1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer,
15 *    without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 *    redistribution must be conditioned upon including a substantially
19 *    similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 *    of any contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45#include <linux/module.h>
46#include <linux/delay.h>
47#include <linux/dma-mapping.h>
48#include <linux/hardirq.h>
49#include <linux/if.h>
50#include <linux/io.h>
51#include <linux/netdevice.h>
52#include <linux/cache.h>
53#include <linux/ethtool.h>
54#include <linux/uaccess.h>
55#include <linux/slab.h>
56#include <linux/etherdevice.h>
57#include <linux/nl80211.h>
58
59#include <net/cfg80211.h>
60#include <net/ieee80211_radiotap.h>
61
62#include <asm/unaligned.h>
63
64#include <net/mac80211.h>
65#include "base.h"
66#include "reg.h"
67#include "debug.h"
68#include "ani.h"
69#include "ath5k.h"
70#include "../regd.h"
71
72#define CREATE_TRACE_POINTS
73#include "trace.h"
74
75bool ath5k_modparam_nohwcrypt;
76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78
79static bool modparam_fastchanswitch;
80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83static bool ath5k_modparam_no_hw_rfkill_switch;
84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85		   bool, 0444);
86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
88
89/* Module info */
90MODULE_AUTHOR("Jiri Slaby");
91MODULE_AUTHOR("Nick Kossifidis");
92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94MODULE_LICENSE("Dual BSD/GPL");
95
96static int ath5k_init(struct ieee80211_hw *hw);
97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98								bool skip_pcu);
99
100/* Known SREVs */
101static const struct ath5k_srev_name srev_names[] = {
102#ifdef CONFIG_ATH5K_AHB
103	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
104	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
105	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
106	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
107	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
108	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
109	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
110#else
111	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
112	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
113	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
114	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
115	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
116	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
117	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
118	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
119	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
120	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
121	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
122	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
123	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
124	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
125	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
126	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
127	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
128	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
129#endif
130	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
131	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
132	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
133	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
134	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
135	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
136	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
137	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
138	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
139	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
140	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
141	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
142	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
143	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
144	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
145#ifdef CONFIG_ATH5K_AHB
146	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
147	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
148#endif
149	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
150};
151
152static const struct ieee80211_rate ath5k_rates[] = {
153	{ .bitrate = 10,
154	  .hw_value = ATH5K_RATE_CODE_1M, },
155	{ .bitrate = 20,
156	  .hw_value = ATH5K_RATE_CODE_2M,
157	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159	{ .bitrate = 55,
160	  .hw_value = ATH5K_RATE_CODE_5_5M,
161	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163	{ .bitrate = 110,
164	  .hw_value = ATH5K_RATE_CODE_11M,
165	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167	{ .bitrate = 60,
168	  .hw_value = ATH5K_RATE_CODE_6M,
169	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170		   IEEE80211_RATE_SUPPORTS_10MHZ },
171	{ .bitrate = 90,
172	  .hw_value = ATH5K_RATE_CODE_9M,
173	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174		   IEEE80211_RATE_SUPPORTS_10MHZ },
175	{ .bitrate = 120,
176	  .hw_value = ATH5K_RATE_CODE_12M,
177	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178		   IEEE80211_RATE_SUPPORTS_10MHZ },
179	{ .bitrate = 180,
180	  .hw_value = ATH5K_RATE_CODE_18M,
181	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182		   IEEE80211_RATE_SUPPORTS_10MHZ },
183	{ .bitrate = 240,
184	  .hw_value = ATH5K_RATE_CODE_24M,
185	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186		   IEEE80211_RATE_SUPPORTS_10MHZ },
187	{ .bitrate = 360,
188	  .hw_value = ATH5K_RATE_CODE_36M,
189	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190		   IEEE80211_RATE_SUPPORTS_10MHZ },
191	{ .bitrate = 480,
192	  .hw_value = ATH5K_RATE_CODE_48M,
193	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194		   IEEE80211_RATE_SUPPORTS_10MHZ },
195	{ .bitrate = 540,
196	  .hw_value = ATH5K_RATE_CODE_54M,
197	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198		   IEEE80211_RATE_SUPPORTS_10MHZ },
199};
200
201static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
202{
203	u64 tsf = ath5k_hw_get_tsf64(ah);
204
205	if ((tsf & 0x7fff) < rstamp)
206		tsf -= 0x8000;
207
208	return (tsf & ~0x7fff) | rstamp;
209}
210
211const char *
212ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
213{
214	const char *name = "xxxxx";
215	unsigned int i;
216
217	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218		if (srev_names[i].sr_type != type)
219			continue;
220
221		if ((val & 0xf0) == srev_names[i].sr_val)
222			name = srev_names[i].sr_name;
223
224		if ((val & 0xff) == srev_names[i].sr_val) {
225			name = srev_names[i].sr_name;
226			break;
227		}
228	}
229
230	return name;
231}
232static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
233{
234	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235	return ath5k_hw_reg_read(ah, reg_offset);
236}
237
238static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
239{
240	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241	ath5k_hw_reg_write(ah, val, reg_offset);
242}
243
244static const struct ath_ops ath5k_common_ops = {
245	.read = ath5k_ioread32,
246	.write = ath5k_iowrite32,
247};
248
249/***********************\
250* Driver Initialization *
251\***********************/
252
253static void ath5k_reg_notifier(struct wiphy *wiphy,
254			       struct regulatory_request *request)
255{
256	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
257	struct ath5k_hw *ah = hw->priv;
258	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
259
260	ath_reg_notifier_apply(wiphy, request, regulatory);
261}
262
263/********************\
264* Channel/mode setup *
265\********************/
266
267/*
268 * Returns true for the channel numbers used.
269 */
270#ifdef CONFIG_ATH5K_TEST_CHANNELS
271static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
272{
273	return true;
274}
275
276#else
277static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
278{
279	if (band == NL80211_BAND_2GHZ && chan <= 14)
280		return true;
281
282	return	/* UNII 1,2 */
283		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
284		/* midband */
285		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286		/* UNII-3 */
287		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288		/* 802.11j 5.030-5.080 GHz (20MHz) */
289		(chan == 8 || chan == 12 || chan == 16) ||
290		/* 802.11j 4.9GHz (20MHz) */
291		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
292}
293#endif
294
295static unsigned int
296ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297		unsigned int mode, unsigned int max)
298{
299	unsigned int count, size, freq, ch;
300	enum nl80211_band band;
301
302	switch (mode) {
303	case AR5K_MODE_11A:
304		/* 1..220, but 2GHz frequencies are filtered by check_channel */
305		size = 220;
306		band = NL80211_BAND_5GHZ;
307		break;
308	case AR5K_MODE_11B:
309	case AR5K_MODE_11G:
310		size = 26;
311		band = NL80211_BAND_2GHZ;
312		break;
313	default:
314		ATH5K_WARN(ah, "bad mode, not copying channels\n");
315		return 0;
316	}
317
318	count = 0;
319	for (ch = 1; ch <= size && count < max; ch++) {
320		freq = ieee80211_channel_to_frequency(ch, band);
321
322		if (freq == 0) /* mapping failed - not a standard channel */
323			continue;
324
325		/* Write channel info, needed for ath5k_channel_ok() */
326		channels[count].center_freq = freq;
327		channels[count].band = band;
328		channels[count].hw_value = mode;
329
330		/* Check if channel is supported by the chipset */
331		if (!ath5k_channel_ok(ah, &channels[count]))
332			continue;
333
334		if (!ath5k_is_standard_channel(ch, band))
335			continue;
336
337		count++;
338	}
339
340	return count;
341}
342
343static void
344ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
345{
346	u8 i;
347
348	for (i = 0; i < AR5K_MAX_RATES; i++)
349		ah->rate_idx[b->band][i] = -1;
350
351	for (i = 0; i < b->n_bitrates; i++) {
352		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
353		if (b->bitrates[i].hw_value_short)
354			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
355	}
356}
357
358static int
359ath5k_setup_bands(struct ieee80211_hw *hw)
360{
361	struct ath5k_hw *ah = hw->priv;
362	struct ieee80211_supported_band *sband;
363	int max_c, count_c = 0;
364	int i;
365
366	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
367	max_c = ARRAY_SIZE(ah->channels);
368
369	/* 2GHz band */
370	sband = &ah->sbands[NL80211_BAND_2GHZ];
371	sband->band = NL80211_BAND_2GHZ;
372	sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
373
374	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
375		/* G mode */
376		memcpy(sband->bitrates, &ath5k_rates[0],
377		       sizeof(struct ieee80211_rate) * 12);
378		sband->n_bitrates = 12;
379
380		sband->channels = ah->channels;
381		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
382					AR5K_MODE_11G, max_c);
383
384		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
385		count_c = sband->n_channels;
386		max_c -= count_c;
387	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
388		/* B mode */
389		memcpy(sband->bitrates, &ath5k_rates[0],
390		       sizeof(struct ieee80211_rate) * 4);
391		sband->n_bitrates = 4;
392
393		/* 5211 only supports B rates and uses 4bit rate codes
394		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395		 * fix them up here:
396		 */
397		if (ah->ah_version == AR5K_AR5211) {
398			for (i = 0; i < 4; i++) {
399				sband->bitrates[i].hw_value =
400					sband->bitrates[i].hw_value & 0xF;
401				sband->bitrates[i].hw_value_short =
402					sband->bitrates[i].hw_value_short & 0xF;
403			}
404		}
405
406		sband->channels = ah->channels;
407		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408					AR5K_MODE_11B, max_c);
409
410		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
411		count_c = sband->n_channels;
412		max_c -= count_c;
413	}
414	ath5k_setup_rate_idx(ah, sband);
415
416	/* 5GHz band, A mode */
417	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418		sband = &ah->sbands[NL80211_BAND_5GHZ];
419		sband->band = NL80211_BAND_5GHZ;
420		sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
421
422		memcpy(sband->bitrates, &ath5k_rates[4],
423		       sizeof(struct ieee80211_rate) * 8);
424		sband->n_bitrates = 8;
425
426		sband->channels = &ah->channels[count_c];
427		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
428					AR5K_MODE_11A, max_c);
429
430		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
431	}
432	ath5k_setup_rate_idx(ah, sband);
433
434	ath5k_debug_dump_bands(ah);
435
436	return 0;
437}
438
439/*
440 * Set/change channels. We always reset the chip.
441 * To accomplish this we must first cleanup any pending DMA,
442 * then restart stuff after a la  ath5k_init.
443 *
444 * Called with ah->lock.
445 */
446int
447ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
448{
449	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
450		  "channel set, resetting (%u -> %u MHz)\n",
451		  ah->curchan->center_freq, chandef->chan->center_freq);
452
453	switch (chandef->width) {
454	case NL80211_CHAN_WIDTH_20:
455	case NL80211_CHAN_WIDTH_20_NOHT:
456		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457		break;
458	case NL80211_CHAN_WIDTH_5:
459		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460		break;
461	case NL80211_CHAN_WIDTH_10:
462		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463		break;
464	default:
465		WARN_ON(1);
466		return -EINVAL;
467	}
468
469	/*
470	 * To switch channels clear any pending DMA operations;
471	 * wait long enough for the RX fifo to drain, reset the
472	 * hardware at the new frequency, and then re-enable
473	 * the relevant bits of the h/w.
