1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/time.h>
21#include <linux/bitops.h>
22#include <linux/etherdevice.h>
23#include <linux/gpio.h>
24#include <asm/unaligned.h>
25
26#include "hw.h"
27#include "hw-ops.h"
28#include "ar9003_mac.h"
29#include "ar9003_mci.h"
30#include "ar9003_phy.h"
31#include "ath9k.h"
32
33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34
35MODULE_AUTHOR("Atheros Communications");
36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38MODULE_LICENSE("Dual BSD/GPL");
39
40static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41{
42	struct ath_common *common = ath9k_hw_common(ah);
43	struct ath9k_channel *chan = ah->curchan;
44	unsigned int clockrate;
45
46	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48		clockrate = 117;
49	else if (!chan) /* should really check for CCK instead */
50		clockrate = ATH9K_CLOCK_RATE_CCK;
51	else if (IS_CHAN_2GHZ(chan))
52		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55	else
56		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57
58	if (chan) {
59		if (IS_CHAN_HT40(chan))
60			clockrate *= 2;
61		if (IS_CHAN_HALF_RATE(chan))
62			clockrate /= 2;
63		if (IS_CHAN_QUARTER_RATE(chan))
64			clockrate /= 4;
65	}
66
67	common->clockrate = clockrate;
68}
69
70static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71{
72	struct ath_common *common = ath9k_hw_common(ah);
73
74	return usecs * common->clockrate;
75}
76
77bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78{
79	int i;
80
81	BUG_ON(timeout < AH_TIME_QUANTUM);
82
83	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84		if ((REG_READ(ah, reg) & mask) == val)
85			return true;
86
87		udelay(AH_TIME_QUANTUM);
88	}
89
90	ath_dbg(ath9k_hw_common(ah), ANY,
91		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92		timeout, reg, REG_READ(ah, reg), mask, val);
93
94	return false;
95}
96EXPORT_SYMBOL(ath9k_hw_wait);
97
98void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99			  int hw_delay)
100{
101	hw_delay /= 10;
102
103	if (IS_CHAN_HALF_RATE(chan))
104		hw_delay *= 2;
105	else if (IS_CHAN_QUARTER_RATE(chan))
106		hw_delay *= 4;
107
108	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109}
110
111void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112			  int column, unsigned int *writecnt)
113{
114	int r;
115
116	ENABLE_REGWRITE_BUFFER(ah);
117	for (r = 0; r < array->ia_rows; r++) {
118		REG_WRITE(ah, INI_RA(array, r, 0),
119			  INI_RA(array, r, column));
120		DO_DELAY(*writecnt);
121	}
122	REGWRITE_BUFFER_FLUSH(ah);
123}
124
125void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126{
127	u32 *tmp_reg_list, *tmp_data;
128	int i;
129
130	tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
131	if (!tmp_reg_list) {
132		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133		return;
134	}
135
136	tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
137	if (!tmp_data) {
138		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139		goto error_tmp_data;
140	}
141
142	for (i = 0; i < size; i++)
143		tmp_reg_list[i] = array[i][0];
144
145	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146
147	for (i = 0; i < size; i++)
148		array[i][1] = tmp_data[i];
149
150	kfree(tmp_data);
151error_tmp_data:
152	kfree(tmp_reg_list);
153}
154
155u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156{
157	u32 retval;
158	int i;
159
160	for (i = 0, retval = 0; i < n; i++) {
161		retval = (retval << 1) | (val & 1);
162		val >>= 1;
163	}
164	return retval;
165}
166
167u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168			   u8 phy, int kbps,
169			   u32 frameLen, u16 rateix,
170			   bool shortPreamble)
171{
172	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173
174	if (kbps == 0)
175		return 0;
176
177	switch (phy) {
178	case WLAN_RC_PHY_CCK:
179		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180		if (shortPreamble)
181			phyTime >>= 1;
182		numBits = frameLen << 3;
183		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184		break;
185	case WLAN_RC_PHY_OFDM:
186		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187			bitsPerSymbol =
188				((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189			numBits = OFDM_PLCP_BITS + (frameLen << 3);
190			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191			txTime = OFDM_SIFS_TIME_QUARTER
192				+ OFDM_PREAMBLE_TIME_QUARTER
193				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194		} else if (ah->curchan &&
195			   IS_CHAN_HALF_RATE(ah->curchan)) {
196			bitsPerSymbol =
197				((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200			txTime = OFDM_SIFS_TIME_HALF +
201				OFDM_PREAMBLE_TIME_HALF
202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
203		} else {
204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208				+ (numSymbols * OFDM_SYMBOL_TIME);
209		}
210		break;
211	default:
212		ath_err(ath9k_hw_common(ah),
213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
214		txTime = 0;
215		break;
216	}
217
218	return txTime;
219}
220EXPORT_SYMBOL(ath9k_hw_computetxtime);
221
222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223				  struct ath9k_channel *chan,
224				  struct chan_centers *centers)
225{
226	int8_t extoff;
227
228	if (!IS_CHAN_HT40(chan)) {
229		centers->ctl_center = centers->ext_center =
230			centers->synth_center = chan->channel;
231		return;
232	}
233
234	if (IS_CHAN_HT40PLUS(chan)) {
235		centers->synth_center =
236			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237		extoff = 1;
238	} else {
239		centers->synth_center =
240			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241		extoff = -1;
242	}
243
244	centers->ctl_center =
245		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246	/* 25 MHz spacing is supported by hw but not on upper layers */
247	centers->ext_center =
248		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249}
250
251/******************/
252/* Chip Revisions */
253/******************/
254
255static bool ath9k_hw_read_revisions(struct ath_hw *ah)
256{
257	u32 srev;
258	u32 val;
259
260	if (ah->get_mac_revision)
261		ah->hw_version.macRev = ah->get_mac_revision();
262
263	switch (ah->hw_version.devid) {
264	case AR5416_AR9100_DEVID:
265		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
266		break;
267	case AR9300_DEVID_AR9330:
268		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
269		if (!ah->get_mac_revision) {
270			val = REG_READ(ah, AR_SREV);
271			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272		}
273		return true;
274	case AR9300_DEVID_AR9340:
275		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
276		return true;
277	case AR9300_DEVID_QCA955X:
278		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
279		return true;
280	case AR9300_DEVID_AR953X:
281		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
282		return true;
283	case AR9300_DEVID_QCA956X:
284		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
285		return true;
286	}
287
288	srev = REG_READ(ah, AR_SREV);
289
290	if (srev == -1) {
291		ath_err(ath9k_hw_common(ah),
292			"Failed to read SREV register");
293		return false;
294	}
295
296	val = srev & AR_SREV_ID;
297
298	if (val == 0xFF) {
299		val = srev;
300		ah->hw_version.macVersion =
301			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
302		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
303
304		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
305			ah->is_pciexpress = true;
306		else
307			ah->is_pciexpress = (val &
308					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
309	} else {
310		if (!AR_SREV_9100(ah))
311			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
312
313		ah->hw_version.macRev = val & AR_SREV_REVISION;
314
315		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
316			ah->is_pciexpress = true;
317	}
318
319	return true;
320}
321
322/************************************/
323/* HW Attach, Detach, Init Routines */
324/************************************/
325
326static void ath9k_hw_disablepcie(struct ath_hw *ah)
327{
328	if (!AR_SREV_5416(ah))
329		return;
330
331	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
332	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
333	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
334	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
335	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
336	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
337	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
338	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
339	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
340
341	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
342}
343
344/* This should work for all families including legacy */
345static bool ath9k_hw_chip_test(struct ath_hw *ah)
346{
347	struct ath_common *common = ath9k_hw_common(ah);
348	u32 regAddr[2] = { AR_STA_ID0 };
349	u32 regHold[2];
350	static const u32 patternData[4] = {
351		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
352	};
353	int i, j, loop_max;
354
355	if (!AR_SREV_9300_20_OR_LATER(ah)) {
356		loop_max = 2;
357		regAddr[1] = AR_PHY_BASE + (8 << 2);
358	} else
359		loop_max = 1;
360
361	for (i = 0; i < loop_max; i++) {
362		u32 addr = regAddr[i];
363		u32 wrData, rdData;
364
365		regHold[i] = REG_READ(ah, addr);
366		for (j = 0; j < 0x100; j++) {
367			wrData = (j << 16) | j;
368			REG_WRITE(ah, addr, wrData);
369			rdData = REG_READ(ah, addr);
370			if (rdData != wrData) {
371				ath_err(common,
372					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
373					addr, wrData, rdData);
374				return false;
375			}
376		}
377		for (j = 0; j < 4; j++) {
378			wrData = patternData[j];
379			REG_WRITE(ah, addr, wrData);
380			rdData = REG_READ(ah, addr);
381			if (wrData != rdData) {
382				ath_err(common,
383					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
384					addr, wrData, rdData);
385				return false;
386			}
387		}
388		REG_WRITE(ah, regAddr[i], regHold[i]);
389	}
390	udelay(100);
391
392	return true;
393}
394
395static void ath9k_hw_init_config(struct ath_hw *ah)
396{
397	struct ath_common *common = ath9k_hw_common(ah);
398
399	ah->config.dma_beacon_response_time = 1;
400	ah->config.sw_beacon_response_time = 6;
401	ah->config.cwm_ignore_extcca = false;
402	ah->config.analog_shiftreg = 1;
403
404	ah->config.rx_intr_mitigation = true;
405
406	if (AR_SREV_9300_20_OR_LATER(ah)) {
407		ah->config.rimt_last = 500;
408		ah->config.rimt_first = 2000;
409	} else {
410		ah->config.rimt_last = 250;
411		ah->config.rimt_first = 700;
412	}
413
414	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
415		ah->config.pll_pwrsave = 7;
416
417	/*
418	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420	 * This means we use it for all AR5416 devices, and the few
421	 * minor PCI AR9280 devices out there.
422	 *
423	 * Serialization is required because these devices do not handle
424	 * well the case of two concurrent reads/writes due to the latency
425	 * involved. During one read/write another read/write can be issued
426	 * on another CPU while the previous read/write may still be working
427	 * on our hardware, if we hit this case the hardware poops in a loop.
428	 * We prevent this by serializing reads and writes.
429	 *
430	 * This issue is not present on PCI-Express devices or pre-AR5416
431	 * devices (legacy, 802.11abg).
