1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/* Copyright(c) 2018-2019  Realtek Corporation
3 */
4
5#include <linux/bcd.h>
6
7#include "main.h"
8#include "reg.h"
9#include "fw.h"
10#include "phy.h"
11#include "debug.h"
12
13struct phy_cfg_pair {
14	u32 addr;
15	u32 data;
16};
17
18union phy_table_tile {
19	struct rtw_phy_cond cond;
20	struct phy_cfg_pair cfg;
21};
22
23static const u32 db_invert_table[12][8] = {
24	{10,		13,		16,		20,
25	 25,		32,		40,		50},
26	{64,		80,		101,		128,
27	 160,		201,		256,		318},
28	{401,		505,		635,		800,
29	 1007,		1268,		1596,		2010},
30	{316,		398,		501,		631,
31	 794,		1000,		1259,		1585},
32	{1995,		2512,		3162,		3981,
33	 5012,		6310,		7943,		10000},
34	{12589,		15849,		19953,		25119,
35	 31623,		39811,		50119,		63098},
36	{79433,		100000,		125893,		158489,
37	 199526,	251189,		316228,		398107},
38	{501187,	630957,		794328,		1000000,
39	 1258925,	1584893,	1995262,	2511886},
40	{3162278,	3981072,	5011872,	6309573,
41	 7943282,	1000000,	12589254,	15848932},
42	{19952623,	25118864,	31622777,	39810717,
43	 50118723,	63095734,	79432823,	100000000},
44	{125892541,	158489319,	199526232,	251188643,
45	 316227766,	398107171,	501187234,	630957345},
46	{794328235,	1000000000,	1258925412,	1584893192,
47	 1995262315,	2511886432U,	3162277660U,	3981071706U}
48};
49
50u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51u8 rtw_ofdm_rates[] = {
52	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
53	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54	DESC_RATE48M, DESC_RATE54M
55};
56u8 rtw_ht_1s_rates[] = {
57	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59	DESC_RATEMCS6, DESC_RATEMCS7
60};
61u8 rtw_ht_2s_rates[] = {
62	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
63	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64	DESC_RATEMCS14, DESC_RATEMCS15
65};
66u8 rtw_vht_1s_rates[] = {
67	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72};
73u8 rtw_vht_2s_rates[] = {
74	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79};
80u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81	rtw_cck_rates, rtw_ofdm_rates,
82	rtw_ht_1s_rates, rtw_ht_2s_rates,
83	rtw_vht_1s_rates, rtw_vht_2s_rates
84};
85EXPORT_SYMBOL(rtw_rate_section);
86
87u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
88	ARRAY_SIZE(rtw_cck_rates),
89	ARRAY_SIZE(rtw_ofdm_rates),
90	ARRAY_SIZE(rtw_ht_1s_rates),
91	ARRAY_SIZE(rtw_ht_2s_rates),
92	ARRAY_SIZE(rtw_vht_1s_rates),
93	ARRAY_SIZE(rtw_vht_2s_rates)
94};
95EXPORT_SYMBOL(rtw_rate_size);
96
97static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
98static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
99static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
100static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
101static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
102static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
103
104enum rtw_phy_band_type {
105	PHY_BAND_2G	= 0,
106	PHY_BAND_5G	= 1,
107};
108
109static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
110{
111	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
112	u8 i, j;
113
114	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
115		for (j = 0; j < RTW_RF_PATH_MAX; j++)
116			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
117	}
118
119	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
120}
121
122void rtw_phy_init(struct rtw_dev *rtwdev)
123{
124	struct rtw_chip_info *chip = rtwdev->chip;
125	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
126	u32 addr, mask;
127
128	dm_info->fa_history[3] = 0;
129	dm_info->fa_history[2] = 0;
130	dm_info->fa_history[1] = 0;
131	dm_info->fa_history[0] = 0;
132	dm_info->igi_bitmap = 0;
133	dm_info->igi_history[3] = 0;
134	dm_info->igi_history[2] = 0;
135	dm_info->igi_history[1] = 0;
136
137	addr = chip->dig[0].addr;
138	mask = chip->dig[0].mask;
139	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
140	rtw_phy_cck_pd_init(rtwdev);
141
142	dm_info->iqk.done = false;
143}
144EXPORT_SYMBOL(rtw_phy_init);
145
146void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
147{
148	struct rtw_chip_info *chip = rtwdev->chip;
149	struct rtw_hal *hal = &rtwdev->hal;
150	u32 addr, mask;
151	u8 path;
152
153	if (chip->dig_cck) {
154		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
155		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
156	}
157
158	for (path = 0; path < hal->rf_path_num; path++) {
159		addr = chip->dig[path].addr;
160		mask = chip->dig[path].mask;
161		rtw_write32_mask(rtwdev, addr, mask, igi);
162	}
163}
164
165static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
166{
167	struct rtw_chip_info *chip = rtwdev->chip;
168
169	chip->ops->false_alarm_statistics(rtwdev);
170}
171
172#define RA_FLOOR_TABLE_SIZE	7
173#define RA_FLOOR_UP_GAP		3
174
175static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
176{
177	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
178	u8 new_level = 0;
179	int i;
180
181	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
182		if (i >= old_level)
183			table[i] += RA_FLOOR_UP_GAP;
184
185	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
186		if (rssi < table[i]) {
187			new_level = i;
188			break;
189		}
190	}
191
192	return new_level;
193}
194
195struct rtw_phy_stat_iter_data {
196	struct rtw_dev *rtwdev;
197	u8 min_rssi;
198};
199
200static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
201{
202	struct rtw_phy_stat_iter_data *iter_data = data;
203	struct rtw_dev *rtwdev = iter_data->rtwdev;
204	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
205	u8 rssi;
206
207	rssi = ewma_rssi_read(&si->avg_rssi);
208	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
209
210	rtw_fw_send_rssi_info(rtwdev, si);
211
212	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
213}
214
215static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
216{
217	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
218	struct rtw_phy_stat_iter_data data = {};
219
220	data.rtwdev = rtwdev;
221	data.min_rssi = U8_MAX;
222	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
223
224	dm_info->pre_min_rssi = dm_info->min_rssi;
225	dm_info->min_rssi = data.min_rssi;
226}
227
228static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
229{
230	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
231
232	dm_info->last_pkt_count = dm_info->cur_pkt_count;
233	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
234}
235
236static void rtw_phy_statistics(struct rtw_dev *rtwdev)
237{
238	rtw_phy_stat_rssi(rtwdev);
239	rtw_phy_stat_false_alarm(rtwdev);
240	rtw_phy_stat_rate_cnt(rtwdev);
241}
242
243#define DIG_PERF_FA_TH_LOW			250
244#define DIG_PERF_FA_TH_HIGH			500
245#define DIG_PERF_FA_TH_EXTRA_HIGH		750
246#define DIG_PERF_MAX				0x5a
247#define DIG_PERF_MID				0x40
248#define DIG_CVRG_FA_TH_LOW			2000
249#define DIG_CVRG_FA_TH_HIGH			4000
250#define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
251#define DIG_CVRG_MAX				0x2a
252#define DIG_CVRG_MID				0x26
253#define DIG_CVRG_MIN				0x1c
254#define DIG_RSSI_GAIN_OFFSET			15
255
256static bool
257rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
258{
259	u16 fa_lo = DIG_PERF_FA_TH_LOW;
260	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
261	u16 *fa_history;
262	u8 *igi_history;
263	u8 damping_rssi;
264	u8 min_rssi;
265	u8 diff;
266	u8 igi_bitmap;
267	bool damping = false;
268
269	min_rssi = dm_info->min_rssi;
270	if (dm_info->damping) {
271		damping_rssi = dm_info->damping_rssi;
272		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
273						 damping_rssi - min_rssi;
274		if (diff > 3 || dm_info->damping_cnt++ > 20) {
275			dm_info->damping = false;
276			return false;
277		}
278
279		return true;
280	}
281
