1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license.  When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2020 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20 * General Public License for more details.
21 *
22 * The full GNU General Public License is included in this distribution
23 * in the file called COPYING.
24 *
25 * Contact Information:
26 *  Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2020 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 *  * Redistributions of source code must retain the above copyright
42 *    notice, this list of conditions and the following disclaimer.
43 *  * Redistributions in binary form must reproduce the above copyright
44 *    notice, this list of conditions and the following disclaimer in
45 *    the documentation and/or other materials provided with the
46 *    distribution.
47 *  * Neither the name Intel Corporation nor the names of its
48 *    contributors may be used to endorse or promote products derived
49 *    from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include "iwl-trans.h"
66#include "mvm.h"
67#include "fw-api.h"
68
69static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70{
71	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72	u8 *data = skb->data;
73
74	/* Alignment concerns */
75	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78	BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79
80	if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81		data += sizeof(struct ieee80211_radiotap_he);
82	if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83		data += sizeof(struct ieee80211_radiotap_he_mu);
84	if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85		data += sizeof(struct ieee80211_radiotap_lsig);
86	if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87		struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88
89		data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90	}
91
92	return data;
93}
94
95static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96				   int queue, struct ieee80211_sta *sta)
97{
98	struct iwl_mvm_sta *mvmsta;
99	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101	struct iwl_mvm_key_pn *ptk_pn;
102	int res;
103	u8 tid, keyidx;
104	u8 pn[IEEE80211_CCMP_PN_LEN];
105	u8 *extiv;
106
107	/* do PN checking */
108
109	/* multicast and non-data only arrives on default queue */
110	if (!ieee80211_is_data(hdr->frame_control) ||
111	    is_multicast_ether_addr(hdr->addr1))
112		return 0;
113
114	/* do not check PN for open AP */
115	if (!(stats->flag & RX_FLAG_DECRYPTED))
116		return 0;
117
118	/*
119	 * avoid checking for default queue - we don't want to replicate
120	 * all the logic that's necessary for checking the PN on fragmented
121	 * frames, leave that to mac80211
122	 */
123	if (queue == 0)
124		return 0;
125
126	/* if we are here - this for sure is either CCMP or GCMP */
127	if (IS_ERR_OR_NULL(sta)) {
128		IWL_ERR(mvm,
129			"expected hw-decrypted unicast frame for station\n");
130		return -1;
131	}
132
133	mvmsta = iwl_mvm_sta_from_mac80211(sta);
134
135	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136	keyidx = extiv[3] >> 6;
137
138	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139	if (!ptk_pn)
140		return -1;
141
142	if (ieee80211_is_data_qos(hdr->frame_control))
143		tid = ieee80211_get_tid(hdr);
144	else
145		tid = 0;
146
147	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148	if (tid >= IWL_MAX_TID_COUNT)
149		return -1;
150
151	/* load pn */
152	pn[0] = extiv[7];
153	pn[1] = extiv[6];
154	pn[2] = extiv[5];
155	pn[3] = extiv[4];
156	pn[4] = extiv[1];
157	pn[5] = extiv[0];
158
159	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160	if (res < 0)
161		return -1;
162	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163		return -1;
164
165	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166	stats->flag |= RX_FLAG_PN_VALIDATED;
167
168	return 0;
169}
170
171/* iwl_mvm_create_skb Adds the rxb to a new skb */
172static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174			      struct iwl_rx_cmd_buffer *rxb)
175{
176	struct iwl_rx_packet *pkt = rxb_addr(rxb);
177	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178	unsigned int headlen, fraglen, pad_len = 0;
179	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
181				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
182
183	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
184		len -= 2;
185		pad_len = 2;
186	}
187
188	/*
189	 * For non monitor interface strip the bytes the RADA might not have
190	 * removed. As monitor interface cannot exist with other interfaces
191	 * this removal is safe.
192	 */
193	if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
194		u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
195
196		/*
197		 * If RADA was not enabled then decryption was not performed so
198		 * the MIC cannot be removed.
199		 */
200		if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
201			if (WARN_ON(crypt_len > mic_crc_len))
202				return -EINVAL;
203
204			mic_crc_len -= crypt_len;
205		}
206
207		if (WARN_ON(mic_crc_len > len))
208			return -EINVAL;
209
210		len -= mic_crc_len;
211	}
212
213	/* If frame is small enough to fit in skb->head, pull it completely.
214	 * If not, only pull ieee80211_hdr (including crypto if present, and
215	 * an additional 8 bytes for SNAP/ethertype, see below) so that
216	 * splice() or TCP coalesce are more efficient.
217	 *
218	 * Since, in addition, ieee80211_data_to_8023() always pull in at
219	 * least 8 bytes (possibly more for mesh) we can do the same here
220	 * to save the cost of doing it later. That still doesn't pull in
221	 * the actual IP header since the typical case has a SNAP header.
222	 * If the latter changes (there are efforts in the standards group
223	 * to do so) we should revisit this and ieee80211_data_to_8023().
224	 */
225	headlen = (len <= skb_tailroom(skb)) ? len :
226					       hdrlen + crypt_len + 8;
227
228	/* The firmware may align the packet to DWORD.
229	 * The padding is inserted after the IV.
230	 * After copying the header + IV skip the padding if
231	 * present before copying packet data.
232	 */
233	hdrlen += crypt_len;
234
235	if (WARN_ONCE(headlen < hdrlen,
236		      "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
237		      hdrlen, len, crypt_len)) {
238		/*
239		 * We warn and trace because we want to be able to see
240		 * it in trace-cmd as well.
241		 */
242		IWL_DEBUG_RX(mvm,
243			     "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
244			     hdrlen, len, crypt_len);
245		return -EINVAL;
246	}
247
248	skb_put_data(skb, hdr, hdrlen);
249	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
250
251	/*
252	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
253	 * certain cases and starts the checksum after the SNAP. Check if
254	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
255	 * in the cases the hardware didn't handle, since it's rare to see
256	 * such packets, even though the hardware did calculate the checksum
257	 * in this case, just starting after the MAC header instead.
