;
184}
185EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
186
187/**
188 * nd_region_to_nstype() - region to an integer namespace type
189 * @nd_region: region-device to interrogate
190 *
191 * This is the 'nstype' attribute of a region as well, an input to the
192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
193 * namespace devices with namespace drivers.
194 */
195int nd_region_to_nstype(struct nd_region *nd_region)
196{
197	if (is_memory(&nd_region->dev)) {
198		u16 i, label;
199
200		for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
201			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
202			struct nvdimm *nvdimm = nd_mapping->nvdimm;
203
204			if (test_bit(NDD_LABELING, &nvdimm->flags))
205				label++;
206		}
207		if (label)
208			return ND_DEVICE_NAMESPACE_PMEM;
209		else
210			return ND_DEVICE_NAMESPACE_IO;
211	} else if (is_nd_blk(&nd_region->dev)) {
212		return ND_DEVICE_NAMESPACE_BLK;
213	}
214
215	return 0;
216}
217EXPORT_SYMBOL(nd_region_to_nstype);
218
219static unsigned long long region_size(struct nd_region *nd_region)
220{
221	if (is_memory(&nd_region->dev)) {
222		return nd_region->ndr_size;
223	} else if (nd_region->ndr_mappings == 1) {
224		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
225
226		return nd_mapping->size;
227	}
228
229	return 0;
230}
231
232static ssize_t size_show(struct device *dev,
233		struct device_attribute *attr, char *buf)
234{
235	struct nd_region *nd_region = to_nd_region(dev);
236
237	return sprintf(buf, "%llu\n", region_size(nd_region));
238}
239static DEVICE_ATTR_RO(size);
240
241static ssize_t deep_flush_show(struct device *dev,
242		struct device_attribute *attr, char *buf)
243{
244	struct nd_region *nd_region = to_nd_region(dev);
245
246	/*
247	 * NOTE: in the nvdimm_has_flush() error case this attribute is
248	 * not visible.
249	 */
250	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
251}
252
253static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
254		const char *buf, size_t len)
255{
256	bool flush;
257	int rc = strtobool(buf, &flush);
258	struct nd_region *nd_region = to_nd_region(dev);
259
260	if (rc)
261		return rc;
262	if (!flush)
263		return -EINVAL;
264	rc = nvdimm_flush(nd_region, NULL);
265	if (rc)
266		return rc;
267
268	return len;
269}
270static DEVICE_ATTR_RW(deep_flush);
271
272static ssize_t mappings_show(struct device *dev,
273		struct device_attribute *attr, char *buf)
274{
275	struct nd_region *nd_region = to_nd_region(dev);
276
277	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
278}
279static DEVICE_ATTR_RO(mappings);
280
281static ssize_t nstype_show(struct device *dev,
282		struct device_attribute *attr, char *buf)
283{
284	struct nd_region *nd_region = to_nd_region(dev);
285
286	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
287}
288static DEVICE_ATTR_RO(nstype);
289
290static ssize_t set_cookie_show(struct device *dev,
291		struct device_attribute *attr, char *buf)
292{
293	struct nd_region *nd_region = to_nd_region(dev);
294	struct nd_interleave_set *nd_set = nd_region->nd_set;
295	ssize_t rc = 0;
296
297	if (is_memory(dev) && nd_set)
298		/* pass, should be precluded by region_visible */;
299	else
300		return -ENXIO;
301
302	/*
303	 * The cookie to show depends on which specification of the
304	 * labels we are using. If there are not labels then default to
305	 * the v1.1 namespace label cookie definition. To read all this
306	 * data we need to wait for probing to settle.
