1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5	<http://rt2x00.serialmonkey.com>
6
7 */
8
9/*
10	Module: rt2x00lib
11	Abstract: rt2x00 generic device routines.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/log2.h>
18#include <linux/of.h>
19#include <linux/of_net.h>
20
21#include "rt2x00.h"
22#include "rt2x00lib.h"
23
24/*
25 * Utility functions.
26 */
27u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
28			 struct ieee80211_vif *vif)
29{
30	/*
31	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
32	 * contains the bss number, see BSS_ID_MASK comments for details.
33	 */
34	if (rt2x00dev->intf_sta_count)
35		return 0;
36	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
37}
38EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
39
40/*
41 * Radio control handlers.
42 */
43int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
44{
45	int status;
46
47	/*
48	 * Don't enable the radio twice.
49	 * And check if the hardware button has been disabled.
50	 */
51	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
52		return 0;
53
54	/*
55	 * Initialize all data queues.
56	 */
57	rt2x00queue_init_queues(rt2x00dev);
58
59	/*
60	 * Enable radio.
61	 */
62	status =
63	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
64	if (status)
65		return status;
66
67	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
68
69	rt2x00leds_led_radio(rt2x00dev, true);
70	rt2x00led_led_activity(rt2x00dev, true);
71
72	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
73
74	/*
75	 * Enable queues.
76	 */
77	rt2x00queue_start_queues(rt2x00dev);
78	rt2x00link_start_tuner(rt2x00dev);
79
80	/*
81	 * Start watchdog monitoring.
82	 */
83	rt2x00link_start_watchdog(rt2x00dev);
84
85	return 0;
86}
87
88void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89{
90	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
91		return;
92
93	/*
94	 * Stop watchdog monitoring.
95	 */
96	rt2x00link_stop_watchdog(rt2x00dev);
97
98	/*
99	 * Stop all queues
100	 */
101	rt2x00link_stop_tuner(rt2x00dev);
102	rt2x00queue_stop_queues(rt2x00dev);
103	rt2x00queue_flush_queues(rt2x00dev, true);
104	rt2x00queue_stop_queue(rt2x00dev->bcn);
105
106	/*
107	 * Disable radio.
108	 */
109	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
110	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
111	rt2x00led_led_activity(rt2x00dev, false);
112	rt2x00leds_led_radio(rt2x00dev, false);
113}
114
115static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
116					  struct ieee80211_vif *vif)
117{
118	struct rt2x00_dev *rt2x00dev = data;
119	struct rt2x00_intf *intf = vif_to_intf(vif);
120
121	/*
122	 * It is possible the radio was disabled while the work had been
123	 * scheduled. If that happens we should return here immediately,
124	 * note that in the spinlock protected area above the delayed_flags
125	 * have been cleared correctly.
126	 */
127	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
128		return;
129
130	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
131		mutex_lock(&intf->beacon_skb_mutex);
132		rt2x00queue_update_beacon(rt2x00dev, vif);
133		mutex_unlock(&intf->beacon_skb_mutex);
134	}
135}
136
137static void rt2x00lib_intf_scheduled(struct work_struct *work)
138{
139	struct rt2x00_dev *rt2x00dev =
140	    container_of(work, struct rt2x00_dev, intf_work);
141
142	/*
143	 * Iterate over each interface and perform the
144	 * requested configurations.
145	 */
146	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
147					    IEEE80211_IFACE_ITER_RESUME_ALL,
148					    rt2x00lib_intf_scheduled_iter,
149					    rt2x00dev);
150}
151
152static void rt2x00lib_autowakeup(struct work_struct *work)
153{
154	struct rt2x00_dev *rt2x00dev =
155	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
156
157	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
158		return;
159
160	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
161		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
162	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
163}
164
165/*
166 * Interrupt context handlers.
167 */
168static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
169				     struct ieee80211_vif *vif)
170{
171	struct ieee80211_tx_control control = {};
172	struct rt2x00_dev *rt2x00dev = data;
173	struct sk_buff *skb;
174
175	/*
176	 * Only AP mode interfaces do broad- and multicast buffering
177	 */
178	if (vif->type != NL80211_IFTYPE_AP)
179		return;
180
181	/*
182	 * Send out buffered broad- and multicast frames
183	 */
184	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
185	while (skb) {
186		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
187		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
188	}
189}
190
191static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
192					struct ieee80211_vif *vif)
193{
194	struct rt2x00_dev *rt2x00dev = data;
195
196	if (vif->type != NL80211_IFTYPE_AP &&
197	    vif->type != NL80211_IFTYPE_ADHOC &&
198	    vif->type != NL80211_IFTYPE_MESH_POINT &&
199	    vif->type != NL80211_IFTYPE_WDS)
200		return;
201
202	/*
203	 * Update the beacon without locking. This is safe on PCI devices
204	 * as they only update the beacon periodically here. This should
205	 * never be called for USB devices.
206	 */
207	WARN_ON(rt2x00_is_usb(rt2x00dev));
208	rt2x00queue_update_beacon(rt2x00dev, vif);
209}
210
211void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
212{
213	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
214		return;
215
216	/* send buffered bc/mc frames out for every bssid */
217	ieee80211_iterate_active_interfaces_atomic(
218		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
219		rt2x00lib_bc_buffer_iter, rt2x00dev);
220	/*
221	 * Devices with pre tbtt interrupt don't need to update the beacon
222	 * here as they will fetch the next beacon directly prior to
223	 * transmission.