432	 */
433	if (num_possible_cpus() > 1)
434		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
435
436	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
437		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
438		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
439		     !ah->is_pciexpress)) {
440			ah->config.serialize_regmode = SER_REG_MODE_ON;
441		} else {
442			ah->config.serialize_regmode = SER_REG_MODE_OFF;
443		}
444	}
445
446	ath_dbg(common, RESET, "serialize_regmode is %d\n",
447		ah->config.serialize_regmode);
448
449	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
450		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
451	else
452		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
453}
454
455static void ath9k_hw_init_defaults(struct ath_hw *ah)
456{
457	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
458
459	regulatory->country_code = CTRY_DEFAULT;
460	regulatory->power_limit = MAX_COMBINED_POWER;
461
462	ah->hw_version.magic = AR5416_MAGIC;
463	ah->hw_version.subvendorid = 0;
464
465	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
466			       AR_STA_ID1_MCAST_KSRCH;
467	if (AR_SREV_9100(ah))
468		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
469
470	ah->slottime = 9;
471	ah->globaltxtimeout = (u32) -1;
472	ah->power_mode = ATH9K_PM_UNDEFINED;
473	ah->htc_reset_init = true;
474
475	ah->tpc_enabled = false;
476
477	ah->ani_function = ATH9K_ANI_ALL;
478	if (!AR_SREV_9300_20_OR_LATER(ah))
479		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
480
481	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
482		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
483	else
484		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
485}
486
487static void ath9k_hw_init_macaddr(struct ath_hw *ah)
488{
489	struct ath_common *common = ath9k_hw_common(ah);
490	int i;
491	u16 eeval;
492	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
493
494	/* MAC address may already be loaded via ath9k_platform_data */
495	if (is_valid_ether_addr(common->macaddr))
496		return;
497
498	for (i = 0; i < 3; i++) {
499		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
500		common->macaddr[2 * i] = eeval >> 8;
501		common->macaddr[2 * i + 1] = eeval & 0xff;
502	}
503
504	if (is_valid_ether_addr(common->macaddr))
505		return;
506
507	ath_err(common, "eeprom contains invalid mac address: %pM\n",
508		common->macaddr);
509
510	eth_random_addr(common->macaddr);
511	ath_err(common, "random mac address will be used: %pM\n",
512		common->macaddr);
513
514	return;
515}
516
517static int ath9k_hw_post_init(struct ath_hw *ah)
518{
519	struct ath_common *common = ath9k_hw_common(ah);
520	int ecode;
521
522	if (common->bus_ops->ath_bus_type != ATH_USB) {
523		if (!ath9k_hw_chip_test(ah))
524			return -ENODEV;
525	}
526
527	if (!AR_SREV_9300_20_OR_LATER(ah)) {
528		ecode = ar9002_hw_rf_claim(ah);
529		if (ecode != 0)
530			return ecode;
531	}
532
533	ecode = ath9k_hw_eeprom_init(ah);
534	if (ecode != 0)
535		return ecode;
536
537	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
538		ah->eep_ops->get_eeprom_ver(ah),
539		ah->eep_ops->get_eeprom_rev(ah));
540
541	ath9k_hw_ani_init(ah);
542
543	/*
544	 * EEPROM needs to be initialized before we do this.
545	 * This is required for regulatory compliance.
546	 */
547	if (AR_SREV_9300_20_OR_LATER(ah)) {
548		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
549		if ((regdmn & 0xF0) == CTL_FCC) {
550			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
551			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
552		}
553	}
554
555	return 0;
556}
557
558static int ath9k_hw_attach_ops(struct ath_hw *ah)
559{
560	if (!AR_SREV_9300_20_OR_LATER(ah))
561		return ar9002_hw_attach_ops(ah);
562
563	ar9003_hw_attach_ops(ah);
564	return 0;
565}
566
567/* Called for all hardware families */
568static int __ath9k_hw_init(struct ath_hw *ah)
569{
570	struct ath_common *common = ath9k_hw_common(ah);
571	int r = 0;
572
573	if (!ath9k_hw_read_revisions(ah)) {
574		ath_err(common, "Could not read hardware revisions");
575		return -EOPNOTSUPP;
576	}
577
578	switch (ah->hw_version.macVersion) {
579	case AR_SREV_VERSION_5416_PCI:
580	case AR_SREV_VERSION_5416_PCIE:
581	case AR_SREV_VERSION_9160:
582	case AR_SREV_VERSION_9100:
583	case AR_SREV_VERSION_9280:
584	case AR_SREV_VERSION_9285:
585	case AR_SREV_VERSION_9287:
586	case AR_SREV_VERSION_9271:
587	case AR_SREV_VERSION_9300:
588	case AR_SREV_VERSION_9330:
589	case AR_SREV_VERSION_9485:
590	case AR_SREV_VERSION_9340:
591	case AR_SREV_VERSION_9462:
592	case AR_SREV_VERSION_9550:
593	case AR_SREV_VERSION_9565:
594	case AR_SREV_VERSION_9531:
595	case AR_SREV_VERSION_9561:
596		break;
597	default:
598		ath_err(common,
599			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
600			ah->hw_version.macVersion, ah->hw_version.macRev);
601		return -EOPNOTSUPP;
602	}
603
604	/*
605	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
606	 * We need to do this to avoid RMW of this register. We cannot
607	 * read the reg when chip is asleep.
608	 */
609	if (AR_SREV_9300_20_OR_LATER(ah)) {
610		ah->WARegVal = REG_READ(ah, AR_WA);
611		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
612				 AR_WA_ASPM_TIMER_BASED_DISABLE);
613	}
614
615	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
616		ath_err(common, "Couldn't reset chip\n");
617		return -EIO;
618	}
619
620	if (AR_SREV_9565(ah)) {
621		ah->WARegVal |= AR_WA_BIT22;
622		REG_WRITE(ah, AR_WA, ah->WARegVal);
623	}
624
625	ath9k_hw_init_defaults(ah);
626	ath9k_hw_init_config(ah);
627
628	r = ath9k_hw_attach_ops(ah);
629	if (r)
630		return r;
631
632	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
633		ath_err(common, "Couldn't wakeup chip\n");
634		return -EIO;
635	}
636
637	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
638	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
639		ah->is_pciexpress = false;
640
641	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
642	ath9k_hw_init_cal_settings(ah);
643
644	if (!ah->is_pciexpress)
645		ath9k_hw_disablepcie(ah);
646
647	r = ath9k_hw_post_init(ah);
648	if (r)
649		return r;
650
651	ath9k_hw_init_mode_gain_regs(ah);
652	r = ath9k_hw_fill_cap_info(ah);
653	if (r)
654		return r;
655
656	ath9k_hw_init_macaddr(ah);
657	ath9k_hw_init_hang_checks(ah);
658
659	common->state = ATH_HW_INITIALIZED;
660
661	return 0;
662}
663
664int ath9k_hw_init(struct ath_hw *ah)
665{
666	int ret;
667	struct ath_common *common = ath9k_hw_common(ah);
668
669	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
670	switch (ah->hw_version.devid) {
671	case AR5416_DEVID_PCI:
672	case AR5416_DEVID_PCIE:
673	case AR5416_AR9100_DEVID:
674	case AR9160_DEVID_PCI:
675	case AR9280_DEVID_PCI:
676	case AR9280_DEVID_PCIE:
677	case AR9285_DEVID_PCIE:
678	case AR9287_DEVID_PCI:
679	case AR9287_DEVID_PCIE:
680	case AR2427_DEVID_PCIE:
681	case AR9300_DEVID_PCIE:
682	case AR9300_DEVID_AR9485_PCIE:
683	case AR9300_DEVID_AR9330:
684	case AR9300_DEVID_AR9340:
685	case AR9300_DEVID_QCA955X:
686	case AR9300_DEVID_AR9580:
687	case AR9300_DEVID_AR9462:
688	case AR9485_DEVID_AR1111:
689	case AR9300_DEVID_AR9565:
690	case AR9300_DEVID_AR953X:
691	case AR9300_DEVID_QCA956X:
692		break;
693	default:
694		if (common->bus_ops->ath_bus_type == ATH_USB)
695			break;
696		ath_err(common, "Hardware device ID 0x%04x not supported\n",
697			ah->hw_version.devid);
698		return -EOPNOTSUPP;
699	}
700
701	ret = __ath9k_hw_init(ah);
702	if (ret) {
703		ath_err(common,
704			"Unable to initialize hardware; initialization status: %d\n",
705			ret);
706		return ret;
707	}
708
709	ath_dynack_init(ah);
710
711	return 0;
712}
713EXPORT_SYMBOL(ath9k_hw_init);
714
715static void ath9k_hw_init_qos(struct ath_hw *ah)
716{
717	ENABLE_REGWRITE_BUFFER(ah);
718
719	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
720	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
721
722	REG_WRITE(ah, AR_QOS_NO_ACK,
723		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
724		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
725		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
726
727	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
728	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
729	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
730	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
731	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
732
733	REGWRITE_BUFFER_FLUSH(ah);
734}
735
736u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
737{
738	struct ath_common *common = ath9k_hw_common(ah);
739	int i = 0;
740
741	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
742	udelay(100);
743	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
744
745	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
746
747		udelay(100);
748
749		if (WARN_ON_ONCE(i >= 100)) {
750			ath_err(common, "PLL4 measurement not done\n");
751			break;
752		}
753
754		i++;
755	}
756
757	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
758}
759EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
760
761static void ath9k_hw_init_pll(struct ath_hw *ah,
762			      struct ath9k_channel *chan)
763{
764	u32 pll;
765
766	pll = ath9k_hw_compute_pll_control(ah, chan);
767
768	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
769		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
770		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
771			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
772		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773			      AR_CH0_DPLL2_KD, 0x40);
774		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
775			      AR_CH0_DPLL2_KI, 0x4);
776
777		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
778			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
779		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
780			      AR_CH0_BB_DPLL1_NINI, 0x58);
781		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
782			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
783
784		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
785			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
786		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
787			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
788		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
789			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
790
791		/* program BB PLL phase_shift to 0x6 */
792		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
793			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
794
795		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
796			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
797		udelay(1000);
798	} else if (AR_SREV_9330(ah)) {
799		u32 ddr_dpll2, pll_control2, kd;
800
801		if (ah->is_clk_25mhz) {
802			ddr_dpll2 = 0x18e82f01;
803			pll_control2 = 0xe04a3d;
804			kd = 0x1d;
805		} else {
806			ddr_dpll2 = 0x19e82f01;
807			pll_control2 = 0x886666;
808			kd = 0x3d;
809		}
810
811		/* program DDR PLL ki and kd value */
812		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
813
814		/* program DDR PLL phase_shift */
815		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
816			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
817
818		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
819			  pll | AR_RTC_9300_PLL_BYPASS);
820		udelay(1000);
821
822		/* program refdiv, nint, frac to RTC register */
823		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
824
825		/* program BB PLL kd and ki value */
826		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
827		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
828
829		/* program BB PLL phase_shift */
830		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
831			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
832	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
833		   AR_SREV_9561(ah)) {
834		u32 regval, pll2_divint, pll2_divfrac, refdiv;
835
836		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
837			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
838		udelay(1000);
839
840		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
841		udelay(100);
842
843		if (ah->is_clk_25mhz) {
844			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
845				pll2_divint = 0x1c;
846				pll2_divfrac = 0xa3d2;
847				refdiv = 1;
848			} else {
849				pll2_divint = 0x54;
850				pll2_divfrac = 0x1eb85;
851				refdiv = 3;
852			}
853		} else {
854			if (AR_SREV_9340(ah)) {
855				pll2_divint = 88;
856				pll2_divfrac = 0;
857				refdiv = 5;
858			} else {
859				pll2_divint = 0x11;