307	 */
308	nd_device_lock(dev);
309	nvdimm_bus_lock(dev);
310	wait_nvdimm_bus_probe_idle(dev);
311	if (nd_region->ndr_mappings) {
312		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
313		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
314
315		if (ndd) {
316			struct nd_namespace_index *nsindex;
317
318			nsindex = to_namespace_index(ndd, ndd->ns_current);
319			rc = sprintf(buf, "%#llx\n",
320					nd_region_interleave_set_cookie(nd_region,
321						nsindex));
322		}
323	}
324	nvdimm_bus_unlock(dev);
325	nd_device_unlock(dev);
326
327	if (rc)
328		return rc;
329	return sprintf(buf, "%#llx\n", nd_set->cookie1);
330}
331static DEVICE_ATTR_RO(set_cookie);
332
333resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
334{
335	resource_size_t blk_max_overlap = 0, available, overlap;
336	int i;
337
338	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
339
340 retry:
341	available = 0;
342	overlap = blk_max_overlap;
343	for (i = 0; i < nd_region->ndr_mappings; i++) {
344		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
345		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
346
347		/* if a dimm is disabled the available capacity is zero */
348		if (!ndd)
349			return 0;
350
351		if (is_memory(&nd_region->dev)) {
352			available += nd_pmem_available_dpa(nd_region,
353					nd_mapping, &overlap);
354			if (overlap > blk_max_overlap) {
355				blk_max_overlap = overlap;
356				goto retry;
357			}
358		} else if (is_nd_blk(&nd_region->dev))
359			available += nd_blk_available_dpa(nd_region);
360	}
361
362	return available;
363}
364
365resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
366{
367	resource_size_t available = 0;
368	int i;
369
370	if (is_memory(&nd_region->dev))
371		available = PHYS_ADDR_MAX;
372
373	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
374	for (i = 0; i < nd_region->ndr_mappings; i++) {
375		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
376
377		if (is_memory(&nd_region->dev))
378			available = min(available,
379					nd_pmem_max_contiguous_dpa(nd_region,
380								   nd_mapping));
381		else if (is_nd_blk(&nd_region->dev))
382			available += nd_blk_available_dpa(nd_region);
383	}
384	if (is_memory(&nd_region->dev))
385		return available * nd_region->ndr_mappings;
386	return available;
387}
388
389static ssize_t available_size_show(struct device *dev,
390		struct device_attribute *attr, char *buf)
391{
392	struct nd_region *nd_region = to_nd_region(dev);
393	unsigned long long available = 0;
394
395	/*
396	 * Flush in-flight updates and grab a snapshot of the available
397	 * size.  Of course, this value is potentially invalidated the
398	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
399	 * problem to not race itself.
400	 */
401	nd_device_lock(dev);
402	nvdimm_bus_lock(dev);
403	wait_nvdimm_bus_probe_idle(dev);
404	available = nd_region_available_dpa(nd_region);
405	nvdimm_bus_unlock(dev);
406	nd_device_unlock(dev);
407
408	return sprintf(buf, "%llu\n", available);
409}
410static DEVICE_ATTR_RO(available_size);
411
412static ssize_t max_available_extent_show(struct device *dev,
413		struct device_attribute *attr, char *buf)
414{
415	struct nd_region *nd_region = to_nd_region(dev);
416	unsigned long long available = 0;
417
418	nd_device_lock(dev);
419	nvdimm_bus_lock(dev);
420	wait_nvdimm_bus_probe_idle(dev);
421	available = nd_region_allocatable_dpa(nd_region);
422	nvdimm_bus_unlock(dev);
423	nd_device_unlock(dev);
424
425	return sprintf(buf, "%llu\n", available);
426}
427static DEVICE_ATTR_RO(max_available_extent);
428
429static ssize_t init_namespaces_show(struct device *dev,
430		struct device_attribute *attr, char *buf)
431{
432	struct nd_region_data *ndrd = dev_get_drvdata(dev);
433	ssize_t rc;
434
435	nvdimm_bus_lock(dev);
436	if (ndrd)
437		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
438	else
439		rc = -ENXIO;
440	nvdimm_bus_unlock(dev);
441
442	return rc;
443}
444static DEVICE_ATTR_RO(init_namespaces);
445
446static ssize_t namespace_seed_show(struct device *dev,