224	 */
225	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
226		return;
227
228	/* fetch next beacon */
229	ieee80211_iterate_active_interfaces_atomic(
230		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
231		rt2x00lib_beaconupdate_iter, rt2x00dev);
232}
233EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
234
235void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
236{
237	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
238		return;
239
240	/* fetch next beacon */
241	ieee80211_iterate_active_interfaces_atomic(
242		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
243		rt2x00lib_beaconupdate_iter, rt2x00dev);
244}
245EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
246
247void rt2x00lib_dmastart(struct queue_entry *entry)
248{
249	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
250	rt2x00queue_index_inc(entry, Q_INDEX);
251}
252EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
253
254void rt2x00lib_dmadone(struct queue_entry *entry)
255{
256	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
257	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
258	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
259}
260EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
261
262static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
263{
264	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
265	struct ieee80211_bar *bar = (void *) entry->skb->data;
266	struct rt2x00_bar_list_entry *bar_entry;
267	int ret;
268
269	if (likely(!ieee80211_is_back_req(bar->frame_control)))
270		return 0;
271
272	/*
273	 * Unlike all other frames, the status report for BARs does
274	 * not directly come from the hardware as it is incapable of
275	 * matching a BA to a previously send BAR. The hardware will
276	 * report all BARs as if they weren't acked at all.
277	 *
278	 * Instead the RX-path will scan for incoming BAs and set the
279	 * block_acked flag if it sees one that was likely caused by
280	 * a BAR from us.
281	 *
282	 * Remove remaining BARs here and return their status for
283	 * TX done processing.
284	 */
285	ret = 0;
286	rcu_read_lock();
287	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
288		if (bar_entry->entry != entry)
289			continue;
290
291		spin_lock_bh(&rt2x00dev->bar_list_lock);
292		/* Return whether this BAR was blockacked or not */
293		ret = bar_entry->block_acked;
294		/* Remove the BAR from our checklist */
295		list_del_rcu(&bar_entry->list);
296		spin_unlock_bh(&rt2x00dev->bar_list_lock);
297		kfree_rcu(bar_entry, head);
298
299		break;
300	}
301	rcu_read_unlock();
302
303	return ret;
304}
305
306static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
307				     struct ieee80211_tx_info *tx_info,
308				     struct skb_frame_desc *skbdesc,
309				     struct txdone_entry_desc *txdesc,
310				     bool success)
311{
312	u8 rate_idx, rate_flags, retry_rates;
313	int i;
314
315	rate_idx = skbdesc->tx_rate_idx;
316	rate_flags = skbdesc->tx_rate_flags;
317	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
318	    (txdesc->retry + 1) : 1;
319
320	/*
321	 * Initialize TX status
322	 */
323	memset(&tx_info->status, 0, sizeof(tx_info->status));
324	tx_info->status.ack_signal = 0;
325
326	/*
327	 * Frame was send with retries, hardware tried
328	 * different rates to send out the frame, at each
329	 * retry it lowered the rate 1 step except when the
330	 * lowest rate was used.
331	 */
332	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
333		tx_info->status.rates[i].idx = rate_idx - i;
334		tx_info->status.rates[i].flags = rate_flags;
335
336		if (rate_idx - i == 0) {
337			/*
338			 * The lowest rate (index 0) was used until the
339			 * number of max retries was reached.
340			 */
341			tx_info->status.rates[i].count = retry_rates - i;
342			i++;
343			break;
344		}
345		tx_info->status.rates[i].count = 1;
346	}
347	if (i < (IEEE80211_TX_MAX_RATES - 1))
348		tx_info->status.rates[i].idx = -1; /* terminate */
349
350	if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
351		tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
352
353	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
354		if (success)
355			tx_info->flags |= IEEE80211_TX_STAT_ACK;
356		else
357			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
358	}
359
360	/*
361	 * Every single frame has it's own tx status, hence report
362	 * every frame as ampdu of size 1.
363	 *
364	 * TODO: if we can find out how many frames were aggregated
365	 * by the hw we could provide the real ampdu_len to mac80211
366	 * which would allow the rc algorithm to better decide on
367	 * which rates are suitable.
368	 */
369	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
370	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
371		tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
372				  IEEE80211_TX_CTL_AMPDU;
373		tx_info->status.ampdu_len = 1;
374		tx_info->status.ampdu_ack_len = success ? 1 : 0;
375	}
376
377	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
378		if (success)
379			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
380		else
381			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
382	}
383}
384
385static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
386				  struct queue_entry *entry)
387{
388	/*
389	 * Make this entry available for reuse.
390	 */
391	entry->skb = NULL;
392	entry->flags = 0;
393
394	rt2x00dev->ops->lib->clear_entry(entry);
395
396	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
397
398	/*
399	 * If the data queue was below the threshold before the txdone
400	 * handler we must make sure the packet queue in the mac80211 stack
401	 * is reenabled when the txdone handler has finished. This has to be
402	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
403	 * before it was stopped.
