1/****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 - 2020 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * The full GNU General Public License is included in this distribution 23 * in the file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <linuxwifi@intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 - 2020 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 *****************************************************************************/ 63#include <linux/etherdevice.h> 64#include <linux/skbuff.h> 65#include "iwl-trans.h" 66#include "mvm.h" 67#include "fw-api.h" 68 69static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 70{ 71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 72 u8 *data = skb->data; 73 74 /* Alignment concerns */ 75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 79 80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 81 data += sizeof(struct ieee80211_radiotap_he); 82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 83 data += sizeof(struct ieee80211_radiotap_he_mu); 84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 85 data += sizeof(struct ieee80211_radiotap_lsig); 86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 87 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 88 89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 90 } 91 92 return data; 93} 94 95static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 96 int queue, struct ieee80211_sta *sta) 97{ 98 struct iwl_mvm_sta *mvmsta; 99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 101 struct iwl_mvm_key_pn *ptk_pn; 102 int res; 103 u8 tid, keyidx; 104 u8 pn[IEEE80211_CCMP_PN_LEN]; 105 u8 *extiv; 106 107 /* do PN checking */ 108 109 /* multicast and non-data only arrives on default queue */ 110 if (!ieee80211_is_data(hdr->frame_control) || 111 is_multicast_ether_addr(hdr->addr1)) 112 return 0; 113 114 /* do not check PN for open AP */ 115 if (!(stats->flag & RX_FLAG_DECRYPTED)) 116 return 0; 117 118 /* 119 * avoid checking for default queue - we don't want to replicate 120 * all the logic that's necessary for checking the PN on fragmented 121 * frames, leave that to mac80211 122 */ 123 if (queue == 0) 124 return 0; 125 126 /* if we are here - this for sure is either CCMP or GCMP */ 127 if (IS_ERR_OR_NULL(sta)) { 128 IWL_ERR(mvm, 129 "expected hw-decrypted unicast frame for station\n"); 130 return -1; 131 } 132 133 mvmsta = iwl_mvm_sta_from_mac80211(sta); 134 135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 136 keyidx = extiv[3] >> 6; 137 138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 139 if (!ptk_pn) 140 return -1; 141 142 if (ieee80211_is_data_qos(hdr->frame_control)) 143 tid = ieee80211_get_tid(hdr); 144 else 145 tid = 0; 146 147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 148 if (tid >= IWL_MAX_TID_COUNT) 149 return -1; 150 151 /* load pn */ 152 pn[0] = extiv[7]; 153 pn[1] = extiv[6]; 154 pn[2] = extiv[5]; 155 pn[3] = extiv[4]; 156 pn[4] = extiv[1]; 157 pn[5] = extiv[0]; 158 159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 160 if (res < 0) 161 return -1; 162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 163 return -1; 164 165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 166 stats->flag |= RX_FLAG_PN_VALIDATED; 167 168 return 0; 169} 170 171/* iwl_mvm_create_skb Adds the rxb to a new skb */ 172static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 174 struct iwl_rx_cmd_buffer *rxb) 175{ 176 struct iwl_rx_packet *pkt = rxb_addr(rxb); 177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 178 unsigned int headlen, fraglen, pad_len = 0; 179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 180 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 181 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 182 183 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 184 len -= 2; 185 pad_len = 2; 186 } 187 188 /* 189 * For non monitor interface strip the bytes the RADA might not have 190 * removed. As monitor interface cannot exist with other interfaces 191 * this removal is safe. 192 */ 193 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) { 194 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags); 195 196 /* 197 * If RADA was not enabled then decryption was not performed so 198 * the MIC cannot be removed. 199 */ 200 if (!(pkt_flags & FH_RSCSR_RADA_EN)) { 201 if (WARN_ON(crypt_len > mic_crc_len)) 202 return -EINVAL; 203 204 mic_crc_len -= crypt_len; 205 } 206 207 if (WARN_ON(mic_crc_len > len)) 208 return -EINVAL; 209 210 len -= mic_crc_len; 211 } 212 213 /* If frame is small enough to fit in skb->head, pull it completely. 214 * If not, only pull ieee80211_hdr (including crypto if present, and 215 * an additional 8 bytes for SNAP/ethertype, see below) so that 216 * splice() or TCP coalesce are more efficient. 217 * 218 * Since, in addition, ieee80211_data_to_8023() always pull in at 219 * least 8 bytes (possibly more for mesh) we can do the same here 220 * to save the cost of doing it later. That still doesn't pull in 221 * the actual IP header since the typical case has a SNAP header. 222 * If the latter changes (there are efforts in the standards group 223 * to do so) we should revisit this and ieee80211_data_to_8023(). 224 */ 225 headlen = (len <= skb_tailroom(skb)) ? len : 226 hdrlen + crypt_len + 8; 227 228 /* The firmware may align the packet to DWORD. 229 * The padding is inserted after the IV. 230 * After copying the header + IV skip the padding if 231 * present before copying packet data. 232 */ 233 hdrlen += crypt_len; 234 235 if (WARN_ONCE(headlen < hdrlen, 236 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 237 hdrlen, len, crypt_len)) { 238 /* 239 * We warn and trace because we want to be able to see 240 * it in trace-cmd as well. 241 */ 242 IWL_DEBUG_RX(mvm, 243 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 244 hdrlen, len, crypt_len); 245 return -EINVAL; 246 } 247 248 skb_put_data(skb, hdr, hdrlen); 249 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 250 251 /* 252 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 253 * certain cases and starts the checksum after the SNAP. Check if 254 * this is the case - it's easier to just bail out to CHECKSUM_NONE 255 * in the cases the hardware didn't handle, since it's rare to see 256 * such packets, even though the hardware did calculate the checksum 257 * in this case, just starting after the MAC header instead. 258 */ 259 if (skb->ip_summed == CHECKSUM_COMPLETE) { 260 struct { 261 u8 hdr[6]; 262 __be16 type; 263 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 264 265 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 266 !ether_addr_equal(shdr->hdr, rfc1042_header) || 267 (shdr->type != htons(ETH_P_IP) && 268 shdr->type != htons(ETH_P_ARP) && 269 shdr->type != htons(ETH_P_IPV6) && 270 shdr->type != htons(ETH_P_8021Q) && 271 shdr->type != htons(ETH_P_PAE) && 272 shdr->type != htons(ETH_P_TDLS)))) 273 skb->ip_summed = CHECKSUM_NONE; 274 } 275 276 fraglen = len - headlen; 277 278 if (fraglen) { 279 int offset = (void *)hdr + headlen + pad_len - 280 rxb_addr(rxb) + rxb_offset(rxb); 281 282 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 283 fraglen, rxb->truesize); 284 } 285 286 return 0; 287} 288 289static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 290 struct sk_buff *skb) 291{ 292 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 293 struct ieee80211_vendor_radiotap *radiotap; 294 const int size = sizeof(*radiotap) + sizeof(__le16); 295 296 if (!mvm->cur_aid) 297 return; 298 299 /* ensure alignment */ 300 BUILD_BUG_ON((size + 2) % 4); 301 302 radiotap = skb_put(skb, size + 2); 303 radiotap->align = 1; 304 /* Intel OUI */ 305 radiotap->oui[0] = 0xf6; 306 radiotap->oui[1] = 0x54; 307 radiotap->oui[2] = 0x25; 308 /* radiotap sniffer config sub-namespace */ 309 radiotap->subns = 1; 310 radiotap->present = 0x1; 311 radiotap->len = size - sizeof(*radiotap); 312 radiotap->pad = 2; 313 314 /* fill the data now */ 315 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 316 /* and clear the padding */ 317 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 318 319 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 320} 321 322/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 323static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 324 struct napi_struct *napi, 325 struct sk_buff *skb, int queue, 326 struct ieee80211_sta *sta, 327 bool csi) 328{ 329 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 330 kfree_skb(skb); 331 else 332 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 333} 334 335static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 336 struct ieee80211_rx_status *rx_status, 337 u32 rate_n_flags, int energy_a, 338 int energy_b) 339{ 340 int max_energy; 341 u32 rate_flags = rate_n_flags; 342 343 energy_a = energy_a ? -energy_a : S8_MIN; 344 energy_b = energy_b ? -energy_b : S8_MIN; 345 max_energy = max(energy_a, energy_b); 346 347 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 348 energy_a, energy_b, max_energy); 349 350 rx_status->signal = max_energy; 351 rx_status->chains = 352 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 353 rx_status->chain_signal[0] = energy_a; 354 rx_status->chain_signal[1] = energy_b; 355 rx_status->chain_signal[2] = S8_MIN; 356} 357 358static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr, 359 struct ieee80211_rx_status *stats, u16 phy_info, 360 struct iwl_rx_mpdu_desc *desc, 361 u32 pkt_flags, int queue, u8 *crypt_len) 362{ 363 u32 status = le32_to_cpu(desc->status); 364 365 /* 366 * Drop UNKNOWN frames in aggregation, unless in monitor mode 367 * (where we don't have the keys). 