1/*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21/***********************\
22* PHY related functions *
23\***********************/
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/delay.h>
28#include <linux/slab.h>
29#include <asm/unaligned.h>
30
31#include "ath5k.h"
32#include "reg.h"
33#include "rfbuffer.h"
34#include "rfgain.h"
35#include "../regd.h"
36
37
38/**
39 * DOC: PHY related functions
40 *
41 * Here we handle the low-level functions related to baseband
42 * and analog frontend (RF) parts. This is by far the most complex
43 * part of the hw code so make sure you know what you are doing.
44 *
45 * Here is a list of what this is all about:
46 *
47 * - Channel setting/switching
48 *
49 * - Automatic Gain Control (AGC) calibration
50 *
51 * - Noise Floor calibration
52 *
53 * - I/Q imbalance calibration (QAM correction)
54 *
55 * - Calibration due to thermal changes (gain_F)
56 *
57 * - Spur noise mitigation
58 *
59 * - RF/PHY initialization for the various operating modes and bwmodes
60 *
61 * - Antenna control
62 *
63 * - TX power control per channel/rate/packet type
64 *
65 * Also have in mind we never got documentation for most of these
66 * functions, what we have comes mostly from Atheros's code, reverse
67 * engineering and patent docs/presentations etc.
68 */
69
70
71/******************\
72* Helper functions *
73\******************/
74
75/**
76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
77 * @ah: The &struct ath5k_hw
78 * @band: One of enum nl80211_band
79 *
80 * Returns the revision number of a 2GHz, 5GHz or single chip
81 * radio.
82 */
83u16
84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
85{
86	unsigned int i;
87	u32 srev;
88	u16 ret;
89
90	/*
91	 * Set the radio chip access register
92	 */
93	switch (band) {
94	case NL80211_BAND_2GHZ:
95		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
96		break;
97	case NL80211_BAND_5GHZ:
98		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
99		break;
100	default:
101		return 0;
102	}
103
104	usleep_range(2000, 2500);
105
106	/* ...wait until PHY is ready and read the selected radio revision */
107	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
108
109	for (i = 0; i < 8; i++)
110		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
111
112	if (ah->ah_version == AR5K_AR5210) {
113		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
114		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
115	} else {
116		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
117		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
118				((srev & 0x0f) << 4), 8);
119	}
120
121	/* Reset to the 5GHz mode */
122	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
123
124	return ret;
125}
126
127/**
128 * ath5k_channel_ok() - Check if a channel is supported by the hw
129 * @ah: The &struct ath5k_hw
130 * @channel: The &struct ieee80211_channel
131 *
132 * Note: We don't do any regulatory domain checks here, it's just
133 * a sanity check.
134 */
135bool
136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
137{
138	u16 freq = channel->center_freq;
139
140	/* Check if the channel is in our supported range */
141	if (channel->band == NL80211_BAND_2GHZ) {
142		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
143		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
144			return true;
145	} else if (channel->band == NL80211_BAND_5GHZ)
146		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
147		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
148			return true;
149
150	return false;
151}
152
153/**
154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155 * @ah: The &struct ath5k_hw
156 * @channel: The &struct ieee80211_channel
157 */
158bool
159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
160				struct ieee80211_channel *channel)
161{
162	u8 refclk_freq;
163
164	if ((ah->ah_radio == AR5K_RF5112) ||
165	(ah->ah_radio == AR5K_RF5413) ||
166	(ah->ah_radio == AR5K_RF2413) ||
167	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
168		refclk_freq = 40;
169	else
170		refclk_freq = 32;
171
172	if ((channel->center_freq % refclk_freq != 0) &&
173	((channel->center_freq % refclk_freq < 10) ||
174	(channel->center_freq % refclk_freq > 22)))
175		return true;
176	else
177		return false;
178}
179
180/**
181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182 * @ah: The &struct ath5k_hw
183 * @rf_regs: The struct ath5k_rf_reg
184 * @val: New value
185 * @reg_id: RF register ID
186 * @set: Indicate we need to swap data
187 *
188 * This is an internal function used to modify RF Banks before
189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
190 * infos.
191 */
192static unsigned int
193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
194					u32 val, u8 reg_id, bool set)
195{
196	const struct ath5k_rf_reg *rfreg = NULL;
197	u8 offset, bank, num_bits, col, position;
198	u16 entry;
199	u32 mask, data, last_bit, bits_shifted, first_bit;
200	u32 *rfb;
201	s32 bits_left;
202	int i;
203
204	data = 0;
205	rfb = ah->ah_rf_banks;
206
207	for (i = 0; i < ah->ah_rf_regs_count; i++) {
208		if (rf_regs[i].index == reg_id) {
209			rfreg = &rf_regs[i];
210			break;
211		}
212	}
213
214	if (rfb == NULL || rfreg == NULL) {
215		ATH5K_PRINTF("Rf register not found!\n");
216		/* should not happen */
217		return 0;
218	}
219
220	bank = rfreg->bank;
221	num_bits = rfreg->field.len;
222	first_bit = rfreg->field.pos;
223	col = rfreg->field.col;
224
225	/* first_bit is an offset from bank's
226	 * start. Since we have all banks on
227	 * the same array, we use this offset
228	 * to mark each bank's start */
229	offset = ah->ah_offset[bank];
230
231	/* Boundary check */
232	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
233		ATH5K_PRINTF("invalid values at offset %u\n", offset);
234		return 0;
235	}
236
237	entry = ((first_bit - 1) / 8) + offset;
238	position = (first_bit - 1) % 8;
239
240	if (set)
241		data = ath5k_hw_bitswap(val, num_bits);
242
243	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
244	     position = 0, entry++) {
245
246		last_bit = (position + bits_left > 8) ? 8 :
247					position + bits_left;
248
249		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
250								(col * 8);
251
252		if (set) {
253			rfb[entry] &= ~mask;
254			rfb[entry] |= ((data << position) << (col * 8)) & mask;
255			data >>= (8 - position);
256		} else {
257			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
258				<< bits_shifted;
259			bits_shifted += last_bit - position;
260		}
261
262		bits_left -= 8 - position;
263	}
264
265	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
266
267	return data;
268}
269
270/**
271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272 * @ah: the &struct ath5k_hw
273 * @channel: the currently set channel upon reset
274 *
275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
277 *
278 * Since delta slope is floating point we split it on its exponent and
279 * mantissa and provide these values on hw.
280 *
281 * For more infos i think this patent is related
282 * "http://www.freepatentsonline.com/7184495.html"
283 */
284static inline int
285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
286				struct ieee80211_channel *channel)
287{
288	/* Get exponent and mantissa and set it */
289	u32 coef_scaled, coef_exp, coef_man,
290		ds_coef_exp, ds_coef_man, clock;
291
292	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
293		(channel->hw_value == AR5K_MODE_11B));
294
295	/* Get coefficient
296	 * ALGO: coef = (5 * clock / carrier_freq) / 2
297	 * we scale coef by shifting clock value by 24 for
298	 * better precision since we use integers */
299	switch (ah->ah_bwmode) {
300	case AR5K_BWMODE_40MHZ:
301		clock = 40 * 2;
302		break;
303	case AR5K_BWMODE_10MHZ:
304		clock = 40 / 2;
305		break;
306	case AR5K_BWMODE_5MHZ:
307		clock = 40 / 4;
308		break;
309	default:
310		clock = 40;
311		break;
312	}
313	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
314
315	/* Get exponent
316	 * ALGO: coef_exp = 14 - highest set bit position */
317	coef_exp = ilog2(coef_scaled);
318
319	/* Doesn't make sense if it's zero*/
320	if (!coef_scaled || !coef_exp)
321		return -EINVAL;
322
323	/* Note: we've shifted coef_scaled by 24 */
324	coef_exp = 14 - (coef_exp - 24);
325
326
327	/* Get mantissa (significant digits)
328	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329	coef_man = coef_scaled +
330		(1 << (24 - coef_exp - 1));
331
332	/* Calculate delta slope coefficient exponent
333	 * and mantissa (remove scaling) and set them on hw */
334	ds_coef_man = coef_man >> (24 - coef_exp);
335	ds_coef_exp = coef_exp - 16;
336
337	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
339	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
340		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
341
342	return 0;
343}
344
345/**
346 * ath5k_hw_phy_disable() - Disable PHY
347 * @ah: The &struct ath5k_hw
348 */
349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
350{
351	/*Just a try M.F.*/
352	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
353
354	return 0;
355}
356
357/**
358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
359 * @ah: The &struct ath5k_hw
360 * @channel: The &struct ieee80211_channel
361 */
362static void
363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
364			struct ieee80211_channel *channel)
365{
366	/*
367	 * On 5211+ read activation -> rx delay
368	 * and use it (100ns steps).
369	 */
370	if (ah->ah_version != AR5K_AR5210) {
371		u32 delay;
372		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
373			AR5K_PHY_RX_DELAY_M;
374		delay = (channel->hw_value == AR5K_MODE_11B) ?
375			((delay << 2) / 22) : (delay / 10);
376		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
377			delay = delay << 1;
378		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
379			delay = delay << 2;
380		/* XXX: /2 on turbo ? Let's be safe
381		 * for now */
382		usleep_range(100 + delay, 100 + (2 * delay));
383	} else {
384		usleep_range(1000, 1500);
385	}
386}
387
388
389/**********************\
390* RF Gain optimization *
391\**********************/
392
393/**
394 * DOC: RF Gain optimization
395 *
396 * This code is used to optimize RF gain on different environments
397 * (temperature mostly) based on feedback from a power detector.
398 *
399 * It's only used on RF5111 and RF5112, later RF chips seem to have
400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
401 * no gain optimization ladder-.
402 *
403 * For more infos check out this patent doc
404 * "http://www.freepatentsonline.com/7400691.html"
405 *
406 * This paper describes power drops as seen on the receiver due to
407 * probe packets
408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409 * %20of%20Power%20Control.pdf"
410 *
411 * And this is the MadWiFi bug entry related to the above
412 * "http://madwifi-project.org/ticket/1659"
413 * with various measurements and diagrams
414 */
415
416/**
417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418 * @ah: The &struct ath5k_hw
419 */
420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
421{
422	/* Initialize the gain optimization values */
423	switch (ah->ah_radio) {
424	case AR5K_RF5111:
425		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
426		ah->ah_gain.g_low = 20;
427		ah->ah_gain.g_high = 35;
428		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429		break;
430	case AR5K_RF5112:
431		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
432		ah->ah_gain.g_low = 20;
433		ah->ah_gain.g_high = 85;
434		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435		break;
436	default:
437		return -EINVAL;
438	}
439
440	return 0;
441}
442
443/**
444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445 * @ah: The &struct ath5k_hw
446 *
447 * Schedules a gain probe check on the next transmitted packet.
448 * That means our next packet is going to be sent with lower
449 * tx power and a Peak to Average Power Detector (PAPD) will try
450 * to measure the gain.
451 *
452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453 * just after we enable the probe so that we don't mess with
454 * standard traffic.
455 */
456static void
457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
458{
459
460	/* Skip if gain calibration is inactive or
461	 * we already handle a probe request */
462	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
463		return;
464
465	/* Send the packet with 2dB below max power as
466	 * patent doc suggest */
467	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
468			AR5K_PHY_PAPD_PROBE_TXPOWER) |
469			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
470
471	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
472
473}
474
475/**
476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477 * @ah: The &struct ath5k_hw
478 *
479 * Calculate Gain_F measurement correction
480 * based on the current step for RF5112 rev. 2
481 */
482static u32
483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
484{
485	u32 mix, step;
486	const struct ath5k_gain_opt *go;
487	const struct ath5k_gain_opt_step *g_step;
488	const struct ath5k_rf_reg *rf_regs;
489
490	/* Only RF5112 Rev. 2 supports it */
491	if ((ah->ah_radio != AR5K_RF5112) ||
492	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
493		return 0;
494
495	go = &rfgain_opt_5112;
496	rf_regs = rf_regs_5112a;
497	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
498
499	g_step = &go->go_step[ah->ah_gain.g_step_idx];
500
501	if (ah->ah_rf_banks == NULL)
502		return 0;
503
504	ah->ah_gain.g_f_corr = 0;
505
506	/* No VGA (Variable Gain Amplifier) override, skip */
507	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
508		return 0;
509
510	/* Mix gain stepping */
511	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
512
513	/* Mix gain override */
514	mix = g_step->gos_param[0];
515
516	switch (mix) {
517	case 3:
518		ah->ah_gain.g_f_corr = step * 2;
519		break;
520	case 2:
521		ah->ah_gain.g_f_corr = (step - 5) * 2;
522		break;
523	case 1:
524		ah->ah_gain.g_f_corr = step;
525		break;
526	default:
527		ah->ah_gain.g_f_corr = 0;
528		break;
529	}
530
531	return ah->ah_gain.g_f_corr;
532}
533
534/**
535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
536 * @ah: The &struct ath5k_hw
537 *
538 * Check if current gain_F measurement is in the range of our
539 * power detector windows. If we get a measurement outside range
540 * we know it's not accurate (detectors can't measure anything outside
541 * their detection window) so we must ignore it.
