1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license.  When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * The full GNU General Public License is included in this distribution
20 * in the file called COPYING.
21 *
22 * Contact Information:
23 *  Intel Linux Wireless <linuxwifi@intel.com>
24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *
26 * BSD LICENSE
27 *
28 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 *
35 *  * Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 *  * Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in
39 *    the documentation and/or other materials provided with the
40 *    distribution.
41 *  * Neither the name Intel Corporation nor the names of its
42 *    contributors may be used to endorse or promote products derived
43 *    from this software without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
46 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
47 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
48 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
49 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
52 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
53 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
54 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
55 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 *****************************************************************************/
57
58#include <linux/slab.h>
59#include <net/mac80211.h>
60
61#include "iwl-trans.h"
62
63#include "dev.h"
64#include "calib.h"
65#include "agn.h"
66
67/*****************************************************************************
68 * INIT calibrations framework
69 *****************************************************************************/
70
71/* Opaque calibration results */
72struct iwl_calib_result {
73	struct list_head list;
74	size_t cmd_len;
75	struct iwl_calib_hdr hdr;
76	/* data follows */
77};
78
79struct statistics_general_data {
80	u32 beacon_silence_rssi_a;
81	u32 beacon_silence_rssi_b;
82	u32 beacon_silence_rssi_c;
83	u32 beacon_energy_a;
84	u32 beacon_energy_b;
85	u32 beacon_energy_c;
86};
87
88int iwl_send_calib_results(struct iwl_priv *priv)
89{
90	struct iwl_host_cmd hcmd = {
91		.id = REPLY_PHY_CALIBRATION_CMD,
92	};
93	struct iwl_calib_result *res;
94
95	list_for_each_entry(res, &priv->calib_results, list) {
96		int ret;
97
98		hcmd.len[0] = res->cmd_len;
99		hcmd.data[0] = &res->hdr;
100		hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
101		ret = iwl_dvm_send_cmd(priv, &hcmd);
102		if (ret) {
103			IWL_ERR(priv, "Error %d on calib cmd %d\n",
104				ret, res->hdr.op_code);
105			return ret;
106		}
107	}
108
109	return 0;
110}
111
112int iwl_calib_set(struct iwl_priv *priv,
113		  const struct iwl_calib_hdr *cmd, int len)
114{
115	struct iwl_calib_result *res, *tmp;
116
117	res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
118		      GFP_ATOMIC);
119	if (!res)
120		return -ENOMEM;
121	memcpy(&res->hdr, cmd, len);
122	res->cmd_len = len;
123
124	list_for_each_entry(tmp, &priv->calib_results, list) {
125		if (tmp->hdr.op_code == res->hdr.op_code) {
126			list_replace(&tmp->list, &res->list);
127			kfree(tmp);
128			return 0;
129		}
130	}
131
132	/* wasn't in list already */
133	list_add_tail(&res->list, &priv->calib_results);
134
135	return 0;
136}
137
138void iwl_calib_free_results(struct iwl_priv *priv)
139{
140	struct iwl_calib_result *res, *tmp;
141
142	list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
143		list_del(&res->list);
144		kfree(res);
145	}
146}
147
148/*****************************************************************************
149 * RUNTIME calibrations framework
150 *****************************************************************************/
151
152/* "false alarms" are signals that our DSP tries to lock onto,
153 *   but then determines that they are either noise, or transmissions
154 *   from a distant wireless network (also "noise", really) that get
155 *   "stepped on" by stronger transmissions within our own network.
