1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3
4  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6  802.11 status code portion of this file from ethereal-0.10.6:
7    Copyright 2000, Axis Communications AB
8    Ethereal - Network traffic analyzer
9    By Gerald Combs <gerald@ethereal.com>
10    Copyright 1998 Gerald Combs
11
12
13  Contact Information:
14  Intel Linux Wireless <ilw@linux.intel.com>
15  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16
17******************************************************************************/
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <net/cfg80211-wext.h>
22#include "ipw2200.h"
23#include "ipw.h"
24
25
26#ifndef KBUILD_EXTMOD
27#define VK "k"
28#else
29#define VK
30#endif
31
32#ifdef CONFIG_IPW2200_DEBUG
33#define VD "d"
34#else
35#define VD
36#endif
37
38#ifdef CONFIG_IPW2200_MONITOR
39#define VM "m"
40#else
41#define VM
42#endif
43
44#ifdef CONFIG_IPW2200_PROMISCUOUS
45#define VP "p"
46#else
47#define VP
48#endif
49
50#ifdef CONFIG_IPW2200_RADIOTAP
51#define VR "r"
52#else
53#define VR
54#endif
55
56#ifdef CONFIG_IPW2200_QOS
57#define VQ "q"
58#else
59#define VQ
60#endif
61
62#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63#define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
64#define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
65#define DRV_VERSION     IPW2200_VERSION
66
67#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68
69MODULE_DESCRIPTION(DRV_DESCRIPTION);
70MODULE_VERSION(DRV_VERSION);
71MODULE_AUTHOR(DRV_COPYRIGHT);
72MODULE_LICENSE("GPL");
73MODULE_FIRMWARE("ipw2200-ibss.fw");
74#ifdef CONFIG_IPW2200_MONITOR
75MODULE_FIRMWARE("ipw2200-sniffer.fw");
76#endif
77MODULE_FIRMWARE("ipw2200-bss.fw");
78
79static int cmdlog = 0;
80static int debug = 0;
81static int default_channel = 0;
82static int network_mode = 0;
83
84static u32 ipw_debug_level;
85static int associate;
86static int auto_create = 1;
87static int led_support = 1;
88static int disable = 0;
89static int bt_coexist = 0;
90static int hwcrypto = 0;
91static int roaming = 1;
92static const char ipw_modes[] = {
93	'a', 'b', 'g', '?'
94};
95static int antenna = CFG_SYS_ANTENNA_BOTH;
96
97#ifdef CONFIG_IPW2200_PROMISCUOUS
98static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
99#endif
100
101static struct ieee80211_rate ipw2200_rates[] = {
102	{ .bitrate = 10 },
103	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106	{ .bitrate = 60 },
107	{ .bitrate = 90 },
108	{ .bitrate = 120 },
109	{ .bitrate = 180 },
110	{ .bitrate = 240 },
111	{ .bitrate = 360 },
112	{ .bitrate = 480 },
113	{ .bitrate = 540 }
114};
115
116#define ipw2200_a_rates		(ipw2200_rates + 4)
117#define ipw2200_num_a_rates	8
118#define ipw2200_bg_rates	(ipw2200_rates + 0)
119#define ipw2200_num_bg_rates	12
120
121/* Ugly macro to convert literal channel numbers into their mhz equivalents
122 * There are certianly some conditions that will break this (like feeding it '30')
123 * but they shouldn't arise since nothing talks on channel 30. */
124#define ieee80211chan2mhz(x) \
125	(((x) <= 14) ? \
126	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127	((x) + 1000) * 5)
128
129#ifdef CONFIG_IPW2200_QOS
130static int qos_enable = 0;
131static int qos_burst_enable = 0;
132static int qos_no_ack_mask = 0;
133static int burst_duration_CCK = 0;
134static int burst_duration_OFDM = 0;
135
136static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138	 QOS_TX3_CW_MIN_OFDM},
139	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140	 QOS_TX3_CW_MAX_OFDM},
141	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145};
146
147static struct libipw_qos_parameters def_qos_parameters_CCK = {
148	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149	 QOS_TX3_CW_MIN_CCK},
150	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151	 QOS_TX3_CW_MAX_CCK},
152	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155	 QOS_TX3_TXOP_LIMIT_CCK}
156};
157
158static struct libipw_qos_parameters def_parameters_OFDM = {
159	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160	 DEF_TX3_CW_MIN_OFDM},
161	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162	 DEF_TX3_CW_MAX_OFDM},
163	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167};
168
169static struct libipw_qos_parameters def_parameters_CCK = {
170	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171	 DEF_TX3_CW_MIN_CCK},
172	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173	 DEF_TX3_CW_MAX_CCK},
174	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177	 DEF_TX3_TXOP_LIMIT_CCK}
178};
179
180static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181
182static int from_priority_to_tx_queue[] = {
183	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185};
186
187static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188
189static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190				       *qos_param);
191static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192				     *qos_param);
193#endif				/* CONFIG_IPW2200_QOS */
194
195static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196static void ipw_remove_current_network(struct ipw_priv *priv);
197static void ipw_rx(struct ipw_priv *priv);
198static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199				struct clx2_tx_queue *txq, int qindex);
200static int ipw_queue_reset(struct ipw_priv *priv);
201
202static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
203			     int len, int sync);
204
205static void ipw_tx_queue_free(struct ipw_priv *);
206
207static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209static void ipw_rx_queue_replenish(void *);
210static int ipw_up(struct ipw_priv *);
211static void ipw_bg_up(struct work_struct *work);
212static void ipw_down(struct ipw_priv *);
213static void ipw_bg_down(struct work_struct *work);
214static int ipw_config(struct ipw_priv *);
215static int init_supported_rates(struct ipw_priv *priv,
216				struct ipw_supported_rates *prates);
217static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218static void ipw_send_wep_keys(struct ipw_priv *, int);
219
220static int snprint_line(char *buf, size_t count,
221			const u8 * data, u32 len, u32 ofs)
222{
223	int out, i, j, l;
224	char c;
225
226	out = scnprintf(buf, count, "%08X", ofs);
227
228	for (l = 0, i = 0; i < 2; i++) {
229		out += scnprintf(buf + out, count - out, " ");
230		for (j = 0; j < 8 && l < len; j++, l++)
231			out += scnprintf(buf + out, count - out, "%02X ",
232					data[(i * 8 + j)]);
233		for (; j < 8; j++)
234			out += scnprintf(buf + out, count - out, "   ");
235	}
236
237	out += scnprintf(buf + out, count - out, " ");
238	for (l = 0, i = 0; i < 2; i++) {
239		out += scnprintf(buf + out, count - out, " ");
240		for (j = 0; j < 8 && l < len; j++, l++) {
241			c = data[(i * 8 + j)];
242			if (!isascii(c) || !isprint(c))
243				c = '.';
244
245			out += scnprintf(buf + out, count - out, "%c", c);
246		}
247
248		for (; j < 8; j++)
249			out += scnprintf(buf + out, count - out, " ");
250	}
251
252	return out;
253}
254
255static void printk_buf(int level, const u8 * data, u32 len)
256{
257	char line[81];
258	u32 ofs = 0;
259	if (!(ipw_debug_level & level))
260		return;
261
262	while (len) {
263		snprint_line(line, sizeof(line), &data[ofs],
264			     min(len, 16U), ofs);
265		printk(KERN_DEBUG "%s\n", line);
266		ofs += 16;
267		len -= min(len, 16U);
268	}
269}
270
271static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272{
273	size_t out = size;
274	u32 ofs = 0;
275	int total = 0;
276
277	while (size && len) {
278		out = snprint_line(output, size, &data[ofs],
279				   min_t(size_t, len, 16U), ofs);
280
281		ofs += 16;
282		output += out;
283		size -= out;
284		len -= min_t(size_t, len, 16U);
285		total += out;
286	}
287	return total;
288}
289
290/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293
294/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297
298/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301{
302	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303		     __LINE__, (u32) (b), (u32) (c));
304	_ipw_write_reg8(a, b, c);
305}
306
307/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310{
311	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312		     __LINE__, (u32) (b), (u32) (c));
313	_ipw_write_reg16(a, b, c);
314}
315
316/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319{
320	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321		     __LINE__, (u32) (b), (u32) (c));
322	_ipw_write_reg32(a, b, c);
323}
324
325/* 8-bit direct write (low 4K) */
326static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327		u8 val)
328{
329	writeb(val, ipw->hw_base + ofs);
330}
331
332/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333#define ipw_write8(ipw, ofs, val) do { \
334	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335			__LINE__, (u32)(ofs), (u32)(val)); \
336	_ipw_write8(ipw, ofs, val); \
337} while (0)
338
339/* 16-bit direct write (low 4K) */
340static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341		u16 val)
342{
343	writew(val, ipw->hw_base + ofs);
344}
345
346/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347#define ipw_write16(ipw, ofs, val) do { \
348	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349			__LINE__, (u32)(ofs), (u32)(val)); \
350	_ipw_write16(ipw, ofs, val); \
351} while (0)
352
353/* 32-bit direct write (low 4K) */
354static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355		u32 val)
356{
357	writel(val, ipw->hw_base + ofs);
358}
359
360/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361#define ipw_write32(ipw, ofs, val) do { \
362	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363			__LINE__, (u32)(ofs), (u32)(val)); \
364	_ipw_write32(ipw, ofs, val); \
365} while (0)
366
367/* 8-bit direct read (low 4K) */
368static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369{
370	return readb(ipw->hw_base + ofs);
371}
372
373/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374#define ipw_read8(ipw, ofs) ({ \
375	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376			(u32)(ofs)); \
377	_ipw_read8(ipw, ofs); \
378})
379
380/* 16-bit direct read (low 4K) */
381static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382{
383	return readw(ipw->hw_base + ofs);
384}
385
386/* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387#define ipw_read16(ipw, ofs) ({ \
388	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389			(u32)(ofs)); \
390	_ipw_read16(ipw, ofs); \
391})
392
393/* 32-bit direct read (low 4K) */
394static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395{
396	return readl(ipw->hw_base + ofs);
397}
398
399/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400#define ipw_read32(ipw, ofs) ({ \
401	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402			(u32)(ofs)); \
403	_ipw_read32(ipw, ofs); \
404})
405
406static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408#define ipw_read_indirect(a, b, c, d) ({ \
409	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410			__LINE__, (u32)(b), (u32)(d)); \
411	_ipw_read_indirect(a, b, c, d); \
412})
413
414/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416				int num);
417#define ipw_write_indirect(a, b, c, d) do { \
418	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419			__LINE__, (u32)(b), (u32)(d)); \
420	_ipw_write_indirect(a, b, c, d); \
421} while (0)
422
423/* 32-bit indirect write (above 4K) */
424static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425{
426	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
429}
430
431/* 8-bit indirect write (above 4K) */
432static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433{
434	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
435	u32 dif_len = reg - aligned_addr;
436
437	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440}
441
442/* 16-bit indirect write (above 4K) */
443static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444{
445	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
446	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447
448	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451}
452
453/* 8-bit indirect read (above 4K) */
454static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455{
456	u32 word;
457	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460	return (word >> ((reg & 0x3) * 8)) & 0xff;
461}
462
463/* 32-bit indirect read (above 4K) */
464static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465{
466	u32 value;
467
468	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469
470	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473	return value;
474}
475
476/* General purpose, no alignment requirement, iterative (multi-byte) read, */
477/*    for area above 1st 4K of SRAM/reg space */
478static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479			       int num)
480{
481	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
482	u32 dif_len = addr - aligned_addr;
483	u32 i;
484
485	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486
487	if (num <= 0) {
488		return;
489	}
490
491	/* Read the first dword (or portion) byte by byte */
492	if (unlikely(dif_len)) {
493		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494		/* Start reading at aligned_addr + dif_len */
495		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497		aligned_addr += 4;
498	}
499
500	/* Read all of the middle dwords as dwords, with auto-increment */
501	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504
505	/* Read the last dword (or portion) byte by byte */
506	if (unlikely(num)) {
507		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508		for (i = 0; num > 0; i++, num--)
509			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510	}
511}
512
513/* General purpose, no alignment requirement, iterative (multi-byte) write, */
514/*    for area above 1st 4K of SRAM/reg space */
515static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516				int num)
517{
518	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
519	u32 dif_len = addr - aligned_addr;
520	u32 i;
521
522	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523
524	if (num <= 0) {
525		return;
526	}
527
528	/* Write the first dword (or portion) byte by byte */
529	if (unlikely(dif_len)) {
530		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531		/* Start writing at aligned_addr + dif_len */
532		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534		aligned_addr += 4;
535	}
536
537	/* Write all of the middle dwords as dwords, with auto-increment */
538	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541
542	/* Write the last dword (or portion) byte by byte */
543	if (unlikely(num)) {
544		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545		for (i = 0; num > 0; i++, num--, buf++)
546			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547	}
548}
549
550/* General purpose, no alignment requirement, iterative (multi-byte) write, */
551/*    for 1st 4K of SRAM/regs space */
552static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553			     int num)
554{
555	memcpy_toio((priv->hw_base + addr), buf, num);
556}
557
558/* Set bit(s) in low 4K of SRAM/regs */
559static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560{
561	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562}
563
564/* Clear bit(s) in low 4K of SRAM/regs */
565static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566{
567	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568}
569
570static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571{
572	if (priv->status & STATUS_INT_ENABLED)
573		return;
574	priv->status |= STATUS_INT_ENABLED;
575	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576}
577
578static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579{
580	if (!(priv->status & STATUS_INT_ENABLED))
581		return;
582	priv->status &= ~STATUS_INT_ENABLED;
583	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584}
585
586static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587{
588	unsigned long flags;
589
590	spin_lock_irqsave(&priv->irq_lock, flags);
591	__ipw_enable_interrupts(priv);
592	spin_unlock_irqrestore(&priv->irq_lock, flags);
593}
594
595static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596{
597	unsigned long flags;
598
599	spin_lock_irqsave(&priv->irq_lock, flags);
600	__ipw_disable_interrupts(priv);
601	spin_unlock_irqrestore(&priv->irq_lock, flags);
602}
603
604static char *ipw_error_desc(u32 val)
605{
606	switch (val) {
607	case IPW_FW_ERROR_OK:
608		return "ERROR_OK";
609	case IPW_FW_ERROR_FAIL:
610		return "ERROR_FAIL";
611	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612		return "MEMORY_UNDERFLOW";
613	case IPW_FW_ERROR_MEMORY_OVERFLOW:
614		return "MEMORY_OVERFLOW";
615	case IPW_FW_ERROR_BAD_PARAM:
616		return "BAD_PARAM";
617	case IPW_FW_ERROR_BAD_CHECKSUM:
618		return "BAD_CHECKSUM";
619	case IPW_FW_ERROR_NMI_INTERRUPT:
620		return "NMI_INTERRUPT";
621	case IPW_FW_ERROR_BAD_DATABASE:
622		return "BAD_DATABASE";
623	case IPW_FW_ERROR_ALLOC_FAIL:
624		return "ALLOC_FAIL";
625	case IPW_FW_ERROR_DMA_UNDERRUN:
626		return "DMA_UNDERRUN";
627	case IPW_FW_ERROR_DMA_STATUS:
628		return "DMA_STATUS";
629	case IPW_FW_ERROR_DINO_ERROR:
630		return "DINO_ERROR";
631	case IPW_FW_ERROR_EEPROM_ERROR:
632		return "EEPROM_ERROR";
633	case IPW_FW_ERROR_SYSASSERT:
634		return "SYSASSERT";
635	case IPW_FW_ERROR_FATAL_ERROR:
636		return "FATAL_ERROR";
637	default:
638		return "UNKNOWN_ERROR";
639	}
640}
641
642static void ipw_dump_error_log(struct ipw_priv *priv,
643			       struct ipw_fw_error *error)
644{
645	u32 i;
646
647	if (!error) {
648		IPW_ERROR("Error allocating and capturing error log.  "
649			  "Nothing to dump.\n");
650		return;
651	}
652
653	IPW_ERROR("Start IPW Error Log Dump:\n");
654	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655		  error->status, error->config);
656
657	for (i = 0; i < error->elem_len; i++)
658		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
659			  ipw_error_desc(error->elem[i].desc),
660			  error->elem[i].time,
661			  error->elem[i].blink1,
662			  error->elem[i].blink2,
663			  error->elem[i].link1,
664			  error->elem[i].link2, error->elem[i].data);
665	for (i = 0; i < error->log_len; i++)
666		IPW_ERROR("%i\t0x%08x\t%i\n",
667			  error->log[i].time,
668			  error->log[i].data, error->log[i].event);
669}
670
671static inline int ipw_is_init(struct ipw_priv *priv)
672{
673	return (priv->status & STATUS_INIT) ? 1 : 0;
674}
675
676static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677{
678	u32 addr, field_info, field_len, field_count, total_len;
679
680	IPW_DEBUG_ORD("ordinal = %i\n", ord);
681
682	if (!priv || !val || !len) {
683		IPW_DEBUG_ORD("Invalid argument\n");
684		return -EINVAL;
685	}
686
687	/* verify device ordinal tables have been initialized */
688	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689		IPW_DEBUG_ORD("Access ordinals before initialization\n");
690		return -EINVAL;
691	}
692
693	switch (IPW_ORD_TABLE_ID_MASK & ord) {
694	case IPW_ORD_TABLE_0_MASK:
695		/*
696		 * TABLE 0: Direct access to a table of 32 bit values
697		 *
698		 * This is a very simple table with the data directly
699		 * read from the table
700		 */
701
702		/* remove the table id from the ordinal */
703		ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705		/* boundary check */
706		if (ord > priv->table0_len) {
707			IPW_DEBUG_ORD("ordinal value (%i) longer then "
708				      "max (%i)\n", ord, priv->table0_len);
709			return -EINVAL;
710		}
711
712		/* verify we have enough room to store the value */
713		if (*len < sizeof(u32)) {
714			IPW_DEBUG_ORD("ordinal buffer length too small, "
715				      "need %zd\n", sizeof(u32));
716			return -EINVAL;
717		}
718
719		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720			      ord, priv->table0_addr + (ord << 2));
721
722		*len = sizeof(u32);
723		ord <<= 2;
724		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725		break;
726
727	case IPW_ORD_TABLE_1_MASK:
728		/*
729		 * TABLE 1: Indirect access to a table of 32 bit values
730		 *
731		 * This is a fairly large table of u32 values each
732		 * representing starting addr for the data (which is
733		 * also a u32)
734		 */
735
736		/* remove the table id from the ordinal */
737		ord &= IPW_ORD_TABLE_VALUE_MASK;
738
739		/* boundary check */
740		if (ord > priv->table1_len) {
741			IPW_DEBUG_ORD("ordinal value too long\n");
742			return -EINVAL;
743		}
744
745		/* verify we have enough room to store the value */
746		if (*len < sizeof(u32)) {
747			IPW_DEBUG_ORD("ordinal buffer length too small, "
748				      "need %zd\n", sizeof(u32));
749			return -EINVAL;
750		}
751
752		*((u32 *) val) =
753		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754		*len = sizeof(u32);
755		break;
756
757	case IPW_ORD_TABLE_2_MASK:
758		/*
759		 * TABLE 2: Indirect access to a table of variable sized values
760		 *
761		 * This table consist of six values, each containing
762		 *     - dword containing the starting offset of the data
763		 *     - dword containing the lengh in the first 16bits
764		 *       and the count in the second 16bits
765		 */
766
767		/* remove the table id from the ordinal */
768		ord &= IPW_ORD_TABLE_VALUE_MASK;
769
770		/* boundary check */
771		if (ord > priv->table2_len) {
772			IPW_DEBUG_ORD("ordinal value too long\n");
773			return -EINVAL;
774		}
775
776		/* get the address of statistic */
777		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778
779		/* get the second DW of statistics ;
780		 * two 16-bit words - first is length, second is count */
781		field_info =
782		    ipw_read_reg32(priv,
783				   priv->table2_addr + (ord << 3) +
784				   sizeof(u32));
785
786		/* get each entry length */
787		field_len = *((u16 *) & field_info);
788
789		/* get number of entries */
790		field_count = *(((u16 *) & field_info) + 1);
791
792		/* abort if not enough memory */
793		total_len = field_len * field_count;
794		if (total_len > *len) {
795			*len = total_len;
796			return -EINVAL;
797		}
798
799		*len = total_len;
800		if (!total_len)
801			return 0;
802
803		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804			      "field_info = 0x%08x\n",
805			      addr, total_len, field_info);
806		ipw_read_indirect(priv, addr, val, total_len);
807		break;
808
809	default:
810		IPW_DEBUG_ORD("Invalid ordinal!\n");
811		return -EINVAL;
812
813	}
814
815	return 0;
816}
817
818static void ipw_init_ordinals(struct ipw_priv *priv)
819{
820	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821	priv->table0_len = ipw_read32(priv, priv->table0_addr);
822
823	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824		      priv->table0_addr, priv->table0_len);
825
826	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828
829	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830		      priv->table1_addr, priv->table1_len);
831
832	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
835
836	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837		      priv->table2_addr, priv->table2_len);
838
839}
840
841static u32 ipw_register_toggle(u32 reg)
842{
843	reg &= ~IPW_START_STANDBY;
844	if (reg & IPW_GATE_ODMA)
845		reg &= ~IPW_GATE_ODMA;
846	if (reg & IPW_GATE_IDMA)
847		reg &= ~IPW_GATE_IDMA;
848	if (reg & IPW_GATE_ADMA)
849		reg &= ~IPW_GATE_ADMA;
850	return reg;
851}
852
853/*
854 * LED behavior:
855 * - On radio ON, turn on any LEDs that require to be on during start
856 * - On initialization, start unassociated blink
857 * - On association, disable unassociated blink
858 * - On disassociation, start unassociated blink
859 * - On radio OFF, turn off any LEDs started during radio on
860 *
861 */
862#define LD_TIME_LINK_ON msecs_to_jiffies(300)
863#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864#define LD_TIME_ACT_ON msecs_to_jiffies(250)
865
866static void ipw_led_link_on(struct ipw_priv *priv)
867{
868	unsigned long flags;
869	u32 led;
870
871	/* If configured to not use LEDs, or nic_type is 1,
872	 * then we don't toggle a LINK led */
873	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874		return;
875
876	spin_lock_irqsave(&priv->lock, flags);
877
878	if (!(priv->status & STATUS_RF_KILL_MASK) &&
879	    !(priv->status & STATUS_LED_LINK_ON)) {
880		IPW_DEBUG_LED("Link LED On\n");
881		led = ipw_read_reg32(priv, IPW_EVENT_REG);
882		led |= priv->led_association_on;
883
884		led = ipw_register_toggle(led);
885
886		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887		ipw_write_reg32(priv, IPW_EVENT_REG, led);
888
889		priv->status |= STATUS_LED_LINK_ON;
890
891		/* If we aren't associated, schedule turning the LED off */
892		if (!(priv->status & STATUS_ASSOCIATED))
893			schedule_delayed_work(&priv->led_link_off,
894					      LD_TIME_LINK_ON);
895	}
896
897	spin_unlock_irqrestore(&priv->lock, flags);
898}
899
900static void ipw_bg_led_link_on(struct work_struct *work)
901{
902	struct ipw_priv *priv =
903		container_of(work, struct ipw_priv, led_link_on.work);
904	mutex_lock(&priv->mutex);
905	ipw_led_link_on(priv);
906	mutex_unlock(&priv->mutex);
907}
908
909static void ipw_led_link_off(struct ipw_priv *priv)
910{
911	unsigned long flags;
912	u32 led;
913
914	/* If configured not to use LEDs, or nic type is 1,
915	 * then we don't goggle the LINK led. */
916	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917		return;
918
919	spin_lock_irqsave(&priv->lock, flags);
920
921	if (priv->status & STATUS_LED_LINK_ON) {
922		led = ipw_read_reg32(priv, IPW_EVENT_REG);
923		led &= priv->led_association_off;
924		led = ipw_register_toggle(led);
925
926		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927		ipw_write_reg32(priv, IPW_EVENT_REG, led);
928
929		IPW_DEBUG_LED("Link LED Off\n");
930
931		priv->status &= ~STATUS_LED_LINK_ON;
932
933		/* If we aren't associated and the radio is on, schedule
934		 * turning the LED on (blink while unassociated) */
935		if (!(priv->status & STATUS_RF_KILL_MASK) &&
936		    !(priv->status & STATUS_ASSOCIATED))
937			schedule_delayed_work(&priv->led_link_on,
938					      LD_TIME_LINK_OFF);
939
940	}
941
942	spin_unlock_irqrestore(&priv->lock, flags);
943}
944
945static void ipw_bg_led_link_off(struct work_struct *work)
946{
947	struct ipw_priv *priv =
948		container_of(work, struct ipw_priv, led_link_off.work);
949	mutex_lock(&priv->mutex);
950	ipw_led_link_off(priv);
951	mutex_unlock(&priv->mutex);
952}
953
954static void __ipw_led_activity_on(struct ipw_priv *priv)
955{
956	u32 led;
957
958	if (priv->config & CFG_NO_LED)
959		return;
960
961	if (priv->status & STATUS_RF_KILL_MASK)
962		return;
963
964	if (!(priv->status & STATUS_LED_ACT_ON)) {
965		led = ipw_read_reg32(priv, IPW_EVENT_REG);
966		led |= priv->led_activity_on;
967
968		led = ipw_register_toggle(led);
969
970		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971		ipw_write_reg32(priv, IPW_EVENT_REG, led);
972
973		IPW_DEBUG_LED("Activity LED On\n");
974
975		priv->status |= STATUS_LED_ACT_ON;
976
977		cancel_delayed_work(&priv->led_act_off);
978		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979	} else {
980		/* Reschedule LED off for full time period */
981		cancel_delayed_work(&priv->led_act_off);
982		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983	}
984}
985
986#if 0
987void ipw_led_activity_on(struct ipw_priv *priv)
988{
989	unsigned long flags;
990	spin_lock_irqsave(&priv->lock, flags);
991	__ipw_led_activity_on(priv);
992	spin_unlock_irqrestore(&priv->lock, flags);
993}
994#endif  /*  0  */
995
996static void ipw_led_activity_off(struct ipw_priv *priv)
997{
998	unsigned long flags;
999	u32 led;
1000
1001	if (priv->config & CFG_NO_LED)
1002		return;
1003
1004	spin_lock_irqsave(&priv->lock, flags);
1005
1006	if (priv->status & STATUS_LED_ACT_ON) {
1007		led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008		led &= priv->led_activity_off;
1009
1010		led = ipw_register_toggle(led);
1011
1012		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014
1015		IPW_DEBUG_LED("Activity LED Off\n");
1016
1017		priv->status &= ~STATUS_LED_ACT_ON;
1018	}
1019
1020	spin_unlock_irqrestore(&priv->lock, flags);
1021}
1022
1023static void ipw_bg_led_activity_off(struct work_struct *work)
1024{
1025	struct ipw_priv *priv =
1026		container_of(work, struct ipw_priv, led_act_off.work);
1027	mutex_lock(&priv->mutex);
1028	ipw_led_activity_off(priv);
1029	mutex_unlock(&priv->mutex);
1030}
1031
1032static void ipw_led_band_on(struct ipw_priv *priv)
1033{
1034	unsigned long flags;
1035	u32 led;
1036
1037	/* Only nic type 1 supports mode LEDs */
1038	if (priv->config & CFG_NO_LED ||
1039	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040		return;
1041
1042	spin_lock_irqsave(&priv->lock, flags);
1043
1044	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045	if (priv->assoc_network->mode == IEEE_A) {
1046		led |= priv->led_ofdm_on;
1047		led &= priv->led_association_off;
1048		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049	} else if (priv->assoc_network->mode == IEEE_G) {
1050		led |= priv->led_ofdm_on;
1051		led |= priv->led_association_on;
1052		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053	} else {
1054		led &= priv->led_ofdm_off;
1055		led |= priv->led_association_on;
1056		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057	}
1058
1059	led = ipw_register_toggle(led);
1060
1061	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063
1064	spin_unlock_irqrestore(&priv->lock, flags);
1065}
1066
1067static void ipw_led_band_off(struct ipw_priv *priv)
1068{
1069	unsigned long flags;
1070	u32 led;
1071
1072	/* Only nic type 1 supports mode LEDs */
1073	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074		return;
1075
1076	spin_lock_irqsave(&priv->lock, flags);
1077
1078	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079	led &= priv->led_ofdm_off;
1080	led &= priv->led_association_off;
1081
1082	led = ipw_register_toggle(led);
1083
1084	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086
1087	spin_unlock_irqrestore(&priv->lock, flags);
1088}
1089
1090static void ipw_led_radio_on(struct ipw_priv *priv)
1091{
1092	ipw_led_link_on(priv);
1093}
1094
1095static void ipw_led_radio_off(struct ipw_priv *priv)
1096{
1097	ipw_led_activity_off(priv);
1098	ipw_led_link_off(priv);
1099}
1100
1101static void ipw_led_link_up(struct ipw_priv *priv)
1102{
1103	/* Set the Link Led on for all nic types */
1104	ipw_led_link_on(priv);
1105}
1106
1107static void ipw_led_link_down(struct ipw_priv *priv)
1108{
1109	ipw_led_activity_off(priv);
1110	ipw_led_link_off(priv);
1111
1112	if (priv->status & STATUS_RF_KILL_MASK)
1113		ipw_led_radio_off(priv);
1114}
1115
1116static void ipw_led_init(struct ipw_priv *priv)
1117{
1118	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119
1120	/* Set the default PINs for the link and activity leds */
1121	priv->led_activity_on = IPW_ACTIVITY_LED;
1122	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123
1124	priv->led_association_on = IPW_ASSOCIATED_LED;
1125	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126
1127	/* Set the default PINs for the OFDM leds */
1128	priv->led_ofdm_on = IPW_OFDM_LED;
1129	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130
1131	switch (priv->nic_type) {
1132	case EEPROM_NIC_TYPE_1:
1133		/* In this NIC type, the LEDs are reversed.... */
1134		priv->led_activity_on = IPW_ASSOCIATED_LED;
1135		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136		priv->led_association_on = IPW_ACTIVITY_LED;
1137		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138
1139		if (!(priv->config & CFG_NO_LED))
1140			ipw_led_band_on(priv);
1141
1142		/* And we don't blink link LEDs for this nic, so
1143		 * just return here */
1144		return;
1145
1146	case EEPROM_NIC_TYPE_3:
1147	case EEPROM_NIC_TYPE_2:
1148	case EEPROM_NIC_TYPE_4:
1149	case EEPROM_NIC_TYPE_0:
1150		break;
1151
1152	default:
1153		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154			       priv->nic_type);
1155		priv->nic_type = EEPROM_NIC_TYPE_0;
1156		break;
1157	}
1158
1159	if (!(priv->config & CFG_NO_LED)) {
1160		if (priv->status & STATUS_ASSOCIATED)
1161			ipw_led_link_on(priv);
1162		else
1163			ipw_led_link_off(priv);
1164	}
1165}
1166
1167static void ipw_led_shutdown(struct ipw_priv *priv)
1168{
1169	ipw_led_activity_off(priv);
1170	ipw_led_link_off(priv);
1171	ipw_led_band_off(priv);
1172	cancel_delayed_work(&priv->led_link_on);
1173	cancel_delayed_work(&priv->led_link_off);
1174	cancel_delayed_work(&priv->led_act_off);
1175}
1176
1177/*
1178 * The following adds a new attribute to the sysfs representation
1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180 * used for controlling the debug level.
1181 *
1182 * See the level definitions in ipw for details.
1183 */
1184static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185{
1186	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187}
1188
1189static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190				 size_t count)
1191{
1192	char *p = (char *)buf;
1193	u32 val;
1194
1195	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196		p++;
1197		if (p[0] == 'x' || p[0] == 'X')
1198			p++;
1199		val = simple_strtoul(p, &p, 16);
1200	} else
1201		val = simple_strtoul(p, &p, 10);
1202	if (p == buf)
1203		printk(KERN_INFO DRV_NAME
1204		       ": %s is not in hex or decimal form.\n", buf);
1205	else
1206		ipw_debug_level = val;
1207
1208	return strnlen(buf, count);
1209}
1210static DRIVER_ATTR_RW(debug_level);
1211
1212static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213{
1214	/* length = 1st dword in log */
1215	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216}
1217
1218static void ipw_capture_event_log(struct ipw_priv *priv,
1219				  u32 log_len, struct ipw_event *log)
1220{
1221	u32 base;
1222
1223	if (log_len) {
1224		base = ipw_read32(priv, IPW_EVENT_LOG);
1225		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226				  (u8 *) log, sizeof(*log) * log_len);
1227	}
1228}
1229
1230static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231{
1232	struct ipw_fw_error *error;
1233	u32 log_len = ipw_get_event_log_len(priv);
1234	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235	u32 elem_len = ipw_read_reg32(priv, base);
1236
1237	error = kmalloc(sizeof(*error) +
1238			sizeof(*error->elem) * elem_len +
1239			sizeof(*error->log) * log_len, GFP_ATOMIC);
1240	if (!error) {
1241		IPW_ERROR("Memory allocation for firmware error log "
1242			  "failed.\n");
1243		return NULL;
1244	}
1245	error->jiffies = jiffies;
1246	error->status = priv->status;
1247	error->config = priv->config;
1248	error->elem_len = elem_len;
1249	error->log_len = log_len;
1250	error->elem = (struct ipw_error_elem *)error->payload;
1251	error->log = (struct ipw_event *)(error->elem + elem_len);
1252
1253	ipw_capture_event_log(priv, log_len, error->log);
1254
1255	if (elem_len)
1256		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257				  sizeof(*error->elem) * elem_len);
1258
1259	return error;
1260}
1261
1262static ssize_t show_event_log(struct device *d,
1263			      struct device_attribute *attr, char *buf)
1264{
1265	struct ipw_priv *priv = dev_get_drvdata(d);
1266	u32 log_len = ipw_get_event_log_len(priv);
1267	u32 log_size;
1268	struct ipw_event *log;
1269	u32 len = 0, i;
1270
1271	/* not using min() because of its strict type checking */
1272	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273			sizeof(*log) * log_len : PAGE_SIZE;
1274	log = kzalloc(log_size, GFP_KERNEL);
1275	if (!log) {
1276		IPW_ERROR("Unable to allocate memory for log\n");
1277		return 0;
1278	}
1279	log_len = log_size / sizeof(*log);
1280	ipw_capture_event_log(priv, log_len, log);
1281
1282	len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283	for (i = 0; i < log_len; i++)
1284		len += scnprintf(buf + len, PAGE_SIZE - len,
1285				"\n%08X%08X%08X",
1286				log[i].time, log[i].event, log[i].data);
1287	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1288	kfree(log);
1289	return len;
1290}
1291
1292static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293
1294static ssize_t show_error(struct device *d,
1295			  struct device_attribute *attr, char *buf)
1296{
1297	struct ipw_priv *priv = dev_get_drvdata(d);
1298	u32 len = 0, i;
1299	if (!priv->error)
1300		return 0;
1301	len += scnprintf(buf + len, PAGE_SIZE - len,
1302			"%08lX%08X%08X%08X",
1303			priv->error->jiffies,
1304			priv->error->status,
1305			priv->error->config, priv->error->elem_len);
1306	for (i = 0; i < priv->error->elem_len; i++)
1307		len += scnprintf(buf + len, PAGE_SIZE - len,
1308				"\n%08X%08X%08X%08X%08X%08X%08X",
1309				priv->error->elem[i].time,
1310				priv->error->elem[i].desc,
1311				priv->error->elem[i].blink1,
1312				priv->error->elem[i].blink2,
1313				priv->error->elem[i].link1,
1314				priv->error->elem[i].link2,
1315				priv->error->elem[i].data);
1316
1317	len += scnprintf(buf + len, PAGE_SIZE - len,
1318			"\n%08X", priv->error->log_len);
1319	for (i = 0; i < priv->error->log_len; i++)
1320		len += scnprintf(buf + len, PAGE_SIZE - len,
1321				"\n%08X%08X%08X",
1322				priv->error->log[i].time,
1323				priv->error->log[i].event,
1324				priv->error->log[i].data);
1325	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1326	return len;
1327}
1328
1329static ssize_t clear_error(struct device *d,
1330			   struct device_attribute *attr,
1331			   const char *buf, size_t count)
1332{
1333	struct ipw_priv *priv = dev_get_drvdata(d);
1334
1335	kfree(priv->error);
1336	priv->error = NULL;
1337	return count;
1338}
1339
1340static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341
1342static ssize_t show_cmd_log(struct device *d,
1343			    struct device_attribute *attr, char *buf)
1344{
1345	struct ipw_priv *priv = dev_get_drvdata(d);
1346	u32 len = 0, i;
1347	if (!priv->cmdlog)
1348		return 0;
1349	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351	     i = (i + 1) % priv->cmdlog_len) {
1352		len +=
1353		    scnprintf(buf + len, PAGE_SIZE - len,
1354			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356			     priv->cmdlog[i].cmd.len);
1357		len +=
1358		    snprintk_buf(buf + len, PAGE_SIZE - len,
1359				 (u8 *) priv->cmdlog[i].cmd.param,
1360				 priv->cmdlog[i].cmd.len);
1361		len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1362	}
1363	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1364	return len;
1365}
1366
1367static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368
1369#ifdef CONFIG_IPW2200_PROMISCUOUS
1370static void ipw_prom_free(struct ipw_priv *priv);
1371static int ipw_prom_alloc(struct ipw_priv *priv);
1372static ssize_t store_rtap_iface(struct device *d,
1373			 struct device_attribute *attr,
1374			 const char *buf, size_t count)
1375{
1376	struct ipw_priv *priv = dev_get_drvdata(d);
1377	int rc = 0;
1378
1379	if (count < 1)
1380		return -EINVAL;
1381
1382	switch (buf[0]) {
1383	case '0':
1384		if (!rtap_iface)
1385			return count;
1386
1387		if (netif_running(priv->prom_net_dev)) {
1388			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1389			return count;
1390		}
1391
1392		ipw_prom_free(priv);
1393		rtap_iface = 0;
1394		break;
1395
1396	case '1':
1397		if (rtap_iface)
1398			return count;
1399
1400		rc = ipw_prom_alloc(priv);
1401		if (!rc)
1402			rtap_iface = 1;
1403		break;
1404
1405	default:
1406		return -EINVAL;
1407	}
1408
1409	if (rc) {
1410		IPW_ERROR("Failed to register promiscuous network "
1411			  "device (error %d).\n", rc);
1412	}
1413
1414	return count;
1415}
1416
1417static ssize_t show_rtap_iface(struct device *d,
1418			struct device_attribute *attr,
1419			char *buf)
1420{
1421	struct ipw_priv *priv = dev_get_drvdata(d);
1422	if (rtap_iface)
1423		return sprintf(buf, "%s", priv->prom_net_dev->name);
1424	else {
1425		buf[0] = '-';
1426		buf[1] = '1';
1427		buf[2] = '\0';
1428		return 3;
1429	}
1430}
1431
1432static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433
1434static ssize_t store_rtap_filter(struct device *d,
1435			 struct device_attribute *attr,
1436			 const char *buf, size_t count)
1437{
1438	struct ipw_priv *priv = dev_get_drvdata(d);
1439
1440	if (!priv->prom_priv) {
1441		IPW_ERROR("Attempting to set filter without "
1442			  "rtap_iface enabled.\n");
1443		return -EPERM;
1444	}
1445
1446	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447
1448	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449		       BIT_ARG16(priv->prom_priv->filter));
1450
1451	return count;
1452}
1453
1454static ssize_t show_rtap_filter(struct device *d,
1455			struct device_attribute *attr,
1456			char *buf)
1457{
1458	struct ipw_priv *priv = dev_get_drvdata(d);
1459	return sprintf(buf, "0x%04X",
1460		       priv->prom_priv ? priv->prom_priv->filter : 0);
1461}
1462
1463static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464#endif
1465
1466static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467			     char *buf)
1468{
1469	struct ipw_priv *priv = dev_get_drvdata(d);
1470	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471}
1472
1473static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474			      const char *buf, size_t count)
1475{
1476	struct ipw_priv *priv = dev_get_drvdata(d);
1477	struct net_device *dev = priv->net_dev;
1478	char buffer[] = "00000000";
1479	unsigned long len =
1480	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481	unsigned long val;
1482	char *p = buffer;
1483
1484	IPW_DEBUG_INFO("enter\n");
1485
1486	strncpy(buffer, buf, len);
1487	buffer[len] = 0;
1488
1489	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490		p++;
1491		if (p[0] == 'x' || p[0] == 'X')
1492			p++;
1493		val = simple_strtoul(p, &p, 16);
1494	} else
1495		val = simple_strtoul(p, &p, 10);
1496	if (p == buffer) {
1497		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498	} else {
1499		priv->ieee->scan_age = val;
1500		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501	}
1502
1503	IPW_DEBUG_INFO("exit\n");
1504	return len;
1505}
1506
1507static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508
1509static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510			char *buf)
1511{
1512	struct ipw_priv *priv = dev_get_drvdata(d);
1513	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514}
1515
1516static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517			 const char *buf, size_t count)
1518{
1519	struct ipw_priv *priv = dev_get_drvdata(d);
1520
1521	IPW_DEBUG_INFO("enter\n");
1522
1523	if (count == 0)
1524		return 0;
1525
1526	if (*buf == 0) {
1527		IPW_DEBUG_LED("Disabling LED control.\n");
1528		priv->config |= CFG_NO_LED;
1529		ipw_led_shutdown(priv);
1530	} else {
1531		IPW_DEBUG_LED("Enabling LED control.\n");
1532		priv->config &= ~CFG_NO_LED;
1533		ipw_led_init(priv);
1534	}
1535
1536	IPW_DEBUG_INFO("exit\n");
1537	return count;
1538}
1539
1540static DEVICE_ATTR(led, 0644, show_led, store_led);
1541
1542static ssize_t show_status(struct device *d,
1543			   struct device_attribute *attr, char *buf)
1544{
1545	struct ipw_priv *p = dev_get_drvdata(d);
1546	return sprintf(buf, "0x%08x\n", (int)p->status);
1547}
1548
1549static DEVICE_ATTR(status, 0444, show_status, NULL);
1550
1551static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552			char *buf)
1553{
1554	struct ipw_priv *p = dev_get_drvdata(d);
1555	return sprintf(buf, "0x%08x\n", (int)p->config);
1556}
1557
1558static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559
1560static ssize_t show_nic_type(struct device *d,
1561			     struct device_attribute *attr, char *buf)
1562{
1563	struct ipw_priv *priv = dev_get_drvdata(d);
1564	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565}
1566
1567static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568
1569static ssize_t show_ucode_version(struct device *d,
1570				  struct device_attribute *attr, char *buf)
1571{
1572	u32 len = sizeof(u32), tmp = 0;
1573	struct ipw_priv *p = dev_get_drvdata(d);
1574
1575	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576		return 0;
1577
1578	return sprintf(buf, "0x%08x\n", tmp);
1579}
1580
1581static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582
1583static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584			char *buf)
1585{
1586	u32 len = sizeof(u32), tmp = 0;
1587	struct ipw_priv *p = dev_get_drvdata(d);
1588
1589	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590		return 0;
1591
1592	return sprintf(buf, "0x%08x\n", tmp);
1593}
1594
1595static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596
1597/*
1598 * Add a device attribute to view/control the delay between eeprom
1599 * operations.
