1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 */
6
7#include <linux/pci.h>
8#include <linux/module.h>
9#include <linux/interrupt.h>
10#include <linux/spinlock.h>
11#include <linux/bitops.h>
12
13#include "core.h"
14#include "debug.h"
15#include "coredump.h"
16
17#include "targaddrs.h"
18#include "bmi.h"
19
20#include "hif.h"
21#include "htc.h"
22
23#include "ce.h"
24#include "pci.h"
25
26enum ath10k_pci_reset_mode {
27	ATH10K_PCI_RESET_AUTO = 0,
28	ATH10K_PCI_RESET_WARM_ONLY = 1,
29};
30
31static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
32static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
33
34module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
35MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
36
37module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
38MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
39
40/* how long wait to wait for target to initialise, in ms */
41#define ATH10K_PCI_TARGET_WAIT 3000
42#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
43
44/* Maximum number of bytes that can be handled atomically by
45 * diag read and write.
46 */
47#define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
48
49#define QCA99X0_PCIE_BAR0_START_REG    0x81030
50#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
51#define QCA99X0_CPU_MEM_DATA_REG       0x4d010
52
53static const struct pci_device_id ath10k_pci_id_table[] = {
54	/* PCI-E QCA988X V2 (Ubiquiti branded) */
55	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
56
57	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
58	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
59	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
60	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
61	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
62	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
63	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
64	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
65	{0}
66};
67
68static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
69	/* QCA988X pre 2.0 chips are not supported because they need some nasty
70	 * hacks. ath10k doesn't have them and these devices crash horribly
71	 * because of that.
72	 */
73	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
74	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75
76	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81
82	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87
88	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89
90	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
91
92	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
93
94	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
95	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
96
97	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
98};
99
100static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
101static int ath10k_pci_cold_reset(struct ath10k *ar);
102static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
103static int ath10k_pci_init_irq(struct ath10k *ar);
104static int ath10k_pci_deinit_irq(struct ath10k *ar);
105static int ath10k_pci_request_irq(struct ath10k *ar);
106static void ath10k_pci_free_irq(struct ath10k *ar);
107static int ath10k_pci_bmi_wait(struct ath10k *ar,
108			       struct ath10k_ce_pipe *tx_pipe,
109			       struct ath10k_ce_pipe *rx_pipe,
110			       struct bmi_xfer *xfer);
111static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
112static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
113static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
115static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
116static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
117static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
118
119static const struct ce_attr pci_host_ce_config_wlan[] = {
120	/* CE0: host->target HTC control and raw streams */
121	{
122		.flags = CE_ATTR_FLAGS,
123		.src_nentries = 16,
124		.src_sz_max = 256,
125		.dest_nentries = 0,
126		.send_cb = ath10k_pci_htc_tx_cb,
127	},
128
129	/* CE1: target->host HTT + HTC control */
130	{
131		.flags = CE_ATTR_FLAGS,
132		.src_nentries = 0,
133		.src_sz_max = 2048,
134		.dest_nentries = 512,
135		.recv_cb = ath10k_pci_htt_htc_rx_cb,
136	},
137
138	/* CE2: target->host WMI */
139	{
140		.flags = CE_ATTR_FLAGS,
141		.src_nentries = 0,
142		.src_sz_max = 2048,
143		.dest_nentries = 128,
144		.recv_cb = ath10k_pci_htc_rx_cb,
145	},
146
147	/* CE3: host->target WMI */
148	{
149		.flags = CE_ATTR_FLAGS,
150		.src_nentries = 32,
151		.src_sz_max = 2048,
152		.dest_nentries = 0,
153		.send_cb = ath10k_pci_htc_tx_cb,
154	},
155
156	/* CE4: host->target HTT */
157	{
158		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
159		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
160		.src_sz_max = 256,
161		.dest_nentries = 0,
162		.send_cb = ath10k_pci_htt_tx_cb,
163	},
164
165	/* CE5: target->host HTT (HIF->HTT) */
166	{
167		.flags = CE_ATTR_FLAGS,
168		.src_nentries = 0,
169		.src_sz_max = 512,
170		.dest_nentries = 512,
171		.recv_cb = ath10k_pci_htt_rx_cb,
172	},
173
174	/* CE6: target autonomous hif_memcpy */
175	{
176		.flags = CE_ATTR_FLAGS,
177		.src_nentries = 0,
178		.src_sz_max = 0,
179		.dest_nentries = 0,
180	},
181
182	/* CE7: ce_diag, the Diagnostic Window */
183	{
184		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
185		.src_nentries = 2,
186		.src_sz_max = DIAG_TRANSFER_LIMIT,
187		.dest_nentries = 2,
188	},
189
190	/* CE8: target->host pktlog */
191	{
192		.flags = CE_ATTR_FLAGS,
193		.src_nentries = 0,
194		.src_sz_max = 2048,
195		.dest_nentries = 128,
196		.recv_cb = ath10k_pci_pktlog_rx_cb,
197	},
198
199	/* CE9 target autonomous qcache memcpy */
200	{
201		.flags = CE_ATTR_FLAGS,
202		.src_nentries = 0,
203		.src_sz_max = 0,
204		.dest_nentries = 0,
205	},
206
207	/* CE10: target autonomous hif memcpy */
208	{
209		.flags = CE_ATTR_FLAGS,
210		.src_nentries = 0,
211		.src_sz_max = 0,
212		.dest_nentries = 0,
213	},
214
215	/* CE11: target autonomous hif memcpy */
216	{
217		.flags = CE_ATTR_FLAGS,
218		.src_nentries = 0,
219		.src_sz_max = 0,
220		.dest_nentries = 0,
221	},
222};
223
224/* Target firmware's Copy Engine configuration. */
225static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
226	/* CE0: host->target HTC control and raw streams */
227	{
228		.pipenum = __cpu_to_le32(0),
229		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
230		.nentries = __cpu_to_le32(32),
231		.nbytes_max = __cpu_to_le32(256),
232		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
233		.reserved = __cpu_to_le32(0),
234	},
235
236	/* CE1: target->host HTT + HTC control */
237	{
238		.pipenum = __cpu_to_le32(1),
239		.pipedir = __cpu_to_le32(PIPEDIR_IN),
240		.nentries = __cpu_to_le32(32),
241		.nbytes_max = __cpu_to_le32(2048),
242		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
243		.reserved = __cpu_to_le32(0),
244	},
245
246	/* CE2: target->host WMI */
247	{
248		.pipenum = __cpu_to_le32(2),
249		.pipedir = __cpu_to_le32(PIPEDIR_IN),
250		.nentries = __cpu_to_le32(64),
251		.nbytes_max = __cpu_to_le32(2048),
252		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
253		.reserved = __cpu_to_le32(0),
254	},
255
256	/* CE3: host->target WMI */
257	{
258		.pipenum = __cpu_to_le32(3),
259		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
260		.nentries = __cpu_to_le32(32),
261		.nbytes_max = __cpu_to_le32(2048),
262		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
263		.reserved = __cpu_to_le32(0),
264	},
265
266	/* CE4: host->target HTT */
267	{
268		.pipenum = __cpu_to_le32(4),
269		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
270		.nentries = __cpu_to_le32(256),
271		.nbytes_max = __cpu_to_le32(256),
272		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
273		.reserved = __cpu_to_le32(0),
274	},
275
276	/* NB: 50% of src nentries, since tx has 2 frags */
277
278	/* CE5: target->host HTT (HIF->HTT) */
279	{
280		.pipenum = __cpu_to_le32(5),
281		.pipedir = __cpu_to_le32(PIPEDIR_IN),
282		.nentries = __cpu_to_le32(32),
283		.nbytes_max = __cpu_to_le32(512),
284		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
285		.reserved = __cpu_to_le32(0),
286	},
287
288	/* CE6: Reserved for target autonomous hif_memcpy */
289	{
290		.pipenum = __cpu_to_le32(6),
291		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
292		.nentries = __cpu_to_le32(32),
293		.nbytes_max = __cpu_to_le32(4096),
294		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
295		.reserved = __cpu_to_le32(0),
296	},
297
298	/* CE7 used only by Host */
299	{
300		.pipenum = __cpu_to_le32(7),
301		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
302		.nentries = __cpu_to_le32(0),
303		.nbytes_max = __cpu_to_le32(0),
304		.flags = __cpu_to_le32(0),
305		.reserved = __cpu_to_le32(0),
306	},
307
308	/* CE8 target->host packtlog */
309	{
310		.pipenum = __cpu_to_le32(8),
311		.pipedir = __cpu_to_le32(PIPEDIR_IN),
312		.nentries = __cpu_to_le32(64),
313		.nbytes_max = __cpu_to_le32(2048),
314		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
315		.reserved = __cpu_to_le32(0),
316	},
317
318	/* CE9 target autonomous qcache memcpy */
319	{
320		.pipenum = __cpu_to_le32(9),
321		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
322		.nentries = __cpu_to_le32(32),
323		.nbytes_max = __cpu_to_le32(2048),
324		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
325		.reserved = __cpu_to_le32(0),
326	},
327
328	/* It not necessary to send target wlan configuration for CE10 & CE11
329	 * as these CEs are not actively used in target.
330	 */
331};
332
333/*
334 * Map from service/endpoint to Copy Engine.
335 * This table is derived from the CE_PCI TABLE, above.
336 * It is passed to the Target at startup for use by firmware.