404	 */
405	spin_lock_bh(&entry->queue->tx_lock);
406	if (!rt2x00queue_threshold(entry->queue))
407		rt2x00queue_unpause_queue(entry->queue);
408	spin_unlock_bh(&entry->queue->tx_lock);
409}
410
411void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
412			      struct txdone_entry_desc *txdesc)
413{
414	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
415	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
416	struct ieee80211_tx_info txinfo = {};
417	bool success;
418
419	/*
420	 * Unmap the skb.
421	 */
422	rt2x00queue_unmap_skb(entry);
423
424	/*
425	 * Signal that the TX descriptor is no longer in the skb.
426	 */
427	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
428
429	/*
430	 * Send frame to debugfs immediately, after this call is completed
431	 * we are going to overwrite the skb->cb array.
432	 */
433	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
434
435	/*
436	 * Determine if the frame has been successfully transmitted and
437	 * remove BARs from our check list while checking for their
438	 * TX status.
439	 */
440	success =
441	    rt2x00lib_txdone_bar_status(entry) ||
442	    test_bit(TXDONE_SUCCESS, &txdesc->flags);
443
444	if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
445		/*
446		 * Update TX statistics.
447		 */
448		rt2x00dev->link.qual.tx_success += success;
449		rt2x00dev->link.qual.tx_failed += !success;
450
451		rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
452					 success);
453		ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
454	}
455
456	dev_kfree_skb_any(entry->skb);
457	rt2x00lib_clear_entry(rt2x00dev, entry);
458}
459EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
460
461void rt2x00lib_txdone(struct queue_entry *entry,
462		      struct txdone_entry_desc *txdesc)
463{
464	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
465	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
466	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
467	u8 skbdesc_flags = skbdesc->flags;
468	unsigned int header_length;
469	bool success;
470
471	/*
472	 * Unmap the skb.
473	 */
474	rt2x00queue_unmap_skb(entry);
475
476	/*
477	 * Remove the extra tx headroom from the skb.
478	 */
479	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
480
481	/*
482	 * Signal that the TX descriptor is no longer in the skb.
483	 */
484	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
485
486	/*
487	 * Determine the length of 802.11 header.
488	 */
489	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
490
491	/*
492	 * Remove L2 padding which was added during
493	 */
494	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
495		rt2x00queue_remove_l2pad(entry->skb, header_length);
496
497	/*
498	 * If the IV/EIV data was stripped from the frame before it was
499	 * passed to the hardware, we should now reinsert it again because
500	 * mac80211 will expect the same data to be present it the
501	 * frame as it was passed to us.
502	 */
503	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
504		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
505
506	/*
507	 * Send frame to debugfs immediately, after this call is completed
508	 * we are going to overwrite the skb->cb array.
509	 */
510	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
511
512	/*
513	 * Determine if the frame has been successfully transmitted and
514	 * remove BARs from our check list while checking for their
515	 * TX status.
516	 */
517	success =
518	    rt2x00lib_txdone_bar_status(entry) ||
519	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
520	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
521
522	/*
523	 * Update TX statistics.
524	 */
525	rt2x00dev->link.qual.tx_success += success;
526	rt2x00dev->link.qual.tx_failed += !success;
527
528	rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
529
530	/*
531	 * Only send the status report to mac80211 when it's a frame
532	 * that originated in mac80211. If this was a extra frame coming
533	 * through a mac80211 library call (RTS/CTS) then we should not
534	 * send the status report back.
535	 */
536	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
537		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
538			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
539		else
540			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
541	} else {
542		dev_kfree_skb_any(entry->skb);
543	}
544
545	rt2x00lib_clear_entry(rt2x00dev, entry);
546}
547EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
548
549void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
550{
551	struct txdone_entry_desc txdesc;
552
553	txdesc.flags = 0;
554	__set_bit(status, &txdesc.flags);
555	txdesc.retry = 0;
556
557	rt2x00lib_txdone(entry, &txdesc);
558}
559EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
560
561static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
562{
563	struct ieee80211_mgmt *mgmt = (void *)data;
564	u8 *pos, *end;
565
566	pos = (u8 *)mgmt->u.beacon.variable;
567	end = data + len;
568	while (pos < end) {
569		if (pos + 2 + pos[1] > end)
570			return NULL;
571
572		if (pos[0] == ie)
573			return pos;
574
575		pos += 2 + pos[1];
576	}
577
578	return NULL;
579}
580
581static void rt2x00lib_sleep(struct work_struct *work)
582{
583	struct rt2x00_dev *rt2x00dev =
584	    container_of(work, struct rt2x00_dev, sleep_work);
585
586	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
587		return;
588
589	/*
590	 * Check again is powersaving is enabled, to prevent races from delayed
591	 * work execution.