542 *
543 * Returns true if readback was O.K. or false on failure
544 */
545static bool
546ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
547{
548	const struct ath5k_rf_reg *rf_regs;
549	u32 step, mix_ovr, level[4];
550
551	if (ah->ah_rf_banks == NULL)
552		return false;
553
554	if (ah->ah_radio == AR5K_RF5111) {
555
556		rf_regs = rf_regs_5111;
557		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
558
559		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
560			false);
561
562		level[0] = 0;
563		level[1] = (step == 63) ? 50 : step + 4;
564		level[2] = (step != 63) ? 64 : level[0];
565		level[3] = level[2] + 50;
566
567		ah->ah_gain.g_high = level[3] -
568			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
569		ah->ah_gain.g_low = level[0] +
570			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
571	} else {
572
573		rf_regs = rf_regs_5112;
574		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
575
576		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
577			false);
578
579		level[0] = level[2] = 0;
580
581		if (mix_ovr == 1) {
582			level[1] = level[3] = 83;
583		} else {
584			level[1] = level[3] = 107;
585			ah->ah_gain.g_high = 55;
586		}
587	}
588
589	return (ah->ah_gain.g_current >= level[0] &&
590			ah->ah_gain.g_current <= level[1]) ||
591		(ah->ah_gain.g_current >= level[2] &&
592			ah->ah_gain.g_current <= level[3]);
593}
594
595/**
596 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
597 * @ah: The &struct ath5k_hw
598 *
599 * Choose the right target gain based on current gain
600 * and RF gain optimization ladder
601 */
602static s8
603ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
604{
605	const struct ath5k_gain_opt *go;
606	const struct ath5k_gain_opt_step *g_step;
607	int ret = 0;
608
609	switch (ah->ah_radio) {
610	case AR5K_RF5111:
611		go = &rfgain_opt_5111;
612		break;
613	case AR5K_RF5112:
614		go = &rfgain_opt_5112;
615		break;
616	default:
617		return 0;
618	}
619
620	g_step = &go->go_step[ah->ah_gain.g_step_idx];
621
622	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
623
624		/* Reached maximum */
625		if (ah->ah_gain.g_step_idx == 0)
626			return -1;
627
628		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
629				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
630				ah->ah_gain.g_step_idx > 0;
631				g_step = &go->go_step[ah->ah_gain.g_step_idx])
632			ah->ah_gain.g_target -= 2 *
633			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
634			    g_step->gos_gain);
635
636		ret = 1;
637		goto done;
638	}
639
640	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
641
642		/* Reached minimum */
643		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
644			return -2;
645
646		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
647				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
648				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
649				g_step = &go->go_step[ah->ah_gain.g_step_idx])
650			ah->ah_gain.g_target -= 2 *
651			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
652			    g_step->gos_gain);
653
654		ret = 2;
655		goto done;
656	}
657
658done:
659	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
660		"ret %d, gain step %u, current gain %u, target gain %u\n",
661		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
662		ah->ah_gain.g_target);
663
664	return ret;
665}
666
667/**
668 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
669 * @ah: The &struct ath5k_hw
670 *
671 * Main callback for thermal RF gain calibration engine
672 * Check for a new gain reading and schedule an adjustment
673 * if needed.
674 *
675 * Returns one of enum ath5k_rfgain codes
676 */
677enum ath5k_rfgain
678ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
679{
680	u32 data, type;
681	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
682
683	if (ah->ah_rf_banks == NULL ||
684	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
685		return AR5K_RFGAIN_INACTIVE;
686
687	/* No check requested, either engine is inactive
688	 * or an adjustment is already requested */
689	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
690		goto done;
691
692	/* Read the PAPD (Peak to Average Power Detector)
693	 * register */
694	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
695
696	/* No probe is scheduled, read gain_F measurement */
697	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
698		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
699		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
700
701		/* If tx packet is CCK correct the gain_F measurement
702		 * by cck ofdm gain delta */
703		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
704			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
705				ah->ah_gain.g_current +=
706					ee->ee_cck_ofdm_gain_delta;
707			else
708				ah->ah_gain.g_current +=
709					AR5K_GAIN_CCK_PROBE_CORR;
710		}
711
712		/* Further correct gain_F measurement for
713		 * RF5112A radios */
714		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
715			ath5k_hw_rf_gainf_corr(ah);
716			ah->ah_gain.g_current =
717				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
718				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
719				0;
720		}
721
722		/* Check if measurement is ok and if we need
723		 * to adjust gain, schedule a gain adjustment,
724		 * else switch back to the active state */
725		if (ath5k_hw_rf_check_gainf_readback(ah) &&
726		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
727		ath5k_hw_rf_gainf_adjust(ah)) {
728			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
729		} else {
730			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
731		}
732	}
733
734done:
735	return ah->ah_gain.g_state;
736}
737
738/**
739 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
740 * @ah: The &struct ath5k_hw
741 * @band: One of enum nl80211_band
742 *
743 * Write initial RF gain table to set the RF sensitivity.
744 *
745 * NOTE: This one works on all RF chips and has nothing to do
746 * with Gain_F calibration
747 */
748static int
749ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
750{
751	const struct ath5k_ini_rfgain *ath5k_rfg;
752	unsigned int i, size, index;
753
754	switch (ah->ah_radio) {
755	case AR5K_RF5111:
756		ath5k_rfg = rfgain_5111;
757		size = ARRAY_SIZE(rfgain_5111);
758		break;
759	case AR5K_RF5112:
760		ath5k_rfg = rfgain_5112;
761		size = ARRAY_SIZE(rfgain_5112);
762		break;
763	case AR5K_RF2413:
764		ath5k_rfg = rfgain_2413;
765		size = ARRAY_SIZE(rfgain_2413);
766		break;
767	case AR5K_RF2316:
768		ath5k_rfg = rfgain_2316;
769		size = ARRAY_SIZE(rfgain_2316);
770		break;
771	case AR5K_RF5413:
772		ath5k_rfg = rfgain_5413;
773		size = ARRAY_SIZE(rfgain_5413);
774		break;
775	case AR5K_RF2317:
776	case AR5K_RF2425:
777		ath5k_rfg = rfgain_2425;
778		size = ARRAY_SIZE(rfgain_2425);
779		break;
780	default:
781		return -EINVAL;
782	}
783
784	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
785
786	for (i = 0; i < size; i++) {
787		AR5K_REG_WAIT(i);
788		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
789			(u32)ath5k_rfg[i].rfg_register);
790	}
791
792	return 0;
793}
794
795
796/********************\
797* RF Registers setup *
798\********************/
799
800/**
801 * ath5k_hw_rfregs_init() - Initialize RF register settings
802 * @ah: The &struct ath5k_hw
803 * @channel: The &struct ieee80211_channel
804 * @mode: One of enum ath5k_driver_mode
805 *
806 * Setup RF registers by writing RF buffer on hw. For
807 * more infos on this, check out rfbuffer.h
808 */
809static int
810ath5k_hw_rfregs_init(struct ath5k_hw *ah,
811			struct ieee80211_channel *channel,
812			unsigned int mode)
813{
814	const struct ath5k_rf_reg *rf_regs;
815	const struct ath5k_ini_rfbuffer *ini_rfb;
816	const struct ath5k_gain_opt *go = NULL;
817	const struct ath5k_gain_opt_step *g_step;
818	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
819	u8 ee_mode = 0;
820	u32 *rfb;
821	int i, obdb = -1, bank = -1;
822
823	switch (ah->ah_radio) {
824	case AR5K_RF5111:
825		rf_regs = rf_regs_5111;
826		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
827		ini_rfb = rfb_5111;
828		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
829		go = &rfgain_opt_5111;
830		break;
831	case AR5K_RF5112:
832		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
833			rf_regs = rf_regs_5112a;
834			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
835			ini_rfb = rfb_5112a;
836			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
837		} else {
838			rf_regs = rf_regs_5112;
839			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
840			ini_rfb = rfb_5112;
841			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
842		}
843		go = &rfgain_opt_5112;
844		break;
845	case AR5K_RF2413:
846		rf_regs = rf_regs_2413;
847		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
848		ini_rfb = rfb_2413;
849		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
850		break;
851	case AR5K_RF2316:
852		rf_regs = rf_regs_2316;
853		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
854		ini_rfb = rfb_2316;
855		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
856		break;
857	case AR5K_RF5413:
858		rf_regs = rf_regs_5413;
859		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
860		ini_rfb = rfb_5413;
861		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
862		break;
863	case AR5K_RF2317:
864		rf_regs = rf_regs_2425;
865		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
866		ini_rfb = rfb_2317;
867		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
868		break;
869	case AR5K_RF2425:
870		rf_regs = rf_regs_2425;
871		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
872		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
873			ini_rfb = rfb_2425;
874			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
875		} else {
876			ini_rfb = rfb_2417;
877			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
878		}
879		break;
880	default:
881		return -EINVAL;
882	}
883
884	/* If it's the first time we set RF buffer, allocate
885	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
886	 * we set above */
887	if (ah->ah_rf_banks == NULL) {
888		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
889								sizeof(u32),
890								GFP_KERNEL);
891		if (ah->ah_rf_banks == NULL) {
892			ATH5K_ERR(ah, "out of memory\n");
893			return -ENOMEM;
894		}
895	}
896
897	/* Copy values to modify them */
898	rfb = ah->ah_rf_banks;
899
900	for (i = 0; i < ah->ah_rf_banks_size; i++) {
901		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
902			ATH5K_ERR(ah, "invalid bank\n");
903			return -EINVAL;
904		}
905
906		/* Bank changed, write down the offset */
907		if (bank != ini_rfb[i].rfb_bank) {
908			bank = ini_rfb[i].rfb_bank;
909			ah->ah_offset[bank] = i;
910		}
911
912		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
913	}
914
915	/* Set Output and Driver bias current (OB/DB) */
916	if (channel->band == NL80211_BAND_2GHZ) {
917
918		if (channel->hw_value == AR5K_MODE_11B)
919			ee_mode = AR5K_EEPROM_MODE_11B;
920		else
921			ee_mode = AR5K_EEPROM_MODE_11G;
922
923		/* For RF511X/RF211X combination we
924		 * use b_OB and b_DB parameters stored
925		 * in eeprom on ee->ee_ob[ee_mode][0]
926		 *
927		 * For all other chips we use OB/DB for 2GHz
928		 * stored in the b/g modal section just like
929		 * 802.11a on ee->ee_ob[ee_mode][1] */
930		if ((ah->ah_radio == AR5K_RF5111) ||
931		(ah->ah_radio == AR5K_RF5112))
932			obdb = 0;
933		else
934			obdb = 1;
935
936		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
937						AR5K_RF_OB_2GHZ, true);
938
939		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
940						AR5K_RF_DB_2GHZ, true);
941
942	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
943	} else if ((channel->band == NL80211_BAND_5GHZ) ||
944			(ah->ah_radio == AR5K_RF5111)) {
945
946		/* For 11a, Turbo and XR we need to choose
947		 * OB/DB based on frequency range */
948		ee_mode = AR5K_EEPROM_MODE_11A;
949		obdb =	 channel->center_freq >= 5725 ? 3 :
950			(channel->center_freq >= 5500 ? 2 :
951			(channel->center_freq >= 5260 ? 1 :
952			 (channel->center_freq > 4000 ? 0 : -1)));
953
954		if (obdb < 0)
955			return -EINVAL;
956
957		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
958						AR5K_RF_OB_5GHZ, true);
959
960		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
961						AR5K_RF_DB_5GHZ, true);
962	}
963
964	g_step = &go->go_step[ah->ah_gain.g_step_idx];
965
966	/* Set turbo mode (N/A on RF5413) */
967	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
968	(ah->ah_radio != AR5K_RF5413))
969		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
970
971	/* Bank Modifications (chip-specific) */
972	if (ah->ah_radio == AR5K_RF5111) {
973
974		/* Set gain_F settings according to current step */
975		if (channel->hw_value != AR5K_MODE_11B) {
976
977			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
978					AR5K_PHY_FRAME_CTL_TX_CLIP,
979					g_step->gos_param[0]);
980
981			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
982							AR5K_RF_PWD_90, true);
983
984			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
985							AR5K_RF_PWD_84, true);
986
987			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
988						AR5K_RF_RFGAIN_SEL, true);
989
990			/* We programmed gain_F parameters, switch back
991			 * to active state */
992			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
993
994		}
995
996		/* Bank 6/7 setup */
997
998		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
999						AR5K_RF_PWD_XPD, true);
1000
1001		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1002						AR5K_RF_XPD_GAIN, true);
1003
1004		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005						AR5K_RF_GAIN_I, true);
1006
1007		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1008						AR5K_RF_PLO_SEL, true);
1009
1010		/* Tweak power detectors for half/quarter rate support */
1011		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013			u8 wait_i;
1014
1015			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1016						AR5K_RF_WAIT_S, true);
1017
1018			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1019							0x1f : 0x10;
1020
1021			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1022						AR5K_RF_WAIT_I, true);
1023			ath5k_hw_rfb_op(ah, rf_regs, 3,
1024						AR5K_RF_MAX_TIME, true);
1025
1026		}
1027	}
1028
1029	if (ah->ah_radio == AR5K_RF5112) {
1030
1031		/* Set gain_F settings according to current step */
1032		if (channel->hw_value != AR5K_MODE_11B) {
1033
1034			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1035						AR5K_RF_MIXGAIN_OVR, true);
1036
1037			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1038						AR5K_RF_PWD_138, true);
1039
1040			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1041						AR5K_RF_PWD_137, true);
1042
1043			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1044						AR5K_RF_PWD_136, true);
1045
1046			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1047						AR5K_RF_PWD_132, true);
1048
1049			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1050						AR5K_RF_PWD_131, true);
1051
1052			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1053						AR5K_RF_PWD_130, true);
1054
1055			/* We programmed gain_F parameters, switch back
1056			 * to active state */
1057			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1058		}
1059
1060		/* Bank 6/7 setup */
1061
1062		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1063						AR5K_RF_XPD_SEL, true);
1064
1065		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1066			/* Rev. 1 supports only one xpd */
1067			ath5k_hw_rfb_op(ah, rf_regs,
1068						ee->ee_x_gain[ee_mode],
1069						AR5K_RF_XPD_GAIN, true);
1070
1071		} else {
1072			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1073			if (ee->ee_pd_gains[ee_mode] > 1) {
1074				ath5k_hw_rfb_op(ah, rf_regs,
1075						pdg_curve_to_idx[0],
1076						AR5K_RF_PD_GAIN_LO, true);
1077				ath5k_hw_rfb_op(ah, rf_regs,
1078						pdg_curve_to_idx[1],
1079						AR5K_RF_PD_GAIN_HI, true);
1080			} else {
1081				ath5k_hw_rfb_op(ah, rf_regs,
1082						pdg_curve_to_idx[0],
1083						AR5K_RF_PD_GAIN_LO, true);
1084				ath5k_hw_rfb_op(ah, rf_regs,
1085						pdg_curve_to_idx[0],
1086						AR5K_RF_PD_GAIN_HI, true);
1087			}
1088
1089			/* Lower synth voltage on Rev 2 */
1090			if (ah->ah_radio == AR5K_RF5112 &&
1091			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1092				ath5k_hw_rfb_op(ah, rf_regs, 2,
1093						AR5K_RF_HIGH_VC_CP, true);
1094
1095				ath5k_hw_rfb_op(ah, rf_regs, 2,
1096						AR5K_RF_MID_VC_CP, true);
1097
1098				ath5k_hw_rfb_op(ah, rf_regs, 2,
1099						AR5K_RF_LOW_VC_CP, true);
1100
1101				ath5k_hw_rfb_op(ah, rf_regs, 2,
1102						AR5K_RF_PUSH_UP, true);
1103			}
1104
1105			/* Decrease power consumption on 5213+ BaseBand */
1106			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1107				ath5k_hw_rfb_op(ah, rf_regs, 1,
1108						AR5K_RF_PAD2GND, true);
1109
1110				ath5k_hw_rfb_op(ah, rf_regs, 1,
1111						AR5K_RF_XB2_LVL, true);
1112
1113				ath5k_hw_rfb_op(ah, rf_regs, 1,
1114						AR5K_RF_XB5_LVL, true);
1115
1116				ath5k_hw_rfb_op(ah, rf_regs, 1,
1117						AR5K_RF_PWD_167, true);
1118
1119				ath5k_hw_rfb_op(ah, rf_regs, 1,
1120						AR5K_RF_PWD_166, true);
1121			}
1122		}
1123
1124		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1125						AR5K_RF_GAIN_I, true);
1126
1127		/* Tweak power detector for half/quarter rates */
1128		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1129		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1130			u8 pd_delay;
1131
1132			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1133							0xf : 0x8;
1134
1135			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1136						AR5K_RF_PD_PERIOD_A, true);
1137			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1138						AR5K_RF_PD_DELAY_A, true);
1139
1140		}
1141	}
1142
1143	if (ah->ah_radio == AR5K_RF5413 &&
1144	channel->band == NL80211_BAND_2GHZ) {
1145
1146		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1147									true);
1148
1149		/* Set optimum value for early revisions (on pci-e chips) */
1150		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1151		ah->ah_mac_srev < AR5K_SREV_AR5413)
1152			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1153						AR5K_RF_PWD_ICLOBUF_2G, true);
1154
1155	}
1156
1157	/* Write RF banks on hw */
1158	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1159		AR5K_REG_WAIT(i);
1160		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1161	}
1162
1163	return 0;
1164}
1165
1166
1167/**************************\
1168  PHY/RF channel functions
1169\**************************/
1170
1171/**
1172 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173 * @channel: The &struct ieee80211_channel
1174 *
1175 * Map channel frequency to IEEE channel number and convert it
1176 * to an internal channel value used by the RF5110 chipset.