337 */
338static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
339	{
340		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
341		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
342		__cpu_to_le32(3),
343	},
344	{
345		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
346		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
347		__cpu_to_le32(2),
348	},
349	{
350		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
351		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
352		__cpu_to_le32(3),
353	},
354	{
355		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
356		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
357		__cpu_to_le32(2),
358	},
359	{
360		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
361		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
362		__cpu_to_le32(3),
363	},
364	{
365		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
366		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
367		__cpu_to_le32(2),
368	},
369	{
370		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
371		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
372		__cpu_to_le32(3),
373	},
374	{
375		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
376		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
377		__cpu_to_le32(2),
378	},
379	{
380		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
381		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
382		__cpu_to_le32(3),
383	},
384	{
385		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
386		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
387		__cpu_to_le32(2),
388	},
389	{
390		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
391		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
392		__cpu_to_le32(0),
393	},
394	{
395		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
396		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
397		__cpu_to_le32(1),
398	},
399	{ /* not used */
400		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
401		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
402		__cpu_to_le32(0),
403	},
404	{ /* not used */
405		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
406		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
407		__cpu_to_le32(1),
408	},
409	{
410		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
411		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
412		__cpu_to_le32(4),
413	},
414	{
415		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
416		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
417		__cpu_to_le32(5),
418	},
419
420	/* (Additions here) */
421
422	{ /* must be last */
423		__cpu_to_le32(0),
424		__cpu_to_le32(0),
425		__cpu_to_le32(0),
426	},
427};
428
429static bool ath10k_pci_is_awake(struct ath10k *ar)
430{
431	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
433			   RTC_STATE_ADDRESS);
434
435	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
436}
437
438static void __ath10k_pci_wake(struct ath10k *ar)
439{
440	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
441
442	lockdep_assert_held(&ar_pci->ps_lock);
443
444	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
445		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
446
447	iowrite32(PCIE_SOC_WAKE_V_MASK,
448		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
449		  PCIE_SOC_WAKE_ADDRESS);
450}
451
452static void __ath10k_pci_sleep(struct ath10k *ar)
453{
454	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
455
456	lockdep_assert_held(&ar_pci->ps_lock);
457
458	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
459		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
460
461	iowrite32(PCIE_SOC_WAKE_RESET,
462		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
463		  PCIE_SOC_WAKE_ADDRESS);
464	ar_pci->ps_awake = false;
465}
466
467static int ath10k_pci_wake_wait(struct ath10k *ar)
468{
469	int tot_delay = 0;
470	int curr_delay = 5;
471
472	while (tot_delay < PCIE_WAKE_TIMEOUT) {
473		if (ath10k_pci_is_awake(ar)) {
474			if (tot_delay > PCIE_WAKE_LATE_US)
475				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
476					    tot_delay / 1000);
477			return 0;
478		}
479
480		udelay(curr_delay);
481		tot_delay += curr_delay;
482
483		if (curr_delay < 50)
484			curr_delay += 5;
485	}
486
487	return -ETIMEDOUT;
488}
489
490static int ath10k_pci_force_wake(struct ath10k *ar)
491{
492	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
493	unsigned long flags;
494	int ret = 0;
495
496	if (ar_pci->pci_ps)
497		return ret;
498
499	spin_lock_irqsave(&ar_pci->ps_lock, flags);
500
501	if (!ar_pci->ps_awake) {
502		iowrite32(PCIE_SOC_WAKE_V_MASK,
503			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
504			  PCIE_SOC_WAKE_ADDRESS);
505
506		ret = ath10k_pci_wake_wait(ar);
507		if (ret == 0)
508			ar_pci->ps_awake = true;
509	}
510
511	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
512
513	return ret;
514}
515
516static void ath10k_pci_force_sleep(struct ath10k *ar)
517{
518	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
519	unsigned long flags;
520
521	spin_lock_irqsave(&ar_pci->ps_lock, flags);
522
523	iowrite32(PCIE_SOC_WAKE_RESET,
524		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
525		  PCIE_SOC_WAKE_ADDRESS);
526	ar_pci->ps_awake = false;
527
528	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
529}
530
531static int ath10k_pci_wake(struct ath10k *ar)
532{
533	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
534	unsigned long flags;
535	int ret = 0;
536
537	if (ar_pci->pci_ps == 0)
538		return ret;
539
540	spin_lock_irqsave(&ar_pci->ps_lock, flags);
541
542	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
543		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
544
545	/* This function can be called very frequently. To avoid excessive
546	 * CPU stalls for MMIO reads use a cache var to hold the device state.
547	 */
548	if (!ar_pci->ps_awake) {
549		__ath10k_pci_wake(ar);
550
551		ret = ath10k_pci_wake_wait(ar);
552		if (ret == 0)
553			ar_pci->ps_awake = true;
554	}
555
556	if (ret == 0) {
557		ar_pci->ps_wake_refcount++;
558		WARN_ON(ar_pci->ps_wake_refcount == 0);
559	}
560
561	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
562
563	return ret;
564}
565
566static void ath10k_pci_sleep(struct ath10k *ar)
567{
568	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
569	unsigned long flags;
570
571	if (ar_pci->pci_ps == 0)
572		return;
573
574	spin_lock_irqsave(&ar_pci->ps_lock, flags);
575
576	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
577		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
578
579	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
580		goto skip;
581
582	ar_pci->ps_wake_refcount--;
583
584	mod_timer(&ar_pci->ps_timer, jiffies +
585		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
586
587skip:
588	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
589}
590
591static void ath10k_pci_ps_timer(struct timer_list *t)
592{
593	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
594	struct ath10k *ar = ar_pci->ar;
595	unsigned long flags;
596
597	spin_lock_irqsave(&ar_pci->ps_lock, flags);
598
599	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
600		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
601
602	if (ar_pci->ps_wake_refcount > 0)
603		goto skip;
604
605	__ath10k_pci_sleep(ar);
606
607skip:
608	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
609}
610
611static void ath10k_pci_sleep_sync(struct ath10k *ar)
612{
613	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
614	unsigned long flags;
615
616	if (ar_pci->pci_ps == 0) {
617		ath10k_pci_force_sleep(ar);
618		return;
619	}
620
621	del_timer_sync(&ar_pci->ps_timer);
622
623	spin_lock_irqsave(&ar_pci->ps_lock, flags);
624	WARN_ON(ar_pci->ps_wake_refcount > 0);
625	__ath10k_pci_sleep(ar);
626	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
627}
628
629static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
630{
631	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
632	int ret;
633
634	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
635		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
636			    offset, offset + sizeof(value), ar_pci->mem_len);
637		return;
638	}
639
640	ret = ath10k_pci_wake(ar);
641	if (ret) {
642		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
643			    value, offset, ret);
644		return;
645	}
646
647	iowrite32(value, ar_pci->mem + offset);
648	ath10k_pci_sleep(ar);
649}
650
651static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
652{
653	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
654	u32 val;
655	int ret;
656
657	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
658		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
659			    offset, offset + sizeof(val), ar_pci->mem_len);
660		return 0;
661	}
662
663	ret = ath10k_pci_wake(ar);
664	if (ret) {
665		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
666			    offset, ret);
667		return 0xffffffff;
668	}
669
670	val = ioread32(ar_pci->mem + offset);
671	ath10k_pci_sleep(ar);
672
673	return val;
674}
675
676inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
677{
678	struct ath10k_ce *ce = ath10k_ce_priv(ar);
679
680	ce->bus_ops->write32(ar, offset, value);
681}
682
683inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
684{
685	struct ath10k_ce *ce = ath10k_ce_priv(ar);
686
687	return ce->bus_ops->read32(ar, offset);
688}
689
690u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
691{
692	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
693}
694
695void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
696{
697	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
698}
699
700u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
701{
702	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
703}
704
705void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
706{
707	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
708}
709
710bool ath10k_pci_irq_pending(struct ath10k *ar)
711{
712	u32 cause;
713
714	/* Check if the shared legacy irq is for us */
715	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
716				  PCIE_INTR_CAUSE_ADDRESS);
717	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
718		return true;
719
720	return false;
721}
722
723void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
724{
725	/* IMPORTANT: INTR_CLR register has to be set after
726	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
727	 * really cleared.
728	 */
729	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
730			   0);
731	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
732			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
733
734	/* IMPORTANT: this extra read transaction is required to
735	 * flush the posted write buffer.
736	 */
737	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
738				PCIE_INTR_ENABLE_ADDRESS);
739}
740
741void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
742{
743	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
744			   PCIE_INTR_ENABLE_ADDRESS,
745			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
746
747	/* IMPORTANT: this extra read transaction is required to
748	 * flush the posted write buffer.
749	 */
750	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
751				PCIE_INTR_ENABLE_ADDRESS);
752}
753
754static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
755{
756	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
757
758	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
759		return "msi";
760
761	return "legacy";
762}
763
764static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
765{
766	struct ath10k *ar = pipe->hif_ce_state;
767	struct ath10k_ce *ce = ath10k_ce_priv(ar);
768	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
769	struct sk_buff *skb;
770	dma_addr_t paddr;
771	int ret;
772
773	skb = dev_alloc_skb(pipe->buf_sz);
774	if (!skb)
775		return -ENOMEM;
776
777	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
778
779	paddr = dma_map_single(ar->dev, skb->data,
780			       skb->len + skb_tailroom(skb),
781			       DMA_FROM_DEVICE);
782	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
783		ath10k_warn(ar, "failed to dma map pci rx buf\n");
784		dev_kfree_skb_any(skb);
785		return -EIO;
786	}
787
788	ATH10K_SKB_RXCB(skb)->paddr = paddr;
789
790	spin_lock_bh(&ce->ce_lock);
791	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
792	spin_unlock_bh(&ce->ce_lock);
793	if (ret) {
794		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
795				 DMA_FROM_DEVICE);
796		dev_kfree_skb_any(skb);
797		return ret;
798	}
799
800	return 0;
801}
802
803static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
804{
805	struct ath10k *ar = pipe->hif_ce_state;
806	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
807	struct ath10k_ce *ce = ath10k_ce_priv(ar);
808	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
809	int ret, num;
810
811	if (pipe->buf_sz == 0)
812		return;
813
814	if (!ce_pipe->dest_ring)
815		return;
816
817	spin_lock_bh(&ce->ce_lock);
818	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
819	spin_unlock_bh(&ce->ce_lock);
820
821	while (num >= 0) {
822		ret = __ath10k_pci_rx_post_buf(pipe);
823		if (ret) {
824			if (ret == -ENOSPC)
825				break;
826			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
827			mod_timer(&ar_pci->rx_post_retry, jiffies +
828				  ATH10K_PCI_RX_POST_RETRY_MS);
829			break;
830		}
831		num--;
832	}
833}
834
835void ath10k_pci_rx_post(struct ath10k *ar)
836{
837	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
838	int i;
839
840	for (i = 0; i < CE_COUNT; i++)
841		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
842}
843
844void ath10k_pci_rx_replenish_retry(struct timer_list *t)
845{
846	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
847	struct ath10k *ar = ar_pci->ar;
848
849	ath10k_pci_rx_post(ar);
850}
851
852static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
853{
854	u32 val = 0, region = addr & 0xfffff;
855
856	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
857				 & 0x7ff) << 21;
858	val |= 0x100000 | region;
859	return val;
860}
861
862/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
863 * Support to access target space below 1M for qca6174 and qca9377.