1600 */
1601static ssize_t show_eeprom_delay(struct device *d,
1602				 struct device_attribute *attr, char *buf)
1603{
1604	struct ipw_priv *p = dev_get_drvdata(d);
1605	int n = p->eeprom_delay;
1606	return sprintf(buf, "%i\n", n);
1607}
1608static ssize_t store_eeprom_delay(struct device *d,
1609				  struct device_attribute *attr,
1610				  const char *buf, size_t count)
1611{
1612	struct ipw_priv *p = dev_get_drvdata(d);
1613	sscanf(buf, "%i", &p->eeprom_delay);
1614	return strnlen(buf, count);
1615}
1616
1617static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618
1619static ssize_t show_command_event_reg(struct device *d,
1620				      struct device_attribute *attr, char *buf)
1621{
1622	u32 reg = 0;
1623	struct ipw_priv *p = dev_get_drvdata(d);
1624
1625	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626	return sprintf(buf, "0x%08x\n", reg);
1627}
1628static ssize_t store_command_event_reg(struct device *d,
1629				       struct device_attribute *attr,
1630				       const char *buf, size_t count)
1631{
1632	u32 reg;
1633	struct ipw_priv *p = dev_get_drvdata(d);
1634
1635	sscanf(buf, "%x", &reg);
1636	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637	return strnlen(buf, count);
1638}
1639
1640static DEVICE_ATTR(command_event_reg, 0644,
1641		   show_command_event_reg, store_command_event_reg);
1642
1643static ssize_t show_mem_gpio_reg(struct device *d,
1644				 struct device_attribute *attr, char *buf)
1645{
1646	u32 reg = 0;
1647	struct ipw_priv *p = dev_get_drvdata(d);
1648
1649	reg = ipw_read_reg32(p, 0x301100);
1650	return sprintf(buf, "0x%08x\n", reg);
1651}
1652static ssize_t store_mem_gpio_reg(struct device *d,
1653				  struct device_attribute *attr,
1654				  const char *buf, size_t count)
1655{
1656	u32 reg;
1657	struct ipw_priv *p = dev_get_drvdata(d);
1658
1659	sscanf(buf, "%x", &reg);
1660	ipw_write_reg32(p, 0x301100, reg);
1661	return strnlen(buf, count);
1662}
1663
1664static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665
1666static ssize_t show_indirect_dword(struct device *d,
1667				   struct device_attribute *attr, char *buf)
1668{
1669	u32 reg = 0;
1670	struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672	if (priv->status & STATUS_INDIRECT_DWORD)
1673		reg = ipw_read_reg32(priv, priv->indirect_dword);
1674	else
1675		reg = 0;
1676
1677	return sprintf(buf, "0x%08x\n", reg);
1678}
1679static ssize_t store_indirect_dword(struct device *d,
1680				    struct device_attribute *attr,
1681				    const char *buf, size_t count)
1682{
1683	struct ipw_priv *priv = dev_get_drvdata(d);
1684
1685	sscanf(buf, "%x", &priv->indirect_dword);
1686	priv->status |= STATUS_INDIRECT_DWORD;
1687	return strnlen(buf, count);
1688}
1689
1690static DEVICE_ATTR(indirect_dword, 0644,
1691		   show_indirect_dword, store_indirect_dword);
1692
1693static ssize_t show_indirect_byte(struct device *d,
1694				  struct device_attribute *attr, char *buf)
1695{
1696	u8 reg = 0;
1697	struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699	if (priv->status & STATUS_INDIRECT_BYTE)
1700		reg = ipw_read_reg8(priv, priv->indirect_byte);
1701	else
1702		reg = 0;
1703
1704	return sprintf(buf, "0x%02x\n", reg);
1705}
1706static ssize_t store_indirect_byte(struct device *d,
1707				   struct device_attribute *attr,
1708				   const char *buf, size_t count)
1709{
1710	struct ipw_priv *priv = dev_get_drvdata(d);
1711
1712	sscanf(buf, "%x", &priv->indirect_byte);
1713	priv->status |= STATUS_INDIRECT_BYTE;
1714	return strnlen(buf, count);
1715}
1716
1717static DEVICE_ATTR(indirect_byte, 0644,
1718		   show_indirect_byte, store_indirect_byte);
1719
1720static ssize_t show_direct_dword(struct device *d,
1721				 struct device_attribute *attr, char *buf)
1722{
1723	u32 reg = 0;
1724	struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726	if (priv->status & STATUS_DIRECT_DWORD)
1727		reg = ipw_read32(priv, priv->direct_dword);
1728	else
1729		reg = 0;
1730
1731	return sprintf(buf, "0x%08x\n", reg);
1732}
1733static ssize_t store_direct_dword(struct device *d,
1734				  struct device_attribute *attr,
1735				  const char *buf, size_t count)
1736{
1737	struct ipw_priv *priv = dev_get_drvdata(d);
1738
1739	sscanf(buf, "%x", &priv->direct_dword);
1740	priv->status |= STATUS_DIRECT_DWORD;
1741	return strnlen(buf, count);
1742}
1743
1744static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745
1746static int rf_kill_active(struct ipw_priv *priv)
1747{
1748	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749		priv->status |= STATUS_RF_KILL_HW;
1750		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751	} else {
1752		priv->status &= ~STATUS_RF_KILL_HW;
1753		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754	}
1755
1756	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757}
1758
1759static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760			    char *buf)
1761{
1762	/* 0 - RF kill not enabled
1763	   1 - SW based RF kill active (sysfs)
1764	   2 - HW based RF kill active
1765	   3 - Both HW and SW baed RF kill active */
1766	struct ipw_priv *priv = dev_get_drvdata(d);
1767	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768	    (rf_kill_active(priv) ? 0x2 : 0x0);
1769	return sprintf(buf, "%i\n", val);
1770}
1771
1772static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773{
1774	if ((disable_radio ? 1 : 0) ==
1775	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776		return 0;
1777
1778	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1779			  disable_radio ? "OFF" : "ON");
1780
1781	if (disable_radio) {
1782		priv->status |= STATUS_RF_KILL_SW;
1783
1784		cancel_delayed_work(&priv->request_scan);
1785		cancel_delayed_work(&priv->request_direct_scan);
1786		cancel_delayed_work(&priv->request_passive_scan);
1787		cancel_delayed_work(&priv->scan_event);
1788		schedule_work(&priv->down);
1789	} else {
1790		priv->status &= ~STATUS_RF_KILL_SW;
1791		if (rf_kill_active(priv)) {
1792			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793					  "disabled by HW switch\n");
1794			/* Make sure the RF_KILL check timer is running */
1795			cancel_delayed_work(&priv->rf_kill);
1796			schedule_delayed_work(&priv->rf_kill,
1797					      round_jiffies_relative(2 * HZ));
1798		} else
1799			schedule_work(&priv->up);
1800	}
1801
1802	return 1;
1803}
1804
1805static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806			     const char *buf, size_t count)
1807{
1808	struct ipw_priv *priv = dev_get_drvdata(d);
1809
1810	ipw_radio_kill_sw(priv, buf[0] == '1');
1811
1812	return count;
1813}
1814
1815static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816
1817static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818			       char *buf)
1819{
1820	struct ipw_priv *priv = dev_get_drvdata(d);
1821	int pos = 0, len = 0;
1822	if (priv->config & CFG_SPEED_SCAN) {
1823		while (priv->speed_scan[pos] != 0)
1824			len += sprintf(&buf[len], "%d ",
1825				       priv->speed_scan[pos++]);
1826		return len + sprintf(&buf[len], "\n");
1827	}
1828
1829	return sprintf(buf, "0\n");
1830}
1831
1832static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833				const char *buf, size_t count)
1834{
1835	struct ipw_priv *priv = dev_get_drvdata(d);
1836	int channel, pos = 0;
1837	const char *p = buf;
1838
1839	/* list of space separated channels to scan, optionally ending with 0 */
1840	while ((channel = simple_strtol(p, NULL, 0))) {
1841		if (pos == MAX_SPEED_SCAN - 1) {
1842			priv->speed_scan[pos] = 0;
1843			break;
1844		}
1845
1846		if (libipw_is_valid_channel(priv->ieee, channel))
1847			priv->speed_scan[pos++] = channel;
1848		else
1849			IPW_WARNING("Skipping invalid channel request: %d\n",
1850				    channel);
1851		p = strchr(p, ' ');
1852		if (!p)
1853			break;
1854		while (*p == ' ' || *p == '\t')
1855			p++;
1856	}
1857
1858	if (pos == 0)
1859		priv->config &= ~CFG_SPEED_SCAN;
1860	else {
1861		priv->speed_scan_pos = 0;
1862		priv->config |= CFG_SPEED_SCAN;
1863	}
1864
1865	return count;
1866}
1867
1868static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869
1870static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871			      char *buf)
1872{
1873	struct ipw_priv *priv = dev_get_drvdata(d);
1874	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875}
1876
1877static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878			       const char *buf, size_t count)
1879{
1880	struct ipw_priv *priv = dev_get_drvdata(d);
1881	if (buf[0] == '1')
1882		priv->config |= CFG_NET_STATS;
1883	else
1884		priv->config &= ~CFG_NET_STATS;
1885
1886	return count;
1887}
1888
1889static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890
1891static ssize_t show_channels(struct device *d,
1892			     struct device_attribute *attr,
1893			     char *buf)
1894{
1895	struct ipw_priv *priv = dev_get_drvdata(d);
1896	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897	int len = 0, i;
1898
1899	len = sprintf(&buf[len],
1900		      "Displaying %d channels in 2.4Ghz band "
1901		      "(802.11bg):\n", geo->bg_channels);
1902
1903	for (i = 0; i < geo->bg_channels; i++) {
1904		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905			       geo->bg[i].channel,
1906			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907			       " (radar spectrum)" : "",
1908			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910			       ? "" : ", IBSS",
1911			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912			       "passive only" : "active/passive",
1913			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914			       "B" : "B/G");
1915	}
1916
1917	len += sprintf(&buf[len],
1918		       "Displaying %d channels in 5.2Ghz band "
1919		       "(802.11a):\n", geo->a_channels);
1920	for (i = 0; i < geo->a_channels; i++) {
1921		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922			       geo->a[i].channel,
1923			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924			       " (radar spectrum)" : "",
1925			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927			       ? "" : ", IBSS",
1928			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929			       "passive only" : "active/passive");
1930	}
1931
1932	return len;
1933}
1934
1935static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936
1937static void notify_wx_assoc_event(struct ipw_priv *priv)
1938{
1939	union iwreq_data wrqu;
1940	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941	if (priv->status & STATUS_ASSOCIATED)
1942		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943	else
1944		eth_zero_addr(wrqu.ap_addr.sa_data);
1945	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946}
1947
1948static void ipw_irq_tasklet(struct tasklet_struct *t)
1949{
1950	struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
1951	u32 inta, inta_mask, handled = 0;
1952	unsigned long flags;
1953
1954	spin_lock_irqsave(&priv->irq_lock, flags);
1955
1956	inta = ipw_read32(priv, IPW_INTA_RW);
1957	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1958
1959	if (inta == 0xFFFFFFFF) {
1960		/* Hardware disappeared */
1961		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1962		/* Only handle the cached INTA values */
1963		inta = 0;
1964	}
1965	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1966
1967	/* Add any cached INTA values that need to be handled */
1968	inta |= priv->isr_inta;
1969
1970	spin_unlock_irqrestore(&priv->irq_lock, flags);
1971
1972	spin_lock_irqsave(&priv->lock, flags);
1973
1974	/* handle all the justifications for the interrupt */
1975	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1976		ipw_rx(priv);
1977		handled |= IPW_INTA_BIT_RX_TRANSFER;
1978	}
1979
1980	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1981		IPW_DEBUG_HC("Command completed.\n");
1982		ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1983		priv->status &= ~STATUS_HCMD_ACTIVE;
1984		wake_up_interruptible(&priv->wait_command_queue);
1985		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1986	}
1987
1988	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1989		IPW_DEBUG_TX("TX_QUEUE_1\n");
1990		ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1991		handled |= IPW_INTA_BIT_TX_QUEUE_1;
1992	}
1993
1994	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1995		IPW_DEBUG_TX("TX_QUEUE_2\n");
1996		ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1997		handled |= IPW_INTA_BIT_TX_QUEUE_2;
1998	}
1999
2000	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2001		IPW_DEBUG_TX("TX_QUEUE_3\n");
2002		ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2003		handled |= IPW_INTA_BIT_TX_QUEUE_3;
2004	}
2005
2006	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2007		IPW_DEBUG_TX("TX_QUEUE_4\n");
2008		ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2009		handled |= IPW_INTA_BIT_TX_QUEUE_4;
2010	}
2011
2012	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2013		IPW_WARNING("STATUS_CHANGE\n");
2014		handled |= IPW_INTA_BIT_STATUS_CHANGE;
2015	}
2016
2017	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2018		IPW_WARNING("TX_PERIOD_EXPIRED\n");
2019		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2020	}
2021
2022	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2023		IPW_WARNING("HOST_CMD_DONE\n");
2024		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2025	}
2026
2027	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2028		IPW_WARNING("FW_INITIALIZATION_DONE\n");
2029		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2030	}
2031
2032	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2033		IPW_WARNING("PHY_OFF_DONE\n");
2034		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2035	}
2036
2037	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2038		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2039		priv->status |= STATUS_RF_KILL_HW;
2040		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2041		wake_up_interruptible(&priv->wait_command_queue);
2042		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2043		cancel_delayed_work(&priv->request_scan);
2044		cancel_delayed_work(&priv->request_direct_scan);
2045		cancel_delayed_work(&priv->request_passive_scan);
2046		cancel_delayed_work(&priv->scan_event);
2047		schedule_work(&priv->link_down);
2048		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2049		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2050	}
2051
2052	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2053		IPW_WARNING("Firmware error detected.  Restarting.\n");
2054		if (priv->error) {
2055			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2056			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2057				struct ipw_fw_error *error =
2058				    ipw_alloc_error_log(priv);
2059				ipw_dump_error_log(priv, error);
2060				kfree(error);
2061			}
2062		} else {
2063			priv->error = ipw_alloc_error_log(priv);
2064			if (priv->error)
2065				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2066			else
2067				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2068					     "log.\n");
2069			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2070				ipw_dump_error_log(priv, priv->error);
2071		}
2072
2073		/* XXX: If hardware encryption is for WPA/WPA2,
2074		 * we have to notify the supplicant. */
2075		if (priv->ieee->sec.encrypt) {
2076			priv->status &= ~STATUS_ASSOCIATED;
2077			notify_wx_assoc_event(priv);
2078		}
2079
2080		/* Keep the restart process from trying to send host
2081		 * commands by clearing the INIT status bit */
2082		priv->status &= ~STATUS_INIT;
2083
2084		/* Cancel currently queued command. */
2085		priv->status &= ~STATUS_HCMD_ACTIVE;
2086		wake_up_interruptible(&priv->wait_command_queue);
2087
2088		schedule_work(&priv->adapter_restart);
2089		handled |= IPW_INTA_BIT_FATAL_ERROR;
2090	}
2091
2092	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2093		IPW_ERROR("Parity error\n");
2094		handled |= IPW_INTA_BIT_PARITY_ERROR;
2095	}
2096
2097	if (handled != inta) {
2098		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2099	}
2100
2101	spin_unlock_irqrestore(&priv->lock, flags);
2102
2103	/* enable all interrupts */
2104	ipw_enable_interrupts(priv);
2105}
2106
2107#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2108static char *get_cmd_string(u8 cmd)
2109{
2110	switch (cmd) {
2111		IPW_CMD(HOST_COMPLETE);
2112		IPW_CMD(POWER_DOWN);
2113		IPW_CMD(SYSTEM_CONFIG);
2114		IPW_CMD(MULTICAST_ADDRESS);
2115		IPW_CMD(SSID);
2116		IPW_CMD(ADAPTER_ADDRESS);
2117		IPW_CMD(PORT_TYPE);
2118		IPW_CMD(RTS_THRESHOLD);
2119		IPW_CMD(FRAG_THRESHOLD);
2120		IPW_CMD(POWER_MODE);
2121		IPW_CMD(WEP_KEY);
2122		IPW_CMD(TGI_TX_KEY);
2123		IPW_CMD(SCAN_REQUEST);
2124		IPW_CMD(SCAN_REQUEST_EXT);
2125		IPW_CMD(ASSOCIATE);
2126		IPW_CMD(SUPPORTED_RATES);
2127		IPW_CMD(SCAN_ABORT);
2128		IPW_CMD(TX_FLUSH);
2129		IPW_CMD(QOS_PARAMETERS);
2130		IPW_CMD(DINO_CONFIG);
2131		IPW_CMD(RSN_CAPABILITIES);
2132		IPW_CMD(RX_KEY);
2133		IPW_CMD(CARD_DISABLE);
2134		IPW_CMD(SEED_NUMBER);
2135		IPW_CMD(TX_POWER);
2136		IPW_CMD(COUNTRY_INFO);
2137		IPW_CMD(AIRONET_INFO);
2138		IPW_CMD(AP_TX_POWER);
2139		IPW_CMD(CCKM_INFO);
2140		IPW_CMD(CCX_VER_INFO);
2141		IPW_CMD(SET_CALIBRATION);
2142		IPW_CMD(SENSITIVITY_CALIB);
2143		IPW_CMD(RETRY_LIMIT);
2144		IPW_CMD(IPW_PRE_POWER_DOWN);
2145		IPW_CMD(VAP_BEACON_TEMPLATE);
2146		IPW_CMD(VAP_DTIM_PERIOD);
2147		IPW_CMD(EXT_SUPPORTED_RATES);
2148		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2149		IPW_CMD(VAP_QUIET_INTERVALS);
2150		IPW_CMD(VAP_CHANNEL_SWITCH);
2151		IPW_CMD(VAP_MANDATORY_CHANNELS);
2152		IPW_CMD(VAP_CELL_PWR_LIMIT);
2153		IPW_CMD(VAP_CF_PARAM_SET);
2154		IPW_CMD(VAP_SET_BEACONING_STATE);
2155		IPW_CMD(MEASUREMENT);
2156		IPW_CMD(POWER_CAPABILITY);
2157		IPW_CMD(SUPPORTED_CHANNELS);
2158		IPW_CMD(TPC_REPORT);
2159		IPW_CMD(WME_INFO);
2160		IPW_CMD(PRODUCTION_COMMAND);
2161	default:
2162		return "UNKNOWN";
2163	}
2164}
2165
2166#define HOST_COMPLETE_TIMEOUT HZ
2167
2168static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2169{
2170	int rc = 0;
2171	unsigned long flags;
2172	unsigned long now, end;
2173
2174	spin_lock_irqsave(&priv->lock, flags);
2175	if (priv->status & STATUS_HCMD_ACTIVE) {
2176		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2177			  get_cmd_string(cmd->cmd));
2178		spin_unlock_irqrestore(&priv->lock, flags);
2179		return -EAGAIN;
2180	}
2181
2182	priv->status |= STATUS_HCMD_ACTIVE;
2183
2184	if (priv->cmdlog) {
2185		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2186		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2187		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2188		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2189		       cmd->len);
2190		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2191	}
2192
2193	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2194		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2195		     priv->status);
2196
2197#ifndef DEBUG_CMD_WEP_KEY
2198	if (cmd->cmd == IPW_CMD_WEP_KEY)
2199		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2200	else
2201#endif
2202		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2203
2204	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2205	if (rc) {
2206		priv->status &= ~STATUS_HCMD_ACTIVE;
2207		IPW_ERROR("Failed to send %s: Reason %d\n",
2208			  get_cmd_string(cmd->cmd), rc);
2209		spin_unlock_irqrestore(&priv->lock, flags);
2210		goto exit;
2211	}
2212	spin_unlock_irqrestore(&priv->lock, flags);
2213
2214	now = jiffies;
2215	end = now + HOST_COMPLETE_TIMEOUT;
2216again:
2217	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2218					      !(priv->
2219						status & STATUS_HCMD_ACTIVE),
2220					      end - now);
2221	if (rc < 0) {
2222		now = jiffies;
2223		if (time_before(now, end))
2224			goto again;
2225		rc = 0;
2226	}
2227
2228	if (rc == 0) {
2229		spin_lock_irqsave(&priv->lock, flags);
2230		if (priv->status & STATUS_HCMD_ACTIVE) {
2231			IPW_ERROR("Failed to send %s: Command timed out.\n",
2232				  get_cmd_string(cmd->cmd));
2233			priv->status &= ~STATUS_HCMD_ACTIVE;
2234			spin_unlock_irqrestore(&priv->lock, flags);
2235			rc = -EIO;
2236			goto exit;
2237		}
2238		spin_unlock_irqrestore(&priv->lock, flags);
2239	} else
2240		rc = 0;
2241
2242	if (priv->status & STATUS_RF_KILL_HW) {
2243		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244			  get_cmd_string(cmd->cmd));
2245		rc = -EIO;
2246		goto exit;
2247	}
2248
2249      exit:
2250	if (priv->cmdlog) {
2251		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252		priv->cmdlog_pos %= priv->cmdlog_len;
2253	}
2254	return rc;
2255}
2256
2257static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2258{
2259	struct host_cmd cmd = {
2260		.cmd = command,
2261	};
2262
2263	return __ipw_send_cmd(priv, &cmd);
2264}
2265
2266static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2267			    void *data)
2268{
2269	struct host_cmd cmd = {
2270		.cmd = command,
2271		.len = len,
2272		.param = data,
2273	};
2274
2275	return __ipw_send_cmd(priv, &cmd);
2276}
2277
2278static int ipw_send_host_complete(struct ipw_priv *priv)
2279{
2280	if (!priv) {
2281		IPW_ERROR("Invalid args\n");
2282		return -1;
2283	}
2284
2285	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2286}
2287
2288static int ipw_send_system_config(struct ipw_priv *priv)
2289{
2290	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291				sizeof(priv->sys_config),
2292				&priv->sys_config);
2293}
2294
2295static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2296{
2297	if (!priv || !ssid) {
2298		IPW_ERROR("Invalid args\n");
2299		return -1;
2300	}
2301
2302	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2303				ssid);
2304}
2305
2306static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2307{
2308	if (!priv || !mac) {
2309		IPW_ERROR("Invalid args\n");
2310		return -1;
2311	}
2312
2313	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314		       priv->net_dev->name, mac);
2315
2316	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2317}
2318
2319static void ipw_adapter_restart(void *adapter)
2320{
2321	struct ipw_priv *priv = adapter;
2322
2323	if (priv->status & STATUS_RF_KILL_MASK)
2324		return;
2325
2326	ipw_down(priv);
2327
2328	if (priv->assoc_network &&
2329	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2330		ipw_remove_current_network(priv);
2331
2332	if (ipw_up(priv)) {
2333		IPW_ERROR("Failed to up device\n");
2334		return;
2335	}
2336}
2337
2338static void ipw_bg_adapter_restart(struct work_struct *work)
2339{
2340	struct ipw_priv *priv =
2341		container_of(work, struct ipw_priv, adapter_restart);
2342	mutex_lock(&priv->mutex);
2343	ipw_adapter_restart(priv);
2344	mutex_unlock(&priv->mutex);
2345}
2346
2347static void ipw_abort_scan(struct ipw_priv *priv);
2348
2349#define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2350
2351static void ipw_scan_check(void *data)
2352{
2353	struct ipw_priv *priv = data;
2354
2355	if (priv->status & STATUS_SCAN_ABORTING) {
2356		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2357			       "adapter after (%dms).\n",
2358			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2359		schedule_work(&priv->adapter_restart);
2360	} else if (priv->status & STATUS_SCANNING) {
2361		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2362			       "after (%dms).\n",
2363			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2364		ipw_abort_scan(priv);
2365		schedule_delayed_work(&priv->scan_check, HZ);
2366	}
2367}
2368
2369static void ipw_bg_scan_check(struct work_struct *work)
2370{
2371	struct ipw_priv *priv =
2372		container_of(work, struct ipw_priv, scan_check.work);
2373	mutex_lock(&priv->mutex);
2374	ipw_scan_check(priv);
2375	mutex_unlock(&priv->mutex);
2376}
2377
2378static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2379				     struct ipw_scan_request_ext *request)
2380{
2381	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2382				sizeof(*request), request);
2383}
2384
2385static int ipw_send_scan_abort(struct ipw_priv *priv)
2386{
2387	if (!priv) {
2388		IPW_ERROR("Invalid args\n");
2389		return -1;
2390	}
2391
2392	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2393}
2394
2395static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2396{
2397	struct ipw_sensitivity_calib calib = {
2398		.beacon_rssi_raw = cpu_to_le16(sens),
2399	};
2400
2401	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2402				&calib);
2403}
2404
2405static int ipw_send_associate(struct ipw_priv *priv,
2406			      struct ipw_associate *associate)
2407{
2408	if (!priv || !associate) {
2409		IPW_ERROR("Invalid args\n");
2410		return -1;
2411	}
2412
2413	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2414				associate);
2415}
2416
2417static int ipw_send_supported_rates(struct ipw_priv *priv,
2418				    struct ipw_supported_rates *rates)
2419{
2420	if (!priv || !rates) {
2421		IPW_ERROR("Invalid args\n");
2422		return -1;
2423	}
2424
2425	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2426				rates);
2427}
2428
2429static int ipw_set_random_seed(struct ipw_priv *priv)
2430{
2431	u32 val;
2432
2433	if (!priv) {
2434		IPW_ERROR("Invalid args\n");
2435		return -1;
2436	}
2437
2438	get_random_bytes(&val, sizeof(val));
2439
2440	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2441}
2442
2443static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2444{
2445	__le32 v = cpu_to_le32(phy_off);
2446	if (!priv) {
2447		IPW_ERROR("Invalid args\n");
2448		return -1;
2449	}
2450
2451	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2452}
2453
2454static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2455{
2456	if (!priv || !power) {
2457		IPW_ERROR("Invalid args\n");
2458		return -1;
2459	}
2460
2461	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2462}
2463
2464static int ipw_set_tx_power(struct ipw_priv *priv)
2465{
2466	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2467	struct ipw_tx_power tx_power;
2468	s8 max_power;
2469	int i;
2470
2471	memset(&tx_power, 0, sizeof(tx_power));
2472
2473	/* configure device for 'G' band */
2474	tx_power.ieee_mode = IPW_G_MODE;
2475	tx_power.num_channels = geo->bg_channels;
2476	for (i = 0; i < geo->bg_channels; i++) {
2477		max_power = geo->bg[i].max_power;
2478		tx_power.channels_tx_power[i].channel_number =
2479		    geo->bg[i].channel;
2480		tx_power.channels_tx_power[i].tx_power = max_power ?
2481		    min(max_power, priv->tx_power) : priv->tx_power;
2482	}
2483	if (ipw_send_tx_power(priv, &tx_power))
2484		return -EIO;
2485
2486	/* configure device to also handle 'B' band */
2487	tx_power.ieee_mode = IPW_B_MODE;
2488	if (ipw_send_tx_power(priv, &tx_power))
2489		return -EIO;
2490
2491	/* configure device to also handle 'A' band */
2492	if (priv->ieee->abg_true) {
2493		tx_power.ieee_mode = IPW_A_MODE;
2494		tx_power.num_channels = geo->a_channels;
2495		for (i = 0; i < tx_power.num_channels; i++) {
2496			max_power = geo->a[i].max_power;
2497			tx_power.channels_tx_power[i].channel_number =
2498			    geo->a[i].channel;
2499			tx_power.channels_tx_power[i].tx_power = max_power ?
2500			    min(max_power, priv->tx_power) : priv->tx_power;
2501		}
2502		if (ipw_send_tx_power(priv, &tx_power))
2503			return -EIO;
2504	}
2505	return 0;
2506}
2507
2508static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2509{
2510	struct ipw_rts_threshold rts_threshold = {
2511		.rts_threshold = cpu_to_le16(rts),
2512	};
2513
2514	if (!priv) {
2515		IPW_ERROR("Invalid args\n");
2516		return -1;
2517	}
2518
2519	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2520				sizeof(rts_threshold), &rts_threshold);
2521}
2522
2523static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2524{
2525	struct ipw_frag_threshold frag_threshold = {
2526		.frag_threshold = cpu_to_le16(frag),
2527	};
2528
2529	if (!priv) {
2530		IPW_ERROR("Invalid args\n");
2531		return -1;
2532	}
2533
2534	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2535				sizeof(frag_threshold), &frag_threshold);
2536}
2537
2538static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2539{
2540	__le32 param;
2541
2542	if (!priv) {
2543		IPW_ERROR("Invalid args\n");
2544		return -1;
2545	}
2546
2547	/* If on battery, set to 3, if AC set to CAM, else user
2548	 * level */
2549	switch (mode) {
2550	case IPW_POWER_BATTERY:
2551		param = cpu_to_le32(IPW_POWER_INDEX_3);
2552		break;
2553	case IPW_POWER_AC:
2554		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2555		break;
2556	default:
2557		param = cpu_to_le32(mode);
2558		break;
2559	}
2560
2561	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2562				&param);
2563}
2564
2565static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2566{
2567	struct ipw_retry_limit retry_limit = {
2568		.short_retry_limit = slimit,
2569		.long_retry_limit = llimit
2570	};
2571
2572	if (!priv) {
2573		IPW_ERROR("Invalid args\n");
2574		return -1;
2575	}
2576
2577	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2578				&retry_limit);
2579}
2580
2581/*
2582 * The IPW device contains a Microwire compatible EEPROM that stores
2583 * various data like the MAC address.  Usually the firmware has exclusive
2584 * access to the eeprom, but during device initialization (before the
2585 * device driver has sent the HostComplete command to the firmware) the
2586 * device driver has read access to the EEPROM by way of indirect addressing
2587 * through a couple of memory mapped registers.
2588 *
2589 * The following is a simplified implementation for pulling data out of the
2590 * the eeprom, along with some helper functions to find information in
2591 * the per device private data's copy of the eeprom.
2592 *
2593 * NOTE: To better understand how these functions work (i.e what is a chip
2594 *       select and why do have to keep driving the eeprom clock?), read
2595 *       just about any data sheet for a Microwire compatible EEPROM.
2596 */
2597
2598/* write a 32 bit value into the indirect accessor register */
2599static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2600{
2601	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2602
2603	/* the eeprom requires some time to complete the operation */
2604	udelay(p->eeprom_delay);
2605}
2606
2607/* perform a chip select operation */
2608static void eeprom_cs(struct ipw_priv *priv)
2609{
2610	eeprom_write_reg(priv, 0);
2611	eeprom_write_reg(priv, EEPROM_BIT_CS);
2612	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613	eeprom_write_reg(priv, EEPROM_BIT_CS);
2614}
2615
2616/* perform a chip select operation */
2617static void eeprom_disable_cs(struct ipw_priv *priv)
2618{
2619	eeprom_write_reg(priv, EEPROM_BIT_CS);
2620	eeprom_write_reg(priv, 0);
2621	eeprom_write_reg(priv, EEPROM_BIT_SK);
2622}
2623
2624/* push a single bit down to the eeprom */
2625static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2626{
2627	int d = (bit ? EEPROM_BIT_DI : 0);
2628	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2629	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2630}
2631
2632/* push an opcode followed by an address down to the eeprom */
2633static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2634{
2635	int i;
2636
2637	eeprom_cs(priv);
2638	eeprom_write_bit(priv, 1);
2639	eeprom_write_bit(priv, op & 2);
2640	eeprom_write_bit(priv, op & 1);
2641	for (i = 7; i >= 0; i--) {
2642		eeprom_write_bit(priv, addr & (1 << i));
2643	}
2644}
2645
2646/* pull 16 bits off the eeprom, one bit at a time */
2647static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2648{
2649	int i;
2650	u16 r = 0;
2651
2652	/* Send READ Opcode */
2653	eeprom_op(priv, EEPROM_CMD_READ, addr);
2654
2655	/* Send dummy bit */
2656	eeprom_write_reg(priv, EEPROM_BIT_CS);
2657
2658	/* Read the byte off the eeprom one bit at a time */
2659	for (i = 0; i < 16; i++) {
2660		u32 data = 0;
2661		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2662		eeprom_write_reg(priv, EEPROM_BIT_CS);
2663		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2664		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2665	}
2666
2667	/* Send another dummy bit */
2668	eeprom_write_reg(priv, 0);
2669	eeprom_disable_cs(priv);
2670
2671	return r;
2672}
2673
2674/* helper function for pulling the mac address out of the private */
2675/* data's copy of the eeprom data                                 */
2676static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2677{
2678	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2679}
2680
2681static void ipw_read_eeprom(struct ipw_priv *priv)
2682{
2683	int i;
2684	__le16 *eeprom = (__le16 *) priv->eeprom;
2685
2686	IPW_DEBUG_TRACE(">>\n");
2687
2688	/* read entire contents of eeprom into private buffer */
2689	for (i = 0; i < 128; i++)
2690		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2691
2692	IPW_DEBUG_TRACE("<<\n");
2693}
2694
2695/*
2696 * Either the device driver (i.e. the host) or the firmware can
2697 * load eeprom data into the designated region in SRAM.  If neither
2698 * happens then the FW will shutdown with a fatal error.
2699 *
2700 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2701 * bit needs region of shared SRAM needs to be non-zero.
2702 */
2703static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2704{
2705	int i;
2706
2707	IPW_DEBUG_TRACE(">>\n");
2708
2709	/*
2710	   If the data looks correct, then copy it to our private
2711	   copy.  Otherwise let the firmware know to perform the operation
2712	   on its own.
2713	 */
2714	if (priv->eeprom[EEPROM_VERSION] != 0) {
2715		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2716
2717		/* write the eeprom data to sram */
2718		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2719			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2720
2721		/* Do not load eeprom data on fatal error or suspend */
2722		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2723	} else {
2724		IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2725
2726		/* Load eeprom data on fatal error or suspend */
2727		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2728	}
2729
2730	IPW_DEBUG_TRACE("<<\n");
2731}
2732
2733static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2734{
2735	count >>= 2;
2736	if (!count)
2737		return;
2738	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2739	while (count--)
2740		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2741}
2742
2743static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2744{
2745	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2746			CB_NUMBER_OF_ELEMENTS_SMALL *
2747			sizeof(struct command_block));
2748}
2749
2750static int ipw_fw_dma_enable(struct ipw_priv *priv)
2751{				/* start dma engine but no transfers yet */
2752
2753	IPW_DEBUG_FW(">> :\n");
2754
2755	/* Start the dma */
2756	ipw_fw_dma_reset_command_blocks(priv);
2757
2758	/* Write CB base address */
2759	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2760
2761	IPW_DEBUG_FW("<< :\n");
2762	return 0;
2763}
2764
2765static void ipw_fw_dma_abort(struct ipw_priv *priv)
2766{
2767	u32 control = 0;
2768
2769	IPW_DEBUG_FW(">> :\n");
2770
2771	/* set the Stop and Abort bit */
2772	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2773	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2774	priv->sram_desc.last_cb_index = 0;
2775
2776	IPW_DEBUG_FW("<<\n");
2777}
2778
2779static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2780					  struct command_block *cb)
2781{
2782	u32 address =
2783	    IPW_SHARED_SRAM_DMA_CONTROL +
2784	    (sizeof(struct command_block) * index);
2785	IPW_DEBUG_FW(">> :\n");
2786
2787	ipw_write_indirect(priv, address, (u8 *) cb,
2788			   (int)sizeof(struct command_block));
2789
2790	IPW_DEBUG_FW("<< :\n");
2791	return 0;
2792
2793}
2794
2795static int ipw_fw_dma_kick(struct ipw_priv *priv)
2796{
2797	u32 control = 0;
2798	u32 index = 0;
2799
2800	IPW_DEBUG_FW(">> :\n");
2801
2802	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2803		ipw_fw_dma_write_command_block(priv, index,
2804					       &priv->sram_desc.cb_list[index]);
2805
2806	/* Enable the DMA in the CSR register */
2807	ipw_clear_bit(priv, IPW_RESET_REG,
2808		      IPW_RESET_REG_MASTER_DISABLED |
2809		      IPW_RESET_REG_STOP_MASTER);
2810
2811	/* Set the Start bit. */
2812	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2813	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2814
2815	IPW_DEBUG_FW("<< :\n");
2816	return 0;
2817}
2818
2819static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2820{
2821	u32 address;
2822	u32 register_value = 0;
2823	u32 cb_fields_address = 0;
2824
2825	IPW_DEBUG_FW(">> :\n");
2826	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2827	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2828
2829	/* Read the DMA Controlor register */
2830	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2831	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2832
2833	/* Print the CB values */
2834	cb_fields_address = address;
2835	register_value = ipw_read_reg32(priv, cb_fields_address);
2836	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2837
2838	cb_fields_address += sizeof(u32);
2839	register_value = ipw_read_reg32(priv, cb_fields_address);
2840	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2841
2842	cb_fields_address += sizeof(u32);
2843	register_value = ipw_read_reg32(priv, cb_fields_address);
2844	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2845			  register_value);
2846
2847	cb_fields_address += sizeof(u32);
2848	register_value = ipw_read_reg32(priv, cb_fields_address);
2849	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2850
2851	IPW_DEBUG_FW(">> :\n");
2852}
2853
2854static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2855{
2856	u32 current_cb_address = 0;
2857	u32 current_cb_index = 0;
2858
2859	IPW_DEBUG_FW("<< :\n");
2860	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2861
2862	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2863	    sizeof(struct command_block);
2864
2865	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2866			  current_cb_index, current_cb_address);
2867
2868	IPW_DEBUG_FW(">> :\n");
2869	return current_cb_index;
2870
2871}
2872
2873static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2874					u32 src_address,
2875					u32 dest_address,
2876					u32 length,
2877					int interrupt_enabled, int is_last)
2878{
2879
2880	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2881	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2882	    CB_DEST_SIZE_LONG;
2883	struct command_block *cb;
2884	u32 last_cb_element = 0;
2885
2886	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2887			  src_address, dest_address, length);
2888
2889	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2890		return -1;
2891
2892	last_cb_element = priv->sram_desc.last_cb_index;
2893	cb = &priv->sram_desc.cb_list[last_cb_element];
2894	priv->sram_desc.last_cb_index++;
2895
2896	/* Calculate the new CB control word */
2897	if (interrupt_enabled)
2898		control |= CB_INT_ENABLED;
2899
2900	if (is_last)
2901		control |= CB_LAST_VALID;
2902
2903	control |= length;
2904
2905	/* Calculate the CB Element's checksum value */
2906	cb->status = control ^ src_address ^ dest_address;
2907
2908	/* Copy the Source and Destination addresses */
2909	cb->dest_addr = dest_address;
2910	cb->source_addr = src_address;
2911
2912	/* Copy the Control Word last */
2913	cb->control = control;
2914
2915	return 0;
2916}
2917
2918static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2919				 int nr, u32 dest_address, u32 len)
2920{
2921	int ret, i;
2922	u32 size;
2923
2924	IPW_DEBUG_FW(">>\n");
2925	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2926			  nr, dest_address, len);
2927
2928	for (i = 0; i < nr; i++) {
2929		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2930		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2931						   dest_address +
2932						   i * CB_MAX_LENGTH, size,
2933						   0, 0);
2934		if (ret) {
2935			IPW_DEBUG_FW_INFO(": Failed\n");
2936			return -1;
2937		} else
2938			IPW_DEBUG_FW_INFO(": Added new cb\n");
2939	}
2940
2941	IPW_DEBUG_FW("<<\n");
2942	return 0;
2943}
2944
2945static int ipw_fw_dma_wait(struct ipw_priv *priv)
2946{
2947	u32 current_index = 0, previous_index;
2948	u32 watchdog = 0;
2949
2950	IPW_DEBUG_FW(">> :\n");
2951
2952	current_index = ipw_fw_dma_command_block_index(priv);
2953	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2954			  (int)priv->sram_desc.last_cb_index);
2955
2956	while (current_index < priv->sram_desc.last_cb_index) {
2957		udelay(50);
2958		previous_index = current_index;
2959		current_index = ipw_fw_dma_command_block_index(priv);
2960
2961		if (previous_index < current_index) {
2962			watchdog = 0;
2963			continue;
2964		}
2965		if (++watchdog > 400) {
2966			IPW_DEBUG_FW_INFO("Timeout\n");
2967			ipw_fw_dma_dump_command_block(priv);
2968			ipw_fw_dma_abort(priv);
2969			return -1;
2970		}
2971	}
2972
2973	ipw_fw_dma_abort(priv);
2974
2975	/*Disable the DMA in the CSR register */
2976	ipw_set_bit(priv, IPW_RESET_REG,
2977		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2978
2979	IPW_DEBUG_FW("<< dmaWaitSync\n");
2980	return 0;
2981}
2982
2983static void ipw_remove_current_network(struct ipw_priv *priv)
2984{
2985	struct list_head *element, *safe;
2986	struct libipw_network *network = NULL;
2987	unsigned long flags;
2988
2989	spin_lock_irqsave(&priv->ieee->lock, flags);
2990	list_for_each_safe(element, safe, &priv->ieee->network_list) {
2991		network = list_entry(element, struct libipw_network, list);
2992		if (ether_addr_equal(network->bssid, priv->bssid)) {
2993			list_del(element);
2994			list_add_tail(&network->list,
2995				      &priv->ieee->network_free_list);
2996		}
2997	}
2998	spin_unlock_irqrestore(&priv->ieee->lock, flags);
2999}
3000
3001/*
3002 * Check that card is still alive.
3003 * Reads debug register from domain0.
3004 * If card is present, pre-defined value should
3005 * be found there.
3006 *
3007 * @param priv
3008 * @return 1 if card is present, 0 otherwise
3009 */
3010static inline int ipw_alive(struct ipw_priv *priv)
3011{
3012	return ipw_read32(priv, 0x90) == 0xd55555d5;
3013}
3014
3015/* timeout in msec, attempted in 10-msec quanta */
3016static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3017			       int timeout)
3018{
3019	int i = 0;
3020
3021	do {
3022		if ((ipw_read32(priv, addr) & mask) == mask)
3023			return i;
3024		mdelay(10);
3025		i += 10;
3026	} while (i < timeout);
3027
3028	return -ETIME;
3029}
3030
3031/* These functions load the firmware and micro code for the operation of
3032 * the ipw hardware.  It assumes the buffer has all the bits for the
3033 * image and the caller is handling the memory allocation and clean up.
3034 */
3035
3036static int ipw_stop_master(struct ipw_priv *priv)
3037{
3038	int rc;
3039
3040	IPW_DEBUG_TRACE(">>\n");
3041	/* stop master. typical delay - 0 */
3042	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3043
3044	/* timeout is in msec, polled in 10-msec quanta */
3045	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3046			  IPW_RESET_REG_MASTER_DISABLED, 100);
3047	if (rc < 0) {
3048		IPW_ERROR("wait for stop master failed after 100ms\n");
3049		return -1;
3050	}
3051
3052	IPW_DEBUG_INFO("stop master %dms\n", rc);
3053
3054	return rc;
3055}
3056
3057static void ipw_arc_release(struct ipw_priv *priv)
3058{
3059	IPW_DEBUG_TRACE(">>\n");
3060	mdelay(5);
3061
3062	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3063
3064	/* no one knows timing, for safety add some delay */
3065	mdelay(5);
3066}
3067
3068struct fw_chunk {
3069	__le32 address;
3070	__le32 length;
3071};
3072
3073static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3074{
3075	int rc = 0, i, addr;
3076	u8 cr = 0;
3077	__le16 *image;
3078
3079	image = (__le16 *) data;
3080
3081	IPW_DEBUG_TRACE(">>\n");
3082
3083	rc = ipw_stop_master(priv);
3084
3085	if (rc < 0)
3086		return rc;
3087
3088	for (addr = IPW_SHARED_LOWER_BOUND;
3089	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3090		ipw_write32(priv, addr, 0);
3091	}
3092
3093	/* no ucode (yet) */
3094	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3095	/* destroy DMA queues */
3096	/* reset sequence */
3097
3098	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3099	ipw_arc_release(priv);
3100	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3101	mdelay(1);
3102
3103	/* reset PHY */
3104	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3105	mdelay(1);
3106
3107	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3108	mdelay(1);
3109
3110	/* enable ucode store */
3111	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3112	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3113	mdelay(1);
3114
3115	/* write ucode */
3116	/*
3117	 * @bug
3118	 * Do NOT set indirect address register once and then
3119	 * store data to indirect data register in the loop.
3120	 * It seems very reasonable, but in this case DINO do not
3121	 * accept ucode. It is essential to set address each time.