156 * This algorithm attempts to set a sensitivity level that is high
157 *   enough to receive all of our own network traffic, but not so
158 *   high that our DSP gets too busy trying to lock onto non-network
159 *   activity/noise. */
160static int iwl_sens_energy_cck(struct iwl_priv *priv,
161				   u32 norm_fa,
162				   u32 rx_enable_time,
163				   struct statistics_general_data *rx_info)
164{
165	u32 max_nrg_cck = 0;
166	int i = 0;
167	u8 max_silence_rssi = 0;
168	u32 silence_ref = 0;
169	u8 silence_rssi_a = 0;
170	u8 silence_rssi_b = 0;
171	u8 silence_rssi_c = 0;
172	u32 val;
173
174	/* "false_alarms" values below are cross-multiplications to assess the
175	 *   numbers of false alarms within the measured period of actual Rx
176	 *   (Rx is off when we're txing), vs the min/max expected false alarms
177	 *   (some should be expected if rx is sensitive enough) in a
178	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
179	 *
180	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
181	 *
182	 * */
183	u32 false_alarms = norm_fa * 200 * 1024;
184	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
185	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
186	struct iwl_sensitivity_data *data = NULL;
187	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
188
189	data = &(priv->sensitivity_data);
190
191	data->nrg_auto_corr_silence_diff = 0;
192
193	/* Find max silence rssi among all 3 receivers.
194	 * This is background noise, which may include transmissions from other
195	 *    networks, measured during silence before our network's beacon */
196	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
197			    ALL_BAND_FILTER) >> 8);
198	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
199			    ALL_BAND_FILTER) >> 8);
200	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
201			    ALL_BAND_FILTER) >> 8);
202
203	val = max(silence_rssi_b, silence_rssi_c);
204	max_silence_rssi = max(silence_rssi_a, (u8) val);
205
206	/* Store silence rssi in 20-beacon history table */
207	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
208	data->nrg_silence_idx++;
209	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
210		data->nrg_silence_idx = 0;
211
212	/* Find max silence rssi across 20 beacon history */
213	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
214		val = data->nrg_silence_rssi[i];
215		silence_ref = max(silence_ref, val);
216	}
217	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
218			silence_rssi_a, silence_rssi_b, silence_rssi_c,
219			silence_ref);
220
221	/* Find max rx energy (min value!) among all 3 receivers,
222	 *   measured during beacon frame.
223	 * Save it in 10-beacon history table. */
224	i = data->nrg_energy_idx;
225	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
226	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
227
228	data->nrg_energy_idx++;
229	if (data->nrg_energy_idx >= 10)
230		data->nrg_energy_idx = 0;
231
232	/* Find min rx energy (max value) across 10 beacon history.
233	 * This is the minimum signal level that we want to receive well.
234	 * Add backoff (margin so we don't miss slightly lower energy frames).
235	 * This establishes an upper bound (min value) for energy threshold. */
236	max_nrg_cck = data->nrg_value[0];
237	for (i = 1; i < 10; i++)
238		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
239	max_nrg_cck += 6;
240
241	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
242			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
243			rx_info->beacon_energy_c, max_nrg_cck - 6);
244
245	/* Count number of consecutive beacons with fewer-than-desired
246	 *   false alarms. */
247	if (false_alarms < min_false_alarms)
248		data->num_in_cck_no_fa++;
249	else
250		data->num_in_cck_no_fa = 0;
251	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
252			data->num_in_cck_no_fa);
253
254	/* If we got too many false alarms this time, reduce sensitivity */
255	if ((false_alarms > max_false_alarms) &&
256		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
257		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
258		     false_alarms, max_false_alarms);
259		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
260		data->nrg_curr_state = IWL_FA_TOO_MANY;
261		/* Store for "fewer than desired" on later beacon */
262		data->nrg_silence_ref = silence_ref;
263
264		/* increase energy threshold (reduce nrg value)
265		 *   to decrease sensitivity */
266		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
267	/* Else if we got fewer than desired, increase sensitivity */
268	} else if (false_alarms < min_false_alarms) {
269		data->nrg_curr_state = IWL_FA_TOO_FEW;
270
271		/* Compare silence level with silence level for most recent
272		 *   healthy number or too many false alarms */
273		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
274						   (s32)silence_ref;
275
276		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
277			 false_alarms, min_false_alarms,
278			 data->nrg_auto_corr_silence_diff);
279
280		/* Increase value to increase sensitivity, but only if:
281		 * 1a) previous beacon did *not* have *too many* false alarms
282		 * 1b) AND there's a significant difference in Rx levels
283		 *      from a previous beacon with too many, or healthy # FAs
284		 * OR 2) We've seen a lot of beacons (100) with too few
285		 *       false alarms */
286		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
287			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
288			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
289
290			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
291			/* Increase nrg value to increase sensitivity */
292			val = data->nrg_th_cck + NRG_STEP_CCK;
293			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
294		} else {
295			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
296		}
297
298	/* Else we got a healthy number of false alarms, keep status quo */
299	} else {
300		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
301		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
302
303		/* Store for use in "fewer than desired" with later beacon */
304		data->nrg_silence_ref = silence_ref;
305
306		/* If previous beacon had too many false alarms,
307		 *   give it some extra margin by reducing sensitivity again
308		 *   (but don't go below measured energy of desired Rx) */
309		if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
310			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
311			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
312				data->nrg_th_cck -= NRG_MARGIN;
313			else
314				data->nrg_th_cck = max_nrg_cck;
315		}
316	}
317
318	/* Make sure the energy threshold does not go above the measured
319	 * energy of the desired Rx signals (reduced by backoff margin),
320	 * or else we might start missing Rx frames.