864 * If target space is below 1M, the bit[20] of converted CE addr is 0.
865 * Otherwise bit[20] of converted CE addr is 1.
866 */
867static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
868{
869	u32 val = 0, region = addr & 0xfffff;
870
871	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
872				 & 0x7ff) << 21;
873	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
874	return val;
875}
876
877static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
878{
879	u32 val = 0, region = addr & 0xfffff;
880
881	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
882	val |= 0x100000 | region;
883	return val;
884}
885
886static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
887{
888	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
889
890	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
891		return -ENOTSUPP;
892
893	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
894}
895
896/*
897 * Diagnostic read/write access is provided for startup/config/debug usage.
898 * Caller must guarantee proper alignment, when applicable, and single user
899 * at any moment.
900 */
901static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
902				    int nbytes)
903{
904	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
905	int ret = 0;
906	u32 *buf;
907	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
908	struct ath10k_ce_pipe *ce_diag;
909	/* Host buffer address in CE space */
910	u32 ce_data;
911	dma_addr_t ce_data_base = 0;
912	void *data_buf;
913	int i;
914
915	mutex_lock(&ar_pci->ce_diag_mutex);
916	ce_diag = ar_pci->ce_diag;
917
918	/*
919	 * Allocate a temporary bounce buffer to hold caller's data
920	 * to be DMA'ed from Target. This guarantees
921	 *   1) 4-byte alignment
922	 *   2) Buffer in DMA-able space
923	 */
924	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
925
926	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
927				      GFP_ATOMIC);
928	if (!data_buf) {
929		ret = -ENOMEM;
930		goto done;
931	}
932
933	/* The address supplied by the caller is in the
934	 * Target CPU virtual address space.
935	 *
936	 * In order to use this address with the diagnostic CE,
937	 * convert it from Target CPU virtual address space
938	 * to CE address space
939	 */
940	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
941
942	remaining_bytes = nbytes;
943	ce_data = ce_data_base;
944	while (remaining_bytes) {
945		nbytes = min_t(unsigned int, remaining_bytes,
946			       DIAG_TRANSFER_LIMIT);
947
948		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
949		if (ret != 0)
950			goto done;
951
952		/* Request CE to send from Target(!) address to Host buffer */
953		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
954		if (ret)
955			goto done;
956
957		i = 0;
958		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
959			udelay(DIAG_ACCESS_CE_WAIT_US);
960			i += DIAG_ACCESS_CE_WAIT_US;
961
962			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
963				ret = -EBUSY;
964				goto done;
965			}
966		}
967
968		i = 0;
969		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
970						     &completed_nbytes) != 0) {
971			udelay(DIAG_ACCESS_CE_WAIT_US);
972			i += DIAG_ACCESS_CE_WAIT_US;
973
974			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
975				ret = -EBUSY;
976				goto done;
977			}
978		}
979
980		if (nbytes != completed_nbytes) {
981			ret = -EIO;
982			goto done;
983		}
984
985		if (*buf != ce_data) {
986			ret = -EIO;
987			goto done;
988		}
989
990		remaining_bytes -= nbytes;
991		memcpy(data, data_buf, nbytes);
992
993		address += nbytes;
994		data += nbytes;
995	}
996
997done:
998
999	if (data_buf)
1000		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1001				  ce_data_base);
1002
1003	mutex_unlock(&ar_pci->ce_diag_mutex);
1004
1005	return ret;
1006}
1007
1008static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1009{
1010	__le32 val = 0;
1011	int ret;
1012
1013	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014	*value = __le32_to_cpu(val);
1015
1016	return ret;
1017}
1018
1019static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1020				     u32 src, u32 len)
1021{
1022	u32 host_addr, addr;
1023	int ret;
1024
1025	host_addr = host_interest_item_address(src);
1026
1027	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1028	if (ret != 0) {
1029		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1030			    src, ret);
1031		return ret;
1032	}
1033
1034	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1035	if (ret != 0) {
1036		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1037			    addr, len, ret);
1038		return ret;
1039	}
1040
1041	return 0;
1042}
1043
1044#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1045	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1046
1047int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048			      const void *data, int nbytes)
1049{
1050	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051	int ret = 0;
1052	u32 *buf;
1053	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1054	struct ath10k_ce_pipe *ce_diag;
1055	void *data_buf;
1056	dma_addr_t ce_data_base = 0;
1057	int i;
1058
1059	mutex_lock(&ar_pci->ce_diag_mutex);
1060	ce_diag = ar_pci->ce_diag;
1061
1062	/*
1063	 * Allocate a temporary bounce buffer to hold caller's data
1064	 * to be DMA'ed to Target. This guarantees
1065	 *   1) 4-byte alignment
1066	 *   2) Buffer in DMA-able space
1067	 */
1068	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1069
1070	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1071				      GFP_ATOMIC);
1072	if (!data_buf) {
1073		ret = -ENOMEM;
1074		goto done;
1075	}
1076
1077	/*
1078	 * The address supplied by the caller is in the
1079	 * Target CPU virtual address space.
1080	 *
1081	 * In order to use this address with the diagnostic CE,
1082	 * convert it from
1083	 *    Target CPU virtual address space
1084	 * to
1085	 *    CE address space
1086	 */
1087	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1088
1089	remaining_bytes = nbytes;
1090	while (remaining_bytes) {
1091		/* FIXME: check cast */
1092		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1093
1094		/* Copy caller's data to allocated DMA buf */
1095		memcpy(data_buf, data, nbytes);
1096
1097		/* Set up to receive directly into Target(!) address */
1098		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1099		if (ret != 0)
1100			goto done;
1101
1102		/*
1103		 * Request CE to send caller-supplied data that
1104		 * was copied to bounce buffer to Target(!) address.
1105		 */
1106		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1107		if (ret != 0)
1108			goto done;
1109
1110		i = 0;
1111		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112			udelay(DIAG_ACCESS_CE_WAIT_US);
1113			i += DIAG_ACCESS_CE_WAIT_US;
1114
1115			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1116				ret = -EBUSY;
1117				goto done;
1118			}
1119		}
1120
1121		i = 0;
1122		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123						     &completed_nbytes) != 0) {
1124			udelay(DIAG_ACCESS_CE_WAIT_US);
1125			i += DIAG_ACCESS_CE_WAIT_US;
1126
1127			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1128				ret = -EBUSY;
1129				goto done;
1130			}
1131		}
1132
1133		if (nbytes != completed_nbytes) {
1134			ret = -EIO;
1135			goto done;
1136		}
1137
1138		if (*buf != address) {
1139			ret = -EIO;
1140			goto done;
1141		}
1142
1143		remaining_bytes -= nbytes;
1144		address += nbytes;
1145		data += nbytes;
1146	}
1147
1148done:
1149	if (data_buf) {
1150		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1151				  ce_data_base);
1152	}
1153
1154	if (ret != 0)
1155		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1156			    address, ret);
1157
1158	mutex_unlock(&ar_pci->ce_diag_mutex);
1159
1160	return ret;
1161}
1162
1163static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1164{
1165	__le32 val = __cpu_to_le32(value);
1166
1167	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1168}
1169
1170/* Called by lower (CE) layer when a send to Target completes. */
1171static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1172{
1173	struct ath10k *ar = ce_state->ar;
1174	struct sk_buff_head list;
1175	struct sk_buff *skb;
1176
1177	__skb_queue_head_init(&list);
1178	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179		/* no need to call tx completion for NULL pointers */
1180		if (skb == NULL)
1181			continue;
1182
1183		__skb_queue_tail(&list, skb);
1184	}
1185
1186	while ((skb = __skb_dequeue(&list)))
1187		ath10k_htc_tx_completion_handler(ar, skb);
1188}
1189
1190static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191				     void (*callback)(struct ath10k *ar,
1192						      struct sk_buff *skb))
1193{
1194	struct ath10k *ar = ce_state->ar;
1195	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1197	struct sk_buff *skb;
1198	struct sk_buff_head list;
1199	void *transfer_context;
1200	unsigned int nbytes, max_nbytes;
1201
1202	__skb_queue_head_init(&list);
1203	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1204					     &nbytes) == 0) {
1205		skb = transfer_context;
1206		max_nbytes = skb->len + skb_tailroom(skb);
1207		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208				 max_nbytes, DMA_FROM_DEVICE);
1209
1210		if (unlikely(max_nbytes < nbytes)) {
1211			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212				    nbytes, max_nbytes);
1213			dev_kfree_skb_any(skb);
1214			continue;
1215		}
1216
1217		skb_put(skb, nbytes);
1218		__skb_queue_tail(&list, skb);
1219	}
1220
1221	while ((skb = __skb_dequeue(&list))) {
1222		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223			   ce_state->id, skb->len);
1224		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225				skb->data, skb->len);
1226
1227		callback(ar, skb);
1228	}
1229
1230	ath10k_pci_rx_post_pipe(pipe_info);
1231}
1232
1233static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234					 void (*callback)(struct ath10k *ar,
1235							  struct sk_buff *skb))
1236{
1237	struct ath10k *ar = ce_state->ar;
1238	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1240	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241	struct sk_buff *skb;
1242	struct sk_buff_head list;
1243	void *transfer_context;
1244	unsigned int nbytes, max_nbytes, nentries;
1245	int orig_len;
1246
1247	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1248	 * is processed other than init and deinit. Before releasing CE5
1249	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1250	 */
1251	__skb_queue_head_init(&list);
1252	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1253						    &nbytes) == 0) {
1254		skb = transfer_context;
1255		max_nbytes = skb->len + skb_tailroom(skb);
1256
1257		if (unlikely(max_nbytes < nbytes)) {
1258			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259				    nbytes, max_nbytes);
1260			continue;
1261		}
1262
1263		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264					max_nbytes, DMA_FROM_DEVICE);
1265		skb_put(skb, nbytes);
1266		__skb_queue_tail(&list, skb);
1267	}
1268
1269	nentries = skb_queue_len(&list);
1270	while ((skb = __skb_dequeue(&list))) {
1271		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272			   ce_state->id, skb->len);
1273		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274				skb->data, skb->len);
1275
1276		orig_len = skb->len;
1277		callback(ar, skb);
1278		skb_push(skb, orig_len - skb->len);
1279		skb_reset_tail_pointer(skb);
1280		skb_trim(skb, 0);
1281
1282		/*let device gain the buffer again*/
1283		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284					   skb->len + skb_tailroom(skb),
1285					   DMA_FROM_DEVICE);
1286	}
1287	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1288}
1289
1290/* Called by lower (CE) layer when data is received from the Target. */
1291static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292{
1293	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1294}
1295
1296static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1297{
1298	/* CE4 polling needs to be done whenever CE pipe which transports
1299	 * HTT Rx (target->host) is processed.