258	 */
259	if (skb->ip_summed == CHECKSUM_COMPLETE) {
260		struct {
261			u8 hdr[6];
262			__be16 type;
263		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
264
265		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
266			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
267			     (shdr->type != htons(ETH_P_IP) &&
268			      shdr->type != htons(ETH_P_ARP) &&
269			      shdr->type != htons(ETH_P_IPV6) &&
270			      shdr->type != htons(ETH_P_8021Q) &&
271			      shdr->type != htons(ETH_P_PAE) &&
272			      shdr->type != htons(ETH_P_TDLS))))
273			skb->ip_summed = CHECKSUM_NONE;
274	}
275
276	fraglen = len - headlen;
277
278	if (fraglen) {
279		int offset = (void *)hdr + headlen + pad_len -
280			     rxb_addr(rxb) + rxb_offset(rxb);
281
282		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
283				fraglen, rxb->truesize);
284	}
285
286	return 0;
287}
288
289static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
290					    struct sk_buff *skb)
291{
292	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
293	struct ieee80211_vendor_radiotap *radiotap;
294	const int size = sizeof(*radiotap) + sizeof(__le16);
295
296	if (!mvm->cur_aid)
297		return;
298
299	/* ensure alignment */
300	BUILD_BUG_ON((size + 2) % 4);
301
302	radiotap = skb_put(skb, size + 2);
303	radiotap->align = 1;
304	/* Intel OUI */
305	radiotap->oui[0] = 0xf6;
306	radiotap->oui[1] = 0x54;
307	radiotap->oui[2] = 0x25;
308	/* radiotap sniffer config sub-namespace */
309	radiotap->subns = 1;
310	radiotap->present = 0x1;
311	radiotap->len = size - sizeof(*radiotap);
312	radiotap->pad = 2;
313
314	/* fill the data now */
315	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
316	/* and clear the padding */
317	memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
318
319	rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
320}
321
322/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
323static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
324					    struct napi_struct *napi,
325					    struct sk_buff *skb, int queue,
326					    struct ieee80211_sta *sta,
327					    bool csi)
328{
329	if (iwl_mvm_check_pn(mvm, skb, queue, sta))
330		kfree_skb(skb);
331	else
332		ieee80211_rx_napi(mvm->hw, sta, skb, napi);
333}
334
335static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
336					struct ieee80211_rx_status *rx_status,
337					u32 rate_n_flags, int energy_a,
338					int energy_b)
339{
340	int max_energy;
341	u32 rate_flags = rate_n_flags;
342
343	energy_a = energy_a ? -energy_a : S8_MIN;
344	energy_b = energy_b ? -energy_b : S8_MIN;
345	max_energy = max(energy_a, energy_b);
346
347	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
348			energy_a, energy_b, max_energy);
349
350	rx_status->signal = max_energy;
351	rx_status->chains =
352		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
353	rx_status->chain_signal[0] = energy_a;
354	rx_status->chain_signal[1] = energy_b;
355	rx_status->chain_signal[2] = S8_MIN;
356}
357
358static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
359			     struct ieee80211_rx_status *stats, u16 phy_info,
360			     struct iwl_rx_mpdu_desc *desc,
361			     u32 pkt_flags, int queue, u8 *crypt_len)
362{
363	u32 status = le32_to_cpu(desc->status);
364
365	/*
366	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
367	 * (where we don't have the keys).
368	 * We limit this to aggregation because in TKIP this is a valid
369	 * scenario, since we may not have the (correct) TTAK (phase 1
370	 * key) in the firmware.
371	 */
372	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
373	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
374	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
375		return -1;
376
377	if (!ieee80211_has_protected(hdr->frame_control) ||
378	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379	    IWL_RX_MPDU_STATUS_SEC_NONE)
380		return 0;
381
382	/* TODO: handle packets encrypted with unknown alg */
383
384	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
385	case IWL_RX_MPDU_STATUS_SEC_CCM:
386	case IWL_RX_MPDU_STATUS_SEC_GCM:
387		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
388		/* alg is CCM: check MIC only */
389		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
390			return -1;
391
392		stats->flag |= RX_FLAG_DECRYPTED;
393		if (pkt_flags & FH_RSCSR_RADA_EN)
394			stats->flag |= RX_FLAG_MIC_STRIPPED;
395		*crypt_len = IEEE80211_CCMP_HDR_LEN;
396		return 0;
397	case IWL_RX_MPDU_STATUS_SEC_TKIP:
398		/* Don't drop the frame and decrypt it in SW */
399		if (!fw_has_api(&mvm->fw->ucode_capa,
400				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
401		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
402			return 0;
403
404		if (mvm->trans->trans_cfg->gen2 &&
405		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
406			stats->flag |= RX_FLAG_MMIC_ERROR;
407
408		*crypt_len = IEEE80211_TKIP_IV_LEN;
409		/* fall through */
410	case IWL_RX_MPDU_STATUS_SEC_WEP:
411		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
412			return -1;
413
414		stats->flag |= RX_FLAG_DECRYPTED;
415		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
416				IWL_RX_MPDU_STATUS_SEC_WEP)
417			*crypt_len = IEEE80211_WEP_IV_LEN;
418
419		if (pkt_flags & FH_RSCSR_RADA_EN) {
420			stats->flag |= RX_FLAG_ICV_STRIPPED;
421			if (mvm->trans->trans_cfg->gen2)
422				stats->flag |= RX_FLAG_MMIC_STRIPPED;
423		}
424
425		return 0;
426	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
427		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
428			return -1;
429		stats->flag |= RX_FLAG_DECRYPTED;
430		return 0;
431	default:
432		/*
433		 * Sometimes we can get frames that were not decrypted
434		 * because the firmware didn't have the keys yet. This can
435		 * happen after connection where we can get multicast frames
436		 * before the GTK is installed.
437		 * Silently drop those frames.
438		 * Also drop un-decrypted frames in monitor mode.
439		 */
440		if (!is_multicast_ether_addr(hdr->addr1) &&
441		    !mvm->monitor_on && net_ratelimit())
442			IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
443	}
444
445	return 0;
446}
447
448static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
449			    struct ieee80211_sta *sta,
450			    struct sk_buff *skb,
451			    struct iwl_rx_packet *pkt)
452{
453	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
454
455	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
456		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
457			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
458
459			skb->ip_summed = CHECKSUM_COMPLETE;
460			skb->csum = csum_unfold(~(__force __sum16)hwsum);
461		}
462	} else {
463		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
464		struct iwl_mvm_vif *mvmvif;
465		u16 flags = le16_to_cpu(desc->l3l4_flags);
466		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
467				  IWL_RX_L3_PROTO_POS);
468
469		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
470
471		if (mvmvif->features & NETIF_F_RXCSUM &&
472		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
473		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
474		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
475		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
476			skb->ip_summed = CHECKSUM_UNNECESSARY;
477	}
478}
479
480/*
481 * returns true if a packet is a duplicate and should be dropped.
482 * Updates AMSDU PN tracking info
483 */
484static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
485			   struct ieee80211_rx_status *rx_status,
486			   struct ieee80211_hdr *hdr,
487			   struct iwl_rx_mpdu_desc *desc)
488{
489	struct iwl_mvm_sta *mvm_sta;
490	struct iwl_mvm_rxq_dup_data *dup_data;
491	u8 tid, sub_frame_idx;
492
493	if (WARN_ON(IS_ERR_OR_NULL(sta)))
494		return false;
495
496	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
497	dup_data = &mvm_sta->dup_data[queue];
498
499	/*
500	 * Drop duplicate 802.11 retransmissions
501	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
502	 */
503	if (ieee80211_is_ctl(hdr->frame_control) ||
504	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
505	    is_multicast_ether_addr(hdr->addr1)) {
506		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
507		return false;
508	}
509
510	if (ieee80211_is_data_qos(hdr->frame_control))
511		/* frame has qos control */
512		tid = ieee80211_get_tid(hdr);
513	else
514		tid = IWL_MAX_TID_COUNT;
515
516	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
517	sub_frame_idx = desc->amsdu_info &
518		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
519
520	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
521		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
522		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
523		return true;
524
525	/* Allow same PN as the first subframe for following sub frames */
526	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
527	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
528	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
529		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
530
531	dup_data->last_seq[tid] = hdr->seq_ctrl;
532	dup_data->last_sub_frame[tid] = sub_frame_idx;
533
534	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
535
536	return false;
537}
538
539int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
540			    const u8 *data, u32 count, bool async)
541{
542	u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
543	       sizeof(struct iwl_mvm_rss_sync_notif)];
544	struct iwl_rxq_sync_cmd *cmd = (void *)buf;
545	u32 data_size = sizeof(*cmd) + count;
546	int ret;
547
548	/*
549	 * size must be a multiple of DWORD
550	 * Ensure we don't overflow buf
551	 */
552	if (WARN_ON(count & 3 ||
553		    count > sizeof(struct iwl_mvm_rss_sync_notif)))
554		return -EINVAL;
555
556	cmd->rxq_mask = cpu_to_le32(rxq_mask);
557	cmd->count =  cpu_to_le32(count);
558	cmd->flags = 0;
559	memcpy(cmd->payload, data, count);
560
561	ret = iwl_mvm_send_cmd_pdu(mvm,
562				   WIDE_ID(DATA_PATH_GROUP,
563					   TRIGGER_RX_QUEUES_NOTIF_CMD),
564				   async ? CMD_ASYNC : 0, data_size, cmd);
565
566	return ret;
567}
568
569/*
570 * Returns true if sn2 - buffer_size < sn1 < sn2.