860				pll2_divfrac = (AR_SREV_9531(ah) ||
861						AR_SREV_9561(ah)) ?
862						0x26665 : 0x26666;
863				refdiv = 1;
864			}
865		}
866
867		regval = REG_READ(ah, AR_PHY_PLL_MODE);
868		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
869			regval |= (0x1 << 22);
870		else
871			regval |= (0x1 << 16);
872		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
873		udelay(100);
874
875		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
876			  (pll2_divint << 18) | pll2_divfrac);
877		udelay(100);
878
879		regval = REG_READ(ah, AR_PHY_PLL_MODE);
880		if (AR_SREV_9340(ah))
881			regval = (regval & 0x80071fff) |
882				(0x1 << 30) |
883				(0x1 << 13) |
884				(0x4 << 26) |
885				(0x18 << 19);
886		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
887			regval = (regval & 0x01c00fff) |
888				(0x1 << 31) |
889				(0x2 << 29) |
890				(0xa << 25) |
891				(0x1 << 19);
892
893			if (AR_SREV_9531(ah))
894				regval |= (0x6 << 12);
895		} else
896			regval = (regval & 0x80071fff) |
897				(0x3 << 30) |
898				(0x1 << 13) |
899				(0x4 << 26) |
900				(0x60 << 19);
901		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
902
903		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
904			REG_WRITE(ah, AR_PHY_PLL_MODE,
905				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
906		else
907			REG_WRITE(ah, AR_PHY_PLL_MODE,
908				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
909
910		udelay(1000);
911	}
912
913	if (AR_SREV_9565(ah))
914		pll |= 0x40000;
915	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
916
917	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
918	    AR_SREV_9550(ah))
919		udelay(1000);
920
921	/* Switch the core clock for ar9271 to 117Mhz */
922	if (AR_SREV_9271(ah)) {
923		udelay(500);
924		REG_WRITE(ah, 0x50040, 0x304);
925	}
926
927	udelay(RTC_PLL_SETTLE_DELAY);
928
929	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
930}
931
932static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
933					  enum nl80211_iftype opmode)
934{
935	u32 sync_default = AR_INTR_SYNC_DEFAULT;
936	u32 imr_reg = AR_IMR_TXERR |
937		AR_IMR_TXURN |
938		AR_IMR_RXERR |
939		AR_IMR_RXORN |
940		AR_IMR_BCNMISC;
941	u32 msi_cfg = 0;
942
943	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
944	    AR_SREV_9561(ah))
945		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
946
947	if (AR_SREV_9300_20_OR_LATER(ah)) {
948		imr_reg |= AR_IMR_RXOK_HP;
949		if (ah->config.rx_intr_mitigation) {
950			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
951			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
952		} else {
953			imr_reg |= AR_IMR_RXOK_LP;
954			msi_cfg |= AR_INTCFG_MSI_RXOK;
955		}
956	} else {
957		if (ah->config.rx_intr_mitigation) {
958			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
959			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
960		} else {
961			imr_reg |= AR_IMR_RXOK;
962			msi_cfg |= AR_INTCFG_MSI_RXOK;
963		}
964	}
965
966	if (ah->config.tx_intr_mitigation) {
967		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
968		msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
969	} else {
970		imr_reg |= AR_IMR_TXOK;
971		msi_cfg |= AR_INTCFG_MSI_TXOK;
972	}
973
974	ENABLE_REGWRITE_BUFFER(ah);
975
976	REG_WRITE(ah, AR_IMR, imr_reg);
977	ah->imrs2_reg |= AR_IMR_S2_GTT;
978	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
979
980	if (ah->msi_enabled) {
981		ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
982		ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
983		ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
984		REG_WRITE(ah, AR_INTCFG, msi_cfg);
985		ath_dbg(ath9k_hw_common(ah), ANY,
986			"value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
987			REG_READ(ah, AR_INTCFG), msi_cfg);
988	}
989
990	if (!AR_SREV_9100(ah)) {
991		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
992		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
993		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
994	}
995
996	REGWRITE_BUFFER_FLUSH(ah);
997
998	if (AR_SREV_9300_20_OR_LATER(ah)) {
999		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
1000		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1001		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1002		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1003	}
1004}
1005
1006static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1007{
1008	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1009	val = min(val, (u32) 0xFFFF);
1010	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1011}
1012
1013void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1014{
1015	u32 val = ath9k_hw_mac_to_clks(ah, us);
1016	val = min(val, (u32) 0xFFFF);
1017	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1018}
1019
1020void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1021{
1022	u32 val = ath9k_hw_mac_to_clks(ah, us);
1023	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1024	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1025}
1026
1027void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1028{
1029	u32 val = ath9k_hw_mac_to_clks(ah, us);
1030	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1031	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1032}
1033
1034static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1035{
1036	if (tu > 0xFFFF) {
1037		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1038			tu);
1039		ah->globaltxtimeout = (u32) -1;
1040		return false;
1041	} else {
1042		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1043		ah->globaltxtimeout = tu;
1044		return true;
1045	}
1046}
1047
1048void ath9k_hw_init_global_settings(struct ath_hw *ah)
1049{
1050	struct ath_common *common = ath9k_hw_common(ah);
1051	const struct ath9k_channel *chan = ah->curchan;
1052	int acktimeout, ctstimeout, ack_offset = 0;
1053	int slottime;
1054	int sifstime;
1055	int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1056	u32 reg;
1057
1058	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1059		ah->misc_mode);
1060
1061	if (!chan)
1062		return;
1063
1064	if (ah->misc_mode != 0)
1065		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1066
1067	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1068		rx_lat = 41;
1069	else
1070		rx_lat = 37;
1071	tx_lat = 54;
1072
1073	if (IS_CHAN_5GHZ(chan))
1074		sifstime = 16;
1075	else
1076		sifstime = 10;
1077
1078	if (IS_CHAN_HALF_RATE(chan)) {
1079		eifs = 175;
1080		rx_lat *= 2;
1081		tx_lat *= 2;
1082		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1083		    tx_lat += 11;
1084
1085		sifstime = 32;
1086		ack_offset = 16;
1087		ack_shift = 3;
1088		slottime = 13;
1089	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1090		eifs = 340;
1091		rx_lat = (rx_lat * 4) - 1;
1092		tx_lat *= 4;
1093		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1094		    tx_lat += 22;
1095
1096		sifstime = 64;
1097		ack_offset = 32;
1098		ack_shift = 1;
1099		slottime = 21;
1100	} else {
1101		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1102			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1103			reg = AR_USEC_ASYNC_FIFO;
1104		} else {
1105			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1106				common->clockrate;
1107			reg = REG_READ(ah, AR_USEC);
1108		}
1109		rx_lat = MS(reg, AR_USEC_RX_LAT);
1110		tx_lat = MS(reg, AR_USEC_TX_LAT);
1111
1112		slottime = ah->slottime;
1113	}
1114
1115	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1116	slottime += 3 * ah->coverage_class;
1117	acktimeout = slottime + sifstime + ack_offset;
1118	ctstimeout = acktimeout;
1119
1120	/*
1121	 * Workaround for early ACK timeouts, add an offset to match the
1122	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1123	 * This was initially only meant to work around an issue with delayed
1124	 * BA frames in some implementations, but it has been found to fix ACK
1125	 * timeout issues in other cases as well.
1126	 */
1127	if (IS_CHAN_2GHZ(chan) &&
1128	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1129		acktimeout += 64 - sifstime - ah->slottime;
1130		ctstimeout += 48 - sifstime - ah->slottime;
1131	}
1132
1133	if (ah->dynack.enabled) {
1134		acktimeout = ah->dynack.ackto;
1135		ctstimeout = acktimeout;
1136		slottime = (acktimeout - 3) / 2;
1137	} else {
1138		ah->dynack.ackto = acktimeout;
1139	}
1140
1141	ath9k_hw_set_sifs_time(ah, sifstime);
1142	ath9k_hw_setslottime(ah, slottime);
1143	ath9k_hw_set_ack_timeout(ah, acktimeout);
1144	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1145	if (ah->globaltxtimeout != (u32) -1)
1146		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1147
1148	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1149	REG_RMW(ah, AR_USEC,
1150		(common->clockrate - 1) |
1151		SM(rx_lat, AR_USEC_RX_LAT) |
1152		SM(tx_lat, AR_USEC_TX_LAT),
1153		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1154
1155	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1156		REG_RMW(ah, AR_TXSIFS,
1157			sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1158			(AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1159}
1160EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1161
1162void ath9k_hw_deinit(struct ath_hw *ah)
1163{
1164	struct ath_common *common = ath9k_hw_common(ah);
1165
1166	if (common->state < ATH_HW_INITIALIZED)
1167		return;
1168
1169	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1170}
1171EXPORT_SYMBOL(ath9k_hw_deinit);
1172
1173/*******/
1174/* INI */
1175/*******/
1176
1177u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1178{
1179	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1180
1181	if (IS_CHAN_2GHZ(chan))
1182		ctl |= CTL_11G;
1183	else
1184		ctl |= CTL_11A;
1185
1186	return ctl;
1187}
1188
1189/****************************************/
1190/* Reset and Channel Switching Routines */
1191/****************************************/
1192
1193static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1194{
1195	struct ath_common *common = ath9k_hw_common(ah);
1196	int txbuf_size;
1197
1198	ENABLE_REGWRITE_BUFFER(ah);
1199
1200	/*
1201	 * set AHB_MODE not to do cacheline prefetches
1202	*/
1203	if (!AR_SREV_9300_20_OR_LATER(ah))
1204		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1205
1206	/*
1207	 * let mac dma reads be in 128 byte chunks
1208	 */
1209	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1210
1211	REGWRITE_BUFFER_FLUSH(ah);
1212
1213	/*
1214	 * Restore TX Trigger Level to its pre-reset value.
1215	 * The initial value depends on whether aggregation is enabled, and is
1216	 * adjusted whenever underruns are detected.
1217	 */
1218	if (!AR_SREV_9300_20_OR_LATER(ah))
1219		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1220
1221	ENABLE_REGWRITE_BUFFER(ah);
1222
1223	/*
1224	 * let mac dma writes be in 128 byte chunks
1225	 */
1226	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1227
1228	/*
1229	 * Setup receive FIFO threshold to hold off TX activities
1230	 */
1231	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1232
1233	if (AR_SREV_9300_20_OR_LATER(ah)) {
1234		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1235		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1236
1237		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1238			ah->caps.rx_status_len);
1239	}
1240
1241	/*
1242	 * reduce the number of usable entries in PCU TXBUF to avoid
1243	 * wrap around issues.
1244	 */
1245	if (AR_SREV_9285(ah)) {
1246		/* For AR9285 the number of Fifos are reduced to half.
1247		 * So set the usable tx buf size also to half to
1248		 * avoid data/delimiter underruns
1249		 */
1250		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1251	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1252		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1253		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1254	} else {
1255		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1256	}
1257
1258	if (!AR_SREV_9271(ah))
1259		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1260
1261	REGWRITE_BUFFER_FLUSH(ah);
1262
1263	if (AR_SREV_9300_20_OR_LATER(ah))
1264		ath9k_hw_reset_txstatus_ring(ah);
1265}
1266
1267static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1268{
1269	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1270	u32 set = AR_STA_ID1_KSRCH_MODE;
1271
1272	ENABLE_REG_RMW_BUFFER(ah);
1273	switch (opmode) {
1274	case NL80211_IFTYPE_ADHOC:
1275		if (!AR_SREV_9340_13(ah)) {
1276			set |= AR_STA_ID1_ADHOC;
1277			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1278			break;
1279		}
1280		fallthrough;
1281	case NL80211_IFTYPE_OCB:
1282	case NL80211_IFTYPE_MESH_POINT:
1283	case NL80211_IFTYPE_AP:
1284		set |= AR_STA_ID1_STA_AP;
1285		fallthrough;
1286	case NL80211_IFTYPE_STATION:
1287		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1288		break;
1289	default:
1290		if (!ah->is_monitoring)
1291			set = 0;
1292		break;
1293	}
1294	REG_RMW(ah, AR_STA_ID1, set, mask);
1295	REG_RMW_BUFFER_FLUSH(ah);
1296}
1297
1298void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1299				   u32 *coef_mantissa, u32 *coef_exponent)
1300{
1301	u32 coef_exp, coef_man;
1302
1303	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1304		if ((coef_scaled >> coef_exp) & 0x1)
1305			break;
1306
1307	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1308
1309	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1310
1311	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1312	*coef_exponent = coef_exp - 16;
1313}
1314
1315/* AR9330 WAR:
1316 * call external reset function to reset WMAC if:
1317 * - doing a cold reset
1318 * - we have pending frames in the TX queues.