321	 * Lower value is higher energy, so we use max()!
322	 */
323	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
324	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
325
326	data->nrg_prev_state = data->nrg_curr_state;
327
328	/* Auto-correlation CCK algorithm */
329	if (false_alarms > min_false_alarms) {
330
331		/* increase auto_corr values to decrease sensitivity
332		 * so the DSP won't be disturbed by the noise
333		 */
334		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
335			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
336		else {
337			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
338			data->auto_corr_cck =
339				min((u32)ranges->auto_corr_max_cck, val);
340		}
341		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
342		data->auto_corr_cck_mrc =
343			min((u32)ranges->auto_corr_max_cck_mrc, val);
344	} else if ((false_alarms < min_false_alarms) &&
345	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
346	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
347
348		/* Decrease auto_corr values to increase sensitivity */
349		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
350		data->auto_corr_cck =
351			max((u32)ranges->auto_corr_min_cck, val);
352		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
353		data->auto_corr_cck_mrc =
354			max((u32)ranges->auto_corr_min_cck_mrc, val);
355	}
356
357	return 0;
358}
359
360
361static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
362				       u32 norm_fa,
363				       u32 rx_enable_time)
364{
365	u32 val;
366	u32 false_alarms = norm_fa * 200 * 1024;
367	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
368	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
369	struct iwl_sensitivity_data *data = NULL;
370	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
371
372	data = &(priv->sensitivity_data);
373
374	/* If we got too many false alarms this time, reduce sensitivity */
375	if (false_alarms > max_false_alarms) {
376
377		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
378			     false_alarms, max_false_alarms);
379
380		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
381		data->auto_corr_ofdm =
382			min((u32)ranges->auto_corr_max_ofdm, val);
383
384		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
385		data->auto_corr_ofdm_mrc =
386			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
387
388		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
389		data->auto_corr_ofdm_x1 =
390			min((u32)ranges->auto_corr_max_ofdm_x1, val);
391
392		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
393		data->auto_corr_ofdm_mrc_x1 =
394			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
395	}
396
397	/* Else if we got fewer than desired, increase sensitivity */
398	else if (false_alarms < min_false_alarms) {
399
400		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
401			     false_alarms, min_false_alarms);
402
403		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
404		data->auto_corr_ofdm =
405			max((u32)ranges->auto_corr_min_ofdm, val);
406
407		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
408		data->auto_corr_ofdm_mrc =
409			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
410
411		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
412		data->auto_corr_ofdm_x1 =
413			max((u32)ranges->auto_corr_min_ofdm_x1, val);
414
415		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
416		data->auto_corr_ofdm_mrc_x1 =
417			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
418	} else {
419		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
420			 min_false_alarms, false_alarms, max_false_alarms);
421	}
422	return 0;
423}
424
425static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
426				struct iwl_sensitivity_data *data,
427				__le16 *tbl)
428{
429	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
430				cpu_to_le16((u16)data->auto_corr_ofdm);
431	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
432				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
433	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
434				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
435	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
436				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
437
438	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
439				cpu_to_le16((u16)data->auto_corr_cck);
440	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
441				cpu_to_le16((u16)data->auto_corr_cck_mrc);
442
443	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
444				cpu_to_le16((u16)data->nrg_th_cck);
445	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
446				cpu_to_le16((u16)data->nrg_th_ofdm);
447
448	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
449				cpu_to_le16(data->barker_corr_th_min);
450	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
451				cpu_to_le16(data->barker_corr_th_min_mrc);
452	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
453				cpu_to_le16(data->nrg_th_cca);
454
455	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
456			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
457			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
458			data->nrg_th_ofdm);
459
460	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
461			data->auto_corr_cck, data->auto_corr_cck_mrc,
462			data->nrg_th_cck);
463}
464
465/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
