xref: /kernel/linux/linux-5.10/drivers/nvdimm/pmem.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Persistent Memory Driver
4 *
5 * Copyright (c) 2014-2015, Intel Corporation.
6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 */
9
10#include <linux/blkdev.h>
11#include <linux/hdreg.h>
12#include <linux/init.h>
13#include <linux/platform_device.h>
14#include <linux/set_memory.h>
15#include <linux/module.h>
16#include <linux/moduleparam.h>
17#include <linux/badblocks.h>
18#include <linux/memremap.h>
19#include <linux/vmalloc.h>
20#include <linux/blk-mq.h>
21#include <linux/pfn_t.h>
22#include <linux/slab.h>
23#include <linux/uio.h>
24#include <linux/dax.h>
25#include <linux/nd.h>
26#include <linux/backing-dev.h>
27#include <linux/mm.h>
28#include <asm/cacheflush.h>
29#include "pmem.h"
30#include "pfn.h"
31#include "nd.h"
32
33static struct device *to_dev(struct pmem_device *pmem)
34{
35	/*
36	 * nvdimm bus services need a 'dev' parameter, and we record the device
37	 * at init in bb.dev.
38	 */
39	return pmem->bb.dev;
40}
41
42static struct nd_region *to_region(struct pmem_device *pmem)
43{
44	return to_nd_region(to_dev(pmem)->parent);
45}
46
47static void hwpoison_clear(struct pmem_device *pmem,
48		phys_addr_t phys, unsigned int len)
49{
50	unsigned long pfn_start, pfn_end, pfn;
51
52	/* only pmem in the linear map supports HWPoison */
53	if (is_vmalloc_addr(pmem->virt_addr))
54		return;
55
56	pfn_start = PHYS_PFN(phys);
57	pfn_end = pfn_start + PHYS_PFN(len);
58	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
59		struct page *page = pfn_to_page(pfn);
60
61		/*
62		 * Note, no need to hold a get_dev_pagemap() reference
63		 * here since we're in the driver I/O path and
64		 * outstanding I/O requests pin the dev_pagemap.
65		 */
66		if (test_and_clear_pmem_poison(page))
67			clear_mce_nospec(pfn);
68	}
69}
70
71static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
72		phys_addr_t offset, unsigned int len)
73{
74	struct device *dev = to_dev(pmem);
75	sector_t sector;
76	long cleared;
77	blk_status_t rc = BLK_STS_OK;
78
79	sector = (offset - pmem->data_offset) / 512;
80
81	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
82	if (cleared < len)
83		rc = BLK_STS_IOERR;
84	if (cleared > 0 && cleared / 512) {
85		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
86		cleared /= 512;
87		dev_dbg(dev, "%#llx clear %ld sector%s\n",
88				(unsigned long long) sector, cleared,
89				cleared > 1 ? "s" : "");
90		badblocks_clear(&pmem->bb, sector, cleared);
91		if (pmem->bb_state)
92			sysfs_notify_dirent(pmem->bb_state);
93	}
94
95	arch_invalidate_pmem(pmem->virt_addr + offset, len);
96
97	return rc;
98}
99
100static void write_pmem(void *pmem_addr, struct page *page,
101		unsigned int off, unsigned int len)
102{
103	unsigned int chunk;
104	void *mem;
105
106	while (len) {
107		mem = kmap_atomic(page);
108		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109		memcpy_flushcache(pmem_addr, mem + off, chunk);
110		kunmap_atomic(mem);
111		len -= chunk;
112		off = 0;
113		page++;
114		pmem_addr += chunk;
115	}
116}
117
118static blk_status_t read_pmem(struct page *page, unsigned int off,
119		void *pmem_addr, unsigned int len)
120{
121	unsigned int chunk;
122	unsigned long rem;
123	void *mem;
124
125	while (len) {
126		mem = kmap_atomic(page);
127		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128		rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
129		kunmap_atomic(mem);
130		if (rem)
131			return BLK_STS_IOERR;
132		len -= chunk;
133		off = 0;
134		page++;
135		pmem_addr += chunk;
136	}
137	return BLK_STS_OK;
138}
139
140static blk_status_t pmem_do_read(struct pmem_device *pmem,
141			struct page *page, unsigned int page_off,
142			sector_t sector, unsigned int len)
143{
144	blk_status_t rc;
145	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146	void *pmem_addr = pmem->virt_addr + pmem_off;
147
148	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149		return BLK_STS_IOERR;
150
151	rc = read_pmem(page, page_off, pmem_addr, len);
152	flush_dcache_page(page);
153	return rc;
154}
155
156static blk_status_t pmem_do_write(struct pmem_device *pmem,
157			struct page *page, unsigned int page_off,
158			sector_t sector, unsigned int len)
159{
160	blk_status_t rc = BLK_STS_OK;
161	bool bad_pmem = false;
162	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
163	void *pmem_addr = pmem->virt_addr + pmem_off;
164
165	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
166		bad_pmem = true;
167
168	/*
169	 * Note that we write the data both before and after
170	 * clearing poison.  The write before clear poison
171	 * handles situations where the latest written data is
172	 * preserved and the clear poison operation simply marks
173	 * the address range as valid without changing the data.