3122	 */
3123	/* load new ipw uCode */
3124	for (i = 0; i < len / 2; i++)
3125		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3126				le16_to_cpu(image[i]));
3127
3128	/* enable DINO */
3129	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3130	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3131
3132	/* this is where the igx / win driver deveates from the VAP driver. */
3133
3134	/* wait for alive response */
3135	for (i = 0; i < 100; i++) {
3136		/* poll for incoming data */
3137		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3138		if (cr & DINO_RXFIFO_DATA)
3139			break;
3140		mdelay(1);
3141	}
3142
3143	if (cr & DINO_RXFIFO_DATA) {
3144		/* alive_command_responce size is NOT multiple of 4 */
3145		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3146
3147		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3148			response_buffer[i] =
3149			    cpu_to_le32(ipw_read_reg32(priv,
3150						       IPW_BASEBAND_RX_FIFO_READ));
3151		memcpy(&priv->dino_alive, response_buffer,
3152		       sizeof(priv->dino_alive));
3153		if (priv->dino_alive.alive_command == 1
3154		    && priv->dino_alive.ucode_valid == 1) {
3155			rc = 0;
3156			IPW_DEBUG_INFO
3157			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3158			     "of %02d/%02d/%02d %02d:%02d\n",
3159			     priv->dino_alive.software_revision,
3160			     priv->dino_alive.software_revision,
3161			     priv->dino_alive.device_identifier,
3162			     priv->dino_alive.device_identifier,
3163			     priv->dino_alive.time_stamp[0],
3164			     priv->dino_alive.time_stamp[1],
3165			     priv->dino_alive.time_stamp[2],
3166			     priv->dino_alive.time_stamp[3],
3167			     priv->dino_alive.time_stamp[4]);
3168		} else {
3169			IPW_DEBUG_INFO("Microcode is not alive\n");
3170			rc = -EINVAL;
3171		}
3172	} else {
3173		IPW_DEBUG_INFO("No alive response from DINO\n");
3174		rc = -ETIME;
3175	}
3176
3177	/* disable DINO, otherwise for some reason
3178	   firmware have problem getting alive resp. */
3179	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3180
3181	return rc;
3182}
3183
3184static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3185{
3186	int ret = -1;
3187	int offset = 0;
3188	struct fw_chunk *chunk;
3189	int total_nr = 0;
3190	int i;
3191	struct dma_pool *pool;
3192	void **virts;
3193	dma_addr_t *phys;
3194
3195	IPW_DEBUG_TRACE("<< :\n");
3196
3197	virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3198			      GFP_KERNEL);
3199	if (!virts)
3200		return -ENOMEM;
3201
3202	phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3203			     GFP_KERNEL);
3204	if (!phys) {
3205		kfree(virts);
3206		return -ENOMEM;
3207	}
3208	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3209			       0);
3210	if (!pool) {
3211		IPW_ERROR("dma_pool_create failed\n");
3212		kfree(phys);
3213		kfree(virts);
3214		return -ENOMEM;
3215	}
3216
3217	/* Start the Dma */
3218	ret = ipw_fw_dma_enable(priv);
3219
3220	/* the DMA is already ready this would be a bug. */
3221	BUG_ON(priv->sram_desc.last_cb_index > 0);
3222
3223	do {
3224		u32 chunk_len;
3225		u8 *start;
3226		int size;
3227		int nr = 0;
3228
3229		chunk = (struct fw_chunk *)(data + offset);
3230		offset += sizeof(struct fw_chunk);
3231		chunk_len = le32_to_cpu(chunk->length);
3232		start = data + offset;
3233
3234		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3235		for (i = 0; i < nr; i++) {
3236			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3237							 &phys[total_nr]);
3238			if (!virts[total_nr]) {
3239				ret = -ENOMEM;
3240				goto out;
3241			}
3242			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3243				     CB_MAX_LENGTH);
3244			memcpy(virts[total_nr], start, size);
3245			start += size;
3246			total_nr++;
3247			/* We don't support fw chunk larger than 64*8K */
3248			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3249		}
3250
3251		/* build DMA packet and queue up for sending */
3252		/* dma to chunk->address, the chunk->length bytes from data +
3253		 * offeset*/
3254		/* Dma loading */
3255		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3256					    nr, le32_to_cpu(chunk->address),
3257					    chunk_len);
3258		if (ret) {
3259			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3260			goto out;
3261		}
3262
3263		offset += chunk_len;
3264	} while (offset < len);
3265
3266	/* Run the DMA and wait for the answer */
3267	ret = ipw_fw_dma_kick(priv);
3268	if (ret) {
3269		IPW_ERROR("dmaKick Failed\n");
3270		goto out;
3271	}
3272
3273	ret = ipw_fw_dma_wait(priv);
3274	if (ret) {
3275		IPW_ERROR("dmaWaitSync Failed\n");
3276		goto out;
3277	}
3278 out:
3279	for (i = 0; i < total_nr; i++)
3280		dma_pool_free(pool, virts[i], phys[i]);
3281
3282	dma_pool_destroy(pool);
3283	kfree(phys);
3284	kfree(virts);
3285
3286	return ret;
3287}
3288
3289/* stop nic */
3290static int ipw_stop_nic(struct ipw_priv *priv)
3291{
3292	int rc = 0;
3293
3294	/* stop */
3295	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3296
3297	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3298			  IPW_RESET_REG_MASTER_DISABLED, 500);
3299	if (rc < 0) {
3300		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3301		return rc;
3302	}
3303
3304	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3305
3306	return rc;
3307}
3308
3309static void ipw_start_nic(struct ipw_priv *priv)
3310{
3311	IPW_DEBUG_TRACE(">>\n");
3312
3313	/* prvHwStartNic  release ARC */
3314	ipw_clear_bit(priv, IPW_RESET_REG,
3315		      IPW_RESET_REG_MASTER_DISABLED |
3316		      IPW_RESET_REG_STOP_MASTER |
3317		      CBD_RESET_REG_PRINCETON_RESET);
3318
3319	/* enable power management */
3320	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3321		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3322
3323	IPW_DEBUG_TRACE("<<\n");
3324}
3325
3326static int ipw_init_nic(struct ipw_priv *priv)
3327{
3328	int rc;
3329
3330	IPW_DEBUG_TRACE(">>\n");
3331	/* reset */
3332	/*prvHwInitNic */
3333	/* set "initialization complete" bit to move adapter to D0 state */
3334	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3335
3336	/* low-level PLL activation */
3337	ipw_write32(priv, IPW_READ_INT_REGISTER,
3338		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3339
3340	/* wait for clock stabilization */
3341	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3342			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3343	if (rc < 0)
3344		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3345
3346	/* assert SW reset */
3347	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3348
3349	udelay(10);
3350
3351	/* set "initialization complete" bit to move adapter to D0 state */
3352	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3353
3354	IPW_DEBUG_TRACE(">>\n");
3355	return 0;
3356}
3357
3358/* Call this function from process context, it will sleep in request_firmware.
3359 * Probe is an ok place to call this from.
3360 */
3361static int ipw_reset_nic(struct ipw_priv *priv)
3362{
3363	int rc = 0;
3364	unsigned long flags;
3365
3366	IPW_DEBUG_TRACE(">>\n");
3367
3368	rc = ipw_init_nic(priv);
3369
3370	spin_lock_irqsave(&priv->lock, flags);
3371	/* Clear the 'host command active' bit... */
3372	priv->status &= ~STATUS_HCMD_ACTIVE;
3373	wake_up_interruptible(&priv->wait_command_queue);
3374	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3375	wake_up_interruptible(&priv->wait_state);
3376	spin_unlock_irqrestore(&priv->lock, flags);
3377
3378	IPW_DEBUG_TRACE("<<\n");
3379	return rc;
3380}
3381
3382
3383struct ipw_fw {
3384	__le32 ver;
3385	__le32 boot_size;
3386	__le32 ucode_size;
3387	__le32 fw_size;
3388	u8 data[];
3389};
3390
3391static int ipw_get_fw(struct ipw_priv *priv,
3392		      const struct firmware **raw, const char *name)
3393{
3394	struct ipw_fw *fw;
3395	int rc;
3396
3397	/* ask firmware_class module to get the boot firmware off disk */
3398	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3399	if (rc < 0) {
3400		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3401		return rc;
3402	}
3403
3404	if ((*raw)->size < sizeof(*fw)) {
3405		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3406		return -EINVAL;
3407	}
3408
3409	fw = (void *)(*raw)->data;
3410
3411	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3412	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3413		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3414			  name, (*raw)->size);
3415		return -EINVAL;
3416	}
3417
3418	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3419		       name,
3420		       le32_to_cpu(fw->ver) >> 16,
3421		       le32_to_cpu(fw->ver) & 0xff,
3422		       (*raw)->size - sizeof(*fw));
3423	return 0;
3424}
3425
3426#define IPW_RX_BUF_SIZE (3000)
3427
3428static void ipw_rx_queue_reset(struct ipw_priv *priv,
3429				      struct ipw_rx_queue *rxq)
3430{
3431	unsigned long flags;
3432	int i;
3433
3434	spin_lock_irqsave(&rxq->lock, flags);
3435
3436	INIT_LIST_HEAD(&rxq->rx_free);
3437	INIT_LIST_HEAD(&rxq->rx_used);
3438
3439	/* Fill the rx_used queue with _all_ of the Rx buffers */
3440	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3441		/* In the reset function, these buffers may have been allocated
3442		 * to an SKB, so we need to unmap and free potential storage */
3443		if (rxq->pool[i].skb != NULL) {
3444			dma_unmap_single(&priv->pci_dev->dev,
3445					 rxq->pool[i].dma_addr,
3446					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3447			dev_kfree_skb_irq(rxq->pool[i].skb);
3448			rxq->pool[i].skb = NULL;
3449		}
3450		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3451	}
3452
3453	/* Set us so that we have processed and used all buffers, but have
3454	 * not restocked the Rx queue with fresh buffers */
3455	rxq->read = rxq->write = 0;
3456	rxq->free_count = 0;
3457	spin_unlock_irqrestore(&rxq->lock, flags);
3458}
3459
3460#ifdef CONFIG_PM
3461static int fw_loaded = 0;
3462static const struct firmware *raw = NULL;
3463
3464static void free_firmware(void)
3465{
3466	if (fw_loaded) {
3467		release_firmware(raw);
3468		raw = NULL;
3469		fw_loaded = 0;
3470	}
3471}
3472#else
3473#define free_firmware() do {} while (0)
3474#endif
3475
3476static int ipw_load(struct ipw_priv *priv)
3477{
3478#ifndef CONFIG_PM
3479	const struct firmware *raw = NULL;
3480#endif
3481	struct ipw_fw *fw;
3482	u8 *boot_img, *ucode_img, *fw_img;
3483	u8 *name = NULL;
3484	int rc = 0, retries = 3;
3485
3486	switch (priv->ieee->iw_mode) {
3487	case IW_MODE_ADHOC:
3488		name = "ipw2200-ibss.fw";
3489		break;
3490#ifdef CONFIG_IPW2200_MONITOR
3491	case IW_MODE_MONITOR:
3492		name = "ipw2200-sniffer.fw";
3493		break;
3494#endif
3495	case IW_MODE_INFRA:
3496		name = "ipw2200-bss.fw";
3497		break;
3498	}
3499
3500	if (!name) {
3501		rc = -EINVAL;
3502		goto error;
3503	}
3504
3505#ifdef CONFIG_PM
3506	if (!fw_loaded) {
3507#endif
3508		rc = ipw_get_fw(priv, &raw, name);
3509		if (rc < 0)
3510			goto error;
3511#ifdef CONFIG_PM
3512	}
3513#endif
3514
3515	fw = (void *)raw->data;
3516	boot_img = &fw->data[0];
3517	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3518	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3519			   le32_to_cpu(fw->ucode_size)];
3520
3521	if (!priv->rxq)
3522		priv->rxq = ipw_rx_queue_alloc(priv);
3523	else
3524		ipw_rx_queue_reset(priv, priv->rxq);
3525	if (!priv->rxq) {
3526		IPW_ERROR("Unable to initialize Rx queue\n");
3527		rc = -ENOMEM;
3528		goto error;
3529	}
3530
3531      retry:
3532	/* Ensure interrupts are disabled */
3533	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534	priv->status &= ~STATUS_INT_ENABLED;
3535
3536	/* ack pending interrupts */
3537	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3538
3539	ipw_stop_nic(priv);
3540
3541	rc = ipw_reset_nic(priv);
3542	if (rc < 0) {
3543		IPW_ERROR("Unable to reset NIC\n");
3544		goto error;
3545	}
3546
3547	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3548			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3549
3550	/* DMA the initial boot firmware into the device */
3551	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3552	if (rc < 0) {
3553		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3554		goto error;
3555	}
3556
3557	/* kick start the device */
3558	ipw_start_nic(priv);
3559
3560	/* wait for the device to finish its initial startup sequence */
3561	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3562			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3563	if (rc < 0) {
3564		IPW_ERROR("device failed to boot initial fw image\n");
3565		goto error;
3566	}
3567	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3568
3569	/* ack fw init done interrupt */
3570	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3571
3572	/* DMA the ucode into the device */
3573	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3574	if (rc < 0) {
3575		IPW_ERROR("Unable to load ucode: %d\n", rc);
3576		goto error;
3577	}
3578
3579	/* stop nic */
3580	ipw_stop_nic(priv);
3581
3582	/* DMA bss firmware into the device */
3583	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3584	if (rc < 0) {
3585		IPW_ERROR("Unable to load firmware: %d\n", rc);
3586		goto error;
3587	}
3588#ifdef CONFIG_PM
3589	fw_loaded = 1;
3590#endif
3591
3592	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3593
3594	rc = ipw_queue_reset(priv);
3595	if (rc < 0) {
3596		IPW_ERROR("Unable to initialize queues\n");
3597		goto error;
3598	}
3599
3600	/* Ensure interrupts are disabled */
3601	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3602	/* ack pending interrupts */
3603	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3604
3605	/* kick start the device */
3606	ipw_start_nic(priv);
3607
3608	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3609		if (retries > 0) {
3610			IPW_WARNING("Parity error.  Retrying init.\n");
3611			retries--;
3612			goto retry;
3613		}
3614
3615		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616		rc = -EIO;
3617		goto error;
3618	}
3619
3620	/* wait for the device */
3621	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3622			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3623	if (rc < 0) {
3624		IPW_ERROR("device failed to start within 500ms\n");
3625		goto error;
3626	}
3627	IPW_DEBUG_INFO("device response after %dms\n", rc);
3628
3629	/* ack fw init done interrupt */
3630	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3631
3632	/* read eeprom data */
3633	priv->eeprom_delay = 1;
3634	ipw_read_eeprom(priv);
3635	/* initialize the eeprom region of sram */
3636	ipw_eeprom_init_sram(priv);
3637
3638	/* enable interrupts */
3639	ipw_enable_interrupts(priv);
3640
3641	/* Ensure our queue has valid packets */
3642	ipw_rx_queue_replenish(priv);
3643
3644	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3645
3646	/* ack pending interrupts */
3647	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3648
3649#ifndef CONFIG_PM
3650	release_firmware(raw);
3651#endif
3652	return 0;
3653
3654      error:
3655	if (priv->rxq) {
3656		ipw_rx_queue_free(priv, priv->rxq);
3657		priv->rxq = NULL;
3658	}
3659	ipw_tx_queue_free(priv);
3660	release_firmware(raw);
3661#ifdef CONFIG_PM
3662	fw_loaded = 0;
3663	raw = NULL;
3664#endif
3665
3666	return rc;
3667}
3668
3669/*
3670 * DMA services
3671 *
3672 * Theory of operation
3673 *
3674 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3675 * 2 empty entries always kept in the buffer to protect from overflow.
3676 *
3677 * For Tx queue, there are low mark and high mark limits. If, after queuing
3678 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3679 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3680 * Tx queue resumed.
3681 *
3682 * The IPW operates with six queues, one receive queue in the device's
3683 * sram, one transmit queue for sending commands to the device firmware,
3684 * and four transmit queues for data.
3685 *
3686 * The four transmit queues allow for performing quality of service (qos)
3687 * transmissions as per the 802.11 protocol.  Currently Linux does not
3688 * provide a mechanism to the user for utilizing prioritized queues, so
3689 * we only utilize the first data transmit queue (queue1).
3690 */
3691
3692/*
3693 * Driver allocates buffers of this size for Rx
3694 */
3695
3696/*
3697 * ipw_rx_queue_space - Return number of free slots available in queue.
3698 */
3699static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3700{
3701	int s = q->read - q->write;
3702	if (s <= 0)
3703		s += RX_QUEUE_SIZE;
3704	/* keep some buffer to not confuse full and empty queue */
3705	s -= 2;
3706	if (s < 0)
3707		s = 0;
3708	return s;
3709}
3710
3711static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3712{
3713	int s = q->last_used - q->first_empty;
3714	if (s <= 0)
3715		s += q->n_bd;
3716	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3717	if (s < 0)
3718		s = 0;
3719	return s;
3720}
3721
3722static inline int ipw_queue_inc_wrap(int index, int n_bd)
3723{
3724	return (++index == n_bd) ? 0 : index;
3725}
3726
3727/*
3728 * Initialize common DMA queue structure
3729 *
3730 * @param q                queue to init
3731 * @param count            Number of BD's to allocate. Should be power of 2
3732 * @param read_register    Address for 'read' register
3733 *                         (not offset within BAR, full address)
3734 * @param write_register   Address for 'write' register
3735 *                         (not offset within BAR, full address)
3736 * @param base_register    Address for 'base' register
3737 *                         (not offset within BAR, full address)
3738 * @param size             Address for 'size' register
3739 *                         (not offset within BAR, full address)
3740 */
3741static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3742			   int count, u32 read, u32 write, u32 base, u32 size)
3743{
3744	q->n_bd = count;
3745
3746	q->low_mark = q->n_bd / 4;
3747	if (q->low_mark < 4)
3748		q->low_mark = 4;
3749
3750	q->high_mark = q->n_bd / 8;
3751	if (q->high_mark < 2)
3752		q->high_mark = 2;
3753
3754	q->first_empty = q->last_used = 0;
3755	q->reg_r = read;
3756	q->reg_w = write;
3757
3758	ipw_write32(priv, base, q->dma_addr);
3759	ipw_write32(priv, size, count);
3760	ipw_write32(priv, read, 0);
3761	ipw_write32(priv, write, 0);
3762
3763	_ipw_read32(priv, 0x90);
3764}
3765
3766static int ipw_queue_tx_init(struct ipw_priv *priv,
3767			     struct clx2_tx_queue *q,
3768			     int count, u32 read, u32 write, u32 base, u32 size)
3769{
3770	struct pci_dev *dev = priv->pci_dev;
3771
3772	q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3773	if (!q->txb)
3774		return -ENOMEM;
3775
3776	q->bd =
3777	    dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3778			       &q->q.dma_addr, GFP_KERNEL);
3779	if (!q->bd) {
3780		IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3781			  sizeof(q->bd[0]) * count);
3782		kfree(q->txb);
3783		q->txb = NULL;
3784		return -ENOMEM;
3785	}
3786
3787	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3788	return 0;
3789}
3790
3791/*
3792 * Free one TFD, those at index [txq->q.last_used].
3793 * Do NOT advance any indexes
3794 *
3795 * @param dev
3796 * @param txq
3797 */
3798static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3799				  struct clx2_tx_queue *txq)
3800{
3801	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3802	struct pci_dev *dev = priv->pci_dev;
3803	int i;
3804
3805	/* classify bd */
3806	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3807		/* nothing to cleanup after for host commands */
3808		return;
3809
3810	/* sanity check */
3811	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3812		IPW_ERROR("Too many chunks: %i\n",
3813			  le32_to_cpu(bd->u.data.num_chunks));
3814		/* @todo issue fatal error, it is quite serious situation */
3815		return;
3816	}
3817
3818	/* unmap chunks if any */
3819	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3820		dma_unmap_single(&dev->dev,
3821				 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3822				 le16_to_cpu(bd->u.data.chunk_len[i]),
3823				 DMA_TO_DEVICE);
3824		if (txq->txb[txq->q.last_used]) {
3825			libipw_txb_free(txq->txb[txq->q.last_used]);
3826			txq->txb[txq->q.last_used] = NULL;
3827		}
3828	}
3829}
3830
3831/*
3832 * Deallocate DMA queue.
3833 *
3834 * Empty queue by removing and destroying all BD's.
3835 * Free all buffers.
3836 *
3837 * @param dev
3838 * @param q
3839 */
3840static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3841{
3842	struct clx2_queue *q = &txq->q;
3843	struct pci_dev *dev = priv->pci_dev;
3844
3845	if (q->n_bd == 0)
3846		return;
3847
3848	/* first, empty all BD's */
3849	for (; q->first_empty != q->last_used;
3850	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3851		ipw_queue_tx_free_tfd(priv, txq);
3852	}
3853
3854	/* free buffers belonging to queue itself */
3855	dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3856			  q->dma_addr);
3857	kfree(txq->txb);
3858
3859	/* 0 fill whole structure */
3860	memset(txq, 0, sizeof(*txq));
3861}
3862
3863/*
3864 * Destroy all DMA queues and structures
3865 *
3866 * @param priv
3867 */
3868static void ipw_tx_queue_free(struct ipw_priv *priv)
3869{
3870	/* Tx CMD queue */
3871	ipw_queue_tx_free(priv, &priv->txq_cmd);
3872
3873	/* Tx queues */
3874	ipw_queue_tx_free(priv, &priv->txq[0]);
3875	ipw_queue_tx_free(priv, &priv->txq[1]);
3876	ipw_queue_tx_free(priv, &priv->txq[2]);
3877	ipw_queue_tx_free(priv, &priv->txq[3]);
3878}
3879
3880static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3881{
3882	/* First 3 bytes are manufacturer */
3883	bssid[0] = priv->mac_addr[0];
3884	bssid[1] = priv->mac_addr[1];
3885	bssid[2] = priv->mac_addr[2];
3886
3887	/* Last bytes are random */
3888	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3889
3890	bssid[0] &= 0xfe;	/* clear multicast bit */
3891	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3892}
3893
3894static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3895{
3896	struct ipw_station_entry entry;
3897	int i;
3898
3899	for (i = 0; i < priv->num_stations; i++) {
3900		if (ether_addr_equal(priv->stations[i], bssid)) {
3901			/* Another node is active in network */
3902			priv->missed_adhoc_beacons = 0;
3903			if (!(priv->config & CFG_STATIC_CHANNEL))
3904				/* when other nodes drop out, we drop out */
3905				priv->config &= ~CFG_ADHOC_PERSIST;
3906
3907			return i;
3908		}
3909	}
3910
3911	if (i == MAX_STATIONS)
3912		return IPW_INVALID_STATION;
3913
3914	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3915
3916	entry.reserved = 0;
3917	entry.support_mode = 0;
3918	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3919	memcpy(priv->stations[i], bssid, ETH_ALEN);
3920	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3921			 &entry, sizeof(entry));
3922	priv->num_stations++;
3923
3924	return i;
3925}
3926
3927static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3928{
3929	int i;
3930
3931	for (i = 0; i < priv->num_stations; i++)
3932		if (ether_addr_equal(priv->stations[i], bssid))
3933			return i;
3934
3935	return IPW_INVALID_STATION;
3936}
3937
3938static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3939{
3940	int err;
3941
3942	if (priv->status & STATUS_ASSOCIATING) {
3943		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3944		schedule_work(&priv->disassociate);
3945		return;
3946	}
3947
3948	if (!(priv->status & STATUS_ASSOCIATED)) {
3949		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3950		return;
3951	}
3952
3953	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3954			"on channel %d.\n",
3955			priv->assoc_request.bssid,
3956			priv->assoc_request.channel);
3957
3958	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3959	priv->status |= STATUS_DISASSOCIATING;
3960
3961	if (quiet)
3962		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3963	else
3964		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3965
3966	err = ipw_send_associate(priv, &priv->assoc_request);
3967	if (err) {
3968		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3969			     "failed.\n");
3970		return;
3971	}
3972
3973}
3974
3975static int ipw_disassociate(void *data)
3976{
3977	struct ipw_priv *priv = data;
3978	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3979		return 0;
3980	ipw_send_disassociate(data, 0);
3981	netif_carrier_off(priv->net_dev);
3982	return 1;
3983}
3984
3985static void ipw_bg_disassociate(struct work_struct *work)
3986{
3987	struct ipw_priv *priv =
3988		container_of(work, struct ipw_priv, disassociate);
3989	mutex_lock(&priv->mutex);
3990	ipw_disassociate(priv);
3991	mutex_unlock(&priv->mutex);
3992}
3993
3994static void ipw_system_config(struct work_struct *work)
3995{
3996	struct ipw_priv *priv =
3997		container_of(work, struct ipw_priv, system_config);
3998
3999#ifdef CONFIG_IPW2200_PROMISCUOUS
4000	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4001		priv->sys_config.accept_all_data_frames = 1;
4002		priv->sys_config.accept_non_directed_frames = 1;
4003		priv->sys_config.accept_all_mgmt_bcpr = 1;
4004		priv->sys_config.accept_all_mgmt_frames = 1;
4005	}
4006#endif
4007
4008	ipw_send_system_config(priv);
4009}
4010
4011struct ipw_status_code {
4012	u16 status;
4013	const char *reason;
4014};
4015
4016static const struct ipw_status_code ipw_status_codes[] = {
4017	{0x00, "Successful"},
4018	{0x01, "Unspecified failure"},
4019	{0x0A, "Cannot support all requested capabilities in the "
4020	 "Capability information field"},
4021	{0x0B, "Reassociation denied due to inability to confirm that "
4022	 "association exists"},
4023	{0x0C, "Association denied due to reason outside the scope of this "
4024	 "standard"},
4025	{0x0D,
4026	 "Responding station does not support the specified authentication "
4027	 "algorithm"},
4028	{0x0E,
4029	 "Received an Authentication frame with authentication sequence "
4030	 "transaction sequence number out of expected sequence"},
4031	{0x0F, "Authentication rejected because of challenge failure"},
4032	{0x10, "Authentication rejected due to timeout waiting for next "
4033	 "frame in sequence"},
4034	{0x11, "Association denied because AP is unable to handle additional "
4035	 "associated stations"},
4036	{0x12,
4037	 "Association denied due to requesting station not supporting all "
4038	 "of the datarates in the BSSBasicServiceSet Parameter"},
4039	{0x13,
4040	 "Association denied due to requesting station not supporting "
4041	 "short preamble operation"},
4042	{0x14,
4043	 "Association denied due to requesting station not supporting "
4044	 "PBCC encoding"},
4045	{0x15,
4046	 "Association denied due to requesting station not supporting "
4047	 "channel agility"},
4048	{0x19,
4049	 "Association denied due to requesting station not supporting "
4050	 "short slot operation"},
4051	{0x1A,
4052	 "Association denied due to requesting station not supporting "
4053	 "DSSS-OFDM operation"},
4054	{0x28, "Invalid Information Element"},
4055	{0x29, "Group Cipher is not valid"},
4056	{0x2A, "Pairwise Cipher is not valid"},
4057	{0x2B, "AKMP is not valid"},
4058	{0x2C, "Unsupported RSN IE version"},
4059	{0x2D, "Invalid RSN IE Capabilities"},
4060	{0x2E, "Cipher suite is rejected per security policy"},
4061};
4062
4063static const char *ipw_get_status_code(u16 status)
4064{
4065	int i;
4066	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4067		if (ipw_status_codes[i].status == (status & 0xff))
4068			return ipw_status_codes[i].reason;
4069	return "Unknown status value.";
4070}
4071
4072static inline void average_init(struct average *avg)
4073{
4074	memset(avg, 0, sizeof(*avg));
4075}
4076
4077#define DEPTH_RSSI 8
4078#define DEPTH_NOISE 16
4079static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4080{
4081	return ((depth-1)*prev_avg +  val)/depth;
4082}
4083
4084static void average_add(struct average *avg, s16 val)
4085{
4086	avg->sum -= avg->entries[avg->pos];
4087	avg->sum += val;
4088	avg->entries[avg->pos++] = val;
4089	if (unlikely(avg->pos == AVG_ENTRIES)) {
4090		avg->init = 1;
4091		avg->pos = 0;
4092	}
4093}
4094
4095static s16 average_value(struct average *avg)
4096{
4097	if (!unlikely(avg->init)) {
4098		if (avg->pos)
4099			return avg->sum / avg->pos;
4100		return 0;
4101	}
4102
4103	return avg->sum / AVG_ENTRIES;
4104}
4105
4106static void ipw_reset_stats(struct ipw_priv *priv)
4107{
4108	u32 len = sizeof(u32);
4109
4110	priv->quality = 0;
4111
4112	average_init(&priv->average_missed_beacons);
4113	priv->exp_avg_rssi = -60;
4114	priv->exp_avg_noise = -85 + 0x100;
4115
4116	priv->last_rate = 0;
4117	priv->last_missed_beacons = 0;
4118	priv->last_rx_packets = 0;
4119	priv->last_tx_packets = 0;
4120	priv->last_tx_failures = 0;
4121
4122	/* Firmware managed, reset only when NIC is restarted, so we have to
4123	 * normalize on the current value */
4124	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4125			&priv->last_rx_err, &len);
4126	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4127			&priv->last_tx_failures, &len);
4128
4129	/* Driver managed, reset with each association */
4130	priv->missed_adhoc_beacons = 0;
4131	priv->missed_beacons = 0;
4132	priv->tx_packets = 0;
4133	priv->rx_packets = 0;
4134
4135}
4136
4137static u32 ipw_get_max_rate(struct ipw_priv *priv)
4138{
4139	u32 i = 0x80000000;
4140	u32 mask = priv->rates_mask;
4141	/* If currently associated in B mode, restrict the maximum
4142	 * rate match to B rates */
4143	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4144		mask &= LIBIPW_CCK_RATES_MASK;
4145
4146	/* TODO: Verify that the rate is supported by the current rates
4147	 * list. */
4148
4149	while (i && !(mask & i))
4150		i >>= 1;
4151	switch (i) {
4152	case LIBIPW_CCK_RATE_1MB_MASK:
4153		return 1000000;
4154	case LIBIPW_CCK_RATE_2MB_MASK:
4155		return 2000000;
4156	case LIBIPW_CCK_RATE_5MB_MASK:
4157		return 5500000;
4158	case LIBIPW_OFDM_RATE_6MB_MASK:
4159		return 6000000;
4160	case LIBIPW_OFDM_RATE_9MB_MASK:
4161		return 9000000;
4162	case LIBIPW_CCK_RATE_11MB_MASK:
4163		return 11000000;
4164	case LIBIPW_OFDM_RATE_12MB_MASK:
4165		return 12000000;
4166	case LIBIPW_OFDM_RATE_18MB_MASK:
4167		return 18000000;
4168	case LIBIPW_OFDM_RATE_24MB_MASK:
4169		return 24000000;
4170	case LIBIPW_OFDM_RATE_36MB_MASK:
4171		return 36000000;
4172	case LIBIPW_OFDM_RATE_48MB_MASK:
4173		return 48000000;
4174	case LIBIPW_OFDM_RATE_54MB_MASK:
4175		return 54000000;
4176	}
4177
4178	if (priv->ieee->mode == IEEE_B)
4179		return 11000000;
4180	else
4181		return 54000000;
4182}
4183
4184static u32 ipw_get_current_rate(struct ipw_priv *priv)
4185{
4186	u32 rate, len = sizeof(rate);
4187	int err;
4188
4189	if (!(priv->status & STATUS_ASSOCIATED))
4190		return 0;
4191
4192	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4193		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4194				      &len);
4195		if (err) {
4196			IPW_DEBUG_INFO("failed querying ordinals.\n");
4197			return 0;
4198		}
4199	} else
4200		return ipw_get_max_rate(priv);
4201
4202	switch (rate) {
4203	case IPW_TX_RATE_1MB:
4204		return 1000000;
4205	case IPW_TX_RATE_2MB:
4206		return 2000000;
4207	case IPW_TX_RATE_5MB:
4208		return 5500000;
4209	case IPW_TX_RATE_6MB:
4210		return 6000000;
4211	case IPW_TX_RATE_9MB:
4212		return 9000000;
4213	case IPW_TX_RATE_11MB:
4214		return 11000000;
4215	case IPW_TX_RATE_12MB:
4216		return 12000000;
4217	case IPW_TX_RATE_18MB:
4218		return 18000000;
4219	case IPW_TX_RATE_24MB:
4220		return 24000000;
4221	case IPW_TX_RATE_36MB:
4222		return 36000000;
4223	case IPW_TX_RATE_48MB:
4224		return 48000000;
4225	case IPW_TX_RATE_54MB:
4226		return 54000000;
4227	}
4228
4229	return 0;
4230}
4231
4232#define IPW_STATS_INTERVAL (2 * HZ)
4233static void ipw_gather_stats(struct ipw_priv *priv)
4234{
4235	u32 rx_err, rx_err_delta, rx_packets_delta;
4236	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4237	u32 missed_beacons_percent, missed_beacons_delta;
4238	u32 quality = 0;
4239	u32 len = sizeof(u32);
4240	s16 rssi;
4241	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4242	    rate_quality;
4243	u32 max_rate;
4244
4245	if (!(priv->status & STATUS_ASSOCIATED)) {
4246		priv->quality = 0;
4247		return;
4248	}
4249
4250	/* Update the statistics */
4251	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4252			&priv->missed_beacons, &len);
4253	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4254	priv->last_missed_beacons = priv->missed_beacons;
4255	if (priv->assoc_request.beacon_interval) {
4256		missed_beacons_percent = missed_beacons_delta *
4257		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4258		    (IPW_STATS_INTERVAL * 10);
4259	} else {
4260		missed_beacons_percent = 0;
4261	}
4262	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4263
4264	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4265	rx_err_delta = rx_err - priv->last_rx_err;
4266	priv->last_rx_err = rx_err;
4267
4268	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4269	tx_failures_delta = tx_failures - priv->last_tx_failures;
4270	priv->last_tx_failures = tx_failures;
4271
4272	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4273	priv->last_rx_packets = priv->rx_packets;
4274
4275	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4276	priv->last_tx_packets = priv->tx_packets;
4277
4278	/* Calculate quality based on the following:
4279	 *
4280	 * Missed beacon: 100% = 0, 0% = 70% missed
4281	 * Rate: 60% = 1Mbs, 100% = Max
4282	 * Rx and Tx errors represent a straight % of total Rx/Tx
4283	 * RSSI: 100% = > -50,  0% = < -80
4284	 * Rx errors: 100% = 0, 0% = 50% missed
4285	 *
4286	 * The lowest computed quality is used.
4287	 *
4288	 */
4289#define BEACON_THRESHOLD 5
4290	beacon_quality = 100 - missed_beacons_percent;
4291	if (beacon_quality < BEACON_THRESHOLD)
4292		beacon_quality = 0;
4293	else
4294		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4295		    (100 - BEACON_THRESHOLD);
4296	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4297			beacon_quality, missed_beacons_percent);
4298
4299	priv->last_rate = ipw_get_current_rate(priv);
4300	max_rate = ipw_get_max_rate(priv);
4301	rate_quality = priv->last_rate * 40 / max_rate + 60;
4302	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4303			rate_quality, priv->last_rate / 1000000);
4304
4305	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4306		rx_quality = 100 - (rx_err_delta * 100) /
4307		    (rx_packets_delta + rx_err_delta);
4308	else
4309		rx_quality = 100;
4310	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4311			rx_quality, rx_err_delta, rx_packets_delta);
4312
4313	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4314		tx_quality = 100 - (tx_failures_delta * 100) /
4315		    (tx_packets_delta + tx_failures_delta);
4316	else
4317		tx_quality = 100;
4318	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4319			tx_quality, tx_failures_delta, tx_packets_delta);
4320
4321	rssi = priv->exp_avg_rssi;
4322	signal_quality =
4323	    (100 *
4324	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4326	     (priv->ieee->perfect_rssi - rssi) *
4327	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4328	      62 * (priv->ieee->perfect_rssi - rssi))) /
4329	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4330	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4331	if (signal_quality > 100)
4332		signal_quality = 100;
4333	else if (signal_quality < 1)
4334		signal_quality = 0;
4335
4336	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4337			signal_quality, rssi);
4338
4339	quality = min(rx_quality, signal_quality);
4340	quality = min(tx_quality, quality);
4341	quality = min(rate_quality, quality);
4342	quality = min(beacon_quality, quality);
4343	if (quality == beacon_quality)
4344		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4345				quality);
4346	if (quality == rate_quality)
4347		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4348				quality);
4349	if (quality == tx_quality)
4350		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4351				quality);
4352	if (quality == rx_quality)
4353		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4354				quality);
4355	if (quality == signal_quality)
4356		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4357				quality);
4358
4359	priv->quality = quality;
4360
4361	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4362}
4363
4364static void ipw_bg_gather_stats(struct work_struct *work)
4365{
4366	struct ipw_priv *priv =
4367		container_of(work, struct ipw_priv, gather_stats.work);
4368	mutex_lock(&priv->mutex);
4369	ipw_gather_stats(priv);
4370	mutex_unlock(&priv->mutex);
4371}
4372
4373/* Missed beacon behavior:
4374 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4375 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4376 * Above disassociate threshold, give up and stop scanning.
4377 * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4378static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4379					    int missed_count)
4380{
4381	priv->notif_missed_beacons = missed_count;
4382
4383	if (missed_count > priv->disassociate_threshold &&
4384	    priv->status & STATUS_ASSOCIATED) {
4385		/* If associated and we've hit the missed
4386		 * beacon threshold, disassociate, turn
4387		 * off roaming, and abort any active scans */
4388		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4389			  IPW_DL_STATE | IPW_DL_ASSOC,
4390			  "Missed beacon: %d - disassociate\n", missed_count);
4391		priv->status &= ~STATUS_ROAMING;
4392		if (priv->status & STATUS_SCANNING) {
4393			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4394				  IPW_DL_STATE,
4395				  "Aborting scan with missed beacon.\n");
4396			schedule_work(&priv->abort_scan);
4397		}
4398
4399		schedule_work(&priv->disassociate);
4400		return;
4401	}
4402
4403	if (priv->status & STATUS_ROAMING) {
4404		/* If we are currently roaming, then just
4405		 * print a debug statement... */
4406		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4407			  "Missed beacon: %d - roam in progress\n",
4408			  missed_count);
4409		return;
4410	}
4411
4412	if (roaming &&
4413	    (missed_count > priv->roaming_threshold &&
4414	     missed_count <= priv->disassociate_threshold)) {
4415		/* If we are not already roaming, set the ROAM
4416		 * bit in the status and kick off a scan.
4417		 * This can happen several times before we reach
4418		 * disassociate_threshold. */
4419		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420			  "Missed beacon: %d - initiate "
4421			  "roaming\n", missed_count);
4422		if (!(priv->status & STATUS_ROAMING)) {
4423			priv->status |= STATUS_ROAMING;
4424			if (!(priv->status & STATUS_SCANNING))
4425				schedule_delayed_work(&priv->request_scan, 0);
4426		}
4427		return;
4428	}
4429
4430	if (priv->status & STATUS_SCANNING &&
4431	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4432		/* Stop scan to keep fw from getting
4433		 * stuck (only if we aren't roaming --
4434		 * otherwise we'll never scan more than 2 or 3
4435		 * channels..) */
4436		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4437			  "Aborting scan with missed beacon.\n");
4438		schedule_work(&priv->abort_scan);
4439	}
4440
4441	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4442}
4443
4444static void ipw_scan_event(struct work_struct *work)
4445{
4446	union iwreq_data wrqu;
4447
4448	struct ipw_priv *priv =
4449		container_of(work, struct ipw_priv, scan_event.work);
4450
4451	wrqu.data.length = 0;
4452	wrqu.data.flags = 0;
4453	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4454}
4455
4456static void handle_scan_event(struct ipw_priv *priv)
4457{
4458	/* Only userspace-requested scan completion events go out immediately */
4459	if (!priv->user_requested_scan) {
4460		schedule_delayed_work(&priv->scan_event,
4461				      round_jiffies_relative(msecs_to_jiffies(4000)));
4462	} else {
4463		priv->user_requested_scan = 0;
4464		mod_delayed_work(system_wq, &priv->scan_event, 0);
4465	}
4466}
4467
4468/*
4469 * Handle host notification packet.
4470 * Called from interrupt routine
4471 */
4472static void ipw_rx_notification(struct ipw_priv *priv,
4473				       struct ipw_rx_notification *notif)
4474{
4475	u16 size = le16_to_cpu(notif->size);
4476
4477	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4478
4479	switch (notif->subtype) {
4480	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4481			struct notif_association *assoc = &notif->u.assoc;
4482
4483			switch (assoc->state) {
4484			case CMAS_ASSOCIATED:{
4485					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4486						  IPW_DL_ASSOC,
4487						  "associated: '%*pE' %pM\n",
4488						  priv->essid_len, priv->essid,
4489						  priv->bssid);
4490
4491					switch (priv->ieee->iw_mode) {
4492					case IW_MODE_INFRA:
4493						memcpy(priv->ieee->bssid,
4494						       priv->bssid, ETH_ALEN);
4495						break;
4496
4497					case IW_MODE_ADHOC:
4498						memcpy(priv->ieee->bssid,
4499						       priv->bssid, ETH_ALEN);
4500
4501						/* clear out the station table */
4502						priv->num_stations = 0;
4503
4504						IPW_DEBUG_ASSOC
4505						    ("queueing adhoc check\n");
4506						schedule_delayed_work(
4507							&priv->adhoc_check,
4508							le16_to_cpu(priv->
4509							assoc_request.