368 * We limit this to aggregation because in TKIP this is a valid 369 * scenario, since we may not have the (correct) TTAK (phase 1 370 * key) in the firmware. 371 */ 372 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 373 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 374 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 375 return -1; 376 377 if (!ieee80211_has_protected(hdr->frame_control) || 378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 379 IWL_RX_MPDU_STATUS_SEC_NONE) 380 return 0; 381 382 /* TODO: handle packets encrypted with unknown alg */ 383 384 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 385 case IWL_RX_MPDU_STATUS_SEC_CCM: 386 case IWL_RX_MPDU_STATUS_SEC_GCM: 387 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 388 /* alg is CCM: check MIC only */ 389 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 390 return -1; 391 392 stats->flag |= RX_FLAG_DECRYPTED; 393 if (pkt_flags & FH_RSCSR_RADA_EN) 394 stats->flag |= RX_FLAG_MIC_STRIPPED; 395 *crypt_len = IEEE80211_CCMP_HDR_LEN; 396 return 0; 397 case IWL_RX_MPDU_STATUS_SEC_TKIP: 398 /* Don't drop the frame and decrypt it in SW */ 399 if (!fw_has_api(&mvm->fw->ucode_capa, 400 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 401 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 402 return 0; 403 404 if (mvm->trans->trans_cfg->gen2 && 405 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 406 stats->flag |= RX_FLAG_MMIC_ERROR; 407 408 *crypt_len = IEEE80211_TKIP_IV_LEN; 409 /* fall through */ 410 case IWL_RX_MPDU_STATUS_SEC_WEP: 411 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 412 return -1; 413 414 stats->flag |= RX_FLAG_DECRYPTED; 415 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 416 IWL_RX_MPDU_STATUS_SEC_WEP) 417 *crypt_len = IEEE80211_WEP_IV_LEN; 418 419 if (pkt_flags & FH_RSCSR_RADA_EN) { 420 stats->flag |= RX_FLAG_ICV_STRIPPED; 421 if (mvm->trans->trans_cfg->gen2) 422 stats->flag |= RX_FLAG_MMIC_STRIPPED; 423 } 424 425 return 0; 426 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 427 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 428 return -1; 429 stats->flag |= RX_FLAG_DECRYPTED; 430 return 0; 431 default: 432 /* 433 * Sometimes we can get frames that were not decrypted 434 * because the firmware didn't have the keys yet. This can 435 * happen after connection where we can get multicast frames 436 * before the GTK is installed. 437 * Silently drop those frames. 438 * Also drop un-decrypted frames in monitor mode. 439 */ 440 if (!is_multicast_ether_addr(hdr->addr1) && 441 !mvm->monitor_on && net_ratelimit()) 442 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 443 } 444 445 return 0; 446} 447 448static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 449 struct ieee80211_sta *sta, 450 struct sk_buff *skb, 451 struct iwl_rx_packet *pkt) 452{ 453 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 454 455 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 456 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 457 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 458 459 skb->ip_summed = CHECKSUM_COMPLETE; 460 skb->csum = csum_unfold(~(__force __sum16)hwsum); 461 } 462 } else { 463 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 464 struct iwl_mvm_vif *mvmvif; 465 u16 flags = le16_to_cpu(desc->l3l4_flags); 466 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 467 IWL_RX_L3_PROTO_POS); 468 469 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 470 471 if (mvmvif->features & NETIF_F_RXCSUM && 472 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 473 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 474 l3_prot == IWL_RX_L3_TYPE_IPV6 || 475 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 476 skb->ip_summed = CHECKSUM_UNNECESSARY; 477 } 478} 479 480/* 481 * returns true if a packet is a duplicate and should be dropped. 482 * Updates AMSDU PN tracking info 483 */ 484static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 485 struct ieee80211_rx_status *rx_status, 486 struct ieee80211_hdr *hdr, 487 struct iwl_rx_mpdu_desc *desc) 488{ 489 struct iwl_mvm_sta *mvm_sta; 490 struct iwl_mvm_rxq_dup_data *dup_data; 491 u8 tid, sub_frame_idx; 492 493 if (WARN_ON(IS_ERR_OR_NULL(sta))) 494 return false; 495 496 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 497 dup_data = &mvm_sta->dup_data[queue]; 498 499 /* 500 * Drop duplicate 802.11 retransmissions 501 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 502 */ 503 if (ieee80211_is_ctl(hdr->frame_control) || 504 ieee80211_is_qos_nullfunc(hdr->frame_control) || 505 is_multicast_ether_addr(hdr->addr1)) { 506 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 507 return false; 508 } 509 510 if (ieee80211_is_data_qos(hdr->frame_control)) 511 /* frame has qos control */ 512 tid = ieee80211_get_tid(hdr); 513 else 514 tid = IWL_MAX_TID_COUNT; 515 516 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 517 sub_frame_idx = desc->amsdu_info & 518 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 519 520 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 521 dup_data->last_seq[tid] == hdr->seq_ctrl && 522 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 523 return true; 524 525 /* Allow same PN as the first subframe for following sub frames */ 526 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 527 sub_frame_idx > dup_data->last_sub_frame[tid] && 528 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 529 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 530 531 dup_data->last_seq[tid] = hdr->seq_ctrl; 532 dup_data->last_sub_frame[tid] = sub_frame_idx; 533 534 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 535 536 return false; 537} 538 539int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask, 540 const u8 *data, u32 count, bool async) 541{ 542 u8 buf[sizeof(struct iwl_rxq_sync_cmd) + 543 sizeof(struct iwl_mvm_rss_sync_notif)]; 544 struct iwl_rxq_sync_cmd *cmd = (void *)buf; 545 u32 data_size = sizeof(*cmd) + count; 546 int ret; 547 548 /* 549 * size must be a multiple of DWORD 550 * Ensure we don't overflow buf 551 */ 552 if (WARN_ON(count & 3 || 553 count > sizeof(struct iwl_mvm_rss_sync_notif))) 554 return -EINVAL; 555 556 cmd->rxq_mask = cpu_to_le32(rxq_mask); 557 cmd->count = cpu_to_le32(count); 558 cmd->flags = 0; 559 memcpy(cmd->payload, data, count); 560 561 ret = iwl_mvm_send_cmd_pdu(mvm, 562 WIDE_ID(DATA_PATH_GROUP, 563 TRIGGER_RX_QUEUES_NOTIF_CMD), 564 async ? CMD_ASYNC : 0, data_size, cmd); 565 566 return ret; 567} 568 569/* 570 * Returns true if sn2 - buffer_size < sn1 < sn2. 571 * To be used only in order to compare reorder buffer head with NSSN. 572 * We fully trust NSSN unless it is behind us due to reorder timeout. 573 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 574 */ 575static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 576{ 577 return ieee80211_sn_less(sn1, sn2) && 578 !ieee80211_sn_less(sn1, sn2 - buffer_size); 579} 580 581static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 582{ 583 if (IWL_MVM_USE_NSSN_SYNC) { 584 struct iwl_mvm_rss_sync_notif notif = { 585 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC, 586 .metadata.sync = 0, 587 .nssn_sync.baid = baid, 588 .nssn_sync.nssn = nssn, 589 }; 590 591 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if, 592 sizeof(notif)); 593 } 594} 595 596#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 597 598enum iwl_mvm_release_flags { 599 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 600 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 601}; 602 603static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 604 struct ieee80211_sta *sta, 605 struct napi_struct *napi, 606 struct iwl_mvm_baid_data *baid_data, 607 struct iwl_mvm_reorder_buffer *reorder_buf, 608 u16 nssn, u32 flags) 609{ 610 struct iwl_mvm_reorder_buf_entry *entries = 611 &baid_data->entries[reorder_buf->queue * 612 baid_data->entries_per_queue]; 613 u16 ssn = reorder_buf->head_sn; 614 615 lockdep_assert_held(&reorder_buf->lock); 616 617 /* 618 * We keep the NSSN not too far behind, if we are sync'ing it and it 619 * is more than 2048 ahead of us, it must be behind us. Discard it. 620 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 621 * behind and this queue already processed packets. The next if 622 * would have caught cases where this queue would have processed less 623 * than 64 packets, but it may have processed more than 64 packets. 