474	 */
475	return ath5k_reset(ah, chandef->chan, true);
476}
477
478void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
479{
480	struct ath5k_vif_iter_data *iter_data = data;
481	int i;
482	struct ath5k_vif *avf = (void *)vif->drv_priv;
483
484	if (iter_data->hw_macaddr)
485		for (i = 0; i < ETH_ALEN; i++)
486			iter_data->mask[i] &=
487				~(iter_data->hw_macaddr[i] ^ mac[i]);
488
489	if (!iter_data->found_active) {
490		iter_data->found_active = true;
491		memcpy(iter_data->active_mac, mac, ETH_ALEN);
492	}
493
494	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
495		if (ether_addr_equal(iter_data->hw_macaddr, mac))
496			iter_data->need_set_hw_addr = false;
497
498	if (!iter_data->any_assoc) {
499		if (avf->assoc)
500			iter_data->any_assoc = true;
501	}
502
503	/* Calculate combined mode - when APs are active, operate in AP mode.
504	 * Otherwise use the mode of the new interface. This can currently
505	 * only deal with combinations of APs and STAs. Only one ad-hoc
506	 * interfaces is allowed.
507	 */
508	if (avf->opmode == NL80211_IFTYPE_AP)
509		iter_data->opmode = NL80211_IFTYPE_AP;
510	else {
511		if (avf->opmode == NL80211_IFTYPE_STATION)
512			iter_data->n_stas++;
513		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514			iter_data->opmode = avf->opmode;
515	}
516}
517
518void
519ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
520				   struct ieee80211_vif *vif)
521{
522	struct ath_common *common = ath5k_hw_common(ah);
523	struct ath5k_vif_iter_data iter_data;
524	u32 rfilt;
525
526	/*
527	 * Use the hardware MAC address as reference, the hardware uses it
528	 * together with the BSSID mask when matching addresses.
529	 */
530	iter_data.hw_macaddr = common->macaddr;
531	eth_broadcast_addr(iter_data.mask);
532	iter_data.found_active = false;
533	iter_data.need_set_hw_addr = true;
534	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
535	iter_data.n_stas = 0;
536
537	if (vif)
538		ath5k_vif_iter(&iter_data, vif->addr, vif);
539
540	/* Get list of all active MAC addresses */
541	ieee80211_iterate_active_interfaces_atomic(
542		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543		ath5k_vif_iter, &iter_data);
544	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
545
546	ah->opmode = iter_data.opmode;
547	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
548		/* Nothing active, default to station mode */
549		ah->opmode = NL80211_IFTYPE_STATION;
550
551	ath5k_hw_set_opmode(ah, ah->opmode);
552	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553		  ah->opmode, ath_opmode_to_string(ah->opmode));
554
555	if (iter_data.need_set_hw_addr && iter_data.found_active)
556		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
557
558	if (ath5k_hw_hasbssidmask(ah))
559		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
560
561	/* Set up RX Filter */
562	if (iter_data.n_stas > 1) {
563		/* If you have multiple STA interfaces connected to
564		 * different APs, ARPs are not received (most of the time?)
565		 * Enabling PROMISC appears to fix that problem.
566		 */
567		ah->filter_flags |= AR5K_RX_FILTER_PROM;
568	}
569
570	rfilt = ah->filter_flags;
571	ath5k_hw_set_rx_filter(ah, rfilt);
572	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
573}
574
575static inline int
576ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
577{
578	int rix;
579
580	/* return base rate on errors */
581	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582			"hw_rix out of bounds: %x\n", hw_rix))
583		return 0;
584
585	rix = ah->rate_idx[ah->curchan->band][hw_rix];
586	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587		rix = 0;
588
589	return rix;
590}
591
592/***************\
593* Buffers setup *
594\***************/
595
596static
597struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
598{
599	struct ath_common *common = ath5k_hw_common(ah);
600	struct sk_buff *skb;
601
602	/*
603	 * Allocate buffer with headroom_needed space for the
604	 * fake physical layer header at the start.
605	 */
606	skb = ath_rxbuf_alloc(common,
607			      common->rx_bufsize,
608			      GFP_ATOMIC);
609
610	if (!skb) {
611		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
612				common->rx_bufsize);
613		return NULL;
614	}
615
616	*skb_addr = dma_map_single(ah->dev,
617				   skb->data, common->rx_bufsize,
618				   DMA_FROM_DEVICE);
619
620	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
622		dev_kfree_skb(skb);
623		return NULL;
624	}
625	return skb;
626}
627
628static int
629ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
630{
631	struct sk_buff *skb = bf->skb;
632	struct ath5k_desc *ds;
633	int ret;
634
635	if (!skb) {
636		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
637		if (!skb)
638			return -ENOMEM;
639		bf->skb = skb;
640	}
641
642	/*
643	 * Setup descriptors.  For receive we always terminate
644	 * the descriptor list with a self-linked entry so we'll
645	 * not get overrun under high load (as can happen with a
646	 * 5212 when ANI processing enables PHY error frames).
647	 *
648	 * To ensure the last descriptor is self-linked we create
649	 * each descriptor as self-linked and add it to the end.  As
650	 * each additional descriptor is added the previous self-linked
651	 * entry is "fixed" naturally.  This should be safe even
652	 * if DMA is happening.  When processing RX interrupts we
653	 * never remove/process the last, self-linked, entry on the
654	 * descriptor list.  This ensures the hardware always has
655	 * someplace to write a new frame.
656	 */
657	ds = bf->desc;
658	ds->ds_link = bf->daddr;	/* link to self */
659	ds->ds_data = bf->skbaddr;
660	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
661	if (ret) {
662		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
663		return ret;
664	}
665
666	if (ah->rxlink != NULL)
667		*ah->rxlink = bf->daddr;
668	ah->rxlink = &ds->ds_link;
669	return 0;
670}
671
672static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
673{
674	struct ieee80211_hdr *hdr;
675	enum ath5k_pkt_type htype;
676	__le16 fc;
677
678	hdr = (struct ieee80211_hdr *)skb->data;
679	fc = hdr->frame_control;
680
681	if (ieee80211_is_beacon(fc))
682		htype = AR5K_PKT_TYPE_BEACON;
683	else if (ieee80211_is_probe_resp(fc))
684		htype = AR5K_PKT_TYPE_PROBE_RESP;
685	else if (ieee80211_is_atim(fc))
686		htype = AR5K_PKT_TYPE_ATIM;
687	else if (ieee80211_is_pspoll(fc))
688		htype = AR5K_PKT_TYPE_PSPOLL;
689	else
690		htype = AR5K_PKT_TYPE_NORMAL;
691
692	return htype;
693}
694
695static struct ieee80211_rate *
696ath5k_get_rate(const struct ieee80211_hw *hw,
697	       const struct ieee80211_tx_info *info,
698	       struct ath5k_buf *bf, int idx)
699{
700	/*
701	* convert a ieee80211_tx_rate RC-table entry to
702	* the respective ieee80211_rate struct
703	*/
704	if (bf->rates[idx].idx < 0) {
705		return NULL;
706	}
707
708	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
709}
710
711static u16
712ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713			const struct ieee80211_tx_info *info,
714			struct ath5k_buf *bf, int idx)
715{
716	struct ieee80211_rate *rate;
717	u16 hw_rate;
718	u8 rc_flags;
719
720	rate = ath5k_get_rate(hw, info, bf, idx);
721	if (!rate)
722		return 0;
723
724	rc_flags = bf->rates[idx].flags;
725	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726		   rate->hw_value_short : rate->hw_value;
727
728	return hw_rate;
729}
730
731static int
732ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
733		  struct ath5k_txq *txq, int padsize,
734		  struct ieee80211_tx_control *control)
735{
736	struct ath5k_desc *ds = bf->desc;
737	struct sk_buff *skb = bf->skb;
738	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740	struct ieee80211_rate *rate;
741	unsigned int mrr_rate[3], mrr_tries[3];
742	int i, ret;
743	u16 hw_rate;
744	u16 cts_rate = 0;
745	u16 duration = 0;
746	u8 rc_flags;
747
748	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
749
750	/* XXX endianness */
751	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
752			DMA_TO_DEVICE);
753
754	if (dma_mapping_error(ah->dev, bf->skbaddr))
755		return -ENOSPC;
756
757	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
758			       ARRAY_SIZE(bf->rates));
759
760	rate = ath5k_get_rate(ah->hw, info, bf, 0);
761
762	if (!rate) {
763		ret = -EINVAL;
764		goto err_unmap;
765	}
766
767	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
768		flags |= AR5K_TXDESC_NOACK;
769
770	rc_flags = bf->rates[0].flags;
771
772	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
773
774	pktlen = skb->len;
775
776	/* FIXME: If we are in g mode and rate is a CCK rate
777	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
778	 * from tx power (value is in dB units already) */
779	if (info->control.hw_key) {
780		keyidx = info->control.hw_key->hw_key_idx;
781		pktlen += info->control.hw_key->icv_len;
782	}
783	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
784		flags |= AR5K_TXDESC_RTSENA;
785		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
786		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
787			info->control.vif, pktlen, info));
788	}
789	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
790		flags |= AR5K_TXDESC_CTSENA;
791		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
792		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
793			info->control.vif, pktlen, info));
794	}
795
796	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
797		ieee80211_get_hdrlen_from_skb(skb), padsize,
798		get_hw_packet_type(skb),
799		(ah->ah_txpower.txp_requested * 2),
800		hw_rate,
801		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
802		cts_rate, duration);
803	if (ret)
804		goto err_unmap;
805
806	/* Set up MRR descriptor */
807	if (ah->ah_capabilities.cap_has_mrr_support) {
808		memset(mrr_rate, 0, sizeof(mrr_rate));
809		memset(mrr_tries, 0, sizeof(mrr_tries));
810
811		for (i = 0; i < 3; i++) {
812
813			rate = ath5k_get_rate(ah->hw, info, bf, i);
814			if (!rate)
815				break;
816
817			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
818			mrr_tries[i] = bf->rates[i].count;
819		}
820
821		ath5k_hw_setup_mrr_tx_desc(ah, ds,
822			mrr_rate[0], mrr_tries[0],
823			mrr_rate[1], mrr_tries[1],
824			mrr_rate[2], mrr_tries[2]);
825	}
826
827	ds->ds_link = 0;
828	ds->ds_data = bf->skbaddr;
829
830	spin_lock_bh(&txq->lock);
831	list_add_tail(&bf->list, &txq->q);
832	txq->txq_len++;
833	if (txq->link == NULL) /* is this first packet? */
834		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
835	else /* no, so only link it */
836		*txq->link = bf->daddr;
837
838	txq->link = &ds->ds_link;
839	ath5k_hw_start_tx_dma(ah, txq->qnum);
840	spin_unlock_bh(&txq->lock);
841
842	return 0;
843err_unmap:
844	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
845	return ret;
846}
847
848/*******************\
849* Descriptors setup *
850\*******************/
851
852static int
853ath5k_desc_alloc(struct ath5k_hw *ah)
854{
855	struct ath5k_desc *ds;
856	struct ath5k_buf *bf;
857	dma_addr_t da;
858	unsigned int i;
859	int ret;
860
861	/* allocate descriptors */
862	ah->desc_len = sizeof(struct ath5k_desc) *
863			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
864
865	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
866				&ah->desc_daddr, GFP_KERNEL);
867	if (ah->desc == NULL) {
868		ATH5K_ERR(ah, "can't allocate descriptors\n");
869		ret = -ENOMEM;
870		goto err;
871	}
872	ds = ah->desc;
873	da = ah->desc_daddr;
874	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
875		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
876
877	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
878			sizeof(struct ath5k_buf), GFP_KERNEL);
879	if (bf == NULL) {
880		ATH5K_ERR(ah, "can't allocate bufptr\n");
881		ret = -ENOMEM;
882		goto err_free;
883	}
884	ah->bufptr = bf;
885
886	INIT_LIST_HEAD(&ah->rxbuf);
887	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
888		bf->desc = ds;
889		bf->daddr = da;
890		list_add_tail(&bf->list, &ah->rxbuf);
891	}
892
893	INIT_LIST_HEAD(&ah->txbuf);
894	ah->txbuf_len = ATH_TXBUF;
895	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
896		bf->desc = ds;
897		bf->daddr = da;
898		list_add_tail(&bf->list, &ah->txbuf);
899	}
900
901	/* beacon buffers */
902	INIT_LIST_HEAD(&ah->bcbuf);
903	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
904		bf->desc = ds;
905		bf->daddr = da;
906		list_add_tail(&bf->list, &ah->bcbuf);
907	}
908
909	return 0;
910err_free:
911	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
912err:
913	ah->desc = NULL;
914	return ret;
915}
916
917void
918ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
919{
920	BUG_ON(!bf);
921	if (!bf->skb)
922		return;
923	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
924			DMA_TO_DEVICE);
925	ieee80211_free_txskb(ah->hw, bf->skb);
926	bf->skb = NULL;
927	bf->skbaddr = 0;
928	bf->desc->ds_data = 0;
929}
930
931void
932ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
933{
934	struct ath_common *common = ath5k_hw_common(ah);
935
936	BUG_ON(!bf);
937	if (!bf->skb)
938		return;
939	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
940			DMA_FROM_DEVICE);
941	dev_kfree_skb_any(bf->skb);
942	bf->skb = NULL;
943	bf->skbaddr = 0;
944	bf->desc->ds_data = 0;
945}
946
947static void
948ath5k_desc_free(struct ath5k_hw *ah)
949{
950	struct ath5k_buf *bf;
951
952	list_for_each_entry(bf, &ah->txbuf, list)
953		ath5k_txbuf_free_skb(ah, bf);
954	list_for_each_entry(bf, &ah->rxbuf, list)
955		ath5k_rxbuf_free_skb(ah, bf);
956	list_for_each_entry(bf, &ah->bcbuf, list)
957		ath5k_txbuf_free_skb(ah, bf);
958
959	/* Free memory associated with all descriptors */
960	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
961	ah->desc = NULL;
962	ah->desc_daddr = 0;
963
964	kfree(ah->bufptr);
965	ah->bufptr = NULL;
966}
967
968
969/**************\
970* Queues setup *
971\**************/
972
973static struct ath5k_txq *
974ath5k_txq_setup(struct ath5k_hw *ah,
975		int qtype, int subtype)
976{
977	struct ath5k_txq *txq;
978	struct ath5k_txq_info qi = {
979		.tqi_subtype = subtype,
980		/* XXX: default values not correct for B and XR channels,
981		 * but who cares? */
982		.tqi_aifs = AR5K_TUNE_AIFS,
983		.tqi_cw_min = AR5K_TUNE_CWMIN,
984		.tqi_cw_max = AR5K_TUNE_CWMAX
985	};
986	int qnum;
987
988	/*
989	 * Enable interrupts only for EOL and DESC conditions.