1319 */
1320static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1321{
1322	int i, npend = 0;
1323
1324	for (i = 0; i < AR_NUM_QCU; i++) {
1325		npend = ath9k_hw_numtxpending(ah, i);
1326		if (npend)
1327			break;
1328	}
1329
1330	if (ah->external_reset &&
1331	    (npend || type == ATH9K_RESET_COLD)) {
1332		int reset_err = 0;
1333
1334		ath_dbg(ath9k_hw_common(ah), RESET,
1335			"reset MAC via external reset\n");
1336
1337		reset_err = ah->external_reset();
1338		if (reset_err) {
1339			ath_err(ath9k_hw_common(ah),
1340				"External reset failed, err=%d\n",
1341				reset_err);
1342			return false;
1343		}
1344
1345		REG_WRITE(ah, AR_RTC_RESET, 1);
1346	}
1347
1348	return true;
1349}
1350
1351static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1352{
1353	u32 rst_flags;
1354	u32 tmpReg;
1355
1356	if (AR_SREV_9100(ah)) {
1357		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1358			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1359		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1360	}
1361
1362	ENABLE_REGWRITE_BUFFER(ah);
1363
1364	if (AR_SREV_9300_20_OR_LATER(ah)) {
1365		REG_WRITE(ah, AR_WA, ah->WARegVal);
1366		udelay(10);
1367	}
1368
1369	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1370		  AR_RTC_FORCE_WAKE_ON_INT);
1371
1372	if (AR_SREV_9100(ah)) {
1373		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1374			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1375	} else {
1376		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1377		if (AR_SREV_9340(ah))
1378			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1379		else
1380			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1381				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1382
1383		if (tmpReg) {
1384			u32 val;
1385			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1386
1387			val = AR_RC_HOSTIF;
1388			if (!AR_SREV_9300_20_OR_LATER(ah))
1389				val |= AR_RC_AHB;
1390			REG_WRITE(ah, AR_RC, val);
1391
1392		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1393			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1394
1395		rst_flags = AR_RTC_RC_MAC_WARM;
1396		if (type == ATH9K_RESET_COLD)
1397			rst_flags |= AR_RTC_RC_MAC_COLD;
1398	}
1399
1400	if (AR_SREV_9330(ah)) {
1401		if (!ath9k_hw_ar9330_reset_war(ah, type))
1402			return false;
1403	}
1404
1405	if (ath9k_hw_mci_is_enabled(ah))
1406		ar9003_mci_check_gpm_offset(ah);
1407
1408	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1409	 * RTC_RC reg read
1410	 */
1411	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1412		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1413		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1414			      20 * AH_WAIT_TIMEOUT);
1415		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1416	}
1417
1418	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1419
1420	REGWRITE_BUFFER_FLUSH(ah);
1421
1422	if (AR_SREV_9300_20_OR_LATER(ah))
1423		udelay(50);
1424	else if (AR_SREV_9100(ah))
1425		mdelay(10);
1426	else
1427		udelay(100);
1428
1429	REG_WRITE(ah, AR_RTC_RC, 0);
1430	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1431		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1432		return false;
1433	}
1434
1435	if (!AR_SREV_9100(ah))
1436		REG_WRITE(ah, AR_RC, 0);
1437
1438	if (AR_SREV_9100(ah))
1439		udelay(50);
1440
1441	return true;
1442}
1443
1444static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1445{
1446	ENABLE_REGWRITE_BUFFER(ah);
1447
1448	if (AR_SREV_9300_20_OR_LATER(ah)) {
1449		REG_WRITE(ah, AR_WA, ah->WARegVal);
1450		udelay(10);
1451	}
1452
1453	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1454		  AR_RTC_FORCE_WAKE_ON_INT);
1455
1456	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1457		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1458
1459	REG_WRITE(ah, AR_RTC_RESET, 0);
1460
1461	REGWRITE_BUFFER_FLUSH(ah);
1462
1463	udelay(2);
1464
1465	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1466		REG_WRITE(ah, AR_RC, 0);
1467
1468	REG_WRITE(ah, AR_RTC_RESET, 1);
1469
1470	if (!ath9k_hw_wait(ah,
1471			   AR_RTC_STATUS,
1472			   AR_RTC_STATUS_M,
1473			   AR_RTC_STATUS_ON,
1474			   AH_WAIT_TIMEOUT)) {
1475		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1476		return false;
1477	}
1478
1479	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1480}
1481
1482static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1483{
1484	bool ret = false;
1485
1486	if (AR_SREV_9300_20_OR_LATER(ah)) {
1487		REG_WRITE(ah, AR_WA, ah->WARegVal);
1488		udelay(10);
1489	}
1490
1491	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1492		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1493
1494	if (!ah->reset_power_on)
1495		type = ATH9K_RESET_POWER_ON;
1496
1497	switch (type) {
1498	case ATH9K_RESET_POWER_ON:
1499		ret = ath9k_hw_set_reset_power_on(ah);
1500		if (ret)
1501			ah->reset_power_on = true;
1502		break;
1503	case ATH9K_RESET_WARM:
1504	case ATH9K_RESET_COLD:
1505		ret = ath9k_hw_set_reset(ah, type);
1506		break;
1507	default:
1508		break;
1509	}
1510
1511	return ret;
1512}
1513
1514static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1515				struct ath9k_channel *chan)
1516{
1517	int reset_type = ATH9K_RESET_WARM;
1518
1519	if (AR_SREV_9280(ah)) {
1520		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1521			reset_type = ATH9K_RESET_POWER_ON;
1522		else
1523			reset_type = ATH9K_RESET_COLD;
1524	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1525		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1526		reset_type = ATH9K_RESET_COLD;
1527
1528	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1529		return false;
1530
1531	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1532		return false;
1533
1534	ah->chip_fullsleep = false;
1535
1536	if (AR_SREV_9330(ah))
1537		ar9003_hw_internal_regulator_apply(ah);
1538	ath9k_hw_init_pll(ah, chan);
1539
1540	return true;
1541}
1542
1543static bool ath9k_hw_channel_change(struct ath_hw *ah,
1544				    struct ath9k_channel *chan)
1545{
1546	struct ath_common *common = ath9k_hw_common(ah);
1547	struct ath9k_hw_capabilities *pCap = &ah->caps;
1548	bool band_switch = false, mode_diff = false;
1549	u8 ini_reloaded = 0;
1550	u32 qnum;
1551	int r;
1552
1553	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1554		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1555		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1556		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1557	}
1558
1559	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1560		if (ath9k_hw_numtxpending(ah, qnum)) {
1561			ath_dbg(common, QUEUE,
1562				"Transmit frames pending on queue %d\n", qnum);
1563			return false;
1564		}
1565	}
1566
1567	if (!ath9k_hw_rfbus_req(ah)) {
1568		ath_err(common, "Could not kill baseband RX\n");
1569		return false;
1570	}
1571
1572	if (band_switch || mode_diff) {
1573		ath9k_hw_mark_phy_inactive(ah);
1574		udelay(5);
1575
1576		if (band_switch)
1577			ath9k_hw_init_pll(ah, chan);
1578
1579		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1580			ath_err(common, "Failed to do fast channel change\n");
1581			return false;
1582		}
1583	}
1584
1585	ath9k_hw_set_channel_regs(ah, chan);
1586
1587	r = ath9k_hw_rf_set_freq(ah, chan);
1588	if (r) {
1589		ath_err(common, "Failed to set channel\n");
1590		return false;
1591	}
1592	ath9k_hw_set_clockrate(ah);
1593	ath9k_hw_apply_txpower(ah, chan, false);
1594
1595	ath9k_hw_set_delta_slope(ah, chan);
1596	ath9k_hw_spur_mitigate_freq(ah, chan);
1597
1598	if (band_switch || ini_reloaded)
1599		ah->eep_ops->set_board_values(ah, chan);
1600
1601	ath9k_hw_init_bb(ah, chan);
1602	ath9k_hw_rfbus_done(ah);
1603
1604	if (band_switch || ini_reloaded) {
1605		ah->ah_flags |= AH_FASTCC;
1606		ath9k_hw_init_cal(ah, chan);
1607		ah->ah_flags &= ~AH_FASTCC;
1608	}
1609
1610	return true;
1611}
1612
1613static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1614{
1615	u32 gpio_mask = ah->gpio_mask;
1616	int i;
1617
1618	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1619		if (!(gpio_mask & 1))
1620			continue;
1621
1622		ath9k_hw_gpio_request_out(ah, i, NULL,
1623					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1624		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1625	}
1626}
1627
1628void ath9k_hw_check_nav(struct ath_hw *ah)
1629{
1630	struct ath_common *common = ath9k_hw_common(ah);
1631	u32 val;
1632
1633	val = REG_READ(ah, AR_NAV);
1634	if (val != 0xdeadbeef && val > 0x7fff) {
1635		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1636		REG_WRITE(ah, AR_NAV, 0);
1637	}
1638}
1639EXPORT_SYMBOL(ath9k_hw_check_nav);
1640
1641bool ath9k_hw_check_alive(struct ath_hw *ah)
1642{
1643	int count = 50;
1644	u32 reg, last_val;
1645
1646	/* Check if chip failed to wake up */
1647	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1648		return false;
1649
1650	if (AR_SREV_9300(ah))
1651		return !ath9k_hw_detect_mac_hang(ah);
1652
1653	if (AR_SREV_9285_12_OR_LATER(ah))
1654		return true;
1655
1656	last_val = REG_READ(ah, AR_OBS_BUS_1);
1657	do {
1658		reg = REG_READ(ah, AR_OBS_BUS_1);
1659		if (reg != last_val)
1660			return true;
1661
1662		udelay(1);
1663		last_val = reg;
1664		if ((reg & 0x7E7FFFEF) == 0x00702400)
1665			continue;
1666
1667		switch (reg & 0x7E000B00) {
1668		case 0x1E000000:
1669		case 0x52000B00:
1670		case 0x18000B00:
1671			continue;
1672		default:
1673			return true;
1674		}
1675	} while (count-- > 0);
1676
1677	return false;
1678}
1679EXPORT_SYMBOL(ath9k_hw_check_alive);
1680
1681static void ath9k_hw_init_mfp(struct ath_hw *ah)
1682{
1683	/* Setup MFP options for CCMP */
1684	if (AR_SREV_9280_20_OR_LATER(ah)) {
1685		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1686		 * frames when constructing CCMP AAD. */
1687		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1688			      0xc7ff);
1689		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1690			ah->sw_mgmt_crypto_tx = true;
1691		else
1692			ah->sw_mgmt_crypto_tx = false;
1693		ah->sw_mgmt_crypto_rx = false;
1694	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1695		/* Disable hardware crypto for management frames */
1696		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1697			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1698		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1699			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1700		ah->sw_mgmt_crypto_tx = true;
1701		ah->sw_mgmt_crypto_rx = true;
1702	} else {
1703		ah->sw_mgmt_crypto_tx = true;
1704		ah->sw_mgmt_crypto_rx = true;
1705	}
1706}
1707
1708static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1709				  u32 macStaId1, u32 saveDefAntenna)
1710{
1711	struct ath_common *common = ath9k_hw_common(ah);
1712
1713	ENABLE_REGWRITE_BUFFER(ah);
1714
1715	REG_RMW(ah, AR_STA_ID1, macStaId1
1716		  | AR_STA_ID1_RTS_USE_DEF
1717		  | ah->sta_id1_defaults,
1718		  ~AR_STA_ID1_SADH_MASK);
1719	ath_hw_setbssidmask(common);
1720	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1721	ath9k_hw_write_associd(ah);
1722	REG_WRITE(ah, AR_ISR, ~0);
1723	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1724
1725	REGWRITE_BUFFER_FLUSH(ah);
1726
1727	ath9k_hw_set_operating_mode(ah, ah->opmode);
1728}
1729
1730static void ath9k_hw_init_queues(struct ath_hw *ah)
1731{
1732	int i;
1733
1734	ENABLE_REGWRITE_BUFFER(ah);
1735
1736	for (i = 0; i < AR_NUM_DCU; i++)
1737		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1738
1739	REGWRITE_BUFFER_FLUSH(ah);
1740
1741	ah->intr_txqs = 0;
1742	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1743		ath9k_hw_resettxqueue(ah, i);
1744}
1745
1746/*
1747 * For big endian systems turn on swapping for descriptors
1748 */
1749static void ath9k_hw_init_desc(struct ath_hw *ah)
1750{
1751	struct ath_common *common = ath9k_hw_common(ah);
1752
1753	if (AR_SREV_9100(ah)) {
1754		u32 mask;
1755		mask = REG_READ(ah, AR_CFG);
1756		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1757			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1758				mask);
1759		} else {
1760			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1761			REG_WRITE(ah, AR_CFG, mask);
1762			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1763				REG_READ(ah, AR_CFG));
1764		}
1765	} else {
1766		if (common->bus_ops->ath_bus_type == ATH_USB) {
1767			/* Configure AR9271 target WLAN */
1768			if (AR_SREV_9271(ah))
1769				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1770			else
1771				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1772		}
1773#ifdef __BIG_ENDIAN
1774		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1775			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1776			 AR_SREV_9561(ah))
1777			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1778		else
1779			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1780#endif
1781	}
1782}
1783
1784/*
1785 * Fast channel change:
1786 * (Change synthesizer based on channel freq without resetting chip)
1787 */
1788static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1789{
1790	struct ath_common *common = ath9k_hw_common(ah);
1791	struct ath9k_hw_capabilities *pCap = &ah->caps;
1792	int ret;
1793
1794	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1795		goto fail;
1796
1797	if (ah->chip_fullsleep)
1798		goto fail;
1799
1800	if (!ah->curchan)
1801		goto fail;
1802
1803	if (chan->channel == ah->curchan->channel)
1804		goto fail;
1805
1806	if ((ah->curchan->channelFlags | chan->channelFlags) &
1807	    (CHANNEL_HALF | CHANNEL_QUARTER))
1808		goto fail;
1809
1810	/*
1811	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1812	 */
1813	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1814	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1815		goto fail;
1816
1817	if (!ath9k_hw_check_alive(ah))
1818		goto fail;
1819
1820	/*
1821	 * For AR9462, make sure that calibration data for
1822	 * re-using are present.
