1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 */ 8 9/* 10 Module: rt2x00lib 11 Abstract: rt2x00 generic device routines. 12 */ 13 14#include <linux/kernel.h> 15#include <linux/module.h> 16#include <linux/slab.h> 17#include <linux/log2.h> 18#include <linux/of.h> 19#include <linux/of_net.h> 20 21#include "rt2x00.h" 22#include "rt2x00lib.h" 23 24/* 25 * Utility functions. 26 */ 27u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 28 struct ieee80211_vif *vif) 29{ 30 /* 31 * When in STA mode, bssidx is always 0 otherwise local_address[5] 32 * contains the bss number, see BSS_ID_MASK comments for details. 33 */ 34 if (rt2x00dev->intf_sta_count) 35 return 0; 36 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 37} 38EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 39 40/* 41 * Radio control handlers. 42 */ 43int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 44{ 45 int status; 46 47 /* 48 * Don't enable the radio twice. 49 * And check if the hardware button has been disabled. 50 */ 51 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 52 return 0; 53 54 /* 55 * Initialize all data queues. 56 */ 57 rt2x00queue_init_queues(rt2x00dev); 58 59 /* 60 * Enable radio. 61 */ 62 status = 63 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 64 if (status) 65 return status; 66 67 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 68 69 rt2x00leds_led_radio(rt2x00dev, true); 70 rt2x00led_led_activity(rt2x00dev, true); 71 72 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 73 74 /* 75 * Enable queues. 76 */ 77 rt2x00queue_start_queues(rt2x00dev); 78 rt2x00link_start_tuner(rt2x00dev); 79 80 /* 81 * Start watchdog monitoring. 82 */ 83 rt2x00link_start_watchdog(rt2x00dev); 84 85 return 0; 86} 87 88void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 89{ 90 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 91 return; 92 93 /* 94 * Stop watchdog monitoring. 95 */ 96 rt2x00link_stop_watchdog(rt2x00dev); 97 98 /* 99 * Stop all queues 100 */ 101 rt2x00link_stop_tuner(rt2x00dev); 102 rt2x00queue_stop_queues(rt2x00dev); 103 rt2x00queue_flush_queues(rt2x00dev, true); 104 rt2x00queue_stop_queue(rt2x00dev->bcn); 105 106 /* 107 * Disable radio. 108 */ 109 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 110 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 111 rt2x00led_led_activity(rt2x00dev, false); 112 rt2x00leds_led_radio(rt2x00dev, false); 113} 114 115static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 116 struct ieee80211_vif *vif) 117{ 118 struct rt2x00_dev *rt2x00dev = data; 119 struct rt2x00_intf *intf = vif_to_intf(vif); 120 121 /* 122 * It is possible the radio was disabled while the work had been 123 * scheduled. If that happens we should return here immediately, 124 * note that in the spinlock protected area above the delayed_flags 125 * have been cleared correctly. 126 */ 127 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 128 return; 129 130 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { 131 mutex_lock(&intf->beacon_skb_mutex); 132 rt2x00queue_update_beacon(rt2x00dev, vif); 133 mutex_unlock(&intf->beacon_skb_mutex); 134 } 135} 136 137static void rt2x00lib_intf_scheduled(struct work_struct *work) 138{ 139 struct rt2x00_dev *rt2x00dev = 140 container_of(work, struct rt2x00_dev, intf_work); 141 142 /* 143 * Iterate over each interface and perform the 144 * requested configurations. 145 */ 146 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 147 IEEE80211_IFACE_ITER_RESUME_ALL, 148 rt2x00lib_intf_scheduled_iter, 149 rt2x00dev); 150} 151 152static void rt2x00lib_autowakeup(struct work_struct *work) 153{ 154 struct rt2x00_dev *rt2x00dev = 155 container_of(work, struct rt2x00_dev, autowakeup_work.work); 156 157 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 158 return; 159 160 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 161 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 162 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 163} 164 165/* 166 * Interrupt context handlers. 167 */ 168static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 169 struct ieee80211_vif *vif) 170{ 171 struct ieee80211_tx_control control = {}; 172 struct rt2x00_dev *rt2x00dev = data; 173 struct sk_buff *skb; 174 175 /* 176 * Only AP mode interfaces do broad- and multicast buffering 177 */ 178 if (vif->type != NL80211_IFTYPE_AP) 179 return; 180 181 /* 182 * Send out buffered broad- and multicast frames 183 */ 184 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 185 while (skb) { 186 rt2x00mac_tx(rt2x00dev->hw, &control, skb); 187 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 188 } 189} 190 191static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 192 struct ieee80211_vif *vif) 193{ 194 struct rt2x00_dev *rt2x00dev = data; 195 196 if (vif->type != NL80211_IFTYPE_AP && 197 vif->type != NL80211_IFTYPE_ADHOC && 198 vif->type != NL80211_IFTYPE_MESH_POINT && 199 vif->type != NL80211_IFTYPE_WDS) 200 return; 201 202 /* 203 * Update the beacon without locking. This is safe on PCI devices 204 * as they only update the beacon periodically here. This should 205 * never be called for USB devices. 206 */ 207 WARN_ON(rt2x00_is_usb(rt2x00dev)); 208 rt2x00queue_update_beacon(rt2x00dev, vif); 209} 210 211void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 212{ 213 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 214 return; 215 216 /* send buffered bc/mc frames out for every bssid */ 217 ieee80211_iterate_active_interfaces_atomic( 218 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 219 rt2x00lib_bc_buffer_iter, rt2x00dev); 220 /* 221 * Devices with pre tbtt interrupt don't need to update the beacon 222 * here as they will fetch the next beacon directly prior to 223 * transmission. 