571 * To be used only in order to compare reorder buffer head with NSSN.
572 * We fully trust NSSN unless it is behind us due to reorder timeout.
573 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
574 */
575static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
576{
577	return ieee80211_sn_less(sn1, sn2) &&
578	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
579}
580
581static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
582{
583	if (IWL_MVM_USE_NSSN_SYNC) {
584		struct iwl_mvm_rss_sync_notif notif = {
585			.metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
586			.metadata.sync = 0,
587			.nssn_sync.baid = baid,
588			.nssn_sync.nssn = nssn,
589		};
590
591		iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif,
592						sizeof(notif));
593	}
594}
595
596#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
597
598enum iwl_mvm_release_flags {
599	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
600	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
601};
602
603static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
604				   struct ieee80211_sta *sta,
605				   struct napi_struct *napi,
606				   struct iwl_mvm_baid_data *baid_data,
607				   struct iwl_mvm_reorder_buffer *reorder_buf,
608				   u16 nssn, u32 flags)
609{
610	struct iwl_mvm_reorder_buf_entry *entries =
611		&baid_data->entries[reorder_buf->queue *
612				    baid_data->entries_per_queue];
613	u16 ssn = reorder_buf->head_sn;
614
615	lockdep_assert_held(&reorder_buf->lock);
616
617	/*
618	 * We keep the NSSN not too far behind, if we are sync'ing it and it
619	 * is more than 2048 ahead of us, it must be behind us. Discard it.
620	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
621	 * behind and this queue already processed packets. The next if
622	 * would have caught cases where this queue would have processed less
623	 * than 64 packets, but it may have processed more than 64 packets.
624	 */
625	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
626	    ieee80211_sn_less(nssn, ssn))
627		goto set_timer;
628
629	/* ignore nssn smaller than head sn - this can happen due to timeout */
630	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
631		goto set_timer;
632
633	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
634		int index = ssn % reorder_buf->buf_size;
635		struct sk_buff_head *skb_list = &entries[index].e.frames;
636		struct sk_buff *skb;
637
638		ssn = ieee80211_sn_inc(ssn);
639		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
640		    (ssn == 2048 || ssn == 0))
641			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
642
643		/*
644		 * Empty the list. Will have more than one frame for A-MSDU.
645		 * Empty list is valid as well since nssn indicates frames were
646		 * received.
647		 */
648		while ((skb = __skb_dequeue(skb_list))) {
649			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
650							reorder_buf->queue,
651							sta, false);
652			reorder_buf->num_stored--;
653		}
654	}
655	reorder_buf->head_sn = nssn;
656
657set_timer:
658	if (reorder_buf->num_stored && !reorder_buf->removed) {
659		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
660
661		while (skb_queue_empty(&entries[index].e.frames))
662			index = (index + 1) % reorder_buf->buf_size;
663		/* modify timer to match next frame's expiration time */
664		mod_timer(&reorder_buf->reorder_timer,
665			  entries[index].e.reorder_time + 1 +
666			  RX_REORDER_BUF_TIMEOUT_MQ);
667	} else {
668		del_timer(&reorder_buf->reorder_timer);
669	}
670}
671
672void iwl_mvm_reorder_timer_expired(struct timer_list *t)
673{
674	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
675	struct iwl_mvm_baid_data *baid_data =
676		iwl_mvm_baid_data_from_reorder_buf(buf);
677	struct iwl_mvm_reorder_buf_entry *entries =
678		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
679	int i;
680	u16 sn = 0, index = 0;
681	bool expired = false;
682	bool cont = false;
683
684	spin_lock(&buf->lock);
685
686	if (!buf->num_stored || buf->removed) {
687		spin_unlock(&buf->lock);
688		return;
689	}
690
691	for (i = 0; i < buf->buf_size ; i++) {
692		index = (buf->head_sn + i) % buf->buf_size;
693
694		if (skb_queue_empty(&entries[index].e.frames)) {
695			/*
696			 * If there is a hole and the next frame didn't expire
697			 * we want to break and not advance SN
698			 */
699			cont = false;
700			continue;
701		}
702		if (!cont &&
703		    !time_after(jiffies, entries[index].e.reorder_time +
704					 RX_REORDER_BUF_TIMEOUT_MQ))
705			break;
706
707		expired = true;
708		/* continue until next hole after this expired frames */
709		cont = true;
710		sn = ieee80211_sn_add(buf->head_sn, i + 1);
711	}
712
713	if (expired) {
714		struct ieee80211_sta *sta;
715		struct iwl_mvm_sta *mvmsta;
716		u8 sta_id = baid_data->sta_id;
717
718		rcu_read_lock();
719		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
720		mvmsta = iwl_mvm_sta_from_mac80211(sta);
721
722		/* SN is set to the last expired frame + 1 */
723		IWL_DEBUG_HT(buf->mvm,
724			     "Releasing expired frames for sta %u, sn %d\n",
725			     sta_id, sn);
726		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
727						     sta, baid_data->tid);
728		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
729				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
730		rcu_read_unlock();
731	} else {
732		/*
733		 * If no frame expired and there are stored frames, index is now
734		 * pointing to the first unexpired frame - modify timer
735		 * accordingly to this frame.