592	 */
593	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
594		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
595				 IEEE80211_CONF_CHANGE_PS);
596}
597
598static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
599				      struct sk_buff *skb,
600				      struct rxdone_entry_desc *rxdesc)
601{
602	struct rt2x00_bar_list_entry *entry;
603	struct ieee80211_bar *ba = (void *)skb->data;
604
605	if (likely(!ieee80211_is_back(ba->frame_control)))
606		return;
607
608	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
609		return;
610
611	rcu_read_lock();
612	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
613
614		if (ba->start_seq_num != entry->start_seq_num)
615			continue;
616
617#define TID_CHECK(a, b) (						\
618	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
619	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
620
621		if (!TID_CHECK(ba->control, entry->control))
622			continue;
623
624#undef TID_CHECK
625
626		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
627			continue;
628
629		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
630			continue;
631
632		/* Mark BAR since we received the according BA */
633		spin_lock_bh(&rt2x00dev->bar_list_lock);
634		entry->block_acked = 1;
635		spin_unlock_bh(&rt2x00dev->bar_list_lock);
636		break;
637	}
638	rcu_read_unlock();
639
640}
641
642static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
643				      struct sk_buff *skb,
644				      struct rxdone_entry_desc *rxdesc)
645{
646	struct ieee80211_hdr *hdr = (void *) skb->data;
647	struct ieee80211_tim_ie *tim_ie;
648	u8 *tim;
649	u8 tim_len;
650	bool cam;
651
652	/* If this is not a beacon, or if mac80211 has no powersaving
653	 * configured, or if the device is already in powersaving mode
654	 * we can exit now. */
655	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
656		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
657		return;
658
659	/* min. beacon length + FCS_LEN */
660	if (skb->len <= 40 + FCS_LEN)
661		return;
662
663	/* and only beacons from the associated BSSID, please */
664	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
665	    !rt2x00dev->aid)
666		return;
667
668	rt2x00dev->last_beacon = jiffies;
669
670	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
671	if (!tim)
672		return;
673
674	if (tim[1] < sizeof(*tim_ie))
675		return;
676
677	tim_len = tim[1];
678	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
679
680	/* Check whenever the PHY can be turned off again. */
681
682	/* 1. What about buffered unicast traffic for our AID? */
683	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
684
685	/* 2. Maybe the AP wants to send multicast/broadcast data? */
686	cam |= (tim_ie->bitmap_ctrl & 0x01);
687
688	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
689		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
690}
691
692static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
693					struct rxdone_entry_desc *rxdesc)
694{
695	struct ieee80211_supported_band *sband;
696	const struct rt2x00_rate *rate;
697	unsigned int i;
698	int signal = rxdesc->signal;
699	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
700
701	switch (rxdesc->rate_mode) {
702	case RATE_MODE_CCK:
703	case RATE_MODE_OFDM:
704		/*
705		 * For non-HT rates the MCS value needs to contain the
706		 * actually used rate modulation (CCK or OFDM).
707		 */
708		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
709			signal = RATE_MCS(rxdesc->rate_mode, signal);
710
711		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
712		for (i = 0; i < sband->n_bitrates; i++) {
713			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
714			if (((type == RXDONE_SIGNAL_PLCP) &&
715			     (rate->plcp == signal)) ||
716			    ((type == RXDONE_SIGNAL_BITRATE) &&
717			      (rate->bitrate == signal)) ||
718			    ((type == RXDONE_SIGNAL_MCS) &&
719			      (rate->mcs == signal))) {
720				return i;
721			}
722		}
723		break;
724	case RATE_MODE_HT_MIX:
725	case RATE_MODE_HT_GREENFIELD:
726		if (signal >= 0 && signal <= 76)
727			return signal;
728		break;
729	default:
730		break;
731	}
732
733	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
734		    rxdesc->rate_mode, signal, type);
735	return 0;
736}
737
738void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
739{
740	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
741	struct rxdone_entry_desc rxdesc;
742	struct sk_buff *skb;
743	struct ieee80211_rx_status *rx_status;
744	unsigned int header_length;
745	int rate_idx;
746
747	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
748	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
749		goto submit_entry;
750
751	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
752		goto submit_entry;
753
754	/*
755	 * Allocate a new sk_buffer. If no new buffer available, drop the
756	 * received frame and reuse the existing buffer.
757	 */
758	skb = rt2x00queue_alloc_rxskb(entry, gfp);
759	if (!skb)
760		goto submit_entry;
761
762	/*
763	 * Unmap the skb.
764	 */
765	rt2x00queue_unmap_skb(entry);
766
767	/*
768	 * Extract the RXD details.
769	 */
770	memset(&rxdesc, 0, sizeof(rxdesc));
771	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
772
773	/*
774	 * Check for valid size in case we get corrupted descriptor from
775	 * hardware.
776	 */
777	if (unlikely(rxdesc.size == 0 ||
778		     rxdesc.size > entry->queue->data_size)) {
779		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
780			   rxdesc.size, entry->queue->data_size);
781		dev_kfree_skb(entry->skb);
782		goto renew_skb;
783	}
784
785	/*
786	 * The data behind the ieee80211 header must be
787	 * aligned on a 4 byte boundary.
788	 */
789	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
790
791	/*
792	 * Hardware might have stripped the IV/EIV/ICV data,
793	 * in that case it is possible that the data was
794	 * provided separately (through hardware descriptor)
795	 * in which case we should reinsert the data into the frame.
796	 */
797	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
798	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
799		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
800					  &rxdesc);
801	else if (header_length &&
802		 (rxdesc.size > header_length) &&
803		 (rxdesc.dev_flags & RXDONE_L2PAD))
804		rt2x00queue_remove_l2pad(entry->skb, header_length);
805
806	/* Trim buffer to correct size */
807	skb_trim(entry->skb, rxdesc.size);
808
809	/*
810	 * Translate the signal to the correct bitrate index.
811	 */
812	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
813	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
814	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
815		rxdesc.encoding = RX_ENC_HT;
816
817	/*
818	 * Check if this is a beacon, and more frames have been
819	 * buffered while we were in powersaving mode.