624 */ 625 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 626 ieee80211_sn_less(nssn, ssn)) 627 goto set_timer; 628 629 /* ignore nssn smaller than head sn - this can happen due to timeout */ 630 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 631 goto set_timer; 632 633 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 634 int index = ssn % reorder_buf->buf_size; 635 struct sk_buff_head *skb_list = &entries[index].e.frames; 636 struct sk_buff *skb; 637 638 ssn = ieee80211_sn_inc(ssn); 639 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 640 (ssn == 2048 || ssn == 0)) 641 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 642 643 /* 644 * Empty the list. Will have more than one frame for A-MSDU. 645 * Empty list is valid as well since nssn indicates frames were 646 * received. 647 */ 648 while ((skb = __skb_dequeue(skb_list))) { 649 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 650 reorder_buf->queue, 651 sta, false); 652 reorder_buf->num_stored--; 653 } 654 } 655 reorder_buf->head_sn = nssn; 656 657set_timer: 658 if (reorder_buf->num_stored && !reorder_buf->removed) { 659 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 660 661 while (skb_queue_empty(&entries[index].e.frames)) 662 index = (index + 1) % reorder_buf->buf_size; 663 /* modify timer to match next frame's expiration time */ 664 mod_timer(&reorder_buf->reorder_timer, 665 entries[index].e.reorder_time + 1 + 666 RX_REORDER_BUF_TIMEOUT_MQ); 667 } else { 668 del_timer(&reorder_buf->reorder_timer); 669 } 670} 671 672void iwl_mvm_reorder_timer_expired(struct timer_list *t) 673{ 674 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 675 struct iwl_mvm_baid_data *baid_data = 676 iwl_mvm_baid_data_from_reorder_buf(buf); 677 struct iwl_mvm_reorder_buf_entry *entries = 678 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 679 int i; 680 u16 sn = 0, index = 0; 681 bool expired = false; 682 bool cont = false; 683 684 spin_lock(&buf->lock); 685 686 if (!buf->num_stored || buf->removed) { 687 spin_unlock(&buf->lock); 688 return; 689 } 690 691 for (i = 0; i < buf->buf_size ; i++) { 692 index = (buf->head_sn + i) % buf->buf_size; 693 694 if (skb_queue_empty(&entries[index].e.frames)) { 695 /* 696 * If there is a hole and the next frame didn't expire 697 * we want to break and not advance SN 698 */ 699 cont = false; 700 continue; 701 } 702 if (!cont && 703 !time_after(jiffies, entries[index].e.reorder_time + 704 RX_REORDER_BUF_TIMEOUT_MQ)) 705 break; 706 707 expired = true; 708 /* continue until next hole after this expired frames */ 709 cont = true; 710 sn = ieee80211_sn_add(buf->head_sn, i + 1); 711 } 712 713 if (expired) { 714 struct ieee80211_sta *sta; 715 struct iwl_mvm_sta *mvmsta; 716 u8 sta_id = baid_data->sta_id; 717 718 rcu_read_lock(); 719 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 720 mvmsta = iwl_mvm_sta_from_mac80211(sta); 721 722 /* SN is set to the last expired frame + 1 */ 723 IWL_DEBUG_HT(buf->mvm, 724 "Releasing expired frames for sta %u, sn %d\n", 725 sta_id, sn); 726 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 727 sta, baid_data->tid); 728 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 729 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 730 rcu_read_unlock(); 731 } else { 732 /* 733 * If no frame expired and there are stored frames, index is now 734 * pointing to the first unexpired frame - modify timer 735 * accordingly to this frame. 736 */ 737 mod_timer(&buf->reorder_timer, 738 entries[index].e.reorder_time + 739 1 + RX_REORDER_BUF_TIMEOUT_MQ); 740 } 741 spin_unlock(&buf->lock); 742} 743 744static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 745 struct iwl_mvm_delba_data *data) 746{ 747 struct iwl_mvm_baid_data *ba_data; 748 struct ieee80211_sta *sta; 749 struct iwl_mvm_reorder_buffer *reorder_buf; 750 u8 baid = data->baid; 751 752 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 753 return; 754 755 rcu_read_lock(); 756 757 ba_data = rcu_dereference(mvm->baid_map[baid]); 758 if (WARN_ON_ONCE(!ba_data)) 759 goto out; 760 761 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 762 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 763 goto out; 764 765 reorder_buf = &ba_data->reorder_buf[queue]; 766 767 /* release all frames that are in the reorder buffer to the stack */ 768 spin_lock_bh(&reorder_buf->lock); 769 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 770 ieee80211_sn_add(reorder_buf->head_sn, 771 reorder_buf->buf_size), 772 0); 773 spin_unlock_bh(&reorder_buf->lock); 774 del_timer_sync(&reorder_buf->reorder_timer); 775 776out: 777 rcu_read_unlock(); 778} 779 780static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 781 struct napi_struct *napi, 782 u8 baid, u16 nssn, int queue, 783 u32 flags) 784{ 785 struct ieee80211_sta *sta; 786 struct iwl_mvm_reorder_buffer *reorder_buf; 787 struct iwl_mvm_baid_data *ba_data; 788 789 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 790 baid, nssn); 791 792 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 793 baid >= ARRAY_SIZE(mvm->baid_map))) 794 return; 795 796 rcu_read_lock(); 797 798 ba_data = rcu_dereference(mvm->baid_map[baid]); 799 if (WARN_ON_ONCE(!ba_data)) 800 goto out; 801 802 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 803 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 804 goto out; 805 806 reorder_buf = &ba_data->reorder_buf[queue]; 807 808 spin_lock_bh(&reorder_buf->lock); 809 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 810 reorder_buf, nssn, flags); 811 spin_unlock_bh(&reorder_buf->lock); 812 813out: 814 rcu_read_unlock(); 815} 816 817static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 818 struct napi_struct *napi, int queue, 819 const struct iwl_mvm_nssn_sync_data *data) 820{ 821 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 822 data->nssn, queue, 823 IWL_MVM_RELEASE_FROM_RSS_SYNC); 824} 825 826void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 827 struct iwl_rx_cmd_buffer *rxb, int queue) 828{ 829 struct iwl_rx_packet *pkt = rxb_addr(rxb); 830 struct iwl_rxq_sync_notification *notif; 831 struct iwl_mvm_internal_rxq_notif *internal_notif; 832 833 notif = (void *)pkt->data; 834 internal_notif = (void *)notif->payload; 835 836 if (internal_notif->sync && 837 mvm->queue_sync_cookie != internal_notif->cookie) { 838 WARN_ONCE(1, "Received expired RX queue sync message\n"); 839 return; 840 } 841 842 switch (internal_notif->type) { 843 case IWL_MVM_RXQ_EMPTY: 844 break; 845 case IWL_MVM_RXQ_NOTIF_DEL_BA: 846 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 847 break; 848 case IWL_MVM_RXQ_NSSN_SYNC: 849 iwl_mvm_nssn_sync(mvm, napi, queue, 850 (void *)internal_notif->data); 851 break; 852 default: 853 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 854 } 855 856 if (internal_notif->sync && 857 !atomic_dec_return(&mvm->queue_sync_counter)) 858 wake_up(&mvm->rx_sync_waitq); 859} 860 861static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 862 struct ieee80211_sta *sta, int tid, 863 struct iwl_mvm_reorder_buffer *buffer, 864 u32 reorder, u32 gp2, int queue) 865{ 866 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 867 868 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 869 /* we have a new (A-)MPDU ... */ 870 871 /* 872 * reset counter to 0 if we didn't have any oldsn in 873 * the last A-MPDU (as detected by GP2 being identical) 874 */ 875 if (!buffer->consec_oldsn_prev_drop) 876 buffer->consec_oldsn_drops = 0; 877 878 /* either way, update our tracking state */ 879 buffer->consec_oldsn_ampdu_gp2 = gp2; 880 } else if (buffer->consec_oldsn_prev_drop) { 881 /* 882 * tracking state didn't change, and we had an old SN 883 * indication before - do nothing in this case, we 884 * already noted this one down and are waiting for the 885 * next A-MPDU (by GP2) 886 */ 887 return; 888 } 889 890 /* return unless this MPDU has old SN */ 891 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 892 return; 893 894 /* update state */ 895 buffer->consec_oldsn_prev_drop = 1; 896 buffer->consec_oldsn_drops++; 897 898 /* if limit is reached, send del BA and reset state */ 899 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 900 IWL_WARN(mvm, 901 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 902 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 903 sta->addr, queue, tid); 904 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 905 buffer->consec_oldsn_prev_drop = 0; 906 buffer->consec_oldsn_drops = 0; 907 } 908} 909 910/* 911 * Returns true if the MPDU was buffered\dropped, false if it should be passed 912 * to upper layer. 