1177 */
1178static u32
1179ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1180{
1181	u32 athchan;
1182
1183	athchan = (ath5k_hw_bitswap(
1184			(ieee80211_frequency_to_channel(
1185				channel->center_freq) - 24) / 2, 5)
1186				<< 1) | (1 << 6) | 0x1;
1187	return athchan;
1188}
1189
1190/**
1191 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192 * @ah: The &struct ath5k_hw
1193 * @channel: The &struct ieee80211_channel
1194 */
1195static int
1196ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1197		struct ieee80211_channel *channel)
1198{
1199	u32 data;
1200
1201	/*
1202	 * Set the channel and wait
1203	 */
1204	data = ath5k_hw_rf5110_chan2athchan(channel);
1205	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1206	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1207	usleep_range(1000, 1500);
1208
1209	return 0;
1210}
1211
1212/**
1213 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214 * @ieee: IEEE channel number
1215 * @athchan: The &struct ath5k_athchan_2ghz
1216 *
1217 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218 * we need to add some offsets and extra flags to the data values we pass
1219 * on to the PHY. So for every 2GHz channel this function gets called
1220 * to do the conversion.
1221 */
1222static int
1223ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1224		struct ath5k_athchan_2ghz *athchan)
1225{
1226	int channel;
1227
1228	/* Cast this value to catch negative channel numbers (>= -19) */
1229	channel = (int)ieee;
1230
1231	/*
1232	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1233	 */
1234	if (channel <= 13) {
1235		athchan->a2_athchan = 115 + channel;
1236		athchan->a2_flags = 0x46;
1237	} else if (channel == 14) {
1238		athchan->a2_athchan = 124;
1239		athchan->a2_flags = 0x44;
1240	} else if (channel >= 15 && channel <= 26) {
1241		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1242		athchan->a2_flags = 0x46;
1243	} else
1244		return -EINVAL;
1245
1246	return 0;
1247}
1248
1249/**
1250 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251 * @ah: The &struct ath5k_hw
1252 * @channel: The &struct ieee80211_channel
1253 */
1254static int
1255ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1256		struct ieee80211_channel *channel)
1257{
1258	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1259	unsigned int ath5k_channel =
1260		ieee80211_frequency_to_channel(channel->center_freq);
1261	u32 data0, data1, clock;
1262	int ret;
1263
1264	/*
1265	 * Set the channel on the RF5111 radio
1266	 */
1267	data0 = data1 = 0;
1268
1269	if (channel->band == NL80211_BAND_2GHZ) {
1270		/* Map 2GHz channel to 5GHz Atheros channel ID */
1271		ret = ath5k_hw_rf5111_chan2athchan(
1272			ieee80211_frequency_to_channel(channel->center_freq),
1273			&ath5k_channel_2ghz);
1274		if (ret)
1275			return ret;
1276
1277		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1278		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1279		    << 5) | (1 << 4);
1280	}
1281
1282	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1283		clock = 1;
1284		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1285			(clock << 1) | (1 << 10) | 1;
1286	} else {
1287		clock = 0;
1288		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1289			<< 2) | (clock << 1) | (1 << 10) | 1;
1290	}
1291
1292	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1293			AR5K_RF_BUFFER);
1294	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1295			AR5K_RF_BUFFER_CONTROL_3);
1296
1297	return 0;
1298}
1299
1300/**
1301 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302 * @ah: The &struct ath5k_hw
1303 * @channel: The &struct ieee80211_channel
1304 *
1305 * On RF5112/2112 and newer we don't need to do any conversion.
1306 * We pass the frequency value after a few modifications to the
1307 * chip directly.
1308 *
1309 * NOTE: Make sure channel frequency given is within our range or else
1310 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1311 */
1312static int
1313ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1314		struct ieee80211_channel *channel)
1315{
1316	u32 data, data0, data1, data2;
1317	u16 c;
1318
1319	data = data0 = data1 = data2 = 0;
1320	c = channel->center_freq;
1321
1322	/* My guess based on code:
1323	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325	 * (3040/2). data0 is used to set the PLL divider and data1
1326	 * selects synth mode. */
1327	if (c < 4800) {
1328		/* Channel 14 and all frequencies with 2Hz spacing
1329		 * below/above (non-standard channels) */
1330		if (!((c - 2224) % 5)) {
1331			/* Same as (c - 2224) / 5 */
1332			data0 = ((2 * (c - 704)) - 3040) / 10;
1333			data1 = 1;
1334		/* Channel 1 and all frequencies with 5Hz spacing
1335		 * below/above (standard channels without channel 14) */
1336		} else if (!((c - 2192) % 5)) {
1337			/* Same as (c - 2192) / 5 */
1338			data0 = ((2 * (c - 672)) - 3040) / 10;
1339			data1 = 0;
1340		} else
1341			return -EINVAL;
1342
1343		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1344	/* This is more complex, we have a single synthesizer with
1345	 * 4 reference clock settings (?) based on frequency spacing
1346	 * and set using data2. LO is at 4800Hz and data0 is again used
1347	 * to set some divider.
1348	 *
1349	 * NOTE: There is an old atheros presentation at Stanford
1350	 * that mentions a method called dual direct conversion
1351	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1352	 * have here, or an updated version. */
1353	} else if ((c % 5) != 2 || c > 5435) {
1354		if (!(c % 20) && c >= 5120) {
1355			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1356			data2 = ath5k_hw_bitswap(3, 2);
1357		} else if (!(c % 10)) {
1358			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1359			data2 = ath5k_hw_bitswap(2, 2);
1360		} else if (!(c % 5)) {
1361			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1362			data2 = ath5k_hw_bitswap(1, 2);
1363		} else
1364			return -EINVAL;
1365	} else {
1366		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1367		data2 = ath5k_hw_bitswap(0, 2);
1368	}
1369
1370	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1371
1372	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1373	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1374
1375	return 0;
1376}
1377
1378/**
1379 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380 * @ah: The &struct ath5k_hw
1381 * @channel: The &struct ieee80211_channel
1382 *
1383 * AR2425/2417 have a different 2GHz RF so code changes
1384 * a little bit from RF5112.
1385 */
1386static int
1387ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1388		struct ieee80211_channel *channel)
1389{
1390	u32 data, data0, data2;
1391	u16 c;
1392
1393	data = data0 = data2 = 0;
1394	c = channel->center_freq;
1395
1396	if (c < 4800) {
1397		data0 = ath5k_hw_bitswap((c - 2272), 8);
1398		data2 = 0;
1399	/* ? 5GHz ? */
1400	} else if ((c % 5) != 2 || c > 5435) {
1401		if (!(c % 20) && c < 5120)
1402			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1403		else if (!(c % 10))
1404			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1405		else if (!(c % 5))
1406			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1407		else
1408			return -EINVAL;
1409		data2 = ath5k_hw_bitswap(1, 2);
1410	} else {
1411		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1412		data2 = ath5k_hw_bitswap(0, 2);
1413	}
1414
1415	data = (data0 << 4) | data2 << 2 | 0x1001;
1416
1417	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1418	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1419
1420	return 0;
1421}
1422
1423/**
1424 * ath5k_hw_channel() - Set a channel on the radio chip
1425 * @ah: The &struct ath5k_hw
1426 * @channel: The &struct ieee80211_channel
1427 *
1428 * This is the main function called to set a channel on the
1429 * radio chip based on the radio chip version.
1430 */
1431static int
1432ath5k_hw_channel(struct ath5k_hw *ah,
1433		struct ieee80211_channel *channel)
1434{
1435	int ret;
1436	/*
1437	 * Check bounds supported by the PHY (we don't care about regulatory
1438	 * restrictions at this point).
1439	 */
1440	if (!ath5k_channel_ok(ah, channel)) {
1441		ATH5K_ERR(ah,
1442			"channel frequency (%u MHz) out of supported "
1443			"band range\n",
1444			channel->center_freq);
1445		return -EINVAL;
1446	}
1447
1448	/*
1449	 * Set the channel and wait
1450	 */
1451	switch (ah->ah_radio) {
1452	case AR5K_RF5110:
1453		ret = ath5k_hw_rf5110_channel(ah, channel);
1454		break;
1455	case AR5K_RF5111:
1456		ret = ath5k_hw_rf5111_channel(ah, channel);
1457		break;
1458	case AR5K_RF2317:
1459	case AR5K_RF2425:
1460		ret = ath5k_hw_rf2425_channel(ah, channel);
1461		break;
1462	default:
1463		ret = ath5k_hw_rf5112_channel(ah, channel);
1464		break;
1465	}
1466
1467	if (ret)
1468		return ret;
1469
1470	/* Set JAPAN setting for channel 14 */
1471	if (channel->center_freq == 2484) {
1472		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1473				AR5K_PHY_CCKTXCTL_JAPAN);
1474	} else {
1475		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1476				AR5K_PHY_CCKTXCTL_WORLD);
1477	}
1478
1479	ah->ah_current_channel = channel;
1480
1481	return 0;
1482}
1483
1484
1485/*****************\
1486  PHY calibration
1487\*****************/
1488
1489/**
1490 * DOC: PHY Calibration routines
1491 *
1492 * Noise floor calibration: When we tell the hardware to
1493 * perform a noise floor calibration by setting the
1494 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495 * sample-and-hold the minimum noise level seen at the antennas.
1496 * This value is then stored in a ring buffer of recently measured
1497 * noise floor values so we have a moving window of the last few
1498 * samples. The median of the values in the history is then loaded
1499 * into the hardware for its own use for RSSI and CCA measurements.
1500 * This type of calibration doesn't interfere with traffic.
1501 *
1502 * AGC calibration: When we tell the hardware to perform
1503 * an AGC (Automatic Gain Control) calibration by setting the
1504 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505 * a calibration on the DC offsets of ADCs. During this period
1506 * rx/tx gets disabled so we have to deal with it on the driver
1507 * part.
1508 *
1509 * I/Q calibration: When we tell the hardware to perform
1510 * an I/Q calibration, it tries to correct I/Q imbalance and
1511 * fix QAM constellation by sampling data from rxed frames.
1512 * It doesn't interfere with traffic.
1513 *
1514 * For more infos on AGC and I/Q calibration check out patent doc
1515 * #03/094463.