224 */ 225 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) 226 return; 227 228 /* fetch next beacon */ 229 ieee80211_iterate_active_interfaces_atomic( 230 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 231 rt2x00lib_beaconupdate_iter, rt2x00dev); 232} 233EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 234 235void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 236{ 237 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 238 return; 239 240 /* fetch next beacon */ 241 ieee80211_iterate_active_interfaces_atomic( 242 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 243 rt2x00lib_beaconupdate_iter, rt2x00dev); 244} 245EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 246 247void rt2x00lib_dmastart(struct queue_entry *entry) 248{ 249 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 250 rt2x00queue_index_inc(entry, Q_INDEX); 251} 252EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 253 254void rt2x00lib_dmadone(struct queue_entry *entry) 255{ 256 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 257 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 258 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 259} 260EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 261 262static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 263{ 264 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 265 struct ieee80211_bar *bar = (void *) entry->skb->data; 266 struct rt2x00_bar_list_entry *bar_entry; 267 int ret; 268 269 if (likely(!ieee80211_is_back_req(bar->frame_control))) 270 return 0; 271 272 /* 273 * Unlike all other frames, the status report for BARs does 274 * not directly come from the hardware as it is incapable of 275 * matching a BA to a previously send BAR. The hardware will 276 * report all BARs as if they weren't acked at all. 277 * 278 * Instead the RX-path will scan for incoming BAs and set the 279 * block_acked flag if it sees one that was likely caused by 280 * a BAR from us. 281 * 282 * Remove remaining BARs here and return their status for 283 * TX done processing. 284 */ 285 ret = 0; 286 rcu_read_lock(); 287 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 288 if (bar_entry->entry != entry) 289 continue; 290 291 spin_lock_bh(&rt2x00dev->bar_list_lock); 292 /* Return whether this BAR was blockacked or not */ 293 ret = bar_entry->block_acked; 294 /* Remove the BAR from our checklist */ 295 list_del_rcu(&bar_entry->list); 296 spin_unlock_bh(&rt2x00dev->bar_list_lock); 297 kfree_rcu(bar_entry, head); 298 299 break; 300 } 301 rcu_read_unlock(); 302 303 return ret; 304} 305 306static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev, 307 struct ieee80211_tx_info *tx_info, 308 struct skb_frame_desc *skbdesc, 309 struct txdone_entry_desc *txdesc, 310 bool success) 311{ 312 u8 rate_idx, rate_flags, retry_rates; 313 int i; 314 315 rate_idx = skbdesc->tx_rate_idx; 316 rate_flags = skbdesc->tx_rate_flags; 317 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 318 (txdesc->retry + 1) : 1; 319 320 /* 321 * Initialize TX status 322 */ 323 memset(&tx_info->status, 0, sizeof(tx_info->status)); 324 tx_info->status.ack_signal = 0; 325 326 /* 327 * Frame was send with retries, hardware tried 328 * different rates to send out the frame, at each 329 * retry it lowered the rate 1 step except when the 330 * lowest rate was used. 331 */ 332 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 333 tx_info->status.rates[i].idx = rate_idx - i; 334 tx_info->status.rates[i].flags = rate_flags; 335 336 if (rate_idx - i == 0) { 337 /* 338 * The lowest rate (index 0) was used until the 339 * number of max retries was reached. 340 */ 341 tx_info->status.rates[i].count = retry_rates - i; 342 i++; 343 break; 344 } 345 tx_info->status.rates[i].count = 1; 346 } 347 if (i < (IEEE80211_TX_MAX_RATES - 1)) 348 tx_info->status.rates[i].idx = -1; /* terminate */ 349 350 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags)) 351 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK; 352 353 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 354 if (success) 355 tx_info->flags |= IEEE80211_TX_STAT_ACK; 356 else 357 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 358 } 359 360 /* 361 * Every single frame has it's own tx status, hence report 362 * every frame as ampdu of size 1. 363 * 364 * TODO: if we can find out how many frames were aggregated 365 * by the hw we could provide the real ampdu_len to mac80211 366 * which would allow the rc algorithm to better decide on 367 * which rates are suitable. 368 */ 369 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 370 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 371 tx_info->flags |= IEEE80211_TX_STAT_AMPDU | 372 IEEE80211_TX_CTL_AMPDU; 373 tx_info->status.ampdu_len = 1; 374 tx_info->status.ampdu_ack_len = success ? 1 : 0; 375 } 376 377 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 378 if (success) 379 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 380 else 381 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 382 } 383} 384 385static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev, 386 struct queue_entry *entry) 387{ 388 /* 389 * Make this entry available for reuse. 390 */ 391 entry->skb = NULL; 392 entry->flags = 0; 393 394 rt2x00dev->ops->lib->clear_entry(entry); 395 396 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 397 398 /* 399 * If the data queue was below the threshold before the txdone 400 * handler we must make sure the packet queue in the mac80211 stack 401 * is reenabled when the txdone handler has finished. This has to be 402 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 403 * before it was stopped. 