174	 * In this case application software can assume that an
175	 * interrupted write will either return the new good
176	 * data or an error.
177	 *
178	 * However, if pmem_clear_poison() leaves the data in an
179	 * indeterminate state we need to perform the write
180	 * after clear poison.
181	 */
182	flush_dcache_page(page);
183	write_pmem(pmem_addr, page, page_off, len);
184	if (unlikely(bad_pmem)) {
185		rc = pmem_clear_poison(pmem, pmem_off, len);
186		write_pmem(pmem_addr, page, page_off, len);
187	}
188
189	return rc;
190}
191
192static blk_qc_t pmem_submit_bio(struct bio *bio)
193{
194	int ret = 0;
195	blk_status_t rc = 0;
196	bool do_acct;
197	unsigned long start;
198	struct bio_vec bvec;
199	struct bvec_iter iter;
200	struct pmem_device *pmem = bio->bi_disk->private_data;
201	struct nd_region *nd_region = to_region(pmem);
202
203	if (bio->bi_opf & REQ_PREFLUSH)
204		ret = nvdimm_flush(nd_region, bio);
205
206	do_acct = blk_queue_io_stat(bio->bi_disk->queue);
207	if (do_acct)
208		start = bio_start_io_acct(bio);
209	bio_for_each_segment(bvec, bio, iter) {
210		if (op_is_write(bio_op(bio)))
211			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
212				iter.bi_sector, bvec.bv_len);
213		else
214			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
215				iter.bi_sector, bvec.bv_len);
216		if (rc) {
217			bio->bi_status = rc;
218			break;
219		}
220	}
221	if (do_acct)
222		bio_end_io_acct(bio, start);
223
224	if (bio->bi_opf & REQ_FUA)
225		ret = nvdimm_flush(nd_region, bio);
226
227	if (ret)
228		bio->bi_status = errno_to_blk_status(ret);
229
230	bio_endio(bio);
231	return BLK_QC_T_NONE;
232}
233
234static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235		       struct page *page, unsigned int op)
236{
237	struct pmem_device *pmem = bdev->bd_disk->private_data;
238	blk_status_t rc;
239
240	if (op_is_write(op))
241		rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
242	else
243		rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
244	/*
245	 * The ->rw_page interface is subtle and tricky.  The core
246	 * retries on any error, so we can only invoke page_endio() in
247	 * the successful completion case.  Otherwise, we'll see crashes
248	 * caused by double completion.
249	 */
250	if (rc == 0)
251		page_endio(page, op_is_write(op), 0);
252
253	return blk_status_to_errno(rc);
254}
255
256/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
257__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
258		long nr_pages, void **kaddr, pfn_t *pfn)
259{
260	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
261
262	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
263					PFN_PHYS(nr_pages))))
264		return -EIO;
265
266	if (kaddr)
267		*kaddr = pmem->virt_addr + offset;
268	if (pfn)
269		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
270
271	/*
272	 * If badblocks are present, limit known good range to the
273	 * requested range.