282	igi_history = dm_info->igi_history;
283	fa_history = dm_info->fa_history;
284	igi_bitmap = dm_info->igi_bitmap & 0xf;
285	switch (igi_bitmap) {
286	case 5:
287		/* down -> up -> down -> up */
288		if (igi_history[0] > igi_history[1] &&
289		    igi_history[2] > igi_history[3] &&
290		    igi_history[0] - igi_history[1] >= 2 &&
291		    igi_history[2] - igi_history[3] >= 2 &&
292		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
293		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
294			damping = true;
295		break;
296	case 9:
297		/* up -> down -> down -> up */
298		if (igi_history[0] > igi_history[1] &&
299		    igi_history[3] > igi_history[2] &&
300		    igi_history[0] - igi_history[1] >= 4 &&
301		    igi_history[3] - igi_history[2] >= 2 &&
302		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
303		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
304			damping = true;
305		break;
306	default:
307		return false;
308	}
309
310	if (damping) {
311		dm_info->damping = true;
312		dm_info->damping_cnt = 0;
313		dm_info->damping_rssi = min_rssi;
314	}
315
316	return damping;
317}
318
319static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
320				     u8 *upper, u8 *lower, bool linked)
321{
322	u8 dig_max, dig_min, dig_mid;
323	u8 min_rssi;
324
325	if (linked) {
326		dig_max = DIG_PERF_MAX;
327		dig_mid = DIG_PERF_MID;
328		/* 22B=0x1c, 22C=0x20 */
329		dig_min = 0x1c;
330		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
331	} else {
332		dig_max = DIG_CVRG_MAX;
333		dig_mid = DIG_CVRG_MID;
334		dig_min = DIG_CVRG_MIN;
335		min_rssi = dig_min;
336	}
337
338	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
339	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
340
341	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
342	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
343}
344
345static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
346				      u16 *fa_th, u8 *step, bool linked)
347{
348	u8 min_rssi, pre_min_rssi;
349
350	min_rssi = dm_info->min_rssi;
351	pre_min_rssi = dm_info->pre_min_rssi;
352	step[0] = 4;
353	step[1] = 3;
354	step[2] = 2;
355
356	if (linked) {
357		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
358		fa_th[1] = DIG_PERF_FA_TH_HIGH;
359		fa_th[2] = DIG_PERF_FA_TH_LOW;
360		if (pre_min_rssi > min_rssi) {
361			step[0] = 6;
362			step[1] = 4;
363			step[2] = 2;
364		}
365	} else {
366		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
367		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
368		fa_th[2] = DIG_CVRG_FA_TH_LOW;
369	}
370}
371
372static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
373{
374	u8 *igi_history;
375	u16 *fa_history;
376	u8 igi_bitmap;
377	bool up;
378
379	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
380	igi_history = dm_info->igi_history;
381	fa_history = dm_info->fa_history;
382
383	up = igi > igi_history[0];
384	igi_bitmap |= up;
385
386	igi_history[3] = igi_history[2];
387	igi_history[2] = igi_history[1];
388	igi_history[1] = igi_history[0];
389	igi_history[0] = igi;
390
391	fa_history[3] = fa_history[2];
392	fa_history[2] = fa_history[1];
393	fa_history[1] = fa_history[0];
394	fa_history[0] = fa;
395
396	dm_info->igi_bitmap = igi_bitmap;
397}
398
399static void rtw_phy_dig(struct rtw_dev *rtwdev)
400{
401	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
402	u8 upper_bound, lower_bound;
403	u8 pre_igi, cur_igi;
404	u16 fa_th[3], fa_cnt;
405	u8 level;
406	u8 step[3];
407	bool linked;
408
409	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
410		return;
411
412	if (rtw_phy_dig_check_damping(dm_info))
413		return;
414
415	linked = !!rtwdev->sta_cnt;
416
417	fa_cnt = dm_info->total_fa_cnt;
418	pre_igi = dm_info->igi_history[0];
419
420	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
421
422	/* test the false alarm count from the highest threshold level first,
423	 * and increase it by corresponding step size
424	 *
425	 * note that the step size is offset by -2, compensate it afterall
426	 */
427	cur_igi = pre_igi;
428	for (level = 0; level < 3; level++) {
429		if (fa_cnt > fa_th[level]) {
430			cur_igi += step[level];
431			break;
432		}
433	}
434	cur_igi -= 2;
435
436	/* calculate the upper/lower bound by the minimum rssi we have among
437	 * the peers connected with us, meanwhile make sure the igi value does
438	 * not beyond the hardware limitation
439	 */
440	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
441	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
442
443	/* record current igi value and false alarm statistics for further
444	 * damping checks, and record the trend of igi values
445	 */
446	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
447
448	if (cur_igi != pre_igi)
449		rtw_phy_dig_write(rtwdev, cur_igi);
450}
451
452static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
453{
454	struct rtw_dev *rtwdev = data;
455	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
456
457	rtw_update_sta_info(rtwdev, si);
458}
459
460static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
461{
462	if (rtwdev->watch_dog_cnt & 0x3)
463		return;
464
465	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
466}
467
468static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
469{
470	struct rtw_chip_info *chip = rtwdev->chip;
471
472	if (chip->ops->dpk_track)
473		chip->ops->dpk_track(rtwdev);
474}
475
476#define CCK_PD_FA_LV1_MIN	1000
477#define CCK_PD_FA_LV0_MAX	500
478
479static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
480{
481	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
482	u32 cck_fa_avg = dm_info->cck_fa_avg;
483
484	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
485		return CCK_PD_LV1;
486
487	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
488		return CCK_PD_LV0;
489
490	return CCK_PD_LV_MAX;
491}
492
493#define CCK_PD_IGI_LV4_VAL 0x38
494#define CCK_PD_IGI_LV3_VAL 0x2a
495#define CCK_PD_IGI_LV2_VAL 0x24
496#define CCK_PD_RSSI_LV4_VAL 32
497#define CCK_PD_RSSI_LV3_VAL 32
498#define CCK_PD_RSSI_LV2_VAL 24
499
500static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
501{
502	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
503	u8 igi = dm_info->igi_history[0];
504	u8 rssi = dm_info->min_rssi;
505	u32 cck_fa_avg = dm_info->cck_fa_avg;
506
507	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
508		return CCK_PD_LV4;
509	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
510		return CCK_PD_LV3;
511	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
512		return CCK_PD_LV2;
513	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
514		return CCK_PD_LV1;
515	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
516		return CCK_PD_LV0;
517
518	return CCK_PD_LV_MAX;
519}
520
521static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
522{
523	if (!rtw_is_assoc(rtwdev))
524		return rtw_phy_cck_pd_lv_unlink(rtwdev);
525	else
526		return rtw_phy_cck_pd_lv_link(rtwdev);
527}
528
529static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
530{
531	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
532	struct rtw_chip_info *chip = rtwdev->chip;
533	u32 cck_fa = dm_info->cck_fa_cnt;
534	u8 level;
535
536	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
537		return;
538
539	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
540		dm_info->cck_fa_avg = cck_fa;
541	else
542		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
543
544	level = rtw_phy_cck_pd_lv(rtwdev);
545
546	if (level >= CCK_PD_LV_MAX)
547		return;
548
549	if (chip->ops->cck_pd_set)
550		chip->ops->cck_pd_set(rtwdev, level);
551}
552
553static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
554{
555	rtwdev->chip->ops->pwr_track(rtwdev);
556}
557
558void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