1300	 */
1301	ath10k_ce_per_engine_service(ce_state->ar, 4);
1302
1303	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304}
1305
1306/* Called by lower (CE) layer when data is received from the Target.
1307 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1308 */
1309static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1310{
1311	ath10k_pci_process_rx_cb(ce_state,
1312				 ath10k_htt_rx_pktlog_completion_handler);
1313}
1314
1315/* Called by lower (CE) layer when a send to HTT Target completes. */
1316static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1317{
1318	struct ath10k *ar = ce_state->ar;
1319	struct sk_buff *skb;
1320
1321	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322		/* no need to call tx completion for NULL pointers */
1323		if (!skb)
1324			continue;
1325
1326		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327				 skb->len, DMA_TO_DEVICE);
1328		ath10k_htt_hif_tx_complete(ar, skb);
1329	}
1330}
1331
1332static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1333{
1334	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335	ath10k_htt_t2h_msg_handler(ar, skb);
1336}
1337
1338/* Called by lower (CE) layer when HTT data is received from the Target. */
1339static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1340{
1341	/* CE4 polling needs to be done whenever CE pipe which transports
1342	 * HTT Rx (target->host) is processed.
1343	 */
1344	ath10k_ce_per_engine_service(ce_state->ar, 4);
1345
1346	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1347}
1348
1349int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350			 struct ath10k_hif_sg_item *items, int n_items)
1351{
1352	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357	unsigned int nentries_mask;
1358	unsigned int sw_index;
1359	unsigned int write_index;
1360	int err, i = 0;
1361
1362	spin_lock_bh(&ce->ce_lock);
1363
1364	nentries_mask = src_ring->nentries_mask;
1365	sw_index = src_ring->sw_index;
1366	write_index = src_ring->write_index;
1367
1368	if (unlikely(CE_RING_DELTA(nentries_mask,
1369				   write_index, sw_index - 1) < n_items)) {
1370		err = -ENOBUFS;
1371		goto err;
1372	}
1373
1374	for (i = 0; i < n_items - 1; i++) {
1375		ath10k_dbg(ar, ATH10K_DBG_PCI,
1376			   "pci tx item %d paddr %pad len %d n_items %d\n",
1377			   i, &items[i].paddr, items[i].len, n_items);
1378		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379				items[i].vaddr, items[i].len);
1380
1381		err = ath10k_ce_send_nolock(ce_pipe,
1382					    items[i].transfer_context,
1383					    items[i].paddr,
1384					    items[i].len,
1385					    items[i].transfer_id,
1386					    CE_SEND_FLAG_GATHER);
1387		if (err)
1388			goto err;
1389	}
1390
1391	/* `i` is equal to `n_items -1` after for() */
1392
1393	ath10k_dbg(ar, ATH10K_DBG_PCI,
1394		   "pci tx item %d paddr %pad len %d n_items %d\n",
1395		   i, &items[i].paddr, items[i].len, n_items);
1396	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397			items[i].vaddr, items[i].len);
1398
1399	err = ath10k_ce_send_nolock(ce_pipe,
1400				    items[i].transfer_context,
1401				    items[i].paddr,
1402				    items[i].len,
1403				    items[i].transfer_id,
1404				    0);
1405	if (err)
1406		goto err;
1407
1408	spin_unlock_bh(&ce->ce_lock);
1409	return 0;
1410
1411err:
1412	for (; i > 0; i--)
1413		__ath10k_ce_send_revert(ce_pipe);
1414
1415	spin_unlock_bh(&ce->ce_lock);
1416	return err;
1417}
1418
1419int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1420			     size_t buf_len)
1421{
1422	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1423}
1424
1425u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1426{
1427	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1428
1429	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1430
1431	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1432}
1433
1434static void ath10k_pci_dump_registers(struct ath10k *ar,
1435				      struct ath10k_fw_crash_data *crash_data)
1436{
1437	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1438	int i, ret;
1439
1440	lockdep_assert_held(&ar->dump_mutex);
1441
1442	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1443				      hi_failure_state,
1444				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1445	if (ret) {
1446		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1447		return;
1448	}
1449
1450	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1451
1452	ath10k_err(ar, "firmware register dump:\n");
1453	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1455			   i,
1456			   __le32_to_cpu(reg_dump_values[i]),
1457			   __le32_to_cpu(reg_dump_values[i + 1]),
1458			   __le32_to_cpu(reg_dump_values[i + 2]),
1459			   __le32_to_cpu(reg_dump_values[i + 3]));
1460
1461	if (!crash_data)
1462		return;
1463
1464	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465		crash_data->registers[i] = reg_dump_values[i];
1466}
1467
1468static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469					  const struct ath10k_mem_region *mem_region,
1470					  u8 *buf, size_t buf_len)
1471{
1472	const struct ath10k_mem_section *cur_section, *next_section;
1473	unsigned int count, section_size, skip_size;
1474	int ret, i, j;
1475
1476	if (!mem_region || !buf)
1477		return 0;
1478
1479	cur_section = &mem_region->section_table.sections[0];
1480
1481	if (mem_region->start > cur_section->start) {
1482		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483			    mem_region->start, cur_section->start);
1484		return 0;
1485	}
1486
1487	skip_size = cur_section->start - mem_region->start;
1488
1489	/* fill the gap between the first register section and register
1490	 * start address
1491	 */
1492	for (i = 0; i < skip_size; i++) {
1493		*buf = ATH10K_MAGIC_NOT_COPIED;
1494		buf++;
1495	}
1496
1497	count = 0;
1498
1499	for (i = 0; cur_section != NULL; i++) {
1500		section_size = cur_section->end - cur_section->start;
1501
1502		if (section_size <= 0) {
1503			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1504				    cur_section->start,
1505				    cur_section->end);
1506			break;
1507		}
1508
1509		if ((i + 1) == mem_region->section_table.size) {
1510			/* last section */
1511			next_section = NULL;
1512			skip_size = 0;
1513		} else {
1514			next_section = cur_section + 1;
1515
1516			if (cur_section->end > next_section->start) {
1517				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518					    next_section->start,
1519					    cur_section->end);
1520				break;
1521			}
1522
1523			skip_size = next_section->start - cur_section->end;
1524		}
1525
1526		if (buf_len < (skip_size + section_size)) {
1527			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1528			break;
1529		}
1530
1531		buf_len -= skip_size + section_size;
1532
1533		/* read section to dest memory */
1534		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1535					       buf, section_size);
1536		if (ret) {
1537			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538				    cur_section->start, ret);
1539			break;
1540		}
1541
1542		buf += section_size;
1543		count += section_size;
1544
1545		/* fill in the gap between this section and the next */
1546		for (j = 0; j < skip_size; j++) {
1547			*buf = ATH10K_MAGIC_NOT_COPIED;
1548			buf++;
1549		}
1550
1551		count += skip_size;
1552
1553		if (!next_section)
1554			/* this was the last section */
1555			break;
1556
1557		cur_section = next_section;
1558	}
1559
1560	return count;
1561}
1562
1563static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1564{
1565	u32 val;
1566
1567	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568			   FW_RAM_CONFIG_ADDRESS, config);
1569
1570	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571				FW_RAM_CONFIG_ADDRESS);
1572	if (val != config) {
1573		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1574			    val, config);
1575		return -EIO;
1576	}
1577
1578	return 0;
1579}
1580
1581/* Always returns the length */
1582static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583				       const struct ath10k_mem_region *region,
1584				       u8 *buf)
1585{
1586	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1587	u32 base_addr, i;
1588
1589	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590	base_addr += region->start;
1591
1592	for (i = 0; i < region->len; i += 4) {
1593		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1595	}
1596
1597	return region->len;
1598}
1599
1600/* if an error happened returns < 0, otherwise the length */
1601static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602				      const struct ath10k_mem_region *region,
1603				      u8 *buf)
1604{
1605	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1606	u32 i;
1607	int ret;
1608
1609	mutex_lock(&ar->conf_mutex);
1610	if (ar->state != ATH10K_STATE_ON) {
1611		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1612		ret = -EIO;
1613		goto done;
1614	}
1615
1616	for (i = 0; i < region->len; i += 4)
1617		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1618
1619	ret = region->len;
1620done:
1621	mutex_unlock(&ar->conf_mutex);
1622	return ret;
1623}
1624
1625/* if an error happened returns < 0, otherwise the length */
1626static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1627					  const struct ath10k_mem_region *current_region,
1628					  u8 *buf)
1629{
1630	int ret;
1631
1632	if (current_region->section_table.size > 0)
1633		/* Copy each section individually. */
1634		return ath10k_pci_dump_memory_section(ar,
1635						      current_region,
1636						      buf,
1637						      current_region->len);
1638
1639	/* No individiual memory sections defined so we can
1640	 * copy the entire memory region.