4510							beacon_interval));
4511						break;
4512					}
4513
4514					priv->status &= ~STATUS_ASSOCIATING;
4515					priv->status |= STATUS_ASSOCIATED;
4516					schedule_work(&priv->system_config);
4517
4518#ifdef CONFIG_IPW2200_QOS
4519#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4520			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4521					if ((priv->status & STATUS_AUTH) &&
4522					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4523					     == IEEE80211_STYPE_ASSOC_RESP)) {
4524						if ((sizeof
4525						     (struct
4526						      libipw_assoc_response)
4527						     <= size)
4528						    && (size <= 2314)) {
4529							struct
4530							libipw_rx_stats
4531							    stats = {
4532								.len = size - 1,
4533							};
4534
4535							IPW_DEBUG_QOS
4536							    ("QoS Associate "
4537							     "size %d\n", size);
4538							libipw_rx_mgt(priv->
4539									 ieee,
4540									 (struct
4541									  libipw_hdr_4addr
4542									  *)
4543									 &notif->u.raw, &stats);
4544						}
4545					}
4546#endif
4547
4548					schedule_work(&priv->link_up);
4549
4550					break;
4551				}
4552
4553			case CMAS_AUTHENTICATED:{
4554					if (priv->
4555					    status & (STATUS_ASSOCIATED |
4556						      STATUS_AUTH)) {
4557						struct notif_authenticate *auth
4558						    = &notif->u.auth;
4559						IPW_DEBUG(IPW_DL_NOTIF |
4560							  IPW_DL_STATE |
4561							  IPW_DL_ASSOC,
4562							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4563							  priv->essid_len,
4564							  priv->essid,
4565							  priv->bssid,
4566							  le16_to_cpu(auth->status),
4567							  ipw_get_status_code
4568							  (le16_to_cpu
4569							   (auth->status)));
4570
4571						priv->status &=
4572						    ~(STATUS_ASSOCIATING |
4573						      STATUS_AUTH |
4574						      STATUS_ASSOCIATED);
4575
4576						schedule_work(&priv->link_down);
4577						break;
4578					}
4579
4580					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4581						  IPW_DL_ASSOC,
4582						  "authenticated: '%*pE' %pM\n",
4583						  priv->essid_len, priv->essid,
4584						  priv->bssid);
4585					break;
4586				}
4587
4588			case CMAS_INIT:{
4589					if (priv->status & STATUS_AUTH) {
4590						struct
4591						    libipw_assoc_response
4592						*resp;
4593						resp =
4594						    (struct
4595						     libipw_assoc_response
4596						     *)&notif->u.raw;
4597						IPW_DEBUG(IPW_DL_NOTIF |
4598							  IPW_DL_STATE |
4599							  IPW_DL_ASSOC,
4600							  "association failed (0x%04X): %s\n",
4601							  le16_to_cpu(resp->status),
4602							  ipw_get_status_code
4603							  (le16_to_cpu
4604							   (resp->status)));
4605					}
4606
4607					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608						  IPW_DL_ASSOC,
4609						  "disassociated: '%*pE' %pM\n",
4610						  priv->essid_len, priv->essid,
4611						  priv->bssid);
4612
4613					priv->status &=
4614					    ~(STATUS_DISASSOCIATING |
4615					      STATUS_ASSOCIATING |
4616					      STATUS_ASSOCIATED | STATUS_AUTH);
4617					if (priv->assoc_network
4618					    && (priv->assoc_network->
4619						capability &
4620						WLAN_CAPABILITY_IBSS))
4621						ipw_remove_current_network
4622						    (priv);
4623
4624					schedule_work(&priv->link_down);
4625
4626					break;
4627				}
4628
4629			case CMAS_RX_ASSOC_RESP:
4630				break;
4631
4632			default:
4633				IPW_ERROR("assoc: unknown (%d)\n",
4634					  assoc->state);
4635				break;
4636			}
4637
4638			break;
4639		}
4640
4641	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4642			struct notif_authenticate *auth = &notif->u.auth;
4643			switch (auth->state) {
4644			case CMAS_AUTHENTICATED:
4645				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4646					  "authenticated: '%*pE' %pM\n",
4647					  priv->essid_len, priv->essid,
4648					  priv->bssid);
4649				priv->status |= STATUS_AUTH;
4650				break;
4651
4652			case CMAS_INIT:
4653				if (priv->status & STATUS_AUTH) {
4654					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655						  IPW_DL_ASSOC,
4656						  "authentication failed (0x%04X): %s\n",
4657						  le16_to_cpu(auth->status),
4658						  ipw_get_status_code(le16_to_cpu
4659								      (auth->
4660								       status)));
4661				}
4662				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663					  IPW_DL_ASSOC,
4664					  "deauthenticated: '%*pE' %pM\n",
4665					  priv->essid_len, priv->essid,
4666					  priv->bssid);
4667
4668				priv->status &= ~(STATUS_ASSOCIATING |
4669						  STATUS_AUTH |
4670						  STATUS_ASSOCIATED);
4671
4672				schedule_work(&priv->link_down);
4673				break;
4674
4675			case CMAS_TX_AUTH_SEQ_1:
4676				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4678				break;
4679			case CMAS_RX_AUTH_SEQ_2:
4680				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4682				break;
4683			case CMAS_AUTH_SEQ_1_PASS:
4684				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4686				break;
4687			case CMAS_AUTH_SEQ_1_FAIL:
4688				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4690				break;
4691			case CMAS_TX_AUTH_SEQ_3:
4692				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4694				break;
4695			case CMAS_RX_AUTH_SEQ_4:
4696				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4698				break;
4699			case CMAS_AUTH_SEQ_2_PASS:
4700				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4702				break;
4703			case CMAS_AUTH_SEQ_2_FAIL:
4704				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4706				break;
4707			case CMAS_TX_ASSOC:
4708				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709					  IPW_DL_ASSOC, "TX_ASSOC\n");
4710				break;
4711			case CMAS_RX_ASSOC_RESP:
4712				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4714
4715				break;
4716			case CMAS_ASSOCIATED:
4717				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718					  IPW_DL_ASSOC, "ASSOCIATED\n");
4719				break;
4720			default:
4721				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4722						auth->state);
4723				break;
4724			}
4725			break;
4726		}
4727
4728	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4729			struct notif_channel_result *x =
4730			    &notif->u.channel_result;
4731
4732			if (size == sizeof(*x)) {
4733				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4734					       x->channel_num);
4735			} else {
4736				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4737					       "(should be %zd)\n",
4738					       size, sizeof(*x));
4739			}
4740			break;
4741		}
4742
4743	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4744			struct notif_scan_complete *x = &notif->u.scan_complete;
4745			if (size == sizeof(*x)) {
4746				IPW_DEBUG_SCAN
4747				    ("Scan completed: type %d, %d channels, "
4748				     "%d status\n", x->scan_type,
4749				     x->num_channels, x->status);
4750			} else {
4751				IPW_ERROR("Scan completed of wrong size %d "
4752					  "(should be %zd)\n",
4753					  size, sizeof(*x));
4754			}
4755
4756			priv->status &=
4757			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4758
4759			wake_up_interruptible(&priv->wait_state);
4760			cancel_delayed_work(&priv->scan_check);
4761
4762			if (priv->status & STATUS_EXIT_PENDING)
4763				break;
4764
4765			priv->ieee->scans++;
4766
4767#ifdef CONFIG_IPW2200_MONITOR
4768			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4769				priv->status |= STATUS_SCAN_FORCED;
4770				schedule_delayed_work(&priv->request_scan, 0);
4771				break;
4772			}
4773			priv->status &= ~STATUS_SCAN_FORCED;
4774#endif				/* CONFIG_IPW2200_MONITOR */
4775
4776			/* Do queued direct scans first */
4777			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4778				schedule_delayed_work(&priv->request_direct_scan, 0);
4779
4780			if (!(priv->status & (STATUS_ASSOCIATED |
4781					      STATUS_ASSOCIATING |
4782					      STATUS_ROAMING |
4783					      STATUS_DISASSOCIATING)))
4784				schedule_work(&priv->associate);
4785			else if (priv->status & STATUS_ROAMING) {
4786				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4787					/* If a scan completed and we are in roam mode, then
4788					 * the scan that completed was the one requested as a
4789					 * result of entering roam... so, schedule the
4790					 * roam work */
4791					schedule_work(&priv->roam);
4792				else
4793					/* Don't schedule if we aborted the scan */
4794					priv->status &= ~STATUS_ROAMING;
4795			} else if (priv->status & STATUS_SCAN_PENDING)
4796				schedule_delayed_work(&priv->request_scan, 0);
4797			else if (priv->config & CFG_BACKGROUND_SCAN
4798				 && priv->status & STATUS_ASSOCIATED)
4799				schedule_delayed_work(&priv->request_scan,
4800						      round_jiffies_relative(HZ));
4801
4802			/* Send an empty event to user space.
4803			 * We don't send the received data on the event because
4804			 * it would require us to do complex transcoding, and
4805			 * we want to minimise the work done in the irq handler
4806			 * Use a request to extract the data.
4807			 * Also, we generate this even for any scan, regardless
4808			 * on how the scan was initiated. User space can just
4809			 * sync on periodic scan to get fresh data...
4810			 * Jean II */
4811			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812				handle_scan_event(priv);
4813			break;
4814		}
4815
4816	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4817			struct notif_frag_length *x = &notif->u.frag_len;
4818
4819			if (size == sizeof(*x))
4820				IPW_ERROR("Frag length: %d\n",
4821					  le16_to_cpu(x->frag_length));
4822			else
4823				IPW_ERROR("Frag length of wrong size %d "
4824					  "(should be %zd)\n",
4825					  size, sizeof(*x));
4826			break;
4827		}
4828
4829	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4830			struct notif_link_deterioration *x =
4831			    &notif->u.link_deterioration;
4832
4833			if (size == sizeof(*x)) {
4834				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4835					"link deterioration: type %d, cnt %d\n",
4836					x->silence_notification_type,
4837					x->silence_count);
4838				memcpy(&priv->last_link_deterioration, x,
4839				       sizeof(*x));
4840			} else {
4841				IPW_ERROR("Link Deterioration of wrong size %d "
4842					  "(should be %zd)\n",
4843					  size, sizeof(*x));
4844			}
4845			break;
4846		}
4847
4848	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4849			IPW_ERROR("Dino config\n");
4850			if (priv->hcmd
4851			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4852				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4853
4854			break;
4855		}
4856
4857	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4858			struct notif_beacon_state *x = &notif->u.beacon_state;
4859			if (size != sizeof(*x)) {
4860				IPW_ERROR
4861				    ("Beacon state of wrong size %d (should "
4862				     "be %zd)\n", size, sizeof(*x));
4863				break;
4864			}
4865
4866			if (le32_to_cpu(x->state) ==
4867			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4868				ipw_handle_missed_beacon(priv,
4869							 le32_to_cpu(x->
4870								     number));
4871
4872			break;
4873		}
4874
4875	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4876			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4877			if (size == sizeof(*x)) {
4878				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4879					  "0x%02x station %d\n",
4880					  x->key_state, x->security_type,
4881					  x->station_index);
4882				break;
4883			}
4884
4885			IPW_ERROR
4886			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4887			     size, sizeof(*x));
4888			break;
4889		}
4890
4891	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4892			struct notif_calibration *x = &notif->u.calibration;
4893
4894			if (size == sizeof(*x)) {
4895				memcpy(&priv->calib, x, sizeof(*x));
4896				IPW_DEBUG_INFO("TODO: Calibration\n");
4897				break;
4898			}
4899
4900			IPW_ERROR
4901			    ("Calibration of wrong size %d (should be %zd)\n",
4902			     size, sizeof(*x));
4903			break;
4904		}
4905
4906	case HOST_NOTIFICATION_NOISE_STATS:{
4907			if (size == sizeof(u32)) {
4908				priv->exp_avg_noise =
4909				    exponential_average(priv->exp_avg_noise,
4910				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4911				    DEPTH_NOISE);
4912				break;
4913			}
4914
4915			IPW_ERROR
4916			    ("Noise stat is wrong size %d (should be %zd)\n",
4917			     size, sizeof(u32));
4918			break;
4919		}
4920
4921	default:
4922		IPW_DEBUG_NOTIF("Unknown notification: "
4923				"subtype=%d,flags=0x%2x,size=%d\n",
4924				notif->subtype, notif->flags, size);
4925	}
4926}
4927
4928/*
4929 * Destroys all DMA structures and initialise them again
4930 *
4931 * @param priv
4932 * @return error code
4933 */
4934static int ipw_queue_reset(struct ipw_priv *priv)
4935{
4936	int rc = 0;
4937	/* @todo customize queue sizes */
4938	int nTx = 64, nTxCmd = 8;
4939	ipw_tx_queue_free(priv);
4940	/* Tx CMD queue */
4941	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4942			       IPW_TX_CMD_QUEUE_READ_INDEX,
4943			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4944			       IPW_TX_CMD_QUEUE_BD_BASE,
4945			       IPW_TX_CMD_QUEUE_BD_SIZE);
4946	if (rc) {
4947		IPW_ERROR("Tx Cmd queue init failed\n");
4948		goto error;
4949	}
4950	/* Tx queue(s) */
4951	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4952			       IPW_TX_QUEUE_0_READ_INDEX,
4953			       IPW_TX_QUEUE_0_WRITE_INDEX,
4954			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4955	if (rc) {
4956		IPW_ERROR("Tx 0 queue init failed\n");
4957		goto error;
4958	}
4959	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4960			       IPW_TX_QUEUE_1_READ_INDEX,
4961			       IPW_TX_QUEUE_1_WRITE_INDEX,
4962			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4963	if (rc) {
4964		IPW_ERROR("Tx 1 queue init failed\n");
4965		goto error;
4966	}
4967	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4968			       IPW_TX_QUEUE_2_READ_INDEX,
4969			       IPW_TX_QUEUE_2_WRITE_INDEX,
4970			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4971	if (rc) {
4972		IPW_ERROR("Tx 2 queue init failed\n");
4973		goto error;
4974	}
4975	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4976			       IPW_TX_QUEUE_3_READ_INDEX,
4977			       IPW_TX_QUEUE_3_WRITE_INDEX,
4978			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4979	if (rc) {
4980		IPW_ERROR("Tx 3 queue init failed\n");
4981		goto error;
4982	}
4983	/* statistics */
4984	priv->rx_bufs_min = 0;
4985	priv->rx_pend_max = 0;
4986	return rc;
4987
4988      error:
4989	ipw_tx_queue_free(priv);
4990	return rc;
4991}
4992
4993/*
4994 * Reclaim Tx queue entries no more used by NIC.
4995 *
4996 * When FW advances 'R' index, all entries between old and
4997 * new 'R' index need to be reclaimed. As result, some free space
4998 * forms. If there is enough free space (> low mark), wake Tx queue.
4999 *
5000 * @note Need to protect against garbage in 'R' index
5001 * @param priv
5002 * @param txq
5003 * @param qindex
5004 * @return Number of used entries remains in the queue
5005 */
5006static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5007				struct clx2_tx_queue *txq, int qindex)
5008{
5009	u32 hw_tail;
5010	int used;
5011	struct clx2_queue *q = &txq->q;
5012
5013	hw_tail = ipw_read32(priv, q->reg_r);
5014	if (hw_tail >= q->n_bd) {
5015		IPW_ERROR
5016		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5017		     hw_tail, q->n_bd);
5018		goto done;
5019	}
5020	for (; q->last_used != hw_tail;
5021	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5022		ipw_queue_tx_free_tfd(priv, txq);
5023		priv->tx_packets++;
5024	}
5025      done:
5026	if ((ipw_tx_queue_space(q) > q->low_mark) &&
5027	    (qindex >= 0))
5028		netif_wake_queue(priv->net_dev);
5029	used = q->first_empty - q->last_used;
5030	if (used < 0)
5031		used += q->n_bd;
5032
5033	return used;
5034}
5035
5036static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5037			     int len, int sync)
5038{
5039	struct clx2_tx_queue *txq = &priv->txq_cmd;
5040	struct clx2_queue *q = &txq->q;
5041	struct tfd_frame *tfd;
5042
5043	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5044		IPW_ERROR("No space for Tx\n");
5045		return -EBUSY;
5046	}
5047
5048	tfd = &txq->bd[q->first_empty];
5049	txq->txb[q->first_empty] = NULL;
5050
5051	memset(tfd, 0, sizeof(*tfd));
5052	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5053	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5054	priv->hcmd_seq++;
5055	tfd->u.cmd.index = hcmd;
5056	tfd->u.cmd.length = len;
5057	memcpy(tfd->u.cmd.payload, buf, len);
5058	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5059	ipw_write32(priv, q->reg_w, q->first_empty);
5060	_ipw_read32(priv, 0x90);
5061
5062	return 0;
5063}
5064
5065/*
5066 * Rx theory of operation
5067 *
5068 * The host allocates 32 DMA target addresses and passes the host address
5069 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5070 * 0 to 31
5071 *
5072 * Rx Queue Indexes
5073 * The host/firmware share two index registers for managing the Rx buffers.
5074 *
5075 * The READ index maps to the first position that the firmware may be writing
5076 * to -- the driver can read up to (but not including) this position and get
5077 * good data.
5078 * The READ index is managed by the firmware once the card is enabled.
5079 *
5080 * The WRITE index maps to the last position the driver has read from -- the
5081 * position preceding WRITE is the last slot the firmware can place a packet.
5082 *
5083 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5084 * WRITE = READ.
5085 *
5086 * During initialization the host sets up the READ queue position to the first
5087 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5088 *
5089 * When the firmware places a packet in a buffer it will advance the READ index
5090 * and fire the RX interrupt.  The driver can then query the READ index and
5091 * process as many packets as possible, moving the WRITE index forward as it
5092 * resets the Rx queue buffers with new memory.
5093 *
5094 * The management in the driver is as follows:
5095 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5096 *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5097 *   to replensish the ipw->rxq->rx_free.
5098 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5099 *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5100 *   'processed' and 'read' driver indexes as well)
5101 * + A received packet is processed and handed to the kernel network stack,
5102 *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5103 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5104 *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5105 *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5106 *   were enough free buffers and RX_STALLED is set it is cleared.
5107 *
5108 *
5109 * Driver sequence:
5110 *
5111 * ipw_rx_queue_alloc()       Allocates rx_free
5112 * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5113 *                            ipw_rx_queue_restock
5114 * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5115 *                            queue, updates firmware pointers, and updates
5116 *                            the WRITE index.  If insufficient rx_free buffers
5117 *                            are available, schedules ipw_rx_queue_replenish
5118 *
5119 * -- enable interrupts --
5120 * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5121 *                            READ INDEX, detaching the SKB from the pool.
5122 *                            Moves the packet buffer from queue to rx_used.
5123 *                            Calls ipw_rx_queue_restock to refill any empty
5124 *                            slots.
5125 * ...
5126 *
5127 */
5128
5129/*
5130 * If there are slots in the RX queue that  need to be restocked,
5131 * and we have free pre-allocated buffers, fill the ranks as much
5132 * as we can pulling from rx_free.
5133 *
5134 * This moves the 'write' index forward to catch up with 'processed', and
5135 * also updates the memory address in the firmware to reference the new
5136 * target buffer.
5137 */
5138static void ipw_rx_queue_restock(struct ipw_priv *priv)
5139{
5140	struct ipw_rx_queue *rxq = priv->rxq;
5141	struct list_head *element;
5142	struct ipw_rx_mem_buffer *rxb;
5143	unsigned long flags;
5144	int write;
5145
5146	spin_lock_irqsave(&rxq->lock, flags);
5147	write = rxq->write;
5148	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5149		element = rxq->rx_free.next;
5150		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5151		list_del(element);
5152
5153		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5154			    rxb->dma_addr);
5155		rxq->queue[rxq->write] = rxb;
5156		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5157		rxq->free_count--;
5158	}
5159	spin_unlock_irqrestore(&rxq->lock, flags);
5160
5161	/* If the pre-allocated buffer pool is dropping low, schedule to
5162	 * refill it */
5163	if (rxq->free_count <= RX_LOW_WATERMARK)
5164		schedule_work(&priv->rx_replenish);
5165
5166	/* If we've added more space for the firmware to place data, tell it */
5167	if (write != rxq->write)
5168		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5169}
5170
5171/*
5172 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5173 * Also restock the Rx queue via ipw_rx_queue_restock.
5174 *
5175 * This is called as a scheduled work item (except for during initialization)
5176 */
5177static void ipw_rx_queue_replenish(void *data)
5178{
5179	struct ipw_priv *priv = data;
5180	struct ipw_rx_queue *rxq = priv->rxq;
5181	struct list_head *element;
5182	struct ipw_rx_mem_buffer *rxb;
5183	unsigned long flags;
5184
5185	spin_lock_irqsave(&rxq->lock, flags);
5186	while (!list_empty(&rxq->rx_used)) {
5187		element = rxq->rx_used.next;
5188		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5189		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5190		if (!rxb->skb) {
5191			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5192			       priv->net_dev->name);
5193			/* We don't reschedule replenish work here -- we will
5194			 * call the restock method and if it still needs
5195			 * more buffers it will schedule replenish */
5196			break;
5197		}
5198		list_del(element);
5199
5200		rxb->dma_addr =
5201		    dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5202				   IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5203
5204		list_add_tail(&rxb->list, &rxq->rx_free);
5205		rxq->free_count++;
5206	}
5207	spin_unlock_irqrestore(&rxq->lock, flags);
5208
5209	ipw_rx_queue_restock(priv);
5210}
5211
5212static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5213{
5214	struct ipw_priv *priv =
5215		container_of(work, struct ipw_priv, rx_replenish);
5216	mutex_lock(&priv->mutex);
5217	ipw_rx_queue_replenish(priv);
5218	mutex_unlock(&priv->mutex);
5219}
5220
5221/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5222 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5223 * This free routine walks the list of POOL entries and if SKB is set to
5224 * non NULL it is unmapped and freed
5225 */
5226static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5227{
5228	int i;
5229
5230	if (!rxq)
5231		return;
5232
5233	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5234		if (rxq->pool[i].skb != NULL) {
5235			dma_unmap_single(&priv->pci_dev->dev,
5236					 rxq->pool[i].dma_addr,
5237					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5238			dev_kfree_skb(rxq->pool[i].skb);
5239		}
5240	}
5241
5242	kfree(rxq);
5243}
5244
5245static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5246{
5247	struct ipw_rx_queue *rxq;
5248	int i;
5249
5250	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5251	if (unlikely(!rxq)) {
5252		IPW_ERROR("memory allocation failed\n");
5253		return NULL;
5254	}
5255	spin_lock_init(&rxq->lock);
5256	INIT_LIST_HEAD(&rxq->rx_free);
5257	INIT_LIST_HEAD(&rxq->rx_used);
5258
5259	/* Fill the rx_used queue with _all_ of the Rx buffers */
5260	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5261		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5262
5263	/* Set us so that we have processed and used all buffers, but have
5264	 * not restocked the Rx queue with fresh buffers */
5265	rxq->read = rxq->write = 0;
5266	rxq->free_count = 0;
5267
5268	return rxq;
5269}
5270
5271static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5272{
5273	rate &= ~LIBIPW_BASIC_RATE_MASK;
5274	if (ieee_mode == IEEE_A) {
5275		switch (rate) {
5276		case LIBIPW_OFDM_RATE_6MB:
5277			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5278			    1 : 0;
5279		case LIBIPW_OFDM_RATE_9MB:
5280			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5281			    1 : 0;
5282		case LIBIPW_OFDM_RATE_12MB:
5283			return priv->
5284			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5285		case LIBIPW_OFDM_RATE_18MB:
5286			return priv->
5287			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5288		case LIBIPW_OFDM_RATE_24MB:
5289			return priv->
5290			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5291		case LIBIPW_OFDM_RATE_36MB:
5292			return priv->
5293			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5294		case LIBIPW_OFDM_RATE_48MB:
5295			return priv->
5296			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5297		case LIBIPW_OFDM_RATE_54MB:
5298			return priv->
5299			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5300		default:
5301			return 0;
5302		}
5303	}
5304
5305	/* B and G mixed */
5306	switch (rate) {
5307	case LIBIPW_CCK_RATE_1MB:
5308		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5309	case LIBIPW_CCK_RATE_2MB:
5310		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5311	case LIBIPW_CCK_RATE_5MB:
5312		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5313	case LIBIPW_CCK_RATE_11MB:
5314		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5315	}
5316
5317	/* If we are limited to B modulations, bail at this point */
5318	if (ieee_mode == IEEE_B)
5319		return 0;
5320
5321	/* G */
5322	switch (rate) {
5323	case LIBIPW_OFDM_RATE_6MB:
5324		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5325	case LIBIPW_OFDM_RATE_9MB:
5326		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5327	case LIBIPW_OFDM_RATE_12MB:
5328		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5329	case LIBIPW_OFDM_RATE_18MB:
5330		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5331	case LIBIPW_OFDM_RATE_24MB:
5332		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5333	case LIBIPW_OFDM_RATE_36MB:
5334		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5335	case LIBIPW_OFDM_RATE_48MB:
5336		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5337	case LIBIPW_OFDM_RATE_54MB:
5338		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5339	}
5340
5341	return 0;
5342}
5343
5344static int ipw_compatible_rates(struct ipw_priv *priv,
5345				const struct libipw_network *network,
5346				struct ipw_supported_rates *rates)
5347{
5348	int num_rates, i;
5349
5350	memset(rates, 0, sizeof(*rates));
5351	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5352	rates->num_rates = 0;
5353	for (i = 0; i < num_rates; i++) {
5354		if (!ipw_is_rate_in_mask(priv, network->mode,
5355					 network->rates[i])) {
5356
5357			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5358				IPW_DEBUG_SCAN("Adding masked mandatory "
5359					       "rate %02X\n",
5360					       network->rates[i]);
5361				rates->supported_rates[rates->num_rates++] =
5362				    network->rates[i];
5363				continue;
5364			}
5365
5366			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5367				       network->rates[i], priv->rates_mask);
5368			continue;
5369		}
5370
5371		rates->supported_rates[rates->num_rates++] = network->rates[i];
5372	}
5373
5374	num_rates = min(network->rates_ex_len,
5375			(u8) (IPW_MAX_RATES - num_rates));
5376	for (i = 0; i < num_rates; i++) {
5377		if (!ipw_is_rate_in_mask(priv, network->mode,
5378					 network->rates_ex[i])) {
5379			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5380				IPW_DEBUG_SCAN("Adding masked mandatory "
5381					       "rate %02X\n",
5382					       network->rates_ex[i]);
5383				rates->supported_rates[rates->num_rates++] =
5384				    network->rates[i];
5385				continue;
5386			}
5387
5388			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5389				       network->rates_ex[i], priv->rates_mask);
5390			continue;
5391		}
5392
5393		rates->supported_rates[rates->num_rates++] =
5394		    network->rates_ex[i];
5395	}
5396
5397	return 1;
5398}
5399
5400static void ipw_copy_rates(struct ipw_supported_rates *dest,
5401				  const struct ipw_supported_rates *src)
5402{
5403	u8 i;
5404	for (i = 0; i < src->num_rates; i++)
5405		dest->supported_rates[i] = src->supported_rates[i];
5406	dest->num_rates = src->num_rates;
5407}
5408
5409/* TODO: Look at sniffed packets in the air to determine if the basic rate
5410 * mask should ever be used -- right now all callers to add the scan rates are
5411 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5412static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5413				   u8 modulation, u32 rate_mask)
5414{
5415	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5416	    LIBIPW_BASIC_RATE_MASK : 0;
5417
5418	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5419		rates->supported_rates[rates->num_rates++] =
5420		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5421
5422	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5423		rates->supported_rates[rates->num_rates++] =
5424		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5425
5426	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5427		rates->supported_rates[rates->num_rates++] = basic_mask |
5428		    LIBIPW_CCK_RATE_5MB;
5429
5430	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5431		rates->supported_rates[rates->num_rates++] = basic_mask |
5432		    LIBIPW_CCK_RATE_11MB;
5433}
5434
5435static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5436				    u8 modulation, u32 rate_mask)
5437{
5438	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5439	    LIBIPW_BASIC_RATE_MASK : 0;
5440
5441	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5442		rates->supported_rates[rates->num_rates++] = basic_mask |
5443		    LIBIPW_OFDM_RATE_6MB;
5444
5445	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5446		rates->supported_rates[rates->num_rates++] =
5447		    LIBIPW_OFDM_RATE_9MB;
5448
5449	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5450		rates->supported_rates[rates->num_rates++] = basic_mask |
5451		    LIBIPW_OFDM_RATE_12MB;
5452
5453	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5454		rates->supported_rates[rates->num_rates++] =
5455		    LIBIPW_OFDM_RATE_18MB;
5456
5457	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5458		rates->supported_rates[rates->num_rates++] = basic_mask |
5459		    LIBIPW_OFDM_RATE_24MB;
5460
5461	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5462		rates->supported_rates[rates->num_rates++] =
5463		    LIBIPW_OFDM_RATE_36MB;
5464
5465	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5466		rates->supported_rates[rates->num_rates++] =
5467		    LIBIPW_OFDM_RATE_48MB;
5468
5469	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5470		rates->supported_rates[rates->num_rates++] =
5471		    LIBIPW_OFDM_RATE_54MB;
5472}
5473
5474struct ipw_network_match {
5475	struct libipw_network *network;
5476	struct ipw_supported_rates rates;
5477};
5478
5479static int ipw_find_adhoc_network(struct ipw_priv *priv,
5480				  struct ipw_network_match *match,
5481				  struct libipw_network *network,
5482				  int roaming)
5483{
5484	struct ipw_supported_rates rates;
5485
5486	/* Verify that this network's capability is compatible with the
5487	 * current mode (AdHoc or Infrastructure) */
5488	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5489	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5490		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5491				network->ssid_len, network->ssid,
5492				network->bssid);
5493		return 0;
5494	}
5495
5496	if (unlikely(roaming)) {
5497		/* If we are roaming, then ensure check if this is a valid
5498		 * network to try and roam to */
5499		if ((network->ssid_len != match->network->ssid_len) ||
5500		    memcmp(network->ssid, match->network->ssid,
5501			   network->ssid_len)) {
5502			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5503					network->ssid_len, network->ssid,
5504					network->bssid);
5505			return 0;
5506		}
5507	} else {
5508		/* If an ESSID has been configured then compare the broadcast
5509		 * ESSID to ours */
5510		if ((priv->config & CFG_STATIC_ESSID) &&
5511		    ((network->ssid_len != priv->essid_len) ||
5512		     memcmp(network->ssid, priv->essid,
5513			    min(network->ssid_len, priv->essid_len)))) {
5514			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5515					network->ssid_len, network->ssid,
5516					network->bssid, priv->essid_len,
5517					priv->essid);
5518			return 0;
5519		}
5520	}
5521
5522	/* If the old network rate is better than this one, don't bother
5523	 * testing everything else. */
5524
5525	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5526		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5527				match->network->ssid_len, match->network->ssid);
5528		return 0;
5529	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5530		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5531				match->network->ssid_len, match->network->ssid);
5532		return 0;
5533	}
5534
5535	/* Now go through and see if the requested network is valid... */
5536	if (priv->ieee->scan_age != 0 &&
5537	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5538		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5539				network->ssid_len, network->ssid,
5540				network->bssid,
5541				jiffies_to_msecs(jiffies -
5542						 network->last_scanned));
5543		return 0;
5544	}
5545
5546	if ((priv->config & CFG_STATIC_CHANNEL) &&
5547	    (network->channel != priv->channel)) {
5548		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5549				network->ssid_len, network->ssid,
5550				network->bssid,
5551				network->channel, priv->channel);
5552		return 0;
5553	}
5554
5555	/* Verify privacy compatibility */
5556	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5557	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5558		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5559				network->ssid_len, network->ssid,
5560				network->bssid,
5561				priv->
5562				capability & CAP_PRIVACY_ON ? "on" : "off",
5563				network->
5564				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5565				"off");
5566		return 0;
5567	}
5568
5569	if (ether_addr_equal(network->bssid, priv->bssid)) {
5570		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5571				network->ssid_len, network->ssid,
5572				network->bssid, priv->bssid);
5573		return 0;
5574	}
5575
5576	/* Filter out any incompatible freq / mode combinations */
5577	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5578		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5579				network->ssid_len, network->ssid,
5580				network->bssid);
5581		return 0;
5582	}
5583
5584	/* Ensure that the rates supported by the driver are compatible with
5585	 * this AP, including verification of basic rates (mandatory) */
5586	if (!ipw_compatible_rates(priv, network, &rates)) {
5587		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5588				network->ssid_len, network->ssid,
5589				network->bssid);
5590		return 0;
5591	}
5592
5593	if (rates.num_rates == 0) {
5594		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5595				network->ssid_len, network->ssid,
5596				network->bssid);
5597		return 0;
5598	}
5599
5600	/* TODO: Perform any further minimal comparititive tests.  We do not
5601	 * want to put too much policy logic here; intelligent scan selection
5602	 * should occur within a generic IEEE 802.11 user space tool.  */
5603
5604	/* Set up 'new' AP to this network */
5605	ipw_copy_rates(&match->rates, &rates);
5606	match->network = network;
5607	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5608			network->ssid_len, network->ssid, network->bssid);
5609
5610	return 1;
5611}
5612
5613static void ipw_merge_adhoc_network(struct work_struct *work)
5614{
5615	struct ipw_priv *priv =
5616		container_of(work, struct ipw_priv, merge_networks);
5617	struct libipw_network *network = NULL;
5618	struct ipw_network_match match = {
5619		.network = priv->assoc_network
5620	};
5621
5622	if ((priv->status & STATUS_ASSOCIATED) &&
5623	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624		/* First pass through ROAM process -- look for a better
5625		 * network */
5626		unsigned long flags;
5627
5628		spin_lock_irqsave(&priv->ieee->lock, flags);
5629		list_for_each_entry(network, &priv->ieee->network_list, list) {
5630			if (network != priv->assoc_network)
5631				ipw_find_adhoc_network(priv, &match, network,
5632						       1);
5633		}
5634		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5635
5636		if (match.network == priv->assoc_network) {
5637			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5638					"merge to.\n");
5639			return;
5640		}
5641
5642		mutex_lock(&priv->mutex);
5643		if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5644			IPW_DEBUG_MERGE("remove network %*pE\n",
5645					priv->essid_len, priv->essid);
5646			ipw_remove_current_network(priv);
5647		}
5648
5649		ipw_disassociate(priv);
5650		priv->assoc_network = match.network;
5651		mutex_unlock(&priv->mutex);
5652		return;
5653	}
5654}
5655
5656static int ipw_best_network(struct ipw_priv *priv,
5657			    struct ipw_network_match *match,
5658			    struct libipw_network *network, int roaming)
5659{
5660	struct ipw_supported_rates rates;
5661
5662	/* Verify that this network's capability is compatible with the
5663	 * current mode (AdHoc or Infrastructure) */
5664	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5665	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5666	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5667	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5668		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5669				network->ssid_len, network->ssid,
5670				network->bssid);
5671		return 0;
5672	}
5673
5674	if (unlikely(roaming)) {
5675		/* If we are roaming, then ensure check if this is a valid
5676		 * network to try and roam to */
5677		if ((network->ssid_len != match->network->ssid_len) ||
5678		    memcmp(network->ssid, match->network->ssid,
5679			   network->ssid_len)) {
5680			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5681					network->ssid_len, network->ssid,
5682					network->bssid);
5683			return 0;
5684		}
5685	} else {
5686		/* If an ESSID has been configured then compare the broadcast
5687		 * ESSID to ours */
5688		if ((priv->config & CFG_STATIC_ESSID) &&
5689		    ((network->ssid_len != priv->essid_len) ||
5690		     memcmp(network->ssid, priv->essid,
5691			    min(network->ssid_len, priv->essid_len)))) {
5692			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5693					network->ssid_len, network->ssid,
5694					network->bssid, priv->essid_len,
5695					priv->essid);
5696			return 0;
5697		}
5698	}
5699
5700	/* If the old network rate is better than this one, don't bother
5701	 * testing everything else. */
5702	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5703		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5704				network->ssid_len, network->ssid,
5705				network->bssid, match->network->ssid_len,
5706				match->network->ssid, match->network->bssid);
5707		return 0;
5708	}
5709
5710	/* If this network has already had an association attempt within the
5711	 * last 3 seconds, do not try and associate again... */
5712	if (network->last_associate &&
5713	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5714		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5715				network->ssid_len, network->ssid,
5716				network->bssid,
5717				jiffies_to_msecs(jiffies -
5718						 network->last_associate));
5719		return 0;
5720	}
5721
5722	/* Now go through and see if the requested network is valid... */
5723	if (priv->ieee->scan_age != 0 &&
5724	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5725		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5726				network->ssid_len, network->ssid,
5727				network->bssid,
5728				jiffies_to_msecs(jiffies -
5729						 network->last_scanned));
5730		return 0;
5731	}
5732
5733	if ((priv->config & CFG_STATIC_CHANNEL) &&
5734	    (network->channel != priv->channel)) {
5735		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5736				network->ssid_len, network->ssid,
5737				network->bssid,
5738				network->channel, priv->channel);
5739		return 0;
5740	}
5741
5742	/* Verify privacy compatibility */
5743	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5744	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5745		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5746				network->ssid_len, network->ssid,
5747				network->bssid,
5748				priv->capability & CAP_PRIVACY_ON ? "on" :
5749				"off",
5750				network->capability &
5751				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5752		return 0;
5753	}
5754
5755	if ((priv->config & CFG_STATIC_BSSID) &&
5756	    !ether_addr_equal(network->bssid, priv->bssid)) {
5757		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5758				network->ssid_len, network->ssid,
5759				network->bssid, priv->bssid);
5760		return 0;
5761	}
5762
5763	/* Filter out any incompatible freq / mode combinations */
5764	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5765		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5766				network->ssid_len, network->ssid,
5767				network->bssid);
5768		return 0;
5769	}
5770
5771	/* Filter out invalid channel in current GEO */
5772	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5773		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5774				network->ssid_len, network->ssid,
5775				network->bssid);
5776		return 0;
5777	}
5778
5779	/* Ensure that the rates supported by the driver are compatible with
5780	 * this AP, including verification of basic rates (mandatory) */
5781	if (!ipw_compatible_rates(priv, network, &rates)) {
5782		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5783				network->ssid_len, network->ssid,
5784				network->bssid);
5785		return 0;
5786	}
5787
5788	if (rates.num_rates == 0) {
5789		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5790				network->ssid_len, network->ssid,
5791				network->bssid);
5792		return 0;
5793	}
5794
5795	/* TODO: Perform any further minimal comparititive tests.  We do not
5796	 * want to put too much policy logic here; intelligent scan selection
5797	 * should occur within a generic IEEE 802.11 user space tool.  */
5798
5799	/* Set up 'new' AP to this network */
5800	ipw_copy_rates(&match->rates, &rates);
5801	match->network = network;
5802
5803	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5804			network->ssid_len, network->ssid, network->bssid);
5805
5806	return 1;
5807}
5808
5809static void ipw_adhoc_create(struct ipw_priv *priv,
5810			     struct libipw_network *network)
5811{
5812	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5813	int i;
5814
5815	/*
5816	 * For the purposes of scanning, we can set our wireless mode
5817	 * to trigger scans across combinations of bands, but when it
5818	 * comes to creating a new ad-hoc network, we have tell the FW
5819	 * exactly which band to use.
5820	 *
5821	 * We also have the possibility of an invalid channel for the
5822	 * chossen band.  Attempting to create a new ad-hoc network
5823	 * with an invalid channel for wireless mode will trigger a
5824	 * FW fatal error.
5825	 *
5826	 */
5827	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5828	case LIBIPW_52GHZ_BAND:
5829		network->mode = IEEE_A;
5830		i = libipw_channel_to_index(priv->ieee, priv->channel);
5831		BUG_ON(i == -1);
5832		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5833			IPW_WARNING("Overriding invalid channel\n");
5834			priv->channel = geo->a[0].channel;
5835		}
5836		break;
5837
5838	case LIBIPW_24GHZ_BAND:
5839		if (priv->ieee->mode & IEEE_G)
5840			network->mode = IEEE_G;
5841		else
5842			network->mode = IEEE_B;
5843		i = libipw_channel_to_index(priv->ieee, priv->channel);
5844		BUG_ON(i == -1);
5845		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5846			IPW_WARNING("Overriding invalid channel\n");
5847			priv->channel = geo->bg[0].channel;
5848		}
5849		break;
5850
5851	default:
5852		IPW_WARNING("Overriding invalid channel\n");
5853		if (priv->ieee->mode & IEEE_A) {
5854			network->mode = IEEE_A;
5855			priv->channel = geo->a[0].channel;
5856		} else if (priv->ieee->mode & IEEE_G) {
5857			network->mode = IEEE_G;
5858			priv->channel = geo->bg[0].channel;
5859		} else {
5860			network->mode = IEEE_B;
5861			priv->channel = geo->bg[0].channel;
5862		}
5863		break;
5864	}
5865
5866	network->channel = priv->channel;
5867	priv->config |= CFG_ADHOC_PERSIST;
5868	ipw_create_bssid(priv, network->bssid);
5869	network->ssid_len = priv->essid_len;
5870	memcpy(network->ssid, priv->essid, priv->essid_len);
5871	memset(&network->stats, 0, sizeof(network->stats));
5872	network->capability = WLAN_CAPABILITY_IBSS;
5873	if (!(priv->config & CFG_PREAMBLE_LONG))
5874		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5875	if (priv->capability & CAP_PRIVACY_ON)
5876		network->capability |= WLAN_CAPABILITY_PRIVACY;
5877	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5878	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5879	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5880	memcpy(network->rates_ex,
5881	       &priv->rates.supported_rates[network->rates_len],
5882	       network->rates_ex_len);
5883	network->last_scanned = 0;
5884	network->flags = 0;
5885	network->last_associate = 0;
5886	network->time_stamp[0] = 0;
5887	network->time_stamp[1] = 0;
5888	network->beacon_interval = 100;	/* Default */
5889	network->listen_interval = 10;	/* Default */
5890	network->atim_window = 0;	/* Default */
5891	network->wpa_ie_len = 0;
5892	network->rsn_ie_len = 0;
5893}
5894
5895static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5896{
5897	struct ipw_tgi_tx_key key;
5898
5899	if (!(priv->ieee->sec.flags & (1 << index)))
5900		return;
5901
5902	key.key_id = index;
5903	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5904	key.security_type = type;
5905	key.station_index = 0;	/* always 0 for BSS */
5906	key.flags = 0;
5907	/* 0 for new key; previous value of counter (after fatal error) */
5908	key.tx_counter[0] = cpu_to_le32(0);
5909	key.tx_counter[1] = cpu_to_le32(0);
5910
5911	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5912}
5913
5914static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5915{
5916	struct ipw_wep_key key;
5917	int i;
5918
5919	key.cmd_id = DINO_CMD_WEP_KEY;
5920	key.seq_num = 0;
5921
5922	/* Note: AES keys cannot be set for multiple times.
5923	 * Only set it at the first time. */
5924	for (i = 0; i < 4; i++) {
5925		key.key_index = i | type;
5926		if (!(priv->ieee->sec.flags & (1 << i))) {
5927			key.key_size = 0;
5928			continue;
5929		}
5930
5931		key.key_size = priv->ieee->sec.key_sizes[i];
5932		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5933
5934		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5935	}
5936}
5937
5938static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5939{
5940	if (priv->ieee->host_encrypt)
5941		return;
5942
5943	switch (level) {
5944	case SEC_LEVEL_3:
5945		priv->sys_config.disable_unicast_decryption = 0;
5946		priv->ieee->host_decrypt = 0;
5947		break;
5948	case SEC_LEVEL_2:
5949		priv->sys_config.disable_unicast_decryption = 1;
5950		priv->ieee->host_decrypt = 1;
5951		break;
5952	case SEC_LEVEL_1:
5953		priv->sys_config.disable_unicast_decryption = 0;
5954		priv->ieee->host_decrypt = 0;
5955		break;
5956	case SEC_LEVEL_0:
5957		priv->sys_config.disable_unicast_decryption = 1;
5958		break;
5959	default:
5960		break;
5961	}
5962}
5963
5964static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5965{
5966	if (priv->ieee->host_encrypt)
5967		return;
5968
5969	switch (level) {
5970	case SEC_LEVEL_3:
5971		priv->sys_config.disable_multicast_decryption = 0;
5972		break;
5973	case SEC_LEVEL_2:
5974		priv->sys_config.disable_multicast_decryption = 1;
5975		break;
5976	case SEC_LEVEL_1:
5977		priv->sys_config.disable_multicast_decryption = 0;
5978		break;
5979	case SEC_LEVEL_0:
5980		priv->sys_config.disable_multicast_decryption = 1;
5981		break;
5982	default:
5983		break;
5984	}
5985}
5986
5987static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5988{
5989	switch (priv->ieee->sec.level) {
5990	case SEC_LEVEL_3:
5991		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5992			ipw_send_tgi_tx_key(priv,
5993					    DCT_FLAG_EXT_SECURITY_CCM,
5994					    priv->ieee->sec.active_key);
5995
5996		if (!priv->ieee->host_mc_decrypt)
5997			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5998		break;
5999	case SEC_LEVEL_2:
6000		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6001			ipw_send_tgi_tx_key(priv,
6002					    DCT_FLAG_EXT_SECURITY_TKIP,
6003					    priv->ieee->sec.active_key);
6004		break;
6005	case SEC_LEVEL_1:
6006		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6007		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6008		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6009		break;
6010	case SEC_LEVEL_0:
6011	default:
6012		break;
6013	}
6014}
6015
6016static void ipw_adhoc_check(void *data)
6017{
6018	struct ipw_priv *priv = data;
6019
6020	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6021	    !(priv->config & CFG_ADHOC_PERSIST)) {
6022		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6023			  IPW_DL_STATE | IPW_DL_ASSOC,
6024			  "Missed beacon: %d - disassociate\n",
6025			  priv->missed_adhoc_beacons);
6026		ipw_remove_current_network(priv);
6027		ipw_disassociate(priv);
6028		return;
6029	}
6030
6031	schedule_delayed_work(&priv->adhoc_check,
6032			      le16_to_cpu(priv->assoc_request.beacon_interval));
6033}
6034
6035static void ipw_bg_adhoc_check(struct work_struct *work)
6036{
6037	struct ipw_priv *priv =
6038		container_of(work, struct ipw_priv, adhoc_check.work);
6039	mutex_lock(&priv->mutex);
6040	ipw_adhoc_check(priv);
6041	mutex_unlock(&priv->mutex);
6042}
6043
6044static void ipw_debug_config(struct ipw_priv *priv)
6045{
6046	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6047		       "[CFG 0x%08X]\n", priv->config);
6048	if (priv->config & CFG_STATIC_CHANNEL)
6049		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6050	else
6051		IPW_DEBUG_INFO("Channel unlocked.\n");
6052	if (priv->config & CFG_STATIC_ESSID)
6053		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6054			       priv->essid_len, priv->essid);
6055	else
6056		IPW_DEBUG_INFO("ESSID unlocked.\n");
6057	if (priv->config & CFG_STATIC_BSSID)
6058		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6059	else
6060		IPW_DEBUG_INFO("BSSID unlocked.\n");
6061	if (priv->capability & CAP_PRIVACY_ON)
6062		IPW_DEBUG_INFO("PRIVACY on\n");
6063	else
6064		IPW_DEBUG_INFO("PRIVACY off\n");
6065	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6066}
6067
6068static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6069{
6070	/* TODO: Verify that this works... */
6071	struct ipw_fixed_rate fr;
6072	u32 reg;
6073	u16 mask = 0;
6074	u16 new_tx_rates = priv->rates_mask;
6075
6076	/* Identify 'current FW band' and match it with the fixed
6077	 * Tx rates */
6078
6079	switch (priv->ieee->freq_band) {
6080	case LIBIPW_52GHZ_BAND:	/* A only */
6081		/* IEEE_A */
6082		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6083			/* Invalid fixed rate mask */
6084			IPW_DEBUG_WX
6085			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6086			new_tx_rates = 0;
6087			break;
6088		}
6089
6090		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6091		break;
6092
6093	default:		/* 2.4Ghz or Mixed */
6094		/* IEEE_B */
6095		if (mode == IEEE_B) {
6096			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6097				/* Invalid fixed rate mask */
6098				IPW_DEBUG_WX
6099				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6100				new_tx_rates = 0;
6101			}
6102			break;
6103		}
6104
6105		/* IEEE_G */
6106		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6107				    LIBIPW_OFDM_RATES_MASK)) {
6108			/* Invalid fixed rate mask */
6109			IPW_DEBUG_WX
6110			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6111			new_tx_rates = 0;
6112			break;
6113		}
6114
6115		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6116			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6117			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6118		}
6119
6120		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6121			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6122			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6123		}
6124
6125		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6126			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6127			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6128		}
6129
6130		new_tx_rates |= mask;
6131		break;
6132	}
6133
6134	fr.tx_rates = cpu_to_le16(new_tx_rates);
6135
6136	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6137	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6138}
6139
6140static void ipw_abort_scan(struct ipw_priv *priv)
6141{
6142	int err;
6143
6144	if (priv->status & STATUS_SCAN_ABORTING) {
6145		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6146		return;
6147	}
6148	priv->status |= STATUS_SCAN_ABORTING;
6149
6150	err = ipw_send_scan_abort(priv);
6151	if (err)
6152		IPW_DEBUG_HC("Request to abort scan failed.\n");
6153}
6154
6155static void ipw_add_scan_channels(struct ipw_priv *priv,
6156				  struct ipw_scan_request_ext *scan,
6157				  int scan_type)
6158{
6159	int channel_index = 0;
6160	const struct libipw_geo *geo;
6161	int i;
6162
6163	geo = libipw_get_geo(priv->ieee);
6164
6165	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6166		int start = channel_index;
6167		for (i = 0; i < geo->a_channels; i++) {
6168			if ((priv->status & STATUS_ASSOCIATED) &&
6169			    geo->a[i].channel == priv->channel)
6170				continue;
6171			channel_index++;
6172			scan->channels_list[channel_index] = geo->a[i].channel;
6173			ipw_set_scan_type(scan, channel_index,
6174					  geo->a[i].