447		struct device_attribute *attr, char *buf)
448{
449	struct nd_region *nd_region = to_nd_region(dev);
450	ssize_t rc;
451
452	nvdimm_bus_lock(dev);
453	if (nd_region->ns_seed)
454		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
455	else
456		rc = sprintf(buf, "\n");
457	nvdimm_bus_unlock(dev);
458	return rc;
459}
460static DEVICE_ATTR_RO(namespace_seed);
461
462static ssize_t btt_seed_show(struct device *dev,
463		struct device_attribute *attr, char *buf)
464{
465	struct nd_region *nd_region = to_nd_region(dev);
466	ssize_t rc;
467
468	nvdimm_bus_lock(dev);
469	if (nd_region->btt_seed)
470		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
471	else
472		rc = sprintf(buf, "\n");
473	nvdimm_bus_unlock(dev);
474
475	return rc;
476}
477static DEVICE_ATTR_RO(btt_seed);
478
479static ssize_t pfn_seed_show(struct device *dev,
480		struct device_attribute *attr, char *buf)
481{
482	struct nd_region *nd_region = to_nd_region(dev);
483	ssize_t rc;
484
485	nvdimm_bus_lock(dev);
486	if (nd_region->pfn_seed)
487		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
488	else
489		rc = sprintf(buf, "\n");
490	nvdimm_bus_unlock(dev);
491
492	return rc;
493}
494static DEVICE_ATTR_RO(pfn_seed);
495
496static ssize_t dax_seed_show(struct device *dev,
497		struct device_attribute *attr, char *buf)
498{
499	struct nd_region *nd_region = to_nd_region(dev);
500	ssize_t rc;
501
502	nvdimm_bus_lock(dev);
503	if (nd_region->dax_seed)
504		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
505	else
506		rc = sprintf(buf, "\n");
507	nvdimm_bus_unlock(dev);
508
509	return rc;
510}
511static DEVICE_ATTR_RO(dax_seed);
512
513static ssize_t read_only_show(struct device *dev,
514		struct device_attribute *attr, char *buf)
515{
516	struct nd_region *nd_region = to_nd_region(dev);
517
518	return sprintf(buf, "%d\n", nd_region->ro);
519}
520
521static ssize_t read_only_store(struct device *dev,
522		struct device_attribute *attr, const char *buf, size_t len)
523{
524	bool ro;
525	int rc = strtobool(buf, &ro);
526	struct nd_region *nd_region = to_nd_region(dev);
527
528	if (rc)
529		return rc;
530
531	nd_region->ro = ro;
532	return len;
533}
534static DEVICE_ATTR_RW(read_only);
535
536static ssize_t align_show(struct device *dev,
537		struct device_attribute *attr, char *buf)
538{
539	struct nd_region *nd_region = to_nd_region(dev);
540
541	return sprintf(buf, "%#lx\n", nd_region->align);
542}
543
544static ssize_t align_store(struct device *dev,
545		struct device_attribute *attr, const char *buf, size_t len)
546{
547	struct nd_region *nd_region = to_nd_region(dev);
548	unsigned long val, dpa;
549	u32 remainder;
550	int rc;
551
552	rc = kstrtoul(buf, 0, &val);
553	if (rc)
554		return rc;
555
556	if (!nd_region->ndr_mappings)
557		return -ENXIO;
558
559	/*
560	 * Ensure space-align is evenly divisible by the region
561	 * interleave-width because the kernel typically has no facility
562	 * to determine which DIMM(s), dimm-physical-addresses, would
563	 * contribute to the tail capacity in system-physical-address
564	 * space for the namespace.
565	 */
566	dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
567	if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
568			|| val > region_size(nd_region) || remainder)
569		return -EINVAL;
570
571	/*
572	 * Given that space allocation consults this value multiple
573	 * times ensure it does not change for the duration of the
574	 * allocation.
575	 */
576	nvdimm_bus_lock(dev);
577	nd_region->align = val;
578	nvdimm_bus_unlock(dev);
579
580	return len;
581}
582static DEVICE_ATTR_RW(align);
583
584static ssize_t region_badblocks_show(struct device *dev,
585		struct device_attribute *attr, char *buf)
586{
587	struct nd_region *nd_region = to_nd_region(dev);
588	ssize_t rc;
589
590	nd_device_lock(dev);
591	if (dev->driver)
592		rc = badblocks_show(&nd_region->bb, buf, 0);
593	else
594		rc = -ENXIO;
595	nd_device_unlock(dev);
596
597	return rc;
598}
599static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
600