466static int iwl_sensitivity_write(struct iwl_priv *priv)
467{
468	struct iwl_sensitivity_cmd cmd;
469	struct iwl_sensitivity_data *data = NULL;
470	struct iwl_host_cmd cmd_out = {
471		.id = SENSITIVITY_CMD,
472		.len = { sizeof(struct iwl_sensitivity_cmd), },
473		.flags = CMD_ASYNC,
474		.data = { &cmd, },
475	};
476
477	data = &(priv->sensitivity_data);
478
479	memset(&cmd, 0, sizeof(cmd));
480
481	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
482
483	/* Update uCode's "work" table, and copy it to DSP */
484	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
485
486	/* Don't send command to uCode if nothing has changed */
487	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
488		    sizeof(u16)*HD_TABLE_SIZE)) {
489		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
490		return 0;
491	}
492
493	/* Copy table for comparison next time */
494	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
495	       sizeof(u16)*HD_TABLE_SIZE);
496
497	return iwl_dvm_send_cmd(priv, &cmd_out);
498}
499
500/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
501static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
502{
503	struct iwl_enhance_sensitivity_cmd cmd;
504	struct iwl_sensitivity_data *data = NULL;
505	struct iwl_host_cmd cmd_out = {
506		.id = SENSITIVITY_CMD,
507		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
508		.flags = CMD_ASYNC,
509		.data = { &cmd, },
510	};
511
512	data = &(priv->sensitivity_data);
513
514	memset(&cmd, 0, sizeof(cmd));
515
516	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
517
518	if (priv->lib->hd_v2) {
519		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
520			HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
521		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
522			HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
523		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
524			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
525		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
526			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
527		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
528			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
529		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
530			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
531		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
532			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
533		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
534			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
535		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
536			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
537		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
538			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
539		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
540			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
541	} else {
542		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
543			HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
544		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
545			HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
546		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
547			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
548		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
549			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
550		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
551			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
552		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
553			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
554		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
555			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
556		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
557			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
558		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
559			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
560		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
561			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
562		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
563			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
564	}
565
566	/* Update uCode's "work" table, and copy it to DSP */
567	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
568
569	/* Don't send command to uCode if nothing has changed */
570	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
571		    sizeof(u16)*HD_TABLE_SIZE) &&
572	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
573		    &(priv->enhance_sensitivity_tbl[0]),
574		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
575		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
576		return 0;
577	}
578
579	/* Copy table for comparison next time */
580	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
581	       sizeof(u16)*HD_TABLE_SIZE);
582	memcpy(&(priv->enhance_sensitivity_tbl[0]),
583	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
584	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
585
586	return iwl_dvm_send_cmd(priv, &cmd_out);
587}
588
589void iwl_init_sensitivity(struct iwl_priv *priv)
590{
591	int ret = 0;
592	int i;
593	struct iwl_sensitivity_data *data = NULL;
594	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
595
596	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
597		return;
598
599	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