6175					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6176					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6177					  scan_type);
6178		}
6179
6180		if (start != channel_index) {
6181			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6182			    (channel_index - start);
6183			channel_index++;
6184		}
6185	}
6186
6187	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6188		int start = channel_index;
6189		if (priv->config & CFG_SPEED_SCAN) {
6190			int index;
6191			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6192				/* nop out the list */
6193				[0] = 0
6194			};
6195
6196			u8 channel;
6197			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6198				channel =
6199				    priv->speed_scan[priv->speed_scan_pos];
6200				if (channel == 0) {
6201					priv->speed_scan_pos = 0;
6202					channel = priv->speed_scan[0];
6203				}
6204				if ((priv->status & STATUS_ASSOCIATED) &&
6205				    channel == priv->channel) {
6206					priv->speed_scan_pos++;
6207					continue;
6208				}
6209
6210				/* If this channel has already been
6211				 * added in scan, break from loop
6212				 * and this will be the first channel
6213				 * in the next scan.
6214				 */
6215				if (channels[channel - 1] != 0)
6216					break;
6217
6218				channels[channel - 1] = 1;
6219				priv->speed_scan_pos++;
6220				channel_index++;
6221				scan->channels_list[channel_index] = channel;
6222				index =
6223				    libipw_channel_to_index(priv->ieee, channel);
6224				ipw_set_scan_type(scan, channel_index,
6225						  geo->bg[index].
6226						  flags &
6227						  LIBIPW_CH_PASSIVE_ONLY ?
6228						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6229						  : scan_type);
6230			}
6231		} else {
6232			for (i = 0; i < geo->bg_channels; i++) {
6233				if ((priv->status & STATUS_ASSOCIATED) &&
6234				    geo->bg[i].channel == priv->channel)
6235					continue;
6236				channel_index++;
6237				scan->channels_list[channel_index] =
6238				    geo->bg[i].channel;
6239				ipw_set_scan_type(scan, channel_index,
6240						  geo->bg[i].
6241						  flags &
6242						  LIBIPW_CH_PASSIVE_ONLY ?
6243						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6244						  : scan_type);
6245			}
6246		}
6247
6248		if (start != channel_index) {
6249			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6250			    (channel_index - start);
6251		}
6252	}
6253}
6254
6255static int ipw_passive_dwell_time(struct ipw_priv *priv)
6256{
6257	/* staying on passive channels longer than the DTIM interval during a
6258	 * scan, while associated, causes the firmware to cancel the scan
6259	 * without notification. Hence, don't stay on passive channels longer
6260	 * than the beacon interval.
6261	 */
6262	if (priv->status & STATUS_ASSOCIATED
6263	    && priv->assoc_network->beacon_interval > 10)
6264		return priv->assoc_network->beacon_interval - 10;
6265	else
6266		return 120;
6267}
6268
6269static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6270{
6271	struct ipw_scan_request_ext scan;
6272	int err = 0, scan_type;
6273
6274	if (!(priv->status & STATUS_INIT) ||
6275	    (priv->status & STATUS_EXIT_PENDING))
6276		return 0;
6277
6278	mutex_lock(&priv->mutex);
6279
6280	if (direct && (priv->direct_scan_ssid_len == 0)) {
6281		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6282		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6283		goto done;
6284	}
6285
6286	if (priv->status & STATUS_SCANNING) {
6287		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6288		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6289					STATUS_SCAN_PENDING;
6290		goto done;
6291	}
6292
6293	if (!(priv->status & STATUS_SCAN_FORCED) &&
6294	    priv->status & STATUS_SCAN_ABORTING) {
6295		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6296		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6297					STATUS_SCAN_PENDING;
6298		goto done;
6299	}
6300
6301	if (priv->status & STATUS_RF_KILL_MASK) {
6302		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6303		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6304					STATUS_SCAN_PENDING;
6305		goto done;
6306	}
6307
6308	memset(&scan, 0, sizeof(scan));
6309	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6310
6311	if (type == IW_SCAN_TYPE_PASSIVE) {
6312		IPW_DEBUG_WX("use passive scanning\n");
6313		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6314		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6315			cpu_to_le16(ipw_passive_dwell_time(priv));
6316		ipw_add_scan_channels(priv, &scan, scan_type);
6317		goto send_request;
6318	}
6319
6320	/* Use active scan by default. */
6321	if (priv->config & CFG_SPEED_SCAN)
6322		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6323			cpu_to_le16(30);
6324	else
6325		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6326			cpu_to_le16(20);
6327
6328	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6329		cpu_to_le16(20);
6330
6331	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6332		cpu_to_le16(ipw_passive_dwell_time(priv));
6333	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6334
6335#ifdef CONFIG_IPW2200_MONITOR
6336	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6337		u8 channel;
6338		u8 band = 0;
6339
6340		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6341		case LIBIPW_52GHZ_BAND:
6342			band = (u8) (IPW_A_MODE << 6) | 1;
6343			channel = priv->channel;
6344			break;
6345
6346		case LIBIPW_24GHZ_BAND:
6347			band = (u8) (IPW_B_MODE << 6) | 1;
6348			channel = priv->channel;
6349			break;
6350
6351		default:
6352			band = (u8) (IPW_B_MODE << 6) | 1;
6353			channel = 9;
6354			break;
6355		}
6356
6357		scan.channels_list[0] = band;
6358		scan.channels_list[1] = channel;
6359		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6360
6361		/* NOTE:  The card will sit on this channel for this time
6362		 * period.  Scan aborts are timing sensitive and frequently
6363		 * result in firmware restarts.  As such, it is best to
6364		 * set a small dwell_time here and just keep re-issuing
6365		 * scans.  Otherwise fast channel hopping will not actually
6366		 * hop channels.
6367		 *
6368		 * TODO: Move SPEED SCAN support to all modes and bands */
6369		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6370			cpu_to_le16(2000);
6371	} else {
6372#endif				/* CONFIG_IPW2200_MONITOR */
6373		/* Honor direct scans first, otherwise if we are roaming make
6374		 * this a direct scan for the current network.  Finally,
6375		 * ensure that every other scan is a fast channel hop scan */
6376		if (direct) {
6377			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6378			                    priv->direct_scan_ssid_len);
6379			if (err) {
6380				IPW_DEBUG_HC("Attempt to send SSID command  "
6381					     "failed\n");
6382				goto done;
6383			}
6384
6385			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6386		} else if ((priv->status & STATUS_ROAMING)
6387			   || (!(priv->status & STATUS_ASSOCIATED)
6388			       && (priv->config & CFG_STATIC_ESSID)
6389			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6390			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6391			if (err) {
6392				IPW_DEBUG_HC("Attempt to send SSID command "
6393					     "failed.\n");
6394				goto done;
6395			}
6396
6397			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6398		} else
6399			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6400
6401		ipw_add_scan_channels(priv, &scan, scan_type);
6402#ifdef CONFIG_IPW2200_MONITOR
6403	}
6404#endif
6405
6406send_request:
6407	err = ipw_send_scan_request_ext(priv, &scan);
6408	if (err) {
6409		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6410		goto done;
6411	}
6412
6413	priv->status |= STATUS_SCANNING;
6414	if (direct) {
6415		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6416		priv->direct_scan_ssid_len = 0;
6417	} else
6418		priv->status &= ~STATUS_SCAN_PENDING;
6419
6420	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6421done:
6422	mutex_unlock(&priv->mutex);
6423	return err;
6424}
6425
6426static void ipw_request_passive_scan(struct work_struct *work)
6427{
6428	struct ipw_priv *priv =
6429		container_of(work, struct ipw_priv, request_passive_scan.work);
6430	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6431}
6432
6433static void ipw_request_scan(struct work_struct *work)
6434{
6435	struct ipw_priv *priv =
6436		container_of(work, struct ipw_priv, request_scan.work);
6437	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6438}
6439
6440static void ipw_request_direct_scan(struct work_struct *work)
6441{
6442	struct ipw_priv *priv =
6443		container_of(work, struct ipw_priv, request_direct_scan.work);
6444	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6445}
6446
6447static void ipw_bg_abort_scan(struct work_struct *work)
6448{
6449	struct ipw_priv *priv =
6450		container_of(work, struct ipw_priv, abort_scan);
6451	mutex_lock(&priv->mutex);
6452	ipw_abort_scan(priv);
6453	mutex_unlock(&priv->mutex);
6454}
6455
6456static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6457{
6458	/* This is called when wpa_supplicant loads and closes the driver
6459	 * interface. */
6460	priv->ieee->wpa_enabled = value;
6461	return 0;
6462}
6463
6464static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6465{
6466	struct libipw_device *ieee = priv->ieee;
6467	struct libipw_security sec = {
6468		.flags = SEC_AUTH_MODE,
6469	};
6470	int ret = 0;
6471
6472	if (value & IW_AUTH_ALG_SHARED_KEY) {
6473		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6474		ieee->open_wep = 0;
6475	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6476		sec.auth_mode = WLAN_AUTH_OPEN;
6477		ieee->open_wep = 1;
6478	} else if (value & IW_AUTH_ALG_LEAP) {
6479		sec.auth_mode = WLAN_AUTH_LEAP;
6480		ieee->open_wep = 1;
6481	} else
6482		return -EINVAL;
6483
6484	if (ieee->set_security)
6485		ieee->set_security(ieee->dev, &sec);
6486	else
6487		ret = -EOPNOTSUPP;
6488
6489	return ret;
6490}
6491
6492static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6493				int wpa_ie_len)
6494{
6495	/* make sure WPA is enabled */
6496	ipw_wpa_enable(priv, 1);
6497}
6498
6499static int ipw_set_rsn_capa(struct ipw_priv *priv,
6500			    char *capabilities, int length)
6501{
6502	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6503
6504	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6505				capabilities);
6506}
6507
6508/*
6509 * WE-18 support
6510 */
6511
6512/* SIOCSIWGENIE */
6513static int ipw_wx_set_genie(struct net_device *dev,
6514			    struct iw_request_info *info,
6515			    union iwreq_data *wrqu, char *extra)
6516{
6517	struct ipw_priv *priv = libipw_priv(dev);
6518	struct libipw_device *ieee = priv->ieee;
6519	u8 *buf;
6520	int err = 0;
6521
6522	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6523	    (wrqu->data.length && extra == NULL))
6524		return -EINVAL;
6525
6526	if (wrqu->data.length) {
6527		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6528		if (buf == NULL) {
6529			err = -ENOMEM;
6530			goto out;
6531		}
6532
6533		kfree(ieee->wpa_ie);
6534		ieee->wpa_ie = buf;
6535		ieee->wpa_ie_len = wrqu->data.length;
6536	} else {
6537		kfree(ieee->wpa_ie);
6538		ieee->wpa_ie = NULL;
6539		ieee->wpa_ie_len = 0;
6540	}
6541
6542	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6543      out:
6544	return err;
6545}
6546
6547/* SIOCGIWGENIE */
6548static int ipw_wx_get_genie(struct net_device *dev,
6549			    struct iw_request_info *info,
6550			    union iwreq_data *wrqu, char *extra)
6551{
6552	struct ipw_priv *priv = libipw_priv(dev);
6553	struct libipw_device *ieee = priv->ieee;
6554	int err = 0;
6555
6556	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6557		wrqu->data.length = 0;
6558		goto out;
6559	}
6560
6561	if (wrqu->data.length < ieee->wpa_ie_len) {
6562		err = -E2BIG;
6563		goto out;
6564	}
6565
6566	wrqu->data.length = ieee->wpa_ie_len;
6567	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6568
6569      out:
6570	return err;
6571}
6572
6573static int wext_cipher2level(int cipher)
6574{
6575	switch (cipher) {
6576	case IW_AUTH_CIPHER_NONE:
6577		return SEC_LEVEL_0;
6578	case IW_AUTH_CIPHER_WEP40:
6579	case IW_AUTH_CIPHER_WEP104:
6580		return SEC_LEVEL_1;
6581	case IW_AUTH_CIPHER_TKIP:
6582		return SEC_LEVEL_2;
6583	case IW_AUTH_CIPHER_CCMP:
6584		return SEC_LEVEL_3;
6585	default:
6586		return -1;
6587	}
6588}
6589
6590/* SIOCSIWAUTH */
6591static int ipw_wx_set_auth(struct net_device *dev,
6592			   struct iw_request_info *info,
6593			   union iwreq_data *wrqu, char *extra)
6594{
6595	struct ipw_priv *priv = libipw_priv(dev);
6596	struct libipw_device *ieee = priv->ieee;
6597	struct iw_param *param = &wrqu->param;
6598	struct lib80211_crypt_data *crypt;
6599	unsigned long flags;
6600	int ret = 0;
6601
6602	switch (param->flags & IW_AUTH_INDEX) {
6603	case IW_AUTH_WPA_VERSION:
6604		break;
6605	case IW_AUTH_CIPHER_PAIRWISE:
6606		ipw_set_hw_decrypt_unicast(priv,
6607					   wext_cipher2level(param->value));
6608		break;
6609	case IW_AUTH_CIPHER_GROUP:
6610		ipw_set_hw_decrypt_multicast(priv,
6611					     wext_cipher2level(param->value));
6612		break;
6613	case IW_AUTH_KEY_MGMT:
6614		/*
6615		 * ipw2200 does not use these parameters
6616		 */
6617		break;
6618
6619	case IW_AUTH_TKIP_COUNTERMEASURES:
6620		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6621		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6622			break;
6623
6624		flags = crypt->ops->get_flags(crypt->priv);
6625
6626		if (param->value)
6627			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6628		else
6629			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6630
6631		crypt->ops->set_flags(flags, crypt->priv);
6632
6633		break;
6634
6635	case IW_AUTH_DROP_UNENCRYPTED:{
6636			/* HACK:
6637			 *
6638			 * wpa_supplicant calls set_wpa_enabled when the driver
6639			 * is loaded and unloaded, regardless of if WPA is being
6640			 * used.  No other calls are made which can be used to
6641			 * determine if encryption will be used or not prior to
6642			 * association being expected.  If encryption is not being
6643			 * used, drop_unencrypted is set to false, else true -- we
6644			 * can use this to determine if the CAP_PRIVACY_ON bit should
6645			 * be set.
6646			 */
6647			struct libipw_security sec = {
6648				.flags = SEC_ENABLED,
6649				.enabled = param->value,
6650			};
6651			priv->ieee->drop_unencrypted = param->value;
6652			/* We only change SEC_LEVEL for open mode. Others
6653			 * are set by ipw_wpa_set_encryption.
6654			 */
6655			if (!param->value) {
6656				sec.flags |= SEC_LEVEL;
6657				sec.level = SEC_LEVEL_0;
6658			} else {
6659				sec.flags |= SEC_LEVEL;
6660				sec.level = SEC_LEVEL_1;
6661			}
6662			if (priv->ieee->set_security)
6663				priv->ieee->set_security(priv->ieee->dev, &sec);
6664			break;
6665		}
6666
6667	case IW_AUTH_80211_AUTH_ALG:
6668		ret = ipw_wpa_set_auth_algs(priv, param->value);
6669		break;
6670
6671	case IW_AUTH_WPA_ENABLED:
6672		ret = ipw_wpa_enable(priv, param->value);
6673		ipw_disassociate(priv);
6674		break;
6675
6676	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6677		ieee->ieee802_1x = param->value;
6678		break;
6679
6680	case IW_AUTH_PRIVACY_INVOKED:
6681		ieee->privacy_invoked = param->value;
6682		break;
6683
6684	default:
6685		return -EOPNOTSUPP;
6686	}
6687	return ret;
6688}
6689
6690/* SIOCGIWAUTH */
6691static int ipw_wx_get_auth(struct net_device *dev,
6692			   struct iw_request_info *info,
6693			   union iwreq_data *wrqu, char *extra)
6694{
6695	struct ipw_priv *priv = libipw_priv(dev);
6696	struct libipw_device *ieee = priv->ieee;
6697	struct lib80211_crypt_data *crypt;
6698	struct iw_param *param = &wrqu->param;
6699
6700	switch (param->flags & IW_AUTH_INDEX) {
6701	case IW_AUTH_WPA_VERSION:
6702	case IW_AUTH_CIPHER_PAIRWISE:
6703	case IW_AUTH_CIPHER_GROUP:
6704	case IW_AUTH_KEY_MGMT:
6705		/*
6706		 * wpa_supplicant will control these internally
6707		 */
6708		return -EOPNOTSUPP;
6709
6710	case IW_AUTH_TKIP_COUNTERMEASURES:
6711		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6712		if (!crypt || !crypt->ops->get_flags)
6713			break;
6714
6715		param->value = (crypt->ops->get_flags(crypt->priv) &
6716				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6717
6718		break;
6719
6720	case IW_AUTH_DROP_UNENCRYPTED:
6721		param->value = ieee->drop_unencrypted;
6722		break;
6723
6724	case IW_AUTH_80211_AUTH_ALG:
6725		param->value = ieee->sec.auth_mode;
6726		break;
6727
6728	case IW_AUTH_WPA_ENABLED:
6729		param->value = ieee->wpa_enabled;
6730		break;
6731
6732	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6733		param->value = ieee->ieee802_1x;
6734		break;
6735
6736	case IW_AUTH_ROAMING_CONTROL:
6737	case IW_AUTH_PRIVACY_INVOKED:
6738		param->value = ieee->privacy_invoked;
6739		break;
6740
6741	default:
6742		return -EOPNOTSUPP;
6743	}
6744	return 0;
6745}
6746
6747/* SIOCSIWENCODEEXT */
6748static int ipw_wx_set_encodeext(struct net_device *dev,
6749				struct iw_request_info *info,
6750				union iwreq_data *wrqu, char *extra)
6751{
6752	struct ipw_priv *priv = libipw_priv(dev);
6753	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6754
6755	if (hwcrypto) {
6756		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6757			/* IPW HW can't build TKIP MIC,
6758			   host decryption still needed */
6759			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6760				priv->ieee->host_mc_decrypt = 1;
6761			else {
6762				priv->ieee->host_encrypt = 0;
6763				priv->ieee->host_encrypt_msdu = 1;
6764				priv->ieee->host_decrypt = 1;
6765			}
6766		} else {
6767			priv->ieee->host_encrypt = 0;
6768			priv->ieee->host_encrypt_msdu = 0;
6769			priv->ieee->host_decrypt = 0;
6770			priv->ieee->host_mc_decrypt = 0;
6771		}
6772	}
6773
6774	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6775}
6776
6777/* SIOCGIWENCODEEXT */
6778static int ipw_wx_get_encodeext(struct net_device *dev,
6779				struct iw_request_info *info,
6780				union iwreq_data *wrqu, char *extra)
6781{
6782	struct ipw_priv *priv = libipw_priv(dev);
6783	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6784}
6785
6786/* SIOCSIWMLME */
6787static int ipw_wx_set_mlme(struct net_device *dev,
6788			   struct iw_request_info *info,
6789			   union iwreq_data *wrqu, char *extra)
6790{
6791	struct ipw_priv *priv = libipw_priv(dev);
6792	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6793
6794	switch (mlme->cmd) {
6795	case IW_MLME_DEAUTH:
6796		/* silently ignore */
6797		break;
6798
6799	case IW_MLME_DISASSOC:
6800		ipw_disassociate(priv);
6801		break;
6802
6803	default:
6804		return -EOPNOTSUPP;
6805	}
6806	return 0;
6807}
6808
6809#ifdef CONFIG_IPW2200_QOS
6810
6811/* QoS */
6812/*
6813* get the modulation type of the current network or
6814* the card current mode
6815*/
6816static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6817{
6818	u8 mode = 0;
6819
6820	if (priv->status & STATUS_ASSOCIATED) {
6821		unsigned long flags;
6822
6823		spin_lock_irqsave(&priv->ieee->lock, flags);
6824		mode = priv->assoc_network->mode;
6825		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6826	} else {
6827		mode = priv->ieee->mode;
6828	}
6829	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6830	return mode;
6831}
6832
6833/*
6834* Handle management frame beacon and probe response
6835*/
6836static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6837					 int active_network,
6838					 struct libipw_network *network)
6839{
6840	u32 size = sizeof(struct libipw_qos_parameters);
6841
6842	if (network->capability & WLAN_CAPABILITY_IBSS)
6843		network->qos_data.active = network->qos_data.supported;
6844
6845	if (network->flags & NETWORK_HAS_QOS_MASK) {
6846		if (active_network &&
6847		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6848			network->qos_data.active = network->qos_data.supported;
6849
6850		if ((network->qos_data.active == 1) && (active_network == 1) &&
6851		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6852		    (network->qos_data.old_param_count !=
6853		     network->qos_data.param_count)) {
6854			network->qos_data.old_param_count =
6855			    network->qos_data.param_count;
6856			schedule_work(&priv->qos_activate);
6857			IPW_DEBUG_QOS("QoS parameters change call "
6858				      "qos_activate\n");
6859		}
6860	} else {
6861		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6862			memcpy(&network->qos_data.parameters,
6863			       &def_parameters_CCK, size);
6864		else
6865			memcpy(&network->qos_data.parameters,
6866			       &def_parameters_OFDM, size);
6867
6868		if ((network->qos_data.active == 1) && (active_network == 1)) {
6869			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6870			schedule_work(&priv->qos_activate);
6871		}
6872
6873		network->qos_data.active = 0;
6874		network->qos_data.supported = 0;
6875	}
6876	if ((priv->status & STATUS_ASSOCIATED) &&
6877	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6878		if (!ether_addr_equal(network->bssid, priv->bssid))
6879			if (network->capability & WLAN_CAPABILITY_IBSS)
6880				if ((network->ssid_len ==
6881				     priv->assoc_network->ssid_len) &&
6882				    !memcmp(network->ssid,
6883					    priv->assoc_network->ssid,
6884					    network->ssid_len)) {
6885					schedule_work(&priv->merge_networks);
6886				}
6887	}
6888
6889	return 0;
6890}
6891
6892/*
6893* This function set up the firmware to support QoS. It sends
6894* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6895*/
6896static int ipw_qos_activate(struct ipw_priv *priv,
6897			    struct libipw_qos_data *qos_network_data)
6898{
6899	int err;
6900	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6901	struct libipw_qos_parameters *active_one = NULL;
6902	u32 size = sizeof(struct libipw_qos_parameters);
6903	u32 burst_duration;
6904	int i;
6905	u8 type;
6906
6907	type = ipw_qos_current_mode(priv);
6908
6909	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6910	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6911	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6912	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6913
6914	if (qos_network_data == NULL) {
6915		if (type == IEEE_B) {
6916			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6917			active_one = &def_parameters_CCK;
6918		} else
6919			active_one = &def_parameters_OFDM;
6920
6921		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6922		burst_duration = ipw_qos_get_burst_duration(priv);
6923		for (i = 0; i < QOS_QUEUE_NUM; i++)
6924			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6925			    cpu_to_le16(burst_duration);
6926	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6927		if (type == IEEE_B) {
6928			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6929				      type);
6930			if (priv->qos_data.qos_enable == 0)
6931				active_one = &def_parameters_CCK;
6932			else
6933				active_one = priv->qos_data.def_qos_parm_CCK;
6934		} else {
6935			if (priv->qos_data.qos_enable == 0)
6936				active_one = &def_parameters_OFDM;
6937			else
6938				active_one = priv->qos_data.def_qos_parm_OFDM;
6939		}
6940		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6941	} else {
6942		unsigned long flags;
6943		int active;
6944
6945		spin_lock_irqsave(&priv->ieee->lock, flags);
6946		active_one = &(qos_network_data->parameters);
6947		qos_network_data->old_param_count =
6948		    qos_network_data->param_count;
6949		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6950		active = qos_network_data->supported;
6951		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6952
6953		if (active == 0) {
6954			burst_duration = ipw_qos_get_burst_duration(priv);
6955			for (i = 0; i < QOS_QUEUE_NUM; i++)
6956				qos_parameters[QOS_PARAM_SET_ACTIVE].
6957				    tx_op_limit[i] = cpu_to_le16(burst_duration);
6958		}
6959	}
6960
6961	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6962	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6963	if (err)
6964		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6965
6966	return err;
6967}
6968
6969/*
6970* send IPW_CMD_WME_INFO to the firmware
6971*/
6972static int ipw_qos_set_info_element(struct ipw_priv *priv)
6973{
6974	int ret = 0;
6975	struct libipw_qos_information_element qos_info;
6976
6977	if (priv == NULL)
6978		return -1;
6979
6980	qos_info.elementID = QOS_ELEMENT_ID;
6981	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6982
6983	qos_info.version = QOS_VERSION_1;
6984	qos_info.ac_info = 0;
6985
6986	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6987	qos_info.qui_type = QOS_OUI_TYPE;
6988	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6989
6990	ret = ipw_send_qos_info_command(priv, &qos_info);
6991	if (ret != 0) {
6992		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6993	}
6994	return ret;
6995}
6996
6997/*
6998* Set the QoS parameter with the association request structure
6999*/
7000static int ipw_qos_association(struct ipw_priv *priv,
7001			       struct libipw_network *network)
7002{
7003	int err = 0;
7004	struct libipw_qos_data *qos_data = NULL;
7005	struct libipw_qos_data ibss_data = {
7006		.supported = 1,
7007		.active = 1,
7008	};
7009
7010	switch (priv->ieee->iw_mode) {
7011	case IW_MODE_ADHOC:
7012		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7013
7014		qos_data = &ibss_data;
7015		break;
7016
7017	case IW_MODE_INFRA:
7018		qos_data = &network->qos_data;
7019		break;
7020
7021	default:
7022		BUG();
7023		break;
7024	}
7025
7026	err = ipw_qos_activate(priv, qos_data);
7027	if (err) {
7028		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7029		return err;
7030	}
7031
7032	if (priv->qos_data.qos_enable && qos_data->supported) {
7033		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7034		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7035		return ipw_qos_set_info_element(priv);
7036	}
7037
7038	return 0;
7039}
7040
7041/*
7042* handling the beaconing responses. if we get different QoS setting
7043* off the network from the associated setting, adjust the QoS
7044* setting
7045*/
7046static void ipw_qos_association_resp(struct ipw_priv *priv,
7047				    struct libipw_network *network)
7048{
7049	unsigned long flags;
7050	u32 size = sizeof(struct libipw_qos_parameters);
7051	int set_qos_param = 0;
7052
7053	if ((priv == NULL) || (network == NULL) ||
7054	    (priv->assoc_network == NULL))
7055		return;
7056
7057	if (!(priv->status & STATUS_ASSOCIATED))
7058		return;
7059
7060	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7061		return;
7062
7063	spin_lock_irqsave(&priv->ieee->lock, flags);
7064	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7065		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7066		       sizeof(struct libipw_qos_data));
7067		priv->assoc_network->qos_data.active = 1;
7068		if ((network->qos_data.old_param_count !=
7069		     network->qos_data.param_count)) {
7070			set_qos_param = 1;
7071			network->qos_data.old_param_count =
7072			    network->qos_data.param_count;
7073		}
7074
7075	} else {
7076		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7077			memcpy(&priv->assoc_network->qos_data.parameters,
7078			       &def_parameters_CCK, size);
7079		else
7080			memcpy(&priv->assoc_network->qos_data.parameters,
7081			       &def_parameters_OFDM, size);
7082		priv->assoc_network->qos_data.active = 0;
7083		priv->assoc_network->qos_data.supported = 0;
7084		set_qos_param = 1;
7085	}
7086
7087	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7088
7089	if (set_qos_param == 1)
7090		schedule_work(&priv->qos_activate);
7091}
7092
7093static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7094{
7095	u32 ret = 0;
7096
7097	if (!priv)
7098		return 0;
7099
7100	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7101		ret = priv->qos_data.burst_duration_CCK;
7102	else
7103		ret = priv->qos_data.burst_duration_OFDM;
7104
7105	return ret;
7106}
7107
7108/*
7109* Initialize the setting of QoS global
7110*/
7111static void ipw_qos_init(struct ipw_priv *priv, int enable,
7112			 int burst_enable, u32 burst_duration_CCK,
7113			 u32 burst_duration_OFDM)
7114{
7115	priv->qos_data.qos_enable = enable;
7116
7117	if (priv->qos_data.qos_enable) {
7118		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7119		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7120		IPW_DEBUG_QOS("QoS is enabled\n");
7121	} else {
7122		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7123		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7124		IPW_DEBUG_QOS("QoS is not enabled\n");
7125	}
7126
7127	priv->qos_data.burst_enable = burst_enable;
7128
7129	if (burst_enable) {
7130		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7131		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7132	} else {
7133		priv->qos_data.burst_duration_CCK = 0;
7134		priv->qos_data.burst_duration_OFDM = 0;
7135	}
7136}
7137
7138/*
7139* map the packet priority to the right TX Queue
7140*/
7141static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7142{
7143	if (priority > 7 || !priv->qos_data.qos_enable)
7144		priority = 0;
7145
7146	return from_priority_to_tx_queue[priority] - 1;
7147}
7148
7149static int ipw_is_qos_active(struct net_device *dev,
7150			     struct sk_buff *skb)
7151{
7152	struct ipw_priv *priv = libipw_priv(dev);
7153	struct libipw_qos_data *qos_data = NULL;
7154	int active, supported;
7155	u8 *daddr = skb->data + ETH_ALEN;
7156	int unicast = !is_multicast_ether_addr(daddr);
7157
7158	if (!(priv->status & STATUS_ASSOCIATED))
7159		return 0;
7160
7161	qos_data = &priv->assoc_network->qos_data;
7162
7163	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7164		if (unicast == 0)
7165			qos_data->active = 0;
7166		else
7167			qos_data->active = qos_data->supported;
7168	}
7169	active = qos_data->active;
7170	supported = qos_data->supported;
7171	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7172		      "unicast %d\n",
7173		      priv->qos_data.qos_enable, active, supported, unicast);
7174	if (active && priv->qos_data.qos_enable)
7175		return 1;
7176
7177	return 0;
7178
7179}
7180/*
7181* add QoS parameter to the TX command
7182*/
7183static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7184					u16 priority,
7185					struct tfd_data *tfd)
7186{
7187	int tx_queue_id = 0;
7188
7189
7190	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7191	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7192
7193	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7194		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7195		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7196	}
7197	return 0;
7198}
7199
7200/*
7201* background support to run QoS activate functionality
7202*/
7203static void ipw_bg_qos_activate(struct work_struct *work)
7204{
7205	struct ipw_priv *priv =
7206		container_of(work, struct ipw_priv, qos_activate);
7207
7208	mutex_lock(&priv->mutex);
7209
7210	if (priv->status & STATUS_ASSOCIATED)
7211		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7212
7213	mutex_unlock(&priv->mutex);
7214}
7215
7216static int ipw_handle_probe_response(struct net_device *dev,
7217				     struct libipw_probe_response *resp,
7218				     struct libipw_network *network)
7219{
7220	struct ipw_priv *priv = libipw_priv(dev);
7221	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7222			      (network == priv->assoc_network));
7223
7224	ipw_qos_handle_probe_response(priv, active_network, network);
7225
7226	return 0;
7227}
7228
7229static int ipw_handle_beacon(struct net_device *dev,
7230			     struct libipw_beacon *resp,
7231			     struct libipw_network *network)
7232{
7233	struct ipw_priv *priv = libipw_priv(dev);
7234	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7235			      (network == priv->assoc_network));
7236
7237	ipw_qos_handle_probe_response(priv, active_network, network);
7238
7239	return 0;
7240}
7241
7242static int ipw_handle_assoc_response(struct net_device *dev,
7243				     struct libipw_assoc_response *resp,
7244				     struct libipw_network *network)
7245{
7246	struct ipw_priv *priv = libipw_priv(dev);
7247	ipw_qos_association_resp(priv, network);
7248	return 0;
7249}
7250
7251static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7252				       *qos_param)
7253{
7254	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7255				sizeof(*qos_param) * 3, qos_param);
7256}
7257
7258static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7259				     *qos_param)
7260{
7261	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7262				qos_param);
7263}
7264
7265#endif				/* CONFIG_IPW2200_QOS */
7266
7267static int ipw_associate_network(struct ipw_priv *priv,
7268				 struct libipw_network *network,
7269				 struct ipw_supported_rates *rates, int roaming)
7270{
7271	int err;
7272
7273	if (priv->config & CFG_FIXED_RATE)
7274		ipw_set_fixed_rate(priv, network->mode);
7275
7276	if (!(priv->config & CFG_STATIC_ESSID)) {
7277		priv->essid_len = min(network->ssid_len,
7278				      (u8) IW_ESSID_MAX_SIZE);
7279		memcpy(priv->essid, network->ssid, priv->essid_len);
7280	}
7281
7282	network->last_associate = jiffies;
7283
7284	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7285	priv->assoc_request.channel = network->channel;
7286	priv->assoc_request.auth_key = 0;
7287
7288	if ((priv->capability & CAP_PRIVACY_ON) &&
7289	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7290		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7291		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7292
7293		if (priv->ieee->sec.level == SEC_LEVEL_1)
7294			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7295
7296	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7297		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7298		priv->assoc_request.auth_type = AUTH_LEAP;
7299	else
7300		priv->assoc_request.auth_type = AUTH_OPEN;
7301
7302	if (priv->ieee->wpa_ie_len) {
7303		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7304		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7305				 priv->ieee->wpa_ie_len);
7306	}
7307
7308	/*
7309	 * It is valid for our ieee device to support multiple modes, but
7310	 * when it comes to associating to a given network we have to choose
7311	 * just one mode.
7312	 */
7313	if (network->mode & priv->ieee->mode & IEEE_A)
7314		priv->assoc_request.ieee_mode = IPW_A_MODE;
7315	else if (network->mode & priv->ieee->mode & IEEE_G)
7316		priv->assoc_request.ieee_mode = IPW_G_MODE;
7317	else if (network->mode & priv->ieee->mode & IEEE_B)
7318		priv->assoc_request.ieee_mode = IPW_B_MODE;
7319
7320	priv->assoc_request.capability = cpu_to_le16(network->capability);
7321	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7322	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7323		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7324	} else {
7325		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7326
7327		/* Clear the short preamble if we won't be supporting it */
7328		priv->assoc_request.capability &=
7329		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7330	}
7331
7332	/* Clear capability bits that aren't used in Ad Hoc */
7333	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7334		priv->assoc_request.capability &=
7335		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7336
7337	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7338			roaming ? "Rea" : "A",
7339			priv->essid_len, priv->essid,
7340			network->channel,
7341			ipw_modes[priv->assoc_request.ieee_mode],
7342			rates->num_rates,
7343			(priv->assoc_request.preamble_length ==
7344			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7345			network->capability &
7346			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7347			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7348			priv->capability & CAP_PRIVACY_ON ?
7349			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7350			 "(open)") : "",
7351			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7352			priv->capability & CAP_PRIVACY_ON ?
7353			'1' + priv->ieee->sec.active_key : '.',
7354			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7355
7356	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7357	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7358	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7359		priv->assoc_request.assoc_type = HC_IBSS_START;
7360		priv->assoc_request.assoc_tsf_msw = 0;
7361		priv->assoc_request.assoc_tsf_lsw = 0;
7362	} else {
7363		if (unlikely(roaming))
7364			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7365		else
7366			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7367		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7368		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7369	}
7370
7371	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7372
7373	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7374		eth_broadcast_addr(priv->assoc_request.dest);
7375		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7376	} else {
7377		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7378		priv->assoc_request.atim_window = 0;
7379	}
7380
7381	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7382
7383	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7384	if (err) {
7385		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7386		return err;
7387	}
7388
7389	rates->ieee_mode = priv->assoc_request.ieee_mode;
7390	rates->purpose = IPW_RATE_CONNECT;
7391	ipw_send_supported_rates(priv, rates);
7392
7393	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7394		priv->sys_config.dot11g_auto_detection = 1;
7395	else
7396		priv->sys_config.dot11g_auto_detection = 0;
7397
7398	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7399		priv->sys_config.answer_broadcast_ssid_probe = 1;
7400	else
7401		priv->sys_config.answer_broadcast_ssid_probe = 0;
7402
7403	err = ipw_send_system_config(priv);
7404	if (err) {
7405		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7406		return err;
7407	}
7408
7409	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7410	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7411	if (err) {
7412		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7413		return err;
7414	}
7415
7416	/*
7417	 * If preemption is enabled, it is possible for the association
7418	 * to complete before we return from ipw_send_associate.  Therefore
7419	 * we have to be sure and update our priviate data first.
7420	 */
7421	priv->channel = network->channel;
7422	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7423	priv->status |= STATUS_ASSOCIATING;
7424	priv->status &= ~STATUS_SECURITY_UPDATED;
7425
7426	priv->assoc_network = network;
7427
7428#ifdef CONFIG_IPW2200_QOS
7429	ipw_qos_association(priv, network);
7430#endif
7431
7432	err = ipw_send_associate(priv, &priv->assoc_request);
7433	if (err) {
7434		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7435		return err;
7436	}
7437
7438	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7439		  priv->essid_len, priv->essid, priv->bssid);
7440
7441	return 0;
7442}
7443
7444static void ipw_roam(void *data)
7445{
7446	struct ipw_priv *priv = data;
7447	struct libipw_network *network = NULL;
7448	struct ipw_network_match match = {
7449		.network = priv->assoc_network
7450	};
7451
7452	/* The roaming process is as follows:
7453	 *
7454	 * 1.  Missed beacon threshold triggers the roaming process by
7455	 *     setting the status ROAM bit and requesting a scan.
7456	 * 2.  When the scan completes, it schedules the ROAM work
7457	 * 3.  The ROAM work looks at all of the known networks for one that
7458	 *     is a better network than the currently associated.  If none
7459	 *     found, the ROAM process is over (ROAM bit cleared)
7460	 * 4.  If a better network is found, a disassociation request is
7461	 *     sent.
7462	 * 5.  When the disassociation completes, the roam work is again
7463	 *     scheduled.  The second time through, the driver is no longer
7464	 *     associated, and the newly selected network is sent an
7465	 *     association request.
7466	 * 6.  At this point ,the roaming process is complete and the ROAM
7467	 *     status bit is cleared.
7468	 */
7469
7470	/* If we are no longer associated, and the roaming bit is no longer
7471	 * set, then we are not actively roaming, so just return */
7472	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7473		return;
7474
7475	if (priv->status & STATUS_ASSOCIATED) {
7476		/* First pass through ROAM process -- look for a better
7477		 * network */
7478		unsigned long flags;
7479		u8 rssi = priv->assoc_network->stats.rssi;
7480		priv->assoc_network->stats.rssi = -128;
7481		spin_lock_irqsave(&priv->ieee->lock, flags);
7482		list_for_each_entry(network, &priv->ieee->network_list, list) {
7483			if (network != priv->assoc_network)
7484				ipw_best_network(priv, &match, network, 1);
7485		}
7486		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7487		priv->assoc_network->stats.rssi = rssi;
7488
7489		if (match.network == priv->assoc_network) {
7490			IPW_DEBUG_ASSOC("No better APs in this network to "
7491					"roam to.\n");
7492			priv->status &= ~STATUS_ROAMING;
7493			ipw_debug_config(priv);
7494			return;
7495		}
7496
7497		ipw_send_disassociate(priv, 1);
7498		priv->assoc_network = match.network;
7499
7500		return;
7501	}
7502
7503	/* Second pass through ROAM process -- request association */
7504	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7505	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7506	priv->status &= ~STATUS_ROAMING;
7507}
7508
7509static void ipw_bg_roam(struct work_struct *work)
7510{
7511	struct ipw_priv *priv =
7512		container_of(work, struct ipw_priv, roam);
7513	mutex_lock(&priv->mutex);
7514	ipw_roam(priv);
7515	mutex_unlock(&priv->mutex);
7516}
7517
7518static int ipw_associate(void *data)
7519{
7520	struct ipw_priv *priv = data;
7521
7522	struct libipw_network *network = NULL;
7523	struct ipw_network_match match = {
7524		.network = NULL
7525	};
7526	struct ipw_supported_rates *rates;
7527	struct list_head *element;
7528	unsigned long flags;
7529
7530	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7531		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7532		return 0;
7533	}
7534
7535	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7536		IPW_DEBUG_ASSOC("Not attempting association (already in "
7537				"progress)\n");
7538		return 0;
7539	}
7540
7541	if (priv->status & STATUS_DISASSOCIATING) {
7542		IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7543		schedule_work(&priv->associate);
7544		return 0;
7545	}
7546
7547	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7548		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7549				"initialized)\n");
7550		return 0;
7551	}
7552
7553	if (!(priv->config & CFG_ASSOCIATE) &&
7554	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7555		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7556		return 0;
7557	}
7558
7559	/* Protect our use of the network_list */
7560	spin_lock_irqsave(&priv->ieee->lock, flags);
7561	list_for_each_entry(network, &priv->ieee->network_list, list)
7562	    ipw_best_network(priv, &match, network, 0);
7563
7564	network = match.network;
7565	rates = &match.rates;
7566
7567	if (network == NULL &&
7568	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7569	    priv->config & CFG_ADHOC_CREATE &&
7570	    priv->config & CFG_STATIC_ESSID &&
7571	    priv->config & CFG_STATIC_CHANNEL) {
7572		/* Use oldest network if the free list is empty */
7573		if (list_empty(&priv->ieee->network_free_list)) {
7574			struct libipw_network *oldest = NULL;
7575			struct libipw_network *target;
7576
7577			list_for_each_entry(target, &priv->ieee->network_list, list) {
7578				if ((oldest == NULL) ||
7579				    (target->last_scanned < oldest->last_scanned))
7580					oldest = target;
7581			}
7582
7583			/* If there are no more slots, expire the oldest */
7584			list_del(&oldest->list);
7585			target = oldest;
7586			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7587					target->ssid_len, target->ssid,
7588					target->bssid);
7589			list_add_tail(&target->list,
7590				      &priv->ieee->network_free_list);
7591		}
7592
7593		element = priv->ieee->network_free_list.next;
7594		network = list_entry(element, struct libipw_network, list);
7595		ipw_adhoc_create(priv, network);
7596		rates = &priv->rates;
7597		list_del(element);
7598		list_add_tail(&network->list, &priv->ieee->network_list);
7599	}
7600	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7601
7602	/* If we reached the end of the list, then we don't have any valid
7603	 * matching APs */
7604	if (!network) {
7605		ipw_debug_config(priv);
7606
7607		if (!(priv->status & STATUS_SCANNING)) {
7608			if (!(priv->config & CFG_SPEED_SCAN))
7609				schedule_delayed_work(&priv->request_scan,
7610						      SCAN_INTERVAL);
7611			else
7612				schedule_delayed_work(&priv->request_scan, 0);
7613		}
7614
7615		return 0;
7616	}
7617
7618	ipw_associate_network(priv, network, rates, 0);
7619
7620	return 1;
7621}
7622
7623static void ipw_bg_associate(struct work_struct *work)
7624{
7625	struct ipw_priv *priv =
7626		container_of(work, struct ipw_priv, associate);
7627	mutex_lock(&priv->mutex);
7628	ipw_associate(priv);
7629	mutex_unlock(&priv->mutex);
7630}
7631
7632static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7633				      struct sk_buff *skb)
7634{
7635	struct ieee80211_hdr *hdr;
7636	u16 fc;
7637
7638	hdr = (struct ieee80211_hdr *)skb->data;
7639	fc = le16_to_cpu(hdr->frame_control);
7640	if (!(fc & IEEE80211_FCTL_PROTECTED))
7641		return;
7642
7643	fc &= ~IEEE80211_FCTL_PROTECTED;
7644	hdr->frame_control = cpu_to_le16(fc);
7645	switch (priv->ieee->sec.level) {
7646	case SEC_LEVEL_3:
7647		/* Remove CCMP HDR */
7648		memmove(skb->data + LIBIPW_3ADDR_LEN,
7649			skb->data + LIBIPW_3ADDR_LEN + 8,
7650			skb->len - LIBIPW_3ADDR_LEN - 8);
7651		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7652		break;
7653	case SEC_LEVEL_2:
7654		break;
7655	case SEC_LEVEL_1:
7656		/* Remove IV */
7657		memmove(skb->data + LIBIPW_3ADDR_LEN,
7658			skb->data + LIBIPW_3ADDR_LEN + 4,
7659			skb->len - LIBIPW_3ADDR_LEN - 4);
7660		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7661		break;
7662	case SEC_LEVEL_0:
7663		break;
7664	default:
7665		printk(KERN_ERR "Unknown security level %d\n",
7666		       priv->ieee->sec.level);
7667		break;
7668	}
7669}
7670
7671static void ipw_handle_data_packet(struct ipw_priv *priv,
7672				   struct ipw_rx_mem_buffer *rxb,
7673				   struct libipw_rx_stats *stats)
7674{
7675	struct net_device *dev = priv->net_dev;
7676	struct libipw_hdr_4addr *hdr;
7677	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7678
7679	/* We received data from the HW, so stop the watchdog */
7680	netif_trans_update(dev);
7681
7682	/* We only process data packets if the
7683	 * interface is open */
7684	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7685		     skb_tailroom(rxb->skb))) {
7686		dev->stats.rx_errors++;
7687		priv->wstats.discard.misc++;
7688		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7689		return;
7690	} else if (unlikely(!netif_running(priv->net_dev))) {
7691		dev->stats.rx_dropped++;
7692		priv->wstats.discard.misc++;
7693		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7694		return;
7695	}
7696
7697	/* Advance skb->data to the start of the actual payload */
7698	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7699
7700	/* Set the size of the skb to the size of the frame */
7701	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7702
7703	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7704
7705	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7706	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7707	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7708	    (is_multicast_ether_addr(hdr->addr1) ?