559{
560	/* for further calculation */
561	rtw_phy_statistics(rtwdev);
562	rtw_phy_dig(rtwdev);
563	rtw_phy_cck_pd(rtwdev);
564	rtw_phy_ra_info_update(rtwdev);
565	rtw_phy_dpk_track(rtwdev);
566	rtw_phy_pwr_track(rtwdev);
567}
568
569#define FRAC_BITS 3
570
571static u8 rtw_phy_power_2_db(s8 power)
572{
573	if (power <= -100 || power >= 20)
574		return 0;
575	else if (power >= 0)
576		return 100;
577	else
578		return 100 + power;
579}
580
581static u64 rtw_phy_db_2_linear(u8 power_db)
582{
583	u8 i, j;
584	u64 linear;
585
586	if (power_db > 96)
587		power_db = 96;
588	else if (power_db < 1)
589		return 1;
590
591	/* 1dB ~ 96dB */
592	i = (power_db - 1) >> 3;
593	j = (power_db - 1) - (i << 3);
594
595	linear = db_invert_table[i][j];
596	linear = i > 2 ? linear << FRAC_BITS : linear;
597
598	return linear;
599}
600
601static u8 rtw_phy_linear_2_db(u64 linear)
602{
603	u8 i;
604	u8 j;
605	u32 dB;
606
607	if (linear >= db_invert_table[11][7])
608		return 96; /* maximum 96 dB */
609
610	for (i = 0; i < 12; i++) {
611		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
612			break;
613		else if (i > 2 && linear <= db_invert_table[i][7])
614			break;
615	}
616
617	for (j = 0; j < 8; j++) {
618		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
619			break;
620		else if (i > 2 && linear <= db_invert_table[i][j])
621			break;
622	}
623
624	if (j == 0 && i == 0)
625		goto end;
626
627	if (j == 0) {
628		if (i != 3) {
629			if (db_invert_table[i][0] - linear >
630			    linear - db_invert_table[i - 1][7]) {
631				i = i - 1;
632				j = 7;
633			}
634		} else {
635			if (db_invert_table[3][0] - linear >
636			    linear - db_invert_table[2][7]) {
637				i = 2;
638				j = 7;
639			}
640		}
641	} else {
642		if (db_invert_table[i][j] - linear >
643		    linear - db_invert_table[i][j - 1]) {
644			j = j - 1;
645		}
646	}
647end:
648	dB = (i << 3) + j + 1;
649
650	return dB;
651}
652
653u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
654{
655	s8 power;
656	u8 power_db;
657	u64 linear;
658	u64 sum = 0;
659	u8 path;
660
661	for (path = 0; path < path_num; path++) {
662		power = rf_power[path];
663		power_db = rtw_phy_power_2_db(power);
664		linear = rtw_phy_db_2_linear(power_db);
665		sum += linear;
666	}
667
668	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
669	switch (path_num) {
670	case 2:
671		sum >>= 1;
672		break;
673	case 3:
674		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
675		break;
676	case 4:
677		sum >>= 2;
678		break;
679	default:
680		break;
681	}
682
683	return rtw_phy_linear_2_db(sum);
684}
685EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
686
687u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
688		    u32 addr, u32 mask)
689{
690	struct rtw_hal *hal = &rtwdev->hal;
691	struct rtw_chip_info *chip = rtwdev->chip;
692	const u32 *base_addr = chip->rf_base_addr;
693	u32 val, direct_addr;
694
695	if (rf_path >= hal->rf_phy_num) {
696		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
697		return INV_RF_DATA;
698	}
699
700	addr &= 0xff;
701	direct_addr = base_addr[rf_path] + (addr << 2);
702	mask &= RFREG_MASK;
703
704	val = rtw_read32_mask(rtwdev, direct_addr, mask);
705
706	return val;
707}
708EXPORT_SYMBOL(rtw_phy_read_rf);
709
710u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
711			 u32 addr, u32 mask)
712{
713	struct rtw_hal *hal = &rtwdev->hal;
714	struct rtw_chip_info *chip = rtwdev->chip;
715	const struct rtw_rf_sipi_addr *rf_sipi_addr;
716	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
717	u32 val32;
718	u32 en_pi;
719	u32 r_addr;
720	u32 shift;
721
722	if (rf_path >= hal->rf_phy_num) {
723		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
724		return INV_RF_DATA;
725	}
726
727	if (!chip->rf_sipi_read_addr) {
728		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
729		return INV_RF_DATA;
730	}
731
732	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
733	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
734
735	addr &= 0xff;
736
737	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
738	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
739	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
740
741	/* toggle read edge of path A */
742	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
743	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
744	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
745
746	udelay(120);
747
748	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
749	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
750
751	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
752
753	shift = __ffs(mask);
754
755	return (val32 & mask) >> shift;
756}
757EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
758
759bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
760			       u32 addr, u32 mask, u32 data)
761{
762	struct rtw_hal *hal = &rtwdev->hal;
763	struct rtw_chip_info *chip = rtwdev->chip;
764	u32 *sipi_addr = chip->rf_sipi_addr;
765	u32 data_and_addr;
766	u32 old_data = 0;
767	u32 shift;
768
769	if (rf_path >= hal->rf_phy_num) {
770		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
771		return false;
772	}
773
774	addr &= 0xff;
775	mask &= RFREG_MASK;
776
777	if (mask != RFREG_MASK) {
778		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
779
780		if (old_data == INV_RF_DATA) {
781			rtw_err(rtwdev, "Write fail, rf is disabled\n");
782			return false;
783		}
784
785		shift = __ffs(mask);
786		data = ((old_data) & (~mask)) | (data << shift);
787	}
788
789	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
790
791	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
792
793	udelay(13);
794
795	return true;
796}
797EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
798
799bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
800			  u32 addr, u32 mask, u32 data)
801{
802	struct rtw_hal *hal = &rtwdev->hal;
803	struct rtw_chip_info *chip = rtwdev->chip;
804	const u32 *base_addr = chip->rf_base_addr;
805	u32 direct_addr;
806
807	if (rf_path >= hal->rf_phy_num) {
808		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
809		return false;
810	}
811
812	addr &= 0xff;
813	direct_addr = base_addr[rf_path] + (addr << 2);
814	mask &= RFREG_MASK;
815
816	rtw_write32_mask(rtwdev, direct_addr, mask, data);
817
818	udelay(1);
819
820	return true;
821}
822
823bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
824			      u32 addr, u32 mask, u32 data)
825{
826	if (addr != 0x00)
827		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
828
829	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
830}
831EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
832
833void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
834{
835	struct rtw_hal *hal = &rtwdev->hal;
836	struct rtw_efuse *efuse = &rtwdev->efuse;
837	struct rtw_phy_cond cond = {0};
838
839	cond.cut = hal->cut_version ? hal->cut_version : 15;
840	cond.pkg = pkg ? pkg : 15;
841	cond.plat = 0x04;
842	cond.rfe = efuse->rfe_option;
843
844	switch (rtw_hci_type(rtwdev)) {
845	case RTW_HCI_TYPE_USB:
846		cond.intf = INTF_USB;
847		break;
848	case RTW_HCI_TYPE_SDIO:
849		cond.intf = INTF_SDIO;
850		break;
851	case RTW_HCI_TYPE_PCIE:
852	default:
853		cond.intf = INTF_PCIE;
854		break;
855	}
856
857	hal->phy_cond = cond;
858
859	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
860}
861
862static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
863{
864	struct rtw_hal *hal = &rtwdev->hal;
865	struct rtw_phy_cond drv_cond = hal->phy_cond;
866
867	if (cond.cut && cond.cut != drv_cond.cut)
868		return false;
869
870	if (cond.pkg && cond.pkg != drv_cond.pkg)
871		return false;
872
873	if (cond.intf && cond.intf != drv_cond.intf)
874		return false;
875
876	if (cond.rfe != drv_cond.rfe)