1516 */
1517
1518/**
1519 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520 * @ah: The &struct ath5k_hw
1521 */
1522static s32
1523ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1524{
1525	s32 val;
1526
1527	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1528	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1529}
1530
1531/**
1532 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533 * @ah: The &struct ath5k_hw
1534 */
1535void
1536ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1537{
1538	int i;
1539
1540	ah->ah_nfcal_hist.index = 0;
1541	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1542		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1543}
1544
1545/**
1546 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547 * @ah: The &struct ath5k_hw
1548 * @noise_floor: The NF we got from hw
1549 */
1550static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1551{
1552	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1553	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1554	hist->nfval[hist->index] = noise_floor;
1555}
1556
1557/**
1558 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559 * @ah: The &struct ath5k_hw
1560 */
1561static s16
1562ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1563{
1564	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1565	s16 tmp;
1566	int i, j;
1567
1568	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1569	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1570		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1571			if (sort[j] > sort[j - 1]) {
1572				tmp = sort[j];
1573				sort[j] = sort[j - 1];
1574				sort[j - 1] = tmp;
1575			}
1576		}
1577	}
1578	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1579		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1580			"cal %d:%d\n", i, sort[i]);
1581	}
1582	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1583}
1584
1585/**
1586 * ath5k_hw_update_noise_floor() - Update NF on hardware
1587 * @ah: The &struct ath5k_hw
1588 *
1589 * This is the main function we call to perform a NF calibration,
1590 * it reads NF from hardware, calculates the median and updates
1591 * NF on hw.
1592 */
1593void
1594ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1595{
1596	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597	u32 val;
1598	s16 nf, threshold;
1599	u8 ee_mode;
1600
1601	/* keep last value if calibration hasn't completed */
1602	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1603		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1604			"NF did not complete in calibration window\n");
1605
1606		return;
1607	}
1608
1609	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1610
1611	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1612
1613	/* completed NF calibration, test threshold */
1614	nf = ath5k_hw_read_measured_noise_floor(ah);
1615	threshold = ee->ee_noise_floor_thr[ee_mode];
1616
1617	if (nf > threshold) {
1618		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1619			"noise floor failure detected; "
1620			"read %d, threshold %d\n",
1621			nf, threshold);
1622
1623		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1624	}
1625
1626	ath5k_hw_update_nfcal_hist(ah, nf);
1627	nf = ath5k_hw_get_median_noise_floor(ah);
1628
1629	/* load noise floor (in .5 dBm) so the hardware will use it */
1630	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1631	val |= (nf * 2) & AR5K_PHY_NF_M;
1632	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1633
1634	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1636
1637	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1638		0, false);
1639
1640	/*
1641	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642	 * so that we're not capped by the median we just loaded.
1643	 * This will be used as the initial value for the next noise
1644	 * floor calibration.
1645	 */
1646	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1647	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1648	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1649		AR5K_PHY_AGCCTL_NF_EN |
1650		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1651		AR5K_PHY_AGCCTL_NF);
1652
1653	ah->ah_noise_floor = nf;
1654
1655	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1656
1657	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1658		"noise floor calibrated: %d\n", nf);
1659}
1660
1661/**
1662 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663 * @ah: The &struct ath5k_hw
1664 * @channel: The &struct ieee80211_channel
1665 *
1666 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1667 */
1668static int
1669ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1670		struct ieee80211_channel *channel)
1671{
1672	u32 phy_sig, phy_agc, phy_sat, beacon;
1673	int ret;
1674
1675	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1676		return 0;
1677
1678	/*
1679	 * Disable beacons and RX/TX queues, wait
1680	 */
1681	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1682		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1683	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1684	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1685
1686	usleep_range(2000, 2500);
1687
1688	/*
1689	 * Set the channel (with AGC turned off)
1690	 */
1691	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1692	udelay(10);
1693	ret = ath5k_hw_channel(ah, channel);
1694
1695	/*
1696	 * Activate PHY and wait
1697	 */
1698	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1699	usleep_range(1000, 1500);
1700
1701	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1702
1703	if (ret)
1704		return ret;
1705
1706	/*
1707	 * Calibrate the radio chip
1708	 */
1709
1710	/* Remember normal state */
1711	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1712	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1713	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1714
1715	/* Update radio registers */
1716	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1717		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1718
1719	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1720			AR5K_PHY_AGCCOARSE_LO)) |
1721		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1722		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1723
1724	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1725			AR5K_PHY_ADCSAT_THR)) |
1726		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1727		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1728
1729	udelay(20);
1730
1731	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732	udelay(10);
1733	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1734	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1735
1736	usleep_range(1000, 1500);
1737
1738	/*
1739	 * Enable calibration and wait until completion
1740	 */
1741	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1742
1743	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1744			AR5K_PHY_AGCCTL_CAL, 0, false);
1745
1746	/* Reset to normal state */
1747	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1748	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1749	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1750
1751	if (ret) {
1752		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1753				channel->center_freq);
1754		return ret;
1755	}
1756
1757	/*
1758	 * Re-enable RX/TX and beacons
1759	 */
1760	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1761		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1762	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1763
1764	return 0;
1765}
1766
1767/**
1768 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769 * @ah: The &struct ath5k_hw
1770 */
1771static int
1772ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1773{
1774	u32 i_pwr, q_pwr;
1775	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1776	int i;
1777
1778	/* Skip if I/Q calibration is not needed or if it's still running */
1779	if (!ah->ah_iq_cal_needed)
1780		return -EINVAL;
1781	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1782		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1783				"I/Q calibration still running");
1784		return -EBUSY;
1785	}
1786
1787	/* Calibration has finished, get the results and re-run */
1788
1789	/* Work around for empty results which can apparently happen on 5212:
1790	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1791	for (i = 0; i <= 10; i++) {
1792		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1793		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1794		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1795		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1796			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1797		if (i_pwr && q_pwr)
1798			break;
1799	}
1800
1801	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1802
1803	if (ah->ah_version == AR5K_AR5211)
1804		q_coffd = q_pwr >> 6;
1805	else
1806		q_coffd = q_pwr >> 7;
1807
1808	/* In case i_coffd became zero, cancel calibration
1809	 * not only it's too small, it'll also result a divide
1810	 * by zero later on. */
1811	if (i_coffd == 0 || q_coffd < 2)
1812		return -ECANCELED;
1813
1814	/* Protect against loss of sign bits */
1815
1816	i_coff = (-iq_corr) / i_coffd;
1817	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1818
1819	if (ah->ah_version == AR5K_AR5211)
1820		q_coff = (i_pwr / q_coffd) - 64;
1821	else
1822		q_coff = (i_pwr / q_coffd) - 128;
1823	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1824
1825	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1826			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827			i_coff, q_coff, i_coffd, q_coffd);
1828
1829	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1830	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1831	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1832	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1833
1834	/* Re-enable calibration -if we don't we'll commit
1835	 * the same values again and again */
1836	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1837			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1838	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1839
1840	return 0;
1841}
1842
1843/**
1844 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845 * @ah: The &struct ath5k_hw
1846 * @channel: The &struct ieee80211_channel
1847 *
1848 * The main function we call from above to perform
1849 * a short or full PHY calibration based on RF chip
1850 * and current channel
1851 */
1852int
1853ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1854		struct ieee80211_channel *channel)
1855{
1856	int ret;
1857
1858	if (ah->ah_radio == AR5K_RF5110)
1859		return ath5k_hw_rf5110_calibrate(ah, channel);
1860
1861	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1862	if (ret) {
1863		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1864			"No I/Q correction performed (%uMHz)\n",
1865			channel->center_freq);
1866
1867		/* Happens all the time if there is not much
1868		 * traffic, consider it normal behaviour. */
1869		ret = 0;
1870	}
1871
1872	/* On full calibration request a PAPD probe for
1873	 * gainf calibration if needed */
1874	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1875	    (ah->ah_radio == AR5K_RF5111 ||
1876	     ah->ah_radio == AR5K_RF5112) &&
1877	    channel->hw_value != AR5K_MODE_11B)
1878		ath5k_hw_request_rfgain_probe(ah);
1879
1880	/* Update noise floor */
1881	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1882		ath5k_hw_update_noise_floor(ah);
1883
1884	return ret;
1885}
1886
1887
1888/***************************\
1889* Spur mitigation functions *
1890\***************************/
1891
1892/**
1893 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894 * @ah: The &struct ath5k_hw
1895 * @channel: The &struct ieee80211_channel
1896 *
1897 * This function gets called during PHY initialization to
1898 * configure the spur filter for the given channel. Spur is noise
1899 * generated due to "reflection" effects, for more information on this
1900 * method check out patent US7643810
1901 */
1902static void
1903ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1904				struct ieee80211_channel *channel)
1905{
1906	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1907	u32 mag_mask[4] = {0, 0, 0, 0};
1908	u32 pilot_mask[2] = {0, 0};
1909	/* Note: fbin values are scaled up by 2 */
1910	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1911	s32 spur_delta_phase, spur_freq_sigma_delta;
1912	s32 spur_offset, num_symbols_x16;
1913	u8 num_symbol_offsets, i, freq_band;
1914
1915	/* Convert current frequency to fbin value (the same way channels
1916	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917	 * up by 2 so we can compare it later */
1918	if (channel->band == NL80211_BAND_2GHZ) {
1919		chan_fbin = (channel->center_freq - 2300) * 10;
1920		freq_band = AR5K_EEPROM_BAND_2GHZ;
1921	} else {
1922		chan_fbin = (channel->center_freq - 4900) * 10;
1923		freq_band = AR5K_EEPROM_BAND_5GHZ;
1924	}
1925
1926	/* Check if any spur_chan_fbin from EEPROM is
1927	 * within our current channel's spur detection range */
1928	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1929	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1930	/* XXX: Half/Quarter channels ?*/
1931	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1932		spur_detection_window *= 2;
1933
1934	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1935		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1936
1937		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938		 * so it's zero if we got nothing from EEPROM */
1939		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1940			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1941			break;
1942		}
1943
1944		if ((chan_fbin - spur_detection_window <=
1945		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1946		(chan_fbin + spur_detection_window >=
1947		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1948			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949			break;
1950		}
1951	}
1952
1953	/* We need to enable spur filter for this channel */
1954	if (spur_chan_fbin) {
1955		spur_offset = spur_chan_fbin - chan_fbin;
1956		/*
1957		 * Calculate deltas:
1958		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959		 * spur_delta_phase -> spur_offset / chip_freq << 11
1960		 * Note: Both values have 100Hz resolution
1961		 */
1962		switch (ah->ah_bwmode) {
1963		case AR5K_BWMODE_40MHZ:
1964			/* Both sample_freq and chip_freq are 80MHz */
1965			spur_delta_phase = (spur_offset << 16) / 25;
1966			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1967			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1968			break;
1969		case AR5K_BWMODE_10MHZ:
1970			/* Both sample_freq and chip_freq are 20MHz (?) */
1971			spur_delta_phase = (spur_offset << 18) / 25;
1972			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1973			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1974			break;
1975		case AR5K_BWMODE_5MHZ:
1976			/* Both sample_freq and chip_freq are 10MHz (?) */
1977			spur_delta_phase = (spur_offset << 19) / 25;
1978			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1979			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1980			break;
1981		default:
1982			if (channel->band == NL80211_BAND_5GHZ) {
1983				/* Both sample_freq and chip_freq are 40MHz */
1984				spur_delta_phase = (spur_offset << 17) / 25;
1985				spur_freq_sigma_delta =
1986						(spur_delta_phase >> 10);
1987				symbol_width =
1988					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989			} else {
1990				/* sample_freq -> 40MHz chip_freq -> 44MHz
1991				 * (for b compatibility) */
1992				spur_delta_phase = (spur_offset << 17) / 25;
1993				spur_freq_sigma_delta =
1994						(spur_offset << 8) / 55;
1995				symbol_width =
1996					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997			}
1998			break;
1999		}
2000
2001		/* Calculate pilot and magnitude masks */
2002
2003		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004		 * and divide by symbol_width to find how many symbols we have
2005		 * Note: number of symbols is scaled up by 16 */
2006		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007
2008		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009		if (!(num_symbols_x16 & 0xF))
2010			/* _X_ */
2011			num_symbol_offsets = 3;
2012		else
2013			/* _xx_ */
2014			num_symbol_offsets = 4;
2015
2016		for (i = 0; i < num_symbol_offsets; i++) {
2017
2018			/* Calculate pilot mask */
2019			s32 curr_sym_off =
2020				(num_symbols_x16 / 16) + i + 25;
2021
2022			/* Pilot magnitude mask seems to be a way to
2023			 * declare the boundaries for our detection
2024			 * window or something, it's 2 for the middle
2025			 * value(s) where the symbol is expected to be
2026			 * and 1 on the boundary values */
2027			u8 plt_mag_map =
2028				(i == 0 || i == (num_symbol_offsets - 1))
2029								? 1 : 2;
2030
2031			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032				if (curr_sym_off <= 25)
2033					pilot_mask[0] |= 1 << curr_sym_off;
2034				else if (curr_sym_off >= 27)
2035					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038
2039			/* Calculate magnitude mask (for viterbi decoder) */
2040			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041				mag_mask[0] |=
2042					plt_mag_map << (curr_sym_off + 1) * 2;
2043			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044				mag_mask[1] |=
2045					plt_mag_map << (curr_sym_off - 15) * 2;
2046			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047				mag_mask[2] |=
2048					plt_mag_map << (curr_sym_off - 31) * 2;
2049			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050				mag_mask[3] |=
2051					plt_mag_map << (curr_sym_off - 47) * 2;
2052
2053		}
2054
2055		/* Write settings on hw to enable spur filter */
2056		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058		/* XXX: Self correlator also ? */
2059		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060					AR5K_PHY_IQ_PILOT_MASK_EN |
2061					AR5K_PHY_IQ_CHAN_MASK_EN |
2062					AR5K_PHY_IQ_SPUR_FILT_EN);
2063
2064		/* Set delta phase and freq sigma delta */
2065		ath5k_hw_reg_write(ah,
2066				AR5K_REG_SM(spur_delta_phase,
2067					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068				AR5K_REG_SM(spur_freq_sigma_delta,
2069				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071				AR5K_PHY_TIMING_11);
2072
2073		/* Write pilot masks */
2074		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077					pilot_mask[1]);
2078
2079		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082					pilot_mask[1]);
2083
2084		/* Write magnitude masks */
2085		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090					mag_mask[3]);
2091
2092		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096					AR5K_PHY_BIN_MASK2_4_MASK_4,
2097					mag_mask[3]);
2098
2099	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100	AR5K_PHY_IQ_SPUR_FILT_EN) {
2101		/* Clean up spur mitigation settings and disable filter */
2102		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105					AR5K_PHY_IQ_PILOT_MASK_EN |
2106					AR5K_PHY_IQ_CHAN_MASK_EN |
2107					AR5K_PHY_IQ_SPUR_FILT_EN);
2108		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109
2110		/* Clear pilot masks */
2111		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114					0);
2115
2116		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119					0);
2120
2121		/* Clear magnitude masks */
2122		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127					0);
2128
2129		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133					AR5K_PHY_BIN_MASK2_4_MASK_4,
2134					0);
2135	}
2136}
2137
2138
2139/*****************\
2140* Antenna control *
2141\*****************/
2142
2143/**
2144 * DOC: Antenna control
2145 *
2146 * Hw supports up to 14 antennas ! I haven't found any card that implements
2147 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150 *
2151 * We can have a single antenna for RX and multiple antennas for TX.