601static ssize_t resource_show(struct device *dev,
602		struct device_attribute *attr, char *buf)
603{
604	struct nd_region *nd_region = to_nd_region(dev);
605
606	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
607}
608static DEVICE_ATTR_ADMIN_RO(resource);
609
610static ssize_t persistence_domain_show(struct device *dev,
611		struct device_attribute *attr, char *buf)
612{
613	struct nd_region *nd_region = to_nd_region(dev);
614
615	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
616		return sprintf(buf, "cpu_cache\n");
617	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
618		return sprintf(buf, "memory_controller\n");
619	else
620		return sprintf(buf, "\n");
621}
622static DEVICE_ATTR_RO(persistence_domain);
623
624static struct attribute *nd_region_attributes[] = {
625	&dev_attr_size.attr,
626	&dev_attr_align.attr,
627	&dev_attr_nstype.attr,
628	&dev_attr_mappings.attr,
629	&dev_attr_btt_seed.attr,
630	&dev_attr_pfn_seed.attr,
631	&dev_attr_dax_seed.attr,
632	&dev_attr_deep_flush.attr,
633	&dev_attr_read_only.attr,
634	&dev_attr_set_cookie.attr,
635	&dev_attr_available_size.attr,
636	&dev_attr_max_available_extent.attr,
637	&dev_attr_namespace_seed.attr,
638	&dev_attr_init_namespaces.attr,
639	&dev_attr_badblocks.attr,
640	&dev_attr_resource.attr,
641	&dev_attr_persistence_domain.attr,
642	NULL,
643};
644
645static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
646{
647	struct device *dev = container_of(kobj, typeof(*dev), kobj);
648	struct nd_region *nd_region = to_nd_region(dev);
649	struct nd_interleave_set *nd_set = nd_region->nd_set;
650	int type = nd_region_to_nstype(nd_region);
651
652	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
653		return 0;
654
655	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
656		return 0;
657
658	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
659		return 0;
660
661	if (a == &dev_attr_resource.attr && !is_memory(dev))
662		return 0;
663
664	if (a == &dev_attr_deep_flush.attr) {
665		int has_flush = nvdimm_has_flush(nd_region);
666
667		if (has_flush == 1)
668			return a->mode;
669		else if (has_flush == 0)
670			return 0444;
671		else
672			return 0;
673	}
674
675	if (a == &dev_attr_persistence_domain.attr) {
676		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
677					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
678			return 0;
679		return a->mode;
680	}
681
682	if (a == &dev_attr_align.attr)
683		return a->mode;
684
685	if (a != &dev_attr_set_cookie.attr
686			&& a != &dev_attr_available_size.attr)
687		return a->mode;
688
689	if ((type == ND_DEVICE_NAMESPACE_PMEM
690				|| type == ND_DEVICE_NAMESPACE_BLK)
691			&& a == &dev_attr_available_size.attr)
692		return a->mode;
693	else if (is_memory(dev) && nd_set)
694		return a->mode;
695
696	return 0;
697}
698
699static ssize_t mappingN(struct device *dev, char *buf, int n)
700{
701	struct nd_region *nd_region = to_nd_region(dev);
702	struct nd_mapping *nd_mapping;
703	struct nvdimm *nvdimm;
704
705	if (n >= nd_region->ndr_mappings)
706		return -ENXIO;
707	nd_mapping = &nd_region->mapping[n];
708	nvdimm = nd_mapping->nvdimm;
709
710	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
711			nd_mapping->start, nd_mapping->size,
712			nd_mapping->position);
713}
714
715#define REGION_MAPPING(idx) \
716static ssize_t mapping##idx##_show(struct device *dev,		\
717		struct device_attribute *attr, char *buf)	\
718{								\
719	return mappingN(dev, buf, idx);				\
720}								\
721static DEVICE_ATTR_RO(mapping##idx)
722
723/*
724 * 32 should be enough for a while, even in the presence of socket
725 * interleave a 32-way interleave set is a degenerate case.
726 */
727REGION_MAPPING(0);
728REGION_MAPPING(1);
729REGION_MAPPING(2);
730REGION_MAPPING(3);
731REGION_MAPPING(4);
732REGION_MAPPING(5);
733REGION_MAPPING(6);
734REGION_MAPPING(7);
735REGION_MAPPING(8);
736REGION_MAPPING(9);
737REGION_MAPPING(10);
738REGION_MAPPING(11);
739REGION_MAPPING(12);
740REGION_MAPPING(13);
741REGION_MAPPING(14);
742REGION_MAPPING(15);