877		return false;
878
879	return true;
880}
881
882void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
883{
884	const union phy_table_tile *p = tbl->data;
885	const union phy_table_tile *end = p + tbl->size / 2;
886	struct rtw_phy_cond pos_cond = {0};
887	bool is_matched = true, is_skipped = false;
888
889	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
890
891	for (; p < end; p++) {
892		if (p->cond.pos) {
893			switch (p->cond.branch) {
894			case BRANCH_ENDIF:
895				is_matched = true;
896				is_skipped = false;
897				break;
898			case BRANCH_ELSE:
899				is_matched = is_skipped ? false : true;
900				break;
901			case BRANCH_IF:
902			case BRANCH_ELIF:
903			default:
904				pos_cond = p->cond;
905				break;
906			}
907		} else if (p->cond.neg) {
908			if (!is_skipped) {
909				if (check_positive(rtwdev, pos_cond)) {
910					is_matched = true;
911					is_skipped = true;
912				} else {
913					is_matched = false;
914					is_skipped = false;
915				}
916			} else {
917				is_matched = false;
918			}
919		} else if (is_matched) {
920			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
921		}
922	}
923}
924EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
925
926#define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
927
928static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
929{
930	if (rtwdev->chip->is_pwr_by_rate_dec)
931		return bcd_to_dec_pwr_by_rate(hex, i);
932
933	return (hex >> (i * 8)) & 0xFF;
934}
935
936static void
937rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
938					 u32 addr, u32 mask, u32 val, u8 *rate,
939					 u8 *pwr_by_rate, u8 *rate_num)
940{
941	int i;
942
943	switch (addr) {
944	case 0xE00:
945	case 0x830:
946		rate[0] = DESC_RATE6M;
947		rate[1] = DESC_RATE9M;
948		rate[2] = DESC_RATE12M;
949		rate[3] = DESC_RATE18M;
950		for (i = 0; i < 4; ++i)
951			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
952		*rate_num = 4;
953		break;
954	case 0xE04:
955	case 0x834:
956		rate[0] = DESC_RATE24M;
957		rate[1] = DESC_RATE36M;
958		rate[2] = DESC_RATE48M;
959		rate[3] = DESC_RATE54M;
960		for (i = 0; i < 4; ++i)
961			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
962		*rate_num = 4;
963		break;
964	case 0xE08:
965		rate[0] = DESC_RATE1M;
966		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
967		*rate_num = 1;
968		break;
969	case 0x86C:
970		if (mask == 0xffffff00) {
971			rate[0] = DESC_RATE2M;
972			rate[1] = DESC_RATE5_5M;
973			rate[2] = DESC_RATE11M;
974			for (i = 1; i < 4; ++i)
975				pwr_by_rate[i - 1] =
976					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
977			*rate_num = 3;
978		} else if (mask == 0x000000ff) {
979			rate[0] = DESC_RATE11M;
980			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
981			*rate_num = 1;
982		}
983		break;
984	case 0xE10:
985	case 0x83C:
986		rate[0] = DESC_RATEMCS0;
987		rate[1] = DESC_RATEMCS1;
988		rate[2] = DESC_RATEMCS2;
989		rate[3] = DESC_RATEMCS3;
990		for (i = 0; i < 4; ++i)
991			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
992		*rate_num = 4;
993		break;
994	case 0xE14:
995	case 0x848:
996		rate[0] = DESC_RATEMCS4;
997		rate[1] = DESC_RATEMCS5;
998		rate[2] = DESC_RATEMCS6;
999		rate[3] = DESC_RATEMCS7;
1000		for (i = 0; i < 4; ++i)
1001			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1002		*rate_num = 4;
1003		break;
1004	case 0xE18:
1005	case 0x84C:
1006		rate[0] = DESC_RATEMCS8;
1007		rate[1] = DESC_RATEMCS9;
1008		rate[2] = DESC_RATEMCS10;
1009		rate[3] = DESC_RATEMCS11;
1010		for (i = 0; i < 4; ++i)
1011			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1012		*rate_num = 4;
1013		break;
1014	case 0xE1C:
1015	case 0x868:
1016		rate[0] = DESC_RATEMCS12;
1017		rate[1] = DESC_RATEMCS13;
1018		rate[2] = DESC_RATEMCS14;
1019		rate[3] = DESC_RATEMCS15;
1020		for (i = 0; i < 4; ++i)
1021			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1022		*rate_num = 4;
1023		break;
1024	case 0x838:
1025		rate[0] = DESC_RATE1M;
1026		rate[1] = DESC_RATE2M;
1027		rate[2] = DESC_RATE5_5M;
1028		for (i = 1; i < 4; ++i)
1029			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1030								    val, i);
1031		*rate_num = 3;
1032		break;
1033	case 0xC20:
1034	case 0xE20:
1035	case 0x1820:
1036	case 0x1A20:
1037		rate[0] = DESC_RATE1M;
1038		rate[1] = DESC_RATE2M;
1039		rate[2] = DESC_RATE5_5M;
1040		rate[3] = DESC_RATE11M;
1041		for (i = 0; i < 4; ++i)
1042			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1043		*rate_num = 4;
1044		break;
1045	case 0xC24:
1046	case 0xE24:
1047	case 0x1824:
1048	case 0x1A24:
1049		rate[0] = DESC_RATE6M;
1050		rate[1] = DESC_RATE9M;
1051		rate[2] = DESC_RATE12M;
1052		rate[3] = DESC_RATE18M;
1053		for (i = 0; i < 4; ++i)
1054			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1055		*rate_num = 4;
1056		break;
1057	case 0xC28:
1058	case 0xE28:
1059	case 0x1828:
1060	case 0x1A28:
1061		rate[0] = DESC_RATE24M;
1062		rate[1] = DESC_RATE36M;
1063		rate[2] = DESC_RATE48M;
1064		rate[3] = DESC_RATE54M;
1065		for (i = 0; i < 4; ++i)
1066			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1067		*rate_num = 4;
1068		break;
1069	case 0xC2C:
1070	case 0xE2C:
1071	case 0x182C:
1072	case 0x1A2C:
1073		rate[0] = DESC_RATEMCS0;
1074		rate[1] = DESC_RATEMCS1;
1075		rate[2] = DESC_RATEMCS2;
1076		rate[3] = DESC_RATEMCS3;
1077		for (i = 0; i < 4; ++i)
1078			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1079		*rate_num = 4;
1080		break;
1081	case 0xC30:
1082	case 0xE30:
1083	case 0x1830:
1084	case 0x1A30:
1085		rate[0] = DESC_RATEMCS4;
1086		rate[1] = DESC_RATEMCS5;
1087		rate[2] = DESC_RATEMCS6;
1088		rate[3] = DESC_RATEMCS7;
1089		for (i = 0; i < 4; ++i)
1090			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1091		*rate_num = 4;
1092		break;
1093	case 0xC34:
1094	case 0xE34:
1095	case 0x1834:
1096	case 0x1A34:
1097		rate[0] = DESC_RATEMCS8;
1098		rate[1] = DESC_RATEMCS9;
1099		rate[2] = DESC_RATEMCS10;
1100		rate[3] = DESC_RATEMCS11;
1101		for (i = 0; i < 4; ++i)
1102			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1103		*rate_num = 4;
1104		break;
1105	case 0xC38:
1106	case 0xE38:
1107	case 0x1838:
1108	case 0x1A38:
1109		rate[0] = DESC_RATEMCS12;
1110		rate[1] = DESC_RATEMCS13;
1111		rate[2] = DESC_RATEMCS14;
1112		rate[3] = DESC_RATEMCS15;
1113		for (i = 0; i < 4; ++i)
1114			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1115		*rate_num = 4;
1116		break;
1117	case 0xC3C:
1118	case 0xE3C:
1119	case 0x183C:
1120	case 0x1A3C:
1121		rate[0] = DESC_RATEVHT1SS_MCS0;
1122		rate[1] = DESC_RATEVHT1SS_MCS1;
1123		rate[2] = DESC_RATEVHT1SS_MCS2;
1124		rate[3] = DESC_RATEVHT1SS_MCS3;
1125		for (i = 0; i < 4; ++i)
1126			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1127		*rate_num = 4;
1128		break;
1129	case 0xC40:
1130	case 0xE40:
1131	case 0x1840:
1132	case 0x1A40:
1133		rate[0] = DESC_RATEVHT1SS_MCS4;
1134		rate[1] = DESC_RATEVHT1SS_MCS5;
1135		rate[2] = DESC_RATEVHT1SS_MCS6;
1136		rate[3] = DESC_RATEVHT1SS_MCS7;
1137		for (i = 0; i < 4; ++i)
1138			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1139		*rate_num = 4;
1140		break;
1141	case 0xC44:
1142	case 0xE44:
1143	case 0x1844:
1144	case 0x1A44:
1145		rate[0] = DESC_RATEVHT1SS_MCS8;
1146		rate[1] = DESC_RATEVHT1SS_MCS9;
1147		rate[2] = DESC_RATEVHT2SS_MCS0;
1148		rate[3] = DESC_RATEVHT2SS_MCS1;
1149		for (i = 0; i < 4; ++i)
1150			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1151		*rate_num = 4;
1152		break;
1153	case 0xC48:
1154	case 0xE48:
1155	case 0x1848:
1156	case 0x1A48:
1157		rate[0] = DESC_RATEVHT2SS_MCS2;
1158		rate[1] = DESC_RATEVHT2SS_MCS3;
1159		rate[2] = DESC_RATEVHT2SS_MCS4;
1160		rate[3] = DESC_RATEVHT2SS_MCS5;
1161		for (i = 0; i < 4; ++i)