990	 * We mark tx descriptors to receive a DESC interrupt
991	 * when a tx queue gets deep; otherwise we wait for the
992	 * EOL to reap descriptors.  Note that this is done to
993	 * reduce interrupt load and this only defers reaping
994	 * descriptors, never transmitting frames.  Aside from
995	 * reducing interrupts this also permits more concurrency.
996	 * The only potential downside is if the tx queue backs
997	 * up in which case the top half of the kernel may backup
998	 * due to a lack of tx descriptors.
999	 */
1000	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1001				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1002	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1003	if (qnum < 0) {
1004		/*
1005		 * NB: don't print a message, this happens
1006		 * normally on parts with too few tx queues
1007		 */
1008		return ERR_PTR(qnum);
1009	}
1010	txq = &ah->txqs[qnum];
1011	if (!txq->setup) {
1012		txq->qnum = qnum;
1013		txq->link = NULL;
1014		INIT_LIST_HEAD(&txq->q);
1015		spin_lock_init(&txq->lock);
1016		txq->setup = true;
1017		txq->txq_len = 0;
1018		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1019		txq->txq_poll_mark = false;
1020		txq->txq_stuck = 0;
1021	}
1022	return &ah->txqs[qnum];
1023}
1024
1025static int
1026ath5k_beaconq_setup(struct ath5k_hw *ah)
1027{
1028	struct ath5k_txq_info qi = {
1029		/* XXX: default values not correct for B and XR channels,
1030		 * but who cares? */
1031		.tqi_aifs = AR5K_TUNE_AIFS,
1032		.tqi_cw_min = AR5K_TUNE_CWMIN,
1033		.tqi_cw_max = AR5K_TUNE_CWMAX,
1034		/* NB: for dynamic turbo, don't enable any other interrupts */
1035		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1036	};
1037
1038	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1039}
1040
1041static int
1042ath5k_beaconq_config(struct ath5k_hw *ah)
1043{
1044	struct ath5k_txq_info qi;
1045	int ret;
1046
1047	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1048	if (ret)
1049		goto err;
1050
1051	if (ah->opmode == NL80211_IFTYPE_AP ||
1052	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1053		/*
1054		 * Always burst out beacon and CAB traffic
1055		 * (aifs = cwmin = cwmax = 0)
1056		 */
1057		qi.tqi_aifs = 0;
1058		qi.tqi_cw_min = 0;
1059		qi.tqi_cw_max = 0;
1060	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1061		/*
1062		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1063		 */
1064		qi.tqi_aifs = 0;
1065		qi.tqi_cw_min = 0;
1066		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1067	}
1068
1069	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1070		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1071		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1072
1073	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1074	if (ret) {
1075		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1076			"hardware queue!\n", __func__);
1077		goto err;
1078	}
1079	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1080	if (ret)
1081		goto err;
1082
1083	/* reconfigure cabq with ready time to 80% of beacon_interval */
1084	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1085	if (ret)
1086		goto err;
1087
1088	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1089	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1090	if (ret)
1091		goto err;
1092
1093	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1094err:
1095	return ret;
1096}
1097
1098/**
1099 * ath5k_drain_tx_buffs - Empty tx buffers
1100 *
1101 * @ah: The &struct ath5k_hw
1102 *
1103 * Empty tx buffers from all queues in preparation
1104 * of a reset or during shutdown.
1105 *
1106 * NB:	this assumes output has been stopped and
1107 *	we do not need to block ath5k_tx_tasklet
1108 */
1109static void
1110ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1111{
1112	struct ath5k_txq *txq;
1113	struct ath5k_buf *bf, *bf0;
1114	int i;
1115
1116	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1117		if (ah->txqs[i].setup) {
1118			txq = &ah->txqs[i];
1119			spin_lock_bh(&txq->lock);
1120			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1121				ath5k_debug_printtxbuf(ah, bf);
1122
1123				ath5k_txbuf_free_skb(ah, bf);
1124
1125				spin_lock(&ah->txbuflock);
1126				list_move_tail(&bf->list, &ah->txbuf);
1127				ah->txbuf_len++;
1128				txq->txq_len--;
1129				spin_unlock(&ah->txbuflock);
1130			}
1131			txq->link = NULL;
1132			txq->txq_poll_mark = false;
1133			spin_unlock_bh(&txq->lock);
1134		}
1135	}
1136}
1137
1138static void
1139ath5k_txq_release(struct ath5k_hw *ah)
1140{
1141	struct ath5k_txq *txq = ah->txqs;
1142	unsigned int i;
1143
1144	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1145		if (txq->setup) {
1146			ath5k_hw_release_tx_queue(ah, txq->qnum);
1147			txq->setup = false;
1148		}
1149}
1150
1151
1152/*************\
1153* RX Handling *
1154\*************/
1155
1156/*
1157 * Enable the receive h/w following a reset.
1158 */
1159static int
1160ath5k_rx_start(struct ath5k_hw *ah)
1161{
1162	struct ath_common *common = ath5k_hw_common(ah);
1163	struct ath5k_buf *bf;
1164	int ret;
1165
1166	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1167
1168	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1169		  common->cachelsz, common->rx_bufsize);
1170
1171	spin_lock_bh(&ah->rxbuflock);
1172	ah->rxlink = NULL;
1173	list_for_each_entry(bf, &ah->rxbuf, list) {
1174		ret = ath5k_rxbuf_setup(ah, bf);
1175		if (ret != 0) {
1176			spin_unlock_bh(&ah->rxbuflock);
1177			goto err;
1178		}
1179	}
1180	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1181	ath5k_hw_set_rxdp(ah, bf->daddr);
1182	spin_unlock_bh(&ah->rxbuflock);
1183
1184	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1185	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1186	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1187
1188	return 0;
1189err:
1190	return ret;
1191}
1192
1193/*
1194 * Disable the receive logic on PCU (DRU)
1195 * In preparation for a shutdown.
1196 *
1197 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1198 * does.
1199 */
1200static void
1201ath5k_rx_stop(struct ath5k_hw *ah)
1202{
1203
1204	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1205	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1206
1207	ath5k_debug_printrxbuffs(ah);
1208}
1209
1210static unsigned int
1211ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1212		   struct ath5k_rx_status *rs)
1213{
1214	struct ath_common *common = ath5k_hw_common(ah);
1215	struct ieee80211_hdr *hdr = (void *)skb->data;
1216	unsigned int keyix, hlen;
1217
1218	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1219			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1220		return RX_FLAG_DECRYPTED;
1221
1222	/* Apparently when a default key is used to decrypt the packet
1223	   the hw does not set the index used to decrypt.  In such cases
1224	   get the index from the packet. */
1225	hlen = ieee80211_hdrlen(hdr->frame_control);
1226	if (ieee80211_has_protected(hdr->frame_control) &&
1227	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1228	    skb->len >= hlen + 4) {
1229		keyix = skb->data[hlen + 3] >> 6;
1230
1231		if (test_bit(keyix, common->keymap))
1232			return RX_FLAG_DECRYPTED;
1233	}
1234
1235	return 0;
1236}
1237
1238
1239static void
1240ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1241		     struct ieee80211_rx_status *rxs)
1242{
1243	u64 tsf, bc_tstamp;
1244	u32 hw_tu;
1245	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1246
1247	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1248		/*
1249		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1250		 * have updated the local TSF. We have to work around various
1251		 * hardware bugs, though...
1252		 */
1253		tsf = ath5k_hw_get_tsf64(ah);
1254		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1255		hw_tu = TSF_TO_TU(tsf);
1256
1257		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1258			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1259			(unsigned long long)bc_tstamp,
1260			(unsigned long long)rxs->mactime,
1261			(unsigned long long)(rxs->mactime - bc_tstamp),
1262			(unsigned long long)tsf);
1263
1264		/*
1265		 * Sometimes the HW will give us a wrong tstamp in the rx
1266		 * status, causing the timestamp extension to go wrong.
1267		 * (This seems to happen especially with beacon frames bigger
1268		 * than 78 byte (incl. FCS))
1269		 * But we know that the receive timestamp must be later than the
1270		 * timestamp of the beacon since HW must have synced to that.
1271		 *
1272		 * NOTE: here we assume mactime to be after the frame was
1273		 * received, not like mac80211 which defines it at the start.
1274		 */
1275		if (bc_tstamp > rxs->mactime) {
1276			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1277				"fixing mactime from %llx to %llx\n",
1278				(unsigned long long)rxs->mactime,
1279				(unsigned long long)tsf);
1280			rxs->mactime = tsf;
1281		}
1282
1283		/*
1284		 * Local TSF might have moved higher than our beacon timers,
1285		 * in that case we have to update them to continue sending
1286		 * beacons. This also takes care of synchronizing beacon sending
1287		 * times with other stations.