1641	 */
1642	ret = ath10k_pci_diag_read_mem(ar,
1643				       current_region->start,
1644				       buf,
1645				       current_region->len);
1646	if (ret) {
1647		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1648			    current_region->name, ret);
1649		return ret;
1650	}
1651
1652	return current_region->len;
1653}
1654
1655static void ath10k_pci_dump_memory(struct ath10k *ar,
1656				   struct ath10k_fw_crash_data *crash_data)
1657{
1658	const struct ath10k_hw_mem_layout *mem_layout;
1659	const struct ath10k_mem_region *current_region;
1660	struct ath10k_dump_ram_data_hdr *hdr;
1661	u32 count, shift;
1662	size_t buf_len;
1663	int ret, i;
1664	u8 *buf;
1665
1666	lockdep_assert_held(&ar->dump_mutex);
1667
1668	if (!crash_data)
1669		return;
1670
1671	mem_layout = ath10k_coredump_get_mem_layout(ar);
1672	if (!mem_layout)
1673		return;
1674
1675	current_region = &mem_layout->region_table.regions[0];
1676
1677	buf = crash_data->ramdump_buf;
1678	buf_len = crash_data->ramdump_buf_len;
1679
1680	memset(buf, 0, buf_len);
1681
1682	for (i = 0; i < mem_layout->region_table.size; i++) {
1683		count = 0;
1684
1685		if (current_region->len > buf_len) {
1686			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1687				    current_region->name,
1688				    current_region->len,
1689				    buf_len);
1690			break;
1691		}
1692
1693		/* To get IRAM dump, the host driver needs to switch target
1694		 * ram config from DRAM to IRAM.
1695		 */
1696		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1697		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1698			shift = current_region->start >> 20;
1699
1700			ret = ath10k_pci_set_ram_config(ar, shift);
1701			if (ret) {
1702				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1703					    current_region->name, ret);
1704				break;
1705			}
1706		}
1707
1708		/* Reserve space for the header. */
1709		hdr = (void *)buf;
1710		buf += sizeof(*hdr);
1711		buf_len -= sizeof(*hdr);
1712
1713		switch (current_region->type) {
1714		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1715			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1716			break;
1717		case ATH10K_MEM_REGION_TYPE_IOREG:
1718			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1719			if (ret < 0)
1720				break;
1721
1722			count = ret;
1723			break;
1724		default:
1725			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1726			if (ret < 0)
1727				break;
1728
1729			count = ret;
1730			break;
1731		}
1732
1733		hdr->region_type = cpu_to_le32(current_region->type);
1734		hdr->start = cpu_to_le32(current_region->start);
1735		hdr->length = cpu_to_le32(count);
1736
1737		if (count == 0)
1738			/* Note: the header remains, just with zero length. */
1739			break;
1740
1741		buf += count;
1742		buf_len -= count;
1743
1744		current_region++;
1745	}
1746}
1747
1748static void ath10k_pci_fw_dump_work(struct work_struct *work)
1749{
1750	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1751						 dump_work);
1752	struct ath10k_fw_crash_data *crash_data;
1753	struct ath10k *ar = ar_pci->ar;
1754	char guid[UUID_STRING_LEN + 1];
1755
1756	mutex_lock(&ar->dump_mutex);
1757
1758	spin_lock_bh(&ar->data_lock);
1759	ar->stats.fw_crash_counter++;
1760	spin_unlock_bh(&ar->data_lock);
1761
1762	crash_data = ath10k_coredump_new(ar);
1763
1764	if (crash_data)
1765		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1766	else
1767		scnprintf(guid, sizeof(guid), "n/a");
1768
1769	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1770	ath10k_print_driver_info(ar);
1771	ath10k_pci_dump_registers(ar, crash_data);
1772	ath10k_ce_dump_registers(ar, crash_data);
1773	ath10k_pci_dump_memory(ar, crash_data);
1774
1775	mutex_unlock(&ar->dump_mutex);
1776
1777	queue_work(ar->workqueue, &ar->restart_work);
1778}
1779
1780static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1781{
1782	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1783
1784	queue_work(ar->workqueue, &ar_pci->dump_work);
1785}
1786
1787void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1788					int force)
1789{
1790	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1791
1792	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1793
1794	if (!force) {
1795		int resources;
1796		/*
1797		 * Decide whether to actually poll for completions, or just
1798		 * wait for a later chance.
1799		 * If there seem to be plenty of resources left, then just wait
1800		 * since checking involves reading a CE register, which is a
1801		 * relatively expensive operation.
1802		 */
1803		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1804
1805		/*
1806		 * If at least 50% of the total resources are still available,
1807		 * don't bother checking again yet.
1808		 */
1809		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1810			return;
1811	}
1812	ath10k_ce_per_engine_service(ar, pipe);
1813}
1814
1815static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1816{
1817	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1818
1819	del_timer_sync(&ar_pci->rx_post_retry);
1820}
1821
1822int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1823				       u8 *ul_pipe, u8 *dl_pipe)
1824{
1825	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1826	const struct ce_service_to_pipe *entry;
1827	bool ul_set = false, dl_set = false;
1828	int i;
1829
1830	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1831
1832	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1833		entry = &ar_pci->serv_to_pipe[i];
1834
1835		if (__le32_to_cpu(entry->service_id) != service_id)
1836			continue;
1837
1838		switch (__le32_to_cpu(entry->pipedir)) {
1839		case PIPEDIR_NONE:
1840			break;
1841		case PIPEDIR_IN:
1842			WARN_ON(dl_set);
1843			*dl_pipe = __le32_to_cpu(entry->pipenum);
1844			dl_set = true;
1845			break;
1846		case PIPEDIR_OUT:
1847			WARN_ON(ul_set);
1848			*ul_pipe = __le32_to_cpu(entry->pipenum);
1849			ul_set = true;
1850			break;
1851		case PIPEDIR_INOUT:
1852			WARN_ON(dl_set);
1853			WARN_ON(ul_set);
1854			*dl_pipe = __le32_to_cpu(entry->pipenum);
1855			*ul_pipe = __le32_to_cpu(entry->pipenum);
1856			dl_set = true;
1857			ul_set = true;
1858			break;
1859		}
1860	}
1861
1862	if (!ul_set || !dl_set)
1863		return -ENOENT;
1864
1865	return 0;
1866}
1867
1868void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1869				     u8 *ul_pipe, u8 *dl_pipe)
1870{
1871	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1872
1873	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1874						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1875						 ul_pipe, dl_pipe);
1876}
1877
1878void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1879{
1880	u32 val;
1881
1882	switch (ar->hw_rev) {
1883	case ATH10K_HW_QCA988X:
1884	case ATH10K_HW_QCA9887:
1885	case ATH10K_HW_QCA6174:
1886	case ATH10K_HW_QCA9377:
1887		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1888					CORE_CTRL_ADDRESS);
1889		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1890		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1891				   CORE_CTRL_ADDRESS, val);
1892		break;
1893	case ATH10K_HW_QCA99X0:
1894	case ATH10K_HW_QCA9984:
1895	case ATH10K_HW_QCA9888:
1896	case ATH10K_HW_QCA4019:
1897		/* TODO: Find appropriate register configuration for QCA99X0
1898		 *  to mask irq/MSI.
1899		 */
1900		break;
1901	case ATH10K_HW_WCN3990:
1902		break;
1903	}
1904}
1905
1906static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1907{
1908	u32 val;
1909
1910	switch (ar->hw_rev) {
1911	case ATH10K_HW_QCA988X:
1912	case ATH10K_HW_QCA9887:
1913	case ATH10K_HW_QCA6174:
1914	case ATH10K_HW_QCA9377:
1915		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1916					CORE_CTRL_ADDRESS);
1917		val |= CORE_CTRL_PCIE_REG_31_MASK;
1918		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1919				   CORE_CTRL_ADDRESS, val);
1920		break;
1921	case ATH10K_HW_QCA99X0:
1922	case ATH10K_HW_QCA9984:
1923	case ATH10K_HW_QCA9888:
1924	case ATH10K_HW_QCA4019:
1925		/* TODO: Find appropriate register configuration for QCA99X0
1926		 *  to unmask irq/MSI.