404 */ 405 spin_lock_bh(&entry->queue->tx_lock); 406 if (!rt2x00queue_threshold(entry->queue)) 407 rt2x00queue_unpause_queue(entry->queue); 408 spin_unlock_bh(&entry->queue->tx_lock); 409} 410 411void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 412 struct txdone_entry_desc *txdesc) 413{ 414 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 415 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 416 struct ieee80211_tx_info txinfo = {}; 417 bool success; 418 419 /* 420 * Unmap the skb. 421 */ 422 rt2x00queue_unmap_skb(entry); 423 424 /* 425 * Signal that the TX descriptor is no longer in the skb. 426 */ 427 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 428 429 /* 430 * Send frame to debugfs immediately, after this call is completed 431 * we are going to overwrite the skb->cb array. 432 */ 433 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 434 435 /* 436 * Determine if the frame has been successfully transmitted and 437 * remove BARs from our check list while checking for their 438 * TX status. 439 */ 440 success = 441 rt2x00lib_txdone_bar_status(entry) || 442 test_bit(TXDONE_SUCCESS, &txdesc->flags); 443 444 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) { 445 /* 446 * Update TX statistics. 447 */ 448 rt2x00dev->link.qual.tx_success += success; 449 rt2x00dev->link.qual.tx_failed += !success; 450 451 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc, 452 success); 453 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo); 454 } 455 456 dev_kfree_skb_any(entry->skb); 457 rt2x00lib_clear_entry(rt2x00dev, entry); 458} 459EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch); 460 461void rt2x00lib_txdone(struct queue_entry *entry, 462 struct txdone_entry_desc *txdesc) 463{ 464 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 465 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 466 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 467 u8 skbdesc_flags = skbdesc->flags; 468 unsigned int header_length; 469 bool success; 470 471 /* 472 * Unmap the skb. 473 */ 474 rt2x00queue_unmap_skb(entry); 475 476 /* 477 * Remove the extra tx headroom from the skb. 478 */ 479 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 480 481 /* 482 * Signal that the TX descriptor is no longer in the skb. 483 */ 484 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 485 486 /* 487 * Determine the length of 802.11 header. 488 */ 489 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 490 491 /* 492 * Remove L2 padding which was added during 493 */ 494 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 495 rt2x00queue_remove_l2pad(entry->skb, header_length); 496 497 /* 498 * If the IV/EIV data was stripped from the frame before it was 499 * passed to the hardware, we should now reinsert it again because 500 * mac80211 will expect the same data to be present it the 501 * frame as it was passed to us. 502 */ 503 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) 504 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 505 506 /* 507 * Send frame to debugfs immediately, after this call is completed 508 * we are going to overwrite the skb->cb array. 509 */ 510 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 511 512 /* 513 * Determine if the frame has been successfully transmitted and 514 * remove BARs from our check list while checking for their 515 * TX status. 516 */ 517 success = 518 rt2x00lib_txdone_bar_status(entry) || 519 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 520 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 521 522 /* 523 * Update TX statistics. 524 */ 525 rt2x00dev->link.qual.tx_success += success; 526 rt2x00dev->link.qual.tx_failed += !success; 527 528 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success); 529 530 /* 531 * Only send the status report to mac80211 when it's a frame 532 * that originated in mac80211. If this was a extra frame coming 533 * through a mac80211 library call (RTS/CTS) then we should not 534 * send the status report back. 535 */ 536 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 537 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) 538 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 539 else 540 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 541 } else { 542 dev_kfree_skb_any(entry->skb); 543 } 544 545 rt2x00lib_clear_entry(rt2x00dev, entry); 546} 547EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 548 549void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 550{ 551 struct txdone_entry_desc txdesc; 552 553 txdesc.flags = 0; 554 __set_bit(status, &txdesc.flags); 555 txdesc.retry = 0; 556 557 rt2x00lib_txdone(entry, &txdesc); 558} 559EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 560 561static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 562{ 563 struct ieee80211_mgmt *mgmt = (void *)data; 564 u8 *pos, *end; 565 566 pos = (u8 *)mgmt->u.beacon.variable; 567 end = data + len; 568 while (pos < end) { 569 if (pos + 2 + pos[1] > end) 570 return NULL; 571 572 if (pos[0] == ie) 573 return pos; 574 575 pos += 2 + pos[1]; 576 } 577 578 return NULL; 579} 580 581static void rt2x00lib_sleep(struct work_struct *work) 582{ 583 struct rt2x00_dev *rt2x00dev = 584 container_of(work, struct rt2x00_dev, sleep_work); 585 586 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 587 return; 588 589 /* 590 * Check again is powersaving is enabled, to prevent races from delayed 591 * work execution. 