1288		 */
1289		if (hw_tu >= ah->nexttbtt)
1290			ath5k_beacon_update_timers(ah, bc_tstamp);
1291
1292		/* Check if the beacon timers are still correct, because a TSF
1293		 * update might have created a window between them - for a
1294		 * longer description see the comment of this function: */
1295		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1296			ath5k_beacon_update_timers(ah, bc_tstamp);
1297			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1298				"fixed beacon timers after beacon receive\n");
1299		}
1300	}
1301}
1302
1303/*
1304 * Compute padding position. skb must contain an IEEE 802.11 frame
1305 */
1306static int ath5k_common_padpos(struct sk_buff *skb)
1307{
1308	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1309	__le16 frame_control = hdr->frame_control;
1310	int padpos = 24;
1311
1312	if (ieee80211_has_a4(frame_control))
1313		padpos += ETH_ALEN;
1314
1315	if (ieee80211_is_data_qos(frame_control))
1316		padpos += IEEE80211_QOS_CTL_LEN;
1317
1318	return padpos;
1319}
1320
1321/*
1322 * This function expects an 802.11 frame and returns the number of
1323 * bytes added, or -1 if we don't have enough header room.
1324 */
1325static int ath5k_add_padding(struct sk_buff *skb)
1326{
1327	int padpos = ath5k_common_padpos(skb);
1328	int padsize = padpos & 3;
1329
1330	if (padsize && skb->len > padpos) {
1331
1332		if (skb_headroom(skb) < padsize)
1333			return -1;
1334
1335		skb_push(skb, padsize);
1336		memmove(skb->data, skb->data + padsize, padpos);
1337		return padsize;
1338	}
1339
1340	return 0;
1341}
1342
1343/*
1344 * The MAC header is padded to have 32-bit boundary if the
1345 * packet payload is non-zero. The general calculation for
1346 * padsize would take into account odd header lengths:
1347 * padsize = 4 - (hdrlen & 3); however, since only
1348 * even-length headers are used, padding can only be 0 or 2
1349 * bytes and we can optimize this a bit.  We must not try to
1350 * remove padding from short control frames that do not have a
1351 * payload.
1352 *
1353 * This function expects an 802.11 frame and returns the number of
1354 * bytes removed.
1355 */
1356static int ath5k_remove_padding(struct sk_buff *skb)
1357{
1358	int padpos = ath5k_common_padpos(skb);
1359	int padsize = padpos & 3;
1360
1361	if (padsize && skb->len >= padpos + padsize) {
1362		memmove(skb->data + padsize, skb->data, padpos);
1363		skb_pull(skb, padsize);
1364		return padsize;
1365	}
1366
1367	return 0;
1368}
1369
1370static void
1371ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1372		    struct ath5k_rx_status *rs)
1373{
1374	struct ieee80211_rx_status *rxs;
1375	struct ath_common *common = ath5k_hw_common(ah);
1376
1377	ath5k_remove_padding(skb);
1378
1379	rxs = IEEE80211_SKB_RXCB(skb);
1380
1381	rxs->flag = 0;
1382	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1383		rxs->flag |= RX_FLAG_MMIC_ERROR;
1384	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1385		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1386
1387
1388	/*
1389	 * always extend the mac timestamp, since this information is
1390	 * also needed for proper IBSS merging.
1391	 *
1392	 * XXX: it might be too late to do it here, since rs_tstamp is
1393	 * 15bit only. that means TSF extension has to be done within
1394	 * 32768usec (about 32ms). it might be necessary to move this to
1395	 * the interrupt handler, like it is done in madwifi.
1396	 */
1397	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1398	rxs->flag |= RX_FLAG_MACTIME_END;
1399
1400	rxs->freq = ah->curchan->center_freq;
1401	rxs->band = ah->curchan->band;
1402
1403	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1404
1405	rxs->antenna = rs->rs_antenna;
1406
1407	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1408		ah->stats.antenna_rx[rs->rs_antenna]++;
1409	else
1410		ah->stats.antenna_rx[0]++; /* invalid */
1411
1412	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1413	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1414	switch (ah->ah_bwmode) {
1415	case AR5K_BWMODE_5MHZ:
1416		rxs->bw = RATE_INFO_BW_5;
1417		break;
1418	case AR5K_BWMODE_10MHZ:
1419		rxs->bw = RATE_INFO_BW_10;
1420		break;
1421	default:
1422		break;
1423	}
1424
1425	if (rs->rs_rate ==
1426	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1427		rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1428
1429	trace_ath5k_rx(ah, skb);
1430
1431	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1432		ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1433
1434		/* check beacons in IBSS mode */
1435		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1436			ath5k_check_ibss_tsf(ah, skb, rxs);
1437	}
1438
1439	ieee80211_rx(ah->hw, skb);
1440}
1441
1442/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1443 *
1444 * Check if we want to further process this frame or not. Also update
1445 * statistics. Return true if we want this frame, false if not.
1446 */
1447static bool
1448ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1449{
1450	ah->stats.rx_all_count++;
1451	ah->stats.rx_bytes_count += rs->rs_datalen;
1452
1453	if (unlikely(rs->rs_status)) {
1454		unsigned int filters;
1455
1456		if (rs->rs_status & AR5K_RXERR_CRC)
1457			ah->stats.rxerr_crc++;
1458		if (rs->rs_status & AR5K_RXERR_FIFO)
1459			ah->stats.rxerr_fifo++;
1460		if (rs->rs_status & AR5K_RXERR_PHY) {
1461			ah->stats.rxerr_phy++;
1462			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1463				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1464
1465			/*
1466			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1467			 * These restarts happen when the radio resynchronizes to a stronger frame
1468			 * while receiving a weaker frame. Here we receive the prefix of the weak
1469			 * frame. Since these are incomplete packets, mark their CRC as invalid.
1470			 */
1471			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1472			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1473				rs->rs_status |= AR5K_RXERR_CRC;
1474				rs->rs_status &= ~AR5K_RXERR_PHY;
1475			} else {
1476				return false;
1477			}
1478		}
1479		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1480			/*
1481			 * Decrypt error.  If the error occurred
1482			 * because there was no hardware key, then
1483			 * let the frame through so the upper layers
1484			 * can process it.  This is necessary for 5210
1485			 * parts which have no way to setup a ``clear''
1486			 * key cache entry.
1487			 *
1488			 * XXX do key cache faulting
1489			 */
1490			ah->stats.rxerr_decrypt++;
1491			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1492			    !(rs->rs_status & AR5K_RXERR_CRC))
1493				return true;
1494		}
1495		if (rs->rs_status & AR5K_RXERR_MIC) {
1496			ah->stats.rxerr_mic++;
1497			return true;
1498		}
1499
1500		/*
1501		 * Reject any frames with non-crypto errors, and take into account the
1502		 * current FIF_* filters.
1503		 */
1504		filters = AR5K_RXERR_DECRYPT;
1505		if (ah->fif_filter_flags & FIF_FCSFAIL)
1506			filters |= AR5K_RXERR_CRC;
1507
1508		if (rs->rs_status & ~filters)
1509			return false;
1510	}
1511
1512	if (unlikely(rs->rs_more)) {
1513		ah->stats.rxerr_jumbo++;
1514		return false;
1515	}
1516	return true;
1517}
1518
1519static void
1520ath5k_set_current_imask(struct ath5k_hw *ah)
1521{
1522	enum ath5k_int imask;
1523	unsigned long flags;
1524
1525	if (test_bit(ATH_STAT_RESET, ah->status))
1526		return;
1527
1528	spin_lock_irqsave(&ah->irqlock, flags);
1529	imask = ah->imask;
1530	if (ah->rx_pending)
1531		imask &= ~AR5K_INT_RX_ALL;
1532	if (ah->tx_pending)
1533		imask &= ~AR5K_INT_TX_ALL;
1534	ath5k_hw_set_imr(ah, imask);
1535	spin_unlock_irqrestore(&ah->irqlock, flags);
1536}
1537
1538static void
1539ath5k_tasklet_rx(struct tasklet_struct *t)
1540{
1541	struct ath5k_rx_status rs = {};
1542	struct sk_buff *skb, *next_skb;
1543	dma_addr_t next_skb_addr;
1544	struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
1545	struct ath_common *common = ath5k_hw_common(ah);
1546	struct ath5k_buf *bf;
1547	struct ath5k_desc *ds;
1548	int ret;
1549
1550	spin_lock(&ah->rxbuflock);
1551	if (list_empty(&ah->rxbuf)) {
1552		ATH5K_WARN(ah, "empty rx buf pool\n");
1553		goto unlock;
1554	}
1555	do {
1556		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1557		BUG_ON(bf->skb == NULL);
1558		skb = bf->skb;
1559		ds = bf->desc;
1560
1561		/* bail if HW is still using self-linked descriptor */
1562		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1563			break;
1564
1565		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1566		if (unlikely(ret == -EINPROGRESS))
1567			break;
1568		else if (unlikely(ret)) {
1569			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1570			ah->stats.rxerr_proc++;
1571			break;
1572		}
1573
1574		if (ath5k_receive_frame_ok(ah, &rs)) {
1575			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1576
1577			/*
1578			 * If we can't replace bf->skb with a new skb under
1579			 * memory pressure, just skip this packet
1580			 */
1581			if (!next_skb)
1582				goto next;
1583
1584			dma_unmap_single(ah->dev, bf->skbaddr,
1585					 common->rx_bufsize,
1586					 DMA_FROM_DEVICE);
1587
1588			skb_put(skb, rs.rs_datalen);
1589
1590			ath5k_receive_frame(ah, skb, &rs);
1591
1592			bf->skb = next_skb;
1593			bf->skbaddr = next_skb_addr;
1594		}
1595next:
1596		list_move_tail(&bf->list, &ah->rxbuf);
1597	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1598unlock:
1599	spin_unlock(&ah->rxbuflock);
1600	ah->rx_pending = false;
1601	ath5k_set_current_imask(ah);
1602}
1603
1604
1605/*************\
1606* TX Handling *
1607\*************/
1608
1609void
1610ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1611	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1612{
1613	struct ath5k_hw *ah = hw->priv;
1614	struct ath5k_buf *bf;
1615	unsigned long flags;
1616	int padsize;
1617
1618	trace_ath5k_tx(ah, skb, txq);
1619
1620	/*
1621	 * The hardware expects the header padded to 4 byte boundaries.
1622	 * If this is not the case, we add the padding after the header.
1623	 */
1624	padsize = ath5k_add_padding(skb);
1625	if (padsize < 0) {
1626		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1627			  " headroom to pad");
1628		goto drop_packet;
1629	}
1630
1631	if (txq->txq_len >= txq->txq_max &&
1632	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1633		ieee80211_stop_queue(hw, txq->qnum);
1634
1635	spin_lock_irqsave(&ah->txbuflock, flags);
1636	if (list_empty(&ah->txbuf)) {
1637		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1638		spin_unlock_irqrestore(&ah->txbuflock, flags);
1639		ieee80211_stop_queues(hw);
1640		goto drop_packet;
1641	}
1642	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1643	list_del(&bf->list);
1644	ah->txbuf_len--;
1645	if (list_empty(&ah->txbuf))
1646		ieee80211_stop_queues(hw);
1647	spin_unlock_irqrestore(&ah->txbuflock, flags);
1648
1649	bf->skb = skb;
1650
1651	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1652		bf->skb = NULL;
1653		spin_lock_irqsave(&ah->txbuflock, flags);
1654		list_add_tail(&bf->list, &ah->txbuf);
1655		ah->txbuf_len++;
1656		spin_unlock_irqrestore(&ah->txbuflock, flags);
1657		goto drop_packet;
1658	}
1659	return;
1660
1661drop_packet:
1662	ieee80211_free_txskb(hw, skb);
1663}
1664
1665static void
1666ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1667			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1668			 struct ath5k_buf *bf)
1669{
1670	struct ieee80211_tx_info *info;
1671	u8 tries[3];
1672	int i;
1673	int size = 0;
1674
1675	ah->stats.tx_all_count++;
1676	ah->stats.tx_bytes_count += skb->len;
1677	info = IEEE80211_SKB_CB(skb);
1678
1679	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1680	memcpy(info->status.rates, bf->rates, size);
1681
1682	tries[0] = info->status.rates[0].count;
1683	tries[1] = info->status.rates[1].count;
1684	tries[2] = info->status.rates[2].count;
1685
1686	ieee80211_tx_info_clear_status(info);
1687
1688	for (i = 0; i < ts->ts_final_idx; i++) {
1689		struct ieee80211_tx_rate *r =
1690			&info->status.rates[i];
1691
1692		r->count = tries[i];
1693	}
1694
1695	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1696	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1697
1698	if (unlikely(ts->ts_status)) {
1699		ah->stats.ack_fail++;
1700		if (ts->ts_status & AR5K_TXERR_FILT) {
1701			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1702			ah->stats.txerr_filt++;
1703		}
1704		if (ts->ts_status & AR5K_TXERR_XRETRY)
1705			ah->stats.txerr_retry++;
1706		if (ts->ts_status & AR5K_TXERR_FIFO)
1707			ah->stats.txerr_fifo++;
1708	} else {
1709		info->flags |= IEEE80211_TX_STAT_ACK;
1710		info->status.ack_signal = ts->ts_rssi;
1711
1712		/* count the successful attempt as well */
1713		info->status.rates[ts->ts_final_idx].count++;
1714	}
1715
1716	/*
1717	* Remove MAC header padding before giving the frame
1718	* back to mac80211.