1823	 */
1824	if (AR_SREV_9462(ah) && (ah->caldata &&
1825				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1826				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1827				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1828		goto fail;
1829
1830	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1831		ah->curchan->channel, chan->channel);
1832
1833	ret = ath9k_hw_channel_change(ah, chan);
1834	if (!ret)
1835		goto fail;
1836
1837	if (ath9k_hw_mci_is_enabled(ah))
1838		ar9003_mci_2g5g_switch(ah, false);
1839
1840	ath9k_hw_loadnf(ah, ah->curchan);
1841	ath9k_hw_start_nfcal(ah, true);
1842
1843	if (AR_SREV_9271(ah))
1844		ar9002_hw_load_ani_reg(ah, chan);
1845
1846	return 0;
1847fail:
1848	return -EINVAL;
1849}
1850
1851u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1852{
1853	struct timespec64 ts;
1854	s64 usec;
1855
1856	if (!cur) {
1857		ktime_get_raw_ts64(&ts);
1858		cur = &ts;
1859	}
1860
1861	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1862	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1863
1864	return (u32) usec;
1865}
1866EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1867
1868int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1869		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1870{
1871	struct ath_common *common = ath9k_hw_common(ah);
1872	u32 saveLedState;
1873	u32 saveDefAntenna;
1874	u32 macStaId1;
1875	struct timespec64 tsf_ts;
1876	u32 tsf_offset;
1877	u64 tsf = 0;
1878	int r;
1879	bool start_mci_reset = false;
1880	bool save_fullsleep = ah->chip_fullsleep;
1881
1882	if (ath9k_hw_mci_is_enabled(ah)) {
1883		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1884		if (start_mci_reset)
1885			return 0;
1886	}
1887
1888	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1889		return -EIO;
1890
1891	if (ah->curchan && !ah->chip_fullsleep)
1892		ath9k_hw_getnf(ah, ah->curchan);
1893
1894	ah->caldata = caldata;
1895	if (caldata && (chan->channel != caldata->channel ||
1896			chan->channelFlags != caldata->channelFlags)) {
1897		/* Operating channel changed, reset channel calibration data */
1898		memset(caldata, 0, sizeof(*caldata));
1899		ath9k_init_nfcal_hist_buffer(ah, chan);
1900	} else if (caldata) {
1901		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1902	}
1903	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1904
1905	if (fastcc) {
1906		r = ath9k_hw_do_fastcc(ah, chan);
1907		if (!r)
1908			return r;
1909	}
1910
1911	if (ath9k_hw_mci_is_enabled(ah))
1912		ar9003_mci_stop_bt(ah, save_fullsleep);
1913
1914	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1915	if (saveDefAntenna == 0)
1916		saveDefAntenna = 1;
1917
1918	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1919
1920	/* Save TSF before chip reset, a cold reset clears it */
1921	ktime_get_raw_ts64(&tsf_ts);
1922	tsf = ath9k_hw_gettsf64(ah);
1923
1924	saveLedState = REG_READ(ah, AR_CFG_LED) &
1925		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1926		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1927
1928	ath9k_hw_mark_phy_inactive(ah);
1929
1930	ah->paprd_table_write_done = false;
1931
1932	/* Only required on the first reset */
1933	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1934		REG_WRITE(ah,
1935			  AR9271_RESET_POWER_DOWN_CONTROL,
1936			  AR9271_RADIO_RF_RST);
1937		udelay(50);
1938	}
1939
1940	if (!ath9k_hw_chip_reset(ah, chan)) {
1941		ath_err(common, "Chip reset failed\n");
1942		return -EINVAL;
1943	}
1944
1945	/* Only required on the first reset */
1946	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1947		ah->htc_reset_init = false;
1948		REG_WRITE(ah,
1949			  AR9271_RESET_POWER_DOWN_CONTROL,
1950			  AR9271_GATE_MAC_CTL);
1951		udelay(50);
1952	}
1953
1954	/* Restore TSF */
1955	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1956	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1957
1958	if (AR_SREV_9280_20_OR_LATER(ah))
1959		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1960
1961	if (!AR_SREV_9300_20_OR_LATER(ah))
1962		ar9002_hw_enable_async_fifo(ah);
1963
1964	r = ath9k_hw_process_ini(ah, chan);
1965	if (r)
1966		return r;
1967
1968	ath9k_hw_set_rfmode(ah, chan);
1969
1970	if (ath9k_hw_mci_is_enabled(ah))
1971		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1972
1973	/*
1974	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1975	 * right after the chip reset. When that happens, write a new
1976	 * value after the initvals have been applied.
1977	 */
1978	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1979		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1980		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1981	}
1982
1983	ath9k_hw_init_mfp(ah);
1984
1985	ath9k_hw_set_delta_slope(ah, chan);
1986	ath9k_hw_spur_mitigate_freq(ah, chan);
1987	ah->eep_ops->set_board_values(ah, chan);
1988
1989	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1990
1991	r = ath9k_hw_rf_set_freq(ah, chan);
1992	if (r)
1993		return r;
1994
1995	ath9k_hw_set_clockrate(ah);
1996
1997	ath9k_hw_init_queues(ah);
1998	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1999	ath9k_hw_ani_cache_ini_regs(ah);
2000	ath9k_hw_init_qos(ah);
2001
2002	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2003		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2004
2005	ath9k_hw_init_global_settings(ah);
2006
2007	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2008		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2009			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2010		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2011			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2012		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2013			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2014	}
2015
2016	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2017
2018	ath9k_hw_set_dma(ah);
2019
2020	if (!ath9k_hw_mci_is_enabled(ah))
2021		REG_WRITE(ah, AR_OBS, 8);
2022
2023	ENABLE_REG_RMW_BUFFER(ah);
2024	if (ah->config.rx_intr_mitigation) {
2025		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2026		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2027	}
2028
2029	if (ah->config.tx_intr_mitigation) {
2030		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2031		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2032	}
2033	REG_RMW_BUFFER_FLUSH(ah);
2034
2035	ath9k_hw_init_bb(ah, chan);
2036
2037	if (caldata) {
2038		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2039		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2040	}
2041	if (!ath9k_hw_init_cal(ah, chan))
2042		return -EIO;
2043
2044	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2045		return -EIO;
2046
2047	ENABLE_REGWRITE_BUFFER(ah);
2048
2049	ath9k_hw_restore_chainmask(ah);
2050	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2051
2052	REGWRITE_BUFFER_FLUSH(ah);
2053
2054	ath9k_hw_gen_timer_start_tsf2(ah);
2055
2056	ath9k_hw_init_desc(ah);
2057
2058	if (ath9k_hw_btcoex_is_enabled(ah))
2059		ath9k_hw_btcoex_enable(ah);
2060
2061	if (ath9k_hw_mci_is_enabled(ah))
2062		ar9003_mci_check_bt(ah);
2063
2064	if (AR_SREV_9300_20_OR_LATER(ah)) {
2065		ath9k_hw_loadnf(ah, chan);
2066		ath9k_hw_start_nfcal(ah, true);
2067	}
2068
2069	if (AR_SREV_9300_20_OR_LATER(ah))
2070		ar9003_hw_bb_watchdog_config(ah);
2071
2072	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2073		ar9003_hw_disable_phy_restart(ah);
2074
2075	ath9k_hw_apply_gpio_override(ah);
2076
2077	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2078		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2079
2080	if (ah->hw->conf.radar_enabled) {
2081		/* set HW specific DFS configuration */
2082		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2083		ath9k_hw_set_radar_params(ah);
2084	}
2085
2086	return 0;
2087}
2088EXPORT_SYMBOL(ath9k_hw_reset);
2089
2090/******************************/
2091/* Power Management (Chipset) */
2092/******************************/
2093
2094/*
2095 * Notify Power Mgt is disabled in self-generated frames.
2096 * If requested, force chip to sleep.
2097 */
2098static void ath9k_set_power_sleep(struct ath_hw *ah)
2099{
2100	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2101
2102	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2103		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2104		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2105		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2106		/* xxx Required for WLAN only case ? */
2107		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2108		udelay(100);
2109	}
2110
2111	/*
2112	 * Clear the RTC force wake bit to allow the
2113	 * mac to go to sleep.
2114	 */
2115	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2116
2117	if (ath9k_hw_mci_is_enabled(ah))
2118		udelay(100);
2119
2120	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2121		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2122
2123	/* Shutdown chip. Active low */
2124	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2125		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2126		udelay(2);
2127	}
2128
2129	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2130	if (AR_SREV_9300_20_OR_LATER(ah))
2131		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2132}
2133
2134/*
2135 * Notify Power Management is enabled in self-generating
2136 * frames. If request, set power mode of chip to
2137 * auto/normal.  Duration in units of 128us (1/8 TU).