7709	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7710		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7711
7712	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7713		dev->stats.rx_errors++;
7714	else {			/* libipw_rx succeeded, so it now owns the SKB */
7715		rxb->skb = NULL;
7716		__ipw_led_activity_on(priv);
7717	}
7718}
7719
7720#ifdef CONFIG_IPW2200_RADIOTAP
7721static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7722					   struct ipw_rx_mem_buffer *rxb,
7723					   struct libipw_rx_stats *stats)
7724{
7725	struct net_device *dev = priv->net_dev;
7726	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7727	struct ipw_rx_frame *frame = &pkt->u.frame;
7728
7729	/* initial pull of some data */
7730	u16 received_channel = frame->received_channel;
7731	u8 antennaAndPhy = frame->antennaAndPhy;
7732	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7733	u16 pktrate = frame->rate;
7734
7735	/* Magic struct that slots into the radiotap header -- no reason
7736	 * to build this manually element by element, we can write it much
7737	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7738	struct ipw_rt_hdr *ipw_rt;
7739
7740	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7741
7742	/* We received data from the HW, so stop the watchdog */
7743	netif_trans_update(dev);
7744
7745	/* We only process data packets if the
7746	 * interface is open */
7747	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7748		     skb_tailroom(rxb->skb))) {
7749		dev->stats.rx_errors++;
7750		priv->wstats.discard.misc++;
7751		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7752		return;
7753	} else if (unlikely(!netif_running(priv->net_dev))) {
7754		dev->stats.rx_dropped++;
7755		priv->wstats.discard.misc++;
7756		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7757		return;
7758	}
7759
7760	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7761	 * that now */
7762	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7763		/* FIXME: Should alloc bigger skb instead */
7764		dev->stats.rx_dropped++;
7765		priv->wstats.discard.misc++;
7766		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7767		return;
7768	}
7769
7770	/* copy the frame itself */
7771	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7772		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7773
7774	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7775
7776	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7777	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7778	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7779
7780	/* Big bitfield of all the fields we provide in radiotap */
7781	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7782	     (1 << IEEE80211_RADIOTAP_TSFT) |
7783	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7784	     (1 << IEEE80211_RADIOTAP_RATE) |
7785	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7786	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7787	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7788	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7789
7790	/* Zero the flags, we'll add to them as we go */
7791	ipw_rt->rt_flags = 0;
7792	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7793			       frame->parent_tsf[2] << 16 |
7794			       frame->parent_tsf[1] << 8  |
7795			       frame->parent_tsf[0]);
7796
7797	/* Convert signal to DBM */
7798	ipw_rt->rt_dbmsignal = antsignal;
7799	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7800
7801	/* Convert the channel data and set the flags */
7802	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7803	if (received_channel > 14) {	/* 802.11a */
7804		ipw_rt->rt_chbitmask =
7805		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7806	} else if (antennaAndPhy & 32) {	/* 802.11b */
7807		ipw_rt->rt_chbitmask =
7808		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7809	} else {		/* 802.11g */
7810		ipw_rt->rt_chbitmask =
7811		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7812	}
7813
7814	/* set the rate in multiples of 500k/s */
7815	switch (pktrate) {
7816	case IPW_TX_RATE_1MB:
7817		ipw_rt->rt_rate = 2;
7818		break;
7819	case IPW_TX_RATE_2MB:
7820		ipw_rt->rt_rate = 4;
7821		break;
7822	case IPW_TX_RATE_5MB:
7823		ipw_rt->rt_rate = 10;
7824		break;
7825	case IPW_TX_RATE_6MB:
7826		ipw_rt->rt_rate = 12;
7827		break;
7828	case IPW_TX_RATE_9MB:
7829		ipw_rt->rt_rate = 18;
7830		break;
7831	case IPW_TX_RATE_11MB:
7832		ipw_rt->rt_rate = 22;
7833		break;
7834	case IPW_TX_RATE_12MB:
7835		ipw_rt->rt_rate = 24;
7836		break;
7837	case IPW_TX_RATE_18MB:
7838		ipw_rt->rt_rate = 36;
7839		break;
7840	case IPW_TX_RATE_24MB:
7841		ipw_rt->rt_rate = 48;
7842		break;
7843	case IPW_TX_RATE_36MB:
7844		ipw_rt->rt_rate = 72;
7845		break;
7846	case IPW_TX_RATE_48MB:
7847		ipw_rt->rt_rate = 96;
7848		break;
7849	case IPW_TX_RATE_54MB:
7850		ipw_rt->rt_rate = 108;
7851		break;
7852	default:
7853		ipw_rt->rt_rate = 0;
7854		break;
7855	}
7856
7857	/* antenna number */
7858	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7859
7860	/* set the preamble flag if we have it */
7861	if ((antennaAndPhy & 64))
7862		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7863
7864	/* Set the size of the skb to the size of the frame */
7865	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7866
7867	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7868
7869	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7870		dev->stats.rx_errors++;
7871	else {			/* libipw_rx succeeded, so it now owns the SKB */
7872		rxb->skb = NULL;
7873		/* no LED during capture */
7874	}
7875}
7876#endif
7877
7878#ifdef CONFIG_IPW2200_PROMISCUOUS
7879#define libipw_is_probe_response(fc) \
7880   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7881    (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7882
7883#define libipw_is_management(fc) \
7884   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7885
7886#define libipw_is_control(fc) \
7887   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7888
7889#define libipw_is_data(fc) \
7890   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7891
7892#define libipw_is_assoc_request(fc) \
7893   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7894
7895#define libipw_is_reassoc_request(fc) \
7896   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7897
7898static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7899				      struct ipw_rx_mem_buffer *rxb,
7900				      struct libipw_rx_stats *stats)
7901{
7902	struct net_device *dev = priv->prom_net_dev;
7903	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7904	struct ipw_rx_frame *frame = &pkt->u.frame;
7905	struct ipw_rt_hdr *ipw_rt;
7906
7907	/* First cache any information we need before we overwrite
7908	 * the information provided in the skb from the hardware */
7909	struct ieee80211_hdr *hdr;
7910	u16 channel = frame->received_channel;
7911	u8 phy_flags = frame->antennaAndPhy;
7912	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7913	s8 noise = (s8) le16_to_cpu(frame->noise);
7914	u8 rate = frame->rate;
7915	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7916	struct sk_buff *skb;
7917	int hdr_only = 0;
7918	u16 filter = priv->prom_priv->filter;
7919
7920	/* If the filter is set to not include Rx frames then return */
7921	if (filter & IPW_PROM_NO_RX)
7922		return;
7923
7924	/* We received data from the HW, so stop the watchdog */
7925	netif_trans_update(dev);
7926
7927	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7928		dev->stats.rx_errors++;
7929		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7930		return;
7931	}
7932
7933	/* We only process data packets if the interface is open */
7934	if (unlikely(!netif_running(dev))) {
7935		dev->stats.rx_dropped++;
7936		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7937		return;
7938	}
7939
7940	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7941	 * that now */
7942	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7943		/* FIXME: Should alloc bigger skb instead */
7944		dev->stats.rx_dropped++;
7945		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7946		return;
7947	}
7948
7949	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7950	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7951		if (filter & IPW_PROM_NO_MGMT)
7952			return;
7953		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7954			hdr_only = 1;
7955	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7956		if (filter & IPW_PROM_NO_CTL)
7957			return;
7958		if (filter & IPW_PROM_CTL_HEADER_ONLY)
7959			hdr_only = 1;
7960	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7961		if (filter & IPW_PROM_NO_DATA)
7962			return;
7963		if (filter & IPW_PROM_DATA_HEADER_ONLY)
7964			hdr_only = 1;
7965	}
7966
7967	/* Copy the SKB since this is for the promiscuous side */
7968	skb = skb_copy(rxb->skb, GFP_ATOMIC);
7969	if (skb == NULL) {
7970		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7971		return;
7972	}
7973
7974	/* copy the frame data to write after where the radiotap header goes */
7975	ipw_rt = (void *)skb->data;
7976
7977	if (hdr_only)
7978		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7979
7980	memcpy(ipw_rt->payload, hdr, len);
7981
7982	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7983	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7984	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
7985
7986	/* Set the size of the skb to the size of the frame */
7987	skb_put(skb, sizeof(*ipw_rt) + len);
7988
7989	/* Big bitfield of all the fields we provide in radiotap */
7990	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7991	     (1 << IEEE80211_RADIOTAP_TSFT) |
7992	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7993	     (1 << IEEE80211_RADIOTAP_RATE) |
7994	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7995	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7996	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7997	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7998
7999	/* Zero the flags, we'll add to them as we go */
8000	ipw_rt->rt_flags = 0;
8001	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8002			       frame->parent_tsf[2] << 16 |
8003			       frame->parent_tsf[1] << 8  |
8004			       frame->parent_tsf[0]);
8005
8006	/* Convert to DBM */
8007	ipw_rt->rt_dbmsignal = signal;
8008	ipw_rt->rt_dbmnoise = noise;
8009
8010	/* Convert the channel data and set the flags */
8011	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8012	if (channel > 14) {	/* 802.11a */
8013		ipw_rt->rt_chbitmask =
8014		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8015	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
8016		ipw_rt->rt_chbitmask =
8017		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8018	} else {		/* 802.11g */
8019		ipw_rt->rt_chbitmask =
8020		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8021	}
8022
8023	/* set the rate in multiples of 500k/s */
8024	switch (rate) {
8025	case IPW_TX_RATE_1MB:
8026		ipw_rt->rt_rate = 2;
8027		break;
8028	case IPW_TX_RATE_2MB:
8029		ipw_rt->rt_rate = 4;
8030		break;
8031	case IPW_TX_RATE_5MB:
8032		ipw_rt->rt_rate = 10;
8033		break;
8034	case IPW_TX_RATE_6MB:
8035		ipw_rt->rt_rate = 12;
8036		break;
8037	case IPW_TX_RATE_9MB:
8038		ipw_rt->rt_rate = 18;
8039		break;
8040	case IPW_TX_RATE_11MB:
8041		ipw_rt->rt_rate = 22;
8042		break;
8043	case IPW_TX_RATE_12MB:
8044		ipw_rt->rt_rate = 24;
8045		break;
8046	case IPW_TX_RATE_18MB:
8047		ipw_rt->rt_rate = 36;
8048		break;
8049	case IPW_TX_RATE_24MB:
8050		ipw_rt->rt_rate = 48;
8051		break;
8052	case IPW_TX_RATE_36MB:
8053		ipw_rt->rt_rate = 72;
8054		break;
8055	case IPW_TX_RATE_48MB:
8056		ipw_rt->rt_rate = 96;
8057		break;
8058	case IPW_TX_RATE_54MB:
8059		ipw_rt->rt_rate = 108;
8060		break;
8061	default:
8062		ipw_rt->rt_rate = 0;
8063		break;
8064	}
8065
8066	/* antenna number */
8067	ipw_rt->rt_antenna = (phy_flags & 3);
8068
8069	/* set the preamble flag if we have it */
8070	if (phy_flags & (1 << 6))
8071		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8072
8073	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8074
8075	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8076		dev->stats.rx_errors++;
8077		dev_kfree_skb_any(skb);
8078	}
8079}
8080#endif
8081
8082static int is_network_packet(struct ipw_priv *priv,
8083				    struct libipw_hdr_4addr *header)
8084{
8085	/* Filter incoming packets to determine if they are targeted toward
8086	 * this network, discarding packets coming from ourselves */
8087	switch (priv->ieee->iw_mode) {
8088	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8089		/* packets from our adapter are dropped (echo) */
8090		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8091			return 0;
8092
8093		/* {broad,multi}cast packets to our BSSID go through */
8094		if (is_multicast_ether_addr(header->addr1))
8095			return ether_addr_equal(header->addr3, priv->bssid);
8096
8097		/* packets to our adapter go through */
8098		return ether_addr_equal(header->addr1,
8099					priv->net_dev->dev_addr);
8100
8101	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8102		/* packets from our adapter are dropped (echo) */
8103		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8104			return 0;
8105
8106		/* {broad,multi}cast packets to our BSS go through */
8107		if (is_multicast_ether_addr(header->addr1))
8108			return ether_addr_equal(header->addr2, priv->bssid);
8109
8110		/* packets to our adapter go through */
8111		return ether_addr_equal(header->addr1,
8112					priv->net_dev->dev_addr);
8113	}
8114
8115	return 1;
8116}
8117
8118#define IPW_PACKET_RETRY_TIME HZ
8119
8120static  int is_duplicate_packet(struct ipw_priv *priv,
8121				      struct libipw_hdr_4addr *header)
8122{
8123	u16 sc = le16_to_cpu(header->seq_ctl);
8124	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8125	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8126	u16 *last_seq, *last_frag;
8127	unsigned long *last_time;
8128
8129	switch (priv->ieee->iw_mode) {
8130	case IW_MODE_ADHOC:
8131		{
8132			struct list_head *p;
8133			struct ipw_ibss_seq *entry = NULL;
8134			u8 *mac = header->addr2;
8135			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8136
8137			list_for_each(p, &priv->ibss_mac_hash[index]) {
8138				entry =
8139				    list_entry(p, struct ipw_ibss_seq, list);
8140				if (ether_addr_equal(entry->mac, mac))
8141					break;
8142			}
8143			if (p == &priv->ibss_mac_hash[index]) {
8144				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8145				if (!entry) {
8146					IPW_ERROR
8147					    ("Cannot malloc new mac entry\n");
8148					return 0;
8149				}
8150				memcpy(entry->mac, mac, ETH_ALEN);
8151				entry->seq_num = seq;
8152				entry->frag_num = frag;
8153				entry->packet_time = jiffies;
8154				list_add(&entry->list,
8155					 &priv->ibss_mac_hash[index]);
8156				return 0;
8157			}
8158			last_seq = &entry->seq_num;
8159			last_frag = &entry->frag_num;
8160			last_time = &entry->packet_time;
8161			break;
8162		}
8163	case IW_MODE_INFRA:
8164		last_seq = &priv->last_seq_num;
8165		last_frag = &priv->last_frag_num;
8166		last_time = &priv->last_packet_time;
8167		break;
8168	default:
8169		return 0;
8170	}
8171	if ((*last_seq == seq) &&
8172	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8173		if (*last_frag == frag)
8174			goto drop;
8175		if (*last_frag + 1 != frag)
8176			/* out-of-order fragment */
8177			goto drop;
8178	} else
8179		*last_seq = seq;
8180
8181	*last_frag = frag;
8182	*last_time = jiffies;
8183	return 0;
8184
8185      drop:
8186	/* Comment this line now since we observed the card receives
8187	 * duplicate packets but the FCTL_RETRY bit is not set in the
8188	 * IBSS mode with fragmentation enabled.
8189	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8190	return 1;
8191}
8192
8193static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8194				   struct ipw_rx_mem_buffer *rxb,
8195				   struct libipw_rx_stats *stats)
8196{
8197	struct sk_buff *skb = rxb->skb;
8198	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8199	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8200	    (skb->data + IPW_RX_FRAME_SIZE);
8201
8202	libipw_rx_mgt(priv->ieee, header, stats);
8203
8204	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8205	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8206	      IEEE80211_STYPE_PROBE_RESP) ||
8207	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8208	      IEEE80211_STYPE_BEACON))) {
8209		if (ether_addr_equal(header->addr3, priv->bssid))
8210			ipw_add_station(priv, header->addr2);
8211	}
8212
8213	if (priv->config & CFG_NET_STATS) {
8214		IPW_DEBUG_HC("sending stat packet\n");
8215
8216		/* Set the size of the skb to the size of the full
8217		 * ipw header and 802.11 frame */
8218		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8219			IPW_RX_FRAME_SIZE);
8220
8221		/* Advance past the ipw packet header to the 802.11 frame */
8222		skb_pull(skb, IPW_RX_FRAME_SIZE);
8223
8224		/* Push the libipw_rx_stats before the 802.11 frame */
8225		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8226
8227		skb->dev = priv->ieee->dev;
8228
8229		/* Point raw at the libipw_stats */
8230		skb_reset_mac_header(skb);
8231
8232		skb->pkt_type = PACKET_OTHERHOST;
8233		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8234		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8235		netif_rx(skb);
8236		rxb->skb = NULL;
8237	}
8238}
8239
8240/*
8241 * Main entry function for receiving a packet with 80211 headers.  This
8242 * should be called when ever the FW has notified us that there is a new
8243 * skb in the receive queue.
8244 */
8245static void ipw_rx(struct ipw_priv *priv)
8246{
8247	struct ipw_rx_mem_buffer *rxb;
8248	struct ipw_rx_packet *pkt;
8249	struct libipw_hdr_4addr *header;
8250	u32 r, i;
8251	u8 network_packet;
8252	u8 fill_rx = 0;
8253
8254	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8255	ipw_read32(priv, IPW_RX_WRITE_INDEX);
8256	i = priv->rxq->read;
8257
8258	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8259		fill_rx = 1;
8260
8261	while (i != r) {
8262		rxb = priv->rxq->queue[i];
8263		if (unlikely(rxb == NULL)) {
8264			printk(KERN_CRIT "Queue not allocated!\n");
8265			break;
8266		}
8267		priv->rxq->queue[i] = NULL;
8268
8269		dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8270					IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8271
8272		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8273		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8274			     pkt->header.message_type,
8275			     pkt->header.rx_seq_num, pkt->header.control_bits);
8276
8277		switch (pkt->header.message_type) {
8278		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8279				struct libipw_rx_stats stats = {
8280					.rssi = pkt->u.frame.rssi_dbm -
8281					    IPW_RSSI_TO_DBM,
8282					.signal =
8283					    pkt->u.frame.rssi_dbm -
8284					    IPW_RSSI_TO_DBM + 0x100,
8285					.noise =
8286					    le16_to_cpu(pkt->u.frame.noise),
8287					.rate = pkt->u.frame.rate,
8288					.mac_time = jiffies,
8289					.received_channel =
8290					    pkt->u.frame.received_channel,
8291					.freq =
8292					    (pkt->u.frame.
8293					     control & (1 << 0)) ?
8294					    LIBIPW_24GHZ_BAND :
8295					    LIBIPW_52GHZ_BAND,
8296					.len = le16_to_cpu(pkt->u.frame.length),
8297				};
8298
8299				if (stats.rssi != 0)
8300					stats.mask |= LIBIPW_STATMASK_RSSI;
8301				if (stats.signal != 0)
8302					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8303				if (stats.noise != 0)
8304					stats.mask |= LIBIPW_STATMASK_NOISE;
8305				if (stats.rate != 0)
8306					stats.mask |= LIBIPW_STATMASK_RATE;
8307
8308				priv->rx_packets++;
8309
8310#ifdef CONFIG_IPW2200_PROMISCUOUS
8311	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8312		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8313#endif
8314
8315#ifdef CONFIG_IPW2200_MONITOR
8316				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8317#ifdef CONFIG_IPW2200_RADIOTAP
8318
8319                ipw_handle_data_packet_monitor(priv,
8320					       rxb,
8321					       &stats);
8322#else
8323		ipw_handle_data_packet(priv, rxb,
8324				       &stats);
8325#endif
8326					break;
8327				}
8328#endif
8329
8330				header =
8331				    (struct libipw_hdr_4addr *)(rxb->skb->
8332								   data +
8333								   IPW_RX_FRAME_SIZE);
8334				/* TODO: Check Ad-Hoc dest/source and make sure
8335				 * that we are actually parsing these packets
8336				 * correctly -- we should probably use the
8337				 * frame control of the packet and disregard
8338				 * the current iw_mode */
8339
8340				network_packet =
8341				    is_network_packet(priv, header);
8342				if (network_packet && priv->assoc_network) {
8343					priv->assoc_network->stats.rssi =
8344					    stats.rssi;
8345					priv->exp_avg_rssi =
8346					    exponential_average(priv->exp_avg_rssi,
8347					    stats.rssi, DEPTH_RSSI);
8348				}
8349
8350				IPW_DEBUG_RX("Frame: len=%u\n",
8351					     le16_to_cpu(pkt->u.frame.length));
8352
8353				if (le16_to_cpu(pkt->u.frame.length) <
8354				    libipw_get_hdrlen(le16_to_cpu(
8355						    header->frame_ctl))) {
8356					IPW_DEBUG_DROP
8357					    ("Received packet is too small. "
8358					     "Dropping.\n");
8359					priv->net_dev->stats.rx_errors++;
8360					priv->wstats.discard.misc++;
8361					break;
8362				}
8363
8364				switch (WLAN_FC_GET_TYPE
8365					(le16_to_cpu(header->frame_ctl))) {
8366
8367				case IEEE80211_FTYPE_MGMT:
8368					ipw_handle_mgmt_packet(priv, rxb,
8369							       &stats);
8370					break;
8371
8372				case IEEE80211_FTYPE_CTL:
8373					break;
8374
8375				case IEEE80211_FTYPE_DATA:
8376					if (unlikely(!network_packet ||
8377						     is_duplicate_packet(priv,
8378									 header)))
8379					{
8380						IPW_DEBUG_DROP("Dropping: "
8381							       "%pM, "
8382							       "%pM, "
8383							       "%pM\n",
8384							       header->addr1,
8385							       header->addr2,
8386							       header->addr3);
8387						break;
8388					}
8389
8390					ipw_handle_data_packet(priv, rxb,
8391							       &stats);
8392
8393					break;
8394				}
8395				break;
8396			}
8397
8398		case RX_HOST_NOTIFICATION_TYPE:{
8399				IPW_DEBUG_RX
8400				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8401				     pkt->u.notification.subtype,
8402				     pkt->u.notification.flags,
8403				     le16_to_cpu(pkt->u.notification.size));
8404				ipw_rx_notification(priv, &pkt->u.notification);
8405				break;
8406			}
8407
8408		default:
8409			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8410				     pkt->header.message_type);
8411			break;
8412		}
8413
8414		/* For now we just don't re-use anything.  We can tweak this
8415		 * later to try and re-use notification packets and SKBs that
8416		 * fail to Rx correctly */
8417		if (rxb->skb != NULL) {
8418			dev_kfree_skb_any(rxb->skb);
8419			rxb->skb = NULL;
8420		}
8421
8422		dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8423				 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8424		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8425
8426		i = (i + 1) % RX_QUEUE_SIZE;
8427
8428		/* If there are a lot of unsued frames, restock the Rx queue
8429		 * so the ucode won't assert */
8430		if (fill_rx) {
8431			priv->rxq->read = i;
8432			ipw_rx_queue_replenish(priv);
8433		}
8434	}
8435
8436	/* Backtrack one entry */
8437	priv->rxq->read = i;
8438	ipw_rx_queue_restock(priv);
8439}
8440
8441#define DEFAULT_RTS_THRESHOLD     2304U
8442#define MIN_RTS_THRESHOLD         1U
8443#define MAX_RTS_THRESHOLD         2304U
8444#define DEFAULT_BEACON_INTERVAL   100U
8445#define	DEFAULT_SHORT_RETRY_LIMIT 7U
8446#define	DEFAULT_LONG_RETRY_LIMIT  4U
8447
8448/*
8449 * ipw_sw_reset
8450 * @option: options to control different reset behaviour
8451 * 	    0 = reset everything except the 'disable' module_param
8452 * 	    1 = reset everything and print out driver info (for probe only)
8453 * 	    2 = reset everything
8454 */
8455static int ipw_sw_reset(struct ipw_priv *priv, int option)
8456{
8457	int band, modulation;
8458	int old_mode = priv->ieee->iw_mode;
8459
8460	/* Initialize module parameter values here */
8461	priv->config = 0;
8462
8463	/* We default to disabling the LED code as right now it causes
8464	 * too many systems to lock up... */
8465	if (!led_support)
8466		priv->config |= CFG_NO_LED;
8467
8468	if (associate)
8469		priv->config |= CFG_ASSOCIATE;
8470	else
8471		IPW_DEBUG_INFO("Auto associate disabled.\n");
8472
8473	if (auto_create)
8474		priv->config |= CFG_ADHOC_CREATE;
8475	else
8476		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8477
8478	priv->config &= ~CFG_STATIC_ESSID;
8479	priv->essid_len = 0;
8480	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8481
8482	if (disable && option) {
8483		priv->status |= STATUS_RF_KILL_SW;
8484		IPW_DEBUG_INFO("Radio disabled.\n");
8485	}
8486
8487	if (default_channel != 0) {
8488		priv->config |= CFG_STATIC_CHANNEL;
8489		priv->channel = default_channel;
8490		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8491		/* TODO: Validate that provided channel is in range */
8492	}
8493#ifdef CONFIG_IPW2200_QOS
8494	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8495		     burst_duration_CCK, burst_duration_OFDM);
8496#endif				/* CONFIG_IPW2200_QOS */
8497
8498	switch (network_mode) {
8499	case 1:
8500		priv->ieee->iw_mode = IW_MODE_ADHOC;
8501		priv->net_dev->type = ARPHRD_ETHER;
8502
8503		break;
8504#ifdef CONFIG_IPW2200_MONITOR
8505	case 2:
8506		priv->ieee->iw_mode = IW_MODE_MONITOR;
8507#ifdef CONFIG_IPW2200_RADIOTAP
8508		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8509#else
8510		priv->net_dev->type = ARPHRD_IEEE80211;
8511#endif
8512		break;
8513#endif
8514	default:
8515	case 0:
8516		priv->net_dev->type = ARPHRD_ETHER;
8517		priv->ieee->iw_mode = IW_MODE_INFRA;
8518		break;
8519	}
8520
8521	if (hwcrypto) {
8522		priv->ieee->host_encrypt = 0;
8523		priv->ieee->host_encrypt_msdu = 0;
8524		priv->ieee->host_decrypt = 0;
8525		priv->ieee->host_mc_decrypt = 0;
8526	}
8527	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8528
8529	/* IPW2200/2915 is abled to do hardware fragmentation. */
8530	priv->ieee->host_open_frag = 0;
8531
8532	if ((priv->pci_dev->device == 0x4223) ||
8533	    (priv->pci_dev->device == 0x4224)) {
8534		if (option == 1)
8535			printk(KERN_INFO DRV_NAME
8536			       ": Detected Intel PRO/Wireless 2915ABG Network "
8537			       "Connection\n");
8538		priv->ieee->abg_true = 1;
8539		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8540		modulation = LIBIPW_OFDM_MODULATION |
8541		    LIBIPW_CCK_MODULATION;
8542		priv->adapter = IPW_2915ABG;
8543		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8544	} else {
8545		if (option == 1)
8546			printk(KERN_INFO DRV_NAME
8547			       ": Detected Intel PRO/Wireless 2200BG Network "
8548			       "Connection\n");
8549
8550		priv->ieee->abg_true = 0;
8551		band = LIBIPW_24GHZ_BAND;
8552		modulation = LIBIPW_OFDM_MODULATION |
8553		    LIBIPW_CCK_MODULATION;
8554		priv->adapter = IPW_2200BG;
8555		priv->ieee->mode = IEEE_G | IEEE_B;
8556	}
8557
8558	priv->ieee->freq_band = band;
8559	priv->ieee->modulation = modulation;
8560
8561	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8562
8563	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8564	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8565
8566	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8567	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8568	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8569
8570	/* If power management is turned on, default to AC mode */
8571	priv->power_mode = IPW_POWER_AC;
8572	priv->tx_power = IPW_TX_POWER_DEFAULT;
8573
8574	return old_mode == priv->ieee->iw_mode;
8575}
8576
8577/*
8578 * This file defines the Wireless Extension handlers.  It does not
8579 * define any methods of hardware manipulation and relies on the
8580 * functions defined in ipw_main to provide the HW interaction.
8581 *
8582 * The exception to this is the use of the ipw_get_ordinal()
8583 * function used to poll the hardware vs. making unnecessary calls.
8584 *
8585 */
8586
8587static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8588{
8589	if (channel == 0) {
8590		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8591		priv->config &= ~CFG_STATIC_CHANNEL;
8592		IPW_DEBUG_ASSOC("Attempting to associate with new "
8593				"parameters.\n");
8594		ipw_associate(priv);
8595		return 0;
8596	}
8597
8598	priv->config |= CFG_STATIC_CHANNEL;
8599
8600	if (priv->channel == channel) {
8601		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8602			       channel);
8603		return 0;
8604	}
8605
8606	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8607	priv->channel = channel;
8608
8609#ifdef CONFIG_IPW2200_MONITOR
8610	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8611		int i;
8612		if (priv->status & STATUS_SCANNING) {
8613			IPW_DEBUG_SCAN("Scan abort triggered due to "
8614				       "channel change.\n");
8615			ipw_abort_scan(priv);
8616		}
8617
8618		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8619			udelay(10);
8620
8621		if (priv->status & STATUS_SCANNING)
8622			IPW_DEBUG_SCAN("Still scanning...\n");
8623		else
8624			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8625				       1000 - i);
8626
8627		return 0;
8628	}
8629#endif				/* CONFIG_IPW2200_MONITOR */
8630
8631	/* Network configuration changed -- force [re]association */
8632	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8633	if (!ipw_disassociate(priv))
8634		ipw_associate(priv);
8635
8636	return 0;
8637}
8638
8639static int ipw_wx_set_freq(struct net_device *dev,
8640			   struct iw_request_info *info,
8641			   union iwreq_data *wrqu, char *extra)
8642{
8643	struct ipw_priv *priv = libipw_priv(dev);
8644	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8645	struct iw_freq *fwrq = &wrqu->freq;
8646	int ret = 0, i;
8647	u8 channel, flags;
8648	int band;
8649
8650	if (fwrq->m == 0) {
8651		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8652		mutex_lock(&priv->mutex);
8653		ret = ipw_set_channel(priv, 0);
8654		mutex_unlock(&priv->mutex);
8655		return ret;
8656	}
8657	/* if setting by freq convert to channel */
8658	if (fwrq->e == 1) {
8659		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8660		if (channel == 0)
8661			return -EINVAL;
8662	} else
8663		channel = fwrq->m;
8664
8665	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8666		return -EINVAL;
8667
8668	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8669		i = libipw_channel_to_index(priv->ieee, channel);
8670		if (i == -1)
8671			return -EINVAL;
8672
8673		flags = (band == LIBIPW_24GHZ_BAND) ?