592 */ 593 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 594 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 595 IEEE80211_CONF_CHANGE_PS); 596} 597 598static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 599 struct sk_buff *skb, 600 struct rxdone_entry_desc *rxdesc) 601{ 602 struct rt2x00_bar_list_entry *entry; 603 struct ieee80211_bar *ba = (void *)skb->data; 604 605 if (likely(!ieee80211_is_back(ba->frame_control))) 606 return; 607 608 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 609 return; 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 613 614 if (ba->start_seq_num != entry->start_seq_num) 615 continue; 616 617#define TID_CHECK(a, b) ( \ 618 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 619 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 620 621 if (!TID_CHECK(ba->control, entry->control)) 622 continue; 623 624#undef TID_CHECK 625 626 if (!ether_addr_equal_64bits(ba->ra, entry->ta)) 627 continue; 628 629 if (!ether_addr_equal_64bits(ba->ta, entry->ra)) 630 continue; 631 632 /* Mark BAR since we received the according BA */ 633 spin_lock_bh(&rt2x00dev->bar_list_lock); 634 entry->block_acked = 1; 635 spin_unlock_bh(&rt2x00dev->bar_list_lock); 636 break; 637 } 638 rcu_read_unlock(); 639 640} 641 642static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 643 struct sk_buff *skb, 644 struct rxdone_entry_desc *rxdesc) 645{ 646 struct ieee80211_hdr *hdr = (void *) skb->data; 647 struct ieee80211_tim_ie *tim_ie; 648 u8 *tim; 649 u8 tim_len; 650 bool cam; 651 652 /* If this is not a beacon, or if mac80211 has no powersaving 653 * configured, or if the device is already in powersaving mode 654 * we can exit now. */ 655 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 656 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 657 return; 658 659 /* min. beacon length + FCS_LEN */ 660 if (skb->len <= 40 + FCS_LEN) 661 return; 662 663 /* and only beacons from the associated BSSID, please */ 664 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 665 !rt2x00dev->aid) 666 return; 667 668 rt2x00dev->last_beacon = jiffies; 669 670 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 671 if (!tim) 672 return; 673 674 if (tim[1] < sizeof(*tim_ie)) 675 return; 676 677 tim_len = tim[1]; 678 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 679 680 /* Check whenever the PHY can be turned off again. */ 681 682 /* 1. What about buffered unicast traffic for our AID? */ 683 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 684 685 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 686 cam |= (tim_ie->bitmap_ctrl & 0x01); 687 688 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 689 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 690} 691 692static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 693 struct rxdone_entry_desc *rxdesc) 694{ 695 struct ieee80211_supported_band *sband; 696 const struct rt2x00_rate *rate; 697 unsigned int i; 698 int signal = rxdesc->signal; 699 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 700 701 switch (rxdesc->rate_mode) { 702 case RATE_MODE_CCK: 703 case RATE_MODE_OFDM: 704 /* 705 * For non-HT rates the MCS value needs to contain the 706 * actually used rate modulation (CCK or OFDM). 707 */ 708 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 709 signal = RATE_MCS(rxdesc->rate_mode, signal); 710 711 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 712 for (i = 0; i < sband->n_bitrates; i++) { 713 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 714 if (((type == RXDONE_SIGNAL_PLCP) && 715 (rate->plcp == signal)) || 716 ((type == RXDONE_SIGNAL_BITRATE) && 717 (rate->bitrate == signal)) || 718 ((type == RXDONE_SIGNAL_MCS) && 719 (rate->mcs == signal))) { 720 return i; 721 } 722 } 723 break; 724 case RATE_MODE_HT_MIX: 725 case RATE_MODE_HT_GREENFIELD: 726 if (signal >= 0 && signal <= 76) 727 return signal; 728 break; 729 default: 730 break; 731 } 732 733 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 734 rxdesc->rate_mode, signal, type); 735 return 0; 736} 737 738void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 739{ 740 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 741 struct rxdone_entry_desc rxdesc; 742 struct sk_buff *skb; 743 struct ieee80211_rx_status *rx_status; 744 unsigned int header_length; 745 int rate_idx; 746 747 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 748 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 749 goto submit_entry; 750 751 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 752 goto submit_entry; 753 754 /* 755 * Allocate a new sk_buffer. If no new buffer available, drop the 756 * received frame and reuse the existing buffer. 757 */ 758 skb = rt2x00queue_alloc_rxskb(entry, gfp); 759 if (!skb) 760 goto submit_entry; 761 762 /* 763 * Unmap the skb. 764 */ 765 rt2x00queue_unmap_skb(entry); 766 767 /* 768 * Extract the RXD details. 769 */ 770 memset(&rxdesc, 0, sizeof(rxdesc)); 771 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 772 773 /* 774 * Check for valid size in case we get corrupted descriptor from 775 * hardware. 776 */ 777 if (unlikely(rxdesc.size == 0 || 778 rxdesc.size > entry->queue->data_size)) { 779 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 780 rxdesc.size, entry->queue->data_size); 781 dev_kfree_skb(entry->skb); 782 goto renew_skb; 783 } 784 785 /* 786 * The data behind the ieee80211 header must be 787 * aligned on a 4 byte boundary. 788 */ 789 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 790 791 /* 792 * Hardware might have stripped the IV/EIV/ICV data, 793 * in that case it is possible that the data was 794 * provided separately (through hardware descriptor) 795 * in which case we should reinsert the data into the frame. 