820	 */
821	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
822
823	/*
824	 * Check for incoming BlockAcks to match to the BlockAckReqs
825	 * we've send out.
826	 */
827	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
828
829	/*
830	 * Update extra components
831	 */
832	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
833	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
834	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
835
836	/*
837	 * Initialize RX status information, and send frame
838	 * to mac80211.
839	 */
840	rx_status = IEEE80211_SKB_RXCB(entry->skb);
841
842	/* Ensure that all fields of rx_status are initialized
843	 * properly. The skb->cb array was used for driver
844	 * specific informations, so rx_status might contain
845	 * garbage.
846	 */
847	memset(rx_status, 0, sizeof(*rx_status));
848
849	rx_status->mactime = rxdesc.timestamp;
850	rx_status->band = rt2x00dev->curr_band;
851	rx_status->freq = rt2x00dev->curr_freq;
852	rx_status->rate_idx = rate_idx;
853	rx_status->signal = rxdesc.rssi;
854	rx_status->flag = rxdesc.flags;
855	rx_status->enc_flags = rxdesc.enc_flags;
856	rx_status->encoding = rxdesc.encoding;
857	rx_status->bw = rxdesc.bw;
858	rx_status->antenna = rt2x00dev->link.ant.active.rx;
859
860	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
861
862renew_skb:
863	/*
864	 * Replace the skb with the freshly allocated one.
865	 */
866	entry->skb = skb;
867
868submit_entry:
869	entry->flags = 0;
870	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
871	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
872	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
873		rt2x00dev->ops->lib->clear_entry(entry);
874}
875EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
876
877/*
878 * Driver initialization handlers.
879 */
880const struct rt2x00_rate rt2x00_supported_rates[12] = {
881	{
882		.flags = DEV_RATE_CCK,
883		.bitrate = 10,
884		.ratemask = BIT(0),
885		.plcp = 0x00,
886		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
887	},
888	{
889		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
890		.bitrate = 20,
891		.ratemask = BIT(1),
892		.plcp = 0x01,
893		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
894	},
895	{
896		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
897		.bitrate = 55,
898		.ratemask = BIT(2),
899		.plcp = 0x02,
900		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
901	},
902	{
903		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
904		.bitrate = 110,
905		.ratemask = BIT(3),
906		.plcp = 0x03,
907		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
908	},
909	{
910		.flags = DEV_RATE_OFDM,
911		.bitrate = 60,
912		.ratemask = BIT(4),
913		.plcp = 0x0b,
914		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
915	},
916	{
917		.flags = DEV_RATE_OFDM,
918		.bitrate = 90,
919		.ratemask = BIT(5),
920		.plcp = 0x0f,
921		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
922	},
923	{
924		.flags = DEV_RATE_OFDM,
925		.bitrate = 120,
926		.ratemask = BIT(6),
927		.plcp = 0x0a,
928		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
929	},
930	{
931		.flags = DEV_RATE_OFDM,
932		.bitrate = 180,
933		.ratemask = BIT(7),
934		.plcp = 0x0e,
935		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
936	},
937	{
938		.flags = DEV_RATE_OFDM,
939		.bitrate = 240,
940		.ratemask = BIT(8),
941		.plcp = 0x09,
942		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
943	},
944	{
945		.flags = DEV_RATE_OFDM,
946		.bitrate = 360,
947		.ratemask = BIT(9),
948		.plcp = 0x0d,
949		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
950	},
951	{
952		.flags = DEV_RATE_OFDM,
953		.bitrate = 480,
954		.ratemask = BIT(10),
955		.plcp = 0x08,
956		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
957	},
958	{
959		.flags = DEV_RATE_OFDM,
960		.bitrate = 540,
961		.ratemask = BIT(11),
962		.plcp = 0x0c,
963		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
964	},
965};
966
967static void rt2x00lib_channel(struct ieee80211_channel *entry,
968			      const int channel, const int tx_power,
969			      const int value)
970{
971	/* XXX: this assumption about the band is wrong for 802.11j */
972	entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
973	entry->center_freq = ieee80211_channel_to_frequency(channel,
974							    entry->band);
975	entry->hw_value = value;
976	entry->max_power = tx_power;
977	entry->max_antenna_gain = 0xff;
978}
979
980static void rt2x00lib_rate(struct ieee80211_rate *entry,
981			   const u16 index, const struct rt2x00_rate *rate)
982{
983	entry->flags = 0;
984	entry->bitrate = rate->bitrate;
985	entry->hw_value = index;
986	entry->hw_value_short = index;
987
988	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
989		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
990}
991
992void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
993{
994	const char *mac_addr;
995
996	mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
997	if (!IS_ERR(mac_addr))
998		ether_addr_copy(eeprom_mac_addr, mac_addr);
999
1000	if (!is_valid_ether_addr(eeprom_mac_addr)) {
1001		eth_random_addr(eeprom_mac_addr);
1002		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
1003	}
1004}
1005EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1006
1007static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1008				    struct hw_mode_spec *spec)
1009{
1010	struct ieee80211_hw *hw = rt2x00dev->hw;
1011	struct ieee80211_channel *channels;
1012	struct ieee80211_rate *rates;
1013	unsigned int num_rates;
1014	unsigned int i;
1015
1016	num_rates = 0;
1017	if (spec->supported_rates & SUPPORT_RATE_CCK)
1018		num_rates += 4;
1019	if (spec->supported_rates & SUPPORT_RATE_OFDM)
1020		num_rates += 8;
1021
1022	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1023	if (!channels)
1024		return -ENOMEM;
1025
1026	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1027	if (!rates)
1028		goto exit_free_channels;
1029
1030	/*
1031	 * Initialize Rate list.