2138 */
2139static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2140{
2141	struct ath9k_hw_capabilities *pCap = &ah->caps;
2142
2143	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2144
2145	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2146		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2147		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2148			  AR_RTC_FORCE_WAKE_ON_INT);
2149	} else {
2150
2151		/* When chip goes into network sleep, it could be waken
2152		 * up by MCI_INT interrupt caused by BT's HW messages
2153		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2154		 * rate (~100us). This will cause chip to leave and
2155		 * re-enter network sleep mode frequently, which in
2156		 * consequence will have WLAN MCI HW to generate lots of
2157		 * SYS_WAKING and SYS_SLEEPING messages which will make
2158		 * BT CPU to busy to process.
2159		 */
2160		if (ath9k_hw_mci_is_enabled(ah))
2161			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2162				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2163		/*
2164		 * Clear the RTC force wake bit to allow the
2165		 * mac to go to sleep.
2166		 */
2167		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2168
2169		if (ath9k_hw_mci_is_enabled(ah))
2170			udelay(30);
2171	}
2172
2173	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2174	if (AR_SREV_9300_20_OR_LATER(ah))
2175		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2176}
2177
2178static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2179{
2180	u32 val;
2181	int i;
2182
2183	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2184	if (AR_SREV_9300_20_OR_LATER(ah)) {
2185		REG_WRITE(ah, AR_WA, ah->WARegVal);
2186		udelay(10);
2187	}
2188
2189	if ((REG_READ(ah, AR_RTC_STATUS) &
2190	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2191		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2192			return false;
2193		}
2194		if (!AR_SREV_9300_20_OR_LATER(ah))
2195			ath9k_hw_init_pll(ah, NULL);
2196	}
2197	if (AR_SREV_9100(ah))
2198		REG_SET_BIT(ah, AR_RTC_RESET,
2199			    AR_RTC_RESET_EN);
2200
2201	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2202		    AR_RTC_FORCE_WAKE_EN);
2203	if (AR_SREV_9100(ah))
2204		mdelay(10);
2205	else
2206		udelay(50);
2207
2208	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2209		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2210		if (val == AR_RTC_STATUS_ON)
2211			break;
2212		udelay(50);
2213		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2214			    AR_RTC_FORCE_WAKE_EN);
2215	}
2216	if (i == 0) {
2217		ath_err(ath9k_hw_common(ah),
2218			"Failed to wakeup in %uus\n",
2219			POWER_UP_TIME / 20);
2220		return false;
2221	}
2222
2223	if (ath9k_hw_mci_is_enabled(ah))
2224		ar9003_mci_set_power_awake(ah);
2225
2226	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2227
2228	return true;
2229}
2230
2231bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2232{
2233	struct ath_common *common = ath9k_hw_common(ah);
2234	int status = true;
2235	static const char *modes[] = {
2236		"AWAKE",
2237		"FULL-SLEEP",
2238		"NETWORK SLEEP",
2239		"UNDEFINED"
2240	};
2241
2242	if (ah->power_mode == mode)
2243		return status;
2244
2245	ath_dbg(common, RESET, "%s -> %s\n",
2246		modes[ah->power_mode], modes[mode]);
2247
2248	switch (mode) {
2249	case ATH9K_PM_AWAKE:
2250		status = ath9k_hw_set_power_awake(ah);
2251		break;
2252	case ATH9K_PM_FULL_SLEEP:
2253		if (ath9k_hw_mci_is_enabled(ah))
2254			ar9003_mci_set_full_sleep(ah);
2255
2256		ath9k_set_power_sleep(ah);
2257		ah->chip_fullsleep = true;
2258		break;
2259	case ATH9K_PM_NETWORK_SLEEP:
2260		ath9k_set_power_network_sleep(ah);
2261		break;
2262	default:
2263		ath_err(common, "Unknown power mode %u\n", mode);
2264		return false;
2265	}
2266	ah->power_mode = mode;
2267
2268	/*
2269	 * XXX: If this warning never comes up after a while then
2270	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2271	 * ath9k_hw_setpower() return type void.
2272	 */
2273
2274	if (!(ah->ah_flags & AH_UNPLUGGED))
2275		ATH_DBG_WARN_ON_ONCE(!status);
2276
2277	return status;
2278}
2279EXPORT_SYMBOL(ath9k_hw_setpower);
2280
2281/*******************/
2282/* Beacon Handling */
2283/*******************/
2284
2285void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2286{
2287	int flags = 0;
2288
2289	ENABLE_REGWRITE_BUFFER(ah);
2290
2291	switch (ah->opmode) {
2292	case NL80211_IFTYPE_ADHOC:
2293		REG_SET_BIT(ah, AR_TXCFG,
2294			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2295		fallthrough;
2296	case NL80211_IFTYPE_MESH_POINT:
2297	case NL80211_IFTYPE_AP:
2298		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2299		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2300			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2301		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2302			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2303		flags |=
2304			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2305		break;
2306	default:
2307		ath_dbg(ath9k_hw_common(ah), BEACON,
2308			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2309		return;
2310		break;
2311	}
2312
2313	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2314	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2315	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2316
2317	REGWRITE_BUFFER_FLUSH(ah);
2318
2319	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2320}
2321EXPORT_SYMBOL(ath9k_hw_beaconinit);
2322
2323void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2324				    const struct ath9k_beacon_state *bs)
2325{
2326	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2327	struct ath9k_hw_capabilities *pCap = &ah->caps;
2328	struct ath_common *common = ath9k_hw_common(ah);
2329
2330	ENABLE_REGWRITE_BUFFER(ah);
2331
2332	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2333	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2334	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2335
2336	REGWRITE_BUFFER_FLUSH(ah);
2337
2338	REG_RMW_FIELD(ah, AR_RSSI_THR,
2339		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2340
2341	beaconintval = bs->bs_intval;
2342
2343	if (bs->bs_sleepduration > beaconintval)
2344		beaconintval = bs->bs_sleepduration;
2345
2346	dtimperiod = bs->bs_dtimperiod;
2347	if (bs->bs_sleepduration > dtimperiod)
2348		dtimperiod = bs->bs_sleepduration;
2349
2350	if (beaconintval == dtimperiod)
2351		nextTbtt = bs->bs_nextdtim;
2352	else
2353		nextTbtt = bs->bs_nexttbtt;
2354
2355	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2356	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2357	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2358	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2359
2360	ENABLE_REGWRITE_BUFFER(ah);
2361
2362	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2363	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2364
2365	REG_WRITE(ah, AR_SLEEP1,
2366		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2367		  | AR_SLEEP1_ASSUME_DTIM);
2368
2369	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2370		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2371	else
2372		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2373
2374	REG_WRITE(ah, AR_SLEEP2,
2375		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2376
2377	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2378	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2379
2380	REGWRITE_BUFFER_FLUSH(ah);
2381
2382	REG_SET_BIT(ah, AR_TIMER_MODE,
2383		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2384		    AR_DTIM_TIMER_EN);
2385
2386	/* TSF Out of Range Threshold */
2387	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2388}
2389EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2390
2391/*******************/
2392/* HW Capabilities */
2393/*******************/
2394
2395static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2396{
2397	eeprom_chainmask &= chip_chainmask;
2398	if (eeprom_chainmask)
2399		return eeprom_chainmask;
2400	else
2401		return chip_chainmask;
2402}
2403
2404/**
2405 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2406 * @ah: the atheros hardware data structure
2407 *
2408 * We enable DFS support upstream on chipsets which have passed a series
2409 * of tests. The testing requirements are going to be documented. Desired
2410 * test requirements are documented at:
2411 *
2412 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2413 *
2414 * Once a new chipset gets properly tested an individual commit can be used
2415 * to document the testing for DFS for that chipset.
2416 */
2417static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2418{
2419
2420	switch (ah->hw_version.macVersion) {
2421	/* for temporary testing DFS with 9280 */
2422	case AR_SREV_VERSION_9280:
2423	/* AR9580 will likely be our first target to get testing on */
2424	case AR_SREV_VERSION_9580:
2425		return true;
2426	default:
2427		return false;
2428	}
2429}
2430
2431static void ath9k_gpio_cap_init(struct ath_hw *ah)
2432{
2433	struct ath9k_hw_capabilities *pCap = &ah->caps;
2434
2435	if (AR_SREV_9271(ah)) {
2436		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2437		pCap->gpio_mask = AR9271_GPIO_MASK;
2438	} else if (AR_DEVID_7010(ah)) {
2439		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2440		pCap->gpio_mask = AR7010_GPIO_MASK;
2441	} else if (AR_SREV_9287(ah)) {
2442		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2443		pCap->gpio_mask = AR9287_GPIO_MASK;
2444	} else if (AR_SREV_9285(ah)) {
2445		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2446		pCap->gpio_mask = AR9285_GPIO_MASK;
2447	} else if (AR_SREV_9280(ah)) {
2448		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2449		pCap->gpio_mask = AR9280_GPIO_MASK;
2450	} else if (AR_SREV_9300(ah)) {
2451		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2452		pCap->gpio_mask = AR9300_GPIO_MASK;
2453	} else if (AR_SREV_9330(ah)) {
2454		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2455		pCap->gpio_mask = AR9330_GPIO_MASK;
2456	} else if (AR_SREV_9340(ah)) {
2457		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2458		pCap->gpio_mask = AR9340_GPIO_MASK;
2459	} else if (AR_SREV_9462(ah)) {
2460		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2461		pCap->gpio_mask = AR9462_GPIO_MASK;
2462	} else if (AR_SREV_9485(ah)) {
2463		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2464		pCap->gpio_mask = AR9485_GPIO_MASK;
2465	} else if (AR_SREV_9531(ah)) {
2466		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2467		pCap->gpio_mask = AR9531_GPIO_MASK;
2468	} else if (AR_SREV_9550(ah)) {
2469		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2470		pCap->gpio_mask = AR9550_GPIO_MASK;
2471	} else if (AR_SREV_9561(ah)) {
2472		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2473		pCap->gpio_mask = AR9561_GPIO_MASK;
2474	} else if (AR_SREV_9565(ah)) {
2475		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2476		pCap->gpio_mask = AR9565_GPIO_MASK;
2477	} else if (AR_SREV_9580(ah)) {
2478		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2479		pCap->gpio_mask = AR9580_GPIO_MASK;
2480	} else {
2481		pCap->num_gpio_pins = AR_NUM_GPIO;
2482		pCap->gpio_mask = AR_GPIO_MASK;
2483	}
2484}
2485
2486int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2487{
2488	struct ath9k_hw_capabilities *pCap = &ah->caps;
2489	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2490	struct ath_common *common = ath9k_hw_common(ah);
2491
2492	u16 eeval;
2493	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2494
2495	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2496	regulatory->current_rd = eeval;
2497
2498	if (ah->opmode != NL80211_IFTYPE_AP &&
2499	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2500		if (regulatory->current_rd == 0x64 ||
2501		    regulatory->current_rd == 0x65)
2502			regulatory->current_rd += 5;
2503		else if (regulatory->current_rd == 0x41)
2504			regulatory->current_rd = 0x43;
2505		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2506			regulatory->current_rd);
2507	}
2508
2509	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2510
2511	if (eeval & AR5416_OPFLAGS_11A) {
2512		if (ah->disable_5ghz)
2513			ath_warn(common, "disabling 5GHz band\n");
2514		else
2515			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2516	}
2517
2518	if (eeval & AR5416_OPFLAGS_11G) {
2519		if (ah->disable_2ghz)
2520			ath_warn(common, "disabling 2GHz band\n");
2521		else
2522			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2523	}
2524
2525	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2526		ath_err(common, "both bands are disabled\n");
2527		return -EINVAL;
2528	}
2529
2530	ath9k_gpio_cap_init(ah);
2531
2532	if (AR_SREV_9485(ah) ||
2533	    AR_SREV_9285(ah) ||
2534	    AR_SREV_9330(ah) ||
2535	    AR_SREV_9565(ah))
2536		pCap->chip_chainmask = 1;
2537	else if (!AR_SREV_9280_20_OR_LATER(ah))
2538		pCap->chip_chainmask = 7;
2539	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2540		 AR_SREV_9340(ah) ||
2541		 AR_SREV_9462(ah) ||
2542		 AR_SREV_9531(ah))
2543		pCap->chip_chainmask = 3;
2544	else
2545		pCap->chip_chainmask = 7;
2546
2547	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2548	/*
2549	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2550	 * the EEPROM.