796 */ 797 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 798 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 799 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 800 &rxdesc); 801 else if (header_length && 802 (rxdesc.size > header_length) && 803 (rxdesc.dev_flags & RXDONE_L2PAD)) 804 rt2x00queue_remove_l2pad(entry->skb, header_length); 805 806 /* Trim buffer to correct size */ 807 skb_trim(entry->skb, rxdesc.size); 808 809 /* 810 * Translate the signal to the correct bitrate index. 811 */ 812 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 813 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 814 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 815 rxdesc.encoding = RX_ENC_HT; 816 817 /* 818 * Check if this is a beacon, and more frames have been 819 * buffered while we were in powersaving mode. 820 */ 821 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 822 823 /* 824 * Check for incoming BlockAcks to match to the BlockAckReqs 825 * we've send out. 826 */ 827 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 828 829 /* 830 * Update extra components 831 */ 832 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 833 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 834 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry); 835 836 /* 837 * Initialize RX status information, and send frame 838 * to mac80211. 839 */ 840 rx_status = IEEE80211_SKB_RXCB(entry->skb); 841 842 /* Ensure that all fields of rx_status are initialized 843 * properly. The skb->cb array was used for driver 844 * specific informations, so rx_status might contain 845 * garbage. 846 */ 847 memset(rx_status, 0, sizeof(*rx_status)); 848 849 rx_status->mactime = rxdesc.timestamp; 850 rx_status->band = rt2x00dev->curr_band; 851 rx_status->freq = rt2x00dev->curr_freq; 852 rx_status->rate_idx = rate_idx; 853 rx_status->signal = rxdesc.rssi; 854 rx_status->flag = rxdesc.flags; 855 rx_status->enc_flags = rxdesc.enc_flags; 856 rx_status->encoding = rxdesc.encoding; 857 rx_status->bw = rxdesc.bw; 858 rx_status->antenna = rt2x00dev->link.ant.active.rx; 859 860 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 861 862renew_skb: 863 /* 864 * Replace the skb with the freshly allocated one. 865 */ 866 entry->skb = skb; 867 868submit_entry: 869 entry->flags = 0; 870 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 871 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 872 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 873 rt2x00dev->ops->lib->clear_entry(entry); 874} 875EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 876 877/* 878 * Driver initialization handlers. 879 */ 880const struct rt2x00_rate rt2x00_supported_rates[12] = { 881 { 882 .flags = DEV_RATE_CCK, 883 .bitrate = 10, 884 .ratemask = BIT(0), 885 .plcp = 0x00, 886 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 887 }, 888 { 889 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 890 .bitrate = 20, 891 .ratemask = BIT(1), 892 .plcp = 0x01, 893 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 894 }, 895 { 896 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 897 .bitrate = 55, 898 .ratemask = BIT(2), 899 .plcp = 0x02, 900 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 901 }, 902 { 903 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 904 .bitrate = 110, 905 .ratemask = BIT(3), 906 .plcp = 0x03, 907 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 908 }, 909 { 910 .flags = DEV_RATE_OFDM, 911 .bitrate = 60, 912 .ratemask = BIT(4), 913 .plcp = 0x0b, 914 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 915 }, 916 { 917 .flags = DEV_RATE_OFDM, 918 .bitrate = 90, 919 .ratemask = BIT(5), 920 .plcp = 0x0f, 921 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 922 }, 923 { 924 .flags = DEV_RATE_OFDM, 925 .bitrate = 120, 926 .ratemask = BIT(6), 927 .plcp = 0x0a, 928 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 929 }, 930 { 931 .flags = DEV_RATE_OFDM, 932 .bitrate = 180, 933 .ratemask = BIT(7), 934 .plcp = 0x0e, 935 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 936 }, 937 { 938 .flags = DEV_RATE_OFDM, 939 .bitrate = 240, 940 .ratemask = BIT(8), 941 .plcp = 0x09, 942 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 943 }, 944 { 945 .flags = DEV_RATE_OFDM, 946 .bitrate = 360, 947 .ratemask = BIT(9), 948 .plcp = 0x0d, 949 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 950 }, 951 { 952 .flags = DEV_RATE_OFDM, 953 .bitrate = 480, 954 .ratemask = BIT(10), 955 .plcp = 0x08, 956 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 957 }, 958 { 959 .flags = DEV_RATE_OFDM, 960 .bitrate = 540, 961 .ratemask = BIT(11), 962 .plcp = 0x0c, 963 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 964 }, 965}; 966 967static void rt2x00lib_channel(struct ieee80211_channel *entry, 968 const int channel, const int tx_power, 969 const int value) 970{ 971 /* XXX: this assumption about the band is wrong for 802.11j */ 972 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 973 entry->center_freq = ieee80211_channel_to_frequency(channel, 974 entry->band); 975 entry->hw_value = value; 976 entry->max_power = tx_power; 977 entry->max_antenna_gain = 0xff; 978} 979 980static void rt2x00lib_rate(struct ieee80211_rate *entry, 981 const u16 index, const struct rt2x00_rate *rate) 982{ 983 entry->flags = 0; 984 entry->bitrate = rate->bitrate; 985 entry->hw_value = index; 986 entry->hw_value_short = index; 987 988 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 989 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 990} 991 992void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr) 993{ 994 const char *mac_addr; 995 996 mac_addr = of_get_mac_address(rt2x00dev->dev->of_node); 997 if (!IS_ERR(mac_addr)) 998 ether_addr_copy(eeprom_mac_addr, mac_addr); 999 