913 */ 914static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 915 struct napi_struct *napi, 916 int queue, 917 struct ieee80211_sta *sta, 918 struct sk_buff *skb, 919 struct iwl_rx_mpdu_desc *desc) 920{ 921 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 922 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 923 struct iwl_mvm_sta *mvm_sta; 924 struct iwl_mvm_baid_data *baid_data; 925 struct iwl_mvm_reorder_buffer *buffer; 926 struct sk_buff *tail; 927 u32 reorder = le32_to_cpu(desc->reorder_data); 928 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 929 bool last_subframe = 930 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 931 u8 tid = ieee80211_get_tid(hdr); 932 u8 sub_frame_idx = desc->amsdu_info & 933 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 934 struct iwl_mvm_reorder_buf_entry *entries; 935 int index; 936 u16 nssn, sn; 937 u8 baid; 938 939 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 940 IWL_RX_MPDU_REORDER_BAID_SHIFT; 941 942 /* 943 * This also covers the case of receiving a Block Ack Request 944 * outside a BA session; we'll pass it to mac80211 and that 945 * then sends a delBA action frame. 946 * This also covers pure monitor mode, in which case we won't 947 * have any BA sessions. 948 */ 949 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 950 return false; 951 952 /* no sta yet */ 953 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 954 "Got valid BAID without a valid station assigned\n")) 955 return false; 956 957 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 958 959 /* not a data packet or a bar */ 960 if (!ieee80211_is_back_req(hdr->frame_control) && 961 (!ieee80211_is_data_qos(hdr->frame_control) || 962 is_multicast_ether_addr(hdr->addr1))) 963 return false; 964 965 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 966 return false; 967 968 baid_data = rcu_dereference(mvm->baid_map[baid]); 969 if (!baid_data) { 970 IWL_DEBUG_RX(mvm, 971 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 972 baid, reorder); 973 return false; 974 } 975 976 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 977 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 978 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 979 tid)) 980 return false; 981 982 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 983 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 984 IWL_RX_MPDU_REORDER_SN_SHIFT; 985 986 buffer = &baid_data->reorder_buf[queue]; 987 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 988 989 spin_lock_bh(&buffer->lock); 990 991 if (!buffer->valid) { 992 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 993 spin_unlock_bh(&buffer->lock); 994 return false; 995 } 996 buffer->valid = true; 997 } 998 999 if (ieee80211_is_back_req(hdr->frame_control)) { 1000 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1001 buffer, nssn, 0); 1002 goto drop; 1003 } 1004 1005 /* 1006 * If there was a significant jump in the nssn - adjust. 1007 * If the SN is smaller than the NSSN it might need to first go into 1008 * the reorder buffer, in which case we just release up to it and the 1009 * rest of the function will take care of storing it and releasing up to 1010 * the nssn. 1011 * This should not happen. This queue has been lagging and it should 1012 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1013 * and update the other queues. 1014 */ 1015 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1016 buffer->buf_size) || 1017 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1018 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1019 1020 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1021 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1022 } 1023 1024 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1025 rx_status->device_timestamp, queue); 1026 1027 /* drop any oudated packets */ 1028 if (ieee80211_sn_less(sn, buffer->head_sn)) 1029 goto drop; 1030 1031 /* release immediately if allowed by nssn and no stored frames */ 1032 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1033 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1034 buffer->buf_size) && 1035 (!amsdu || last_subframe)) { 1036 /* 1037 * If we crossed the 2048 or 0 SN, notify all the 1038 * queues. This is done in order to avoid having a 1039 * head_sn that lags behind for too long. When that 1040 * happens, we can get to a situation where the head_sn 1041 * is within the interval [nssn - buf_size : nssn] 1042 * which will make us think that the nssn is a packet 1043 * that we already freed because of the reordering 1044 * buffer and we will ignore it. So maintain the 1045 * head_sn somewhat updated across all the queues: 1046 * when it crosses 0 and 2048. 1047 */ 1048 if (sn == 2048 || sn == 0) 1049 iwl_mvm_sync_nssn(mvm, baid, sn); 1050 buffer->head_sn = nssn; 1051 } 1052 /* No need to update AMSDU last SN - we are moving the head */ 1053 spin_unlock_bh(&buffer->lock); 1054 return false; 1055 } 1056 1057 /* 1058 * release immediately if there are no stored frames, and the sn is 1059 * equal to the head. 1060 * This can happen due to reorder timer, where NSSN is behind head_sn. 1061 * When we released everything, and we got the next frame in the 1062 * sequence, according to the NSSN we can't release immediately, 1063 * while technically there is no hole and we can move forward. 1064 */ 1065 if (!buffer->num_stored && sn == buffer->head_sn) { 1066 if (!amsdu || last_subframe) { 1067 if (sn == 2048 || sn == 0) 1068 iwl_mvm_sync_nssn(mvm, baid, sn); 1069 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1070 } 1071 /* No need to update AMSDU last SN - we are moving the head */ 1072 spin_unlock_bh(&buffer->lock); 1073 return false; 1074 } 1075 1076 index = sn % buffer->buf_size; 1077 1078 /* 1079 * Check if we already stored this frame 1080 * As AMSDU is either received or not as whole, logic is simple: 1081 * If we have frames in that position in the buffer and the last frame 1082 * originated from AMSDU had a different SN then it is a retransmission. 1083 * If it is the same SN then if the subframe index is incrementing it 1084 * is the same AMSDU - otherwise it is a retransmission. 1085 */ 1086 tail = skb_peek_tail(&entries[index].e.frames); 1087 if (tail && !amsdu) 1088 goto drop; 1089 else if (tail && (sn != buffer->last_amsdu || 1090 buffer->last_sub_index >= sub_frame_idx)) 1091 goto drop; 1092 1093 /* put in reorder buffer */ 1094 __skb_queue_tail(&entries[index].e.frames, skb); 1095 buffer->num_stored++; 1096 entries[index].e.reorder_time = jiffies; 1097 1098 if (amsdu) { 1099 buffer->last_amsdu = sn; 1100 buffer->last_sub_index = sub_frame_idx; 1101 } 1102 1103 /* 1104 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1105 * The reason is that NSSN advances on the first sub-frame, and may 1106 * cause the reorder buffer to advance before all the sub-frames arrive. 1107 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1108 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1109 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1110 * already ahead and it will be dropped. 1111 * If the last sub-frame is not on this queue - we will get frame 1112 * release notification with up to date NSSN. 1113 */ 1114 if (!amsdu || last_subframe) 1115 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1116 buffer, nssn, 1117 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1118 1119 spin_unlock_bh(&buffer->lock); 1120 return true; 1121 1122drop: 1123 kfree_skb(skb); 1124 spin_unlock_bh(&buffer->lock); 1125 return true; 1126} 1127 1128static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1129 u32 reorder_data, u8 baid) 1130{ 1131 unsigned long now = jiffies; 1132 unsigned long timeout; 1133 struct iwl_mvm_baid_data *data; 1134 1135 rcu_read_lock(); 1136 1137 data = rcu_dereference(mvm->baid_map[baid]); 1138 if (!data) { 1139 IWL_DEBUG_RX(mvm, 1140 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1141 baid, reorder_data); 1142 goto out; 1143 } 1144 1145 if (!data->timeout) 1146 goto out; 1147 1148 timeout = data->timeout; 1149 /* 1150 * Do not update last rx all the time to avoid cache bouncing 1151 * between the rx queues. 