600
601	/* Clear driver's sensitivity algo data */
602	data = &(priv->sensitivity_data);
603
604	if (ranges == NULL)
605		return;
606
607	memset(data, 0, sizeof(struct iwl_sensitivity_data));
608
609	data->num_in_cck_no_fa = 0;
610	data->nrg_curr_state = IWL_FA_TOO_MANY;
611	data->nrg_prev_state = IWL_FA_TOO_MANY;
612	data->nrg_silence_ref = 0;
613	data->nrg_silence_idx = 0;
614	data->nrg_energy_idx = 0;
615
616	for (i = 0; i < 10; i++)
617		data->nrg_value[i] = 0;
618
619	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
620		data->nrg_silence_rssi[i] = 0;
621
622	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
623	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
624	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
625	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
626	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
627	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
628	data->nrg_th_cck = ranges->nrg_th_cck;
629	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
630	data->barker_corr_th_min = ranges->barker_corr_th_min;
631	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
632	data->nrg_th_cca = ranges->nrg_th_cca;
633
634	data->last_bad_plcp_cnt_ofdm = 0;
635	data->last_fa_cnt_ofdm = 0;
636	data->last_bad_plcp_cnt_cck = 0;
637	data->last_fa_cnt_cck = 0;
638
639	if (priv->fw->enhance_sensitivity_table)
640		ret |= iwl_enhance_sensitivity_write(priv);
641	else
642		ret |= iwl_sensitivity_write(priv);
643	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
644}
645
646void iwl_sensitivity_calibration(struct iwl_priv *priv)
647{
648	u32 rx_enable_time;
649	u32 fa_cck;
650	u32 fa_ofdm;
651	u32 bad_plcp_cck;
652	u32 bad_plcp_ofdm;
653	u32 norm_fa_ofdm;
654	u32 norm_fa_cck;
655	struct iwl_sensitivity_data *data = NULL;
656	struct statistics_rx_non_phy *rx_info;
657	struct statistics_rx_phy *ofdm, *cck;
658	struct statistics_general_data statis;
659
660	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
661		return;
662
663	data = &(priv->sensitivity_data);
664
665	if (!iwl_is_any_associated(priv)) {
666		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
667		return;
668	}
669
670	spin_lock_bh(&priv->statistics.lock);
671	rx_info = &priv->statistics.rx_non_phy;
672	ofdm = &priv->statistics.rx_ofdm;
673	cck = &priv->statistics.rx_cck;
674	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
675		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
676		spin_unlock_bh(&priv->statistics.lock);
677		return;
678	}
679
680	/* Extract Statistics: */
681	rx_enable_time = le32_to_cpu(rx_info->channel_load);
682	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
683	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
684	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
685	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
686
687	statis.beacon_silence_rssi_a =
688			le32_to_cpu(rx_info->beacon_silence_rssi_a);
689	statis.beacon_silence_rssi_b =
690			le32_to_cpu(rx_info->beacon_silence_rssi_b);
691	statis.beacon_silence_rssi_c =
692			le32_to_cpu(rx_info->beacon_silence_rssi_c);
693	statis.beacon_energy_a =
694			le32_to_cpu(rx_info->beacon_energy_a);
695	statis.beacon_energy_b =
696			le32_to_cpu(rx_info->beacon_energy_b);
697	statis.beacon_energy_c =
698			le32_to_cpu(rx_info->beacon_energy_c);
699
700	spin_unlock_bh(&priv->statistics.lock);
701
702	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
703
704	if (!rx_enable_time) {
705		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
706		return;
707	}
708
709	/* These statistics increase monotonically, and do not reset
710	 *   at each beacon.  Calculate difference from last value, or just
711	 *   use the new statistics value if it has reset or wrapped around. */
712	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
713		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
714	else {
715		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
716		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
717	}
718
719	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
720		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
721	else {
722		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
723		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
724	}
725
726	if (data->last_fa_cnt_ofdm > fa_ofdm)
727		data->last_fa_cnt_ofdm = fa_ofdm;
728	else {
729		fa_ofdm -= data->last_fa_cnt_ofdm;
730		data->last_fa_cnt_ofdm += fa_ofdm;
731	}
732
733	if (data->last_fa_cnt_cck > fa_cck)
734		data->last_fa_cnt_cck = fa_cck;
735	else {
736		fa_cck -= data->last_fa_cnt_cck;
737		data->last_fa_cnt_cck += fa_cck;
738	}
739
740	/* Total aborted signal locks */
741	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
742	norm_fa_cck = fa_cck + bad_plcp_cck;
743
744	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
745			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
746
747	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
748	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
749	if (priv->fw->enhance_sensitivity_table)
750		iwl_enhance_sensitivity_write(priv);
751	else
752		iwl_sensitivity_write(priv);
753}
754
755static inline u8 find_first_chain(u8 mask)
756{
757	if (mask & ANT_A)
758		return CHAIN_A;
759	if (mask & ANT_B)
760		return CHAIN_B;
761	return CHAIN_C;
762}
763
764/*
765 * Run disconnected antenna algorithm to find out which antennas are
766 * disconnected.