1000 if (!is_valid_ether_addr(eeprom_mac_addr)) { 1001 eth_random_addr(eeprom_mac_addr); 1002 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr); 1003 } 1004} 1005EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address); 1006 1007static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 1008 struct hw_mode_spec *spec) 1009{ 1010 struct ieee80211_hw *hw = rt2x00dev->hw; 1011 struct ieee80211_channel *channels; 1012 struct ieee80211_rate *rates; 1013 unsigned int num_rates; 1014 unsigned int i; 1015 1016 num_rates = 0; 1017 if (spec->supported_rates & SUPPORT_RATE_CCK) 1018 num_rates += 4; 1019 if (spec->supported_rates & SUPPORT_RATE_OFDM) 1020 num_rates += 8; 1021 1022 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 1023 if (!channels) 1024 return -ENOMEM; 1025 1026 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 1027 if (!rates) 1028 goto exit_free_channels; 1029 1030 /* 1031 * Initialize Rate list. 1032 */ 1033 for (i = 0; i < num_rates; i++) 1034 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 1035 1036 /* 1037 * Initialize Channel list. 1038 */ 1039 for (i = 0; i < spec->num_channels; i++) { 1040 rt2x00lib_channel(&channels[i], 1041 spec->channels[i].channel, 1042 spec->channels_info[i].max_power, i); 1043 } 1044 1045 /* 1046 * Intitialize 802.11b, 802.11g 1047 * Rates: CCK, OFDM. 1048 * Channels: 2.4 GHz 1049 */ 1050 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 1051 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; 1052 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; 1053 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; 1054 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; 1055 hw->wiphy->bands[NL80211_BAND_2GHZ] = 1056 &rt2x00dev->bands[NL80211_BAND_2GHZ]; 1057 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, 1058 &spec->ht, sizeof(spec->ht)); 1059 } 1060 1061 /* 1062 * Intitialize 802.11a 1063 * Rates: OFDM. 1064 * Channels: OFDM, UNII, HiperLAN2. 1065 */ 1066 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 1067 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = 1068 spec->num_channels - 14; 1069 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = 1070 num_rates - 4; 1071 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; 1072 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; 1073 hw->wiphy->bands[NL80211_BAND_5GHZ] = 1074 &rt2x00dev->bands[NL80211_BAND_5GHZ]; 1075 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, 1076 &spec->ht, sizeof(spec->ht)); 1077 } 1078 1079 return 0; 1080 1081 exit_free_channels: 1082 kfree(channels); 1083 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1084 return -ENOMEM; 1085} 1086 1087static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1088{ 1089 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1090 ieee80211_unregister_hw(rt2x00dev->hw); 1091 1092 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { 1093 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); 1094 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); 1095 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; 1096 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; 1097 } 1098 1099 kfree(rt2x00dev->spec.channels_info); 1100} 1101 1102static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1103{ 1104 struct hw_mode_spec *spec = &rt2x00dev->spec; 1105 int status; 1106 1107 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1108 return 0; 1109 1110 /* 1111 * Initialize HW modes. 1112 */ 1113 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1114 if (status) 1115 return status; 1116 1117 /* 1118 * Initialize HW fields. 1119 */ 1120 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1121 1122 /* 1123 * Initialize extra TX headroom required. 1124 */ 1125 rt2x00dev->hw->extra_tx_headroom = 1126 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1127 rt2x00dev->extra_tx_headroom); 1128 1129 /* 1130 * Take TX headroom required for alignment into account. 1131 */ 1132 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 1133 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1134 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) 1135 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1136 1137 /* 1138 * Tell mac80211 about the size of our private STA structure. 1139 */ 1140 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1141 1142 /* 1143 * Allocate tx status FIFO for driver use. 1144 */ 1145 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { 1146 /* 1147 * Allocate the txstatus fifo. In the worst case the tx 1148 * status fifo has to hold the tx status of all entries 1149 * in all tx queues. Hence, calculate the kfifo size as 1150 * tx_queues * entry_num and round up to the nearest 1151 * power of 2. 1152 */ 1153 int kfifo_size = 1154 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1155 rt2x00dev->tx->limit * 1156 sizeof(u32)); 1157 1158 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1159 GFP_KERNEL); 1160 if (status) 1161 return status; 1162 } 1163 1164 /* 1165 * Initialize tasklets if used by the driver. Tasklets are 1166 * disabled until the interrupts are turned on. The driver 1167 * has to handle that. 1168 */ 1169#define RT2X00_TASKLET_INIT(taskletname) \ 1170 if (rt2x00dev->ops->lib->taskletname) { \ 1171 tasklet_setup(&rt2x00dev->taskletname, \ 1172 rt2x00dev->ops->lib->taskletname); \ 1173 } 1174 1175 RT2X00_TASKLET_INIT(txstatus_tasklet); 1176 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1177 RT2X00_TASKLET_INIT(tbtt_tasklet); 1178 RT2X00_TASKLET_INIT(rxdone_tasklet); 1179 RT2X00_TASKLET_INIT(autowake_tasklet); 1180 1181#undef RT2X00_TASKLET_INIT 1182 1183 /* 1184 * Register HW. 1185 */ 1186 status = ieee80211_register_hw(rt2x00dev->hw); 1187 if (status) 1188 return status; 1189 1190 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1191 1192 return 0; 1193} 1194 1195/* 1196 * Initialization/uninitialization handlers. 