1719	*/
1720	ath5k_remove_padding(skb);
1721
1722	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1723		ah->stats.antenna_tx[ts->ts_antenna]++;
1724	else
1725		ah->stats.antenna_tx[0]++; /* invalid */
1726
1727	trace_ath5k_tx_complete(ah, skb, txq, ts);
1728	ieee80211_tx_status(ah->hw, skb);
1729}
1730
1731static void
1732ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1733{
1734	struct ath5k_tx_status ts = {};
1735	struct ath5k_buf *bf, *bf0;
1736	struct ath5k_desc *ds;
1737	struct sk_buff *skb;
1738	int ret;
1739
1740	spin_lock(&txq->lock);
1741	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1742
1743		txq->txq_poll_mark = false;
1744
1745		/* skb might already have been processed last time. */
1746		if (bf->skb != NULL) {
1747			ds = bf->desc;
1748
1749			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1750			if (unlikely(ret == -EINPROGRESS))
1751				break;
1752			else if (unlikely(ret)) {
1753				ATH5K_ERR(ah,
1754					"error %d while processing "
1755					"queue %u\n", ret, txq->qnum);
1756				break;
1757			}
1758
1759			skb = bf->skb;
1760			bf->skb = NULL;
1761
1762			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1763					DMA_TO_DEVICE);
1764			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1765		}
1766
1767		/*
1768		 * It's possible that the hardware can say the buffer is
1769		 * completed when it hasn't yet loaded the ds_link from
1770		 * host memory and moved on.
1771		 * Always keep the last descriptor to avoid HW races...
1772		 */
1773		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1774			spin_lock(&ah->txbuflock);
1775			list_move_tail(&bf->list, &ah->txbuf);
1776			ah->txbuf_len++;
1777			txq->txq_len--;
1778			spin_unlock(&ah->txbuflock);
1779		}
1780	}
1781	spin_unlock(&txq->lock);
1782	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1783		ieee80211_wake_queue(ah->hw, txq->qnum);
1784}
1785
1786static void
1787ath5k_tasklet_tx(struct tasklet_struct *t)
1788{
1789	int i;
1790	struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
1791
1792	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1793		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1794			ath5k_tx_processq(ah, &ah->txqs[i]);
1795
1796	ah->tx_pending = false;
1797	ath5k_set_current_imask(ah);
1798}
1799
1800
1801/*****************\
1802* Beacon handling *
1803\*****************/
1804
1805/*
1806 * Setup the beacon frame for transmit.
1807 */
1808static int
1809ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1810{
1811	struct sk_buff *skb = bf->skb;
1812	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1813	struct ath5k_desc *ds;
1814	int ret = 0;
1815	u8 antenna;
1816	u32 flags;
1817	const int padsize = 0;
1818
1819	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1820			DMA_TO_DEVICE);
1821	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1822			"skbaddr %llx\n", skb, skb->data, skb->len,
1823			(unsigned long long)bf->skbaddr);
1824
1825	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1826		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1827		dev_kfree_skb_any(skb);
1828		bf->skb = NULL;
1829		return -EIO;
1830	}
1831
1832	ds = bf->desc;
1833	antenna = ah->ah_tx_ant;
1834
1835	flags = AR5K_TXDESC_NOACK;
1836	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1837		ds->ds_link = bf->daddr;	/* self-linked */
1838		flags |= AR5K_TXDESC_VEOL;
1839	} else
1840		ds->ds_link = 0;
1841
1842	/*
1843	 * If we use multiple antennas on AP and use
1844	 * the Sectored AP scenario, switch antenna every
1845	 * 4 beacons to make sure everybody hears our AP.
1846	 * When a client tries to associate, hw will keep
1847	 * track of the tx antenna to be used for this client
1848	 * automatically, based on ACKed packets.
1849	 *
1850	 * Note: AP still listens and transmits RTS on the
1851	 * default antenna which is supposed to be an omni.
1852	 *
1853	 * Note2: On sectored scenarios it's possible to have
1854	 * multiple antennas (1 omni -- the default -- and 14
1855	 * sectors), so if we choose to actually support this
1856	 * mode, we need to allow the user to set how many antennas
1857	 * we have and tweak the code below to send beacons
1858	 * on all of them.
1859	 */
1860	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1861		antenna = ah->bsent & 4 ? 2 : 1;
1862
1863
1864	/* FIXME: If we are in g mode and rate is a CCK rate
1865	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1866	 * from tx power (value is in dB units already) */
1867	ds->ds_data = bf->skbaddr;
1868	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1869			ieee80211_get_hdrlen_from_skb(skb), padsize,
1870			AR5K_PKT_TYPE_BEACON,
1871			(ah->ah_txpower.txp_requested * 2),
1872			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1873			1, AR5K_TXKEYIX_INVALID,
1874			antenna, flags, 0, 0);
1875	if (ret)
1876		goto err_unmap;
1877
1878	return 0;
1879err_unmap:
1880	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1881	return ret;
1882}
1883
1884/*
1885 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1886 * this is called only once at config_bss time, for AP we do it every
1887 * SWBA interrupt so that the TIM will reflect buffered frames.
1888 *
1889 * Called with the beacon lock.
1890 */
1891int
1892ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1893{
1894	int ret;
1895	struct ath5k_hw *ah = hw->priv;
1896	struct ath5k_vif *avf;
1897	struct sk_buff *skb;
1898
1899	if (WARN_ON(!vif)) {
1900		ret = -EINVAL;
1901		goto out;
1902	}
1903
1904	skb = ieee80211_beacon_get(hw, vif);
1905
1906	if (!skb) {
1907		ret = -ENOMEM;
1908		goto out;
1909	}
1910
1911	avf = (void *)vif->drv_priv;
1912	ath5k_txbuf_free_skb(ah, avf->bbuf);
1913	avf->bbuf->skb = skb;
1914	ret = ath5k_beacon_setup(ah, avf->bbuf);
1915out:
1916	return ret;
1917}
1918
1919/*
1920 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1921 * frame contents are done as needed and the slot time is
1922 * also adjusted based on current state.
1923 *
1924 * This is called from software irq context (beacontq tasklets)
1925 * or user context from ath5k_beacon_config.
1926 */
1927static void
1928ath5k_beacon_send(struct ath5k_hw *ah)
1929{
1930	struct ieee80211_vif *vif;
1931	struct ath5k_vif *avf;
1932	struct ath5k_buf *bf;
1933	struct sk_buff *skb;
1934	int err;
1935
1936	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1937
1938	/*
1939	 * Check if the previous beacon has gone out.  If
1940	 * not, don't don't try to post another: skip this
1941	 * period and wait for the next.  Missed beacons
1942	 * indicate a problem and should not occur.  If we
1943	 * miss too many consecutive beacons reset the device.
1944	 */
1945	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1946		ah->bmisscount++;
1947		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1948			"missed %u consecutive beacons\n", ah->bmisscount);
1949		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1950			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1951				"stuck beacon time (%u missed)\n",
1952				ah->bmisscount);
1953			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1954				  "stuck beacon, resetting\n");
1955			ieee80211_queue_work(ah->hw, &ah->reset_work);
1956		}
1957		return;
1958	}
1959	if (unlikely(ah->bmisscount != 0)) {
1960		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1961			"resume beacon xmit after %u misses\n",
1962			ah->bmisscount);
1963		ah->bmisscount = 0;
1964	}
1965
1966	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1967			ah->num_mesh_vifs > 1) ||
1968			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1969		u64 tsf = ath5k_hw_get_tsf64(ah);
1970		u32 tsftu = TSF_TO_TU(tsf);
1971		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1972		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1973		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1974			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1975			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1976	} else /* only one interface */
1977		vif = ah->bslot[0];
1978
1979	if (!vif)
1980		return;
1981
1982	avf = (void *)vif->drv_priv;
1983	bf = avf->bbuf;
1984
1985	/*
1986	 * Stop any current dma and put the new frame on the queue.
1987	 * This should never fail since we check above that no frames
1988	 * are still pending on the queue.
1989	 */
1990	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1991		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1992		/* NB: hw still stops DMA, so proceed */
1993	}
1994
1995	/* refresh the beacon for AP or MESH mode */
1996	if (ah->opmode == NL80211_IFTYPE_AP ||
1997	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1998		err = ath5k_beacon_update(ah->hw, vif);
1999		if (err)
2000			return;
2001	}
2002
2003	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2004		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
2005		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2006		return;
2007	}
2008
2009	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2010
2011	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2012	ath5k_hw_start_tx_dma(ah, ah->bhalq);
2013	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2014		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2015
2016	skb = ieee80211_get_buffered_bc(ah->hw, vif);
2017	while (skb) {
2018		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2019
2020		if (ah->cabq->txq_len >= ah->cabq->txq_max)
2021			break;
2022
2023		skb = ieee80211_get_buffered_bc(ah->hw, vif);
2024	}
2025
2026	ah->bsent++;
2027}
2028
2029/**
2030 * ath5k_beacon_update_timers - update beacon timers
2031 *
2032 * @ah: struct ath5k_hw pointer we are operating on
2033 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2034 *          beacon timer update based on the current HW TSF.
2035 *
2036 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2037 * of a received beacon or the current local hardware TSF and write it to the
2038 * beacon timer registers.
2039 *
2040 * This is called in a variety of situations, e.g. when a beacon is received,
2041 * when a TSF update has been detected, but also when an new IBSS is created or
2042 * when we otherwise know we have to update the timers, but we keep it in this
2043 * function to have it all together in one place.
2044 */
2045void
2046ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2047{
2048	u32 nexttbtt, intval, hw_tu, bc_tu;
2049	u64 hw_tsf;
2050
2051	intval = ah->bintval & AR5K_BEACON_PERIOD;
2052	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2053		+ ah->num_mesh_vifs > 1) {
2054		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2055		if (intval < 15)
2056			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2057				   intval);
2058	}
2059	if (WARN_ON(!intval))
2060		return;
2061
2062	/* beacon TSF converted to TU */
2063	bc_tu = TSF_TO_TU(bc_tsf);
2064
2065	/* current TSF converted to TU */
2066	hw_tsf = ath5k_hw_get_tsf64(ah);
2067	hw_tu = TSF_TO_TU(hw_tsf);
2068
2069#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2070	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2071	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2072	 * configuration we need to make sure it is bigger than that. */
2073
2074	if (bc_tsf == -1) {
2075		/*
2076		 * no beacons received, called internally.