2152 * RX antenna is our "default" antenna (usually antenna 1) set on
2153 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154 * (0 for automatic selection, 1 - 14 antenna number).
2155 *
2156 * We can let hw do all the work doing fast antenna diversity for both
2157 * tx and rx or we can do things manually. Here are the options we have
2158 * (all are bits of STA_ID1 register):
2159 *
2160 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161 * control descriptor, use the default antenna to transmit or else use the last
2162 * antenna on which we received an ACK.
2163 *
2164 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165 * the antenna on which we got the ACK for that frame.
2166 *
2167 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168 * one on the TX descriptor.
2169 *
2170 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171 * (ACKs etc), or else use current antenna (the one we just used for TX).
2172 *
2173 * Using the above we support the following scenarios:
2174 *
2175 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176 *
2177 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2178 *
2179 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2180 *
2181 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182 *
2183 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184 *
2185 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186 *
2187 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188 *
2189 * Also note that when setting antenna to F on tx descriptor card inverts
2190 * current tx antenna.
2191 */
2192
2193/**
2194 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195 * @ah: The &struct ath5k_hw
2196 * @ant: Antenna number
2197 */
2198static void
2199ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200{
2201	if (ah->ah_version != AR5K_AR5210)
2202		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203}
2204
2205/**
2206 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2207 * @ah: The &struct ath5k_hw
2208 * @ee_mode: One of enum ath5k_driver_mode
2209 * @enable: True to enable, false to disable
2210 */
2211static void
2212ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213{
2214	switch (ee_mode) {
2215	case AR5K_EEPROM_MODE_11G:
2216		/* XXX: This is set to
2217		 * disabled on initvals !!! */
2218	case AR5K_EEPROM_MODE_11A:
2219		if (enable)
2220			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222		else
2223			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225		break;
2226	case AR5K_EEPROM_MODE_11B:
2227		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229		break;
2230	default:
2231		return;
2232	}
2233
2234	if (enable) {
2235		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236				AR5K_PHY_RESTART_DIV_GC, 4);
2237
2238		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239					AR5K_PHY_FAST_ANT_DIV_EN);
2240	} else {
2241		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242				AR5K_PHY_RESTART_DIV_GC, 0);
2243
2244		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245					AR5K_PHY_FAST_ANT_DIV_EN);
2246	}
2247}
2248
2249/**
2250 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251 * @ah: The &struct ath5k_hw
2252 * @ee_mode: One of enum ath5k_driver_mode
2253 *
2254 * Switch table comes from EEPROM and includes information on controlling
2255 * the 2 antenna RX attenuators
2256 */
2257void
2258ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259{
2260	u8 ant0, ant1;
2261
2262	/*
2263	 * In case a fixed antenna was set as default
2264	 * use the same switch table twice.
2265	 */
2266	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270	else {
2271		ant0 = AR5K_ANT_SWTABLE_A;
2272		ant1 = AR5K_ANT_SWTABLE_B;
2273	}
2274
2275	/* Set antenna idle switch table */
2276	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279			AR5K_PHY_ANT_CTL_TXRX_EN));
2280
2281	/* Set antenna switch tables */
2282	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283		AR5K_PHY_ANT_SWITCH_TABLE_0);
2284	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285		AR5K_PHY_ANT_SWITCH_TABLE_1);
2286}
2287
2288/**
2289 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2290 * @ah: The &struct ath5k_hw
2291 * @ant_mode: One of enum ath5k_ant_mode
2292 */
2293void
2294ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295{
2296	struct ieee80211_channel *channel = ah->ah_current_channel;
2297	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298	bool use_def_for_sg;
2299	int ee_mode;
2300	u8 def_ant, tx_ant;
2301	u32 sta_id1 = 0;
2302
2303	/* if channel is not initialized yet we can't set the antennas
2304	 * so just store the mode. it will be set on the next reset */
2305	if (channel == NULL) {
2306		ah->ah_ant_mode = ant_mode;
2307		return;
2308	}
2309
2310	def_ant = ah->ah_def_ant;
2311
2312	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2313
2314	switch (ant_mode) {
2315	case AR5K_ANTMODE_DEFAULT:
2316		tx_ant = 0;
2317		use_def_for_tx = false;
2318		update_def_on_tx = false;
2319		use_def_for_rts = false;
2320		use_def_for_sg = false;
2321		fast_div = true;
2322		break;
2323	case AR5K_ANTMODE_FIXED_A:
2324		def_ant = 1;
2325		tx_ant = 1;
2326		use_def_for_tx = true;
2327		update_def_on_tx = false;
2328		use_def_for_rts = true;
2329		use_def_for_sg = true;
2330		fast_div = false;
2331		break;
2332	case AR5K_ANTMODE_FIXED_B:
2333		def_ant = 2;
2334		tx_ant = 2;
2335		use_def_for_tx = true;
2336		update_def_on_tx = false;
2337		use_def_for_rts = true;
2338		use_def_for_sg = true;
2339		fast_div = false;
2340		break;
2341	case AR5K_ANTMODE_SINGLE_AP:
2342		def_ant = 1;	/* updated on tx */
2343		tx_ant = 0;
2344		use_def_for_tx = true;
2345		update_def_on_tx = true;
2346		use_def_for_rts = true;
2347		use_def_for_sg = true;
2348		fast_div = true;
2349		break;
2350	case AR5K_ANTMODE_SECTOR_AP:
2351		tx_ant = 1;	/* variable */
2352		use_def_for_tx = false;
2353		update_def_on_tx = false;
2354		use_def_for_rts = true;
2355		use_def_for_sg = false;
2356		fast_div = false;
2357		break;
2358	case AR5K_ANTMODE_SECTOR_STA:
2359		tx_ant = 1;	/* variable */
2360		use_def_for_tx = true;
2361		update_def_on_tx = false;
2362		use_def_for_rts = true;
2363		use_def_for_sg = false;
2364		fast_div = true;
2365		break;
2366	case AR5K_ANTMODE_DEBUG:
2367		def_ant = 1;
2368		tx_ant = 2;
2369		use_def_for_tx = false;
2370		update_def_on_tx = false;
2371		use_def_for_rts = false;
2372		use_def_for_sg = false;
2373		fast_div = false;
2374		break;
2375	default:
2376		return;
2377	}
2378
2379	ah->ah_tx_ant = tx_ant;
2380	ah->ah_ant_mode = ant_mode;
2381	ah->ah_def_ant = def_ant;
2382
2383	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2384	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2385	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2386	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2387
2388	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2389
2390	if (sta_id1)
2391		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2392
2393	ath5k_hw_set_antenna_switch(ah, ee_mode);
2394	/* Note: set diversity before default antenna
2395	 * because it won't work correctly */
2396	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2397	ath5k_hw_set_def_antenna(ah, def_ant);
2398}
2399
2400
2401/****************\
2402* TX power setup *
2403\****************/
2404
2405/*
2406 * Helper functions
2407 */
2408
2409/**
2410 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411 * @target: X value of the middle point
2412 * @x_left: X value of the left point
2413 * @x_right: X value of the right point
2414 * @y_left: Y value of the left point
2415 * @y_right: Y value of the right point
2416 */
2417static s16
2418ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2419					s16 y_left, s16 y_right)
2420{
2421	s16 ratio, result;
2422
2423	/* Avoid divide by zero and skip interpolation
2424	 * if we have the same point */
2425	if ((x_left == x_right) || (y_left == y_right))
2426		return y_left;
2427
2428	/*
2429	 * Since we use ints and not fps, we need to scale up in
2430	 * order to get a sane ratio value (or else we 'll eg. get
2431	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432	 * to have some accuracy both for 0.5 and 0.25 steps.
2433	 */
2434	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2435
2436	/* Now scale down to be in range */
2437	result = y_left + (ratio * (target - x_left) / 100);
2438
2439	return result;
2440}
2441
2442/**
2443 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444 * linear PCDAC curve
2445 * @stepL: Left array with y values (pcdac steps)
2446 * @stepR: Right array with y values (pcdac steps)
2447 * @pwrL: Left array with x values (power steps)
2448 * @pwrR: Right array with x values (power steps)
2449 *
2450 * Since we have the top of the curve and we draw the line below
2451 * until we reach 1 (1 pcdac step) we need to know which point
2452 * (x value) that is so that we don't go below x axis and have negative
2453 * pcdac values when creating the curve, or fill the table with zeros.
2454 */
2455static s16
2456ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2457				const s16 *pwrL, const s16 *pwrR)
2458{
2459	s8 tmp;
2460	s16 min_pwrL, min_pwrR;
2461	s16 pwr_i;
2462
2463	/* Some vendors write the same pcdac value twice !!! */
2464	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2465		return max(pwrL[0], pwrR[0]);
2466
2467	if (pwrL[0] == pwrL[1])
2468		min_pwrL = pwrL[0];
2469	else {
2470		pwr_i = pwrL[0];
2471		do {
2472			pwr_i--;
2473			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2474							pwrL[0], pwrL[1],
2475							stepL[0], stepL[1]);
2476		} while (tmp > 1);
2477
2478		min_pwrL = pwr_i;
2479	}
2480
2481	if (pwrR[0] == pwrR[1])
2482		min_pwrR = pwrR[0];
2483	else {
2484		pwr_i = pwrR[0];
2485		do {
2486			pwr_i--;
2487			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2488							pwrR[0], pwrR[1],
2489							stepR[0], stepR[1]);
2490		} while (tmp > 1);
2491
2492		min_pwrR = pwr_i;
2493	}
2494
2495	/* Keep the right boundary so that it works for both curves */
2496	return max(min_pwrL, min_pwrR);
2497}
2498
2499/**
2500 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501 * @pmin: Minimum power value (xmin)
2502 * @pmax: Maximum power value (xmax)
2503 * @pwr: Array of power steps (x values)
2504 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505 * @num_points: Number of provided points
2506 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507 * @type: One of enum ath5k_powertable_type (eeprom.h)
2508 *
2509 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510 * Power to PCDAC curve.
2511 *
2512 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514 * PCDAC/PDADC step for each curve is 64 but we can write more than
2515 * one curves on hw so we can go up to 128 (which is the max step we
2516 * can write on the final table).
2517 *
2518 * We write y values (PCDAC/PDADC steps) on hw.
2519 */
2520static void
2521ath5k_create_power_curve(s16 pmin, s16 pmax,
2522			const s16 *pwr, const u8 *vpd,
2523			u8 num_points,
2524			u8 *vpd_table, u8 type)
2525{
2526	u8 idx[2] = { 0, 1 };
2527	s16 pwr_i = 2 * pmin;
2528	int i;
2529
2530	if (num_points < 2)
2531		return;
2532
2533	/* We want the whole line, so adjust boundaries
2534	 * to cover the entire power range. Note that
2535	 * power values are already 0.25dB so no need
2536	 * to multiply pwr_i by 2 */
2537	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2538		pwr_i = pmin;
2539		pmin = 0;
2540		pmax = 63;
2541	}
2542
2543	/* Find surrounding turning points (TPs)
2544	 * and interpolate between them */
2545	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2546	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2547
2548		/* We passed the right TP, move to the next set of TPs
2549		 * if we pass the last TP, extrapolate above using the last
2550		 * two TPs for ratio */
2551		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2552			idx[0]++;
2553			idx[1]++;
2554		}
2555
2556		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2557						pwr[idx[0]], pwr[idx[1]],
2558						vpd[idx[0]], vpd[idx[1]]);
2559
2560		/* Increase by 0.5dB
2561		 * (0.25 dB units) */
2562		pwr_i += 2;
2563	}
2564}
2565
2566/**
2567 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568 * for a given channel.
2569 * @ah: The &struct ath5k_hw
2570 * @channel: The &struct ieee80211_channel
2571 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2573 *
2574 * Get the surrounding per-channel power calibration piers
2575 * for a given frequency so that we can interpolate between
2576 * them and come up with an appropriate dataset for our current
2577 * channel.