767 */
768static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
769				     struct iwl_chain_noise_data *data)
770{
771	u32 active_chains = 0;
772	u32 max_average_sig;
773	u16 max_average_sig_antenna_i;
774	u8 num_tx_chains;
775	u8 first_chain;
776	u16 i = 0;
777
778	average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
779	average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
780	average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
781
782	if (average_sig[0] >= average_sig[1]) {
783		max_average_sig = average_sig[0];
784		max_average_sig_antenna_i = 0;
785		active_chains = (1 << max_average_sig_antenna_i);
786	} else {
787		max_average_sig = average_sig[1];
788		max_average_sig_antenna_i = 1;
789		active_chains = (1 << max_average_sig_antenna_i);
790	}
791
792	if (average_sig[2] >= max_average_sig) {
793		max_average_sig = average_sig[2];
794		max_average_sig_antenna_i = 2;
795		active_chains = (1 << max_average_sig_antenna_i);
796	}
797
798	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
799		     average_sig[0], average_sig[1], average_sig[2]);
800	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
801		     max_average_sig, max_average_sig_antenna_i);
802
803	/* Compare signal strengths for all 3 receivers. */
804	for (i = 0; i < NUM_RX_CHAINS; i++) {
805		if (i != max_average_sig_antenna_i) {
806			s32 rssi_delta = (max_average_sig - average_sig[i]);
807
808			/* If signal is very weak, compared with
809			 * strongest, mark it as disconnected. */
810			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
811				data->disconn_array[i] = 1;
812			else
813				active_chains |= (1 << i);
814			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
815			     "disconn_array[i] = %d\n",
816			     i, rssi_delta, data->disconn_array[i]);
817		}
818	}
819
820	/*
821	 * The above algorithm sometimes fails when the ucode
822	 * reports 0 for all chains. It's not clear why that
823	 * happens to start with, but it is then causing trouble
824	 * because this can make us enable more chains than the
825	 * hardware really has.
826	 *
827	 * To be safe, simply mask out any chains that we know
828	 * are not on the device.