1152 * Update it every timeout. Worst case is the session will 1153 * expire after ~ 2 * timeout, which doesn't matter that much. 1154 */ 1155 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1156 /* Update is atomic */ 1157 data->last_rx = now; 1158 1159out: 1160 rcu_read_unlock(); 1161} 1162 1163static void iwl_mvm_flip_address(u8 *addr) 1164{ 1165 int i; 1166 u8 mac_addr[ETH_ALEN]; 1167 1168 for (i = 0; i < ETH_ALEN; i++) 1169 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1170 ether_addr_copy(addr, mac_addr); 1171} 1172 1173struct iwl_mvm_rx_phy_data { 1174 enum iwl_rx_phy_info_type info_type; 1175 __le32 d0, d1, d2, d3; 1176 __le16 d4; 1177}; 1178 1179static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1180 struct iwl_mvm_rx_phy_data *phy_data, 1181 u32 rate_n_flags, 1182 struct ieee80211_radiotap_he_mu *he_mu) 1183{ 1184 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1185 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1186 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1187 1188 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1189 he_mu->flags1 |= 1190 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1191 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1192 1193 he_mu->flags1 |= 1194 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1195 phy_data4), 1196 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1197 1198 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1199 phy_data2); 1200 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1201 phy_data3); 1202 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1203 phy_data2); 1204 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1205 phy_data3); 1206 } 1207 1208 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1209 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 1210 he_mu->flags1 |= 1211 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1212 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1213 1214 he_mu->flags2 |= 1215 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1216 phy_data4), 1217 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1218 1219 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1220 phy_data2); 1221 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1222 phy_data3); 1223 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1224 phy_data2); 1225 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1226 phy_data3); 1227 } 1228} 1229 1230static void 1231iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1232 u32 rate_n_flags, 1233 struct ieee80211_radiotap_he *he, 1234 struct ieee80211_radiotap_he_mu *he_mu, 1235 struct ieee80211_rx_status *rx_status) 1236{ 1237 /* 1238 * Unfortunately, we have to leave the mac80211 data 1239 * incorrect for the case that we receive an HE-MU 1240 * transmission and *don't* have the HE phy data (due 1241 * to the bits being used for TSF). This shouldn't 1242 * happen though as management frames where we need 1243 * the TSF/timers are not be transmitted in HE-MU. 1244 */ 1245 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1246 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1247 u8 offs = 0; 1248 1249 rx_status->bw = RATE_INFO_BW_HE_RU; 1250 1251 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1252 1253 switch (ru) { 1254 case 0 ... 36: 1255 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1256 offs = ru; 1257 break; 1258 case 37 ... 52: 1259 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1260 offs = ru - 37; 1261 break; 1262 case 53 ... 60: 1263 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1264 offs = ru - 53; 1265 break; 1266 case 61 ... 64: 1267 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1268 offs = ru - 61; 1269 break; 1270 case 65 ... 66: 1271 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1272 offs = ru - 65; 1273 break; 1274 case 67: 1275 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1276 break; 1277 case 68: 1278 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1279 break; 1280 } 1281 he->data2 |= le16_encode_bits(offs, 1282 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1283 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1284 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1285 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1286 he->data2 |= 1287 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1288 1289#define CHECK_BW(bw) \ 1290 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1291 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1292 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1293 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1294 CHECK_BW(20); 1295 CHECK_BW(40); 1296 CHECK_BW(80); 1297 CHECK_BW(160); 1298 1299 if (he_mu) 1300 he_mu->flags2 |= 1301 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1302 rate_n_flags), 1303 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1304 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1305 he->data6 |= 1306 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1307 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1308 rate_n_flags), 1309 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1310} 1311 1312static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1313 struct iwl_mvm_rx_phy_data *phy_data, 1314 struct ieee80211_radiotap_he *he, 1315 struct ieee80211_radiotap_he_mu *he_mu, 1316 struct ieee80211_rx_status *rx_status, 1317 u32 rate_n_flags, int queue) 1318{ 1319 switch (phy_data->info_type) { 1320 case IWL_RX_PHY_INFO_TYPE_NONE: 1321 case IWL_RX_PHY_INFO_TYPE_CCK: 1322 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1323 case IWL_RX_PHY_INFO_TYPE_HT: 1324 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1325 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1326 return; 1327 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1328 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1329 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1330 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1331 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1332 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1333 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1334 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1335 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1336 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1337 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1338 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1339 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1340 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1341 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1342 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1343 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1344 /* fall through */ 1345 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1346 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1347 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1348 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1349 /* HE common */ 1350 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1351 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1352 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1353 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1354 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1355 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1356 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1357 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1358 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1359 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1360 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1361 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1362 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1363 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1364 IWL_RX_PHY_DATA0_HE_UPLINK), 1365 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1366 } 1367 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1368 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1369 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1370 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1371 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1372 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1373 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1374 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1375 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1376 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1377 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1378 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1379 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1380 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1381 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1382 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1383 IWL_RX_PHY_DATA0_HE_DOPPLER), 1384 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1385 break; 1386 } 1387 1388 switch (phy_data->info_type) { 1389 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1390 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1391 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1392 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1393 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1394 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1395 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1396 break; 1397 default: 1398 /* nothing here */ 1399 break; 1400 } 1401 1402 switch (phy_data->info_type) { 1403 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1404 