743REGION_MAPPING(16);
744REGION_MAPPING(17);
745REGION_MAPPING(18);
746REGION_MAPPING(19);
747REGION_MAPPING(20);
748REGION_MAPPING(21);
749REGION_MAPPING(22);
750REGION_MAPPING(23);
751REGION_MAPPING(24);
752REGION_MAPPING(25);
753REGION_MAPPING(26);
754REGION_MAPPING(27);
755REGION_MAPPING(28);
756REGION_MAPPING(29);
757REGION_MAPPING(30);
758REGION_MAPPING(31);
759
760static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
761{
762	struct device *dev = container_of(kobj, struct device, kobj);
763	struct nd_region *nd_region = to_nd_region(dev);
764
765	if (n < nd_region->ndr_mappings)
766		return a->mode;
767	return 0;
768}
769
770static struct attribute *mapping_attributes[] = {
771	&dev_attr_mapping0.attr,
772	&dev_attr_mapping1.attr,
773	&dev_attr_mapping2.attr,
774	&dev_attr_mapping3.attr,
775	&dev_attr_mapping4.attr,
776	&dev_attr_mapping5.attr,
777	&dev_attr_mapping6.attr,
778	&dev_attr_mapping7.attr,
779	&dev_attr_mapping8.attr,
780	&dev_attr_mapping9.attr,
781	&dev_attr_mapping10.attr,
782	&dev_attr_mapping11.attr,
783	&dev_attr_mapping12.attr,
784	&dev_attr_mapping13.attr,
785	&dev_attr_mapping14.attr,
786	&dev_attr_mapping15.attr,
787	&dev_attr_mapping16.attr,
788	&dev_attr_mapping17.attr,
789	&dev_attr_mapping18.attr,
790	&dev_attr_mapping19.attr,
791	&dev_attr_mapping20.attr,
792	&dev_attr_mapping21.attr,
793	&dev_attr_mapping22.attr,
794	&dev_attr_mapping23.attr,
795	&dev_attr_mapping24.attr,
796	&dev_attr_mapping25.attr,
797	&dev_attr_mapping26.attr,
798	&dev_attr_mapping27.attr,
799	&dev_attr_mapping28.attr,
800	&dev_attr_mapping29.attr,
801	&dev_attr_mapping30.attr,
802	&dev_attr_mapping31.attr,
803	NULL,
804};
805
806static const struct attribute_group nd_mapping_attribute_group = {
807	.is_visible = mapping_visible,
808	.attrs = mapping_attributes,
809};
810
811static const struct attribute_group nd_region_attribute_group = {
812	.attrs = nd_region_attributes,
813	.is_visible = region_visible,
814};
815
816static const struct attribute_group *nd_region_attribute_groups[] = {
817	&nd_device_attribute_group,
818	&nd_region_attribute_group,
819	&nd_numa_attribute_group,
820	&nd_mapping_attribute_group,
821	NULL,
822};
823
824static const struct device_type nd_blk_device_type = {
825	.name = "nd_blk",
826	.release = nd_region_release,
827	.groups = nd_region_attribute_groups,
828};
829
830static const struct device_type nd_pmem_device_type = {
831	.name = "nd_pmem",
832	.release = nd_region_release,
833	.groups = nd_region_attribute_groups,
834};
835
836static const struct device_type nd_volatile_device_type = {
837	.name = "nd_volatile",
838	.release = nd_region_release,
839	.groups = nd_region_attribute_groups,
840};
841
842bool is_nd_pmem(struct device *dev)
843{
844	return dev ? dev->type == &nd_pmem_device_type : false;
845}
846
847bool is_nd_blk(struct device *dev)
848{
849	return dev ? dev->type == &nd_blk_device_type : false;
850}
851
852bool is_nd_volatile(struct device *dev)
853{
854	return dev ? dev->type == &nd_volatile_device_type : false;
855}
856
857u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
858		struct nd_namespace_index *nsindex)
859{
860	struct nd_interleave_set *nd_set = nd_region->nd_set;
861
862	if (!nd_set)
863		return 0;
864
865	if (nsindex && __le16_to_cpu(nsindex->major) == 1
866			&& __le16_to_cpu(nsindex->minor) == 1)
867		return nd_set->cookie1;
868	return nd_set->cookie2;
869}
870
871u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
872{
873	struct nd_interleave_set *nd_set = nd_region->nd_set;
874
875	if (nd_set)
876		return nd_set->altcookie;
877	return 0;
878}
879
880void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
881{
882	struct nd_label_ent *label_ent, *e;
883
884	lockdep_assert_held(&nd_mapping->lock);
885	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
886		list_del(&label_ent->list);
887		kfree(label_ent);
888	}
889}
890
891/*
892 * When a namespace is activated create new seeds for the next
893 * namespace, or namespace-personality to be configured.