829	 */
830	active_chains &= priv->nvm_data->valid_rx_ant;
831
832	num_tx_chains = 0;
833	for (i = 0; i < NUM_RX_CHAINS; i++) {
834		/* loops on all the bits of
835		 * priv->hw_setting.valid_tx_ant */
836		u8 ant_msk = (1 << i);
837		if (!(priv->nvm_data->valid_tx_ant & ant_msk))
838			continue;
839
840		num_tx_chains++;
841		if (data->disconn_array[i] == 0)
842			/* there is a Tx antenna connected */
843			break;
844		if (num_tx_chains == priv->hw_params.tx_chains_num &&
845		    data->disconn_array[i]) {
846			/*
847			 * If all chains are disconnected
848			 * connect the first valid tx chain
849			 */
850			first_chain =
851				find_first_chain(priv->nvm_data->valid_tx_ant);
852			data->disconn_array[first_chain] = 0;
853			active_chains |= BIT(first_chain);
854			IWL_DEBUG_CALIB(priv,
855					"All Tx chains are disconnected W/A - declare %d as connected\n",
856					first_chain);
857			break;
858		}
859	}
860
861	if (active_chains != priv->nvm_data->valid_rx_ant &&
862	    active_chains != priv->chain_noise_data.active_chains)
863		IWL_DEBUG_CALIB(priv,
864				"Detected that not all antennas are connected! "
865				"Connected: %#x, valid: %#x.\n",
866				active_chains,
867				priv->nvm_data->valid_rx_ant);
868
869	/* Save for use within RXON, TX, SCAN commands, etc. */
870	data->active_chains = active_chains;
871	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
872			active_chains);
873}
874
875static void iwlagn_gain_computation(struct iwl_priv *priv,
876				    u32 average_noise[NUM_RX_CHAINS],
877				    u8 default_chain)
878{
879	int i;
880	s32 delta_g;
881	struct iwl_chain_noise_data *data = &priv->chain_noise_data;
882
883	/*
884	 * Find Gain Code for the chains based on "default chain"
885	 */
886	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
887		if ((data->disconn_array[i])) {
888			data->delta_gain_code[i] = 0;
889			continue;
890		}
891
892		delta_g = (priv->lib->chain_noise_scale *
893			((s32)average_noise[default_chain] -
894			(s32)average_noise[i])) / 1500;
895
896		/* bound gain by 2 bits value max, 3rd bit is sign */
897		data->delta_gain_code[i] =
898			min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
899
900		if (delta_g < 0)
901			/*
902			 * set negative sign ...
903			 * note to Intel developers:  This is uCode API format,
904			 *   not the format of any internal device registers.
905			 *   Do not change this format for e.g. 6050 or similar
906			 *   devices.  Change format only if more resolution
907			 *   (i.e. more than 2 bits magnitude) is needed.
908			 */
909			data->delta_gain_code[i] |= (1 << 2);
910	}
911
912	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
913			data->delta_gain_code[1], data->delta_gain_code[2]);
914
915	if (!data->radio_write) {
916		struct iwl_calib_chain_noise_gain_cmd cmd;
917
918		memset(&cmd, 0, sizeof(cmd));
919
920		iwl_set_calib_hdr(&cmd.hdr,
921			priv->phy_calib_chain_noise_gain_cmd);
922		cmd.delta_gain_1 = data->delta_gain_code[1];
923		cmd.delta_gain_2 = data->delta_gain_code[2];
924		iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
925			CMD_ASYNC, sizeof(cmd), &cmd);
926
927		data->radio_write = 1;
928		data->state = IWL_CHAIN_NOISE_CALIBRATED;
929	}
930}
931
932/*
933 * Accumulate 16 beacons of signal and noise statistics for each of
934 *   3 receivers/antennas/rx-chains, then figure out:
935 * 1)  Which antennas are connected.
936 * 2)  Differential rx gain settings to balance the 3 receivers.
937 */
938void iwl_chain_noise_calibration(struct iwl_priv *priv)
939{
940	struct iwl_chain_noise_data *data = NULL;
941
942	u32 chain_noise_a;
943	u32 chain_noise_b;
944	u32 chain_noise_c;
945	u32 chain_sig_a;
946	u32 chain_sig_b;
947	u32 chain_sig_c;
948	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
949	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
950	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
951	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
952	u16 i = 0;
953	u16 rxon_chnum = INITIALIZATION_VALUE;
954	u16 stat_chnum = INITIALIZATION_VALUE;
955	u8 rxon_band24;
956	u8 stat_band24;
957	struct statistics_rx_non_phy *rx_info;
958
959	/*
960	 * MULTI-FIXME:
961	 * When we support multiple interfaces on different channels,
962	 * this must be modified/fixed.
963	 */
964	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
965
966	if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
967		return;
968
969	data = &(priv->chain_noise_data);
970
971	/*
972	 * Accumulate just the first "chain_noise_num_beacons" after
973	 * the first association, then we're done forever.