274	 */
275	if (unlikely(pmem->bb.count))
276		return nr_pages;
277	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
278}
279
280static const struct block_device_operations pmem_fops = {
281	.owner =		THIS_MODULE,
282	.submit_bio =		pmem_submit_bio,
283	.rw_page =		pmem_rw_page,
284};
285
286static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
287				    size_t nr_pages)
288{
289	struct pmem_device *pmem = dax_get_private(dax_dev);
290
291	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
292				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
293				   PAGE_SIZE));
294}
295
296static long pmem_dax_direct_access(struct dax_device *dax_dev,
297		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
298{
299	struct pmem_device *pmem = dax_get_private(dax_dev);
300
301	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
302}
303
304/*
305 * Use the 'no check' versions of copy_from_iter_flushcache() and
306 * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds
307 * checking, both file offset and device offset, is handled by
308 * dax_iomap_actor()
309 */
310static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
311		void *addr, size_t bytes, struct iov_iter *i)
312{
313	return _copy_from_iter_flushcache(addr, bytes, i);
314}
315
316static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
317		void *addr, size_t bytes, struct iov_iter *i)
318{
319	return _copy_mc_to_iter(addr, bytes, i);
320}
321
322static const struct dax_operations pmem_dax_ops = {
323	.direct_access = pmem_dax_direct_access,
324	.dax_supported = generic_fsdax_supported,
325	.copy_from_iter = pmem_copy_from_iter,
326	.copy_to_iter = pmem_copy_to_iter,
327	.zero_page_range = pmem_dax_zero_page_range,
328};
329
330static const struct attribute_group *pmem_attribute_groups[] = {
331	&dax_attribute_group,
332	NULL,
333};
334
335static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
336{
337	struct request_queue *q =
338		container_of(pgmap->ref, struct request_queue, q_usage_counter);
339
340	blk_cleanup_queue(q);
341}
342
343static void pmem_release_queue(void *pgmap)
344{
345	pmem_pagemap_cleanup(pgmap);
346}
347
348static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
349{
350	struct request_queue *q =
351		container_of(pgmap->ref, struct request_queue, q_usage_counter);
352
353	blk_freeze_queue_start(q);
354}
355
356static void pmem_release_disk(void *__pmem)
357{
358	struct pmem_device *pmem = __pmem;
359
360	kill_dax(pmem->dax_dev);
361	put_dax(pmem->dax_dev);
362	del_gendisk(pmem->disk);
363	put_disk(pmem->disk);
364}
365
366static const struct dev_pagemap_ops fsdax_pagemap_ops = {
367	.kill			= pmem_pagemap_kill,
368	.cleanup		= pmem_pagemap_cleanup,
369};
370
371static int pmem_attach_disk(struct device *dev,
372		struct nd_namespace_common *ndns)
373{
374	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
375	struct nd_region *nd_region = to_nd_region(dev->parent);
376	int nid = dev_to_node(dev), fua;
377	struct resource *res = &nsio->res;
378	struct range bb_range;
379	struct nd_pfn *nd_pfn = NULL;
380	struct dax_device *dax_dev;
381	struct nd_pfn_sb *pfn_sb;
382	struct pmem_device *pmem;
383	struct request_queue *q;
384	struct device *gendev;
385	struct gendisk *disk;
386	void *addr;
387	int rc;
388	unsigned long flags = 0UL;
389
390	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
391	if (!pmem)
392		return -ENOMEM;
393
394	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
395	if (rc)
396		return rc;
397
398	/* while nsio_rw_bytes is active, parse a pfn info block if present */
399	if (is_nd_pfn(dev)) {
400		nd_pfn = to_nd_pfn(dev);
401		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
402		if (rc)
403			return rc;
404	}
405
406	/* we're attaching a block device, disable raw namespace access */
407	devm_namespace_disable(dev, ndns);
408
409	dev_set_drvdata(dev, pmem);
410	pmem->phys_addr = res->start;
411	pmem->size = resource_size(res);
412	fua = nvdimm_has_flush(nd_region);