1197 */ 1198static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1199{ 1200 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1201 return; 1202 1203 /* 1204 * Stop rfkill polling. 1205 */ 1206 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1207 rt2x00rfkill_unregister(rt2x00dev); 1208 1209 /* 1210 * Allow the HW to uninitialize. 1211 */ 1212 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1213 1214 /* 1215 * Free allocated queue entries. 1216 */ 1217 rt2x00queue_uninitialize(rt2x00dev); 1218} 1219 1220static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1221{ 1222 int status; 1223 1224 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1225 return 0; 1226 1227 /* 1228 * Allocate all queue entries. 1229 */ 1230 status = rt2x00queue_initialize(rt2x00dev); 1231 if (status) 1232 return status; 1233 1234 /* 1235 * Initialize the device. 1236 */ 1237 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1238 if (status) { 1239 rt2x00queue_uninitialize(rt2x00dev); 1240 return status; 1241 } 1242 1243 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1244 1245 /* 1246 * Start rfkill polling. 1247 */ 1248 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1249 rt2x00rfkill_register(rt2x00dev); 1250 1251 return 0; 1252} 1253 1254int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1255{ 1256 int retval = 0; 1257 1258 /* 1259 * If this is the first interface which is added, 1260 * we should load the firmware now. 1261 */ 1262 retval = rt2x00lib_load_firmware(rt2x00dev); 1263 if (retval) 1264 goto out; 1265 1266 /* 1267 * Initialize the device. 1268 */ 1269 retval = rt2x00lib_initialize(rt2x00dev); 1270 if (retval) 1271 goto out; 1272 1273 rt2x00dev->intf_ap_count = 0; 1274 rt2x00dev->intf_sta_count = 0; 1275 rt2x00dev->intf_associated = 0; 1276 rt2x00dev->intf_beaconing = 0; 1277 1278 /* Enable the radio */ 1279 retval = rt2x00lib_enable_radio(rt2x00dev); 1280 if (retval) 1281 goto out; 1282 1283 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1284 1285out: 1286 return retval; 1287} 1288 1289void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1290{ 1291 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1292 return; 1293 1294 /* 1295 * Perhaps we can add something smarter here, 1296 * but for now just disabling the radio should do. 1297 */ 1298 rt2x00lib_disable_radio(rt2x00dev); 1299 1300 rt2x00dev->intf_ap_count = 0; 1301 rt2x00dev->intf_sta_count = 0; 1302 rt2x00dev->intf_associated = 0; 1303 rt2x00dev->intf_beaconing = 0; 1304} 1305 1306static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1307{ 1308 struct ieee80211_iface_limit *if_limit; 1309 struct ieee80211_iface_combination *if_combination; 1310 1311 if (rt2x00dev->ops->max_ap_intf < 2) 1312 return; 1313 1314 /* 1315 * Build up AP interface limits structure. 1316 */ 1317 if_limit = &rt2x00dev->if_limits_ap; 1318 if_limit->max = rt2x00dev->ops->max_ap_intf; 1319 if_limit->types = BIT(NL80211_IFTYPE_AP); 1320#ifdef CONFIG_MAC80211_MESH 1321 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1322#endif 1323 1324 /* 1325 * Build up AP interface combinations structure. 1326 */ 1327 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1328 if_combination->limits = if_limit; 1329 if_combination->n_limits = 1; 1330 if_combination->max_interfaces = if_limit->max; 1331 if_combination->num_different_channels = 1; 1332 1333 /* 1334 * Finally, specify the possible combinations to mac80211. 1335 */ 1336 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1337 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1338} 1339 1340static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1341{ 1342 if (WARN_ON(!rt2x00dev->tx)) 1343 return 0; 1344 1345 if (rt2x00_is_usb(rt2x00dev)) 1346 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1347 1348 return rt2x00dev->tx[0].winfo_size; 1349} 1350 1351/* 1352 * driver allocation handlers. 1353 */ 1354int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1355{ 1356 int retval = -ENOMEM; 1357 1358 /* 1359 * Set possible interface combinations. 1360 */ 1361 rt2x00lib_set_if_combinations(rt2x00dev); 1362 1363 /* 1364 * Allocate the driver data memory, if necessary. 1365 */ 1366 if (rt2x00dev->ops->drv_data_size > 0) { 1367 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1368 GFP_KERNEL); 1369 if (!rt2x00dev->drv_data) { 1370 retval = -ENOMEM; 1371 goto exit; 1372 } 1373 } 1374 1375 spin_lock_init(&rt2x00dev->irqmask_lock); 1376 mutex_init(&rt2x00dev->csr_mutex); 1377 mutex_init(&rt2x00dev->conf_mutex); 1378 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1379 spin_lock_init(&rt2x00dev->bar_list_lock); 1380 hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC, 1381 HRTIMER_MODE_REL); 1382 1383 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1384 1385 /* 1386 * Make room for rt2x00_intf inside the per-interface 1387 * structure ieee80211_vif. 1388 */ 1389 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1390 1391 /* 1392 * rt2x00 devices can only use the last n bits of the MAC address 1393 * for virtual interfaces. 1394 */ 1395 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1396 (rt2x00dev->ops->max_ap_intf - 1); 1397 1398 /* 1399 * Initialize work. 1400 */ 1401 rt2x00dev->workqueue = 1402 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1403 if (!rt2x00dev->workqueue) { 1404 retval = -ENOMEM; 1405 goto exit; 1406 } 1407 1408 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1409 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1410 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1411 1412 /* 1413 * Let the driver probe the device to detect the capabilities. 