974	 */
975	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
976		if (data->state == IWL_CHAIN_NOISE_ALIVE)
977			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
978		return;
979	}
980
981	spin_lock_bh(&priv->statistics.lock);
982
983	rx_info = &priv->statistics.rx_non_phy;
984
985	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
986		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
987		spin_unlock_bh(&priv->statistics.lock);
988		return;
989	}
990
991	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
992	rxon_chnum = le16_to_cpu(ctx->staging.channel);
993	stat_band24 =
994		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
995	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
996
997	/* Make sure we accumulate data for just the associated channel
998	 *   (even if scanning). */
999	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1000		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1001				rxon_chnum, rxon_band24);
1002		spin_unlock_bh(&priv->statistics.lock);
1003		return;
1004	}
1005
1006	/*
1007	 *  Accumulate beacon statistics values across
1008	 * "chain_noise_num_beacons"
1009	 */
1010	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1011				IN_BAND_FILTER;
1012	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1013				IN_BAND_FILTER;
1014	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1015				IN_BAND_FILTER;
1016
1017	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1018	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1019	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1020
1021	spin_unlock_bh(&priv->statistics.lock);
1022
1023	data->beacon_count++;
1024
1025	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1026	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1027	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1028
1029	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1030	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1031	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1032
1033	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1034			rxon_chnum, rxon_band24, data->beacon_count);
1035	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1036			chain_sig_a, chain_sig_b, chain_sig_c);
1037	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1038			chain_noise_a, chain_noise_b, chain_noise_c);
1039
1040	/* If this is the "chain_noise_num_beacons", determine:
1041	 * 1)  Disconnected antennas (using signal strengths)
1042	 * 2)  Differential gain (using silence noise) to balance receivers */
1043	if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1044		return;
1045
1046	/* Analyze signal for disconnected antenna */
1047	if (priv->lib->bt_params &&
1048	    priv->lib->bt_params->advanced_bt_coexist) {
1049		/* Disable disconnected antenna algorithm for advanced
1050		   bt coex, assuming valid antennas are connected */
1051		data->active_chains = priv->nvm_data->valid_rx_ant;
1052		for (i = 0; i < NUM_RX_CHAINS; i++)
1053			if (!(data->active_chains & (1<<i)))
1054				data->disconn_array[i] = 1;
1055	} else
1056		iwl_find_disconn_antenna(priv, average_sig, data);
1057
1058	/* Analyze noise for rx balance */
1059	average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1060	average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1061	average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1062
1063	for (i = 0; i < NUM_RX_CHAINS; i++) {
1064		if (!(data->disconn_array[i]) &&
1065		   (average_noise[i] <= min_average_noise)) {
1066			/* This means that chain i is active and has
1067			 * lower noise values so far: */
1068			min_average_noise = average_noise[i];
1069			min_average_noise_antenna_i = i;
1070		}
1071	}
1072
1073	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1074			average_noise[0], average_noise[1],
1075			average_noise[2]);
1076
1077	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1078			min_average_noise, min_average_noise_antenna_i);
1079
1080	iwlagn_gain_computation(
1081		priv, average_noise,
1082		find_first_chain(priv->nvm_data->valid_rx_ant));
1083
1084	/* Some power changes may have been made during the calibration.
1085	 * Update and commit the RXON
1086	 */
1087	iwl_update_chain_flags(priv);
1088
1089	data->state = IWL_CHAIN_NOISE_DONE;
1090	iwl_power_update_mode(priv, false);
1091}
1092
1093void iwl_reset_run_time_calib(struct iwl_priv *priv)
1094{
1095	int i;
1096	memset(&(priv->sensitivity_data), 0,
1097	       sizeof(struct iwl_sensitivity_data));
1098	memset(&(priv->chain_noise_data), 0,
1099	       sizeof(struct iwl_chain_noise_data));
1100	for (i = 0; i < NUM_RX_CHAINS; i++)
1101		priv->chain_noise_data.delta_gain_code[i] =
1102				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1103
1104	/* Ask for statistics now, the uCode will send notification
1105	 * periodically after association */
1106	iwl_send_statistics_request(priv, CMD_ASYNC, true);
1107}
1108