894 */
895void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
896{
897	nvdimm_bus_lock(dev);
898	if (nd_region->ns_seed == dev) {
899		nd_region_create_ns_seed(nd_region);
900	} else if (is_nd_btt(dev)) {
901		struct nd_btt *nd_btt = to_nd_btt(dev);
902
903		if (nd_region->btt_seed == dev)
904			nd_region_create_btt_seed(nd_region);
905		if (nd_region->ns_seed == &nd_btt->ndns->dev)
906			nd_region_create_ns_seed(nd_region);
907	} else if (is_nd_pfn(dev)) {
908		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
909
910		if (nd_region->pfn_seed == dev)
911			nd_region_create_pfn_seed(nd_region);
912		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
913			nd_region_create_ns_seed(nd_region);
914	} else if (is_nd_dax(dev)) {
915		struct nd_dax *nd_dax = to_nd_dax(dev);
916
917		if (nd_region->dax_seed == dev)
918			nd_region_create_dax_seed(nd_region);
919		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
920			nd_region_create_ns_seed(nd_region);
921	}
922	nvdimm_bus_unlock(dev);
923}
924
925int nd_blk_region_init(struct nd_region *nd_region)
926{
927	struct device *dev = &nd_region->dev;
928	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
929
930	if (!is_nd_blk(dev))
931		return 0;
932
933	if (nd_region->ndr_mappings < 1) {
934		dev_dbg(dev, "invalid BLK region\n");
935		return -ENXIO;
936	}
937
938	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
939}
940
941/**
942 * nd_region_acquire_lane - allocate and lock a lane
943 * @nd_region: region id and number of lanes possible
944 *
945 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
946 * We optimize for the common case where there are 256 lanes, one
947 * per-cpu.  For larger systems we need to lock to share lanes.  For now
948 * this implementation assumes the cost of maintaining an allocator for
949 * free lanes is on the order of the lock hold time, so it implements a
950 * static lane = cpu % num_lanes mapping.
951 *
952 * In the case of a BTT instance on top of a BLK namespace a lane may be
953 * acquired recursively.  We lock on the first instance.
954 *
955 * In the case of a BTT instance on top of PMEM, we only acquire a lane
956 * for the BTT metadata updates.
957 */
958unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
959{
960	unsigned int cpu, lane;
961
962	migrate_disable();
963	cpu = smp_processor_id();
964	if (nd_region->num_lanes < nr_cpu_ids) {
965		struct nd_percpu_lane *ndl_lock, *ndl_count;
966
967		lane = cpu % nd_region->num_lanes;
968		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
969		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
970		if (ndl_count->count++ == 0)
971			spin_lock(&ndl_lock->lock);
972	} else
973		lane = cpu;
974
975	return lane;
976}
977EXPORT_SYMBOL(nd_region_acquire_lane);
978
979void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
980{
981	if (nd_region->num_lanes < nr_cpu_ids) {
982		unsigned int cpu = smp_processor_id();
983		struct nd_percpu_lane *ndl_lock, *ndl_count;
984
985		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
986		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
987		if (--ndl_count->count == 0)
988			spin_unlock(&ndl_lock->lock);
989	}
990	migrate_enable();
991}
992EXPORT_SYMBOL(nd_region_release_lane);
993
994/*
995 * PowerPC requires this alignment for memremap_pages(). All other archs
996 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
997 */
998#define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
999
1000static unsigned long default_align(struct nd_region *nd_region)
1001{
1002	unsigned long align;
1003	int i, mappings;
1004	u32 remainder;
1005
1006	if (is_nd_blk(&nd_region->dev))
1007		align = PAGE_SIZE;
1008	else
1009		align = MEMREMAP_COMPAT_ALIGN_MAX;
1010
1011	for (i = 0; i < nd_region->ndr_mappings; i++) {
1012		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1013		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1014
1015		if (test_bit(NDD_ALIASING, &nvdimm->flags)) {
1016			align = MEMREMAP_COMPAT_ALIGN_MAX;
1017			break;
1018		}
1019	}
1020
1021	if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
1022		align = PAGE_SIZE;
1023
1024	mappings = max_t(u16, 1, nd_region->ndr_mappings);
1025	div_u64_rem(align, mappings, &remainder);
1026	if (remainder)
1027		align *= mappings;
1028
1029	return align;
1030}
1031
1032static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1033		struct nd_region_desc *ndr_desc,
1034		const struct device_type *dev_type, const char *caller)
1035{
1036	struct nd_region *nd_region;
1037	struct device *dev;
1038	void *region_buf;
1039	unsigned int i;
1040	int ro = 0;
1041
1042	for (i = 0; i < ndr_desc->num_mappings; i++) {
1043		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1044		struct nvdimm *nvdimm = mapping->nvdimm;
1045
1046		if ((mapping->start | mapping->size) % PAGE_SIZE) {
1047			dev_err(&nvdimm_bus->dev,