2077		 * just need to refresh timers based on HW TSF.
2078		 */
2079		nexttbtt = roundup(hw_tu + FUDGE, intval);
2080	} else if (bc_tsf == 0) {
2081		/*
2082		 * no beacon received, probably called by ath5k_reset_tsf().
2083		 * reset TSF to start with 0.
2084		 */
2085		nexttbtt = intval;
2086		intval |= AR5K_BEACON_RESET_TSF;
2087	} else if (bc_tsf > hw_tsf) {
2088		/*
2089		 * beacon received, SW merge happened but HW TSF not yet updated.
2090		 * not possible to reconfigure timers yet, but next time we
2091		 * receive a beacon with the same BSSID, the hardware will
2092		 * automatically update the TSF and then we need to reconfigure
2093		 * the timers.
2094		 */
2095		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2096			"need to wait for HW TSF sync\n");
2097		return;
2098	} else {
2099		/*
2100		 * most important case for beacon synchronization between STA.
2101		 *
2102		 * beacon received and HW TSF has been already updated by HW.
2103		 * update next TBTT based on the TSF of the beacon, but make
2104		 * sure it is ahead of our local TSF timer.
2105		 */
2106		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2107	}
2108#undef FUDGE
2109
2110	ah->nexttbtt = nexttbtt;
2111
2112	intval |= AR5K_BEACON_ENA;
2113	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2114
2115	/*
2116	 * debugging output last in order to preserve the time critical aspect
2117	 * of this function
2118	 */
2119	if (bc_tsf == -1)
2120		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2121			"reconfigured timers based on HW TSF\n");
2122	else if (bc_tsf == 0)
2123		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2124			"reset HW TSF and timers\n");
2125	else
2126		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2127			"updated timers based on beacon TSF\n");
2128
2129	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2130			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2131			  (unsigned long long) bc_tsf,
2132			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2133	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2134		intval & AR5K_BEACON_PERIOD,
2135		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2136		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2137}
2138
2139/**
2140 * ath5k_beacon_config - Configure the beacon queues and interrupts
2141 *
2142 * @ah: struct ath5k_hw pointer we are operating on
2143 *
2144 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2145 * interrupts to detect TSF updates only.
2146 */
2147void
2148ath5k_beacon_config(struct ath5k_hw *ah)
2149{
2150	spin_lock_bh(&ah->block);
2151	ah->bmisscount = 0;
2152	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2153
2154	if (ah->enable_beacon) {
2155		/*
2156		 * In IBSS mode we use a self-linked tx descriptor and let the
2157		 * hardware send the beacons automatically. We have to load it
2158		 * only once here.
2159		 * We use the SWBA interrupt only to keep track of the beacon
2160		 * timers in order to detect automatic TSF updates.
2161		 */
2162		ath5k_beaconq_config(ah);
2163
2164		ah->imask |= AR5K_INT_SWBA;
2165
2166		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2167			if (ath5k_hw_hasveol(ah))
2168				ath5k_beacon_send(ah);
2169		} else
2170			ath5k_beacon_update_timers(ah, -1);
2171	} else {
2172		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2173	}
2174
2175	ath5k_hw_set_imr(ah, ah->imask);
2176	spin_unlock_bh(&ah->block);
2177}
2178
2179static void ath5k_tasklet_beacon(struct tasklet_struct *t)
2180{
2181	struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
2182
2183	/*
2184	 * Software beacon alert--time to send a beacon.
2185	 *
2186	 * In IBSS mode we use this interrupt just to
2187	 * keep track of the next TBTT (target beacon
2188	 * transmission time) in order to detect whether
2189	 * automatic TSF updates happened.
2190	 */
2191	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2192		/* XXX: only if VEOL supported */
2193		u64 tsf = ath5k_hw_get_tsf64(ah);
2194		ah->nexttbtt += ah->bintval;
2195		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2196				"SWBA nexttbtt: %x hw_tu: %x "
2197				"TSF: %llx\n",
2198				ah->nexttbtt,
2199				TSF_TO_TU(tsf),
2200				(unsigned long long) tsf);
2201	} else {
2202		spin_lock(&ah->block);
2203		ath5k_beacon_send(ah);
2204		spin_unlock(&ah->block);
2205	}
2206}
2207
2208
2209/********************\
2210* Interrupt handling *
2211\********************/
2212
2213static void
2214ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2215{
2216	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2217	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2218	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2219
2220		/* Run ANI only when calibration is not active */
2221
2222		ah->ah_cal_next_ani = jiffies +
2223			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2224		tasklet_schedule(&ah->ani_tasklet);
2225
2226	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2227		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2228		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2229
2230		/* Run calibration only when another calibration
2231		 * is not running.
2232		 *
2233		 * Note: This is for both full/short calibration,
2234		 * if it's time for a full one, ath5k_calibrate_work will deal
2235		 * with it. */
2236
2237		ah->ah_cal_next_short = jiffies +
2238			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2239		ieee80211_queue_work(ah->hw, &ah->calib_work);
2240	}
2241	/* we could use SWI to generate enough interrupts to meet our
2242	 * calibration interval requirements, if necessary:
2243	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2244}
2245
2246static void
2247ath5k_schedule_rx(struct ath5k_hw *ah)
2248{
2249	ah->rx_pending = true;
2250	tasklet_schedule(&ah->rxtq);
2251}
2252
2253static void
2254ath5k_schedule_tx(struct ath5k_hw *ah)
2255{
2256	ah->tx_pending = true;
2257	tasklet_schedule(&ah->txtq);
2258}
2259
2260static irqreturn_t
2261ath5k_intr(int irq, void *dev_id)
2262{
2263	struct ath5k_hw *ah = dev_id;
2264	enum ath5k_int status;
2265	unsigned int counter = 1000;
2266
2267
2268	/*
2269	 * If hw is not ready (or detached) and we get an
2270	 * interrupt, or if we have no interrupts pending
2271	 * (that means it's not for us) skip it.
2272	 *
2273	 * NOTE: Group 0/1 PCI interface registers are not
2274	 * supported on WiSOCs, so we can't check for pending
2275	 * interrupts (ISR belongs to another register group
2276	 * so we are ok).
2277	 */
2278	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2279			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2280			!ath5k_hw_is_intr_pending(ah))))
2281		return IRQ_NONE;
2282
2283	/** Main loop **/
2284	do {
2285		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2286
2287		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2288				status, ah->imask);
2289
2290		/*
2291		 * Fatal hw error -> Log and reset
2292		 *
2293		 * Fatal errors are unrecoverable so we have to
2294		 * reset the card. These errors include bus and
2295		 * dma errors.
2296		 */
2297		if (unlikely(status & AR5K_INT_FATAL)) {
2298
2299			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2300				  "fatal int, resetting\n");
2301			ieee80211_queue_work(ah->hw, &ah->reset_work);
2302
2303		/*
2304		 * RX Overrun -> Count and reset if needed
2305		 *
2306		 * Receive buffers are full. Either the bus is busy or
2307		 * the CPU is not fast enough to process all received
2308		 * frames.
2309		 */
2310		} else if (unlikely(status & AR5K_INT_RXORN)) {
2311
2312			/*
2313			 * Older chipsets need a reset to come out of this
2314			 * condition, but we treat it as RX for newer chips.
2315			 * We don't know exactly which versions need a reset
2316			 * this guess is copied from the HAL.
2317			 */
2318			ah->stats.rxorn_intr++;
2319
2320			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2321				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2322					  "rx overrun, resetting\n");
2323				ieee80211_queue_work(ah->hw, &ah->reset_work);
2324			} else
2325				ath5k_schedule_rx(ah);
2326
2327		} else {
2328
2329			/* Software Beacon Alert -> Schedule beacon tasklet */
2330			if (status & AR5K_INT_SWBA)
2331				tasklet_hi_schedule(&ah->beacontq);
2332
2333			/*
2334			 * No more RX descriptors -> Just count
2335			 *
2336			 * NB: the hardware should re-read the link when
2337			 *     RXE bit is written, but it doesn't work at
2338			 *     least on older hardware revs.
2339			 */
2340			if (status & AR5K_INT_RXEOL)
2341				ah->stats.rxeol_intr++;
2342
2343
2344			/* TX Underrun -> Bump tx trigger level */
2345			if (status & AR5K_INT_TXURN)
2346				ath5k_hw_update_tx_triglevel(ah, true);
2347
2348			/* RX -> Schedule rx tasklet */
2349			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2350				ath5k_schedule_rx(ah);
2351
2352			/* TX -> Schedule tx tasklet */
2353			if (status & (AR5K_INT_TXOK
2354					| AR5K_INT_TXDESC
2355					| AR5K_INT_TXERR
2356					| AR5K_INT_TXEOL))
2357				ath5k_schedule_tx(ah);
2358
2359			/* Missed beacon -> TODO
2360			if (status & AR5K_INT_BMISS)
2361			*/
2362
2363			/* MIB event -> Update counters and notify ANI */
2364			if (status & AR5K_INT_MIB) {
2365				ah->stats.mib_intr++;
2366				ath5k_hw_update_mib_counters(ah);
2367				ath5k_ani_mib_intr(ah);
2368			}
2369
2370			/* GPIO -> Notify RFKill layer */
2371			if (status & AR5K_INT_GPIO)
2372				tasklet_schedule(&ah->rf_kill.toggleq);
2373
2374		}
2375
2376		if (ath5k_get_bus_type(ah) == ATH_AHB)
2377			break;
2378
2379	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2380
2381	/*
2382	 * Until we handle rx/tx interrupts mask them on IMR
2383	 *
2384	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2385	 * and unset after we 've handled the interrupts.
2386	 */
2387	if (ah->rx_pending || ah->tx_pending)
2388		ath5k_set_current_imask(ah);
2389
2390	if (unlikely(!counter))
2391		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2392
2393	/* Fire up calibration poll */
2394	ath5k_intr_calibration_poll(ah);
2395
2396	return IRQ_HANDLED;
2397}
2398
2399/*
2400 * Periodically recalibrate the PHY to account
2401 * for temperature/environment changes.
2402 */
2403static void
2404ath5k_calibrate_work(struct work_struct *work)
2405{
2406	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2407		calib_work);
2408
2409	/* Should we run a full calibration ? */
2410	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2411
2412		ah->ah_cal_next_full = jiffies +
2413			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2414		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2415
2416		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2417				"running full calibration\n");
2418
2419		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2420			/*
2421			 * Rfgain is out of bounds, reset the chip
2422			 * to load new gain values.