1162			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1163		*rate_num = 4;
1164		break;
1165	case 0xC4C:
1166	case 0xE4C:
1167	case 0x184C:
1168	case 0x1A4C:
1169		rate[0] = DESC_RATEVHT2SS_MCS6;
1170		rate[1] = DESC_RATEVHT2SS_MCS7;
1171		rate[2] = DESC_RATEVHT2SS_MCS8;
1172		rate[3] = DESC_RATEVHT2SS_MCS9;
1173		for (i = 0; i < 4; ++i)
1174			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1175		*rate_num = 4;
1176		break;
1177	case 0xCD8:
1178	case 0xED8:
1179	case 0x18D8:
1180	case 0x1AD8:
1181		rate[0] = DESC_RATEMCS16;
1182		rate[1] = DESC_RATEMCS17;
1183		rate[2] = DESC_RATEMCS18;
1184		rate[3] = DESC_RATEMCS19;
1185		for (i = 0; i < 4; ++i)
1186			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1187		*rate_num = 4;
1188		break;
1189	case 0xCDC:
1190	case 0xEDC:
1191	case 0x18DC:
1192	case 0x1ADC:
1193		rate[0] = DESC_RATEMCS20;
1194		rate[1] = DESC_RATEMCS21;
1195		rate[2] = DESC_RATEMCS22;
1196		rate[3] = DESC_RATEMCS23;
1197		for (i = 0; i < 4; ++i)
1198			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1199		*rate_num = 4;
1200		break;
1201	case 0xCE0:
1202	case 0xEE0:
1203	case 0x18E0:
1204	case 0x1AE0:
1205		rate[0] = DESC_RATEVHT3SS_MCS0;
1206		rate[1] = DESC_RATEVHT3SS_MCS1;
1207		rate[2] = DESC_RATEVHT3SS_MCS2;
1208		rate[3] = DESC_RATEVHT3SS_MCS3;
1209		for (i = 0; i < 4; ++i)
1210			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1211		*rate_num = 4;
1212		break;
1213	case 0xCE4:
1214	case 0xEE4:
1215	case 0x18E4:
1216	case 0x1AE4:
1217		rate[0] = DESC_RATEVHT3SS_MCS4;
1218		rate[1] = DESC_RATEVHT3SS_MCS5;
1219		rate[2] = DESC_RATEVHT3SS_MCS6;
1220		rate[3] = DESC_RATEVHT3SS_MCS7;
1221		for (i = 0; i < 4; ++i)
1222			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1223		*rate_num = 4;
1224		break;
1225	case 0xCE8:
1226	case 0xEE8:
1227	case 0x18E8:
1228	case 0x1AE8:
1229		rate[0] = DESC_RATEVHT3SS_MCS8;
1230		rate[1] = DESC_RATEVHT3SS_MCS9;
1231		for (i = 0; i < 2; ++i)
1232			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1233		*rate_num = 2;
1234		break;
1235	default:
1236		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1237		break;
1238	}
1239}
1240
1241static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1242					   u32 band, u32 rfpath, u32 txnum,
1243					   u32 regaddr, u32 bitmask, u32 data)
1244{
1245	struct rtw_hal *hal = &rtwdev->hal;
1246	u8 rate_num = 0;
1247	u8 rate;
1248	u8 rates[RTW_RF_PATH_MAX] = {0};
1249	s8 offset;
1250	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1251	int i;
1252
1253	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1254						 rates, pwr_by_rate, &rate_num);
1255
1256	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1257		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1258		    rate_num > RTW_RF_PATH_MAX))
1259		return;
1260
1261	for (i = 0; i < rate_num; i++) {
1262		offset = pwr_by_rate[i];
1263		rate = rates[i];
1264		if (band == PHY_BAND_2G)
1265			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1266		else if (band == PHY_BAND_5G)
1267			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1268		else
1269			continue;
1270	}
1271}
1272
1273void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1274{
1275	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1276	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1277
1278	for (; p < end; p++) {
1279		if (p->addr == 0xfe || p->addr == 0xffe) {
1280			msleep(50);
1281			continue;
1282		}
1283		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1284					       p->tx_num, p->addr, p->bitmask,
1285					       p->data);
1286	}
1287}
1288EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1289
1290static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1291	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1292	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1293	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1294	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1295	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1296	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1297	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1298
1299static int rtw_channel_to_idx(u8 band, u8 channel)
1300{
1301	int ch_idx;
1302	u8 n_channel;
1303
1304	if (band == PHY_BAND_2G) {
1305		ch_idx = channel - 1;
1306		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1307	} else if (band == PHY_BAND_5G) {
1308		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1309		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1310			if (rtw_channel_idx_5g[ch_idx] == channel)
1311				break;
1312	} else {
1313		return -1;
1314	}
1315
1316	if (ch_idx >= n_channel)
1317		return -1;
1318
1319	return ch_idx;
1320}
1321
1322static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1323				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1324{
1325	struct rtw_hal *hal = &rtwdev->hal;
1326	u8 max_power_index = rtwdev->chip->max_power_index;
1327	s8 ww;
1328	int ch_idx;
1329
1330	pwr_limit = clamp_t(s8, pwr_limit,
1331			    -max_power_index, max_power_index);
1332	ch_idx = rtw_channel_to_idx(band, ch);
1333
1334	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1335	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1336		WARN(1,
1337		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1338		     regd, band, bw, rs, ch_idx, pwr_limit);
1339		return;
1340	}
1341
1342	if (band == PHY_BAND_2G) {
1343		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1344		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1345		ww = min_t(s8, ww, pwr_limit);
1346		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1347	} else if (band == PHY_BAND_5G) {
1348		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1349		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1350		ww = min_t(s8, ww, pwr_limit);
1351		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1352	}
1353}
1354
1355/* cross-reference 5G power limits if values are not assigned */
1356static void
1357rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1358		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1359{
1360	struct rtw_hal *hal = &rtwdev->hal;
1361	u8 max_power_index = rtwdev->chip->max_power_index;
1362	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1363	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1364
1365	if (lmt_ht == lmt_vht)
1366		return;
1367
1368	if (lmt_ht == max_power_index)
1369		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1370
1371	else if (lmt_vht == max_power_index)
1372		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1373}
1374
1375/* cross-reference power limits for ht and vht */
1376static void
1377rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1378{
1379	u8 rs_idx, rs_ht, rs_vht;
1380	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1381			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1382
1383	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1384		rs_ht = rs_cmp[rs_idx][0];
1385		rs_vht = rs_cmp[rs_idx][1];
1386
1387		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1388	}
1389}
1390
1391/* cross-reference power limits for 5G channels */
1392static void
1393rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1394{
1395	u8 ch_idx;
1396
1397	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1398		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1399}
1400
1401/* cross-reference power limits for 20/40M bandwidth */
1402static void
1403rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1404{
1405	u8 bw;
1406
1407	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1408		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1409}
1410
1411/* cross-reference power limits */
1412static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1413{
1414	u8 regd;
1415