736		 */
737		mod_timer(&buf->reorder_timer,
738			  entries[index].e.reorder_time +
739			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
740	}
741	spin_unlock(&buf->lock);
742}
743
744static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
745			   struct iwl_mvm_delba_data *data)
746{
747	struct iwl_mvm_baid_data *ba_data;
748	struct ieee80211_sta *sta;
749	struct iwl_mvm_reorder_buffer *reorder_buf;
750	u8 baid = data->baid;
751
752	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
753		return;
754
755	rcu_read_lock();
756
757	ba_data = rcu_dereference(mvm->baid_map[baid]);
758	if (WARN_ON_ONCE(!ba_data))
759		goto out;
760
761	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
762	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
763		goto out;
764
765	reorder_buf = &ba_data->reorder_buf[queue];
766
767	/* release all frames that are in the reorder buffer to the stack */
768	spin_lock_bh(&reorder_buf->lock);
769	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
770			       ieee80211_sn_add(reorder_buf->head_sn,
771						reorder_buf->buf_size),
772			       0);
773	spin_unlock_bh(&reorder_buf->lock);
774	del_timer_sync(&reorder_buf->reorder_timer);
775
776out:
777	rcu_read_unlock();
778}
779
780static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
781					      struct napi_struct *napi,
782					      u8 baid, u16 nssn, int queue,
783					      u32 flags)
784{
785	struct ieee80211_sta *sta;
786	struct iwl_mvm_reorder_buffer *reorder_buf;
787	struct iwl_mvm_baid_data *ba_data;
788
789	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
790		     baid, nssn);
791
792	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
793			 baid >= ARRAY_SIZE(mvm->baid_map)))
794		return;
795
796	rcu_read_lock();
797
798	ba_data = rcu_dereference(mvm->baid_map[baid]);
799	if (WARN_ON_ONCE(!ba_data))
800		goto out;
801
802	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
803	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
804		goto out;
805
806	reorder_buf = &ba_data->reorder_buf[queue];
807
808	spin_lock_bh(&reorder_buf->lock);
809	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
810			       reorder_buf, nssn, flags);
811	spin_unlock_bh(&reorder_buf->lock);
812
813out:
814	rcu_read_unlock();
815}
816
817static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
818			      struct napi_struct *napi, int queue,
819			      const struct iwl_mvm_nssn_sync_data *data)
820{
821	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
822					  data->nssn, queue,
823					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
824}
825
826void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
827			    struct iwl_rx_cmd_buffer *rxb, int queue)
828{
829	struct iwl_rx_packet *pkt = rxb_addr(rxb);
830	struct iwl_rxq_sync_notification *notif;
831	struct iwl_mvm_internal_rxq_notif *internal_notif;
832
833	notif = (void *)pkt->data;
834	internal_notif = (void *)notif->payload;
835
836	if (internal_notif->sync &&
837	    mvm->queue_sync_cookie != internal_notif->cookie) {
838		WARN_ONCE(1, "Received expired RX queue sync message\n");
839		return;
840	}
841
842	switch (internal_notif->type) {
843	case IWL_MVM_RXQ_EMPTY:
844		break;
845	case IWL_MVM_RXQ_NOTIF_DEL_BA:
846		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
847		break;
848	case IWL_MVM_RXQ_NSSN_SYNC:
849		iwl_mvm_nssn_sync(mvm, napi, queue,
850				  (void *)internal_notif->data);
851		break;
852	default:
853		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
854	}
855
856	if (internal_notif->sync &&
857	    !atomic_dec_return(&mvm->queue_sync_counter))
858		wake_up(&mvm->rx_sync_waitq);
859}
860
861static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
862				     struct ieee80211_sta *sta, int tid,
863				     struct iwl_mvm_reorder_buffer *buffer,
864				     u32 reorder, u32 gp2, int queue)
865{
866	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
867
868	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
869		/* we have a new (A-)MPDU ... */
870
871		/*
872		 * reset counter to 0 if we didn't have any oldsn in
873		 * the last A-MPDU (as detected by GP2 being identical)
874		 */
875		if (!buffer->consec_oldsn_prev_drop)
876			buffer->consec_oldsn_drops = 0;
877
878		/* either way, update our tracking state */
879		buffer->consec_oldsn_ampdu_gp2 = gp2;
880	} else if (buffer->consec_oldsn_prev_drop) {
881		/*
882		 * tracking state didn't change, and we had an old SN
883		 * indication before - do nothing in this case, we
884		 * already noted this one down and are waiting for the
885		 * next A-MPDU (by GP2)
886		 */
887		return;
888	}
889
890	/* return unless this MPDU has old SN */
891	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
892		return;
893
894	/* update state */
895	buffer->consec_oldsn_prev_drop = 1;
896	buffer->consec_oldsn_drops++;
897
898	/* if limit is reached, send del BA and reset state */
899	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
900		IWL_WARN(mvm,
901			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
902			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
903			 sta->addr, queue, tid);
904		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
905		buffer->consec_oldsn_prev_drop = 0;
906		buffer->consec_oldsn_drops = 0;
907	}
908}
909
910/*
911 * Returns true if the MPDU was buffered\dropped, false if it should be passed
912 * to upper layer.
913 */
914static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
915			    struct napi_struct *napi,
916			    int queue,
917			    struct ieee80211_sta *sta,
918			    struct sk_buff *skb,
919			    struct iwl_rx_mpdu_desc *desc)
920{
921	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
922	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
923	struct iwl_mvm_sta *mvm_sta;
924	struct iwl_mvm_baid_data *baid_data;
925	struct iwl_mvm_reorder_buffer *buffer;
926	struct sk_buff *tail;
927	u32 reorder = le32_to_cpu(desc->reorder_data);
928	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
929	bool last_subframe =
930		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
931	u8 tid = ieee80211_get_tid(hdr);
932	u8 sub_frame_idx = desc->amsdu_info &
933			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
934	struct iwl_mvm_reorder_buf_entry *entries;
935	int index;
936	u16 nssn, sn;
937	u8 baid;
938
939	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
940		IWL_RX_MPDU_REORDER_BAID_SHIFT;
941
942	/*
943	 * This also covers the case of receiving a Block Ack Request
944	 * outside a BA session; we'll pass it to mac80211 and that
945	 * then sends a delBA action frame.
946	 * This also covers pure monitor mode, in which case we won't
947	 * have any BA sessions.
948	 */
949	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
950		return false;
951
952	/* no sta yet */
953	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
954		      "Got valid BAID without a valid station assigned\n"))
955		return false;
956
957	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
958
959	/* not a data packet or a bar */
960	if (!ieee80211_is_back_req(hdr->frame_control) &&
961	    (!ieee80211_is_data_qos(hdr->frame_control) ||
962	     is_multicast_ether_addr(hdr->addr1)))
963		return false;
964
965	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
966		return false;
967
968	baid_data = rcu_dereference(mvm->baid_map[baid]);
969	if (!baid_data) {
970		IWL_DEBUG_RX(mvm,
971			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
972			      baid, reorder);
973		return false;
974	}
975
976	if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
977		 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
978		 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
979		 tid))
980		return false;
981
982	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
983	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
984		IWL_RX_MPDU_REORDER_SN_SHIFT;
985
986	buffer = &baid_data->reorder_buf[queue];
987	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
988
989	spin_lock_bh(&buffer->lock);
990
991	if (!buffer->valid) {
992		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
993			spin_unlock_bh(&buffer->lock);
994			return false;
995		}
996		buffer->valid = true;
997	}
998
999	if (ieee80211_is_back_req(hdr->frame_control)) {
1000		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1001				       buffer, nssn, 0);
1002		goto drop;
1003	}
1004
1005	/*
1006	 * If there was a significant jump in the nssn - adjust.
1007	 * If the SN is smaller than the NSSN it might need to first go into
1008	 * the reorder buffer, in which case we just release up to it and the
1009	 * rest of the function will take care of storing it and releasing up to
1010	 * the nssn.
1011	 * This should not happen. This queue has been lagging and it should
1012	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1013	 * and update the other queues.
1014	 */
1015	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1016				buffer->buf_size) ||
1017	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1018		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1019
1020		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1021				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1022	}
1023
1024	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1025				 rx_status->device_timestamp, queue);
1026
1027	/* drop any oudated packets */
1028	if (ieee80211_sn_less(sn, buffer->head_sn))
1029		goto drop;
1030
1031	/* release immediately if allowed by nssn and no stored frames */
1032	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1033		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1034				       buffer->buf_size) &&
1035		   (!amsdu || last_subframe)) {
1036			/*
1037			 * If we crossed the 2048 or 0 SN, notify all the
1038			 * queues. This is done in order to avoid having a
1039			 * head_sn that lags behind for too long. When that
1040			 * happens, we can get to a situation where the head_sn
1041			 * is within the interval [nssn - buf_size : nssn]
1042			 * which will make us think that the nssn is a packet
1043			 * that we already freed because of the reordering
1044			 * buffer and we will ignore it. So maintain the
1045			 * head_sn somewhat updated across all the queues:
1046			 * when it crosses 0 and 2048.