2551	 */
2552	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2553	    !(eeval & AR5416_OPFLAGS_11A) &&
2554	    !(AR_SREV_9271(ah)))
2555		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2556		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2557	else if (AR_SREV_9100(ah))
2558		pCap->rx_chainmask = 0x7;
2559	else
2560		/* Use rx_chainmask from EEPROM. */
2561		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2562
2563	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2564	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2565	ah->txchainmask = pCap->tx_chainmask;
2566	ah->rxchainmask = pCap->rx_chainmask;
2567
2568	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2569
2570	/* enable key search for every frame in an aggregate */
2571	if (AR_SREV_9300_20_OR_LATER(ah))
2572		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2573
2574	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2575
2576	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2577		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2578	else
2579		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2580
2581	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2582		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2583	else
2584		pCap->rts_aggr_limit = (8 * 1024);
2585
2586#ifdef CONFIG_ATH9K_RFKILL
2587	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2588	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2589		ah->rfkill_gpio =
2590			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2591		ah->rfkill_polarity =
2592			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2593
2594		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2595	}
2596#endif
2597	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2598		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2599	else
2600		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2601
2602	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2603		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2604	else
2605		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2606
2607	if (AR_SREV_9300_20_OR_LATER(ah)) {
2608		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2609		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2610		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2611			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2612
2613		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2614		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2615		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2616		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2617		pCap->txs_len = sizeof(struct ar9003_txs);
2618	} else {
2619		pCap->tx_desc_len = sizeof(struct ath_desc);
2620		if (AR_SREV_9280_20(ah))
2621			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2622	}
2623
2624	if (AR_SREV_9300_20_OR_LATER(ah))
2625		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2626
2627	if (AR_SREV_9561(ah))
2628		ah->ent_mode = 0x3BDA000;
2629	else if (AR_SREV_9300_20_OR_LATER(ah))
2630		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2631
2632	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2633		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2634
2635	if (AR_SREV_9285(ah)) {
2636		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2637			ant_div_ctl1 =
2638				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2639			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2640				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2641				ath_info(common, "Enable LNA combining\n");
2642			}
2643		}
2644	}
2645
2646	if (AR_SREV_9300_20_OR_LATER(ah)) {
2647		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2648			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2649	}
2650
2651	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2652		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2653		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2654			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2655			ath_info(common, "Enable LNA combining\n");
2656		}
2657	}
2658
2659	if (ath9k_hw_dfs_tested(ah))
2660		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2661
2662	tx_chainmask = pCap->tx_chainmask;
2663	rx_chainmask = pCap->rx_chainmask;
2664	while (tx_chainmask || rx_chainmask) {
2665		if (tx_chainmask & BIT(0))
2666			pCap->max_txchains++;
2667		if (rx_chainmask & BIT(0))
2668			pCap->max_rxchains++;
2669
2670		tx_chainmask >>= 1;
2671		rx_chainmask >>= 1;
2672	}
2673
2674	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2675		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2676			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2677
2678		if (AR_SREV_9462_20_OR_LATER(ah))
2679			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2680	}
2681
2682	if (AR_SREV_9300_20_OR_LATER(ah) &&
2683	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2684			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2685
2686#ifdef CONFIG_ATH9K_WOW
2687	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2688		ah->wow.max_patterns = MAX_NUM_PATTERN;
2689	else
2690		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2691#endif
2692
2693	return 0;
2694}
2695
2696/****************************/
2697/* GPIO / RFKILL / Antennae */
2698/****************************/
2699
2700static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2701{
2702	int addr;
2703	u32 gpio_shift, tmp;
2704
2705	if (gpio > 11)
2706		addr = AR_GPIO_OUTPUT_MUX3;
2707	else if (gpio > 5)
2708		addr = AR_GPIO_OUTPUT_MUX2;
2709	else
2710		addr = AR_GPIO_OUTPUT_MUX1;
2711
2712	gpio_shift = (gpio % 6) * 5;
2713
2714	if (AR_SREV_9280_20_OR_LATER(ah) ||
2715	    (addr != AR_GPIO_OUTPUT_MUX1)) {
2716		REG_RMW(ah, addr, (type << gpio_shift),
2717			(0x1f << gpio_shift));
2718	} else {
2719		tmp = REG_READ(ah, addr);
2720		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2721		tmp &= ~(0x1f << gpio_shift);
2722		tmp |= (type << gpio_shift);
2723		REG_WRITE(ah, addr, tmp);
2724	}
2725}
2726
2727/* BSP should set the corresponding MUX register correctly.
2728 */
2729static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2730				  const char *label)
2731{
2732	int err;
2733
2734	if (ah->caps.gpio_requested & BIT(gpio))
2735		return;
2736
2737	err = gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label);
2738	if (err) {
2739		ath_err(ath9k_hw_common(ah), "request GPIO%d failed:%d\n",
2740			gpio, err);
2741		return;
2742	}
2743
2744	ah->caps.gpio_requested |= BIT(gpio);
2745}
2746
2747static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2748				   u32 ah_signal_type)
2749{
2750	u32 gpio_set, gpio_shift = gpio;
2751
2752	if (AR_DEVID_7010(ah)) {
2753		gpio_set = out ?
2754			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2755		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2756			AR7010_GPIO_OE_MASK << gpio_shift);
2757	} else if (AR_SREV_SOC(ah)) {
2758		gpio_set = out ? 1 : 0;
2759		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2760			gpio_set << gpio_shift);
2761	} else {
2762		gpio_shift = gpio << 1;
2763		gpio_set = out ?
2764			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2765		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2766			AR_GPIO_OE_OUT_DRV << gpio_shift);
2767
2768		if (out)
2769			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2770	}
2771}
2772
2773static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2774				  const char *label, u32 ah_signal_type)
2775{
2776	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2777
2778	if (BIT(gpio) & ah->caps.gpio_mask)
2779		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2780	else if (AR_SREV_SOC(ah))
2781		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2782	else
2783		WARN_ON(1);
2784}
2785
2786void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2787{
2788	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2789}
2790EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2791
2792void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2793			       u32 ah_signal_type)
2794{
2795	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2796}
2797EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2798
2799void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2800{
2801	if (!AR_SREV_SOC(ah))
2802		return;
2803
2804	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2805
2806	if (ah->caps.gpio_requested & BIT(gpio)) {
2807		gpio_free(gpio);
2808		ah->caps.gpio_requested &= ~BIT(gpio);
2809	}
2810}
2811EXPORT_SYMBOL(ath9k_hw_gpio_free);
2812
2813u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2814{
2815	u32 val = 0xffffffff;
2816
2817#define MS_REG_READ(x, y) \
2818	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2819
2820	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2821
2822	if (BIT(gpio) & ah->caps.gpio_mask) {
2823		if (AR_SREV_9271(ah))
2824			val = MS_REG_READ(AR9271, gpio);
2825		else if (AR_SREV_9287(ah))
2826			val = MS_REG_READ(AR9287, gpio);
2827		else if (AR_SREV_9285(ah))
2828			val = MS_REG_READ(AR9285, gpio);
2829		else if (AR_SREV_9280(ah))
2830			val = MS_REG_READ(AR928X, gpio);
2831		else if (AR_DEVID_7010(ah))
2832			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2833		else if (AR_SREV_9300_20_OR_LATER(ah))
2834			val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2835		else
2836			val = MS_REG_READ(AR, gpio);
2837	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2838		val = gpio_get_value(gpio) & BIT(gpio);
2839	} else {
2840		WARN_ON(1);
2841	}
2842
2843	return !!val;
2844}
2845EXPORT_SYMBOL(ath9k_hw_gpio_get);
2846
2847void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2848{
2849	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2850
2851	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2852		val = !val;
2853	else
2854		val = !!val;
2855
2856	if (BIT(gpio) & ah->caps.gpio_mask) {
2857		u32 out_addr = AR_DEVID_7010(ah) ?