2578 */
2579static void
2580ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2581			struct ieee80211_channel *channel,
2582			struct ath5k_chan_pcal_info **pcinfo_l,
2583			struct ath5k_chan_pcal_info **pcinfo_r)
2584{
2585	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2586	struct ath5k_chan_pcal_info *pcinfo;
2587	u8 idx_l, idx_r;
2588	u8 mode, max, i;
2589	u32 target = channel->center_freq;
2590
2591	idx_l = 0;
2592	idx_r = 0;
2593
2594	switch (channel->hw_value) {
2595	case AR5K_EEPROM_MODE_11A:
2596		pcinfo = ee->ee_pwr_cal_a;
2597		mode = AR5K_EEPROM_MODE_11A;
2598		break;
2599	case AR5K_EEPROM_MODE_11B:
2600		pcinfo = ee->ee_pwr_cal_b;
2601		mode = AR5K_EEPROM_MODE_11B;
2602		break;
2603	case AR5K_EEPROM_MODE_11G:
2604	default:
2605		pcinfo = ee->ee_pwr_cal_g;
2606		mode = AR5K_EEPROM_MODE_11G;
2607		break;
2608	}
2609	max = ee->ee_n_piers[mode] - 1;
2610
2611	/* Frequency is below our calibrated
2612	 * range. Use the lowest power curve
2613	 * we have */
2614	if (target < pcinfo[0].freq) {
2615		idx_l = idx_r = 0;
2616		goto done;
2617	}
2618
2619	/* Frequency is above our calibrated
2620	 * range. Use the highest power curve
2621	 * we have */
2622	if (target > pcinfo[max].freq) {
2623		idx_l = idx_r = max;
2624		goto done;
2625	}
2626
2627	/* Frequency is inside our calibrated
2628	 * channel range. Pick the surrounding
2629	 * calibration piers so that we can
2630	 * interpolate */
2631	for (i = 0; i <= max; i++) {
2632
2633		/* Frequency matches one of our calibration
2634		 * piers, no need to interpolate, just use
2635		 * that calibration pier */
2636		if (pcinfo[i].freq == target) {
2637			idx_l = idx_r = i;
2638			goto done;
2639		}
2640
2641		/* We found a calibration pier that's above
2642		 * frequency, use this pier and the previous
2643		 * one to interpolate */
2644		if (target < pcinfo[i].freq) {
2645			idx_r = i;
2646			idx_l = idx_r - 1;
2647			goto done;
2648		}
2649	}
2650
2651done:
2652	*pcinfo_l = &pcinfo[idx_l];
2653	*pcinfo_r = &pcinfo[idx_r];
2654}
2655
2656/**
2657 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2658 * calibration data
2659 * @ah: The &struct ath5k_hw *ah,
2660 * @channel: The &struct ieee80211_channel
2661 * @rates: The &struct ath5k_rate_pcal_info to fill
2662 *
2663 * Get the surrounding per-rate power calibration data
2664 * for a given frequency and interpolate between power
2665 * values to set max target power supported by hw for
2666 * each rate on this frequency.
2667 */
2668static void
2669ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2670			struct ieee80211_channel *channel,
2671			struct ath5k_rate_pcal_info *rates)
2672{
2673	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2674	struct ath5k_rate_pcal_info *rpinfo;
2675	u8 idx_l, idx_r;
2676	u8 mode, max, i;
2677	u32 target = channel->center_freq;
2678
2679	idx_l = 0;
2680	idx_r = 0;
2681
2682	switch (channel->hw_value) {
2683	case AR5K_MODE_11A:
2684		rpinfo = ee->ee_rate_tpwr_a;
2685		mode = AR5K_EEPROM_MODE_11A;
2686		break;
2687	case AR5K_MODE_11B:
2688		rpinfo = ee->ee_rate_tpwr_b;
2689		mode = AR5K_EEPROM_MODE_11B;
2690		break;
2691	case AR5K_MODE_11G:
2692	default:
2693		rpinfo = ee->ee_rate_tpwr_g;
2694		mode = AR5K_EEPROM_MODE_11G;
2695		break;
2696	}
2697	max = ee->ee_rate_target_pwr_num[mode] - 1;
2698
2699	/* Get the surrounding calibration
2700	 * piers - same as above */
2701	if (target < rpinfo[0].freq) {
2702		idx_l = idx_r = 0;
2703		goto done;
2704	}
2705
2706	if (target > rpinfo[max].freq) {
2707		idx_l = idx_r = max;
2708		goto done;
2709	}
2710
2711	for (i = 0; i <= max; i++) {
2712
2713		if (rpinfo[i].freq == target) {
2714			idx_l = idx_r = i;
2715			goto done;
2716		}
2717
2718		if (target < rpinfo[i].freq) {
2719			idx_r = i;
2720			idx_l = idx_r - 1;
2721			goto done;
2722		}
2723	}
2724
2725done:
2726	/* Now interpolate power value, based on the frequency */
2727	rates->freq = target;
2728
2729	rates->target_power_6to24 =
2730		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2731					rpinfo[idx_r].freq,
2732					rpinfo[idx_l].target_power_6to24,
2733					rpinfo[idx_r].target_power_6to24);
2734
2735	rates->target_power_36 =
2736		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2737					rpinfo[idx_r].freq,
2738					rpinfo[idx_l].target_power_36,
2739					rpinfo[idx_r].target_power_36);
2740
2741	rates->target_power_48 =
2742		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2743					rpinfo[idx_r].freq,
2744					rpinfo[idx_l].target_power_48,
2745					rpinfo[idx_r].target_power_48);
2746
2747	rates->target_power_54 =
2748		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2749					rpinfo[idx_r].freq,
2750					rpinfo[idx_l].target_power_54,
2751					rpinfo[idx_r].target_power_54);
2752}
2753
2754/**
2755 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756 * @ah: the &struct ath5k_hw
2757 * @channel: The &struct ieee80211_channel
2758 *
2759 * Get the max edge power for this channel if
2760 * we have such data from EEPROM's Conformance Test
2761 * Limits (CTL), and limit max power if needed.
2762 */
2763static void
2764ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2765			struct ieee80211_channel *channel)
2766{
2767	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2768	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2769	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2770	u8 *ctl_val = ee->ee_ctl;
2771	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2772	s16 edge_pwr = 0;
2773	u8 rep_idx;
2774	u8 i, ctl_mode;
2775	u8 ctl_idx = 0xFF;
2776	u32 target = channel->center_freq;
2777
2778	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2779
2780	switch (channel->hw_value) {
2781	case AR5K_MODE_11A:
2782		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2783			ctl_mode |= AR5K_CTL_TURBO;
2784		else
2785			ctl_mode |= AR5K_CTL_11A;
2786		break;
2787	case AR5K_MODE_11G:
2788		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2789			ctl_mode |= AR5K_CTL_TURBOG;
2790		else
2791			ctl_mode |= AR5K_CTL_11G;
2792		break;
2793	case AR5K_MODE_11B:
2794		ctl_mode |= AR5K_CTL_11B;
2795		break;
2796	default:
2797		return;
2798	}
2799
2800	for (i = 0; i < ee->ee_ctls; i++) {
2801		if (ctl_val[i] == ctl_mode) {
2802			ctl_idx = i;
2803			break;
2804		}
2805	}
2806
2807	/* If we have a CTL dataset available grab it and find the
2808	 * edge power for our frequency */
2809	if (ctl_idx == 0xFF)
2810		return;
2811
2812	/* Edge powers are sorted by frequency from lower
2813	 * to higher. Each CTL corresponds to 8 edge power
2814	 * measurements. */
2815	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2816
2817	/* Don't do boundaries check because we
2818	 * might have more that one bands defined
2819	 * for this mode */
2820
2821	/* Get the edge power that's closer to our
2822	 * frequency */
2823	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2824		rep_idx += i;
2825		if (target <= rep[rep_idx].freq)
2826			edge_pwr = (s16) rep[rep_idx].edge;
2827	}
2828
2829	if (edge_pwr)
2830		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2831}
2832
2833
2834/*
2835 * Power to PCDAC table functions
2836 */
2837
2838/**
2839 * DOC: Power to PCDAC table functions
2840 *
2841 * For RF5111 we have an XPD -eXternal Power Detector- curve
2842 * for each calibrated channel. Each curve has 0,5dB Power steps
2843 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844 * exponential function. To recreate the curve we read 11 points
2845 * from eeprom (eeprom.c) and interpolate here.
2846 *
2847 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850 * power steps on x axis and PCDAC steps on y axis and looks like a
2851 * linear function. To recreate the curve and pass the power values
2852 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854 * and interpolate here.
2855 *
2856 * For a given channel we get the calibrated points (piers) for it or
2857 * -if we don't have calibration data for this specific channel- from the
2858 * available surrounding channels we have calibration data for, after we do a
2859 * linear interpolation between them. Then since we have our calibrated points
2860 * for this channel, we do again a linear interpolation between them to get the
2861 * whole curve.
2862 *
2863 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864 */
2865
2866/**
2867 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868 * @ah: The &struct ath5k_hw
2869 * @table_min: Minimum power (x min)
2870 * @table_max: Maximum power (x max)
2871 *
2872 * No further processing is needed for RF5111, the only thing we have to
2873 * do is fill the values below and above calibration range since eeprom data
2874 * may not cover the entire PCDAC table.
2875 */
2876static void
2877ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2878							s16 *table_max)
2879{
2880	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2881	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2882	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2883	s16	min_pwr, max_pwr;
2884
2885	/* Get table boundaries */
2886	min_pwr = table_min[0];
2887	pcdac_0 = pcdac_tmp[0];
2888
2889	max_pwr = table_max[0];
2890	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2891
2892	/* Extrapolate below minimum using pcdac_0 */
2893	pcdac_i = 0;
2894	for (i = 0; i < min_pwr; i++)
2895		pcdac_out[pcdac_i++] = pcdac_0;
2896
2897	/* Copy values from pcdac_tmp */
2898	pwr_idx = min_pwr;
2899	for (i = 0; pwr_idx <= max_pwr &&
2900		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2901		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2902		pwr_idx++;
2903	}
2904
2905	/* Extrapolate above maximum */
2906	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2907		pcdac_out[pcdac_i++] = pcdac_n;
2908
2909}
2910
2911/**
2912 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913 * @ah: The &struct ath5k_hw
2914 * @table_min: Minimum power (x min)
2915 * @table_max: Maximum power (x max)
2916 * @pdcurves: Number of pd curves
2917 *
2918 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919 * RFX112 can have up to 2 curves (one for low txpower range and one for
2920 * higher txpower range). We need to put them both on pcdac_out and place
2921 * them in the correct location. In case we only have one curve available
2922 * just fit it on pcdac_out (it's supposed to cover the entire range of
2923 * available pwr levels since it's always the higher power curve). Extrapolate
2924 * below and above final table if needed.
2925 */
2926static void
2927ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2928						s16 *table_max, u8 pdcurves)
2929{
2930	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2931	u8	*pcdac_low_pwr;
2932	u8	*pcdac_high_pwr;
2933	u8	*pcdac_tmp;
2934	u8	pwr;
2935	s16	max_pwr_idx;
2936	s16	min_pwr_idx;
2937	s16	mid_pwr_idx = 0;
2938	/* Edge flag turns on the 7nth bit on the PCDAC
2939	 * to declare the higher power curve (force values
2940	 * to be greater than 64). If we only have one curve
2941	 * we don't need to set this, if we have 2 curves and
2942	 * fill the table backwards this can also be used to
2943	 * switch from higher power curve to lower power curve */
2944	u8	edge_flag;
2945	int	i;
2946
2947	/* When we have only one curve available
2948	 * that's the higher power curve. If we have
2949	 * two curves the first is the high power curve
2950	 * and the next is the low power curve. */
2951	if (pdcurves > 1) {
2952		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2953		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2954		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2955		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2956
2957		/* If table size goes beyond 31.5dB, keep the
2958		 * upper 31.5dB range when setting tx power.
2959		 * Note: 126 = 31.5 dB in quarter dB steps */
2960		if (table_max[0] - table_min[1] > 126)
2961			min_pwr_idx = table_max[0] - 126;
2962		else
2963			min_pwr_idx = table_min[1];
2964
2965		/* Since we fill table backwards
2966		 * start from high power curve */
2967		pcdac_tmp = pcdac_high_pwr;
2968
2969		edge_flag = 0x40;
2970	} else {
2971		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2972		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2973		min_pwr_idx = table_min[0];
2974		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2975		pcdac_tmp = pcdac_high_pwr;
2976		edge_flag = 0;
2977	}
2978
2979	/* This is used when setting tx power*/
2980	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2981
2982	/* Fill Power to PCDAC table backwards */
2983	pwr = max_pwr_idx;
2984	for (i = 63; i >= 0; i--) {
2985		/* Entering lower power range, reset
2986		 * edge flag and set pcdac_tmp to lower
2987		 * power curve.*/
2988		if (edge_flag == 0x40 &&
2989		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2990			edge_flag = 0x00;
2991			pcdac_tmp = pcdac_low_pwr;
2992			pwr = mid_pwr_idx / 2;
2993		}
2994
2995		/* Don't go below 1, extrapolate below if we have
2996		 * already switched to the lower power curve -or
2997		 * we only have one curve and edge_flag is zero
2998		 * anyway */
2999		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3000			while (i >= 0) {
3001				pcdac_out[i] = pcdac_out[i + 1];
3002				i--;
3003			}
3004			break;
3005		}
3006
3007		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3008
3009		/* Extrapolate above if pcdac is greater than
3010		 * 126 -this can happen because we OR pcdac_out
3011		 * value with edge_flag on high power curve */
3012		if (pcdac_out[i] > 126)
3013			pcdac_out[i] = 126;
3014
3015		/* Decrease by a 0.5dB step */
3016		pwr--;
3017	}
3018}
3019
3020/**
3021 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022 * @ah: The &struct ath5k_hw
3023 */
3024static void
3025ath5k_write_pcdac_table(struct ath5k_hw *ah)
3026{
3027	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3028	int	i;
3029
3030	/*
3031	 * Write TX power values
3032	 */
3033	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3034		ath5k_hw_reg_write(ah,
3035			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3036			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3037			AR5K_PHY_PCDAC_TXPOWER(i));
3038	}
3039}
3040
3041
3042/*
3043 * Power to PDADC table functions
3044 */
3045
3046/**
3047 * DOC: Power to PDADC table functions
3048 *
3049 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052 * PDADC steps on y axis and looks like an exponential function like the
3053 * RF5111 curve.