1047			 */
1048			if (sn == 2048 || sn == 0)
1049				iwl_mvm_sync_nssn(mvm, baid, sn);
1050			buffer->head_sn = nssn;
1051		}
1052		/* No need to update AMSDU last SN - we are moving the head */
1053		spin_unlock_bh(&buffer->lock);
1054		return false;
1055	}
1056
1057	/*
1058	 * release immediately if there are no stored frames, and the sn is
1059	 * equal to the head.
1060	 * This can happen due to reorder timer, where NSSN is behind head_sn.
1061	 * When we released everything, and we got the next frame in the
1062	 * sequence, according to the NSSN we can't release immediately,
1063	 * while technically there is no hole and we can move forward.
1064	 */
1065	if (!buffer->num_stored && sn == buffer->head_sn) {
1066		if (!amsdu || last_subframe) {
1067			if (sn == 2048 || sn == 0)
1068				iwl_mvm_sync_nssn(mvm, baid, sn);
1069			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1070		}
1071		/* No need to update AMSDU last SN - we are moving the head */
1072		spin_unlock_bh(&buffer->lock);
1073		return false;
1074	}
1075
1076	index = sn % buffer->buf_size;
1077
1078	/*
1079	 * Check if we already stored this frame
1080	 * As AMSDU is either received or not as whole, logic is simple:
1081	 * If we have frames in that position in the buffer and the last frame
1082	 * originated from AMSDU had a different SN then it is a retransmission.
1083	 * If it is the same SN then if the subframe index is incrementing it
1084	 * is the same AMSDU - otherwise it is a retransmission.
1085	 */
1086	tail = skb_peek_tail(&entries[index].e.frames);
1087	if (tail && !amsdu)
1088		goto drop;
1089	else if (tail && (sn != buffer->last_amsdu ||
1090			  buffer->last_sub_index >= sub_frame_idx))
1091		goto drop;
1092
1093	/* put in reorder buffer */
1094	__skb_queue_tail(&entries[index].e.frames, skb);
1095	buffer->num_stored++;
1096	entries[index].e.reorder_time = jiffies;
1097
1098	if (amsdu) {
1099		buffer->last_amsdu = sn;
1100		buffer->last_sub_index = sub_frame_idx;
1101	}
1102
1103	/*
1104	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1105	 * The reason is that NSSN advances on the first sub-frame, and may
1106	 * cause the reorder buffer to advance before all the sub-frames arrive.
1107	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1108	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1109	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1110	 * already ahead and it will be dropped.
1111	 * If the last sub-frame is not on this queue - we will get frame
1112	 * release notification with up to date NSSN.
1113	 */
1114	if (!amsdu || last_subframe)
1115		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1116				       buffer, nssn,
1117				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1118
1119	spin_unlock_bh(&buffer->lock);
1120	return true;
1121
1122drop:
1123	kfree_skb(skb);
1124	spin_unlock_bh(&buffer->lock);
1125	return true;
1126}
1127
1128static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1129				    u32 reorder_data, u8 baid)
1130{
1131	unsigned long now = jiffies;
1132	unsigned long timeout;
1133	struct iwl_mvm_baid_data *data;
1134
1135	rcu_read_lock();
1136
1137	data = rcu_dereference(mvm->baid_map[baid]);
1138	if (!data) {
1139		IWL_DEBUG_RX(mvm,
1140			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1141			      baid, reorder_data);
1142		goto out;
1143	}
1144
1145	if (!data->timeout)
1146		goto out;
1147
1148	timeout = data->timeout;
1149	/*
1150	 * Do not update last rx all the time to avoid cache bouncing
1151	 * between the rx queues.
1152	 * Update it every timeout. Worst case is the session will
1153	 * expire after ~ 2 * timeout, which doesn't matter that much.
1154	 */
1155	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1156		/* Update is atomic */
1157		data->last_rx = now;
1158
1159out:
1160	rcu_read_unlock();
1161}
1162
1163static void iwl_mvm_flip_address(u8 *addr)
1164{
1165	int i;
1166	u8 mac_addr[ETH_ALEN];
1167
1168	for (i = 0; i < ETH_ALEN; i++)
1169		mac_addr[i] = addr[ETH_ALEN - i - 1];
1170	ether_addr_copy(addr, mac_addr);
1171}
1172
1173struct iwl_mvm_rx_phy_data {
1174	enum iwl_rx_phy_info_type info_type;
1175	__le32 d0, d1, d2, d3;
1176	__le16 d4;
1177};
1178
1179static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1180				     struct iwl_mvm_rx_phy_data *phy_data,
1181				     u32 rate_n_flags,
1182				     struct ieee80211_radiotap_he_mu *he_mu)
1183{
1184	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1185	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1186	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1187
1188	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1189		he_mu->flags1 |=
1190			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1191				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1192
1193		he_mu->flags1 |=
1194			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1195						   phy_data4),
1196					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1197
1198		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1199					     phy_data2);
1200		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1201					     phy_data3);
1202		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1203					     phy_data2);
1204		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1205					     phy_data3);
1206	}
1207
1208	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1209	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1210		he_mu->flags1 |=
1211			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1212				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1213
1214		he_mu->flags2 |=
1215			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1216						   phy_data4),
1217					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1218
1219		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1220					     phy_data2);
1221		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1222					     phy_data3);
1223		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1224					     phy_data2);
1225		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1226					     phy_data3);
1227	}
1228}
1229
1230static void
1231iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1232			       u32 rate_n_flags,
1233			       struct ieee80211_radiotap_he *he,
1234			       struct ieee80211_radiotap_he_mu *he_mu,
1235			       struct ieee80211_rx_status *rx_status)
1236{
1237	/*
1238	 * Unfortunately, we have to leave the mac80211 data
1239	 * incorrect for the case that we receive an HE-MU
1240	 * transmission and *don't* have the HE phy data (due
1241	 * to the bits being used for TSF). This shouldn't
1242	 * happen though as management frames where we need
1243	 * the TSF/timers are not be transmitted in HE-MU.