2423			 */
2424			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2425					"got new rfgain, resetting\n");
2426			ieee80211_queue_work(ah->hw, &ah->reset_work);
2427		}
2428	} else
2429		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2430
2431
2432	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2433		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2434		ah->curchan->hw_value);
2435
2436	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2437		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2438			ieee80211_frequency_to_channel(
2439				ah->curchan->center_freq));
2440
2441	/* Clear calibration flags */
2442	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2443		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2444	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2445		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2446}
2447
2448
2449static void
2450ath5k_tasklet_ani(struct tasklet_struct *t)
2451{
2452	struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
2453
2454	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2455	ath5k_ani_calibration(ah);
2456	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2457}
2458
2459
2460static void
2461ath5k_tx_complete_poll_work(struct work_struct *work)
2462{
2463	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2464			tx_complete_work.work);
2465	struct ath5k_txq *txq;
2466	int i;
2467	bool needreset = false;
2468
2469	if (!test_bit(ATH_STAT_STARTED, ah->status))
2470		return;
2471
2472	mutex_lock(&ah->lock);
2473
2474	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2475		if (ah->txqs[i].setup) {
2476			txq = &ah->txqs[i];
2477			spin_lock_bh(&txq->lock);
2478			if (txq->txq_len > 1) {
2479				if (txq->txq_poll_mark) {
2480					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2481						  "TX queue stuck %d\n",
2482						  txq->qnum);
2483					needreset = true;
2484					txq->txq_stuck++;
2485					spin_unlock_bh(&txq->lock);
2486					break;
2487				} else {
2488					txq->txq_poll_mark = true;
2489				}
2490			}
2491			spin_unlock_bh(&txq->lock);
2492		}
2493	}
2494
2495	if (needreset) {
2496		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2497			  "TX queues stuck, resetting\n");
2498		ath5k_reset(ah, NULL, true);
2499	}
2500
2501	mutex_unlock(&ah->lock);
2502
2503	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2504		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2505}
2506
2507
2508/*************************\
2509* Initialization routines *
2510\*************************/
2511
2512static const struct ieee80211_iface_limit if_limits[] = {
2513	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2514	{ .max = 4,	.types =
2515#ifdef CONFIG_MAC80211_MESH
2516				 BIT(NL80211_IFTYPE_MESH_POINT) |
2517#endif
2518				 BIT(NL80211_IFTYPE_AP) },
2519};
2520
2521static const struct ieee80211_iface_combination if_comb = {
2522	.limits = if_limits,
2523	.n_limits = ARRAY_SIZE(if_limits),
2524	.max_interfaces = 2048,
2525	.num_different_channels = 1,
2526};
2527
2528int
2529ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2530{
2531	struct ieee80211_hw *hw = ah->hw;
2532	struct ath_common *common;
2533	int ret;
2534	int csz;
2535
2536	/* Initialize driver private data */
2537	SET_IEEE80211_DEV(hw, ah->dev);
2538	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2539	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2540	ieee80211_hw_set(hw, MFP_CAPABLE);
2541	ieee80211_hw_set(hw, SIGNAL_DBM);
2542	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2543	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2544
2545	hw->wiphy->interface_modes =
2546		BIT(NL80211_IFTYPE_AP) |
2547		BIT(NL80211_IFTYPE_STATION) |
2548		BIT(NL80211_IFTYPE_ADHOC) |
2549		BIT(NL80211_IFTYPE_MESH_POINT);
2550
2551	hw->wiphy->iface_combinations = &if_comb;
2552	hw->wiphy->n_iface_combinations = 1;
2553
2554	/* SW support for IBSS_RSN is provided by mac80211 */
2555	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2556
2557	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2558
2559	/* both antennas can be configured as RX or TX */
2560	hw->wiphy->available_antennas_tx = 0x3;
2561	hw->wiphy->available_antennas_rx = 0x3;
2562
2563	hw->extra_tx_headroom = 2;
2564
2565	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2566
2567	/*
2568	 * Mark the device as detached to avoid processing
2569	 * interrupts until setup is complete.
2570	 */
2571	__set_bit(ATH_STAT_INVALID, ah->status);
2572
2573	ah->opmode = NL80211_IFTYPE_STATION;
2574	ah->bintval = 1000;
2575	mutex_init(&ah->lock);
2576	spin_lock_init(&ah->rxbuflock);
2577	spin_lock_init(&ah->txbuflock);
2578	spin_lock_init(&ah->block);
2579	spin_lock_init(&ah->irqlock);
2580
2581	/* Setup interrupt handler */
2582	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2583	if (ret) {
2584		ATH5K_ERR(ah, "request_irq failed\n");
2585		goto err;
2586	}
2587
2588	common = ath5k_hw_common(ah);
2589	common->ops = &ath5k_common_ops;
2590	common->bus_ops = bus_ops;
2591	common->ah = ah;
2592	common->hw = hw;
2593	common->priv = ah;
2594	common->clockrate = 40;
2595
2596	/*
2597	 * Cache line size is used to size and align various
2598	 * structures used to communicate with the hardware.
2599	 */
2600	ath5k_read_cachesize(common, &csz);
2601	common->cachelsz = csz << 2; /* convert to bytes */
2602
2603	spin_lock_init(&common->cc_lock);
2604
2605	/* Initialize device */
2606	ret = ath5k_hw_init(ah);
2607	if (ret)
2608		goto err_irq;
2609
2610	/* Set up multi-rate retry capabilities */
2611	if (ah->ah_capabilities.cap_has_mrr_support) {
2612		hw->max_rates = 4;
2613		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2614					 AR5K_INIT_RETRY_LONG);
2615	}
2616
2617	hw->vif_data_size = sizeof(struct ath5k_vif);
2618
2619	/* Finish private driver data initialization */
2620	ret = ath5k_init(hw);
2621	if (ret)
2622		goto err_ah;
2623
2624	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2625			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2626					ah->ah_mac_srev,
2627					ah->ah_phy_revision);
2628
2629	if (!ah->ah_single_chip) {
2630		/* Single chip radio (!RF5111) */
2631		if (ah->ah_radio_5ghz_revision &&
2632			!ah->ah_radio_2ghz_revision) {
2633			/* No 5GHz support -> report 2GHz radio */
2634			if (!test_bit(AR5K_MODE_11A,
2635				ah->ah_capabilities.cap_mode)) {
2636				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2637					ath5k_chip_name(AR5K_VERSION_RAD,
2638						ah->ah_radio_5ghz_revision),
2639						ah->ah_radio_5ghz_revision);
2640			/* No 2GHz support (5110 and some
2641			 * 5GHz only cards) -> report 5GHz radio */
2642			} else if (!test_bit(AR5K_MODE_11B,
2643				ah->ah_capabilities.cap_mode)) {
2644				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2645					ath5k_chip_name(AR5K_VERSION_RAD,
2646						ah->ah_radio_5ghz_revision),
2647						ah->ah_radio_5ghz_revision);
2648			/* Multiband radio */
2649			} else {
2650				ATH5K_INFO(ah, "RF%s multiband radio found"
2651					" (0x%x)\n",
2652					ath5k_chip_name(AR5K_VERSION_RAD,
2653						ah->ah_radio_5ghz_revision),
2654						ah->ah_radio_5ghz_revision);
2655			}
2656		}
2657		/* Multi chip radio (RF5111 - RF2111) ->
2658		 * report both 2GHz/5GHz radios */
2659		else if (ah->ah_radio_5ghz_revision &&
2660				ah->ah_radio_2ghz_revision) {
2661			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2662				ath5k_chip_name(AR5K_VERSION_RAD,
2663					ah->ah_radio_5ghz_revision),
2664					ah->ah_radio_5ghz_revision);
2665			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2666				ath5k_chip_name(AR5K_VERSION_RAD,
2667					ah->ah_radio_2ghz_revision),
2668					ah->ah_radio_2ghz_revision);
2669		}
2670	}
2671
2672	ath5k_debug_init_device(ah);
2673
2674	/* ready to process interrupts */
2675	__clear_bit(ATH_STAT_INVALID, ah->status);
2676
2677	return 0;
2678err_ah:
2679	ath5k_hw_deinit(ah);
2680err_irq:
2681	free_irq(ah->irq, ah);
2682err:
2683	return ret;
2684}
2685
2686static int
2687ath5k_stop_locked(struct ath5k_hw *ah)
2688{
2689
2690	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2691			test_bit(ATH_STAT_INVALID, ah->status));
2692
2693	/*
2694	 * Shutdown the hardware and driver:
2695	 *    stop output from above
2696	 *    disable interrupts
2697	 *    turn off timers
2698	 *    turn off the radio
2699	 *    clear transmit machinery
2700	 *    clear receive machinery
2701	 *    drain and release tx queues
2702	 *    reclaim beacon resources
2703	 *    power down hardware
2704	 *
2705	 * Note that some of this work is not possible if the
2706	 * hardware is gone (invalid).
2707	 */
2708	ieee80211_stop_queues(ah->hw);
2709
2710	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2711		ath5k_led_off(ah);
2712		ath5k_hw_set_imr(ah, 0);
2713		synchronize_irq(ah->irq);
2714		ath5k_rx_stop(ah);
2715		ath5k_hw_dma_stop(ah);
2716		ath5k_drain_tx_buffs(ah);
2717		ath5k_hw_phy_disable(ah);
2718	}
2719
2720	return 0;
2721}
2722
2723int ath5k_start(struct ieee80211_hw *hw)
2724{
2725	struct ath5k_hw *ah = hw->priv;
2726	struct ath_common *common = ath5k_hw_common(ah);
2727	int ret, i;
2728
2729	mutex_lock(&ah->lock);
2730
2731	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2732
2733	/*
2734	 * Stop anything previously setup.  This is safe
2735	 * no matter this is the first time through or not.
2736	 */
2737	ath5k_stop_locked(ah);
2738
2739	/*
2740	 * The basic interface to setting the hardware in a good
2741	 * state is ``reset''.  On return the hardware is known to
2742	 * be powered up and with interrupts disabled.  This must
2743	 * be followed by initialization of the appropriate bits
2744	 * and then setup of the interrupt mask.
2745	 */
2746	ah->curchan = ah->hw->conf.chandef.chan;
2747	ah->imask = AR5K_INT_RXOK
2748		| AR5K_INT_RXERR
2749		| AR5K_INT_RXEOL
2750		| AR5K_INT_RXORN
2751		| AR5K_INT_TXDESC
2752		| AR5K_INT_TXEOL
2753		| AR5K_INT_FATAL
2754		| AR5K_INT_GLOBAL
2755		| AR5K_INT_MIB;
2756
2757	ret = ath5k_reset(ah, NULL, false);
2758	if (ret)
2759		goto done;
2760
2761	if (!ath5k_modparam_no_hw_rfkill_switch)
2762		ath5k_rfkill_hw_start(ah);
2763
2764	/*
2765	 * Reset the key cache since some parts do not reset the
2766	 * contents on initial power up or resume from suspend.
2767	 */
2768	for (i = 0; i < common->keymax; i++)
2769		ath_hw_keyreset(common, (u16) i);
2770
2771	/* Use higher rates for acks instead of base
2772	 * rate */
2773	ah->ah_ack_bitrate_high = true;
2774
2775	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2776		ah->bslot[i] = NULL;
2777
2778	ret = 0;
2779done:
2780	mutex_unlock(&ah->lock);
2781
2782	set_bit(ATH_STAT_STARTED, ah->status);
2783	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2784			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2785
2786	return ret;
2787}
2788
2789static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2790{
2791	ah->rx_pending = false;
2792	ah->tx_pending = false;
2793	tasklet_kill(&ah->rxtq);
2794	tasklet_kill(&ah->txtq);
2795	tasklet_kill(&ah->beacontq);
2796	tasklet_kill(&ah->ani_tasklet);
2797}
2798
2799/*
2800 * Stop the device, grabbing the top-level lock to protect
2801 * against concurrent entry through ath5k_init (which can happen
2802 * if another thread does a system call and the thread doing the
2803 * stop is preempted).
2804 */
2805void ath5k_stop(struct ieee80211_hw *hw)
2806{
2807	struct ath5k_hw *ah = hw->priv;
2808	int ret;
2809
2810	mutex_lock(&ah->lock);
2811	ret = ath5k_stop_locked(ah);
2812	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2813		/*
2814		 * Don't set the card in full sleep mode!
2815		 *
2816		 * a) When the device is in this state it must be carefully
2817		 * woken up or references to registers in the PCI clock
2818		 * domain may freeze the bus (and system).  This varies
2819		 * by chip and is mostly an issue with newer parts
2820		 * (madwifi sources mentioned srev >= 0x78) that go to
2821		 * sleep more quickly.