3054 *
3055 * To recreate the curves we read the points from eeprom (eeprom.c)
3056 * and interpolate here. Note that in most cases only 2 (higher and lower)
3057 * curves are used (like RF5112) but vendors have the opportunity to include
3058 * all 4 curves on eeprom. The final curve (higher power) has an extra
3059 * point for better accuracy like RF5112.
3060 *
3061 * The process is similar to what we do above for RF5111/5112
3062 */
3063
3064/**
3065 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066 * @ah: The &struct ath5k_hw
3067 * @pwr_min: Minimum power (x min)
3068 * @pwr_max: Maximum power (x max)
3069 * @pdcurves: Number of available curves
3070 *
3071 * Combine the various pd curves and create the final Power to PDADC table
3072 * We can have up to 4 pd curves, we need to do a similar process
3073 * as we do for RF5112. This time we don't have an edge_flag but we
3074 * set the gain boundaries on a separate register.
3075 */
3076static void
3077ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3078			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3079{
3080	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3081	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3082	u8 *pdadc_tmp;
3083	s16 pdadc_0;
3084	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3085	u8 pd_gain_overlap;
3086
3087	/* Note: Register value is initialized on initvals
3088	 * there is no feedback from hw.
3089	 * XXX: What about pd_gain_overlap from EEPROM ? */
3090	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3091		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3092
3093	/* Create final PDADC table */
3094	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3095		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3096
3097		if (pdg == pdcurves - 1)
3098			/* 2 dB boundary stretch for last
3099			 * (higher power) curve */
3100			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3101		else
3102			/* Set gain boundary in the middle
3103			 * between this curve and the next one */
3104			gain_boundaries[pdg] =
3105				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3106
3107		/* Sanity check in case our 2 db stretch got out of
3108		 * range. */
3109		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3110			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3111
3112		/* For the first curve (lower power)
3113		 * start from 0 dB */
3114		if (pdg == 0)
3115			pdadc_0 = 0;
3116		else
3117			/* For the other curves use the gain overlap */
3118			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3119							pd_gain_overlap;
3120
3121		/* Force each power step to be at least 0.5 dB */
3122		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3123			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3124		else
3125			pwr_step = 1;
3126
3127		/* If pdadc_0 is negative, we need to extrapolate
3128		 * below this pdgain by a number of pwr_steps */
3129		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3130			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3131			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3132			pdadc_0++;
3133		}
3134
3135		/* Set last pwr level, using gain boundaries */
3136		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3137		/* Limit it to be inside pwr range */
3138		table_size = pwr_max[pdg] - pwr_min[pdg];
3139		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3140
3141		/* Fill pdadc_out table */
3142		while (pdadc_0 < max_idx && pdadc_i < 128)
3143			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3144
3145		/* Need to extrapolate above this pdgain? */
3146		if (pdadc_n <= max_idx)
3147			continue;
3148
3149		/* Force each power step to be at least 0.5 dB */
3150		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3151			pwr_step = pdadc_tmp[table_size - 1] -
3152						pdadc_tmp[table_size - 2];
3153		else
3154			pwr_step = 1;
3155
3156		/* Extrapolate above */
3157		while ((pdadc_0 < (s16) pdadc_n) &&
3158		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3159			s16 tmp = pdadc_tmp[table_size - 1] +
3160					(pdadc_0 - max_idx) * pwr_step;
3161			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3162			pdadc_0++;
3163		}
3164	}
3165
3166	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3167		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3168		pdg++;
3169	}
3170
3171	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3172		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3173		pdadc_i++;
3174	}
3175
3176	/* Set gain boundaries */
3177	ath5k_hw_reg_write(ah,
3178		AR5K_REG_SM(pd_gain_overlap,
3179			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3180		AR5K_REG_SM(gain_boundaries[0],
3181			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3182		AR5K_REG_SM(gain_boundaries[1],
3183			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3184		AR5K_REG_SM(gain_boundaries[2],
3185			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3186		AR5K_REG_SM(gain_boundaries[3],
3187			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3188		AR5K_PHY_TPC_RG5);
3189
3190	/* Used for setting rate power table */
3191	ah->ah_txpower.txp_min_idx = pwr_min[0];
3192
3193}
3194
3195/**
3196 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197 * @ah: The &struct ath5k_hw
3198 * @ee_mode: One of enum ath5k_driver_mode
3199 */
3200static void
3201ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3202{
3203	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3204	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3205	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3206	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3207	u32 reg;
3208	u8 i;
3209
3210	/* Select the right pdgain curves */
3211
3212	/* Clear current settings */
3213	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3214	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3215		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3216		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3217		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3218
3219	/*
3220	 * Use pd_gains curve from eeprom
3221	 *
3222	 * This overrides the default setting from initvals
3223	 * in case some vendors (e.g. Zcomax) don't use the default
3224	 * curves. If we don't honor their settings we 'll get a
3225	 * 5dB (1 * gain overlap ?) drop.
3226	 */
3227	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3228
3229	switch (pdcurves) {
3230	case 3:
3231		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3232		fallthrough;
3233	case 2:
3234		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3235		fallthrough;
3236	case 1:
3237		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3238		break;
3239	}
3240	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3241
3242	/*
3243	 * Write TX power values
3244	 */
3245	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3246		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3247		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3248	}
3249}
3250
3251
3252/*
3253 * Common code for PCDAC/PDADC tables
3254 */
3255
3256/**
3257 * ath5k_setup_channel_powertable() - Set up power table for this channel
3258 * @ah: The &struct ath5k_hw
3259 * @channel: The &struct ieee80211_channel
3260 * @ee_mode: One of enum ath5k_driver_mode
3261 * @type: One of enum ath5k_powertable_type (eeprom.h)
3262 *
3263 * This is the main function that uses all of the above
3264 * to set PCDAC/PDADC table on hw for the current channel.
3265 * This table is used for tx power calibration on the baseband,
3266 * without it we get weird tx power levels and in some cases
3267 * distorted spectral mask
3268 */
3269static int
3270ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3271			struct ieee80211_channel *channel,
3272			u8 ee_mode, u8 type)
3273{
3274	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3275	struct ath5k_chan_pcal_info *pcinfo_L;
3276	struct ath5k_chan_pcal_info *pcinfo_R;
3277	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3278	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3279	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3280	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3281	u8 *tmpL;
3282	u8 *tmpR;
3283	u32 target = channel->center_freq;
3284	int pdg, i;
3285
3286	/* Get surrounding freq piers for this channel */
3287	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3288						&pcinfo_L,
3289						&pcinfo_R);
3290
3291	/* Loop over pd gain curves on
3292	 * surrounding freq piers by index */
3293	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3294
3295		/* Fill curves in reverse order
3296		 * from lower power (max gain)
3297		 * to higher power. Use curve -> idx
3298		 * backmapping we did on eeprom init */
3299		u8 idx = pdg_curve_to_idx[pdg];
3300
3301		/* Grab the needed curves by index */
3302		pdg_L = &pcinfo_L->pd_curves[idx];
3303		pdg_R = &pcinfo_R->pd_curves[idx];
3304
3305		/* Initialize the temp tables */
3306		tmpL = ah->ah_txpower.tmpL[pdg];
3307		tmpR = ah->ah_txpower.tmpR[pdg];
3308
3309		/* Set curve's x boundaries and create
3310		 * curves so that they cover the same
3311		 * range (if we don't do that one table
3312		 * will have values on some range and the
3313		 * other one won't have any so interpolation
3314		 * will fail) */
3315		table_min[pdg] = min(pdg_L->pd_pwr[0],
3316					pdg_R->pd_pwr[0]) / 2;
3317
3318		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3319				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3320
3321		/* Now create the curves on surrounding channels
3322		 * and interpolate if needed to get the final
3323		 * curve for this gain on this channel */
3324		switch (type) {
3325		case AR5K_PWRTABLE_LINEAR_PCDAC:
3326			/* Override min/max so that we don't loose
3327			 * accuracy (don't divide by 2) */
3328			table_min[pdg] = min(pdg_L->pd_pwr[0],
3329						pdg_R->pd_pwr[0]);
3330
3331			table_max[pdg] =
3332				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3333					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3334
3335			/* Override minimum so that we don't get
3336			 * out of bounds while extrapolating
3337			 * below. Don't do this when we have 2
3338			 * curves and we are on the high power curve
3339			 * because table_min is ok in this case */
3340			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3341
3342				table_min[pdg] =
3343					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3344								pdg_R->pd_step,
3345								pdg_L->pd_pwr,
3346								pdg_R->pd_pwr);
3347
3348				/* Don't go too low because we will
3349				 * miss the upper part of the curve.
3350				 * Note: 126 = 31.5dB (max power supported)
3351				 * in 0.25dB units */
3352				if (table_max[pdg] - table_min[pdg] > 126)
3353					table_min[pdg] = table_max[pdg] - 126;
3354			}
3355
3356			fallthrough;
3357		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3358		case AR5K_PWRTABLE_PWR_TO_PDADC:
3359
3360			ath5k_create_power_curve(table_min[pdg],
3361						table_max[pdg],
3362						pdg_L->pd_pwr,
3363						pdg_L->pd_step,
3364						pdg_L->pd_points, tmpL, type);
3365
3366			/* We are in a calibration
3367			 * pier, no need to interpolate
3368			 * between freq piers */
3369			if (pcinfo_L == pcinfo_R)
3370				continue;
3371
3372			ath5k_create_power_curve(table_min[pdg],
3373						table_max[pdg],
3374						pdg_R->pd_pwr,
3375						pdg_R->pd_step,
3376						pdg_R->pd_points, tmpR, type);
3377			break;
3378		default:
3379			return -EINVAL;
3380		}
3381
3382		/* Interpolate between curves
3383		 * of surrounding freq piers to
3384		 * get the final curve for this
3385		 * pd gain. Re-use tmpL for interpolation
3386		 * output */
3387		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3388		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3389			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3390							(s16) pcinfo_L->freq,
3391							(s16) pcinfo_R->freq,
3392							(s16) tmpL[i],
3393							(s16) tmpR[i]);
3394		}
3395	}
3396
3397	/* Now we have a set of curves for this
3398	 * channel on tmpL (x range is table_max - table_min
3399	 * and y values are tmpL[pdg][]) sorted in the same
3400	 * order as EEPROM (because we've used the backmapping).
3401	 * So for RF5112 it's from higher power to lower power
3402	 * and for RF2413 it's from lower power to higher power.
3403	 * For RF5111 we only have one curve. */
3404
3405	/* Fill min and max power levels for this
3406	 * channel by interpolating the values on
3407	 * surrounding channels to complete the dataset */
3408	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3409					(s16) pcinfo_L->freq,
3410					(s16) pcinfo_R->freq,
3411					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3412
3413	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3414					(s16) pcinfo_L->freq,
3415					(s16) pcinfo_R->freq,
3416					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3417
3418	/* Fill PCDAC/PDADC table */
3419	switch (type) {
3420	case AR5K_PWRTABLE_LINEAR_PCDAC:
3421		/* For RF5112 we can have one or two curves
3422		 * and each curve covers a certain power lvl
3423		 * range so we need to do some more processing */
3424		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3425						ee->ee_pd_gains[ee_mode]);
3426
3427		/* Set txp.offset so that we can
3428		 * match max power value with max
3429		 * table index */
3430		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3431		break;
3432	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3433		/* We are done for RF5111 since it has only
3434		 * one curve, just fit the curve on the table */
3435		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3436
3437		/* No rate powertable adjustment for RF5111 */
3438		ah->ah_txpower.txp_min_idx = 0;
3439		ah->ah_txpower.txp_offset = 0;
3440		break;
3441	case AR5K_PWRTABLE_PWR_TO_PDADC:
3442		/* Set PDADC boundaries and fill
3443		 * final PDADC table */
3444		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3445						ee->ee_pd_gains[ee_mode]);
3446
3447		/* Set txp.offset, note that table_min
3448		 * can be negative */
3449		ah->ah_txpower.txp_offset = table_min[0];
3450		break;
3451	default:
3452		return -EINVAL;
3453	}
3454
3455	ah->ah_txpower.txp_setup = true;
3456
3457	return 0;
3458}
3459
3460/**
3461 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462 * @ah: The &struct ath5k_hw
3463 * @ee_mode: One of enum ath5k_driver_mode
3464 * @type: One of enum ath5k_powertable_type (eeprom.h)
3465 */
3466static void
3467ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3468{
3469	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3470		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3471	else
3472		ath5k_write_pcdac_table(ah);
3473}
3474
3475
3476/**
3477 * DOC: Per-rate tx power setting
3478 *
3479 * This is the code that sets the desired tx power limit (below
3480 * maximum) on hw for each rate (we also have TPC that sets
3481 * power per packet type). We do that by providing an index on the
3482 * PCDAC/PDADC table we set up above, for each rate.