413	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
414		dev_warn(dev, "unable to guarantee persistence of writes\n");
415		fua = 0;
416	}
417
418	if (!devm_request_mem_region(dev, res->start, resource_size(res),
419				dev_name(&ndns->dev))) {
420		dev_warn(dev, "could not reserve region %pR\n", res);
421		return -EBUSY;
422	}
423
424	q = blk_alloc_queue(dev_to_node(dev));
425	if (!q)
426		return -ENOMEM;
427
428	pmem->pfn_flags = PFN_DEV;
429	pmem->pgmap.ref = &q->q_usage_counter;
430	if (is_nd_pfn(dev)) {
431		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
432		pmem->pgmap.ops = &fsdax_pagemap_ops;
433		addr = devm_memremap_pages(dev, &pmem->pgmap);
434		pfn_sb = nd_pfn->pfn_sb;
435		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
436		pmem->pfn_pad = resource_size(res) -
437			range_len(&pmem->pgmap.range);
438		pmem->pfn_flags |= PFN_MAP;
439		bb_range = pmem->pgmap.range;
440		bb_range.start += pmem->data_offset;
441	} else if (pmem_should_map_pages(dev)) {
442		pmem->pgmap.range.start = res->start;
443		pmem->pgmap.range.end = res->end;
444		pmem->pgmap.nr_range = 1;
445		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
446		pmem->pgmap.ops = &fsdax_pagemap_ops;
447		addr = devm_memremap_pages(dev, &pmem->pgmap);
448		pmem->pfn_flags |= PFN_MAP;
449		bb_range = pmem->pgmap.range;
450	} else {
451		addr = devm_memremap(dev, pmem->phys_addr,
452				pmem->size, ARCH_MEMREMAP_PMEM);
453		if (devm_add_action_or_reset(dev, pmem_release_queue,
454					&pmem->pgmap))
455			return -ENOMEM;
456		bb_range.start =  res->start;
457		bb_range.end = res->end;
458	}
459
460	if (IS_ERR(addr))
461		return PTR_ERR(addr);
462	pmem->virt_addr = addr;
463
464	blk_queue_write_cache(q, true, fua);
465	blk_queue_physical_block_size(q, PAGE_SIZE);
466	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
467	blk_queue_max_hw_sectors(q, UINT_MAX);
468	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
469	if (pmem->pfn_flags & PFN_MAP)
470		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
471
472	disk = alloc_disk_node(0, nid);
473	if (!disk)
474		return -ENOMEM;
475	pmem->disk = disk;
476
477	disk->fops		= &pmem_fops;
478	disk->queue		= q;
479	disk->flags		= GENHD_FL_EXT_DEVT;
480	disk->private_data	= pmem;
481	nvdimm_namespace_disk_name(ndns, disk->disk_name);
482	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
483			/ 512);
484	if (devm_init_badblocks(dev, &pmem->bb))
485		return -ENOMEM;
486	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
487	disk->bb = &pmem->bb;
488
489	if (is_nvdimm_sync(nd_region))
490		flags = DAXDEV_F_SYNC;
491	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
492	if (IS_ERR(dax_dev)) {
493		put_disk(disk);
494		return PTR_ERR(dax_dev);
495	}
496	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
497	pmem->dax_dev = dax_dev;
498	gendev = disk_to_dev(disk);
499	gendev->groups = pmem_attribute_groups;
500
501	device_add_disk(dev, disk, NULL);
502	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
503		return -ENOMEM;
504
505	nvdimm_check_and_set_ro(disk);
506
507	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
508					  "badblocks");
509	if (!pmem->bb_state)
510		dev_warn(dev, "'badblocks' notification disabled\n");
511
512	return 0;
513}
514
515static int nd_pmem_probe(struct device *dev)
516{
517	int ret;
518	struct nd_namespace_common *ndns;
519
520	ndns = nvdimm_namespace_common_probe(dev);
521	if (IS_ERR(ndns))
522		return PTR_ERR(ndns);
523
524	if (is_nd_btt(dev))
525		return nvdimm_namespace_attach_btt(ndns);
526
527	if (is_nd_pfn(dev))
528		return pmem_attach_disk(dev, ndns);
529
530	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
531	if (ret)
532		return ret;
533
534	ret = nd_btt_probe(dev, ndns);
535	if (ret == 0)
536		return -ENXIO;
537
538	/*
539	 * We have two failure conditions here, there is no
540	 * info reserver block or we found a valid info reserve block
541	 * but failed to initialize the pfn superblock.