1416	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1417		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1418}
1419
1420void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1421			     const struct rtw_table *tbl)
1422{
1423	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1424	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1425
1426	for (; p < end; p++) {
1427		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1428					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1429	}
1430
1431	rtw_xref_txpwr_lmt(rtwdev);
1432}
1433EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1434
1435void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1436		     u32 addr, u32 data)
1437{
1438	rtw_write8(rtwdev, addr, data);
1439}
1440EXPORT_SYMBOL(rtw_phy_cfg_mac);
1441
1442void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1443		     u32 addr, u32 data)
1444{
1445	rtw_write32(rtwdev, addr, data);
1446}
1447EXPORT_SYMBOL(rtw_phy_cfg_agc);
1448
1449void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1450		    u32 addr, u32 data)
1451{
1452	if (addr == 0xfe)
1453		msleep(50);
1454	else if (addr == 0xfd)
1455		mdelay(5);
1456	else if (addr == 0xfc)
1457		mdelay(1);
1458	else if (addr == 0xfb)
1459		usleep_range(50, 60);
1460	else if (addr == 0xfa)
1461		udelay(5);
1462	else if (addr == 0xf9)
1463		udelay(1);
1464	else
1465		rtw_write32(rtwdev, addr, data);
1466}
1467EXPORT_SYMBOL(rtw_phy_cfg_bb);
1468
1469void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1470		    u32 addr, u32 data)
1471{
1472	if (addr == 0xffe) {
1473		msleep(50);
1474	} else if (addr == 0xfe) {
1475		usleep_range(100, 110);
1476	} else {
1477		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1478		udelay(1);
1479	}
1480}
1481EXPORT_SYMBOL(rtw_phy_cfg_rf);
1482
1483static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1484{
1485	struct rtw_chip_info *chip = rtwdev->chip;
1486	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1487
1488	if (!chip->rfk_init_tbl)
1489		return;
1490
1491	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1492	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1493	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1494	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1495	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1496
1497	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1498
1499	dpk_info->is_dpk_pwr_on = true;
1500}
1501
1502void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1503{
1504	struct rtw_chip_info *chip = rtwdev->chip;
1505	u8 rf_path;
1506
1507	rtw_load_table(rtwdev, chip->mac_tbl);
1508	rtw_load_table(rtwdev, chip->bb_tbl);
1509	rtw_load_table(rtwdev, chip->agc_tbl);
1510	rtw_load_rfk_table(rtwdev);
1511
1512	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1513		const struct rtw_table *tbl;
1514
1515		tbl = chip->rf_tbl[rf_path];
1516		rtw_load_table(rtwdev, tbl);
1517	}
1518}
1519EXPORT_SYMBOL(rtw_phy_load_tables);
1520
1521static u8 rtw_get_channel_group(u8 channel, u8 rate)
1522{
1523	switch (channel) {
1524	default:
1525		WARN_ON(1);
1526		fallthrough;
1527	case 1:
1528	case 2:
1529	case 36:
1530	case 38:
1531	case 40:
1532	case 42:
1533		return 0;
1534	case 3:
1535	case 4:
1536	case 5:
1537	case 44:
1538	case 46:
1539	case 48:
1540	case 50:
1541		return 1;
1542	case 6:
1543	case 7:
1544	case 8:
1545	case 52:
1546	case 54:
1547	case 56:
1548	case 58:
1549		return 2;
1550	case 9:
1551	case 10:
1552	case 11:
1553	case 60:
1554	case 62:
1555	case 64:
1556		return 3;
1557	case 12:
1558	case 13:
1559	case 100:
1560	case 102:
1561	case 104:
1562	case 106:
1563		return 4;
1564	case 14:
1565		return rate <= DESC_RATE11M ? 5 : 4;
1566	case 108:
1567	case 110:
1568	case 112:
1569	case 114:
1570		return 5;
1571	case 116:
1572	case 118:
1573	case 120:
1574	case 122:
1575		return 6;
1576	case 124:
1577	case 126:
1578	case 128:
1579	case 130:
1580		return 7;
1581	case 132:
1582	case 134:
1583	case 136:
1584	case 138:
1585		return 8;
1586	case 140:
1587	case 142:
1588	case 144:
1589		return 9;
1590	case 149:
1591	case 151:
1592	case 153:
1593	case 155:
1594		return 10;
1595	case 157:
1596	case 159:
1597	case 161:
1598		return 11;
1599	case 165:
1600	case 167:
1601	case 169:
1602	case 171:
1603		return 12;
1604	case 173:
1605	case 175:
1606	case 177:
1607		return 13;
1608	}
1609}
1610
1611static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1612{
1613	struct rtw_chip_info *chip = rtwdev->chip;
1614	s8 dpd_diff = 0;
1615
1616	if (!chip->en_dis_dpd)
1617		return 0;
1618
1619#define RTW_DPD_RATE_CHECK(_rate)					\
1620	case DESC_RATE ## _rate:					\
1621	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1622		dpd_diff = -6 * chip->txgi_factor;			\
1623	break
1624
1625	switch (rate) {
1626	RTW_DPD_RATE_CHECK(6M);
1627	RTW_DPD_RATE_CHECK(9M);
1628	RTW_DPD_RATE_CHECK(MCS0);
1629	RTW_DPD_RATE_CHECK(MCS1);
1630	RTW_DPD_RATE_CHECK(MCS8);
1631	RTW_DPD_RATE_CHECK(MCS9);
1632	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1633	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1634	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1635	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1636	}
1637#undef RTW_DPD_RATE_CHECK
1638
1639	return dpd_diff;
1640}
1641
1642static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1643					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1644					enum rtw_bandwidth bandwidth,
1645					u8 rate, u8 group)
1646{
1647	struct rtw_chip_info *chip = rtwdev->chip;
1648	u8 tx_power;
1649	bool mcs_rate;
1650	bool above_2ss;
1651	u8 factor = chip->txgi_factor;
1652
1653	if (rate <= DESC_RATE11M)
1654		tx_power = pwr_idx_2g->cck_base[group];
1655	else
1656		tx_power = pwr_idx_2g->bw40_base[group];
1657
1658	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1659		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1660
1661	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1662		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1663		    rate <= DESC_RATEVHT2SS_MCS9);
1664	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1665		    (rate >= DESC_RATEVHT2SS_MCS0);
1666
1667	if (!mcs_rate)
1668		return tx_power;
1669
1670	switch (bandwidth) {
1671	default:
1672		WARN_ON(1);
1673		fallthrough;
1674	case RTW_CHANNEL_WIDTH_20:
1675		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1676		if (above_2ss)
1677			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1678		break;
1679	case RTW_CHANNEL_WIDTH_40:
1680		/* bw40 is the base power */
1681		if (above_2ss)
1682			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1683		break;
1684	}
1685
1686	return tx_power;
1687}
1688
1689static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1690					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1691					enum rtw_bandwidth bandwidth,
1692					u8 rate, u8 group)
1693{
1694	struct rtw_chip_info *chip = rtwdev->chip;
1695	u8 tx_power;
1696	u8 upper, lower;
1697	bool mcs_rate;
1698	bool above_2ss;
1699	u8 factor = chip->txgi_factor;
1700
1701	tx_power = pwr_idx_5g->bw40_base[group];
1702
1703	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1704		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1705		    rate <= DESC_RATEVHT2SS_MCS9);
1706	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1707		    (rate >= DESC_RATEVHT2SS_MCS0);
1708
1709	if (!mcs_rate) {
1710		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1711		return tx_power;
1712	}
1713
1714	switch (bandwidth) {
1715	default:
1716		WARN_ON(1);
1717		fallthrough;
1718	case RTW_CHANNEL_WIDTH_20:
1719		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1720		if (above_2ss)
1721			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1722		break;
1723	case RTW_CHANNEL_WIDTH_40:
1724		/* bw40 is the base power */