1032	 */
1033	for (i = 0; i < num_rates; i++)
1034		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1035
1036	/*
1037	 * Initialize Channel list.
1038	 */
1039	for (i = 0; i < spec->num_channels; i++) {
1040		rt2x00lib_channel(&channels[i],
1041				  spec->channels[i].channel,
1042				  spec->channels_info[i].max_power, i);
1043	}
1044
1045	/*
1046	 * Intitialize 802.11b, 802.11g
1047	 * Rates: CCK, OFDM.
1048	 * Channels: 2.4 GHz
1049	 */
1050	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1051		rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1052		rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1053		rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1054		rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1055		hw->wiphy->bands[NL80211_BAND_2GHZ] =
1056		    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1057		memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1058		       &spec->ht, sizeof(spec->ht));
1059	}
1060
1061	/*
1062	 * Intitialize 802.11a
1063	 * Rates: OFDM.
1064	 * Channels: OFDM, UNII, HiperLAN2.
1065	 */
1066	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1067		rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1068		    spec->num_channels - 14;
1069		rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1070		    num_rates - 4;
1071		rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1072		rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1073		hw->wiphy->bands[NL80211_BAND_5GHZ] =
1074		    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1075		memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1076		       &spec->ht, sizeof(spec->ht));
1077	}
1078
1079	return 0;
1080
1081 exit_free_channels:
1082	kfree(channels);
1083	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1084	return -ENOMEM;
1085}
1086
1087static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1088{
1089	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1090		ieee80211_unregister_hw(rt2x00dev->hw);
1091
1092	if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1093		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1094		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1095		rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1096		rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1097	}
1098
1099	kfree(rt2x00dev->spec.channels_info);
1100}
1101
1102static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1103{
1104	struct hw_mode_spec *spec = &rt2x00dev->spec;
1105	int status;
1106
1107	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1108		return 0;
1109
1110	/*
1111	 * Initialize HW modes.
1112	 */
1113	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1114	if (status)
1115		return status;
1116
1117	/*
1118	 * Initialize HW fields.
1119	 */
1120	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1121
1122	/*
1123	 * Initialize extra TX headroom required.
1124	 */
1125	rt2x00dev->hw->extra_tx_headroom =
1126		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1127		      rt2x00dev->extra_tx_headroom);
1128
1129	/*
1130	 * Take TX headroom required for alignment into account.
1131	 */
1132	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1133		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1134	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1135		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1136
1137	/*
1138	 * Tell mac80211 about the size of our private STA structure.
1139	 */
1140	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1141
1142	/*
1143	 * Allocate tx status FIFO for driver use.
1144	 */
1145	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1146		/*
1147		 * Allocate the txstatus fifo. In the worst case the tx
1148		 * status fifo has to hold the tx status of all entries
1149		 * in all tx queues. Hence, calculate the kfifo size as
1150		 * tx_queues * entry_num and round up to the nearest
1151		 * power of 2.
1152		 */
1153		int kfifo_size =
1154			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1155					   rt2x00dev->tx->limit *
1156					   sizeof(u32));
1157
1158		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1159				     GFP_KERNEL);
1160		if (status)
1161			return status;
1162	}
1163
1164	/*
1165	 * Initialize tasklets if used by the driver. Tasklets are
1166	 * disabled until the interrupts are turned on. The driver
1167	 * has to handle that.
1168	 */
1169#define RT2X00_TASKLET_INIT(taskletname) \
1170	if (rt2x00dev->ops->lib->taskletname) { \
1171		tasklet_setup(&rt2x00dev->taskletname, \
1172			     rt2x00dev->ops->lib->taskletname); \
1173	}
1174
1175	RT2X00_TASKLET_INIT(txstatus_tasklet);
1176	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1177	RT2X00_TASKLET_INIT(tbtt_tasklet);
1178	RT2X00_TASKLET_INIT(rxdone_tasklet);
1179	RT2X00_TASKLET_INIT(autowake_tasklet);
1180
1181#undef RT2X00_TASKLET_INIT
1182
1183	/*
1184	 * Register HW.
1185	 */
1186	status = ieee80211_register_hw(rt2x00dev->hw);
1187	if (status)
1188		return status;
1189
1190	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1191
1192	return 0;
1193}
1194
1195/*
1196 * Initialization/uninitialization handlers.
1197 */
1198static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1199{
1200	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1201		return;
1202
1203	/*
1204	 * Stop rfkill polling.
1205	 */
1206	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1207		rt2x00rfkill_unregister(rt2x00dev);
1208
1209	/*
1210	 * Allow the HW to uninitialize.
1211	 */
1212	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1213
1214	/*
1215	 * Free allocated queue entries.
1216	 */
1217	rt2x00queue_uninitialize(rt2x00dev);
1218}
1219
1220static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1221{
1222	int status;
1223
1224	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1225		return 0;
1226
1227	/*
1228	 * Allocate all queue entries.