1927		 */
1928		break;
1929	case ATH10K_HW_WCN3990:
1930		break;
1931	}
1932}
1933
1934static void ath10k_pci_irq_disable(struct ath10k *ar)
1935{
1936	ath10k_ce_disable_interrupts(ar);
1937	ath10k_pci_disable_and_clear_legacy_irq(ar);
1938	ath10k_pci_irq_msi_fw_mask(ar);
1939}
1940
1941static void ath10k_pci_irq_sync(struct ath10k *ar)
1942{
1943	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1944
1945	synchronize_irq(ar_pci->pdev->irq);
1946}
1947
1948static void ath10k_pci_irq_enable(struct ath10k *ar)
1949{
1950	ath10k_ce_enable_interrupts(ar);
1951	ath10k_pci_enable_legacy_irq(ar);
1952	ath10k_pci_irq_msi_fw_unmask(ar);
1953}
1954
1955static int ath10k_pci_hif_start(struct ath10k *ar)
1956{
1957	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1958
1959	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1960
1961	napi_enable(&ar->napi);
1962
1963	ath10k_pci_irq_enable(ar);
1964	ath10k_pci_rx_post(ar);
1965
1966	pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1967					   PCI_EXP_LNKCTL_ASPMC,
1968					   ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1969
1970	return 0;
1971}
1972
1973static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1974{
1975	struct ath10k *ar;
1976	struct ath10k_ce_pipe *ce_pipe;
1977	struct ath10k_ce_ring *ce_ring;
1978	struct sk_buff *skb;
1979	int i;
1980
1981	ar = pci_pipe->hif_ce_state;
1982	ce_pipe = pci_pipe->ce_hdl;
1983	ce_ring = ce_pipe->dest_ring;
1984
1985	if (!ce_ring)
1986		return;
1987
1988	if (!pci_pipe->buf_sz)
1989		return;
1990
1991	for (i = 0; i < ce_ring->nentries; i++) {
1992		skb = ce_ring->per_transfer_context[i];
1993		if (!skb)
1994			continue;
1995
1996		ce_ring->per_transfer_context[i] = NULL;
1997
1998		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1999				 skb->len + skb_tailroom(skb),
2000				 DMA_FROM_DEVICE);
2001		dev_kfree_skb_any(skb);
2002	}
2003}
2004
2005static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2006{
2007	struct ath10k *ar;
2008	struct ath10k_ce_pipe *ce_pipe;
2009	struct ath10k_ce_ring *ce_ring;
2010	struct sk_buff *skb;
2011	int i;
2012
2013	ar = pci_pipe->hif_ce_state;
2014	ce_pipe = pci_pipe->ce_hdl;
2015	ce_ring = ce_pipe->src_ring;
2016
2017	if (!ce_ring)
2018		return;
2019
2020	if (!pci_pipe->buf_sz)
2021		return;
2022
2023	for (i = 0; i < ce_ring->nentries; i++) {
2024		skb = ce_ring->per_transfer_context[i];
2025		if (!skb)
2026			continue;
2027
2028		ce_ring->per_transfer_context[i] = NULL;
2029
2030		ath10k_htc_tx_completion_handler(ar, skb);
2031	}
2032}
2033
2034/*
2035 * Cleanup residual buffers for device shutdown:
2036 *    buffers that were enqueued for receive
2037 *    buffers that were to be sent
2038 * Note: Buffers that had completed but which were
2039 * not yet processed are on a completion queue. They
2040 * are handled when the completion thread shuts down.
2041 */
2042static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2043{
2044	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2045	int pipe_num;
2046
2047	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2048		struct ath10k_pci_pipe *pipe_info;
2049
2050		pipe_info = &ar_pci->pipe_info[pipe_num];
2051		ath10k_pci_rx_pipe_cleanup(pipe_info);
2052		ath10k_pci_tx_pipe_cleanup(pipe_info);
2053	}
2054}
2055
2056void ath10k_pci_ce_deinit(struct ath10k *ar)
2057{
2058	int i;
2059
2060	for (i = 0; i < CE_COUNT; i++)
2061		ath10k_ce_deinit_pipe(ar, i);
2062}
2063
2064void ath10k_pci_flush(struct ath10k *ar)
2065{
2066	ath10k_pci_rx_retry_sync(ar);
2067	ath10k_pci_buffer_cleanup(ar);
2068}
2069
2070static void ath10k_pci_hif_stop(struct ath10k *ar)
2071{
2072	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2073	unsigned long flags;
2074
2075	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2076
2077	ath10k_pci_irq_disable(ar);
2078	ath10k_pci_irq_sync(ar);
2079	napi_synchronize(&ar->napi);
2080	napi_disable(&ar->napi);
2081	cancel_work_sync(&ar_pci->dump_work);
2082
2083	/* Most likely the device has HTT Rx ring configured. The only way to
2084	 * prevent the device from accessing (and possible corrupting) host
2085	 * memory is to reset the chip now.
2086	 *
2087	 * There's also no known way of masking MSI interrupts on the device.
2088	 * For ranged MSI the CE-related interrupts can be masked. However
2089	 * regardless how many MSI interrupts are assigned the first one
2090	 * is always used for firmware indications (crashes) and cannot be
2091	 * masked. To prevent the device from asserting the interrupt reset it
2092	 * before proceeding with cleanup.
2093	 */
2094	ath10k_pci_safe_chip_reset(ar);
2095
2096	ath10k_pci_flush(ar);
2097
2098	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2099	WARN_ON(ar_pci->ps_wake_refcount > 0);
2100	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2101}
2102
2103int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2104				    void *req, u32 req_len,
2105				    void *resp, u32 *resp_len)
2106{
2107	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2108	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2109	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2110	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2111	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2112	dma_addr_t req_paddr = 0;
2113	dma_addr_t resp_paddr = 0;
2114	struct bmi_xfer xfer = {};
2115	void *treq, *tresp = NULL;
2116	int ret = 0;
2117
2118	might_sleep();
2119
2120	if (resp && !resp_len)
2121		return -EINVAL;
2122
2123	if (resp && resp_len && *resp_len == 0)
2124		return -EINVAL;
2125
2126	treq = kmemdup(req, req_len, GFP_KERNEL);
2127	if (!treq)
2128		return -ENOMEM;
2129
2130	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2131	ret = dma_mapping_error(ar->dev, req_paddr);
2132	if (ret) {
2133		ret = -EIO;
2134		goto err_dma;
2135	}
2136
2137	if (resp && resp_len) {
2138		tresp = kzalloc(*resp_len, GFP_KERNEL);
2139		if (!tresp) {
2140			ret = -ENOMEM;
2141			goto err_req;
2142		}
2143
2144		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2145					    DMA_FROM_DEVICE);
2146		ret = dma_mapping_error(ar->dev, resp_paddr);
2147		if (ret) {
2148			ret = -EIO;
2149			goto err_req;
2150		}
2151
2152		xfer.wait_for_resp = true;
2153		xfer.resp_len = 0;
2154
2155		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2156	}
2157
2158	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2159	if (ret)
2160		goto err_resp;
2161
2162	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2163	if (ret) {
2164		dma_addr_t unused_buffer;
2165		unsigned int unused_nbytes;
2166		unsigned int unused_id;
2167
2168		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2169					   &unused_nbytes, &unused_id);
2170	} else {
2171		/* non-zero means we did not time out */
2172		ret = 0;
2173	}
2174
2175err_resp:
2176	if (resp) {
2177		dma_addr_t unused_buffer;
2178
2179		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2180		dma_unmap_single(ar->dev, resp_paddr,
2181				 *resp_len, DMA_FROM_DEVICE);
2182	}
2183err_req:
2184	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2185
2186	if (ret == 0 && resp_len) {
2187		*resp_len = min(*resp_len, xfer.resp_len);
2188		memcpy(resp, tresp, *resp_len);
2189	}
2190err_dma:
2191	kfree(treq);
2192	kfree(tresp);
2193
2194	return ret;
2195}
2196
2197static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2198{
2199	struct bmi_xfer *xfer;
2200
2201	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2202		return;
2203
2204	xfer->tx_done = true;
2205}
2206
2207static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2208{
2209	struct ath10k *ar = ce_state->ar;
2210	struct bmi_xfer *xfer;
2211	unsigned int nbytes;
2212
2213	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2214					  &nbytes))
2215		return;
2216
2217	if (WARN_ON_ONCE(!xfer))
2218		return;
2219
2220	if (!xfer->wait_for_resp) {
2221		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2222		return;
2223	}
2224
2225	xfer->resp_len = nbytes;
2226	xfer->rx_done = true;
2227}
2228
2229static int ath10k_pci_bmi_wait(struct ath10k *ar,
2230			       struct ath10k_ce_pipe *tx_pipe,
2231			       struct ath10k_ce_pipe *rx_pipe,
2232			       struct bmi_xfer *xfer)
2233{
2234	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2235	unsigned long started = jiffies;
2236	unsigned long dur;
2237	int ret;
2238
2239	while (time_before_eq(jiffies, timeout)) {
2240		ath10k_pci_bmi_send_done(tx_pipe);
2241		ath10k_pci_bmi_recv_data(rx_pipe);
2242
2243		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2244			ret = 0;
2245			goto out;
2246		}
2247
2248		schedule();
2249	}
2250
2251	ret = -ETIMEDOUT;
2252
2253out:
2254	dur = jiffies - started;
2255	if (dur > HZ)
2256		ath10k_dbg(ar, ATH10K_DBG_BMI,
2257			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2258			   dur, HZ, ret);
2259	return ret;
2260}
2261
2262/*
2263 * Send an interrupt to the device to wake up the Target CPU
2264 * so it has an opportunity to notice any changed state.