8674		    geo->bg[i].flags : geo->a[i].flags;
8675		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8676			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8677			return -EINVAL;
8678		}
8679	}
8680
8681	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8682	mutex_lock(&priv->mutex);
8683	ret = ipw_set_channel(priv, channel);
8684	mutex_unlock(&priv->mutex);
8685	return ret;
8686}
8687
8688static int ipw_wx_get_freq(struct net_device *dev,
8689			   struct iw_request_info *info,
8690			   union iwreq_data *wrqu, char *extra)
8691{
8692	struct ipw_priv *priv = libipw_priv(dev);
8693
8694	wrqu->freq.e = 0;
8695
8696	/* If we are associated, trying to associate, or have a statically
8697	 * configured CHANNEL then return that; otherwise return ANY */
8698	mutex_lock(&priv->mutex);
8699	if (priv->config & CFG_STATIC_CHANNEL ||
8700	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8701		int i;
8702
8703		i = libipw_channel_to_index(priv->ieee, priv->channel);
8704		BUG_ON(i == -1);
8705		wrqu->freq.e = 1;
8706
8707		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8708		case LIBIPW_52GHZ_BAND:
8709			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8710			break;
8711
8712		case LIBIPW_24GHZ_BAND:
8713			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8714			break;
8715
8716		default:
8717			BUG();
8718		}
8719	} else
8720		wrqu->freq.m = 0;
8721
8722	mutex_unlock(&priv->mutex);
8723	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8724	return 0;
8725}
8726
8727static int ipw_wx_set_mode(struct net_device *dev,
8728			   struct iw_request_info *info,
8729			   union iwreq_data *wrqu, char *extra)
8730{
8731	struct ipw_priv *priv = libipw_priv(dev);
8732	int err = 0;
8733
8734	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8735
8736	switch (wrqu->mode) {
8737#ifdef CONFIG_IPW2200_MONITOR
8738	case IW_MODE_MONITOR:
8739#endif
8740	case IW_MODE_ADHOC:
8741	case IW_MODE_INFRA:
8742		break;
8743	case IW_MODE_AUTO:
8744		wrqu->mode = IW_MODE_INFRA;
8745		break;
8746	default:
8747		return -EINVAL;
8748	}
8749	if (wrqu->mode == priv->ieee->iw_mode)
8750		return 0;
8751
8752	mutex_lock(&priv->mutex);
8753
8754	ipw_sw_reset(priv, 0);
8755
8756#ifdef CONFIG_IPW2200_MONITOR
8757	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8758		priv->net_dev->type = ARPHRD_ETHER;
8759
8760	if (wrqu->mode == IW_MODE_MONITOR)
8761#ifdef CONFIG_IPW2200_RADIOTAP
8762		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8763#else
8764		priv->net_dev->type = ARPHRD_IEEE80211;
8765#endif
8766#endif				/* CONFIG_IPW2200_MONITOR */
8767
8768	/* Free the existing firmware and reset the fw_loaded
8769	 * flag so ipw_load() will bring in the new firmware */
8770	free_firmware();
8771
8772	priv->ieee->iw_mode = wrqu->mode;
8773
8774	schedule_work(&priv->adapter_restart);
8775	mutex_unlock(&priv->mutex);
8776	return err;
8777}
8778
8779static int ipw_wx_get_mode(struct net_device *dev,
8780			   struct iw_request_info *info,
8781			   union iwreq_data *wrqu, char *extra)
8782{
8783	struct ipw_priv *priv = libipw_priv(dev);
8784	mutex_lock(&priv->mutex);
8785	wrqu->mode = priv->ieee->iw_mode;
8786	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8787	mutex_unlock(&priv->mutex);
8788	return 0;
8789}
8790
8791/* Values are in microsecond */
8792static const s32 timeout_duration[] = {
8793	350000,
8794	250000,
8795	75000,
8796	37000,
8797	25000,
8798};
8799
8800static const s32 period_duration[] = {
8801	400000,
8802	700000,
8803	1000000,
8804	1000000,
8805	1000000
8806};
8807
8808static int ipw_wx_get_range(struct net_device *dev,
8809			    struct iw_request_info *info,
8810			    union iwreq_data *wrqu, char *extra)
8811{
8812	struct ipw_priv *priv = libipw_priv(dev);
8813	struct iw_range *range = (struct iw_range *)extra;
8814	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8815	int i = 0, j;
8816
8817	wrqu->data.length = sizeof(*range);
8818	memset(range, 0, sizeof(*range));
8819
8820	/* 54Mbs == ~27 Mb/s real (802.11g) */
8821	range->throughput = 27 * 1000 * 1000;
8822
8823	range->max_qual.qual = 100;
8824	/* TODO: Find real max RSSI and stick here */
8825	range->max_qual.level = 0;
8826	range->max_qual.noise = 0;
8827	range->max_qual.updated = 7;	/* Updated all three */
8828
8829	range->avg_qual.qual = 70;
8830	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8831	range->avg_qual.level = 0;	/* FIXME to real average level */
8832	range->avg_qual.noise = 0;
8833	range->avg_qual.updated = 7;	/* Updated all three */
8834	mutex_lock(&priv->mutex);
8835	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8836
8837	for (i = 0; i < range->num_bitrates; i++)
8838		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8839		    500000;
8840
8841	range->max_rts = DEFAULT_RTS_THRESHOLD;
8842	range->min_frag = MIN_FRAG_THRESHOLD;
8843	range->max_frag = MAX_FRAG_THRESHOLD;
8844
8845	range->encoding_size[0] = 5;
8846	range->encoding_size[1] = 13;
8847	range->num_encoding_sizes = 2;
8848	range->max_encoding_tokens = WEP_KEYS;
8849
8850	/* Set the Wireless Extension versions */
8851	range->we_version_compiled = WIRELESS_EXT;
8852	range->we_version_source = 18;
8853
8854	i = 0;
8855	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8856		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8857			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8858			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8859				continue;
8860
8861			range->freq[i].i = geo->bg[j].channel;
8862			range->freq[i].m = geo->bg[j].freq * 100000;
8863			range->freq[i].e = 1;
8864			i++;
8865		}
8866	}
8867
8868	if (priv->ieee->mode & IEEE_A) {
8869		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8870			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8871			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8872				continue;
8873
8874			range->freq[i].i = geo->a[j].channel;
8875			range->freq[i].m = geo->a[j].freq * 100000;
8876			range->freq[i].e = 1;
8877			i++;
8878		}
8879	}
8880
8881	range->num_channels = i;
8882	range->num_frequency = i;
8883
8884	mutex_unlock(&priv->mutex);
8885
8886	/* Event capability (kernel + driver) */
8887	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8888				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8889				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8890				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8891	range->event_capa[1] = IW_EVENT_CAPA_K_1;
8892
8893	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8894		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8895
8896	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8897
8898	IPW_DEBUG_WX("GET Range\n");
8899	return 0;
8900}
8901
8902static int ipw_wx_set_wap(struct net_device *dev,
8903			  struct iw_request_info *info,
8904			  union iwreq_data *wrqu, char *extra)
8905{
8906	struct ipw_priv *priv = libipw_priv(dev);
8907
8908	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8909		return -EINVAL;
8910	mutex_lock(&priv->mutex);
8911	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8912	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8913		/* we disable mandatory BSSID association */
8914		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8915		priv->config &= ~CFG_STATIC_BSSID;
8916		IPW_DEBUG_ASSOC("Attempting to associate with new "
8917				"parameters.\n");
8918		ipw_associate(priv);
8919		mutex_unlock(&priv->mutex);
8920		return 0;
8921	}
8922
8923	priv->config |= CFG_STATIC_BSSID;
8924	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8925		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8926		mutex_unlock(&priv->mutex);
8927		return 0;
8928	}
8929
8930	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8931		     wrqu->ap_addr.sa_data);
8932
8933	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8934
8935	/* Network configuration changed -- force [re]association */
8936	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8937	if (!ipw_disassociate(priv))
8938		ipw_associate(priv);
8939
8940	mutex_unlock(&priv->mutex);
8941	return 0;
8942}
8943
8944static int ipw_wx_get_wap(struct net_device *dev,
8945			  struct iw_request_info *info,
8946			  union iwreq_data *wrqu, char *extra)
8947{
8948	struct ipw_priv *priv = libipw_priv(dev);
8949
8950	/* If we are associated, trying to associate, or have a statically
8951	 * configured BSSID then return that; otherwise return ANY */
8952	mutex_lock(&priv->mutex);
8953	if (priv->config & CFG_STATIC_BSSID ||
8954	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8955		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8956		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8957	} else
8958		eth_zero_addr(wrqu->ap_addr.sa_data);
8959
8960	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8961		     wrqu->ap_addr.sa_data);
8962	mutex_unlock(&priv->mutex);
8963	return 0;
8964}
8965
8966static int ipw_wx_set_essid(struct net_device *dev,
8967			    struct iw_request_info *info,
8968			    union iwreq_data *wrqu, char *extra)
8969{
8970	struct ipw_priv *priv = libipw_priv(dev);
8971        int length;
8972
8973        mutex_lock(&priv->mutex);
8974
8975        if (!wrqu->essid.flags)
8976        {
8977                IPW_DEBUG_WX("Setting ESSID to ANY\n");
8978                ipw_disassociate(priv);
8979                priv->config &= ~CFG_STATIC_ESSID;
8980                ipw_associate(priv);
8981                mutex_unlock(&priv->mutex);
8982                return 0;
8983        }
8984
8985	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8986
8987	priv->config |= CFG_STATIC_ESSID;
8988
8989	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8990	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8991		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8992		mutex_unlock(&priv->mutex);
8993		return 0;
8994	}
8995
8996	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8997
8998	priv->essid_len = length;
8999	memcpy(priv->essid, extra, priv->essid_len);
9000
9001	/* Network configuration changed -- force [re]association */
9002	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9003	if (!ipw_disassociate(priv))
9004		ipw_associate(priv);
9005
9006	mutex_unlock(&priv->mutex);
9007	return 0;
9008}
9009
9010static int ipw_wx_get_essid(struct net_device *dev,
9011			    struct iw_request_info *info,
9012			    union iwreq_data *wrqu, char *extra)
9013{
9014	struct ipw_priv *priv = libipw_priv(dev);
9015
9016	/* If we are associated, trying to associate, or have a statically
9017	 * configured ESSID then return that; otherwise return ANY */
9018	mutex_lock(&priv->mutex);
9019	if (priv->config & CFG_STATIC_ESSID ||
9020	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9021		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9022			     priv->essid_len, priv->essid);
9023		memcpy(extra, priv->essid, priv->essid_len);
9024		wrqu->essid.length = priv->essid_len;
9025		wrqu->essid.flags = 1;	/* active */
9026	} else {
9027		IPW_DEBUG_WX("Getting essid: ANY\n");
9028		wrqu->essid.length = 0;
9029		wrqu->essid.flags = 0;	/* active */
9030	}
9031	mutex_unlock(&priv->mutex);
9032	return 0;
9033}
9034
9035static int ipw_wx_set_nick(struct net_device *dev,
9036			   struct iw_request_info *info,
9037			   union iwreq_data *wrqu, char *extra)
9038{
9039	struct ipw_priv *priv = libipw_priv(dev);
9040
9041	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9042	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9043		return -E2BIG;
9044	mutex_lock(&priv->mutex);
9045	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9046	memset(priv->nick, 0, sizeof(priv->nick));
9047	memcpy(priv->nick, extra, wrqu->data.length);
9048	IPW_DEBUG_TRACE("<<\n");
9049	mutex_unlock(&priv->mutex);
9050	return 0;
9051
9052}
9053
9054static int ipw_wx_get_nick(struct net_device *dev,
9055			   struct iw_request_info *info,
9056			   union iwreq_data *wrqu, char *extra)
9057{
9058	struct ipw_priv *priv = libipw_priv(dev);
9059	IPW_DEBUG_WX("Getting nick\n");
9060	mutex_lock(&priv->mutex);
9061	wrqu->data.length = strlen(priv->nick);
9062	memcpy(extra, priv->nick, wrqu->data.length);
9063	wrqu->data.flags = 1;	/* active */
9064	mutex_unlock(&priv->mutex);
9065	return 0;
9066}
9067
9068static int ipw_wx_set_sens(struct net_device *dev,
9069			    struct iw_request_info *info,
9070			    union iwreq_data *wrqu, char *extra)
9071{
9072	struct ipw_priv *priv = libipw_priv(dev);
9073	int err = 0;
9074
9075	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9076	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9077	mutex_lock(&priv->mutex);
9078
9079	if (wrqu->sens.fixed == 0)
9080	{
9081		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9082		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9083		goto out;
9084	}
9085	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9086	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9087		err = -EINVAL;
9088		goto out;
9089	}
9090
9091	priv->roaming_threshold = wrqu->sens.value;
9092	priv->disassociate_threshold = 3*wrqu->sens.value;
9093      out:
9094	mutex_unlock(&priv->mutex);
9095	return err;
9096}
9097
9098static int ipw_wx_get_sens(struct net_device *dev,
9099			    struct iw_request_info *info,
9100			    union iwreq_data *wrqu, char *extra)
9101{
9102	struct ipw_priv *priv = libipw_priv(dev);
9103	mutex_lock(&priv->mutex);
9104	wrqu->sens.fixed = 1;
9105	wrqu->sens.value = priv->roaming_threshold;
9106	mutex_unlock(&priv->mutex);
9107
9108	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9109		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9110
9111	return 0;
9112}
9113
9114static int ipw_wx_set_rate(struct net_device *dev,
9115			   struct iw_request_info *info,
9116			   union iwreq_data *wrqu, char *extra)
9117{
9118	/* TODO: We should use semaphores or locks for access to priv */
9119	struct ipw_priv *priv = libipw_priv(dev);
9120	u32 target_rate = wrqu->bitrate.value;
9121	u32 fixed, mask;
9122
9123	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9124	/* value = X, fixed = 1 means only rate X */
9125	/* value = X, fixed = 0 means all rates lower equal X */
9126
9127	if (target_rate == -1) {
9128		fixed = 0;
9129		mask = LIBIPW_DEFAULT_RATES_MASK;
9130		/* Now we should reassociate */
9131		goto apply;
9132	}
9133
9134	mask = 0;
9135	fixed = wrqu->bitrate.fixed;
9136
9137	if (target_rate == 1000000 || !fixed)
9138		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9139	if (target_rate == 1000000)
9140		goto apply;
9141
9142	if (target_rate == 2000000 || !fixed)
9143		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9144	if (target_rate == 2000000)
9145		goto apply;
9146
9147	if (target_rate == 5500000 || !fixed)
9148		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9149	if (target_rate == 5500000)
9150		goto apply;
9151
9152	if (target_rate == 6000000 || !fixed)
9153		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9154	if (target_rate == 6000000)
9155		goto apply;
9156
9157	if (target_rate == 9000000 || !fixed)
9158		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9159	if (target_rate == 9000000)
9160		goto apply;
9161
9162	if (target_rate == 11000000 || !fixed)
9163		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9164	if (target_rate == 11000000)
9165		goto apply;
9166
9167	if (target_rate == 12000000 || !fixed)
9168		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9169	if (target_rate == 12000000)
9170		goto apply;
9171
9172	if (target_rate == 18000000 || !fixed)
9173		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9174	if (target_rate == 18000000)
9175		goto apply;
9176
9177	if (target_rate == 24000000 || !fixed)
9178		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9179	if (target_rate == 24000000)
9180		goto apply;
9181
9182	if (target_rate == 36000000 || !fixed)
9183		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9184	if (target_rate == 36000000)
9185		goto apply;
9186
9187	if (target_rate == 48000000 || !fixed)
9188		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9189	if (target_rate == 48000000)
9190		goto apply;
9191
9192	if (target_rate == 54000000 || !fixed)
9193		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9194	if (target_rate == 54000000)
9195		goto apply;
9196
9197	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9198	return -EINVAL;
9199
9200      apply:
9201	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9202		     mask, fixed ? "fixed" : "sub-rates");
9203	mutex_lock(&priv->mutex);
9204	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9205		priv->config &= ~CFG_FIXED_RATE;
9206		ipw_set_fixed_rate(priv, priv->ieee->mode);
9207	} else
9208		priv->config |= CFG_FIXED_RATE;
9209
9210	if (priv->rates_mask == mask) {
9211		IPW_DEBUG_WX("Mask set to current mask.\n");
9212		mutex_unlock(&priv->mutex);
9213		return 0;
9214	}
9215
9216	priv->rates_mask = mask;
9217
9218	/* Network configuration changed -- force [re]association */
9219	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9220	if (!ipw_disassociate(priv))
9221		ipw_associate(priv);
9222
9223	mutex_unlock(&priv->mutex);
9224	return 0;
9225}
9226
9227static int ipw_wx_get_rate(struct net_device *dev,
9228			   struct iw_request_info *info,
9229			   union iwreq_data *wrqu, char *extra)
9230{
9231	struct ipw_priv *priv = libipw_priv(dev);
9232	mutex_lock(&priv->mutex);
9233	wrqu->bitrate.value = priv->last_rate;
9234	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9235	mutex_unlock(&priv->mutex);
9236	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9237	return 0;
9238}
9239
9240static int ipw_wx_set_rts(struct net_device *dev,
9241			  struct iw_request_info *info,
9242			  union iwreq_data *wrqu, char *extra)
9243{
9244	struct ipw_priv *priv = libipw_priv(dev);
9245	mutex_lock(&priv->mutex);
9246	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9247		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9248	else {
9249		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9250		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9251			mutex_unlock(&priv->mutex);
9252			return -EINVAL;
9253		}
9254		priv->rts_threshold = wrqu->rts.value;
9255	}
9256
9257	ipw_send_rts_threshold(priv, priv->rts_threshold);
9258	mutex_unlock(&priv->mutex);
9259	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9260	return 0;
9261}
9262
9263static int ipw_wx_get_rts(struct net_device *dev,
9264			  struct iw_request_info *info,
9265			  union iwreq_data *wrqu, char *extra)
9266{
9267	struct ipw_priv *priv = libipw_priv(dev);
9268	mutex_lock(&priv->mutex);
9269	wrqu->rts.value = priv->rts_threshold;
9270	wrqu->rts.fixed = 0;	/* no auto select */
9271	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9272	mutex_unlock(&priv->mutex);
9273	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9274	return 0;
9275}
9276
9277static int ipw_wx_set_txpow(struct net_device *dev,
9278			    struct iw_request_info *info,
9279			    union iwreq_data *wrqu, char *extra)
9280{
9281	struct ipw_priv *priv = libipw_priv(dev);
9282	int err = 0;
9283
9284	mutex_lock(&priv->mutex);
9285	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9286		err = -EINPROGRESS;
9287		goto out;
9288	}
9289
9290	if (!wrqu->power.fixed)
9291		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9292
9293	if (wrqu->power.flags != IW_TXPOW_DBM) {
9294		err = -EINVAL;
9295		goto out;
9296	}
9297
9298	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9299	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9300		err = -EINVAL;
9301		goto out;
9302	}
9303
9304	priv->tx_power = wrqu->power.value;
9305	err = ipw_set_tx_power(priv);
9306      out:
9307	mutex_unlock(&priv->mutex);
9308	return err;
9309}
9310
9311static int ipw_wx_get_txpow(struct net_device *dev,
9312			    struct iw_request_info *info,
9313			    union iwreq_data *wrqu, char *extra)
9314{
9315	struct ipw_priv *priv = libipw_priv(dev);
9316	mutex_lock(&priv->mutex);
9317	wrqu->power.value = priv->tx_power;
9318	wrqu->power.fixed = 1;
9319	wrqu->power.flags = IW_TXPOW_DBM;
9320	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9321	mutex_unlock(&priv->mutex);
9322
9323	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9324		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9325
9326	return 0;
9327}
9328
9329static int ipw_wx_set_frag(struct net_device *dev,
9330			   struct iw_request_info *info,
9331			   union iwreq_data *wrqu, char *extra)
9332{
9333	struct ipw_priv *priv = libipw_priv(dev);
9334	mutex_lock(&priv->mutex);
9335	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9336		priv->ieee->fts = DEFAULT_FTS;
9337	else {
9338		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9339		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9340			mutex_unlock(&priv->mutex);
9341			return -EINVAL;
9342		}
9343
9344		priv->ieee->fts = wrqu->frag.value & ~0x1;
9345	}
9346
9347	ipw_send_frag_threshold(priv, wrqu->frag.value);
9348	mutex_unlock(&priv->mutex);
9349	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9350	return 0;
9351}
9352
9353static int ipw_wx_get_frag(struct net_device *dev,
9354			   struct iw_request_info *info,
9355			   union iwreq_data *wrqu, char *extra)
9356{
9357	struct ipw_priv *priv = libipw_priv(dev);
9358	mutex_lock(&priv->mutex);
9359	wrqu->frag.value = priv->ieee->fts;
9360	wrqu->frag.fixed = 0;	/* no auto select */
9361	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9362	mutex_unlock(&priv->mutex);
9363	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9364
9365	return 0;
9366}
9367
9368static int ipw_wx_set_retry(struct net_device *dev,
9369			    struct iw_request_info *info,
9370			    union iwreq_data *wrqu, char *extra)
9371{
9372	struct ipw_priv *priv = libipw_priv(dev);
9373
9374	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9375		return -EINVAL;
9376
9377	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9378		return 0;
9379
9380	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9381		return -EINVAL;
9382
9383	mutex_lock(&priv->mutex);
9384	if (wrqu->retry.flags & IW_RETRY_SHORT)
9385		priv->short_retry_limit = (u8) wrqu->retry.value;
9386	else if (wrqu->retry.flags & IW_RETRY_LONG)
9387		priv->long_retry_limit = (u8) wrqu->retry.value;
9388	else {
9389		priv->short_retry_limit = (u8) wrqu->retry.value;
9390		priv->long_retry_limit = (u8) wrqu->retry.value;
9391	}
9392
9393	ipw_send_retry_limit(priv, priv->short_retry_limit,
9394			     priv->long_retry_limit);
9395	mutex_unlock(&priv->mutex);
9396	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9397		     priv->short_retry_limit, priv->long_retry_limit);
9398	return 0;
9399}
9400
9401static int ipw_wx_get_retry(struct net_device *dev,
9402			    struct iw_request_info *info,
9403			    union iwreq_data *wrqu, char *extra)
9404{
9405	struct ipw_priv *priv = libipw_priv(dev);
9406
9407	mutex_lock(&priv->mutex);
9408	wrqu->retry.disabled = 0;
9409
9410	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9411		mutex_unlock(&priv->mutex);
9412		return -EINVAL;
9413	}
9414
9415	if (wrqu->retry.flags & IW_RETRY_LONG) {
9416		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9417		wrqu->retry.value = priv->long_retry_limit;
9418	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9419		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9420		wrqu->retry.value = priv->short_retry_limit;
9421	} else {
9422		wrqu->retry.flags = IW_RETRY_LIMIT;
9423		wrqu->retry.value = priv->short_retry_limit;
9424	}
9425	mutex_unlock(&priv->mutex);
9426
9427	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9428
9429	return 0;
9430}
9431
9432static int ipw_wx_set_scan(struct net_device *dev,
9433			   struct iw_request_info *info,
9434			   union iwreq_data *wrqu, char *extra)
9435{
9436	struct ipw_priv *priv = libipw_priv(dev);
9437	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9438	struct delayed_work *work = NULL;
9439
9440	mutex_lock(&priv->mutex);
9441
9442	priv->user_requested_scan = 1;
9443
9444	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9445		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9446			int len = min((int)req->essid_len,
9447			              (int)sizeof(priv->direct_scan_ssid));
9448			memcpy(priv->direct_scan_ssid, req->essid, len);
9449			priv->direct_scan_ssid_len = len;
9450			work = &priv->request_direct_scan;
9451		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9452			work = &priv->request_passive_scan;
9453		}
9454	} else {
9455		/* Normal active broadcast scan */
9456		work = &priv->request_scan;
9457	}
9458
9459	mutex_unlock(&priv->mutex);
9460
9461	IPW_DEBUG_WX("Start scan\n");
9462
9463	schedule_delayed_work(work, 0);
9464
9465	return 0;
9466}
9467
9468static int ipw_wx_get_scan(struct net_device *dev,
9469			   struct iw_request_info *info,
9470			   union iwreq_data *wrqu, char *extra)
9471{
9472	struct ipw_priv *priv = libipw_priv(dev);
9473	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9474}
9475
9476static int ipw_wx_set_encode(struct net_device *dev,
9477			     struct iw_request_info *info,
9478			     union iwreq_data *wrqu, char *key)
9479{
9480	struct ipw_priv *priv = libipw_priv(dev);
9481	int ret;
9482	u32 cap = priv->capability;
9483
9484	mutex_lock(&priv->mutex);
9485	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9486
9487	/* In IBSS mode, we need to notify the firmware to update
9488	 * the beacon info after we changed the capability. */
9489	if (cap != priv->capability &&
9490	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9491	    priv->status & STATUS_ASSOCIATED)
9492		ipw_disassociate(priv);
9493
9494	mutex_unlock(&priv->mutex);
9495	return ret;
9496}
9497
9498static int ipw_wx_get_encode(struct net_device *dev,
9499			     struct iw_request_info *info,
9500			     union iwreq_data *wrqu, char *key)
9501{
9502	struct ipw_priv *priv = libipw_priv(dev);
9503	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9504}
9505
9506static int ipw_wx_set_power(struct net_device *dev,
9507			    struct iw_request_info *info,
9508			    union iwreq_data *wrqu, char *extra)
9509{
9510	struct ipw_priv *priv = libipw_priv(dev);
9511	int err;
9512	mutex_lock(&priv->mutex);
9513	if (wrqu->power.disabled) {
9514		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9515		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9516		if (err) {
9517			IPW_DEBUG_WX("failed setting power mode.\n");
9518			mutex_unlock(&priv->mutex);
9519			return err;
9520		}
9521		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9522		mutex_unlock(&priv->mutex);
9523		return 0;
9524	}
9525
9526	switch (wrqu->power.flags & IW_POWER_MODE) {
9527	case IW_POWER_ON:	/* If not specified */
9528	case IW_POWER_MODE:	/* If set all mask */
9529	case IW_POWER_ALL_R:	/* If explicitly state all */
9530		break;
9531	default:		/* Otherwise we don't support it */
9532		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9533			     wrqu->power.flags);
9534		mutex_unlock(&priv->mutex);
9535		return -EOPNOTSUPP;
9536	}
9537
9538	/* If the user hasn't specified a power management mode yet, default
9539	 * to BATTERY */
9540	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9541		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9542	else
9543		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9544
9545	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9546	if (err) {
9547		IPW_DEBUG_WX("failed setting power mode.\n");
9548		mutex_unlock(&priv->mutex);
9549		return err;
9550	}
9551
9552	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9553	mutex_unlock(&priv->mutex);
9554	return 0;
9555}
9556
9557static int ipw_wx_get_power(struct net_device *dev,
9558			    struct iw_request_info *info,
9559			    union iwreq_data *wrqu, char *extra)
9560{
9561	struct ipw_priv *priv = libipw_priv(dev);
9562	mutex_lock(&priv->mutex);
9563	if (!(priv->power_mode & IPW_POWER_ENABLED))
9564		wrqu->power.disabled = 1;
9565	else
9566		wrqu->power.disabled = 0;
9567
9568	mutex_unlock(&priv->mutex);
9569	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9570
9571	return 0;
9572}
9573
9574static int ipw_wx_set_powermode(struct net_device *dev,
9575				struct iw_request_info *info,
9576				union iwreq_data *wrqu, char *extra)
9577{
9578	struct ipw_priv *priv = libipw_priv(dev);
9579	int mode = *(int *)extra;
9580	int err;
9581
9582	mutex_lock(&priv->mutex);
9583	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9584		mode = IPW_POWER_AC;
9585
9586	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9587		err = ipw_send_power_mode(priv, mode);
9588		if (err) {
9589			IPW_DEBUG_WX("failed setting power mode.\n");
9590			mutex_unlock(&priv->mutex);
9591			return err;
9592		}
9593		priv->power_mode = IPW_POWER_ENABLED | mode;
9594	}
9595	mutex_unlock(&priv->mutex);
9596	return 0;
9597}
9598
9599#define MAX_WX_STRING 80
9600static int ipw_wx_get_powermode(struct net_device *dev,
9601				struct iw_request_info *info,
9602				union iwreq_data *wrqu, char *extra)
9603{
9604	struct ipw_priv *priv = libipw_priv(dev);
9605	int level = IPW_POWER_LEVEL(priv->power_mode);
9606	char *p = extra;
9607
9608	p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9609
9610	switch (level) {
9611	case IPW_POWER_AC:
9612		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9613		break;
9614	case IPW_POWER_BATTERY:
9615		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9616		break;
9617	default:
9618		p += scnprintf(p, MAX_WX_STRING - (p - extra),
9619			      "(Timeout %dms, Period %dms)",
9620			      timeout_duration[level - 1] / 1000,
9621			      period_duration[level - 1] / 1000);
9622	}
9623
9624	if (!(priv->power_mode & IPW_POWER_ENABLED))
9625		p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9626
9627	wrqu->data.length = p - extra + 1;
9628
9629	return 0;
9630}
9631
9632static int ipw_wx_set_wireless_mode(struct net_device *dev,
9633				    struct iw_request_info *info,
9634				    union iwreq_data *wrqu, char *extra)
9635{
9636	struct ipw_priv *priv = libipw_priv(dev);
9637	int mode = *(int *)extra;
9638	u8 band = 0, modulation = 0;
9639
9640	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9641		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9642		return -EINVAL;
9643	}
9644	mutex_lock(&priv->mutex);
9645	if (priv->adapter == IPW_2915ABG) {
9646		priv->ieee->abg_true = 1;
9647		if (mode & IEEE_A) {
9648			band |= LIBIPW_52GHZ_BAND;
9649			modulation |= LIBIPW_OFDM_MODULATION;
9650		} else
9651			priv->ieee->abg_true = 0;
9652	} else {
9653		if (mode & IEEE_A) {
9654			IPW_WARNING("Attempt to set 2200BG into "
9655				    "802.11a mode\n");
9656			mutex_unlock(&priv->mutex);
9657			return -EINVAL;
9658		}
9659
9660		priv->ieee->abg_true = 0;
9661	}
9662
9663	if (mode & IEEE_B) {
9664		band |= LIBIPW_24GHZ_BAND;
9665		modulation |= LIBIPW_CCK_MODULATION;
9666	} else
9667		priv->ieee->abg_true = 0;
9668
9669	if (mode & IEEE_G) {
9670		band |= LIBIPW_24GHZ_BAND;
9671		modulation |= LIBIPW_OFDM_MODULATION;
9672	} else
9673		priv->ieee->abg_true = 0;
9674
9675	priv->ieee->mode = mode;
9676	priv->ieee->freq_band = band;
9677	priv->ieee->modulation = modulation;
9678	init_supported_rates(priv, &priv->rates);
9679
9680	/* Network configuration changed -- force [re]association */
9681	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9682	if (!ipw_disassociate(priv)) {
9683		ipw_send_supported_rates(priv, &priv->rates);
9684		ipw_associate(priv);
9685	}
9686
9687	/* Update the band LEDs */
9688	ipw_led_band_on(priv);
9689
9690	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9691		     mode & IEEE_A ? 'a' : '.',
9692		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9693	mutex_unlock(&priv->mutex);
9694	return 0;
9695}
9696
9697static int ipw_wx_get_wireless_mode(struct net_device *dev,
9698				    struct iw_request_info *info,
9699				    union iwreq_data *wrqu, char *extra)
9700{
9701	struct ipw_priv *priv = libipw_priv(dev);
9702	mutex_lock(&priv->mutex);
9703	switch (priv->ieee->mode) {
9704	case IEEE_A:
9705		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9706		break;
9707	case IEEE_B:
9708		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9709		break;
9710	case IEEE_A | IEEE_B:
9711		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9712		break;
9713	case IEEE_G:
9714		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9715		break;
9716	case IEEE_A | IEEE_G:
9717		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9718		break;
9719	case IEEE_B | IEEE_G:
9720		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9721		break;
9722	case IEEE_A | IEEE_B | IEEE_G:
9723		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9724		break;
9725	default:
9726		strncpy(extra, "unknown", MAX_WX_STRING);
9727		break;
9728	}
9729	extra[MAX_WX_STRING - 1] = '\0';
9730
9731	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9732
9733	wrqu->data.length = strlen(extra) + 1;
9734	mutex_unlock(&priv->mutex);
9735
9736	return 0;
9737}
9738
9739static int ipw_wx_set_preamble(struct net_device *dev,
9740			       struct iw_request_info *info,
9741			       union iwreq_data *wrqu, char *extra)
9742{
9743	struct ipw_priv *priv = libipw_priv(dev);
9744	int mode = *(int *)extra;
9745	mutex_lock(&priv->mutex);
9746	/* Switching from SHORT -> LONG requires a disassociation */
9747	if (mode == 1) {
9748		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9749			priv->config |= CFG_PREAMBLE_LONG;
9750
9751			/* Network configuration changed -- force [re]association */
9752			IPW_DEBUG_ASSOC
9753			    ("[re]association triggered due to preamble change.\n");
9754			if (!ipw_disassociate(priv))
9755				ipw_associate(priv);
9756		}
9757		goto done;
9758	}
9759
9760	if (mode == 0) {
9761		priv->config &= ~CFG_PREAMBLE_LONG;
9762		goto done;
9763	}
9764	mutex_unlock(&priv->mutex);
9765	return -EINVAL;
9766
9767      done:
9768	mutex_unlock(&priv->mutex);
9769	return 0;
9770}
9771
9772static int ipw_wx_get_preamble(struct net_device *dev,
9773			       struct iw_request_info *info,
9774			       union iwreq_data *wrqu, char *extra)
9775{
9776	struct ipw_priv *priv = libipw_priv(dev);
9777	mutex_lock(&priv->mutex);
9778	if (priv->config & CFG_PREAMBLE_LONG)
9779		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9780	else
9781		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9782	mutex_unlock(&priv->mutex);
9783	return 0;
9784}
9785
9786#ifdef CONFIG_IPW2200_MONITOR
9787static int ipw_wx_set_monitor(struct net_device *dev,
9788			      struct iw_request_info *info,
9789			      union iwreq_data *wrqu, char *extra)
9790{
9791	struct ipw_priv *priv = libipw_priv(dev);
9792	int *parms = (int *)extra;
9793	int enable = (parms[0] > 0);
9794	mutex_lock(&priv->mutex);
9795	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9796	if (enable) {
9797		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9798#ifdef CONFIG_IPW2200_RADIOTAP
9799			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9800#else
9801			priv->net_dev->type = ARPHRD_IEEE80211;
9802#endif
9803			schedule_work(&priv->adapter_restart);
9804		}
9805
9806		ipw_set_channel(priv, parms[1]);
9807	} else {
9808		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9809			mutex_unlock(&priv->mutex);
9810			return 0;
9811		}
9812		priv->net_dev->type = ARPHRD_ETHER;
9813		schedule_work(&priv->adapter_restart);
9814	}
9815	mutex_unlock(&priv->mutex);
9816	return 0;
9817}
9818
9819#endif				/* CONFIG_IPW2200_MONITOR */
9820
9821static int ipw_wx_reset(struct net_device *dev,
9822			struct iw_request_info *info,
9823			union iwreq_data *wrqu, char *extra)
9824{
9825	struct ipw_priv *priv = libipw_priv(dev);
9826	IPW_DEBUG_WX("RESET\n");
9827	schedule_work(&priv->adapter_restart);
9828	return 0;
9829}
9830
9831static int ipw_wx_sw_reset(struct net_device *dev,
9832			   struct iw_request_info *info,
9833			   union iwreq_data *wrqu, char *extra)
9834{
9835	struct ipw_priv *priv = libipw_priv(dev);
9836	union iwreq_data wrqu_sec = {
9837		.encoding = {
9838			     .flags = IW_ENCODE_DISABLED,
9839			     },
9840	};
9841	int ret;
9842
9843	IPW_DEBUG_WX("SW_RESET\n");
9844
9845	mutex_lock(&priv->mutex);
9846
9847	ret = ipw_sw_reset(priv, 2);
9848	if (!ret) {
9849		free_firmware();
9850		ipw_adapter_restart(priv);
9851	}
9852
9853	/* The SW reset bit might have been toggled on by the 'disable'
9854	 * module parameter, so take appropriate action */
9855	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9856
9857	mutex_unlock(&priv->mutex);
9858	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9859	mutex_lock(&priv->mutex);
9860
9861	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9862		/* Configuration likely changed -- force [re]association */
9863		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9864				"reset.\n");
9865		if (!ipw_disassociate(priv))
9866			ipw_associate(priv);
9867	}
9868
9869	mutex_unlock(&priv->mutex);
9870
9871	return 0;
9872}
9873
9874/* Rebase the WE IOCTLs to zero for the handler array */
9875static iw_handler ipw_wx_handlers[] = {
9876	IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9877	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9878	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9879	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9880	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9881	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9882	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9883	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9884	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9885	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9886	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9887	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9888	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9889	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9890	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9891	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9892	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9893	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9894	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9895	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9896	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9897	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9898	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9899	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9900	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9901	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9902	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9903	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9904	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9905	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9906	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9907	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9908	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9909	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9910	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9911	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9912	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9913	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9914	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9915	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9916	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9917};
9918
9919enum {
9920	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9921	IPW_PRIV_GET_POWER,
9922	IPW_PRIV_SET_MODE,
9923	IPW_PRIV_GET_MODE,
9924	IPW_PRIV_SET_PREAMBLE,
9925	IPW_PRIV_GET_PREAMBLE,
9926	IPW_PRIV_RESET,
9927	IPW_PRIV_SW_RESET,
9928#ifdef CONFIG_IPW2200_MONITOR
9929	IPW_PRIV_SET_MONITOR,
9930#endif
9931};
9932
9933static struct iw_priv_args ipw_priv_args[] = {
9934	{
9935	 .cmd = IPW_PRIV_SET_POWER,
9936	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9937	 .name = "set_power"},
9938	{
9939	 .cmd = IPW_PRIV_GET_POWER,
9940	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9941	 .name = "get_power"},
9942	{
9943	 .cmd = IPW_PRIV_SET_MODE,
9944	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9945	 .name = "set_mode"},
9946	{
9947	 .cmd = IPW_PRIV_GET_MODE,
9948	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9949	 .name = "get_mode"},
9950	{
9951	 .cmd = IPW_PRIV_SET_PREAMBLE,
9952	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9953	 .name = "set_preamble"},
9954	{
9955	 .cmd = IPW_PRIV_GET_PREAMBLE,
9956	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9957	 .name = "get_preamble"},
9958	{
9959	 IPW_PRIV_RESET,
9960	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9961	{
9962	 IPW_PRIV_SW_RESET,
9963	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9964#ifdef CONFIG_IPW2200_MONITOR
9965	{
9966	 IPW_PRIV_SET_MONITOR,
9967	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9968#endif				/* CONFIG_IPW2200_MONITOR */
9969};
9970
9971static iw_handler ipw_priv_handler[] = {
9972	ipw_wx_set_powermode,
9973	ipw_wx_get_powermode,
9974	ipw_wx_set_wireless_mode,
9975	ipw_wx_get_wireless_mode,
9976	ipw_wx_set_preamble,
9977	ipw_wx_get_preamble,
9978	ipw_wx_reset,
9979	ipw_wx_sw_reset,
9980#ifdef CONFIG_IPW2200_MONITOR
9981	ipw_wx_set_monitor,
9982#endif
9983};
9984
9985static const struct iw_handler_def ipw_wx_handler_def = {
9986	.standard = ipw_wx_handlers,
9987	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
9988	.num_private = ARRAY_SIZE(ipw_priv_handler),
9989	.num_private_args = ARRAY_SIZE(ipw_priv_args),
9990	.private = ipw_priv_handler,
9991	.private_args = ipw_priv_args,
9992	.get_wireless_stats = ipw_get_wireless_stats,
9993};
9994
9995/*
9996 * Get wireless statistics.
9997 * Called by /proc/net/wireless
9998 * Also called by SIOCGIWSTATS
9999 */
10000static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10001{
10002	struct ipw_priv *priv = libipw_priv(dev);
10003	struct iw_statistics *wstats;
10004
10005	wstats = &priv->wstats;
10006
10007	/* if hw is disabled, then ipw_get_ordinal() can't be called.
10008	 * netdev->get_wireless_stats seems to be called before fw is
10009	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10010	 * and associated; if not associcated, the values are all meaningless
10011	 * anyway, so set them all to NULL and INVALID */
10012	if (!(priv->status & STATUS_ASSOCIATED)) {
10013		wstats->miss.beacon = 0;
10014		wstats->discard.retries = 0;
10015		wstats->qual.qual = 0;
10016		wstats->qual.level = 0;
10017		wstats->qual.noise = 0;
10018		wstats->qual.updated = 7;
10019		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10020		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10021		return wstats;
10022	}
10023
10024	wstats->qual.qual = priv->quality;
10025	wstats->qual.level = priv->exp_avg_rssi;
10026	wstats->qual.noise = priv->exp_avg_noise;
10027	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10028	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10029
10030	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10031	wstats->discard.retries = priv->last_tx_failures;
10032	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10033
10034/*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10035	goto fail_get_ordinal;
10036	wstats->discard.retries += tx_retry; */
10037
10038	return wstats;
10039}
10040
10041/* net device stuff */
10042
10043static  void init_sys_config(struct ipw_sys_config *sys_config)
10044{
10045	memset(sys_config, 0, sizeof(struct ipw_sys_config));
10046	sys_config->bt_coexistence = 0;
10047	sys_config->answer_broadcast_ssid_probe = 0;
10048	sys_config->accept_all_data_frames = 0;
10049	sys_config->accept_non_directed_frames = 1;
10050	sys_config->exclude_unicast_unencrypted = 0;
10051	sys_config->disable_unicast_decryption = 1;
10052	sys_config->exclude_multicast_unencrypted = 0;
10053	sys_config->disable_multicast_decryption = 1;
10054	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10055		antenna = CFG_SYS_ANTENNA_BOTH;
10056	sys_config->antenna_diversity = antenna;
10057	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10058	sys_config->dot11g_auto_detection = 0;
10059	sys_config->enable_cts_to_self = 0;
10060	sys_config->bt_coexist_collision_thr = 0;
10061	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10062	sys_config->silence_threshold = 0x1e;
10063}
10064
10065static int ipw_net_open(struct net_device *dev)
10066{
10067	IPW_DEBUG_INFO("dev->open\n");
10068	netif_start_queue(dev);
10069	return 0;
10070}
10071
10072static int ipw_net_stop(struct net_device *dev)
10073{
10074	IPW_DEBUG_INFO("dev->close\n");
10075	netif_stop_queue(dev);
10076	return 0;
10077}
10078
10079/*
10080todo:
10081
10082modify to send one tfd per fragment instead of using chunking.  otherwise
10083we need to heavily modify the libipw_skb_to_txb.
10084*/
10085
10086static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10087			     int pri)
10088{
10089	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10090	    txb->fragments[0]->data;
10091	int i = 0;
10092	struct tfd_frame *tfd;
10093#ifdef CONFIG_IPW2200_QOS
10094	int tx_id = ipw_get_tx_queue_number(priv, pri);
10095	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10096#else
10097	struct clx2_tx_queue *txq = &priv->txq[0];
10098#endif
10099	struct clx2_queue *q = &txq->q;
10100	u8 id, hdr_len, unicast;
10101	int fc;
10102
10103	if (!(priv->status & STATUS_ASSOCIATED))
10104		goto drop;
10105
10106	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10107	switch (priv->ieee->iw_mode) {
10108	case IW_MODE_ADHOC:
10109		unicast = !is_multicast_ether_addr(hdr->addr1);
10110		id = ipw_find_station(priv, hdr->addr1);
10111		if (id == IPW_INVALID_STATION) {
10112			id = ipw_add_station(priv, hdr->addr1);
10113			if (id == IPW_INVALID_STATION) {
10114				IPW_WARNING("Attempt to send data to "
10115					    "invalid cell: %pM\n",
10116					    hdr->addr1);
10117				goto drop;
10118			}
10119		}
10120		break;
10121
10122	case IW_MODE_INFRA:
10123	default:
10124		unicast = !is_multicast_ether_addr(hdr->addr3);
10125		id = 0;
10126		break;
10127	}
10128
10129	tfd = &txq->bd[q->first_empty];
10130	txq->txb[q->first_empty] = txb;
10131	memset(tfd, 0, sizeof(*tfd));
10132	tfd->u.data.station_number = id;
10133
10134	tfd->control_flags.message_type = TX_FRAME_TYPE;
10135	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10136
10137	tfd->u.data.cmd_id = DINO_CMD_TX;
10138	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10139
10140	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10141		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10142	else
10143		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10144
10145	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10146		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10147
10148	fc = le16_to_cpu(hdr->frame_ctl);
10149	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10150
10151	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10152
10153	if (likely(unicast))
10154		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10155
10156	if (txb->encrypted && !priv->ieee->host_encrypt) {
10157		switch (priv->ieee->sec.level) {
10158		case SEC_LEVEL_3:
10159			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10160			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10161			/* XXX: ACK flag must be set for CCMP even if it
10162			 * is a multicast/broadcast packet, because CCMP
10163			 * group communication encrypted by GTK is
10164			 * actually done by the AP. */
10165			if (!unicast)
10166				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10167
10168			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10169			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10170			tfd->u.data.key_index = 0;
10171			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10172			break;
10173		case SEC_LEVEL_2:
10174			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10175			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10176			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10177			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10178			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10179			break;
10180		case SEC_LEVEL_1:
10181			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10182			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10183			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10184			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10185			    40)
10186				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10187			else
10188				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10189			break;
10190		case SEC_LEVEL_0:
10191			break;
10192		default:
10193			printk(KERN_ERR "Unknown security level %d\n",
10194			       priv->ieee->sec.level);
10195			break;
10196		}
10197	} else
10198		/* No hardware encryption */
10199		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10200
10201#ifdef CONFIG_IPW2200_QOS
10202	if (fc & IEEE80211_STYPE_QOS_DATA)
10203		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10204#endif				/* CONFIG_IPW2200_QOS */
10205
10206	/* payload */
10207	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10208						 txb->nr_frags));
10209	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10210		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10211	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10212		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10213			       i, le32_to_cpu(tfd->u.data.num_chunks),
10214			       txb->fragments[i]->len - hdr_len);
10215		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10216			     i, tfd->u.data.num_chunks,
10217			     txb->fragments[i]->len - hdr_len);
10218		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10219			   txb->fragments[i]->len - hdr_len);
10220
10221		tfd->u.data.chunk_ptr[i] =
10222		    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10223					       txb->fragments[i]->data + hdr_len,
10224					       txb->fragments[i]->len - hdr_len,
10225					       DMA_TO_DEVICE));
10226		tfd->u.data.chunk_len[i] =
10227		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10228	}
10229
10230	if (i != txb->nr_frags) {
10231		struct sk_buff *skb;
10232		u16 remaining_bytes = 0;
10233		int j;
10234
10235		for (j = i; j < txb->nr_frags; j++)
10236			remaining_bytes += txb->fragments[j]->len - hdr_len;
10237
10238		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10239		       remaining_bytes);
10240		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10241		if (skb != NULL) {
10242			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10243			for (j = i; j < txb->nr_frags; j++) {
10244				int size = txb->fragments[j]->len - hdr_len;
10245
10246				printk(KERN_INFO "Adding frag %d %d...\n",
10247				       j, size);
10248				skb_put_data(skb,
10249					     txb->fragments[j]->data + hdr_len,
10250					     size);
10251			}
10252			dev_kfree_skb_any(txb->fragments[i]);
10253			txb->fragments[i] = skb;
10254			tfd->u.data.chunk_ptr[i] =
10255			    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10256						       skb->data,
10257						       remaining_bytes,
10258						       DMA_TO_DEVICE));
10259
10260			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10261		}
10262	}
10263
10264	/* kick DMA */
10265	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10266	ipw_write32(priv, q->reg_w, q->first_empty);
10267
10268	if (ipw_tx_queue_space(q) < q->high_mark)
10269		netif_stop_queue(priv->net_dev);
10270
10271	return NETDEV_TX_OK;
10272
10273      drop:
10274	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10275	libipw_txb_free(txb);
10276	return NETDEV_TX_OK;
10277}
10278
10279static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10280{
10281	struct ipw_priv *priv = libipw_priv(dev);
10282#ifdef CONFIG_IPW2200_QOS
10283	int tx_id = ipw_get_tx_queue_number(priv, pri);
10284	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10285#else
10286	struct clx2_tx_queue *txq = &priv->txq[0];
10287#endif				/* CONFIG_IPW2200_QOS */
10288
10289	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10290		return 1;
10291
10292	return 0;
10293}
10294
10295#ifdef CONFIG_IPW2200_PROMISCUOUS
10296static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10297				      struct libipw_txb *txb)
10298{
10299	struct libipw_rx_stats dummystats;
10300	struct ieee80211_hdr *hdr;
10301	u8 n;
10302	u16 filter = priv->prom_priv->filter;
10303	int hdr_only = 0;
10304
10305	if (filter & IPW_PROM_NO_TX)
10306		return;
10307
10308	memset(&dummystats, 0, sizeof(dummystats));
10309
10310	/* Filtering of fragment chains is done against the first fragment */
10311	hdr = (void *)txb->fragments[0]->data;
10312	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10313		if (filter & IPW_PROM_NO_MGMT)
10314			return;
10315		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10316			hdr_only = 1;
10317	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10318		if (filter & IPW_PROM_NO_CTL)
10319			return;
10320		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10321			hdr_only = 1;
10322	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10323		if (filter & IPW_PROM_NO_DATA)
10324			return;
10325		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10326			hdr_only = 1;
10327	}
10328
10329	for(n=0; n<txb->nr_frags; ++n) {
10330		struct sk_buff *src = txb->fragments[n];
10331		struct sk_buff *dst;
10332		struct ieee80211_radiotap_header *rt_hdr;
10333		int len;
10334
10335		if (hdr_only) {
10336			hdr = (void *)src->data;
10337			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10338		} else
10339			len = src->len;
10340
10341		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10342		if (!dst)
10343			continue;
10344
10345		rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10346
10347		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10348		rt_hdr->it_pad = 0;
10349		rt_hdr->it_present = 0; /* after all, it's just an idea */
10350		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10351
10352		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10353			ieee80211chan2mhz(priv->channel));
10354		if (priv->channel > 14) 	/* 802.11a */
10355			*(__le16*)skb_put(dst, sizeof(u16)) =
10356				cpu_to_le16(IEEE80211_CHAN_OFDM |
10357					     IEEE80211_CHAN_5GHZ);
10358		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10359			*(__le16*)skb_put(dst, sizeof(u16)) =
10360				cpu_to_le16(IEEE80211_CHAN_CCK |
10361					     IEEE80211_CHAN_2GHZ);
10362		else 		/* 802.11g */
10363			*(__le16*)skb_put(dst, sizeof(u16)) =
10364				cpu_to_le16(IEEE80211_CHAN_OFDM |
10365				 IEEE80211_CHAN_2GHZ);
10366
10367		rt_hdr->it_len = cpu_to_le16(dst->len);
10368
10369		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10370
10371		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10372			dev_kfree_skb_any(dst);
10373	}
10374}
10375#endif
10376
10377static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10378					   struct net_device *dev, int pri)
10379{
10380	struct ipw_priv *priv = libipw_priv(dev);
10381	unsigned long flags;
10382	netdev_tx_t ret;
10383
10384	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10385	spin_lock_irqsave(&priv->lock, flags);
10386
10387#ifdef CONFIG_IPW2200_PROMISCUOUS
10388	if (rtap_iface && netif_running(priv->prom_net_dev))
10389		ipw_handle_promiscuous_tx(priv, txb);
10390#endif
10391
10392	ret = ipw_tx_skb(priv, txb, pri);
10393	if (ret == NETDEV_TX_OK)
10394		__ipw_led_activity_on(priv);
10395	spin_unlock_irqrestore(&priv->lock, flags);
10396
10397	return ret;
10398}
10399
10400static void ipw_net_set_multicast_list(struct net_device *dev)
10401{
10402
10403}
10404
10405static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10406{
10407	struct ipw_priv *priv = libipw_priv(dev);
10408	struct sockaddr *addr = p;
10409
10410	if (!is_valid_ether_addr(addr->sa_data))
10411		return -EADDRNOTAVAIL;
10412	mutex_lock(&priv->mutex);
10413	priv->config |= CFG_CUSTOM_MAC;
10414	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10415	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10416	       priv->net_dev->name, priv->mac_addr);
10417	schedule_work(&priv->adapter_restart);
10418	mutex_unlock(&priv->mutex);
10419	return 0;
10420}
10421
10422static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10423				    struct ethtool_drvinfo *info)
10424{
10425	struct ipw_priv *p = libipw_priv(dev);
10426	char vers[64];
10427	char date[32];
10428	u32 len;
10429
10430	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10431	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10432
10433	len = sizeof(vers);
10434	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10435	len = sizeof(date);
10436	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10437
10438	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10439		 vers, date);
10440	strlcpy(info->bus_info, pci_name(p->pci_dev),
10441		sizeof(info->bus_info));
10442}
10443
10444static u32 ipw_ethtool_get_link(struct net_device *dev)
10445{
10446	struct ipw_priv *priv = libipw_priv(dev);
10447	return (priv->status & STATUS_ASSOCIATED) != 0;
10448}
10449
10450static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10451{
10452	return IPW_EEPROM_IMAGE_SIZE;
10453}
10454
10455static int ipw_ethtool_get_eeprom(struct net_device *dev,
10456				  struct ethtool_eeprom *eeprom, u8 * bytes)
10457{
10458	struct ipw_priv *p = libipw_priv(dev);
10459
10460	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10461		return -EINVAL;
10462	mutex_lock(&p->mutex);
10463	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10464	mutex_unlock(&p->mutex);
10465	return 0;
10466}
10467
10468static int ipw_ethtool_set_eeprom(struct net_device *dev,
10469				  struct ethtool_eeprom *eeprom, u8 * bytes)
10470{
10471	struct ipw_priv *p = libipw_priv(dev);
10472	int i;
10473
10474	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10475		return -EINVAL;
10476	mutex_lock(&p->mutex);
10477	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10478	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10479		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10480	mutex_unlock(&p->mutex);
10481	return 0;
10482}
10483
10484static const struct ethtool_ops ipw_ethtool_ops = {
10485	.get_link = ipw_ethtool_get_link,
10486	.get_drvinfo = ipw_ethtool_get_drvinfo,
10487	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10488	.get_eeprom = ipw_ethtool_get_eeprom,
10489	.set_eeprom = ipw_ethtool_set_eeprom,
10490};
10491
10492static irqreturn_t ipw_isr(int irq, void *data)
10493{
10494	struct ipw_priv *priv = data;
10495	u32 inta, inta_mask;
10496
10497	if (!priv)
10498		return IRQ_NONE;
10499
10500	spin_lock(&priv->irq_lock);
10501
10502	if (!(priv->status & STATUS_INT_ENABLED)) {
10503		/* IRQ is disabled */
10504		goto none;
10505	}
10506
10507	inta = ipw_read32(priv, IPW_INTA_RW);
10508	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10509
10510	if (inta == 0xFFFFFFFF) {
10511		/* Hardware disappeared */
10512		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10513		goto none;
10514	}
10515
10516	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10517		/* Shared interrupt */
10518		goto none;
10519	}
10520
10521	/* tell the device to stop sending interrupts */
10522	__ipw_disable_interrupts(priv);
10523
10524	/* ack current interrupts */
10525	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10526	ipw_write32(priv, IPW_INTA_RW, inta);
10527
10528	/* Cache INTA value for our tasklet */
10529	priv->isr_inta = inta;
10530
10531	tasklet_schedule(&priv->irq_tasklet);
10532
10533	spin_unlock(&priv->irq_lock);
10534
10535	return IRQ_HANDLED;
10536      none:
10537	spin_unlock(&priv->irq_lock);
10538	return IRQ_NONE;
10539}
10540
10541static void ipw_rf_kill(void *adapter)
10542{
10543	struct ipw_priv *priv = adapter;
10544	unsigned long flags;
10545
10546	spin_lock_irqsave(&priv->lock, flags);
10547
10548	if (rf_kill_active(priv)) {
10549		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10550		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10551		goto exit_unlock;
10552	}
10553
10554	/* RF Kill is now disabled, so bring the device back up */
10555
10556	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10557		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10558				  "device\n");
10559
10560		/* we can not do an adapter restart while inside an irq lock */
10561		schedule_work(&priv->adapter_restart);
10562	} else
10563		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10564				  "enabled\n");
10565
10566      exit_unlock:
10567	spin_unlock_irqrestore(&priv->lock, flags);
10568}
10569
10570static void ipw_bg_rf_kill(struct work_struct *work)
10571{
10572	struct ipw_priv *priv =
10573		container_of(work, struct ipw_priv, rf_kill.work);
10574	mutex_lock(&priv->mutex);
10575	ipw_rf_kill(priv);
10576	mutex_unlock(&priv->mutex);
10577}
10578
10579static void ipw_link_up(struct ipw_priv *priv)
10580{
10581	priv->last_seq_num = -1;
10582	priv->last_frag_num = -1;
10583	priv->last_packet_time = 0;
10584
10585	netif_carrier_on(priv->net_dev);
10586
10587	cancel_delayed_work(&priv->request_scan);
10588	cancel_delayed_work(&priv->request_direct_scan);
10589	cancel_delayed_work(&priv->request_passive_scan);
10590	cancel_delayed_work(&priv->scan_event);
10591	ipw_reset_stats(priv);
10592	/* Ensure the rate is updated immediately */
10593	priv->last_rate = ipw_get_current_rate(priv);
10594	ipw_gather_stats(priv);
10595	ipw_led_link_up(priv);
10596	notify_wx_assoc_event(priv);
10597
10598	if (priv->config & CFG_BACKGROUND_SCAN)
10599		schedule_delayed_work(&priv->request_scan, HZ);
10600}
10601
10602static void ipw_bg_link_up(struct work_struct *work)
10603{
10604	struct ipw_priv *priv =
10605		container_of(work, struct ipw_priv, link_up);
10606	mutex_lock(&priv->mutex);
10607	ipw_link_up(priv);
10608	mutex_unlock(&priv->mutex);
10609}
10610
10611static void ipw_link_down(struct ipw_priv *priv)
10612{
10613	ipw_led_link_down(priv);
10614	netif_carrier_off(priv->net_dev);
10615	notify_wx_assoc_event(priv);
10616
10617	/* Cancel any queued work ... */
10618	cancel_delayed_work(&priv->request_scan);
10619	cancel_delayed_work(&priv->request_direct_scan);
10620	cancel_delayed_work(&priv->request_passive_scan);
10621	cancel_delayed_work(&priv->adhoc_check);
10622	cancel_delayed_work(&priv->gather_stats);
10623
10624	ipw_reset_stats(priv);
10625
10626	if (!(priv->status & STATUS_EXIT_PENDING)) {
10627		/* Queue up another scan... */
10628		schedule_delayed_work(&priv->request_scan, 0);
10629	} else
10630		cancel_delayed_work(&priv->scan_event);
10631}
10632
10633static void ipw_bg_link_down(struct work_struct *work)
10634{
10635	struct ipw_priv *priv =
10636		container_of(work, struct ipw_priv, link_down);
10637	mutex_lock(&priv->mutex);
10638	ipw_link_down(priv);
10639	mutex_unlock(&priv->mutex);
10640}
10641
10642static void ipw_setup_deferred_work(struct ipw_priv *priv)
10643{
10644	init_waitqueue_head(&priv->wait_command_queue);
10645	init_waitqueue_head(&priv->wait_state);
10646
10647	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10648	INIT_WORK(&priv->associate, ipw_bg_associate);
10649	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10650	INIT_WORK(&priv->system_config, ipw_system_config);
10651	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10652	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10653	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10654	INIT_WORK(&priv->up, ipw_bg_up);
10655	INIT_WORK(&priv->down, ipw_bg_down);
10656	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10657	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10658	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10659	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10660	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10661	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10662	INIT_WORK(&priv->roam, ipw_bg_roam);
10663	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10664	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10665	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10666	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10667	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10668	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10669	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10670
10671#ifdef CONFIG_IPW2200_QOS
10672	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10673#endif				/* CONFIG_IPW2200_QOS */
10674
10675	tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
10676}
10677
10678static void shim__set_security(struct net_device *dev,
10679			       struct libipw_security *sec)
10680{
10681	struct ipw_priv *priv = libipw_priv(dev);
10682	int i;
10683	for (i = 0; i < 4; i++) {
10684		if (sec->flags & (1 << i)) {
10685			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10686			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10687			if (sec->key_sizes[i] == 0)
10688				priv->ieee->sec.flags &= ~(1 << i);
10689			else {
10690				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10691				       sec->key_sizes[i]);
10692				priv->ieee->sec.flags |= (1 << i);
10693			}
10694			priv->status |= STATUS_SECURITY_UPDATED;
10695		} else if (sec->level != SEC_LEVEL_1)
10696			priv->ieee->sec.flags &= ~(1 << i);
10697	}
10698
10699	if (sec->flags & SEC_ACTIVE_KEY) {
10700		priv->ieee->sec.active_key = sec->active_key;
10701		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10702		priv->status |= STATUS_SECURITY_UPDATED;
10703	} else
10704		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10705
10706	if ((sec->flags & SEC_AUTH_MODE) &&
10707	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10708		priv->ieee->sec.auth_mode = sec->auth_mode;
10709		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10710		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10711			priv->capability |= CAP_SHARED_KEY;
10712		else
10713			priv->capability &= ~CAP_SHARED_KEY;
10714		priv->status |= STATUS_SECURITY_UPDATED;
10715	}
10716
10717	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10718		priv->ieee->sec.flags |= SEC_ENABLED;
10719		priv->ieee->sec.enabled = sec->enabled;
10720		priv->status |= STATUS_SECURITY_UPDATED;
10721		if (sec->enabled)
10722			priv->capability |= CAP_PRIVACY_ON;
10723		else
10724			priv->capability &= ~CAP_PRIVACY_ON;
10725	}
10726
10727	if (sec->flags & SEC_ENCRYPT)
10728		priv->ieee->sec.encrypt = sec->encrypt;
10729
10730	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10731		priv->ieee->sec.level = sec->level;
10732		priv->ieee->sec.flags |= SEC_LEVEL;
10733		priv->status |= STATUS_SECURITY_UPDATED;
10734	}
10735
10736	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10737		ipw_set_hwcrypto_keys(priv);
10738
10739	/* To match current functionality of ipw2100 (which works well w/
10740	 * various supplicants, we don't force a disassociate if the
10741	 * privacy capability changes ... */
10742#if 0
10743	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10744	    (((priv->assoc_request.capability &
10745	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10746	     (!(priv->assoc_request.capability &
10747		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10748		IPW_DEBUG_ASSOC("Disassociating due to capability "
10749				"change.\n");
10750		ipw_disassociate(priv);
10751	}
10752#endif
10753}
10754
10755static int init_supported_rates(struct ipw_priv *priv,
10756				struct ipw_supported_rates *rates)
10757{
10758	/* TODO: Mask out rates based on priv->rates_mask */
10759
10760	memset(rates, 0, sizeof(*rates));
10761	/* configure supported rates */
10762	switch (priv->ieee->freq_band) {
10763	case LIBIPW_52GHZ_BAND:
10764		rates->ieee_mode = IPW_A_MODE;
10765		rates->purpose = IPW_RATE_CAPABILITIES;
10766		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10767					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10768		break;
10769
10770	default:		/* Mixed or 2.4Ghz */
10771		rates->ieee_mode = IPW_G_MODE;
10772		rates->purpose = IPW_RATE_CAPABILITIES;
10773		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10774				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10775		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10776			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10777						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10778		}
10779		break;
10780	}
10781
10782	return 0;
10783}
10784
10785static int ipw_config(struct ipw_priv *priv)
10786{
10787	/* This is only called from ipw_up, which resets/reloads the firmware
10788	   so, we don't need to first disable the card before we configure
10789	   it */
10790	if (ipw_set_tx_power(priv))
10791		goto error;
10792
10793	/* initialize adapter address */
10794	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10795		goto error;
10796
10797	/* set basic system config settings */
10798	init_sys_config(&priv->sys_config);
10799
10800	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10801	 * Does not support BT priority yet (don't abort or defer our Tx) */
10802	if (bt_coexist) {
10803		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10804
10805		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10806			priv->sys_config.bt_coexistence
10807			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10808		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10809			priv->sys_config.bt_coexistence
10810			    |= CFG_BT_COEXISTENCE_OOB;
10811	}
10812
10813#ifdef CONFIG_IPW2200_PROMISCUOUS
10814	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10815		priv->sys_config.accept_all_data_frames = 1;
10816		priv->sys_config.accept_non_directed_frames = 1;
10817		priv->sys_config.accept_all_mgmt_bcpr = 1;
10818		priv->sys_config.accept_all_mgmt_frames = 1;
10819	}
10820#endif
10821
10822	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10823		priv->sys_config.answer_broadcast_ssid_probe = 1;
10824	else
10825		priv->sys_config.answer_broadcast_ssid_probe = 0;
10826
10827	if (ipw_send_system_config(priv))
10828		goto error;
10829
10830	init_supported_rates(priv, &priv->rates);
10831	if (ipw_send_supported_rates(priv, &priv->rates))
10832		goto error;
10833
10834	/* Set request-to-send threshold */
10835	if (priv->rts_threshold) {
10836		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10837			goto error;
10838	}
10839#ifdef CONFIG_IPW2200_QOS
10840	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10841	ipw_qos_activate(priv, NULL);
10842#endif				/* CONFIG_IPW2200_QOS */
10843
10844	if (ipw_set_random_seed(priv))
10845		goto error;
10846
10847	/* final state transition to the RUN state */
10848	if (ipw_send_host_complete(priv))
10849		goto error;
10850
10851	priv->status |= STATUS_INIT;
10852
10853	ipw_led_init(priv);
10854	ipw_led_radio_on(priv);
10855	priv->notif_missed_beacons = 0;
10856
10857	/* Set hardware WEP key if it is configured. */
10858	if ((priv->capability & CAP_PRIVACY_ON) &&
10859	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10860	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10861		ipw_set_hwcrypto_keys(priv);
10862
10863	return 0;
10864
10865      error:
10866	return -EIO;
10867}
10868
10869/*
10870 * NOTE:
10871 *
10872 * These tables have been tested in conjunction with the
10873 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10874 *
10875 * Altering this values, using it on other hardware, or in geographies
10876 * not intended for resale of the above mentioned Intel adapters has
10877 * not been tested.