he_mu->flags1 |= 1405 le16_encode_bits(le16_get_bits(phy_data->d4, 1406 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1407 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1408 he_mu->flags1 |= 1409 le16_encode_bits(le16_get_bits(phy_data->d4, 1410 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1411 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1412 he_mu->flags2 |= 1413 le16_encode_bits(le16_get_bits(phy_data->d4, 1414 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1415 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1416 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1417 /* fall through */ 1418 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1419 he_mu->flags2 |= 1420 le16_encode_bits(le32_get_bits(phy_data->d1, 1421 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1422 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1423 he_mu->flags2 |= 1424 le16_encode_bits(le32_get_bits(phy_data->d1, 1425 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1426 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1427 /* fall through */ 1428 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1429 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1430 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1431 he, he_mu, rx_status); 1432 break; 1433 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1434 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1435 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1436 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1437 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1438 break; 1439 default: 1440 /* nothing */ 1441 break; 1442 } 1443} 1444 1445static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1446 struct iwl_mvm_rx_phy_data *phy_data, 1447 u32 rate_n_flags, u16 phy_info, int queue) 1448{ 1449 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1450 struct ieee80211_radiotap_he *he = NULL; 1451 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1452 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1453 u8 stbc, ltf; 1454 static const struct ieee80211_radiotap_he known = { 1455 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1456 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1457 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1458 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1459 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1460 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1461 }; 1462 static const struct ieee80211_radiotap_he_mu mu_known = { 1463 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1464 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1465 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1466 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1467 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1468 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1469 }; 1470 1471 he = skb_put_data(skb, &known, sizeof(known)); 1472 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1473 1474 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1475 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1476 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1477 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1478 } 1479 1480 /* report the AMPDU-EOF bit on single frames */ 1481 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1482 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1483 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1484 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1485 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1486 } 1487 1488 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1489 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1490 rate_n_flags, queue); 1491 1492 /* update aggregation data for monitor sake on default queue */ 1493 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1494 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1495 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1496 1497 /* toggle is switched whenever new aggregation starts */ 1498 if (toggle_bit != mvm->ampdu_toggle) { 1499 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1500 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1501 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1502 } 1503 } 1504 1505 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1506 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1507 rx_status->bw = RATE_INFO_BW_HE_RU; 1508 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1509 } 1510 1511 /* actually data is filled in mac80211 */ 1512 if (he_type == RATE_MCS_HE_TYPE_SU || 1513 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1514 he->data1 |= 1515 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1516 1517 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1518 rx_status->nss = 1519 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1520 RATE_VHT_MCS_NSS_POS) + 1; 1521 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1522 rx_status->encoding = RX_ENC_HE; 1523 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1524 if (rate_n_flags & RATE_MCS_BF_MSK) 1525 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1526 1527 rx_status->he_dcm = 1528 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1529 1530#define CHECK_TYPE(F) \ 1531 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1532 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1533 1534 CHECK_TYPE(SU); 1535 CHECK_TYPE(EXT_SU); 1536 CHECK_TYPE(MU); 1537 CHECK_TYPE(TRIG); 1538 1539 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1540 1541 if (rate_n_flags & RATE_MCS_BF_MSK) 1542 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1543 1544 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1545 RATE_MCS_HE_GI_LTF_POS) { 1546 case 0: 1547 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1548 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1549 else 1550 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1551 if (he_type == RATE_MCS_HE_TYPE_MU) 1552 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1553 else 1554 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1555 break; 1556 case 1: 1557 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1558 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1559 else 1560 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1561 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1562 break; 1563 case 2: 1564 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1565 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1566 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1567 } else { 1568 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1569 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1570 } 1571 break; 1572 case 3: 1573 if ((he_type == RATE_MCS_HE_TYPE_SU || 1574 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1575 rate_n_flags & RATE_MCS_SGI_MSK) 1576 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1577 else 1578 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1579 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1580 break; 1581 } 1582 1583 he->data5 |= le16_encode_bits(ltf, 1584 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1585} 1586 1587static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1588 struct iwl_mvm_rx_phy_data *phy_data) 1589{ 1590 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1591 struct ieee80211_radiotap_lsig *lsig; 1592 1593 switch (phy_data->info_type) { 1594 case IWL_RX_PHY_INFO_TYPE_HT: 1595 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1596 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1597 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1598 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1599 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1600 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1601 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1602 lsig = skb_put(skb, sizeof(*lsig)); 1603 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1604 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1605 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1606 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1607 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1608 break; 1609 default: 1610 break; 1611 } 1612} 1613 1614static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1615{ 1616 switch (phy_band) { 1617 case PHY_BAND_24: 1618 return NL80211_BAND_2GHZ; 1619 case PHY_BAND_5: 1620 return NL80211_BAND_5GHZ; 1621 default: 1622 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1623 return NL80211_BAND_5GHZ; 1624 } 1625} 1626 1627void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1628 struct iwl_rx_cmd_buffer *rxb, int queue) 1629{ 1630 struct ieee80211_rx_status *rx_status; 1631 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1632 