2265 */
2266static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2267{
2268	u32 addr, val;
2269
2270	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2271	val = ath10k_pci_read32(ar, addr);
2272	val |= CORE_CTRL_CPU_INTR_MASK;
2273	ath10k_pci_write32(ar, addr, val);
2274
2275	return 0;
2276}
2277
2278static int ath10k_pci_get_num_banks(struct ath10k *ar)
2279{
2280	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2281
2282	switch (ar_pci->pdev->device) {
2283	case QCA988X_2_0_DEVICE_ID_UBNT:
2284	case QCA988X_2_0_DEVICE_ID:
2285	case QCA99X0_2_0_DEVICE_ID:
2286	case QCA9888_2_0_DEVICE_ID:
2287	case QCA9984_1_0_DEVICE_ID:
2288	case QCA9887_1_0_DEVICE_ID:
2289		return 1;
2290	case QCA6164_2_1_DEVICE_ID:
2291	case QCA6174_2_1_DEVICE_ID:
2292		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2293		case QCA6174_HW_1_0_CHIP_ID_REV:
2294		case QCA6174_HW_1_1_CHIP_ID_REV:
2295		case QCA6174_HW_2_1_CHIP_ID_REV:
2296		case QCA6174_HW_2_2_CHIP_ID_REV:
2297			return 3;
2298		case QCA6174_HW_1_3_CHIP_ID_REV:
2299			return 2;
2300		case QCA6174_HW_3_0_CHIP_ID_REV:
2301		case QCA6174_HW_3_1_CHIP_ID_REV:
2302		case QCA6174_HW_3_2_CHIP_ID_REV:
2303			return 9;
2304		}
2305		break;
2306	case QCA9377_1_0_DEVICE_ID:
2307		return 9;
2308	}
2309
2310	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2311	return 1;
2312}
2313
2314static int ath10k_bus_get_num_banks(struct ath10k *ar)
2315{
2316	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2317
2318	return ce->bus_ops->get_num_banks(ar);
2319}
2320
2321int ath10k_pci_init_config(struct ath10k *ar)
2322{
2323	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2324	u32 interconnect_targ_addr;
2325	u32 pcie_state_targ_addr = 0;
2326	u32 pipe_cfg_targ_addr = 0;
2327	u32 svc_to_pipe_map = 0;
2328	u32 pcie_config_flags = 0;
2329	u32 ealloc_value;
2330	u32 ealloc_targ_addr;
2331	u32 flag2_value;
2332	u32 flag2_targ_addr;
2333	int ret = 0;
2334
2335	/* Download to Target the CE Config and the service-to-CE map */
2336	interconnect_targ_addr =
2337		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2338
2339	/* Supply Target-side CE configuration */
2340	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2341				     &pcie_state_targ_addr);
2342	if (ret != 0) {
2343		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2344		return ret;
2345	}
2346
2347	if (pcie_state_targ_addr == 0) {
2348		ret = -EIO;
2349		ath10k_err(ar, "Invalid pcie state addr\n");
2350		return ret;
2351	}
2352
2353	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2354					  offsetof(struct pcie_state,
2355						   pipe_cfg_addr)),
2356				     &pipe_cfg_targ_addr);
2357	if (ret != 0) {
2358		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2359		return ret;
2360	}
2361
2362	if (pipe_cfg_targ_addr == 0) {
2363		ret = -EIO;
2364		ath10k_err(ar, "Invalid pipe cfg addr\n");
2365		return ret;
2366	}
2367
2368	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2369					ar_pci->pipe_config,
2370					sizeof(struct ce_pipe_config) *
2371					NUM_TARGET_CE_CONFIG_WLAN);
2372
2373	if (ret != 0) {
2374		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2375		return ret;
2376	}
2377
2378	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2379					  offsetof(struct pcie_state,
2380						   svc_to_pipe_map)),
2381				     &svc_to_pipe_map);
2382	if (ret != 0) {
2383		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2384		return ret;
2385	}
2386
2387	if (svc_to_pipe_map == 0) {
2388		ret = -EIO;
2389		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2390		return ret;
2391	}
2392
2393	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2394					ar_pci->serv_to_pipe,
2395					sizeof(pci_target_service_to_ce_map_wlan));
2396	if (ret != 0) {
2397		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2398		return ret;
2399	}
2400
2401	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2402					  offsetof(struct pcie_state,
2403						   config_flags)),
2404				     &pcie_config_flags);
2405	if (ret != 0) {
2406		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2407		return ret;
2408	}
2409
2410	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2411
2412	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2413					   offsetof(struct pcie_state,
2414						    config_flags)),
2415				      pcie_config_flags);
2416	if (ret != 0) {
2417		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2418		return ret;
2419	}
2420
2421	/* configure early allocation */
2422	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2423
2424	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2425	if (ret != 0) {
2426		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2427		return ret;
2428	}
2429
2430	/* first bank is switched to IRAM */
2431	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2432			 HI_EARLY_ALLOC_MAGIC_MASK);
2433	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2434			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2435			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2436
2437	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2438	if (ret != 0) {
2439		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2440		return ret;
2441	}
2442
2443	/* Tell Target to proceed with initialization */
2444	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2445
2446	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2447	if (ret != 0) {
2448		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2449		return ret;
2450	}
2451
2452	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2453
2454	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2455	if (ret != 0) {
2456		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2457		return ret;
2458	}
2459
2460	return 0;
2461}
2462
2463static void ath10k_pci_override_ce_config(struct ath10k *ar)
2464{
2465	struct ce_attr *attr;
2466	struct ce_pipe_config *config;
2467	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2468
2469	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2470	 * since it is currently used for other feature.
2471	 */
2472
2473	/* Override Host's Copy Engine 5 configuration */
2474	attr = &ar_pci->attr[5];
2475	attr->src_sz_max = 0;
2476	attr->dest_nentries = 0;
2477
2478	/* Override Target firmware's Copy Engine configuration */
2479	config = &ar_pci->pipe_config[5];
2480	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2481	config->nbytes_max = __cpu_to_le32(2048);
2482
2483	/* Map from service/endpoint to Copy Engine */
2484	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2485}
2486
2487int ath10k_pci_alloc_pipes(struct ath10k *ar)
2488{
2489	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2490	struct ath10k_pci_pipe *pipe;
2491	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2492	int i, ret;
2493
2494	for (i = 0; i < CE_COUNT; i++) {
2495		pipe = &ar_pci->pipe_info[i];
2496		pipe->ce_hdl = &ce->ce_states[i];
2497		pipe->pipe_num = i;
2498		pipe->hif_ce_state = ar;
2499
2500		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2501		if (ret) {
2502			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2503				   i, ret);
2504			return ret;
2505		}
2506
2507		/* Last CE is Diagnostic Window */
2508		if (i == CE_DIAG_PIPE) {
2509			ar_pci->ce_diag = pipe->ce_hdl;
2510			continue;
2511		}
2512
2513		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2514	}
2515
2516	return 0;
2517}
2518
2519void ath10k_pci_free_pipes(struct ath10k *ar)
2520{
2521	int i;
2522
2523	for (i = 0; i < CE_COUNT; i++)
2524		ath10k_ce_free_pipe(ar, i);
2525}
2526
2527int ath10k_pci_init_pipes(struct ath10k *ar)
2528{
2529	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2530	int i, ret;
2531
2532	for (i = 0; i < CE_COUNT; i++) {
2533		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2534		if (ret) {
2535			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2536				   i, ret);
2537			return ret;
2538		}
2539	}
2540
2541	return 0;
2542}
2543
2544static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2545{
2546	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2547	       FW_IND_EVENT_PENDING;
2548}
2549
2550static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2551{
2552	u32 val;
2553
2554	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2555	val &= ~FW_IND_EVENT_PENDING;
2556	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2557}
2558
2559static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2560{
2561	u32 val;
2562
2563	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2564	return (val == 0xffffffff);
2565}
2566
2567/* this function effectively clears target memory controller assert line */
2568static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2569{
2570	u32 val;
2571
2572	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2573	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2574			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2575	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2576
2577	msleep(10);
2578
2579	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2580	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2581			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2582	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2583
2584	msleep(10);
2585}
2586
2587static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2588{
2589	u32 val;
2590
2591	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2592
2593	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2594	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2595			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2596}
2597
2598static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2599{
2600	u32 val;
2601
2602	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2603
2604	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2605			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2606	msleep(10);
2607	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2608			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2609}
2610
2611static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2612{
2613	u32 val;
2614
2615	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2616	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2617			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2618}
2619
2620static int ath10k_pci_warm_reset(struct ath10k *ar)
2621{
2622	int ret;
2623
2624	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2625
2626	spin_lock_bh(&ar->data_lock);
2627	ar->stats.fw_warm_reset_counter++;
2628	spin_unlock_bh(&ar->data_lock);
2629
2630	ath10k_pci_irq_disable(ar);
2631
2632	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2633	 * were to access copy engine while host performs copy engine reset
2634	 * then it is possible for the device to confuse pci-e controller to
2635	 * the point of bringing host system to a complete stop (i.e. hang).
2636	 */
2637	ath10k_pci_warm_reset_si0(ar);
2638	ath10k_pci_warm_reset_cpu(ar);
2639	ath10k_pci_init_pipes(ar);
2640	ath10k_pci_wait_for_target_init(ar);
2641
2642	ath10k_pci_warm_reset_clear_lf(ar);
2643	ath10k_pci_warm_reset_ce(ar);
2644	ath10k_pci_warm_reset_cpu(ar);
2645	ath10k_pci_init_pipes(ar);
2646
2647	ret = ath10k_pci_wait_for_target_init(ar);
2648	if (ret) {
2649		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2650		return ret;
2651	}
2652
2653	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2654
2655	return 0;
2656}
2657
2658static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2659{
2660	ath10k_pci_irq_disable(ar);
2661	return ath10k_pci_qca99x0_chip_reset(ar);
2662}
2663
2664static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2665{
2666	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2667
2668	if (!ar_pci->pci_soft_reset)
2669		return -ENOTSUPP;
2670
2671	return ar_pci->pci_soft_reset(ar);
2672}
2673
2674static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2675{
2676	int i, ret;
2677	u32 val;
2678
2679	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2680
2681	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2682	 * It is thus preferred to use warm reset which is safer but may not be
2683	 * able to recover the device from all possible fail scenarios.
2684	 *
2685	 * Warm reset doesn't always work on first try so attempt it a few
2686	 * times before giving up.
2687	 */
2688	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2689		ret = ath10k_pci_warm_reset(ar);
2690		if (ret) {
2691			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2692				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2693				    ret);
2694			continue;
2695		}
2696
2697		/* FIXME: Sometimes copy engine doesn't recover after warm
2698		 * reset. In most cases this needs cold reset. In some of these
2699		 * cases the device is in such a state that a cold reset may
2700		 * lock up the host.
2701		 *
2702		 * Reading any host interest register via copy engine is
2703		 * sufficient to verify if device is capable of booting
2704		 * firmware blob.