1229	 */
1230	status = rt2x00queue_initialize(rt2x00dev);
1231	if (status)
1232		return status;
1233
1234	/*
1235	 * Initialize the device.
1236	 */
1237	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1238	if (status) {
1239		rt2x00queue_uninitialize(rt2x00dev);
1240		return status;
1241	}
1242
1243	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1244
1245	/*
1246	 * Start rfkill polling.
1247	 */
1248	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1249		rt2x00rfkill_register(rt2x00dev);
1250
1251	return 0;
1252}
1253
1254int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1255{
1256	int retval = 0;
1257
1258	/*
1259	 * If this is the first interface which is added,
1260	 * we should load the firmware now.
1261	 */
1262	retval = rt2x00lib_load_firmware(rt2x00dev);
1263	if (retval)
1264		goto out;
1265
1266	/*
1267	 * Initialize the device.
1268	 */
1269	retval = rt2x00lib_initialize(rt2x00dev);
1270	if (retval)
1271		goto out;
1272
1273	rt2x00dev->intf_ap_count = 0;
1274	rt2x00dev->intf_sta_count = 0;
1275	rt2x00dev->intf_associated = 0;
1276	rt2x00dev->intf_beaconing = 0;
1277
1278	/* Enable the radio */
1279	retval = rt2x00lib_enable_radio(rt2x00dev);
1280	if (retval)
1281		goto out;
1282
1283	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1284
1285out:
1286	return retval;
1287}
1288
1289void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1290{
1291	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1292		return;
1293
1294	/*
1295	 * Perhaps we can add something smarter here,
1296	 * but for now just disabling the radio should do.
1297	 */
1298	rt2x00lib_disable_radio(rt2x00dev);
1299
1300	rt2x00dev->intf_ap_count = 0;
1301	rt2x00dev->intf_sta_count = 0;
1302	rt2x00dev->intf_associated = 0;
1303	rt2x00dev->intf_beaconing = 0;
1304}
1305
1306static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1307{
1308	struct ieee80211_iface_limit *if_limit;
1309	struct ieee80211_iface_combination *if_combination;
1310
1311	if (rt2x00dev->ops->max_ap_intf < 2)
1312		return;
1313
1314	/*
1315	 * Build up AP interface limits structure.
1316	 */
1317	if_limit = &rt2x00dev->if_limits_ap;
1318	if_limit->max = rt2x00dev->ops->max_ap_intf;
1319	if_limit->types = BIT(NL80211_IFTYPE_AP);
1320#ifdef CONFIG_MAC80211_MESH
1321	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1322#endif
1323
1324	/*
1325	 * Build up AP interface combinations structure.
1326	 */
1327	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1328	if_combination->limits = if_limit;
1329	if_combination->n_limits = 1;
1330	if_combination->max_interfaces = if_limit->max;
1331	if_combination->num_different_channels = 1;
1332
1333	/*
1334	 * Finally, specify the possible combinations to mac80211.
1335	 */
1336	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1337	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1338}
1339
1340static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1341{
1342	if (WARN_ON(!rt2x00dev->tx))
1343		return 0;
1344
1345	if (rt2x00_is_usb(rt2x00dev))
1346		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1347
1348	return rt2x00dev->tx[0].winfo_size;
1349}
1350
1351/*
1352 * driver allocation handlers.
1353 */
1354int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1355{
1356	int retval = -ENOMEM;
1357
1358	/*
1359	 * Set possible interface combinations.
1360	 */
1361	rt2x00lib_set_if_combinations(rt2x00dev);
1362
1363	/*
1364	 * Allocate the driver data memory, if necessary.
1365	 */
1366	if (rt2x00dev->ops->drv_data_size > 0) {
1367		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1368			                      GFP_KERNEL);
1369		if (!rt2x00dev->drv_data) {
1370			retval = -ENOMEM;
1371			goto exit;
1372		}
1373	}
1374
1375	spin_lock_init(&rt2x00dev->irqmask_lock);
1376	mutex_init(&rt2x00dev->csr_mutex);
1377	mutex_init(&rt2x00dev->conf_mutex);
1378	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1379	spin_lock_init(&rt2x00dev->bar_list_lock);
1380	hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1381		     HRTIMER_MODE_REL);
1382
1383	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1384
1385	/*
1386	 * Make room for rt2x00_intf inside the per-interface
1387	 * structure ieee80211_vif.
1388	 */
1389	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1390
1391	/*
1392	 * rt2x00 devices can only use the last n bits of the MAC address
1393	 * for virtual interfaces.
1394	 */
1395	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1396		(rt2x00dev->ops->max_ap_intf - 1);
1397
1398	/*
1399	 * Initialize work.
1400	 */
1401	rt2x00dev->workqueue =
1402	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1403	if (!rt2x00dev->workqueue) {
1404		retval = -ENOMEM;
1405		goto exit;
1406	}
1407
1408	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1409	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1410	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1411
1412	/*
1413	 * Let the driver probe the device to detect the capabilities.
1414	 */
1415	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1416	if (retval) {
1417		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1418		goto exit;
1419	}
1420
1421	/*
1422	 * Allocate queue array.
1423	 */
1424	retval = rt2x00queue_allocate(rt2x00dev);
1425	if (retval)
1426		goto exit;
1427
1428	/* Cache TX headroom value */
1429	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1430
1431	/*
1432	 * Determine which operating modes are supported, all modes
1433	 * which require beaconing, depend on the availability of
1434	 * beacon entries.