1244	 */
1245	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1246	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1247	u8 offs = 0;
1248
1249	rx_status->bw = RATE_INFO_BW_HE_RU;
1250
1251	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1252
1253	switch (ru) {
1254	case 0 ... 36:
1255		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1256		offs = ru;
1257		break;
1258	case 37 ... 52:
1259		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1260		offs = ru - 37;
1261		break;
1262	case 53 ... 60:
1263		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1264		offs = ru - 53;
1265		break;
1266	case 61 ... 64:
1267		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1268		offs = ru - 61;
1269		break;
1270	case 65 ... 66:
1271		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1272		offs = ru - 65;
1273		break;
1274	case 67:
1275		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1276		break;
1277	case 68:
1278		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1279		break;
1280	}
1281	he->data2 |= le16_encode_bits(offs,
1282				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1283	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1284				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1285	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1286		he->data2 |=
1287			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1288
1289#define CHECK_BW(bw) \
1290	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1291		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1292	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1293		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1294	CHECK_BW(20);
1295	CHECK_BW(40);
1296	CHECK_BW(80);
1297	CHECK_BW(160);
1298
1299	if (he_mu)
1300		he_mu->flags2 |=
1301			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1302						   rate_n_flags),
1303					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1304	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1305		he->data6 |=
1306			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1307			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1308						   rate_n_flags),
1309					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1310}
1311
1312static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1313				       struct iwl_mvm_rx_phy_data *phy_data,
1314				       struct ieee80211_radiotap_he *he,
1315				       struct ieee80211_radiotap_he_mu *he_mu,
1316				       struct ieee80211_rx_status *rx_status,
1317				       u32 rate_n_flags, int queue)
1318{
1319	switch (phy_data->info_type) {
1320	case IWL_RX_PHY_INFO_TYPE_NONE:
1321	case IWL_RX_PHY_INFO_TYPE_CCK:
1322	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1323	case IWL_RX_PHY_INFO_TYPE_HT:
1324	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1325	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1326		return;
1327	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1328		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1329					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1330					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1331					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1332		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1333							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1334					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1335		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1336							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1337					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1338		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1339							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1340					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1341		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1342							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1343					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1344		/* fall through */
1345	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1346	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1347	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1348	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1349		/* HE common */
1350		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1351					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1352					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1353		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1354					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1355					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1356					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1357		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1358							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1359					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1360		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1361		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1362			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1363			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1364							    IWL_RX_PHY_DATA0_HE_UPLINK),
1365						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1366		}
1367		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1368							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1369					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1370		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1371							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1372					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1373		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1374							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1375					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1376		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1377							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1378					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1379		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1380							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1381					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1382		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1383							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1384					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1385		break;
1386	}
1387
1388	switch (phy_data->info_type) {
1389	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1390	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1391	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1392		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1393		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1394							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1395					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1396		break;
1397	default:
1398		/* nothing here */
1399		break;
1400	}
1401
1402	switch (phy_data->info_type) {
1403	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1404		he_mu->flags1 |=
1405			le16_encode_bits(le16_get_bits(phy_data->d4,
1406						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1407					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1408		he_mu->flags1 |=
1409			le16_encode_bits(le16_get_bits(phy_data->d4,
1410						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1411					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1412		he_mu->flags2 |=
1413			le16_encode_bits(le16_get_bits(phy_data->d4,
1414						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1415					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1416		iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1417		/* fall through */
1418	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1419		he_mu->flags2 |=
1420			le16_encode_bits(le32_get_bits(phy_data->d1,
1421						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1422					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1423		he_mu->flags2 |=
1424			le16_encode_bits(le32_get_bits(phy_data->d1,
1425						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1426					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1427		/* fall through */
1428	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1429	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1430		iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1431					       he, he_mu, rx_status);
1432		break;
1433	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1434		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1435		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1436							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1437					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1438		break;
1439	default:
1440		/* nothing */
1441		break;
1442	}
1443}
1444
1445static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1446			  struct iwl_mvm_rx_phy_data *phy_data,
1447			  u32 rate_n_flags, u16 phy_info, int queue)
1448{
1449	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1450	struct ieee80211_radiotap_he *he = NULL;
1451	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1452	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1453	u8 stbc, ltf;
1454	static const struct ieee80211_radiotap_he known = {
1455		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1456				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1457				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1458				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1459		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1460				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1461	};
1462	static const struct ieee80211_radiotap_he_mu mu_known = {
1463		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1464				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1465				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1466				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1467		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1468				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1469	};
1470
1471	he = skb_put_data(skb, &known, sizeof(known));
1472	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1473
1474	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1475	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1476		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1477		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1478	}
1479
1480	/* report the AMPDU-EOF bit on single frames */
1481	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1482		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1483		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1484		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1485			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1486	}
1487
1488	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1489		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1490					   rate_n_flags, queue);
1491
1492	/* update aggregation data for monitor sake on default queue */
1493	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1494	    (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1495		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1496
1497		/* toggle is switched whenever new aggregation starts */
1498		if (toggle_bit != mvm->ampdu_toggle) {
1499			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1500			if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1501				rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1502		}
1503	}
1504
1505	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1506	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1507		rx_status->bw = RATE_INFO_BW_HE_RU;
1508		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1509	}
1510
1511	/* actually data is filled in mac80211 */
1512	if (he_type == RATE_MCS_HE_TYPE_SU ||
1513	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1514		he->data1 |=
1515			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1516
1517	stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1518	rx_status->nss =
1519		((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1520					RATE_VHT_MCS_NSS_POS) + 1;
1521	rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1522	rx_status->encoding = RX_ENC_HE;
1523	rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1524	if (rate_n_flags & RATE_MCS_BF_MSK)
1525		rx_status->enc_flags |= RX_ENC_FLAG_BF;
1526
1527	rx_status->he_dcm =
1528		!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1529
1530#define CHECK_TYPE(F)							\
1531	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1532		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1533
1534	CHECK_TYPE(SU);
1535	CHECK_TYPE(EXT_SU);
1536	CHECK_TYPE(MU);
1537	CHECK_TYPE(TRIG);
1538
1539	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1540
1541	if (rate_n_flags & RATE_MCS_BF_MSK)
1542		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1543
1544	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1545		RATE_MCS_HE_GI_LTF_POS) {
1546	case 0:
1547		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1548			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1549		else
1550			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1551		if (he_type == RATE_MCS_HE_TYPE_MU)
1552			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1553		else
1554			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1555		break;
1556	case 1:
1557		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1558			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1559		else
1560			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1561		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1562		break;
1563	case 2:
1564		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1565			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1566			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1567		} else {
1568			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1569			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1570		}
1571		break;
1572	case 3:
1573		if ((he_type == RATE_MCS_HE_TYPE_SU ||
1574		     he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1575		    rate_n_flags & RATE_MCS_SGI_MSK)
1576			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1577		else
1578			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1579		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1580		break;
1581	}
1582
1583	he->data5 |= le16_encode_bits(ltf,
1584				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1585}
1586
1587static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1588				struct iwl_mvm_rx_phy_data *phy_data)
1589{
1590	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1591	struct ieee80211_radiotap_lsig *lsig;
1592
1593	switch (phy_data->info_type) {
1594	case IWL_RX_PHY_INFO_TYPE_HT:
1595	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1596	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1597	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1598	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1599	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1600	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1601	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1602		lsig = skb_put(skb, sizeof(*lsig));
1603		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1604		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1605							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1606					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1607		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1608		break;
1609	default:
1610		break;
1611	}
1612}
1613
1614static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1615{
1616	switch (phy_band) {
1617	case PHY_BAND_24:
1618		return NL80211_BAND_2GHZ;
1619	case PHY_BAND_5:
1620		return NL80211_BAND_5GHZ;
1621	default:
1622		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1623		return NL80211_BAND_5GHZ;
1624	}
1625}
1626
1627void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1628			struct iwl_rx_cmd_buffer *rxb, int queue)
1629{
1630	struct ieee80211_rx_status *rx_status;
1631	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1632	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1633	struct ieee80211_hdr *hdr;
1634	u32 len = le16_to_cpu(desc->mpdu_len);
1635	u32 rate_n_flags, gp2_on_air_rise;
1636	u16 phy_info = le16_to_cpu(desc->phy_info);
1637	struct ieee80211_sta *sta = NULL;
1638	struct sk_buff *skb;
1639	u8 crypt_len = 0, channel, energy_a, energy_b;
1640	size_t desc_size;
1641	struct iwl_mvm_rx_phy_data phy_data = {
1642		.d4 = desc->phy_data4,
1643		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1644	};
1645	bool csi = false;
1646
1647	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1648		return;
1649
1650	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1651		rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1652		channel = desc->v3.channel;
1653		gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1654		energy_a = desc->v3.energy_a;
1655		energy_b = desc->v3.energy_b;
1656		desc_size = sizeof(*desc);
1657
1658		phy_data.d0 = desc->v3.phy_data0;
1659		phy_data.d1 = desc->v3.phy_data1;
1660		phy_data.d2 = desc->v3.phy_data2;
1661		phy_data.d3 = desc->v3.phy_data3;
1662	} else {
1663		rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1664		channel = desc->v1.channel;
1665		gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1666		energy_a = desc->v1.energy_a;
1667		energy_b = desc->v1.energy_b;
1668		desc_size = IWL_RX_DESC_SIZE_V1;
1669
1670		phy_data.d0 = desc->v1.phy_data0;
1671		phy_data.d1 = desc->v1.phy_data1;
1672		phy_data.d2 = desc->v1.phy_data2;
1673		phy_data.d3 = desc->v1.phy_data3;
1674	}
1675
1676	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1677		phy_data.info_type =
1678			le32_get_bits(phy_data.d1,
1679				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1680
1681	hdr = (void *)(pkt->data + desc_size);
1682	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1683	 * ieee80211_hdr pulled.