1725		if (above_2ss)
1726			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1727		break;
1728	case RTW_CHANNEL_WIDTH_80:
1729		/* the base idx of bw80 is the average of bw40+/bw40- */
1730		lower = pwr_idx_5g->bw40_base[group];
1731		upper = pwr_idx_5g->bw40_base[group + 1];
1732
1733		tx_power = (lower + upper) / 2;
1734		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1735		if (above_2ss)
1736			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1737		break;
1738	}
1739
1740	return tx_power;
1741}
1742
1743static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1744				     enum rtw_bandwidth bw, u8 rf_path,
1745				     u8 rate, u8 channel, u8 regd)
1746{
1747	struct rtw_hal *hal = &rtwdev->hal;
1748	u8 *cch_by_bw = hal->cch_by_bw;
1749	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1750	u8 rs;
1751	int ch_idx;
1752	u8 cur_bw, cur_ch;
1753	s8 cur_lmt;
1754
1755	if (regd > RTW_REGD_WW)
1756		return power_limit;
1757
1758	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1759		rs = RTW_RATE_SECTION_CCK;
1760	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1761		rs = RTW_RATE_SECTION_OFDM;
1762	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1763		rs = RTW_RATE_SECTION_HT_1S;
1764	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1765		rs = RTW_RATE_SECTION_HT_2S;
1766	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1767		rs = RTW_RATE_SECTION_VHT_1S;
1768	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1769		rs = RTW_RATE_SECTION_VHT_2S;
1770	else
1771		goto err;
1772
1773	/* only 20M BW with cck and ofdm */
1774	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1775		bw = RTW_CHANNEL_WIDTH_20;
1776
1777	/* only 20/40M BW with ht */
1778	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1779		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1780
1781	/* select min power limit among [20M BW ~ current BW] */
1782	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1783		cur_ch = cch_by_bw[cur_bw];
1784
1785		ch_idx = rtw_channel_to_idx(band, cur_ch);
1786		if (ch_idx < 0)
1787			goto err;
1788
1789		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1790			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1791			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1792
1793		power_limit = min_t(s8, cur_lmt, power_limit);
1794	}
1795
1796	return power_limit;
1797
1798err:
1799	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1800	     band, bw, rf_path, rate, channel);
1801	return (s8)rtwdev->chip->max_power_index;
1802}
1803
1804void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1805			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1806{
1807	struct rtw_hal *hal = &rtwdev->hal;
1808	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1809	struct rtw_txpwr_idx *pwr_idx;
1810	u8 group, band;
1811	u8 *base = &pwr_param->pwr_base;
1812	s8 *offset = &pwr_param->pwr_offset;
1813	s8 *limit = &pwr_param->pwr_limit;
1814	s8 *remnant = &pwr_param->pwr_remnant;
1815
1816	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1817	group = rtw_get_channel_group(ch, rate);
1818
1819	/* base power index for 2.4G/5G */
1820	if (IS_CH_2G_BAND(ch)) {
1821		band = PHY_BAND_2G;
1822		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1823						      &pwr_idx->pwr_idx_2g,
1824						      bw, rate, group);
1825		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1826	} else {
1827		band = PHY_BAND_5G;
1828		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1829						      &pwr_idx->pwr_idx_5g,
1830						      bw, rate, group);
1831		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1832	}
1833
1834	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1835					    rate, ch, regd);
1836	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
1837		    dm_info->txagc_remnant_ofdm);
1838}
1839
1840u8
1841rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1842			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1843{
1844	struct rtw_power_params pwr_param = {0};
1845	u8 tx_power;
1846	s8 offset;
1847
1848	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1849				channel, regd, &pwr_param);
1850
1851	tx_power = pwr_param.pwr_base;
1852	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1853
1854	if (rtwdev->chip->en_dis_dpd)
1855		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1856
1857	tx_power += offset + pwr_param.pwr_remnant;
1858
1859	if (tx_power > rtwdev->chip->max_power_index)
1860		tx_power = rtwdev->chip->max_power_index;
1861
1862	return tx_power;
1863}
1864EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
1865
1866static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1867					     u8 ch, u8 path, u8 rs)
1868{
1869	struct rtw_hal *hal = &rtwdev->hal;
1870	u8 regd = rtwdev->regd.txpwr_regd;
1871	u8 *rates;
1872	u8 size;
1873	u8 rate;
1874	u8 pwr_idx;
1875	u8 bw;
1876	int i;
1877
1878	if (rs >= RTW_RATE_SECTION_MAX)
1879		return;
1880
1881	rates = rtw_rate_section[rs];
1882	size = rtw_rate_size[rs];
1883	bw = hal->current_band_width;
1884	for (i = 0; i < size; i++) {
1885		rate = rates[i];
1886		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1887						     bw, ch, regd);
1888		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1889	}
1890}
1891
1892/* set tx power level by path for each rates, note that the order of the rates
1893 * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1894 * power index into a four-byte power index register, and calls set_tx_agc to
1895 * write these values into hardware
1896 */
1897static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1898					       u8 ch, u8 path)
1899{
1900	struct rtw_hal *hal = &rtwdev->hal;
1901	u8 rs;
1902
1903	/* do not need cck rates if we are not in 2.4G */
1904	if (hal->current_band_type == RTW_BAND_2G)
1905		rs = RTW_RATE_SECTION_CCK;
1906	else
1907		rs = RTW_RATE_SECTION_OFDM;
1908
1909	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1910		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1911}
1912
1913void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1914{
1915	struct rtw_chip_info *chip = rtwdev->chip;
1916	struct rtw_hal *hal = &rtwdev->hal;
1917	u8 path;
1918
1919	mutex_lock(&hal->tx_power_mutex);
1920
1921	for (path = 0; path < hal->rf_path_num; path++)
1922		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1923
1924	chip->ops->set_tx_power_index(rtwdev);
1925	mutex_unlock(&hal->tx_power_mutex);
1926}
1927EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
1928
1929static void
1930rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1931					u8 rs, u8 size, u8 *rates)
1932{
1933	u8 rate;
1934	u8 base_idx, rate_idx;
1935	s8 base_2g, base_5g;
1936
1937	if (rs >= RTW_RATE_SECTION_VHT_1S)
1938		base_idx = rates[size - 3];
1939	else
1940		base_idx = rates[size - 1];
1941	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1942	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1943	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1944	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1945	for (rate = 0; rate < size; rate++) {
1946		rate_idx = rates[rate];
1947		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1948		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1949	}
1950}
1951
1952void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1953{
1954	u8 path;
1955
1956	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1957		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1958				RTW_RATE_SECTION_CCK,
1959				rtw_cck_size, rtw_cck_rates);
1960		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1961				RTW_RATE_SECTION_OFDM,
1962				rtw_ofdm_size, rtw_ofdm_rates);
1963		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1964				RTW_RATE_SECTION_HT_1S,