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1633 struct ieee80211_hdr *hdr; 1634 u32 len = le16_to_cpu(desc->mpdu_len); 1635 u32 rate_n_flags, gp2_on_air_rise; 1636 u16 phy_info = le16_to_cpu(desc->phy_info); 1637 struct ieee80211_sta *sta = NULL; 1638 struct sk_buff *skb; 1639 u8 crypt_len = 0, channel, energy_a, energy_b; 1640 size_t desc_size; 1641 struct iwl_mvm_rx_phy_data phy_data = { 1642 .d4 = desc->phy_data4, 1643 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1644 }; 1645 bool csi = false; 1646 1647 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1648 return; 1649 1650 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1651 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1652 channel = desc->v3.channel; 1653 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1654 energy_a = desc->v3.energy_a; 1655 energy_b = desc->v3.energy_b; 1656 desc_size = sizeof(*desc); 1657 1658 phy_data.d0 = desc->v3.phy_data0; 1659 phy_data.d1 = desc->v3.phy_data1; 1660 phy_data.d2 = desc->v3.phy_data2; 1661 phy_data.d3 = desc->v3.phy_data3; 1662 } else { 1663 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1664 channel = desc->v1.channel; 1665 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1666 energy_a = desc->v1.energy_a; 1667 energy_b = desc->v1.energy_b; 1668 desc_size = IWL_RX_DESC_SIZE_V1; 1669 1670 phy_data.d0 = desc->v1.phy_data0; 1671 phy_data.d1 = desc->v1.phy_data1; 1672 phy_data.d2 = desc->v1.phy_data2; 1673 phy_data.d3 = desc->v1.phy_data3; 1674 } 1675 1676 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1677 phy_data.info_type = 1678 le32_get_bits(phy_data.d1, 1679 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1680 1681 hdr = (void *)(pkt->data + desc_size); 1682 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1683 * ieee80211_hdr pulled. 1684 */ 1685 skb = alloc_skb(128, GFP_ATOMIC); 1686 if (!skb) { 1687 IWL_ERR(mvm, "alloc_skb failed\n"); 1688 return; 1689 } 1690 1691 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1692 /* 1693 * If the device inserted padding it means that (it thought) 1694 * the 802.11 header wasn't a multiple of 4 bytes long. In 1695 * this case, reserve two bytes at the start of the SKB to 1696 * align the payload properly in case we end up copying it. 1697 */ 1698 skb_reserve(skb, 2); 1699 } 1700 1701 rx_status = IEEE80211_SKB_RXCB(skb); 1702 1703 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1704 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1705 case RATE_MCS_CHAN_WIDTH_20: 1706 break; 1707 case RATE_MCS_CHAN_WIDTH_40: 1708 rx_status->bw = RATE_INFO_BW_40; 1709 break; 1710 case RATE_MCS_CHAN_WIDTH_80: 1711 rx_status->bw = RATE_INFO_BW_80; 1712 break; 1713 case RATE_MCS_CHAN_WIDTH_160: 1714 rx_status->bw = RATE_INFO_BW_160; 1715 break; 1716 } 1717 1718 if (rate_n_flags & RATE_MCS_HE_MSK) 1719 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1720 phy_info, queue); 1721 1722 iwl_mvm_decode_lsig(skb, &phy_data); 1723 1724 rx_status = IEEE80211_SKB_RXCB(skb); 1725 1726 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc, 1727 le32_to_cpu(pkt->len_n_flags), queue, 1728 &crypt_len)) { 1729 kfree_skb(skb); 1730 return; 1731 } 1732 1733 /* 1734 * Keep packets with CRC errors (and with overrun) for monitor mode 1735 * (otherwise the firmware discards them) but mark them as bad. 1736 */ 1737 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1738 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1739 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1740 le32_to_cpu(desc->status)); 1741 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1742 } 1743 /* set the preamble flag if appropriate */ 1744 if (rate_n_flags & RATE_MCS_CCK_MSK && 1745 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1746 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1747 1748 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1749 u64 tsf_on_air_rise; 1750 1751 if (mvm->trans->trans_cfg->device_family >= 1752 IWL_DEVICE_FAMILY_AX210) 1753 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1754 else 1755 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1756 1757 rx_status->mactime = tsf_on_air_rise; 1758 /* TSF as indicated by the firmware is at INA time */ 1759 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1760 } 1761 1762 rx_status->device_timestamp = gp2_on_air_rise; 1763 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1764 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1765 1766 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1767 } else { 1768 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1769 NL80211_BAND_2GHZ; 1770 } 1771 rx_status->freq = ieee80211_channel_to_frequency(channel, 1772 rx_status->band); 1773 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1774 energy_b); 1775 1776 /* update aggregation data for monitor sake on default queue */ 1777 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1778 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1779 1780 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1781 /* 1782 * Toggle is switched whenever new aggregation starts. Make 1783 * sure ampdu_reference is never 0 so we can later use it to 1784 * see if the frame was really part of an A-MPDU or not. 1785 */ 1786 if (toggle_bit != mvm->ampdu_toggle) { 1787 mvm->ampdu_ref++; 1788 if (mvm->ampdu_ref == 0) 1789 mvm->ampdu_ref++; 1790 mvm->ampdu_toggle = toggle_bit; 1791 } 1792 rx_status->ampdu_reference = mvm->ampdu_ref; 1793 } 1794 1795 if (unlikely(mvm->monitor_on)) 1796 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1797 1798 rcu_read_lock(); 1799 1800 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1801 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1802 1803 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1804 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1805 if (IS_ERR(sta)) 1806 sta = NULL; 1807 } 1808 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1809 /* 1810 * This is fine since we prevent two stations with the same 1811 * address from being added. 1812 */ 1813 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1814 } 1815 1816 if (sta) { 1817 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1818 struct ieee80211_vif *tx_blocked_vif = 1819 rcu_dereference(mvm->csa_tx_blocked_vif); 1820 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1821 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1822 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1823 struct iwl_fw_dbg_trigger_tlv *trig; 1824 struct ieee80211_vif *vif = mvmsta->vif; 1825 1826 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1827 !is_multicast_ether_addr(hdr->addr1) && 1828 ieee80211_is_data(hdr->frame_control) && 1829 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1830 schedule_delayed_work(&mvm->tcm.work, 0); 1831 1832 /* 1833 * We have tx blocked stations (with CS bit). If we heard 1834 * frames from a blocked station on a new channel we can 1835 * TX to it again. 1836 */ 1837 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1838 struct iwl_mvm_vif *mvmvif = 1839 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1840 1841 if (mvmvif->csa_target_freq == rx_status->freq) 1842 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1843 false); 1844 } 1845 1846 rs_update_last_rssi(mvm, mvmsta, rx_status); 1847 1848 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1849 ieee80211_vif_to_wdev(vif), 1850 FW_DBG_TRIGGER_RSSI); 1851 1852 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1853 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1854 s32 rssi; 1855 1856 rssi_trig = (void *)trig->data; 1857 rssi = le32_to_cpu(rssi_trig->rssi); 1858 1859 if (rx_status->signal < rssi) 1860 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1861 NULL); 1862 } 1863 1864 if (ieee80211_is_data(hdr->frame_control)) 1865 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1866 1867 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1868 kfree_skb(skb); 1869 goto out; 1870 } 1871 1872 /* 1873 * Our hardware de-aggregates AMSDUs but copies the mac header 1874 * as it to the de-aggregated MPDUs. We need to turn off the 1875 * AMSDU bit in the QoS control ourselves. 