1684	 */
1685	skb = alloc_skb(128, GFP_ATOMIC);
1686	if (!skb) {
1687		IWL_ERR(mvm, "alloc_skb failed\n");
1688		return;
1689	}
1690
1691	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1692		/*
1693		 * If the device inserted padding it means that (it thought)
1694		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1695		 * this case, reserve two bytes at the start of the SKB to
1696		 * align the payload properly in case we end up copying it.
1697		 */
1698		skb_reserve(skb, 2);
1699	}
1700
1701	rx_status = IEEE80211_SKB_RXCB(skb);
1702
1703	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1704	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1705	case RATE_MCS_CHAN_WIDTH_20:
1706		break;
1707	case RATE_MCS_CHAN_WIDTH_40:
1708		rx_status->bw = RATE_INFO_BW_40;
1709		break;
1710	case RATE_MCS_CHAN_WIDTH_80:
1711		rx_status->bw = RATE_INFO_BW_80;
1712		break;
1713	case RATE_MCS_CHAN_WIDTH_160:
1714		rx_status->bw = RATE_INFO_BW_160;
1715		break;
1716	}
1717
1718	if (rate_n_flags & RATE_MCS_HE_MSK)
1719		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1720			      phy_info, queue);
1721
1722	iwl_mvm_decode_lsig(skb, &phy_data);
1723
1724	rx_status = IEEE80211_SKB_RXCB(skb);
1725
1726	if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1727			      le32_to_cpu(pkt->len_n_flags), queue,
1728			      &crypt_len)) {
1729		kfree_skb(skb);
1730		return;
1731	}
1732
1733	/*
1734	 * Keep packets with CRC errors (and with overrun) for monitor mode
1735	 * (otherwise the firmware discards them) but mark them as bad.
1736	 */
1737	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1738	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1739		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1740			     le32_to_cpu(desc->status));
1741		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1742	}
1743	/* set the preamble flag if appropriate */
1744	if (rate_n_flags & RATE_MCS_CCK_MSK &&
1745	    phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1746		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1747
1748	if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1749		u64 tsf_on_air_rise;
1750
1751		if (mvm->trans->trans_cfg->device_family >=
1752		    IWL_DEVICE_FAMILY_AX210)
1753			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1754		else
1755			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1756
1757		rx_status->mactime = tsf_on_air_rise;
1758		/* TSF as indicated by the firmware is at INA time */
1759		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1760	}
1761
1762	rx_status->device_timestamp = gp2_on_air_rise;
1763	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1764		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1765
1766		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1767	} else {
1768		rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1769			NL80211_BAND_2GHZ;
1770	}
1771	rx_status->freq = ieee80211_channel_to_frequency(channel,
1772							 rx_status->band);
1773	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1774				    energy_b);
1775
1776	/* update aggregation data for monitor sake on default queue */
1777	if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1778		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1779
1780		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1781		/*
1782		 * Toggle is switched whenever new aggregation starts. Make
1783		 * sure ampdu_reference is never 0 so we can later use it to
1784		 * see if the frame was really part of an A-MPDU or not.
1785		 */
1786		if (toggle_bit != mvm->ampdu_toggle) {
1787			mvm->ampdu_ref++;
1788			if (mvm->ampdu_ref == 0)
1789				mvm->ampdu_ref++;
1790			mvm->ampdu_toggle = toggle_bit;
1791		}
1792		rx_status->ampdu_reference = mvm->ampdu_ref;
1793	}
1794
1795	if (unlikely(mvm->monitor_on))
1796		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1797
1798	rcu_read_lock();
1799
1800	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1801		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1802
1803		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1804			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1805			if (IS_ERR(sta))
1806				sta = NULL;
1807		}
1808	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1809		/*
1810		 * This is fine since we prevent two stations with the same
1811		 * address from being added.
1812		 */
1813		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1814	}
1815
1816	if (sta) {
1817		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1818		struct ieee80211_vif *tx_blocked_vif =
1819			rcu_dereference(mvm->csa_tx_blocked_vif);
1820		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1821			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
1822			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
1823		struct iwl_fw_dbg_trigger_tlv *trig;
1824		struct ieee80211_vif *vif = mvmsta->vif;
1825
1826		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1827		    !is_multicast_ether_addr(hdr->addr1) &&
1828		    ieee80211_is_data(hdr->frame_control) &&
1829		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1830			schedule_delayed_work(&mvm->tcm.work, 0);
1831
1832		/*
1833		 * We have tx blocked stations (with CS bit). If we heard
1834		 * frames from a blocked station on a new channel we can
1835		 * TX to it again.
1836		 */
1837		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1838			struct iwl_mvm_vif *mvmvif =
1839				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1840
1841			if (mvmvif->csa_target_freq == rx_status->freq)
1842				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1843								 false);
1844		}
1845
1846		rs_update_last_rssi(mvm, mvmsta, rx_status);
1847
1848		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1849					     ieee80211_vif_to_wdev(vif),
1850					     FW_DBG_TRIGGER_RSSI);
1851
1852		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1853			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1854			s32 rssi;
1855
1856			rssi_trig = (void *)trig->data;
1857			rssi = le32_to_cpu(rssi_trig->rssi);
1858
1859			if (rx_status->signal < rssi)
1860				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1861							NULL);
1862		}
1863
1864		if (ieee80211_is_data(hdr->frame_control))
1865			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1866
1867		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1868			kfree_skb(skb);
1869			goto out;
1870		}
1871
1872		/*
1873		 * Our hardware de-aggregates AMSDUs but copies the mac header
1874		 * as it to the de-aggregated MPDUs. We need to turn off the
1875		 * AMSDU bit in the QoS control ourselves.
1876		 * In addition, HW reverses addr3 and addr4 - reverse it back.