1048				"%s: %s mapping%d is not %ld aligned\n",
1049				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1050			return NULL;
1051		}
1052
1053		if (test_bit(NDD_UNARMED, &nvdimm->flags))
1054			ro = 1;
1055
1056		if (test_bit(NDD_NOBLK, &nvdimm->flags)
1057				&& dev_type == &nd_blk_device_type) {
1058			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1059					caller, dev_name(&nvdimm->dev), i);
1060			return NULL;
1061		}
1062	}
1063
1064	if (dev_type == &nd_blk_device_type) {
1065		struct nd_blk_region_desc *ndbr_desc;
1066		struct nd_blk_region *ndbr;
1067
1068		ndbr_desc = to_blk_region_desc(ndr_desc);
1069		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1070				* ndr_desc->num_mappings,
1071				GFP_KERNEL);
1072		if (ndbr) {
1073			nd_region = &ndbr->nd_region;
1074			ndbr->enable = ndbr_desc->enable;
1075			ndbr->do_io = ndbr_desc->do_io;
1076		}
1077		region_buf = ndbr;
1078	} else {
1079		nd_region = kzalloc(struct_size(nd_region, mapping,
1080						ndr_desc->num_mappings),
1081				    GFP_KERNEL);
1082		region_buf = nd_region;
1083	}
1084
1085	if (!region_buf)
1086		return NULL;
1087	nd_region->id = memregion_alloc(GFP_KERNEL);
1088	if (nd_region->id < 0)
1089		goto err_id;
1090
1091	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1092	if (!nd_region->lane)
1093		goto err_percpu;
1094
1095        for (i = 0; i < nr_cpu_ids; i++) {
1096		struct nd_percpu_lane *ndl;
1097
1098		ndl = per_cpu_ptr(nd_region->lane, i);
1099		spin_lock_init(&ndl->lock);
1100		ndl->count = 0;
1101	}
1102
1103	for (i = 0; i < ndr_desc->num_mappings; i++) {
1104		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1105		struct nvdimm *nvdimm = mapping->nvdimm;
1106
1107		nd_region->mapping[i].nvdimm = nvdimm;
1108		nd_region->mapping[i].start = mapping->start;
1109		nd_region->mapping[i].size = mapping->size;
1110		nd_region->mapping[i].position = mapping->position;
1111		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1112		mutex_init(&nd_region->mapping[i].lock);
1113
1114		get_device(&nvdimm->dev);
1115	}
1116	nd_region->ndr_mappings = ndr_desc->num_mappings;
1117	nd_region->provider_data = ndr_desc->provider_data;
1118	nd_region->nd_set = ndr_desc->nd_set;
1119	nd_region->num_lanes = ndr_desc->num_lanes;
1120	nd_region->flags = ndr_desc->flags;
1121	nd_region->ro = ro;
1122	nd_region->numa_node = ndr_desc->numa_node;
1123	nd_region->target_node = ndr_desc->target_node;
1124	ida_init(&nd_region->ns_ida);
1125	ida_init(&nd_region->btt_ida);
1126	ida_init(&nd_region->pfn_ida);
1127	ida_init(&nd_region->dax_ida);
1128	dev = &nd_region->dev;
1129	dev_set_name(dev, "region%d", nd_region->id);
1130	dev->parent = &nvdimm_bus->dev;
1131	dev->type = dev_type;
1132	dev->groups = ndr_desc->attr_groups;
1133	dev->of_node = ndr_desc->of_node;
1134	nd_region->ndr_size = resource_size(ndr_desc->res);
1135	nd_region->ndr_start = ndr_desc->res->start;
1136	nd_region->align = default_align(nd_region);
1137	if (ndr_desc->flush)
1138		nd_region->flush = ndr_desc->flush;
1139	else
1140		nd_region->flush = NULL;
1141
1142	nd_device_register(dev);
1143
1144	return nd_region;
1145
1146 err_percpu:
1147	memregion_free(nd_region->id);
1148 err_id:
1149	kfree(region_buf);
1150	return NULL;
1151}
1152
1153struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1154		struct nd_region_desc *ndr_desc)
1155{
1156	ndr_desc->num_lanes = ND_MAX_LANES;
1157	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1158			__func__);
1159}
1160EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1161
1162struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1163		struct nd_region_desc *ndr_desc)
1164{
1165	if (ndr_desc->num_mappings > 1)
1166		return NULL;
1167	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1168	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1169			__func__);
1170}
1171EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1172
1173struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1174		struct nd_region_desc *ndr_desc)
1175{
1176	ndr_desc->num_lanes = ND_MAX_LANES;
1177	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1178			__func__);
1179}
1180EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1181
1182int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1183{
1184	int rc = 0;
1185
1186	if (!nd_region->flush)
1187		rc = generic_nvdimm_flush(nd_region);
1188	else {
1189		if (nd_region->flush(nd_region, bio))
1190			rc = -EIO;
1191	}
1192
1193	return rc;
1194}
1195/**
1196 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1197 * @nd_region: blk or interleaved pmem region
1198 */
1199int generic_nvdimm_flush(struct nd_region *nd_region)
1200{
1201	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1202	int i, idx;
1203
1204	/*
1205	 * Try to encourage some diversity in flush hint addresses
1206	 * across cpus assuming a limited number of flush hints.