542	 *
543	 * For the first case consider namespace as a raw pmem namespace
544	 * and attach a disk.
545	 *
546	 * For the latter, consider this a success and advance the namespace
547	 * seed.
548	 */
549	ret = nd_pfn_probe(dev, ndns);
550	if (ret == 0)
551		return -ENXIO;
552	else if (ret == -EOPNOTSUPP)
553		return ret;
554
555	ret = nd_dax_probe(dev, ndns);
556	if (ret == 0)
557		return -ENXIO;
558	else if (ret == -EOPNOTSUPP)
559		return ret;
560
561	/* probe complete, attach handles namespace enabling */
562	devm_namespace_disable(dev, ndns);
563
564	return pmem_attach_disk(dev, ndns);
565}
566
567static int nd_pmem_remove(struct device *dev)
568{
569	struct pmem_device *pmem = dev_get_drvdata(dev);
570
571	if (is_nd_btt(dev))
572		nvdimm_namespace_detach_btt(to_nd_btt(dev));
573	else {
574		/*
575		 * Note, this assumes nd_device_lock() context to not
576		 * race nd_pmem_notify()
577		 */
578		sysfs_put(pmem->bb_state);
579		pmem->bb_state = NULL;
580	}
581	nvdimm_flush(to_nd_region(dev->parent), NULL);
582
583	return 0;
584}
585
586static void nd_pmem_shutdown(struct device *dev)
587{
588	nvdimm_flush(to_nd_region(dev->parent), NULL);
589}
590
591static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
592{
593	struct nd_region *nd_region;
594	resource_size_t offset = 0, end_trunc = 0;
595	struct nd_namespace_common *ndns;
596	struct nd_namespace_io *nsio;
597	struct badblocks *bb;
598	struct range range;
599	struct kernfs_node *bb_state;
600
601	if (event != NVDIMM_REVALIDATE_POISON)
602		return;
603
604	if (is_nd_btt(dev)) {
605		struct nd_btt *nd_btt = to_nd_btt(dev);
606
607		ndns = nd_btt->ndns;
608		nd_region = to_nd_region(ndns->dev.parent);
609		nsio = to_nd_namespace_io(&ndns->dev);
610		bb = &nsio->bb;
611		bb_state = NULL;
612	} else {
613		struct pmem_device *pmem = dev_get_drvdata(dev);
614
615		nd_region = to_region(pmem);
616		bb = &pmem->bb;
617		bb_state = pmem->bb_state;
618
619		if (is_nd_pfn(dev)) {
620			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
621			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
622
623			ndns = nd_pfn->ndns;
624			offset = pmem->data_offset +
625					__le32_to_cpu(pfn_sb->start_pad);
626			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
627		} else {
628			ndns = to_ndns(dev);
629		}
630
631		nsio = to_nd_namespace_io(&ndns->dev);
632	}
633
634	range.start = nsio->res.start + offset;
635	range.end = nsio->res.end - end_trunc;
636	nvdimm_badblocks_populate(nd_region, bb, &range);
637	if (bb_state)
638		sysfs_notify_dirent(bb_state);
639}
640
641MODULE_ALIAS("pmem");
642MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
643MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
644static struct nd_device_driver nd_pmem_driver = {
645	.probe = nd_pmem_probe,
646	.remove = nd_pmem_remove,
647	.notify = nd_pmem_notify,
648	.shutdown = nd_pmem_shutdown,
649	.drv = {
650		.name = "nd_pmem",
651	},
652	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
653};
654
655module_nd_driver(nd_pmem_driver);
656
657MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
658MODULE_LICENSE("GPL v2");
659