2822		 *
2823		 * b) On older chips full sleep results a weird behaviour
2824		 * during wakeup. I tested various cards with srev < 0x78
2825		 * and they don't wake up after module reload, a second
2826		 * module reload is needed to bring the card up again.
2827		 *
2828		 * Until we figure out what's going on don't enable
2829		 * full chip reset on any chip (this is what Legacy HAL
2830		 * and Sam's HAL do anyway). Instead Perform a full reset
2831		 * on the device (same as initial state after attach) and
2832		 * leave it idle (keep MAC/BB on warm reset) */
2833		ret = ath5k_hw_on_hold(ah);
2834
2835		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2836				"putting device to sleep\n");
2837	}
2838
2839	mutex_unlock(&ah->lock);
2840
2841	ath5k_stop_tasklets(ah);
2842
2843	clear_bit(ATH_STAT_STARTED, ah->status);
2844	cancel_delayed_work_sync(&ah->tx_complete_work);
2845
2846	if (!ath5k_modparam_no_hw_rfkill_switch)
2847		ath5k_rfkill_hw_stop(ah);
2848}
2849
2850/*
2851 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2852 * and change to the given channel.
2853 *
2854 * This should be called with ah->lock.
2855 */
2856static int
2857ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2858							bool skip_pcu)
2859{
2860	struct ath_common *common = ath5k_hw_common(ah);
2861	int ret, ani_mode;
2862	bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2863
2864	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2865
2866	__set_bit(ATH_STAT_RESET, ah->status);
2867
2868	ath5k_hw_set_imr(ah, 0);
2869	synchronize_irq(ah->irq);
2870	ath5k_stop_tasklets(ah);
2871
2872	/* Save ani mode and disable ANI during
2873	 * reset. If we don't we might get false
2874	 * PHY error interrupts. */
2875	ani_mode = ah->ani_state.ani_mode;
2876	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2877
2878	/* We are going to empty hw queues
2879	 * so we should also free any remaining
2880	 * tx buffers */
2881	ath5k_drain_tx_buffs(ah);
2882
2883	/* Stop PCU */
2884	ath5k_hw_stop_rx_pcu(ah);
2885
2886	/* Stop DMA
2887	 *
2888	 * Note: If DMA didn't stop continue
2889	 * since only a reset will fix it.
2890	 */
2891	ret = ath5k_hw_dma_stop(ah);
2892
2893	/* RF Bus grant won't work if we have pending
2894	 * frames
2895	 */
2896	if (ret && fast) {
2897		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2898			  "DMA didn't stop, falling back to normal reset\n");
2899		fast = false;
2900	}
2901
2902	if (chan)
2903		ah->curchan = chan;
2904
2905	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2906	if (ret) {
2907		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2908		goto err;
2909	}
2910
2911	ret = ath5k_rx_start(ah);
2912	if (ret) {
2913		ATH5K_ERR(ah, "can't start recv logic\n");
2914		goto err;
2915	}
2916
2917	ath5k_ani_init(ah, ani_mode);
2918
2919	/*
2920	 * Set calibration intervals
2921	 *
2922	 * Note: We don't need to run calibration imediately
2923	 * since some initial calibration is done on reset
2924	 * even for fast channel switching. Also on scanning
2925	 * this will get set again and again and it won't get
2926	 * executed unless we connect somewhere and spend some
2927	 * time on the channel (that's what calibration needs
2928	 * anyway to be accurate).
2929	 */
2930	ah->ah_cal_next_full = jiffies +
2931		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2932	ah->ah_cal_next_ani = jiffies +
2933		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2934	ah->ah_cal_next_short = jiffies +
2935		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2936
2937	ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2938
2939	/* clear survey data and cycle counters */
2940	memset(&ah->survey, 0, sizeof(ah->survey));
2941	spin_lock_bh(&common->cc_lock);
2942	ath_hw_cycle_counters_update(common);
2943	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2944	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2945	spin_unlock_bh(&common->cc_lock);
2946
2947	/*
2948	 * Change channels and update the h/w rate map if we're switching;
2949	 * e.g. 11a to 11b/g.
2950	 *
2951	 * We may be doing a reset in response to an ioctl that changes the
2952	 * channel so update any state that might change as a result.
2953	 *
2954	 * XXX needed?
2955	 */
2956/*	ath5k_chan_change(ah, c); */
2957
2958	__clear_bit(ATH_STAT_RESET, ah->status);
2959
2960	ath5k_beacon_config(ah);
2961	/* intrs are enabled by ath5k_beacon_config */
2962
2963	ieee80211_wake_queues(ah->hw);
2964
2965	return 0;
2966err:
2967	return ret;
2968}
2969
2970static void ath5k_reset_work(struct work_struct *work)
2971{
2972	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2973		reset_work);
2974
2975	mutex_lock(&ah->lock);
2976	ath5k_reset(ah, NULL, true);
2977	mutex_unlock(&ah->lock);
2978}
2979
2980static int
2981ath5k_init(struct ieee80211_hw *hw)
2982{
2983
2984	struct ath5k_hw *ah = hw->priv;
2985	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2986	struct ath5k_txq *txq;
2987	u8 mac[ETH_ALEN] = {};
2988	int ret;
2989
2990
2991	/*
2992	 * Collect the channel list.  The 802.11 layer
2993	 * is responsible for filtering this list based
2994	 * on settings like the phy mode and regulatory
2995	 * domain restrictions.
2996	 */
2997	ret = ath5k_setup_bands(hw);
2998	if (ret) {
2999		ATH5K_ERR(ah, "can't get channels\n");
3000		goto err;
3001	}
3002
3003	/*
3004	 * Allocate tx+rx descriptors and populate the lists.
3005	 */
3006	ret = ath5k_desc_alloc(ah);
3007	if (ret) {
3008		ATH5K_ERR(ah, "can't allocate descriptors\n");
3009		goto err;
3010	}
3011
3012	/*
3013	 * Allocate hardware transmit queues: one queue for
3014	 * beacon frames and one data queue for each QoS
3015	 * priority.  Note that hw functions handle resetting
3016	 * these queues at the needed time.
3017	 */
3018	ret = ath5k_beaconq_setup(ah);
3019	if (ret < 0) {
3020		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3021		goto err_desc;
3022	}
3023	ah->bhalq = ret;
3024	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3025	if (IS_ERR(ah->cabq)) {
3026		ATH5K_ERR(ah, "can't setup cab queue\n");
3027		ret = PTR_ERR(ah->cabq);
3028		goto err_bhal;
3029	}
3030
3031	/* 5211 and 5212 usually support 10 queues but we better rely on the
3032	 * capability information */
3033	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3034		/* This order matches mac80211's queue priority, so we can
3035		* directly use the mac80211 queue number without any mapping */
3036		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3037		if (IS_ERR(txq)) {
3038			ATH5K_ERR(ah, "can't setup xmit queue\n");
3039			ret = PTR_ERR(txq);
3040			goto err_queues;
3041		}
3042		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3043		if (IS_ERR(txq)) {
3044			ATH5K_ERR(ah, "can't setup xmit queue\n");
3045			ret = PTR_ERR(txq);
3046			goto err_queues;
3047		}
3048		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3049		if (IS_ERR(txq)) {
3050			ATH5K_ERR(ah, "can't setup xmit queue\n");
3051			ret = PTR_ERR(txq);
3052			goto err_queues;
3053		}
3054		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3055		if (IS_ERR(txq)) {
3056			ATH5K_ERR(ah, "can't setup xmit queue\n");
3057			ret = PTR_ERR(txq);
3058			goto err_queues;
3059		}
3060		hw->queues = 4;
3061	} else {
3062		/* older hardware (5210) can only support one data queue */
3063		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3064		if (IS_ERR(txq)) {
3065			ATH5K_ERR(ah, "can't setup xmit queue\n");
3066			ret = PTR_ERR(txq);
3067			goto err_queues;
3068		}
3069		hw->queues = 1;
3070	}
3071
3072	tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
3073	tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
3074	tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
3075	tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
3076
3077	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3078	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3079	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3080
3081	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3082	if (ret) {
3083		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3084		goto err_queues;
3085	}
3086
3087	SET_IEEE80211_PERM_ADDR(hw, mac);
3088	/* All MAC address bits matter for ACKs */
3089	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3090
3091	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3092	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3093	if (ret) {
3094		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3095		goto err_queues;
3096	}
3097
3098	ret = ieee80211_register_hw(hw);
3099	if (ret) {
3100		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3101		goto err_queues;
3102	}
3103
3104	if (!ath_is_world_regd(regulatory))
3105		regulatory_hint(hw->wiphy, regulatory->alpha2);
3106
3107	ath5k_init_leds(ah);
3108
3109	ath5k_sysfs_register(ah);
3110
3111	return 0;
3112err_queues:
3113	ath5k_txq_release(ah);
3114err_bhal:
3115	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3116err_desc:
3117	ath5k_desc_free(ah);
3118err:
3119	return ret;
3120}
3121
3122void
3123ath5k_deinit_ah(struct ath5k_hw *ah)
3124{
3125	struct ieee80211_hw *hw = ah->hw;
3126
3127	/*
3128	 * NB: the order of these is important:
3129	 * o call the 802.11 layer before detaching ath5k_hw to
3130	 *   ensure callbacks into the driver to delete global
3131	 *   key cache entries can be handled
3132	 * o reclaim the tx queue data structures after calling
3133	 *   the 802.11 layer as we'll get called back to reclaim
3134	 *   node state and potentially want to use them
3135	 * o to cleanup the tx queues the hal is called, so detach
3136	 *   it last
3137	 * XXX: ??? detach ath5k_hw ???
3138	 * Other than that, it's straightforward...
3139	 */
3140	ieee80211_unregister_hw(hw);
3141	ath5k_desc_free(ah);
3142	ath5k_txq_release(ah);
3143	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3144	ath5k_unregister_leds(ah);
3145
3146	ath5k_sysfs_unregister(ah);
3147	/*
3148	 * NB: can't reclaim these until after ieee80211_ifdetach
3149	 * returns because we'll get called back to reclaim node
3150	 * state and potentially want to use them.
3151	 */
3152	ath5k_hw_deinit(ah);
3153	free_irq(ah->irq, ah);
3154}
3155
3156bool
3157ath5k_any_vif_assoc(struct ath5k_hw *ah)
3158{
3159	struct ath5k_vif_iter_data iter_data;
3160	iter_data.hw_macaddr = NULL;
3161	iter_data.any_assoc = false;
3162	iter_data.need_set_hw_addr = false;
3163	iter_data.found_active = true;
3164
3165	ieee80211_iterate_active_interfaces_atomic(
3166		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3167		ath5k_vif_iter, &iter_data);
3168	return iter_data.any_assoc;
3169}
3170
3171void
3172ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3173{
3174	struct ath5k_hw *ah = hw->priv;
3175	u32 rfilt;
3176	rfilt = ath5k_hw_get_rx_filter(ah);
3177	if (enable)
3178		rfilt |= AR5K_RX_FILTER_BEACON;
3179	else
3180		rfilt &= ~AR5K_RX_FILTER_BEACON;
3181	ath5k_hw_set_rx_filter(ah, rfilt);
3182	ah->filter_flags = rfilt;
3183}
3184
3185void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3186		   const char *fmt, ...)
3187{
3188	struct va_format vaf;
3189	va_list args;
3190
3191	va_start(args, fmt);
3192
3193	vaf.fmt = fmt;
3194	vaf.va = &args;
3195
3196	if (ah && ah->hw)
3197		printk("%s" pr_fmt("%s: %pV"),
3198		       level, wiphy_name(ah->hw->wiphy), &vaf);
3199	else
3200		printk("%s" pr_fmt("%pV"), level, &vaf);
3201
3202	va_end(args);
3203}
3204