10878 *
10879 * Remember to update the table in README.ipw2200 when changing this
10880 * table.
10881 *
10882 */
10883static const struct libipw_geo ipw_geos[] = {
10884	{			/* Restricted */
10885	 "---",
10886	 .bg_channels = 11,
10887	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10888		{2427, 4}, {2432, 5}, {2437, 6},
10889		{2442, 7}, {2447, 8}, {2452, 9},
10890		{2457, 10}, {2462, 11}},
10891	 },
10892
10893	{			/* Custom US/Canada */
10894	 "ZZF",
10895	 .bg_channels = 11,
10896	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897		{2427, 4}, {2432, 5}, {2437, 6},
10898		{2442, 7}, {2447, 8}, {2452, 9},
10899		{2457, 10}, {2462, 11}},
10900	 .a_channels = 8,
10901	 .a = {{5180, 36},
10902	       {5200, 40},
10903	       {5220, 44},
10904	       {5240, 48},
10905	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10906	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10907	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10908	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10909	 },
10910
10911	{			/* Rest of World */
10912	 "ZZD",
10913	 .bg_channels = 13,
10914	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10915		{2427, 4}, {2432, 5}, {2437, 6},
10916		{2442, 7}, {2447, 8}, {2452, 9},
10917		{2457, 10}, {2462, 11}, {2467, 12},
10918		{2472, 13}},
10919	 },
10920
10921	{			/* Custom USA & Europe & High */
10922	 "ZZA",
10923	 .bg_channels = 11,
10924	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10925		{2427, 4}, {2432, 5}, {2437, 6},
10926		{2442, 7}, {2447, 8}, {2452, 9},
10927		{2457, 10}, {2462, 11}},
10928	 .a_channels = 13,
10929	 .a = {{5180, 36},
10930	       {5200, 40},
10931	       {5220, 44},
10932	       {5240, 48},
10933	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10934	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10935	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10936	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10937	       {5745, 149},
10938	       {5765, 153},
10939	       {5785, 157},
10940	       {5805, 161},
10941	       {5825, 165}},
10942	 },
10943
10944	{			/* Custom NA & Europe */
10945	 "ZZB",
10946	 .bg_channels = 11,
10947	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10948		{2427, 4}, {2432, 5}, {2437, 6},
10949		{2442, 7}, {2447, 8}, {2452, 9},
10950		{2457, 10}, {2462, 11}},
10951	 .a_channels = 13,
10952	 .a = {{5180, 36},
10953	       {5200, 40},
10954	       {5220, 44},
10955	       {5240, 48},
10956	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10957	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10958	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10959	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10960	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10961	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10962	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10963	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10964	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10965	 },
10966
10967	{			/* Custom Japan */
10968	 "ZZC",
10969	 .bg_channels = 11,
10970	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10971		{2427, 4}, {2432, 5}, {2437, 6},
10972		{2442, 7}, {2447, 8}, {2452, 9},
10973		{2457, 10}, {2462, 11}},
10974	 .a_channels = 4,
10975	 .a = {{5170, 34}, {5190, 38},
10976	       {5210, 42}, {5230, 46}},
10977	 },
10978
10979	{			/* Custom */
10980	 "ZZM",
10981	 .bg_channels = 11,
10982	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10983		{2427, 4}, {2432, 5}, {2437, 6},
10984		{2442, 7}, {2447, 8}, {2452, 9},
10985		{2457, 10}, {2462, 11}},
10986	 },
10987
10988	{			/* Europe */
10989	 "ZZE",
10990	 .bg_channels = 13,
10991	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992		{2427, 4}, {2432, 5}, {2437, 6},
10993		{2442, 7}, {2447, 8}, {2452, 9},
10994		{2457, 10}, {2462, 11}, {2467, 12},
10995		{2472, 13}},
10996	 .a_channels = 19,
10997	 .a = {{5180, 36},
10998	       {5200, 40},
10999	       {5220, 44},
11000	       {5240, 48},
11001	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11002	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11003	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11004	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11005	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11006	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11007	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11008	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11009	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11010	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11011	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11012	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11013	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11014	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11015	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11016	 },
11017
11018	{			/* Custom Japan */
11019	 "ZZJ",
11020	 .bg_channels = 14,
11021	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022		{2427, 4}, {2432, 5}, {2437, 6},
11023		{2442, 7}, {2447, 8}, {2452, 9},
11024		{2457, 10}, {2462, 11}, {2467, 12},
11025		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11026	 .a_channels = 4,
11027	 .a = {{5170, 34}, {5190, 38},
11028	       {5210, 42}, {5230, 46}},
11029	 },
11030
11031	{			/* Rest of World */
11032	 "ZZR",
11033	 .bg_channels = 14,
11034	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11035		{2427, 4}, {2432, 5}, {2437, 6},
11036		{2442, 7}, {2447, 8}, {2452, 9},
11037		{2457, 10}, {2462, 11}, {2467, 12},
11038		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11039			     LIBIPW_CH_PASSIVE_ONLY}},
11040	 },
11041
11042	{			/* High Band */
11043	 "ZZH",
11044	 .bg_channels = 13,
11045	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046		{2427, 4}, {2432, 5}, {2437, 6},
11047		{2442, 7}, {2447, 8}, {2452, 9},
11048		{2457, 10}, {2462, 11},
11049		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11050		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11051	 .a_channels = 4,
11052	 .a = {{5745, 149}, {5765, 153},
11053	       {5785, 157}, {5805, 161}},
11054	 },
11055
11056	{			/* Custom Europe */
11057	 "ZZG",
11058	 .bg_channels = 13,
11059	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11060		{2427, 4}, {2432, 5}, {2437, 6},
11061		{2442, 7}, {2447, 8}, {2452, 9},
11062		{2457, 10}, {2462, 11},
11063		{2467, 12}, {2472, 13}},
11064	 .a_channels = 4,
11065	 .a = {{5180, 36}, {5200, 40},
11066	       {5220, 44}, {5240, 48}},
11067	 },
11068
11069	{			/* Europe */
11070	 "ZZK",
11071	 .bg_channels = 13,
11072	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11073		{2427, 4}, {2432, 5}, {2437, 6},
11074		{2442, 7}, {2447, 8}, {2452, 9},
11075		{2457, 10}, {2462, 11},
11076		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11077		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11078	 .a_channels = 24,
11079	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11080	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11081	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11082	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11083	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11084	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11085	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11086	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11087	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11088	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11089	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11090	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11091	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11092	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11093	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11094	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11095	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11096	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11097	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11098	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11099	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11100	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11101	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11102	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11103	 },
11104
11105	{			/* Europe */
11106	 "ZZL",
11107	 .bg_channels = 11,
11108	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11109		{2427, 4}, {2432, 5}, {2437, 6},
11110		{2442, 7}, {2447, 8}, {2452, 9},
11111		{2457, 10}, {2462, 11}},
11112	 .a_channels = 13,
11113	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11114	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11115	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11116	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11117	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11118	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11119	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11120	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11121	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11122	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11123	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11124	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11125	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11126	 }
11127};
11128
11129static void ipw_set_geo(struct ipw_priv *priv)
11130{
11131	int j;
11132
11133	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11134		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11135			    ipw_geos[j].name, 3))
11136			break;
11137	}
11138
11139	if (j == ARRAY_SIZE(ipw_geos)) {
11140		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11141			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11142			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11143			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11144		j = 0;
11145	}
11146
11147	libipw_set_geo(priv->ieee, &ipw_geos[j]);
11148}
11149
11150#define MAX_HW_RESTARTS 5
11151static int ipw_up(struct ipw_priv *priv)
11152{
11153	int rc, i;
11154
11155	/* Age scan list entries found before suspend */
11156	if (priv->suspend_time) {
11157		libipw_networks_age(priv->ieee, priv->suspend_time);
11158		priv->suspend_time = 0;
11159	}
11160
11161	if (priv->status & STATUS_EXIT_PENDING)
11162		return -EIO;
11163
11164	if (cmdlog && !priv->cmdlog) {
11165		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11166				       GFP_KERNEL);
11167		if (priv->cmdlog == NULL) {
11168			IPW_ERROR("Error allocating %d command log entries.\n",
11169				  cmdlog);
11170			return -ENOMEM;
11171		} else {
11172			priv->cmdlog_len = cmdlog;
11173		}
11174	}
11175
11176	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11177		/* Load the microcode, firmware, and eeprom.
11178		 * Also start the clocks. */
11179		rc = ipw_load(priv);
11180		if (rc) {
11181			IPW_ERROR("Unable to load firmware: %d\n", rc);
11182			return rc;
11183		}
11184
11185		ipw_init_ordinals(priv);
11186		if (!(priv->config & CFG_CUSTOM_MAC))
11187			eeprom_parse_mac(priv, priv->mac_addr);
11188		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11189
11190		ipw_set_geo(priv);
11191
11192		if (priv->status & STATUS_RF_KILL_SW) {
11193			IPW_WARNING("Radio disabled by module parameter.\n");
11194			return 0;
11195		} else if (rf_kill_active(priv)) {
11196			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11197				    "Kill switch must be turned off for "
11198				    "wireless networking to work.\n");
11199			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11200			return 0;
11201		}
11202
11203		rc = ipw_config(priv);
11204		if (!rc) {
11205			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11206
11207			/* If configure to try and auto-associate, kick
11208			 * off a scan. */
11209			schedule_delayed_work(&priv->request_scan, 0);
11210
11211			return 0;
11212		}
11213
11214		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11215		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11216			       i, MAX_HW_RESTARTS);
11217
11218		/* We had an error bringing up the hardware, so take it
11219		 * all the way back down so we can try again */
11220		ipw_down(priv);
11221	}
11222
11223	/* tried to restart and config the device for as long as our
11224	 * patience could withstand */
11225	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11226
11227	return -EIO;
11228}
11229
11230static void ipw_bg_up(struct work_struct *work)
11231{
11232	struct ipw_priv *priv =
11233		container_of(work, struct ipw_priv, up);
11234	mutex_lock(&priv->mutex);
11235	ipw_up(priv);
11236	mutex_unlock(&priv->mutex);
11237}
11238
11239static void ipw_deinit(struct ipw_priv *priv)
11240{
11241	int i;
11242
11243	if (priv->status & STATUS_SCANNING) {
11244		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11245		ipw_abort_scan(priv);
11246	}
11247
11248	if (priv->status & STATUS_ASSOCIATED) {
11249		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11250		ipw_disassociate(priv);
11251	}
11252
11253	ipw_led_shutdown(priv);
11254
11255	/* Wait up to 1s for status to change to not scanning and not
11256	 * associated (disassociation can take a while for a ful 802.11
11257	 * exchange */
11258	for (i = 1000; i && (priv->status &
11259			     (STATUS_DISASSOCIATING |
11260			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11261		udelay(10);
11262
11263	if (priv->status & (STATUS_DISASSOCIATING |
11264			    STATUS_ASSOCIATED | STATUS_SCANNING))
11265		IPW_DEBUG_INFO("Still associated or scanning...\n");
11266	else
11267		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11268
11269	/* Attempt to disable the card */
11270	ipw_send_card_disable(priv, 0);
11271
11272	priv->status &= ~STATUS_INIT;
11273}
11274
11275static void ipw_down(struct ipw_priv *priv)
11276{
11277	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11278
11279	priv->status |= STATUS_EXIT_PENDING;
11280
11281	if (ipw_is_init(priv))
11282		ipw_deinit(priv);
11283
11284	/* Wipe out the EXIT_PENDING status bit if we are not actually
11285	 * exiting the module */
11286	if (!exit_pending)
11287		priv->status &= ~STATUS_EXIT_PENDING;
11288
11289	/* tell the device to stop sending interrupts */
11290	ipw_disable_interrupts(priv);
11291
11292	/* Clear all bits but the RF Kill */
11293	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11294	netif_carrier_off(priv->net_dev);
11295
11296	ipw_stop_nic(priv);
11297
11298	ipw_led_radio_off(priv);
11299}
11300
11301static void ipw_bg_down(struct work_struct *work)
11302{
11303	struct ipw_priv *priv =
11304		container_of(work, struct ipw_priv, down);
11305	mutex_lock(&priv->mutex);
11306	ipw_down(priv);
11307	mutex_unlock(&priv->mutex);
11308}
11309
11310static int ipw_wdev_init(struct net_device *dev)
11311{
11312	int i, rc = 0;
11313	struct ipw_priv *priv = libipw_priv(dev);
11314	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11315	struct wireless_dev *wdev = &priv->ieee->wdev;
11316
11317	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11318
11319	/* fill-out priv->ieee->bg_band */
11320	if (geo->bg_channels) {
11321		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11322
11323		bg_band->band = NL80211_BAND_2GHZ;
11324		bg_band->n_channels = geo->bg_channels;
11325		bg_band->channels = kcalloc(geo->bg_channels,
11326					    sizeof(struct ieee80211_channel),
11327					    GFP_KERNEL);
11328		if (!bg_band->channels) {
11329			rc = -ENOMEM;
11330			goto out;
11331		}
11332		/* translate geo->bg to bg_band.channels */
11333		for (i = 0; i < geo->bg_channels; i++) {
11334			bg_band->channels[i].band = NL80211_BAND_2GHZ;
11335			bg_band->channels[i].center_freq = geo->bg[i].freq;
11336			bg_band->channels[i].hw_value = geo->bg[i].channel;
11337			bg_band->channels[i].max_power = geo->bg[i].max_power;
11338			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11339				bg_band->channels[i].flags |=
11340					IEEE80211_CHAN_NO_IR;
11341			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11342				bg_band->channels[i].flags |=
11343					IEEE80211_CHAN_NO_IR;
11344			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11345				bg_band->channels[i].flags |=
11346					IEEE80211_CHAN_RADAR;
11347			/* No equivalent for LIBIPW_CH_80211H_RULES,
11348			   LIBIPW_CH_UNIFORM_SPREADING, or
11349			   LIBIPW_CH_B_ONLY... */
11350		}
11351		/* point at bitrate info */
11352		bg_band->bitrates = ipw2200_bg_rates;
11353		bg_band->n_bitrates = ipw2200_num_bg_rates;
11354
11355		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11356	}
11357
11358	/* fill-out priv->ieee->a_band */
11359	if (geo->a_channels) {
11360		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11361
11362		a_band->band = NL80211_BAND_5GHZ;
11363		a_band->n_channels = geo->a_channels;
11364		a_band->channels = kcalloc(geo->a_channels,
11365					   sizeof(struct ieee80211_channel),
11366					   GFP_KERNEL);
11367		if (!a_band->channels) {
11368			rc = -ENOMEM;
11369			goto out;
11370		}
11371		/* translate geo->a to a_band.channels */
11372		for (i = 0; i < geo->a_channels; i++) {
11373			a_band->channels[i].band = NL80211_BAND_5GHZ;
11374			a_band->channels[i].center_freq = geo->a[i].freq;
11375			a_band->channels[i].hw_value = geo->a[i].channel;
11376			a_band->channels[i].max_power = geo->a[i].max_power;
11377			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11378				a_band->channels[i].flags |=
11379					IEEE80211_CHAN_NO_IR;
11380			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11381				a_band->channels[i].flags |=
11382					IEEE80211_CHAN_NO_IR;
11383			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11384				a_band->channels[i].flags |=
11385					IEEE80211_CHAN_RADAR;
11386			/* No equivalent for LIBIPW_CH_80211H_RULES,
11387			   LIBIPW_CH_UNIFORM_SPREADING, or
11388			   LIBIPW_CH_B_ONLY... */
11389		}
11390		/* point at bitrate info */
11391		a_band->bitrates = ipw2200_a_rates;
11392		a_band->n_bitrates = ipw2200_num_a_rates;
11393
11394		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11395	}
11396
11397	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11398	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11399
11400	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11401
11402	/* With that information in place, we can now register the wiphy... */
11403	rc = wiphy_register(wdev->wiphy);
11404	if (rc)
11405		goto out;
11406
11407	return 0;
11408out:
11409	kfree(priv->ieee->a_band.channels);
11410	kfree(priv->ieee->bg_band.channels);
11411	return rc;
11412}
11413
11414/* PCI driver stuff */
11415static const struct pci_device_id card_ids[] = {
11416	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11417	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11418	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11419	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11420	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11421	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11422	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11423	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11424	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11425	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11426	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11427	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11428	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11429	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11430	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11431	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11432	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11433	{PCI_VDEVICE(INTEL, 0x104f), 0},
11434	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11435	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11436	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11437	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11438
11439	/* required last entry */
11440	{0,}
11441};
11442
11443MODULE_DEVICE_TABLE(pci, card_ids);
11444
11445static struct attribute *ipw_sysfs_entries[] = {
11446	&dev_attr_rf_kill.attr,
11447	&dev_attr_direct_dword.attr,
11448	&dev_attr_indirect_byte.attr,
11449	&dev_attr_indirect_dword.attr,
11450	&dev_attr_mem_gpio_reg.attr,
11451	&dev_attr_command_event_reg.attr,
11452	&dev_attr_nic_type.attr,
11453	&dev_attr_status.attr,
11454	&dev_attr_cfg.attr,
11455	&dev_attr_error.attr,
11456	&dev_attr_event_log.attr,
11457	&dev_attr_cmd_log.attr,
11458	&dev_attr_eeprom_delay.attr,
11459	&dev_attr_ucode_version.attr,
11460	&dev_attr_rtc.attr,
11461	&dev_attr_scan_age.attr,
11462	&dev_attr_led.attr,
11463	&dev_attr_speed_scan.attr,
11464	&dev_attr_net_stats.attr,
11465	&dev_attr_channels.attr,
11466#ifdef CONFIG_IPW2200_PROMISCUOUS
11467	&dev_attr_rtap_iface.attr,
11468	&dev_attr_rtap_filter.attr,
11469#endif
11470	NULL
11471};
11472
11473static const struct attribute_group ipw_attribute_group = {
11474	.name = NULL,		/* put in device directory */
11475	.attrs = ipw_sysfs_entries,
11476};
11477
11478#ifdef CONFIG_IPW2200_PROMISCUOUS
11479static int ipw_prom_open(struct net_device *dev)
11480{
11481	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11482	struct ipw_priv *priv = prom_priv->priv;
11483
11484	IPW_DEBUG_INFO("prom dev->open\n");
11485	netif_carrier_off(dev);
11486
11487	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11488		priv->sys_config.accept_all_data_frames = 1;
11489		priv->sys_config.accept_non_directed_frames = 1;
11490		priv->sys_config.accept_all_mgmt_bcpr = 1;
11491		priv->sys_config.accept_all_mgmt_frames = 1;
11492
11493		ipw_send_system_config(priv);
11494	}
11495
11496	return 0;
11497}
11498
11499static int ipw_prom_stop(struct net_device *dev)
11500{
11501	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11502	struct ipw_priv *priv = prom_priv->priv;
11503
11504	IPW_DEBUG_INFO("prom dev->stop\n");
11505
11506	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11507		priv->sys_config.accept_all_data_frames = 0;
11508		priv->sys_config.accept_non_directed_frames = 0;
11509		priv->sys_config.accept_all_mgmt_bcpr = 0;
11510		priv->sys_config.accept_all_mgmt_frames = 0;
11511
11512		ipw_send_system_config(priv);
11513	}
11514
11515	return 0;
11516}
11517
11518static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11519					    struct net_device *dev)
11520{
11521	IPW_DEBUG_INFO("prom dev->xmit\n");
11522	dev_kfree_skb(skb);
11523	return NETDEV_TX_OK;
11524}
11525
11526static const struct net_device_ops ipw_prom_netdev_ops = {
11527	.ndo_open 		= ipw_prom_open,
11528	.ndo_stop		= ipw_prom_stop,
11529	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11530	.ndo_set_mac_address 	= eth_mac_addr,
11531	.ndo_validate_addr	= eth_validate_addr,
11532};
11533
11534static int ipw_prom_alloc(struct ipw_priv *priv)
11535{
11536	int rc = 0;
11537
11538	if (priv->prom_net_dev)
11539		return -EPERM;
11540
11541	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11542	if (priv->prom_net_dev == NULL)
11543		return -ENOMEM;
11544
11545	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11546	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11547	priv->prom_priv->priv = priv;
11548
11549	strcpy(priv->prom_net_dev->name, "rtap%d");
11550	memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11551
11552	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11553	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11554
11555	priv->prom_net_dev->min_mtu = 68;
11556	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11557
11558	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11559	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11560
11561	rc = register_netdev(priv->prom_net_dev);
11562	if (rc) {
11563		free_libipw(priv->prom_net_dev, 1);
11564		priv->prom_net_dev = NULL;
11565		return rc;
11566	}
11567
11568	return 0;
11569}
11570
11571static void ipw_prom_free(struct ipw_priv *priv)
11572{
11573	if (!priv->prom_net_dev)
11574		return;
11575
11576	unregister_netdev(priv->prom_net_dev);
11577	free_libipw(priv->prom_net_dev, 1);
11578
11579	priv->prom_net_dev = NULL;
11580}
11581
11582#endif
11583
11584static const struct net_device_ops ipw_netdev_ops = {
11585	.ndo_open		= ipw_net_open,
11586	.ndo_stop		= ipw_net_stop,
11587	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11588	.ndo_set_mac_address	= ipw_net_set_mac_address,
11589	.ndo_start_xmit		= libipw_xmit,
11590	.ndo_validate_addr	= eth_validate_addr,
11591};
11592
11593static int ipw_pci_probe(struct pci_dev *pdev,
11594				   const struct pci_device_id *ent)
11595{
11596	int err = 0;
11597	struct net_device *net_dev;
11598	void __iomem *base;
11599	u32 length, val;
11600	struct ipw_priv *priv;
11601	int i;
11602
11603	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11604	if (net_dev == NULL) {
11605		err = -ENOMEM;
11606		goto out;
11607	}
11608
11609	priv = libipw_priv(net_dev);
11610	priv->ieee = netdev_priv(net_dev);
11611
11612	priv->net_dev = net_dev;
11613	priv->pci_dev = pdev;
11614	ipw_debug_level = debug;
11615	spin_lock_init(&priv->irq_lock);
11616	spin_lock_init(&priv->lock);
11617	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11618		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11619
11620	mutex_init(&priv->mutex);
11621	if (pci_enable_device(pdev)) {
11622		err = -ENODEV;
11623		goto out_free_libipw;
11624	}
11625
11626	pci_set_master(pdev);
11627
11628	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11629	if (!err)
11630		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11631	if (err) {
11632		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11633		goto out_pci_disable_device;
11634	}
11635
11636	pci_set_drvdata(pdev, priv);
11637
11638	err = pci_request_regions(pdev, DRV_NAME);
11639	if (err)
11640		goto out_pci_disable_device;
11641
11642	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11643	 * PCI Tx retries from interfering with C3 CPU state */
11644	pci_read_config_dword(pdev, 0x40, &val);
11645	if ((val & 0x0000ff00) != 0)
11646		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11647
11648	length = pci_resource_len(pdev, 0);
11649	priv->hw_len = length;
11650
11651	base = pci_ioremap_bar(pdev, 0);
11652	if (!base) {
11653		err = -ENODEV;
11654		goto out_pci_release_regions;
11655	}
11656
11657	priv->hw_base = base;
11658	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11659	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11660
11661	ipw_setup_deferred_work(priv);
11662
11663	ipw_sw_reset(priv, 1);
11664
11665	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11666	if (err) {
11667		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11668		goto out_iounmap;
11669	}
11670
11671	SET_NETDEV_DEV(net_dev, &pdev->dev);
11672
11673	mutex_lock(&priv->mutex);
11674
11675	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11676	priv->ieee->set_security = shim__set_security;
11677	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11678
11679#ifdef CONFIG_IPW2200_QOS
11680	priv->ieee->is_qos_active = ipw_is_qos_active;
11681	priv->ieee->handle_probe_response = ipw_handle_beacon;
11682	priv->ieee->handle_beacon = ipw_handle_probe_response;
11683	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11684#endif				/* CONFIG_IPW2200_QOS */
11685
11686	priv->ieee->perfect_rssi = -20;
11687	priv->ieee->worst_rssi = -85;
11688
11689	net_dev->netdev_ops = &ipw_netdev_ops;
11690	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11691	net_dev->wireless_data = &priv->wireless_data;
11692	net_dev->wireless_handlers = &ipw_wx_handler_def;
11693	net_dev->ethtool_ops = &ipw_ethtool_ops;
11694
11695	net_dev->min_mtu = 68;
11696	net_dev->max_mtu = LIBIPW_DATA_LEN;
11697
11698	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11699	if (err) {
11700		IPW_ERROR("failed to create sysfs device attributes\n");
11701		mutex_unlock(&priv->mutex);
11702		goto out_release_irq;
11703	}
11704
11705	if (ipw_up(priv)) {
11706		mutex_unlock(&priv->mutex);
11707		err = -EIO;
11708		goto out_remove_sysfs;
11709	}
11710
11711	mutex_unlock(&priv->mutex);
11712
11713	err = ipw_wdev_init(net_dev);
11714	if (err) {
11715		IPW_ERROR("failed to register wireless device\n");
11716		goto out_remove_sysfs;
11717	}
11718
11719	err = register_netdev(net_dev);
11720	if (err) {
11721		IPW_ERROR("failed to register network device\n");
11722		goto out_unregister_wiphy;
11723	}
11724
11725#ifdef CONFIG_IPW2200_PROMISCUOUS
11726	if (rtap_iface) {
11727	        err = ipw_prom_alloc(priv);
11728		if (err) {
11729			IPW_ERROR("Failed to register promiscuous network "
11730				  "device (error %d).\n", err);
11731			unregister_netdev(priv->net_dev);
11732			goto out_unregister_wiphy;
11733		}
11734	}
11735#endif
11736
11737	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11738	       "channels, %d 802.11a channels)\n",
11739	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11740	       priv->ieee->geo.a_channels);
11741
11742	return 0;
11743
11744      out_unregister_wiphy:
11745	wiphy_unregister(priv->ieee->wdev.wiphy);
11746	kfree(priv->ieee->a_band.channels);
11747	kfree(priv->ieee->bg_band.channels);
11748      out_remove_sysfs:
11749	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11750      out_release_irq:
11751	free_irq(pdev->irq, priv);
11752      out_iounmap:
11753	iounmap(priv->hw_base);
11754      out_pci_release_regions:
11755	pci_release_regions(pdev);
11756      out_pci_disable_device:
11757	pci_disable_device(pdev);
11758      out_free_libipw:
11759	free_libipw(priv->net_dev, 0);
11760      out:
11761	return err;
11762}
11763
11764static void ipw_pci_remove(struct pci_dev *pdev)
11765{
11766	struct ipw_priv *priv = pci_get_drvdata(pdev);
11767	struct list_head *p, *q;
11768	int i;
11769
11770	if (!priv)
11771		return;
11772
11773	mutex_lock(&priv->mutex);
11774
11775	priv->status |= STATUS_EXIT_PENDING;
11776	ipw_down(priv);
11777	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11778
11779	mutex_unlock(&priv->mutex);
11780
11781	unregister_netdev(priv->net_dev);
11782
11783	if (priv->rxq) {
11784		ipw_rx_queue_free(priv, priv->rxq);
11785		priv->rxq = NULL;
11786	}
11787	ipw_tx_queue_free(priv);
11788
11789	if (priv->cmdlog) {
11790		kfree(priv->cmdlog);
11791		priv->cmdlog = NULL;
11792	}
11793
11794	/* make sure all works are inactive */
11795	cancel_delayed_work_sync(&priv->adhoc_check);
11796	cancel_work_sync(&priv->associate);
11797	cancel_work_sync(&priv->disassociate);
11798	cancel_work_sync(&priv->system_config);
11799	cancel_work_sync(&priv->rx_replenish);
11800	cancel_work_sync(&priv->adapter_restart);
11801	cancel_delayed_work_sync(&priv->rf_kill);
11802	cancel_work_sync(&priv->up);
11803	cancel_work_sync(&priv->down);
11804	cancel_delayed_work_sync(&priv->request_scan);
11805	cancel_delayed_work_sync(&priv->request_direct_scan);
11806	cancel_delayed_work_sync(&priv->request_passive_scan);
11807	cancel_delayed_work_sync(&priv->scan_event);
11808	cancel_delayed_work_sync(&priv->gather_stats);
11809	cancel_work_sync(&priv->abort_scan);
11810	cancel_work_sync(&priv->roam);
11811	cancel_delayed_work_sync(&priv->scan_check);
11812	cancel_work_sync(&priv->link_up);
11813	cancel_work_sync(&priv->link_down);
11814	cancel_delayed_work_sync(&priv->led_link_on);
11815	cancel_delayed_work_sync(&priv->led_link_off);
11816	cancel_delayed_work_sync(&priv->led_act_off);
11817	cancel_work_sync(&priv->merge_networks);
11818
11819	/* Free MAC hash list for ADHOC */
11820	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11821		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11822			list_del(p);
11823			kfree(list_entry(p, struct ipw_ibss_seq, list));
11824		}
11825	}
11826
11827	kfree(priv->error);
11828	priv->error = NULL;
11829
11830#ifdef CONFIG_IPW2200_PROMISCUOUS
11831	ipw_prom_free(priv);
11832#endif
11833
11834	free_irq(pdev->irq, priv);
11835	iounmap(priv->hw_base);
11836	pci_release_regions(pdev);
11837	pci_disable_device(pdev);
11838	/* wiphy_unregister needs to be here, before free_libipw */
11839	wiphy_unregister(priv->ieee->wdev.wiphy);
11840	kfree(priv->ieee->a_band.channels);
11841	kfree(priv->ieee->bg_band.channels);
11842	free_libipw(priv->net_dev, 0);
11843	free_firmware();
11844}
11845
11846static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11847{
11848	struct ipw_priv *priv = dev_get_drvdata(dev_d);
11849	struct net_device *dev = priv->net_dev;
11850
11851	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11852
11853	/* Take down the device; powers it off, etc. */
11854	ipw_down(priv);
11855
11856	/* Remove the PRESENT state of the device */
11857	netif_device_detach(dev);
11858
11859	priv->suspend_at = ktime_get_boottime_seconds();
11860
11861	return 0;
11862}
11863
11864static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11865{
11866	struct pci_dev *pdev = to_pci_dev(dev_d);
11867	struct ipw_priv *priv = pci_get_drvdata(pdev);
11868	struct net_device *dev = priv->net_dev;
11869	u32 val;
11870
11871	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11872
11873	/*
11874	 * Suspend/Resume resets the PCI configuration space, so we have to
11875	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11876	 * from interfering with C3 CPU state. pci_restore_state won't help
11877	 * here since it only restores the first 64 bytes pci config header.
11878	 */
11879	pci_read_config_dword(pdev, 0x40, &val);
11880	if ((val & 0x0000ff00) != 0)
11881		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11882
11883	/* Set the device back into the PRESENT state; this will also wake
11884	 * the queue of needed */
11885	netif_device_attach(dev);
11886
11887	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11888
11889	/* Bring the device back up */
11890	schedule_work(&priv->up);
11891
11892	return 0;
11893}
11894
11895static void ipw_pci_shutdown(struct pci_dev *pdev)
11896{
11897	struct ipw_priv *priv = pci_get_drvdata(pdev);
11898
11899	/* Take down the device; powers it off, etc. */
11900	ipw_down(priv);
11901
11902	pci_disable_device(pdev);
11903}
11904
11905static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11906
11907/* driver initialization stuff */
11908static struct pci_driver ipw_driver = {
11909	.name = DRV_NAME,
11910	.id_table = card_ids,
11911	.probe = ipw_pci_probe,
11912	.remove = ipw_pci_remove,
11913	.driver.pm = &ipw_pci_pm_ops,
11914	.shutdown = ipw_pci_shutdown,
11915};
11916
11917static int __init ipw_init(void)
11918{
11919	int ret;
11920
11921	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11922	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11923
11924	ret = pci_register_driver(&ipw_driver);
11925	if (ret) {
11926		IPW_ERROR("Unable to initialize PCI module\n");
11927		return ret;
11928	}
11929
11930	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11931	if (ret) {
11932		IPW_ERROR("Unable to create driver sysfs file\n");
11933		pci_unregister_driver(&ipw_driver);
11934		return ret;
11935	}
11936
11937	return ret;
11938}
11939
11940static void __exit ipw_exit(void)
11941{
11942	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11943	pci_unregister_driver(&ipw_driver);
11944}
11945
11946module_param(disable, int, 0444);
11947MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11948
11949module_param(associate, int, 0444);
11950MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11951
11952module_param(auto_create, int, 0444);
11953MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11954
11955module_param_named(led, led_support, int, 0444);
11956MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11957
11958module_param(debug, int, 0444);
11959MODULE_PARM_DESC(debug, "debug output mask");
11960
11961module_param_named(channel, default_channel, int, 0444);
11962MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11963
11964#ifdef CONFIG_IPW2200_PROMISCUOUS
11965module_param(rtap_iface, int, 0444);
11966MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11967#endif
11968
11969#ifdef CONFIG_IPW2200_QOS
11970module_param(qos_enable, int, 0444);
11971MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11972
11973module_param(qos_burst_enable, int, 0444);
11974MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11975
11976module_param(qos_no_ack_mask, int, 0444);
11977MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11978
11979module_param(burst_duration_CCK, int, 0444);
11980MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11981
11982module_param(burst_duration_OFDM, int, 0444);
11983MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11984#endif				/* CONFIG_IPW2200_QOS */
11985
11986#ifdef CONFIG_IPW2200_MONITOR
11987module_param_named(mode, network_mode, int, 0444);
11988MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11989#else
11990module_param_named(mode, network_mode, int, 0444);
11991MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11992#endif
11993
11994module_param(bt_coexist, int, 0444);
11995MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11996
11997module_param(hwcrypto, int, 0444);
11998MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11999
12000module_param(cmdlog, int, 0444);
12001MODULE_PARM_DESC(cmdlog,
12002		 "allocate a ring buffer for logging firmware commands");
12003
12004module_param(roaming, int, 0444);
12005MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12006
12007module_param(antenna, int, 0444);
12008MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12009
12010module_exit(ipw_exit);
12011module_init(ipw_init);
12012