1876 * In addition, HW reverses addr3 and addr4 - reverse it back. 1877 */ 1878 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1879 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1880 u8 *qc = ieee80211_get_qos_ctl(hdr); 1881 1882 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1883 1884 if (mvm->trans->trans_cfg->device_family == 1885 IWL_DEVICE_FAMILY_9000) { 1886 iwl_mvm_flip_address(hdr->addr3); 1887 1888 if (ieee80211_has_a4(hdr->frame_control)) 1889 iwl_mvm_flip_address(hdr->addr4); 1890 } 1891 } 1892 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1893 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1894 1895 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1896 } 1897 } 1898 1899 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1900 rate_n_flags & RATE_MCS_SGI_MSK) 1901 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1902 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1903 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1904 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1905 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1906 if (rate_n_flags & RATE_MCS_HT_MSK) { 1907 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1908 RATE_MCS_STBC_POS; 1909 rx_status->encoding = RX_ENC_HT; 1910 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1911 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1912 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1913 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1914 RATE_MCS_STBC_POS; 1915 rx_status->nss = 1916 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1917 RATE_VHT_MCS_NSS_POS) + 1; 1918 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1919 rx_status->encoding = RX_ENC_VHT; 1920 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1921 if (rate_n_flags & RATE_MCS_BF_MSK) 1922 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1923 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1924 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1925 rx_status->band); 1926 1927 if (WARN(rate < 0 || rate > 0xFF, 1928 "Invalid rate flags 0x%x, band %d,\n", 1929 rate_n_flags, rx_status->band)) { 1930 kfree_skb(skb); 1931 goto out; 1932 } 1933 rx_status->rate_idx = rate; 1934 } 1935 1936 /* management stuff on default queue */ 1937 if (!queue) { 1938 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1939 ieee80211_is_probe_resp(hdr->frame_control)) && 1940 mvm->sched_scan_pass_all == 1941 SCHED_SCAN_PASS_ALL_ENABLED)) 1942 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1943 1944 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1945 ieee80211_is_probe_resp(hdr->frame_control))) 1946 rx_status->boottime_ns = ktime_get_boottime_ns(); 1947 } 1948 1949 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 1950 kfree_skb(skb); 1951 goto out; 1952 } 1953 1954 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 1955 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 1956 sta, csi); 1957out: 1958 rcu_read_unlock(); 1959} 1960 1961void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 1962 struct iwl_rx_cmd_buffer *rxb, int queue) 1963{ 1964 struct ieee80211_rx_status *rx_status; 1965 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1966 struct iwl_rx_no_data *desc = (void *)pkt->data; 1967 u32 rate_n_flags = le32_to_cpu(desc->rate); 1968 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 1969 u32 rssi = le32_to_cpu(desc->rssi); 1970 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 1971 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 1972 struct ieee80211_sta *sta = NULL; 1973 struct sk_buff *skb; 1974 u8 channel, energy_a, energy_b; 1975 struct iwl_mvm_rx_phy_data phy_data = { 1976 .d0 = desc->phy_info[0], 1977 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1978 }; 1979 1980 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1981 return; 1982 1983 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 1984 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 1985 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 1986 1987 phy_data.info_type = 1988 le32_get_bits(desc->phy_info[1], 1989 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1990 1991 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1992 * ieee80211_hdr pulled. 1993 */ 1994 skb = alloc_skb(128, GFP_ATOMIC); 1995 if (!skb) { 1996 IWL_ERR(mvm, "alloc_skb failed\n"); 1997 return; 1998 } 1999 2000 rx_status = IEEE80211_SKB_RXCB(skb); 2001 2002 /* 0-length PSDU */ 2003 rx_status->flag |= RX_FLAG_NO_PSDU; 2004 2005 switch (info_type) { 2006 case RX_NO_DATA_INFO_TYPE_NDP: 2007 rx_status->zero_length_psdu_type = 2008 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2009 break; 2010 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2011 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2012 rx_status->zero_length_psdu_type = 2013 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2014 break; 2015 default: 2016 rx_status->zero_length_psdu_type = 2017 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2018 break; 2019 } 2020 2021 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2022 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2023 case RATE_MCS_CHAN_WIDTH_20: 2024 break; 2025 case RATE_MCS_CHAN_WIDTH_40: 2026 rx_status->bw = RATE_INFO_BW_40; 2027 break; 2028 case RATE_MCS_CHAN_WIDTH_80: 2029 rx_status->bw = RATE_INFO_BW_80; 2030 break; 2031 case RATE_MCS_CHAN_WIDTH_160: 2032 rx_status->bw = RATE_INFO_BW_160; 2033 break; 2034 } 2035 2036 if (rate_n_flags & RATE_MCS_HE_MSK) 2037 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2038 phy_info, queue); 2039 2040 iwl_mvm_decode_lsig(skb, &phy_data); 2041 2042 rx_status->device_timestamp = gp2_on_air_rise; 2043 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2044 NL80211_BAND_2GHZ; 2045 rx_status->freq = ieee80211_channel_to_frequency(channel, 2046 rx_status->band); 2047 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2048 energy_b); 2049 2050 rcu_read_lock(); 2051 2052 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 2053 rate_n_flags & RATE_MCS_SGI_MSK) 2054 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2055 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 2056 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 2057 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2058 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2059 if (rate_n_flags & RATE_MCS_HT_MSK) { 2060 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2061 RATE_MCS_STBC_POS; 2062 rx_status->encoding = RX_ENC_HT; 2063 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 2064 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2065 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 2066 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2067 RATE_MCS_STBC_POS; 2068 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 2069 rx_status->encoding = RX_ENC_VHT; 2070 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2071 if (rate_n_flags & RATE_MCS_BF_MSK) 2072 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2073 /* 2074 * take the nss from the rx_vec since the rate_n_flags has 2075 * only 2 bits for the nss which gives a max of 4 ss but 2076 * there may be up to 8 spatial streams 2077 */ 2078 rx_status->nss = 2079 le32_get_bits(desc->rx_vec[0], 2080 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2081 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 2082 rx_status->nss = 2083 le32_get_bits(desc->rx_vec[0], 2084 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2085 } else { 2086 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 2087 rx_status->band); 2088 2089 if (WARN(rate < 0 || rate > 0xFF, 2090 "Invalid rate flags 0x%x, band %d,\n", 2091 rate_n_flags, rx_status->band)) { 2092 kfree_skb(skb); 2093 goto out; 2094 } 2095 rx_status->rate_idx = rate; 2096 } 2097 2098 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2099out: 2100 rcu_read_unlock(); 2101} 2102 2103void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2104 struct iwl_rx_cmd_buffer *rxb, int queue) 2105{ 2106 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2107 struct iwl_frame_release *release = (void *)pkt->data; 2108 2109 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2110 le16_to_cpu(release->nssn), 2111 queue, 0); 2112} 2113 2114void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2115 struct iwl_rx_cmd_buffer *rxb, int queue) 2116{ 2117 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2118 struct iwl_bar_frame_release *release = (void *)pkt->data; 2119 unsigned int baid = le32_get_bits(release->ba_info, 2120 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2121 unsigned int nssn = le32_get_bits(release->ba_info, 2122 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2123 unsigned int sta_id = le32_get_bits(release->sta_tid, 2124 IWL_BAR_FRAME_RELEASE_STA_MASK); 2125 unsigned int tid = le32_get_bits(release->sta_tid, 2126 IWL_BAR_FRAME_RELEASE_TID_MASK); 2127 struct iwl_mvm_baid_data *baid_data; 2128 2129 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2130 baid >= ARRAY_SIZE(mvm->baid_map))) 2131 return; 2132 2133 rcu_read_lock(); 2134 baid_data = rcu_dereference(mvm->baid_map[baid]); 2135 if (!baid_data) { 2136 IWL_DEBUG_RX(mvm, 2137 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2138 baid); 2139 goto out; 2140 } 2141 2142 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2143 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2144 baid, baid_data->sta_id, baid_data->tid, sta_id, 2145 tid)) 2146 goto out; 2147 2148 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2149out: 2150 rcu_read_unlock(); 2151} 2152