1435	 */
1436	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1437	if (rt2x00dev->bcn->limit > 0)
1438		rt2x00dev->hw->wiphy->interface_modes |=
1439		    BIT(NL80211_IFTYPE_ADHOC) |
1440#ifdef CONFIG_MAC80211_MESH
1441		    BIT(NL80211_IFTYPE_MESH_POINT) |
1442#endif
1443#ifdef CONFIG_WIRELESS_WDS
1444		    BIT(NL80211_IFTYPE_WDS) |
1445#endif
1446		    BIT(NL80211_IFTYPE_AP);
1447
1448	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1449
1450	wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1451			      NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1452
1453	/*
1454	 * Initialize ieee80211 structure.
1455	 */
1456	retval = rt2x00lib_probe_hw(rt2x00dev);
1457	if (retval) {
1458		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1459		goto exit;
1460	}
1461
1462	/*
1463	 * Register extra components.
1464	 */
1465	rt2x00link_register(rt2x00dev);
1466	rt2x00leds_register(rt2x00dev);
1467	rt2x00debug_register(rt2x00dev);
1468
1469	/*
1470	 * Start rfkill polling.
1471	 */
1472	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1473		rt2x00rfkill_register(rt2x00dev);
1474
1475	return 0;
1476
1477exit:
1478	rt2x00lib_remove_dev(rt2x00dev);
1479
1480	return retval;
1481}
1482EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1483
1484void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1485{
1486	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1487
1488	/*
1489	 * Stop rfkill polling.
1490	 */
1491	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1492		rt2x00rfkill_unregister(rt2x00dev);
1493
1494	/*
1495	 * Disable radio.
1496	 */
1497	rt2x00lib_disable_radio(rt2x00dev);
1498
1499	/*
1500	 * Stop all work.
1501	 */
1502	cancel_work_sync(&rt2x00dev->intf_work);
1503	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1504	cancel_work_sync(&rt2x00dev->sleep_work);
1505
1506	hrtimer_cancel(&rt2x00dev->txstatus_timer);
1507
1508	/*
1509	 * Kill the tx status tasklet.
1510	 */
1511	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1512	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1513	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1514	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1515	tasklet_kill(&rt2x00dev->autowake_tasklet);
1516
1517	/*
1518	 * Uninitialize device.
1519	 */
1520	rt2x00lib_uninitialize(rt2x00dev);
1521
1522	if (rt2x00dev->workqueue)
1523		destroy_workqueue(rt2x00dev->workqueue);
1524
1525	/*
1526	 * Free the tx status fifo.
1527	 */
1528	kfifo_free(&rt2x00dev->txstatus_fifo);
1529
1530	/*
1531	 * Free extra components
1532	 */
1533	rt2x00debug_deregister(rt2x00dev);
1534	rt2x00leds_unregister(rt2x00dev);
1535
1536	/*
1537	 * Free ieee80211_hw memory.
1538	 */
1539	rt2x00lib_remove_hw(rt2x00dev);
1540
1541	/*
1542	 * Free firmware image.
1543	 */
1544	rt2x00lib_free_firmware(rt2x00dev);
1545
1546	/*
1547	 * Free queue structures.
1548	 */
1549	rt2x00queue_free(rt2x00dev);
1550
1551	/*
1552	 * Free the driver data.
1553	 */
1554	kfree(rt2x00dev->drv_data);
1555}
1556EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1557
1558/*
1559 * Device state handlers
1560 */
1561int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
1562{
1563	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1564
1565	/*
1566	 * Prevent mac80211 from accessing driver while suspended.
1567	 */
1568	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1569		return 0;
1570
1571	/*
1572	 * Cleanup as much as possible.
1573	 */
1574	rt2x00lib_uninitialize(rt2x00dev);
1575
1576	/*
1577	 * Suspend/disable extra components.
1578	 */
1579	rt2x00leds_suspend(rt2x00dev);
1580	rt2x00debug_deregister(rt2x00dev);
1581
1582	/*
1583	 * Set device mode to sleep for power management,
1584	 * on some hardware this call seems to consistently fail.
1585	 * From the specifications it is hard to tell why it fails,
1586	 * and if this is a "bad thing".
1587	 * Overall it is safe to just ignore the failure and
1588	 * continue suspending. The only downside is that the
1589	 * device will not be in optimal power save mode, but with
1590	 * the radio and the other components already disabled the
1591	 * device is as good as disabled.
1592	 */
1593	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1594		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1595
1596	return 0;
1597}
1598EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1599
1600int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1601{
1602	rt2x00_dbg(rt2x00dev, "Waking up\n");
1603
1604	/*
1605	 * Restore/enable extra components.
1606	 */
1607	rt2x00debug_register(rt2x00dev);
1608	rt2x00leds_resume(rt2x00dev);
1609
1610	/*
1611	 * We are ready again to receive requests from mac80211.
1612	 */
1613	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1614
1615	return 0;
1616}
1617EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1618
1619/*
1620 * rt2x00lib module information.
1621 */
1622MODULE_AUTHOR(DRV_PROJECT);
1623MODULE_VERSION(DRV_VERSION);
1624MODULE_DESCRIPTION("rt2x00 library");
1625MODULE_LICENSE("GPL");
1626