3483 *
3484 * For now we only limit txpower based on maximum tx power
3485 * supported by hw (what's inside rate_info) + conformance test
3486 * limits. We need to limit this even more, based on regulatory domain
3487 * etc to be safe. Normally this is done from above so we don't care
3488 * here, all we care is that the tx power we set will be O.K.
3489 * for the hw (e.g. won't create noise on PA etc).
3490 *
3491 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492 * x values) and is indexed as follows:
3493 * rates[0] - rates[7] -> OFDM rates
3494 * rates[8] - rates[14] -> CCK rates
3495 * rates[15] -> XR rates (they all have the same power)
3496 */
3497
3498/**
3499 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500 * @ah: The &struct ath5k_hw
3501 * @max_pwr: The maximum tx power requested in 0.5dB steps
3502 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503 * @ee_mode: One of enum ath5k_driver_mode
3504 */
3505static void
3506ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3507			struct ath5k_rate_pcal_info *rate_info,
3508			u8 ee_mode)
3509{
3510	unsigned int i;
3511	u16 *rates;
3512	s16 rate_idx_scaled = 0;
3513
3514	/* max_pwr is power level we got from driver/user in 0.5dB
3515	 * units, switch to 0.25dB units so we can compare */
3516	max_pwr *= 2;
3517	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3518
3519	/* apply rate limits */
3520	rates = ah->ah_txpower.txp_rates_power_table;
3521
3522	/* OFDM rates 6 to 24Mb/s */
3523	for (i = 0; i < 5; i++)
3524		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3525
3526	/* Rest OFDM rates */
3527	rates[5] = min(rates[0], rate_info->target_power_36);
3528	rates[6] = min(rates[0], rate_info->target_power_48);
3529	rates[7] = min(rates[0], rate_info->target_power_54);
3530
3531	/* CCK rates */
3532	/* 1L */
3533	rates[8] = min(rates[0], rate_info->target_power_6to24);
3534	/* 2L */
3535	rates[9] = min(rates[0], rate_info->target_power_36);
3536	/* 2S */
3537	rates[10] = min(rates[0], rate_info->target_power_36);
3538	/* 5L */
3539	rates[11] = min(rates[0], rate_info->target_power_48);
3540	/* 5S */
3541	rates[12] = min(rates[0], rate_info->target_power_48);
3542	/* 11L */
3543	rates[13] = min(rates[0], rate_info->target_power_54);
3544	/* 11S */
3545	rates[14] = min(rates[0], rate_info->target_power_54);
3546
3547	/* XR rates */
3548	rates[15] = min(rates[0], rate_info->target_power_6to24);
3549
3550	/* CCK rates have different peak to average ratio
3551	 * so we have to tweak their power so that gainf
3552	 * correction works ok. For this we use OFDM to
3553	 * CCK delta from eeprom */
3554	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3555	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3556		for (i = 8; i <= 15; i++)
3557			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3558
3559	/* Save min/max and current tx power for this channel
3560	 * in 0.25dB units.
3561	 *
3562	 * Note: We use rates[0] for current tx power because
3563	 * it covers most of the rates, in most cases. It's our
3564	 * tx power limit and what the user expects to see. */
3565	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3566	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3567
3568	/* Set max txpower for correct OFDM operation on all rates
3569	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3570	 * gain probe and it's in 0.5dB units */
3571	ah->ah_txpower.txp_ofdm = rates[7];
3572
3573	/* Now that we have all rates setup use table offset to
3574	 * match the power range set by user with the power indices
3575	 * on PCDAC/PDADC table */
3576	for (i = 0; i < 16; i++) {
3577		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3578		/* Don't get out of bounds */
3579		if (rate_idx_scaled > 63)
3580			rate_idx_scaled = 63;
3581		if (rate_idx_scaled < 0)
3582			rate_idx_scaled = 0;
3583		rates[i] = rate_idx_scaled;
3584	}
3585}
3586
3587
3588/**
3589 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590 * @ah: The &struct ath5k_hw
3591 * @channel: The &struct ieee80211_channel
3592 * @txpower: Requested tx power in 0.5dB steps
3593 *
3594 * Combines all of the above to set the requested tx power limit
3595 * on hw.
3596 */
3597static int
3598ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3599		 u8 txpower)
3600{
3601	struct ath5k_rate_pcal_info rate_info;
3602	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3603	int ee_mode;
3604	u8 type;
3605	int ret;
3606
3607	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3608		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3609		return -EINVAL;
3610	}
3611
3612	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3613
3614	/* Initialize TX power table */
3615	switch (ah->ah_radio) {
3616	case AR5K_RF5110:
3617		/* TODO */
3618		return 0;
3619	case AR5K_RF5111:
3620		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3621		break;
3622	case AR5K_RF5112:
3623		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3624		break;
3625	case AR5K_RF2413:
3626	case AR5K_RF5413:
3627	case AR5K_RF2316:
3628	case AR5K_RF2317:
3629	case AR5K_RF2425:
3630		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3631		break;
3632	default:
3633		return -EINVAL;
3634	}
3635
3636	/*
3637	 * If we don't change channel/mode skip tx powertable calculation
3638	 * and use the cached one.
3639	 */
3640	if (!ah->ah_txpower.txp_setup ||
3641	    (channel->hw_value != curr_channel->hw_value) ||
3642	    (channel->center_freq != curr_channel->center_freq)) {
3643		/* Reset TX power values but preserve requested
3644		 * tx power from above */
3645		int requested_txpower = ah->ah_txpower.txp_requested;
3646
3647		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3648
3649		/* Restore TPC setting and requested tx power */
3650		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3651
3652		ah->ah_txpower.txp_requested = requested_txpower;
3653
3654		/* Calculate the powertable */
3655		ret = ath5k_setup_channel_powertable(ah, channel,
3656							ee_mode, type);
3657		if (ret)
3658			return ret;
3659	}
3660
3661	/* Write table on hw */
3662	ath5k_write_channel_powertable(ah, ee_mode, type);
3663
3664	/* Limit max power if we have a CTL available */
3665	ath5k_get_max_ctl_power(ah, channel);
3666
3667	/* FIXME: Antenna reduction stuff */
3668
3669	/* FIXME: Limit power on turbo modes */
3670
3671	/* FIXME: TPC scale reduction */
3672
3673	/* Get surrounding channels for per-rate power table
3674	 * calibration */
3675	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3676
3677	/* Setup rate power table */
3678	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3679
3680	/* Write rate power table on hw */
3681	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3682		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3684
3685	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3686		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3688
3689	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3690		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3692
3693	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3694		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3696
3697	/* FIXME: TPC support */
3698	if (ah->ah_txpower.txp_tpc) {
3699		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3700			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3701
3702		ath5k_hw_reg_write(ah,
3703			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3704			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3705			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3706			AR5K_TPC);
3707	} else {
3708		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3709			AR5K_PHY_TXPOWER_RATE_MAX);
3710	}
3711
3712	return 0;
3713}
3714
3715/**
3716 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717 * @ah: The &struct ath5k_hw
3718 * @txpower: The requested tx power limit in 0.5dB steps
3719 *
3720 * This function provides access to ath5k_hw_txpower to the driver in
3721 * case user or an application changes it while PHY is running.
3722 */
3723int
3724ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3725{
3726	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3727		"changing txpower to %d\n", txpower);
3728
3729	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3730}
3731
3732
3733/*************\
3734 Init function
3735\*************/
3736
3737/**
3738 * ath5k_hw_phy_init() - Initialize PHY
3739 * @ah: The &struct ath5k_hw
3740 * @channel: The @struct ieee80211_channel
3741 * @mode: One of enum ath5k_driver_mode
3742 * @fast: Try a fast channel switch instead
3743 *
3744 * This is the main function used during reset to initialize PHY
3745 * or do a fast channel change if possible.
3746 *
3747 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748 * warm reset state !
3749 */
3750int
3751ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3752		      u8 mode, bool fast)
3753{
3754	struct ieee80211_channel *curr_channel;
3755	int ret, i;
3756	u32 phy_tst1;
3757	ret = 0;
3758
3759	/*
3760	 * Sanity check for fast flag
3761	 * Don't try fast channel change when changing modulation
3762	 * mode/band. We check for chip compatibility on
3763	 * ath5k_hw_reset.
3764	 */
3765	curr_channel = ah->ah_current_channel;
3766	if (fast && (channel->hw_value != curr_channel->hw_value))
3767		return -EINVAL;
3768
3769	/*
3770	 * On fast channel change we only set the synth parameters
3771	 * while PHY is running, enable calibration and skip the rest.
3772	 */
3773	if (fast) {
3774		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3775				    AR5K_PHY_RFBUS_REQ_REQUEST);
3776		for (i = 0; i < 100; i++) {
3777			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3778				break;
3779			udelay(5);
3780		}
3781		/* Failed */
3782		if (i >= 100)
3783			return -EIO;
3784
3785		/* Set channel and wait for synth */
3786		ret = ath5k_hw_channel(ah, channel);
3787		if (ret)
3788			return ret;
3789
3790		ath5k_hw_wait_for_synth(ah, channel);
3791	}
3792
3793	/*
3794	 * Set TX power
3795	 *
3796	 * Note: We need to do that before we set
3797	 * RF buffer settings on 5211/5212+ so that we
3798	 * properly set curve indices.
3799	 */
3800	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3801					ah->ah_txpower.txp_requested * 2 :
3802					AR5K_TUNE_MAX_TXPOWER);
3803	if (ret)
3804		return ret;
3805
3806	/* Write OFDM timings on 5212*/
3807	if (ah->ah_version == AR5K_AR5212 &&
3808		channel->hw_value != AR5K_MODE_11B) {
3809
3810		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3811		if (ret)
3812			return ret;
3813
3814		/* Spur info is available only from EEPROM versions
3815		 * greater than 5.3, but the EEPROM routines will use
3816		 * static values for older versions */
3817		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3818			ath5k_hw_set_spur_mitigation_filter(ah,
3819							    channel);
3820	}
3821
3822	/* If we used fast channel switching
3823	 * we are done, release RF bus and
3824	 * fire up NF calibration.
3825	 *
3826	 * Note: Only NF calibration due to
3827	 * channel change, not AGC calibration
3828	 * since AGC is still running !
3829	 */
3830	if (fast) {
3831		/*
3832		 * Release RF Bus grant
3833		 */
3834		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3835				    AR5K_PHY_RFBUS_REQ_REQUEST);
3836
3837		/*
3838		 * Start NF calibration
3839		 */
3840		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3841					AR5K_PHY_AGCCTL_NF);
3842
3843		return ret;
3844	}
3845
3846	/*
3847	 * For 5210 we do all initialization using
3848	 * initvals, so we don't have to modify
3849	 * any settings (5210 also only supports
3850	 * a/aturbo modes)
3851	 */
3852	if (ah->ah_version != AR5K_AR5210) {
3853
3854		/*
3855		 * Write initial RF gain settings
3856		 * This should work for both 5111/5112
3857		 */
3858		ret = ath5k_hw_rfgain_init(ah, channel->band);
3859		if (ret)
3860			return ret;
3861
3862		usleep_range(1000, 1500);
3863
3864		/*
3865		 * Write RF buffer
3866		 */
3867		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3868		if (ret)
3869			return ret;
3870
3871		/*Enable/disable 802.11b mode on 5111
3872		(enable 2111 frequency converter + CCK)*/
3873		if (ah->ah_radio == AR5K_RF5111) {
3874			if (mode == AR5K_MODE_11B)
3875				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3876				    AR5K_TXCFG_B_MODE);
3877			else
3878				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3879				    AR5K_TXCFG_B_MODE);
3880		}
3881
3882	} else if (ah->ah_version == AR5K_AR5210) {
3883		usleep_range(1000, 1500);
3884		/* Disable phy and wait */
3885		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3886		usleep_range(1000, 1500);
3887	}
3888
3889	/* Set channel on PHY */
3890	ret = ath5k_hw_channel(ah, channel);
3891	if (ret)
3892		return ret;
3893
3894	/*
3895	 * Enable the PHY and wait until completion
3896	 * This includes BaseBand and Synthesizer
3897	 * activation.
3898	 */
3899	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3900
3901	ath5k_hw_wait_for_synth(ah, channel);
3902
3903	/*
3904	 * Perform ADC test to see if baseband is ready
3905	 * Set tx hold and check adc test register
3906	 */
3907	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3908	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3909	for (i = 0; i <= 20; i++) {
3910		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3911			break;
3912		usleep_range(200, 250);
3913	}
3914	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3915
3916	/*
3917	 * Start automatic gain control calibration
3918	 *
3919	 * During AGC calibration RX path is re-routed to
3920	 * a power detector so we don't receive anything.
3921	 *
3922	 * This method is used to calibrate some static offsets
3923	 * used together with on-the fly I/Q calibration (the
3924	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3925	 * interrupt rx path.
3926	 *
3927	 * While rx path is re-routed to the power detector we also
3928	 * start a noise floor calibration to measure the
3929	 * card's noise floor (the noise we measure when we are not
3930	 * transmitting or receiving anything).
3931	 *
3932	 * If we are in a noisy environment, AGC calibration may time
3933	 * out and/or noise floor calibration might timeout.
3934	 */
3935	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3936				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3937
3938	/* At the same time start I/Q calibration for QAM constellation
3939	 * -no need for CCK- */
3940	ah->ah_iq_cal_needed = false;
3941	if (!(mode == AR5K_MODE_11B)) {
3942		ah->ah_iq_cal_needed = true;
3943		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3944				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3945		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3946				AR5K_PHY_IQ_RUN);
3947	}
3948
3949	/* Wait for gain calibration to finish (we check for I/Q calibration
3950	 * during ath5k_phy_calibrate) */
3951	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3952			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3953		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3954			channel->center_freq);
3955	}
3956
3957	/* Restore antenna mode */
3958	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3959
3960	return ret;
3961}
3962