2858			AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2859
2860		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2861	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2862		gpio_set_value(gpio, val);
2863	} else {
2864		WARN_ON(1);
2865	}
2866}
2867EXPORT_SYMBOL(ath9k_hw_set_gpio);
2868
2869void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2870{
2871	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2872}
2873EXPORT_SYMBOL(ath9k_hw_setantenna);
2874
2875/*********************/
2876/* General Operation */
2877/*********************/
2878
2879u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2880{
2881	u32 bits = REG_READ(ah, AR_RX_FILTER);
2882	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2883
2884	if (phybits & AR_PHY_ERR_RADAR)
2885		bits |= ATH9K_RX_FILTER_PHYRADAR;
2886	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2887		bits |= ATH9K_RX_FILTER_PHYERR;
2888
2889	return bits;
2890}
2891EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2892
2893void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2894{
2895	u32 phybits;
2896
2897	ENABLE_REGWRITE_BUFFER(ah);
2898
2899	REG_WRITE(ah, AR_RX_FILTER, bits);
2900
2901	phybits = 0;
2902	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2903		phybits |= AR_PHY_ERR_RADAR;
2904	if (bits & ATH9K_RX_FILTER_PHYERR)
2905		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2906	REG_WRITE(ah, AR_PHY_ERR, phybits);
2907
2908	if (phybits)
2909		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910	else
2911		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2912
2913	REGWRITE_BUFFER_FLUSH(ah);
2914}
2915EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2916
2917bool ath9k_hw_phy_disable(struct ath_hw *ah)
2918{
2919	if (ath9k_hw_mci_is_enabled(ah))
2920		ar9003_mci_bt_gain_ctrl(ah);
2921
2922	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2923		return false;
2924
2925	ath9k_hw_init_pll(ah, NULL);
2926	ah->htc_reset_init = true;
2927	return true;
2928}
2929EXPORT_SYMBOL(ath9k_hw_phy_disable);
2930
2931bool ath9k_hw_disable(struct ath_hw *ah)
2932{
2933	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2934		return false;
2935
2936	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2937		return false;
2938
2939	ath9k_hw_init_pll(ah, NULL);
2940	return true;
2941}
2942EXPORT_SYMBOL(ath9k_hw_disable);
2943
2944static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2945{
2946	enum eeprom_param gain_param;
2947
2948	if (IS_CHAN_2GHZ(chan))
2949		gain_param = EEP_ANTENNA_GAIN_2G;
2950	else
2951		gain_param = EEP_ANTENNA_GAIN_5G;
2952
2953	return ah->eep_ops->get_eeprom(ah, gain_param);
2954}
2955
2956void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2957			    bool test)
2958{
2959	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2960	struct ieee80211_channel *channel;
2961	int chan_pwr, new_pwr;
2962	u16 ctl = NO_CTL;
2963
2964	if (!chan)
2965		return;
2966
2967	if (!test)
2968		ctl = ath9k_regd_get_ctl(reg, chan);
2969
2970	channel = chan->chan;
2971	chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2972	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2973
2974	ah->eep_ops->set_txpower(ah, chan, ctl,
2975				 get_antenna_gain(ah, chan), new_pwr, test);
2976}
2977
2978void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2979{
2980	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2981	struct ath9k_channel *chan = ah->curchan;
2982	struct ieee80211_channel *channel = chan->chan;
2983
2984	reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2985	if (test)
2986		channel->max_power = MAX_COMBINED_POWER / 2;
2987
2988	ath9k_hw_apply_txpower(ah, chan, test);
2989
2990	if (test)
2991		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2992}
2993EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2994
2995void ath9k_hw_setopmode(struct ath_hw *ah)
2996{
2997	ath9k_hw_set_operating_mode(ah, ah->opmode);
2998}
2999EXPORT_SYMBOL(ath9k_hw_setopmode);
3000
3001void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3002{
3003	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3004	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3005}
3006EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3007
3008void ath9k_hw_write_associd(struct ath_hw *ah)
3009{
3010	struct ath_common *common = ath9k_hw_common(ah);
3011
3012	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3013	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3014		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3015}
3016EXPORT_SYMBOL(ath9k_hw_write_associd);
3017
3018#define ATH9K_MAX_TSF_READ 10
3019
3020u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3021{
3022	u32 tsf_lower, tsf_upper1, tsf_upper2;
3023	int i;
3024
3025	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3026	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3027		tsf_lower = REG_READ(ah, AR_TSF_L32);
3028		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3029		if (tsf_upper2 == tsf_upper1)
3030			break;
3031		tsf_upper1 = tsf_upper2;
3032	}
3033
3034	WARN_ON( i == ATH9K_MAX_TSF_READ );
3035
3036	return (((u64)tsf_upper1 << 32) | tsf_lower);
3037}
3038EXPORT_SYMBOL(ath9k_hw_gettsf64);
3039
3040void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3041{
3042	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3043	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3044}
3045EXPORT_SYMBOL(ath9k_hw_settsf64);
3046
3047void ath9k_hw_reset_tsf(struct ath_hw *ah)
3048{
3049	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3050			   AH_TSF_WRITE_TIMEOUT))
3051		ath_dbg(ath9k_hw_common(ah), RESET,
3052			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3053
3054	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3055}
3056EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3057
3058void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3059{
3060	if (set)
3061		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3062	else
3063		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3064}
3065EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3066
3067void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3068{
3069	u32 macmode;
3070
3071	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3072		macmode = AR_2040_JOINED_RX_CLEAR;
3073	else
3074		macmode = 0;
3075
3076	REG_WRITE(ah, AR_2040_MODE, macmode);
3077}
3078
3079/* HW Generic timers configuration */
3080
3081static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3082{
3083	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3090	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3091	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3092	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3093				AR_NDP2_TIMER_MODE, 0x0002},
3094	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3095				AR_NDP2_TIMER_MODE, 0x0004},
3096	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3097				AR_NDP2_TIMER_MODE, 0x0008},
3098	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3099				AR_NDP2_TIMER_MODE, 0x0010},
3100	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3101				AR_NDP2_TIMER_MODE, 0x0020},
3102	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3103				AR_NDP2_TIMER_MODE, 0x0040},
3104	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3105				AR_NDP2_TIMER_MODE, 0x0080}
3106};
3107
3108/* HW generic timer primitives */
3109
3110u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3111{
3112	return REG_READ(ah, AR_TSF_L32);
3113}
3114EXPORT_SYMBOL(ath9k_hw_gettsf32);
3115
3116void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3117{
3118	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3119
3120	if (timer_table->tsf2_enabled) {
3121		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3122		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3123	}
3124}
3125
3126struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3127					  void (*trigger)(void *),
3128					  void (*overflow)(void *),
3129					  void *arg,
3130					  u8 timer_index)
3131{
3132	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3133	struct ath_gen_timer *timer;
3134
3135	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3136	    (timer_index >= ATH_MAX_GEN_TIMER))
3137		return NULL;
3138
3139	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3140	    !AR_SREV_9300_20_OR_LATER(ah))
3141		return NULL;
3142
3143	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3144	if (timer == NULL)
3145		return NULL;
3146
3147	/* allocate a hardware generic timer slot */
3148	timer_table->timers[timer_index] = timer;
3149	timer->index = timer_index;
3150	timer->trigger = trigger;
3151	timer->overflow = overflow;
3152	timer->arg = arg;
3153
3154	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3155		timer_table->tsf2_enabled = true;
3156		ath9k_hw_gen_timer_start_tsf2(ah);
3157	}
3158
3159	return timer;
3160}
3161EXPORT_SYMBOL(ath_gen_timer_alloc);
3162
3163void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3164			      struct ath_gen_timer *timer,
3165			      u32 timer_next,
3166			      u32 timer_period)
3167{
3168	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3169	u32 mask = 0;
3170
3171	timer_table->timer_mask |= BIT(timer->index);
3172
3173	/*
3174	 * Program generic timer registers
3175	 */
3176	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3177		 timer_next);
3178	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3179		  timer_period);
3180	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3181		    gen_tmr_configuration[timer->index].mode_mask);
3182
3183	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3184		/*
3185		 * Starting from AR9462, each generic timer can select which tsf
3186		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3187		 * 8 - 15  use tsf2.
3188		 */
3189		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3190			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3191				       (1 << timer->index));
3192		else
3193			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3194				       (1 << timer->index));
3195	}
3196
3197	if (timer->trigger)
3198		mask |= SM(AR_GENTMR_BIT(timer->index),
3199			   AR_IMR_S5_GENTIMER_TRIG);
3200	if (timer->overflow)
3201		mask |= SM(AR_GENTMR_BIT(timer->index),
3202			   AR_IMR_S5_GENTIMER_THRESH);
3203
3204	REG_SET_BIT(ah, AR_IMR_S5, mask);
3205
3206	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3207		ah->imask |= ATH9K_INT_GENTIMER;
3208		ath9k_hw_set_interrupts(ah);
3209	}
3210}
3211EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3212
3213void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3214{
3215	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3216
3217	/* Clear generic timer enable bits. */
3218	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3219			gen_tmr_configuration[timer->index].mode_mask);
3220
3221	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3222		/*
3223		 * Need to switch back to TSF if it was using TSF2.
3224		 */
3225		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3226			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3227				    (1 << timer->index));
3228		}
3229	}
3230
3231	/* Disable both trigger and thresh interrupt masks */
3232	REG_CLR_BIT(ah, AR_IMR_S5,
3233		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3234		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3235
3236	timer_table->timer_mask &= ~BIT(timer->index);
3237
3238	if (timer_table->timer_mask == 0) {
3239		ah->imask &= ~ATH9K_INT_GENTIMER;
3240		ath9k_hw_set_interrupts(ah);
3241	}
3242}
3243EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3244
3245void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3246{
3247	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3248
3249	/* free the hardware generic timer slot */
3250	timer_table->timers[timer->index] = NULL;
3251	kfree(timer);
3252}
3253EXPORT_SYMBOL(ath_gen_timer_free);
3254
3255/*
3256 * Generic Timer Interrupts handling
3257 */
3258void ath_gen_timer_isr(struct ath_hw *ah)
3259{
3260	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3261	struct ath_gen_timer *timer;
3262	unsigned long trigger_mask, thresh_mask;
3263	unsigned int index;
3264
3265	/* get hardware generic timer interrupt status */
3266	trigger_mask = ah->intr_gen_timer_trigger;
3267	thresh_mask = ah->intr_gen_timer_thresh;
3268	trigger_mask &= timer_table->timer_mask;
3269	thresh_mask &= timer_table->timer_mask;
3270
3271	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3272		timer = timer_table->timers[index];
3273		if (!timer)
3274		    continue;
3275		if (!timer->overflow)
3276		    continue;
3277
3278		trigger_mask &= ~BIT(index);
3279		timer->overflow(timer->arg);
3280	}
3281
3282	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3283		timer = timer_table->timers[index];
3284		if (!timer)
3285		    continue;
3286		if (!timer->trigger)
3287		    continue;
3288		timer->trigger(timer->arg);
3289	}
3290}
3291EXPORT_SYMBOL(ath_gen_timer_isr);
3292
3293/********/
3294/* HTC  */
3295/********/
3296
3297static struct {
3298	u32 version;
3299	const char * name;
3300} ath_mac_bb_names[] = {
3301	/* Devices with external radios */
3302	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3303	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3304	{ AR_SREV_VERSION_9100,		"9100" },
3305	{ AR_SREV_VERSION_9160,		"9160" },
3306	/* Single-chip solutions */
3307	{ AR_SREV_VERSION_9280,		"9280" },
3308	{ AR_SREV_VERSION_9285,		"9285" },
3309	{ AR_SREV_VERSION_9287,         "9287" },
3310	{ AR_SREV_VERSION_9271,         "9271" },
3311	{ AR_SREV_VERSION_9300,         "9300" },
3312	{ AR_SREV_VERSION_9330,         "9330" },
3313	{ AR_SREV_VERSION_9340,		"9340" },
3314	{ AR_SREV_VERSION_9485,         "9485" },
3315	{ AR_SREV_VERSION_9462,         "9462" },
3316	{ AR_SREV_VERSION_9550,         "9550" },
3317	{ AR_SREV_VERSION_9565,         "9565" },
3318	{ AR_SREV_VERSION_9531,         "9531" },
3319	{ AR_SREV_VERSION_9561,         "9561" },
3320};
3321
3322/* For devices with external radios */
3323static struct {
3324	u16 version;
3325	const char * name;
3326} ath_rf_names[] = {
3327	{ 0,				"5133" },
3328	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3329	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3330	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3331	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3332};
3333
3334/*
3335 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3336 */
3337static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3338{
3339	int i;
3340
3341	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3342		if (ath_mac_bb_names[i].version == mac_bb_version) {
3343			return ath_mac_bb_names[i].name;
3344		}
3345	}
3346
3347	return "????";
3348}
3349
3350/*
3351 * Return the RF name. "????" is returned if the RF is unknown.
3352 * Used for devices with external radios.
3353 */
3354static const char *ath9k_hw_rf_name(u16 rf_version)
3355{
3356	int i;
3357
3358	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3359		if (ath_rf_names[i].version == rf_version) {
3360			return ath_rf_names[i].name;
3361		}
3362	}
3363
3364	return "????";
3365}
3366
3367void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3368{
3369	int used;
3370
3371	/* chipsets >= AR9280 are single-chip */
3372	if (AR_SREV_9280_20_OR_LATER(ah)) {
3373		used = scnprintf(hw_name, len,
3374				 "Atheros AR%s Rev:%x",
3375				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3376				 ah->hw_version.macRev);
3377	}
3378	else {
3379		used = scnprintf(hw_name, len,
3380				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3381				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3382				 ah->hw_version.macRev,
3383				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3384						  & AR_RADIO_SREV_MAJOR)),
3385				 ah->hw_version.phyRev);
3386	}
3387
3388	hw_name[used] = '\0';
3389}
3390EXPORT_SYMBOL(ath9k_hw_name);
3391