1414 */ 1415 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1416 if (retval) { 1417 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1418 goto exit; 1419 } 1420 1421 /* 1422 * Allocate queue array. 1423 */ 1424 retval = rt2x00queue_allocate(rt2x00dev); 1425 if (retval) 1426 goto exit; 1427 1428 /* Cache TX headroom value */ 1429 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1430 1431 /* 1432 * Determine which operating modes are supported, all modes 1433 * which require beaconing, depend on the availability of 1434 * beacon entries. 1435 */ 1436 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1437 if (rt2x00dev->bcn->limit > 0) 1438 rt2x00dev->hw->wiphy->interface_modes |= 1439 BIT(NL80211_IFTYPE_ADHOC) | 1440#ifdef CONFIG_MAC80211_MESH 1441 BIT(NL80211_IFTYPE_MESH_POINT) | 1442#endif 1443#ifdef CONFIG_WIRELESS_WDS 1444 BIT(NL80211_IFTYPE_WDS) | 1445#endif 1446 BIT(NL80211_IFTYPE_AP); 1447 1448 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1449 1450 wiphy_ext_feature_set(rt2x00dev->hw->wiphy, 1451 NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1452 1453 /* 1454 * Initialize ieee80211 structure. 1455 */ 1456 retval = rt2x00lib_probe_hw(rt2x00dev); 1457 if (retval) { 1458 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1459 goto exit; 1460 } 1461 1462 /* 1463 * Register extra components. 1464 */ 1465 rt2x00link_register(rt2x00dev); 1466 rt2x00leds_register(rt2x00dev); 1467 rt2x00debug_register(rt2x00dev); 1468 1469 /* 1470 * Start rfkill polling. 1471 */ 1472 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1473 rt2x00rfkill_register(rt2x00dev); 1474 1475 return 0; 1476 1477exit: 1478 rt2x00lib_remove_dev(rt2x00dev); 1479 1480 return retval; 1481} 1482EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1483 1484void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1485{ 1486 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1487 1488 /* 1489 * Stop rfkill polling. 1490 */ 1491 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1492 rt2x00rfkill_unregister(rt2x00dev); 1493 1494 /* 1495 * Disable radio. 1496 */ 1497 rt2x00lib_disable_radio(rt2x00dev); 1498 1499 /* 1500 * Stop all work. 1501 */ 1502 cancel_work_sync(&rt2x00dev->intf_work); 1503 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1504 cancel_work_sync(&rt2x00dev->sleep_work); 1505 1506 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1507 1508 /* 1509 * Kill the tx status tasklet. 1510 */ 1511 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1512 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1513 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1514 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1515 tasklet_kill(&rt2x00dev->autowake_tasklet); 1516 1517 /* 1518 * Uninitialize device. 1519 */ 1520 rt2x00lib_uninitialize(rt2x00dev); 1521 1522 if (rt2x00dev->workqueue) 1523 destroy_workqueue(rt2x00dev->workqueue); 1524 1525 /* 1526 * Free the tx status fifo. 1527 */ 1528 kfifo_free(&rt2x00dev->txstatus_fifo); 1529 1530 /* 1531 * Free extra components 1532 */ 1533 rt2x00debug_deregister(rt2x00dev); 1534 rt2x00leds_unregister(rt2x00dev); 1535 1536 /* 1537 * Free ieee80211_hw memory. 1538 */ 1539 rt2x00lib_remove_hw(rt2x00dev); 1540 1541 /* 1542 * Free firmware image. 1543 */ 1544 rt2x00lib_free_firmware(rt2x00dev); 1545 1546 /* 1547 * Free queue structures. 1548 */ 1549 rt2x00queue_free(rt2x00dev); 1550 1551 /* 1552 * Free the driver data. 1553 */ 1554 kfree(rt2x00dev->drv_data); 1555} 1556EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1557 1558/* 1559 * Device state handlers 1560 */ 1561int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev) 1562{ 1563 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1564 1565 /* 1566 * Prevent mac80211 from accessing driver while suspended. 1567 */ 1568 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1569 return 0; 1570 1571 /* 1572 * Cleanup as much as possible. 1573 */ 1574 rt2x00lib_uninitialize(rt2x00dev); 1575 1576 /* 1577 * Suspend/disable extra components. 1578 */ 1579 rt2x00leds_suspend(rt2x00dev); 1580 rt2x00debug_deregister(rt2x00dev); 1581 1582 /* 1583 * Set device mode to sleep for power management, 1584 * on some hardware this call seems to consistently fail. 1585 * From the specifications it is hard to tell why it fails, 1586 * and if this is a "bad thing". 1587 * Overall it is safe to just ignore the failure and 1588 * continue suspending. The only downside is that the 1589 * device will not be in optimal power save mode, but with 1590 * the radio and the other components already disabled the 1591 * device is as good as disabled. 1592 */ 1593 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1594 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1595 1596 return 0; 1597} 1598EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1599 1600int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1601{ 1602 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1603 1604 /* 1605 * Restore/enable extra components. 1606 */ 1607 rt2x00debug_register(rt2x00dev); 1608 rt2x00leds_resume(rt2x00dev); 1609 1610 /* 1611 * We are ready again to receive requests from mac80211. 1612 */ 1613 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1614 1615 return 0; 1616} 1617EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1618 1619/* 1620 * rt2x00lib module information. 1621 */ 1622MODULE_AUTHOR(DRV_PROJECT); 1623MODULE_VERSION(DRV_VERSION); 1624MODULE_DESCRIPTION("rt2x00 library"); 1625MODULE_LICENSE("GPL"); 1626