1207	 */
1208	idx = this_cpu_read(flush_idx);
1209	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1210
1211	/*
1212	 * The pmem_wmb() is needed to 'sfence' all
1213	 * previous writes such that they are architecturally visible for
1214	 * the platform buffer flush. Note that we've already arranged for pmem
1215	 * writes to avoid the cache via memcpy_flushcache().  The final
1216	 * wmb() ensures ordering for the NVDIMM flush write.
1217	 */
1218	pmem_wmb();
1219	for (i = 0; i < nd_region->ndr_mappings; i++)
1220		if (ndrd_get_flush_wpq(ndrd, i, 0))
1221			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1222	wmb();
1223
1224	return 0;
1225}
1226EXPORT_SYMBOL_GPL(nvdimm_flush);
1227
1228/**
1229 * nvdimm_has_flush - determine write flushing requirements
1230 * @nd_region: blk or interleaved pmem region
1231 *
1232 * Returns 1 if writes require flushing
1233 * Returns 0 if writes do not require flushing
1234 * Returns -ENXIO if flushing capability can not be determined
1235 */
1236int nvdimm_has_flush(struct nd_region *nd_region)
1237{
1238	int i;
1239
1240	/* no nvdimm or pmem api == flushing capability unknown */
1241	if (nd_region->ndr_mappings == 0
1242			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1243		return -ENXIO;
1244
1245	/* Test if an explicit flush function is defined */
1246	if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1247		return 1;
1248
1249	/* Test if any flush hints for the region are available */
1250	for (i = 0; i < nd_region->ndr_mappings; i++) {
1251		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1252		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1253
1254		/* flush hints present / available */
1255		if (nvdimm->num_flush)
1256			return 1;
1257	}
1258
1259	/*
1260	 * The platform defines dimm devices without hints nor explicit flush,
1261	 * assume platform persistence mechanism like ADR
1262	 */
1263	return 0;
1264}
1265EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1266
1267int nvdimm_has_cache(struct nd_region *nd_region)
1268{
1269	return is_nd_pmem(&nd_region->dev) &&
1270		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1271}
1272EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1273
1274bool is_nvdimm_sync(struct nd_region *nd_region)
1275{
1276	if (is_nd_volatile(&nd_region->dev))
1277		return true;
1278
1279	return is_nd_pmem(&nd_region->dev) &&
1280		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1281}
1282EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1283
1284struct conflict_context {
1285	struct nd_region *nd_region;
1286	resource_size_t start, size;
1287};
1288
1289static int region_conflict(struct device *dev, void *data)
1290{
1291	struct nd_region *nd_region;
1292	struct conflict_context *ctx = data;
1293	resource_size_t res_end, region_end, region_start;
1294
1295	if (!is_memory(dev))
1296		return 0;
1297
1298	nd_region = to_nd_region(dev);
1299	if (nd_region == ctx->nd_region)
1300		return 0;
1301
1302	res_end = ctx->start + ctx->size;
1303	region_start = nd_region->ndr_start;
1304	region_end = region_start + nd_region->ndr_size;
1305	if (ctx->start >= region_start && ctx->start < region_end)
1306		return -EBUSY;
1307	if (res_end > region_start && res_end <= region_end)
1308		return -EBUSY;
1309	return 0;
1310}
1311
1312int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1313		resource_size_t size)
1314{
1315	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1316	struct conflict_context ctx = {
1317		.nd_region = nd_region,
1318		.start = start,
1319		.size = size,
1320	};
1321
1322	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1323}
1324