1877		 */
1878		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1879		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1880			u8 *qc = ieee80211_get_qos_ctl(hdr);
1881
1882			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1883
1884			if (mvm->trans->trans_cfg->device_family ==
1885			    IWL_DEVICE_FAMILY_9000) {
1886				iwl_mvm_flip_address(hdr->addr3);
1887
1888				if (ieee80211_has_a4(hdr->frame_control))
1889					iwl_mvm_flip_address(hdr->addr4);
1890			}
1891		}
1892		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1893			u32 reorder_data = le32_to_cpu(desc->reorder_data);
1894
1895			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1896		}
1897	}
1898
1899	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1900	    rate_n_flags & RATE_MCS_SGI_MSK)
1901		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1902	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1903		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1904	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1905		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1906	if (rate_n_flags & RATE_MCS_HT_MSK) {
1907		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1908				RATE_MCS_STBC_POS;
1909		rx_status->encoding = RX_ENC_HT;
1910		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1911		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1912	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1913		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1914				RATE_MCS_STBC_POS;
1915		rx_status->nss =
1916			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1917						RATE_VHT_MCS_NSS_POS) + 1;
1918		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1919		rx_status->encoding = RX_ENC_VHT;
1920		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1921		if (rate_n_flags & RATE_MCS_BF_MSK)
1922			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1923	} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1924		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1925							       rx_status->band);
1926
1927		if (WARN(rate < 0 || rate > 0xFF,
1928			 "Invalid rate flags 0x%x, band %d,\n",
1929			 rate_n_flags, rx_status->band)) {
1930			kfree_skb(skb);
1931			goto out;
1932		}
1933		rx_status->rate_idx = rate;
1934	}
1935
1936	/* management stuff on default queue */
1937	if (!queue) {
1938		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1939			      ieee80211_is_probe_resp(hdr->frame_control)) &&
1940			     mvm->sched_scan_pass_all ==
1941			     SCHED_SCAN_PASS_ALL_ENABLED))
1942			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1943
1944		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1945			     ieee80211_is_probe_resp(hdr->frame_control)))
1946			rx_status->boottime_ns = ktime_get_boottime_ns();
1947	}
1948
1949	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1950		kfree_skb(skb);
1951		goto out;
1952	}
1953
1954	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1955		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1956						sta, csi);
1957out:
1958	rcu_read_unlock();
1959}
1960
1961void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1962				struct iwl_rx_cmd_buffer *rxb, int queue)
1963{
1964	struct ieee80211_rx_status *rx_status;
1965	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1966	struct iwl_rx_no_data *desc = (void *)pkt->data;
1967	u32 rate_n_flags = le32_to_cpu(desc->rate);
1968	u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1969	u32 rssi = le32_to_cpu(desc->rssi);
1970	u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1971	u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1972	struct ieee80211_sta *sta = NULL;
1973	struct sk_buff *skb;
1974	u8 channel, energy_a, energy_b;
1975	struct iwl_mvm_rx_phy_data phy_data = {
1976		.d0 = desc->phy_info[0],
1977		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1978	};
1979
1980	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1981		return;
1982
1983	energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1984	energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1985	channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1986
1987	phy_data.info_type =
1988		le32_get_bits(desc->phy_info[1],
1989			      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1990
1991	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1992	 * ieee80211_hdr pulled.
1993	 */
1994	skb = alloc_skb(128, GFP_ATOMIC);
1995	if (!skb) {
1996		IWL_ERR(mvm, "alloc_skb failed\n");
1997		return;
1998	}
1999
2000	rx_status = IEEE80211_SKB_RXCB(skb);
2001
2002	/* 0-length PSDU */
2003	rx_status->flag |= RX_FLAG_NO_PSDU;
2004
2005	switch (info_type) {
2006	case RX_NO_DATA_INFO_TYPE_NDP:
2007		rx_status->zero_length_psdu_type =
2008			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2009		break;
2010	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2011	case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2012		rx_status->zero_length_psdu_type =
2013			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2014		break;
2015	default:
2016		rx_status->zero_length_psdu_type =
2017			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2018		break;
2019	}
2020
2021	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2022	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2023	case RATE_MCS_CHAN_WIDTH_20:
2024		break;
2025	case RATE_MCS_CHAN_WIDTH_40:
2026		rx_status->bw = RATE_INFO_BW_40;
2027		break;
2028	case RATE_MCS_CHAN_WIDTH_80:
2029		rx_status->bw = RATE_INFO_BW_80;
2030		break;
2031	case RATE_MCS_CHAN_WIDTH_160:
2032		rx_status->bw = RATE_INFO_BW_160;
2033		break;
2034	}
2035
2036	if (rate_n_flags & RATE_MCS_HE_MSK)
2037		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
2038			      phy_info, queue);
2039
2040	iwl_mvm_decode_lsig(skb, &phy_data);
2041
2042	rx_status->device_timestamp = gp2_on_air_rise;
2043	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2044		NL80211_BAND_2GHZ;
2045	rx_status->freq = ieee80211_channel_to_frequency(channel,
2046							 rx_status->band);
2047	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
2048				    energy_b);
2049
2050	rcu_read_lock();
2051
2052	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
2053	    rate_n_flags & RATE_MCS_SGI_MSK)
2054		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2055	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
2056		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
2057	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2058		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2059	if (rate_n_flags & RATE_MCS_HT_MSK) {
2060		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2061				RATE_MCS_STBC_POS;
2062		rx_status->encoding = RX_ENC_HT;
2063		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
2064		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2065	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2066		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2067				RATE_MCS_STBC_POS;
2068		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2069		rx_status->encoding = RX_ENC_VHT;
2070		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2071		if (rate_n_flags & RATE_MCS_BF_MSK)
2072			rx_status->enc_flags |= RX_ENC_FLAG_BF;
2073		/*
2074		 * take the nss from the rx_vec since the rate_n_flags has
2075		 * only 2 bits for the nss which gives a max of 4 ss but
2076		 * there may be up to 8 spatial streams
2077		 */
2078		rx_status->nss =
2079			le32_get_bits(desc->rx_vec[0],
2080				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2081	} else if (rate_n_flags & RATE_MCS_HE_MSK) {
2082		rx_status->nss =
2083			le32_get_bits(desc->rx_vec[0],
2084				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2085	} else {
2086		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2087							       rx_status->band);
2088
2089		if (WARN(rate < 0 || rate > 0xFF,
2090			 "Invalid rate flags 0x%x, band %d,\n",
2091			 rate_n_flags, rx_status->band)) {
2092			kfree_skb(skb);
2093			goto out;
2094		}
2095		rx_status->rate_idx = rate;
2096	}
2097
2098	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2099out:
2100	rcu_read_unlock();
2101}
2102
2103void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2104			      struct iwl_rx_cmd_buffer *rxb, int queue)
2105{
2106	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2107	struct iwl_frame_release *release = (void *)pkt->data;
2108
2109	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2110					  le16_to_cpu(release->nssn),
2111					  queue, 0);
2112}
2113
2114void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2115				  struct iwl_rx_cmd_buffer *rxb, int queue)
2116{
2117	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2118	struct iwl_bar_frame_release *release = (void *)pkt->data;
2119	unsigned int baid = le32_get_bits(release->ba_info,
2120					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2121	unsigned int nssn = le32_get_bits(release->ba_info,
2122					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2123	unsigned int sta_id = le32_get_bits(release->sta_tid,
2124					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2125	unsigned int tid = le32_get_bits(release->sta_tid,
2126					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2127	struct iwl_mvm_baid_data *baid_data;
2128
2129	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2130			 baid >= ARRAY_SIZE(mvm->baid_map)))
2131		return;
2132
2133	rcu_read_lock();
2134	baid_data = rcu_dereference(mvm->baid_map[baid]);
2135	if (!baid_data) {
2136		IWL_DEBUG_RX(mvm,
2137			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2138			      baid);
2139		goto out;
2140	}
2141
2142	if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2143		 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2144		 baid, baid_data->sta_id, baid_data->tid, sta_id,
2145		 tid))
2146		goto out;
2147
2148	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2149out:
2150	rcu_read_unlock();
2151}
2152