1965				rtw_ht_1s_size, rtw_ht_1s_rates);
1966		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1967				RTW_RATE_SECTION_HT_2S,
1968				rtw_ht_2s_size, rtw_ht_2s_rates);
1969		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1970				RTW_RATE_SECTION_VHT_1S,
1971				rtw_vht_1s_size, rtw_vht_1s_rates);
1972		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1973				RTW_RATE_SECTION_VHT_2S,
1974				rtw_vht_2s_size, rtw_vht_2s_rates);
1975	}
1976}
1977
1978static void
1979__rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1980{
1981	s8 base;
1982	u8 ch;
1983
1984	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1985		base = hal->tx_pwr_by_rate_base_2g[0][rs];
1986		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1987	}
1988
1989	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1990		base = hal->tx_pwr_by_rate_base_5g[0][rs];
1991		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1992	}
1993}
1994
1995void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1996{
1997	u8 regd, bw, rs;
1998
1999	/* default at channel 1 */
2000	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2001
2002	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2003		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2004			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2005				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2006}
2007
2008static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2009					u8 regd, u8 bw, u8 rs)
2010{
2011	struct rtw_hal *hal = &rtwdev->hal;
2012	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2013	u8 ch;
2014
2015	/* 2.4G channels */
2016	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2017		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2018
2019	/* 5G channels */
2020	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2021		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2022}
2023
2024void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2025{
2026	struct rtw_hal *hal = &rtwdev->hal;
2027	u8 regd, path, rate, rs, bw;
2028
2029	/* init tx power by rate offset */
2030	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2031		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2032			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2033			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2034		}
2035	}
2036
2037	/* init tx power limit */
2038	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2039		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2040			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2041				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2042							    rs);
2043}
2044
2045void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2046				struct rtw_swing_table *swing_table)
2047{
2048	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2049	u8 channel = rtwdev->hal.current_channel;
2050
2051	if (IS_CH_2G_BAND(channel)) {
2052		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2053			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2054			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2055			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2056			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2057		} else {
2058			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2059			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2060			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2061			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2062		}
2063	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2064		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2065		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2066		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2067		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2068	} else if (IS_CH_5G_BAND_3(channel)) {
2069		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2070		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2071		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2072		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2073	} else if (IS_CH_5G_BAND_4(channel)) {
2074		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2075		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2076		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2077		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2078	} else {
2079		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2080		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2081		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2082		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2083	}
2084}
2085EXPORT_SYMBOL(rtw_phy_config_swing_table);
2086
2087void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2088{
2089	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2090
2091	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2092	dm_info->thermal_avg[path] =
2093		ewma_thermal_read(&dm_info->avg_thermal[path]);
2094}
2095EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2096
2097bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2098				      u8 path)
2099{
2100	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2101	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2102
2103	if (avg == thermal)
2104		return false;
2105
2106	return true;
2107}
2108EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2109
2110u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2111{
2112	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2113	u8 therm_avg, therm_efuse, therm_delta;
2114
2115	therm_avg = dm_info->thermal_avg[path];
2116	therm_efuse = rtwdev->efuse.thermal_meter[path];
2117	therm_delta = abs(therm_avg - therm_efuse);
2118
2119	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2120}
2121EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2122
2123s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2124			       struct rtw_swing_table *swing_table,
2125			       u8 tbl_path, u8 therm_path, u8 delta)
2126{
2127	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2128	const u8 *delta_swing_table_idx_pos;
2129	const u8 *delta_swing_table_idx_neg;
2130
2131	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2132		rtw_warn(rtwdev, "power track table overflow\n");
2133		return 0;
2134	}
2135
2136	if (!swing_table) {
2137		rtw_warn(rtwdev, "swing table not configured\n");
2138		return 0;
2139	}
2140
2141	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2142	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2143
2144	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2145		rtw_warn(rtwdev, "invalid swing table index\n");
2146		return 0;
2147	}
2148
2149	if (dm_info->thermal_avg[therm_path] >
2150	    rtwdev->efuse.thermal_meter[therm_path])
2151		return delta_swing_table_idx_pos[delta];
2152	else
2153		return -delta_swing_table_idx_neg[delta];
2154}
2155EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2156
2157bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2158{
2159	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2160	u8 delta_lck;
2161
2162	delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2163	if (delta_lck >= rtwdev->chip->lck_threshold) {
2164		dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2165		return true;
2166	}
2167	return false;
2168}
2169EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2170
2171bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2172{
2173	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2174	u8 delta_iqk;
2175
2176	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2177	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2178		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2179		return true;
2180	}
2181	return false;
2182}
2183EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2184