2705		 */
2706		ret = ath10k_pci_init_pipes(ar);
2707		if (ret) {
2708			ath10k_warn(ar, "failed to init copy engine: %d\n",
2709				    ret);
2710			continue;
2711		}
2712
2713		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2714					     &val);
2715		if (ret) {
2716			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2717				    ret);
2718			continue;
2719		}
2720
2721		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2722		return 0;
2723	}
2724
2725	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2726		ath10k_warn(ar, "refusing cold reset as requested\n");
2727		return -EPERM;
2728	}
2729
2730	ret = ath10k_pci_cold_reset(ar);
2731	if (ret) {
2732		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2733		return ret;
2734	}
2735
2736	ret = ath10k_pci_wait_for_target_init(ar);
2737	if (ret) {
2738		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2739			    ret);
2740		return ret;
2741	}
2742
2743	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2744
2745	return 0;
2746}
2747
2748static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2749{
2750	int ret;
2751
2752	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2753
2754	/* FIXME: QCA6174 requires cold + warm reset to work. */
2755
2756	ret = ath10k_pci_cold_reset(ar);
2757	if (ret) {
2758		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2759		return ret;
2760	}
2761
2762	ret = ath10k_pci_wait_for_target_init(ar);
2763	if (ret) {
2764		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2765			    ret);
2766		return ret;
2767	}
2768
2769	ret = ath10k_pci_warm_reset(ar);
2770	if (ret) {
2771		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2772		return ret;
2773	}
2774
2775	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2776
2777	return 0;
2778}
2779
2780static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2781{
2782	int ret;
2783
2784	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2785
2786	ret = ath10k_pci_cold_reset(ar);
2787	if (ret) {
2788		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2789		return ret;
2790	}
2791
2792	ret = ath10k_pci_wait_for_target_init(ar);
2793	if (ret) {
2794		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2795			    ret);
2796		return ret;
2797	}
2798
2799	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2800
2801	return 0;
2802}
2803
2804static int ath10k_pci_chip_reset(struct ath10k *ar)
2805{
2806	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2807
2808	if (WARN_ON(!ar_pci->pci_hard_reset))
2809		return -ENOTSUPP;
2810
2811	return ar_pci->pci_hard_reset(ar);
2812}
2813
2814static int ath10k_pci_hif_power_up(struct ath10k *ar,
2815				   enum ath10k_firmware_mode fw_mode)
2816{
2817	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2818	int ret;
2819
2820	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2821
2822	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2823				  &ar_pci->link_ctl);
2824	pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2825				   PCI_EXP_LNKCTL_ASPMC);
2826
2827	/*
2828	 * Bring the target up cleanly.
2829	 *
2830	 * The target may be in an undefined state with an AUX-powered Target
2831	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2832	 * restarted (without unloading the driver) then the Target is left
2833	 * (aux) powered and running. On a subsequent driver load, the Target
2834	 * is in an unexpected state. We try to catch that here in order to
2835	 * reset the Target and retry the probe.
2836	 */
2837	ret = ath10k_pci_chip_reset(ar);
2838	if (ret) {
2839		if (ath10k_pci_has_fw_crashed(ar)) {
2840			ath10k_warn(ar, "firmware crashed during chip reset\n");
2841			ath10k_pci_fw_crashed_clear(ar);
2842			ath10k_pci_fw_crashed_dump(ar);
2843		}
2844
2845		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2846		goto err_sleep;
2847	}
2848
2849	ret = ath10k_pci_init_pipes(ar);
2850	if (ret) {
2851		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2852		goto err_sleep;
2853	}
2854
2855	ret = ath10k_pci_init_config(ar);
2856	if (ret) {
2857		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2858		goto err_ce;
2859	}
2860
2861	ret = ath10k_pci_wake_target_cpu(ar);
2862	if (ret) {
2863		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2864		goto err_ce;
2865	}
2866
2867	return 0;
2868
2869err_ce:
2870	ath10k_pci_ce_deinit(ar);
2871
2872err_sleep:
2873	return ret;
2874}
2875
2876void ath10k_pci_hif_power_down(struct ath10k *ar)
2877{
2878	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2879
2880	/* Currently hif_power_up performs effectively a reset and hif_stop
2881	 * resets the chip as well so there's no point in resetting here.
2882	 */
2883}
2884
2885static int ath10k_pci_hif_suspend(struct ath10k *ar)
2886{
2887	/* Nothing to do; the important stuff is in the driver suspend. */
2888	return 0;
2889}
2890
2891static int ath10k_pci_suspend(struct ath10k *ar)
2892{
2893	/* The grace timer can still be counting down and ar->ps_awake be true.
2894	 * It is known that the device may be asleep after resuming regardless
2895	 * of the SoC powersave state before suspending. Hence make sure the
2896	 * device is asleep before proceeding.
2897	 */
2898	ath10k_pci_sleep_sync(ar);
2899
2900	return 0;
2901}
2902
2903static int ath10k_pci_hif_resume(struct ath10k *ar)
2904{
2905	/* Nothing to do; the important stuff is in the driver resume. */
2906	return 0;
2907}
2908
2909static int ath10k_pci_resume(struct ath10k *ar)
2910{
2911	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2912	struct pci_dev *pdev = ar_pci->pdev;
2913	u32 val;
2914	int ret = 0;
2915
2916	ret = ath10k_pci_force_wake(ar);
2917	if (ret) {
2918		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2919		return ret;
2920	}
2921
2922	/* Suspend/Resume resets the PCI configuration space, so we have to
2923	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2924	 * from interfering with C3 CPU state. pci_restore_state won't help
2925	 * here since it only restores the first 64 bytes pci config header.
2926	 */
2927	pci_read_config_dword(pdev, 0x40, &val);
2928	if ((val & 0x0000ff00) != 0)
2929		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2930
2931	return ret;
2932}
2933
2934static bool ath10k_pci_validate_cal(void *data, size_t size)
2935{
2936	__le16 *cal_words = data;
2937	u16 checksum = 0;
2938	size_t i;
2939
2940	if (size % 2 != 0)
2941		return false;
2942
2943	for (i = 0; i < size / 2; i++)
2944		checksum ^= le16_to_cpu(cal_words[i]);
2945
2946	return checksum == 0xffff;
2947}
2948
2949static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2950{
2951	/* Enable SI clock */
2952	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2953
2954	/* Configure GPIOs for I2C operation */
2955	ath10k_pci_write32(ar,
2956			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2957			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2958			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2959			      GPIO_PIN0_CONFIG) |
2960			   SM(1, GPIO_PIN0_PAD_PULL));
2961
2962	ath10k_pci_write32(ar,
2963			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2964			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2965			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2966			   SM(1, GPIO_PIN0_PAD_PULL));
2967
2968	ath10k_pci_write32(ar,
2969			   GPIO_BASE_ADDRESS +
2970			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2971			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2972
2973	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2974	ath10k_pci_write32(ar,
2975			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2976			   SM(1, SI_CONFIG_ERR_INT) |
2977			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2978			   SM(1, SI_CONFIG_I2C) |
2979			   SM(1, SI_CONFIG_POS_SAMPLE) |
2980			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2981			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2982			   SM(8, SI_CONFIG_DIVIDER));
2983}
2984
2985static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2986{
2987	u32 reg;
2988	int wait_limit;
2989
2990	/* set device select byte and for the read operation */
2991	reg = QCA9887_EEPROM_SELECT_READ |
2992	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2993	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2994	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2995
2996	/* write transmit data, transfer length, and START bit */
2997	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2998			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2999			   SM(4, SI_CS_TX_CNT));
3000
3001	/* wait max 1 sec */
3002	wait_limit = 100000;
3003
3004	/* wait for SI_CS_DONE_INT */
3005	do {
3006		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3007		if (MS(reg, SI_CS_DONE_INT))
3008			break;
3009
3010		wait_limit--;
3011		udelay(10);
3012	} while (wait_limit > 0);
3013
3014	if (!MS(reg, SI_CS_DONE_INT)) {
3015		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3016			   addr);
3017		return -ETIMEDOUT;
3018	}
3019
3020	/* clear SI_CS_DONE_INT */
3021	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3022
3023	if (MS(reg, SI_CS_DONE_ERR)) {
3024		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3025		return -EIO;
3026	}
3027
3028	/* extract receive data */
3029	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3030	*out = reg;
3031
3032	return 0;
3033}
3034
3035static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3036					   size_t *data_len)
3037{
3038	u8 *caldata = NULL;
3039	size_t calsize, i;
3040	int ret;
3041
3042	if (!QCA_REV_9887(ar))
3043		return -EOPNOTSUPP;
3044
3045	calsize = ar->hw_params.cal_data_len;
3046	caldata = kmalloc(calsize, GFP_KERNEL);
3047	if (!caldata)
3048		return -ENOMEM;
3049
3050	ath10k_pci_enable_eeprom(ar);
3051
3052	for (i = 0; i < calsize; i++) {
3053		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3054		if (ret)
3055			goto err_free;
3056	}
3057
3058	if (!ath10k_pci_validate_cal(caldata, calsize))
3059		goto err_free;
3060
3061	*data = caldata;
3062	*data_len = calsize;
3063
3064	return 0;
3065
3066err_free:
3067	kfree(caldata);
3068
3069	return -EINVAL;
3070}
3071
3072static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3073	.tx_sg			= ath10k_pci_hif_tx_sg,
3074	.diag_read		= ath10k_pci_hif_diag_read,
3075	.diag_write		= ath10k_pci_diag_write_mem,
3076	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3077	.start			= ath10k_pci_hif_start,
3078	.stop			= ath10k_pci_hif_stop,
3079	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3080	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3081	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3082	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3083	.power_up		= ath10k_pci_hif_power_up,
3084	.power_down		= ath10k_pci_hif_power_down,
3085	.read32			= ath10k_pci_read32,
3086	.write32		= ath10k_pci_write32,
3087	.suspend		= ath10k_pci_hif_suspend,
3088	.resume			= ath10k_pci_hif_resume,
3089	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3090};
3091
3092/*
3093 * Top-level interrupt handler for all PCI interrupts from a Target.
3094 * When a block of MSI interrupts is allocated, this top-level handler
3095 * is not used; instead, we directly call the correct sub-handler.
3096 */
3097static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3098{
3099	struct ath10k *ar = arg;
3100	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3101	int ret;
3102
3103	if (ath10k_pci_has_device_gone(ar))
3104		return IRQ_NONE;
3105
3106	ret = ath10k_pci_force_wake(ar);
3107	if (ret) {
3108		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3109		return IRQ_NONE;
3110	}
3111
3112	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3113	    !ath10k_pci_irq_pending(ar))
3114		return IRQ_NONE;
3115
3116	ath10k_pci_disable_and_clear_legacy_irq(ar);
3117	ath10k_pci_irq_msi_fw_mask(ar);
3118	napi_schedule(&ar->napi);
3119
3120	return IRQ_HANDLED;
3121}
3122
3123static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3124{
3125	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3126	int done = 0;
3127
3128	if (ath10k_pci_has_fw_crashed(ar)) {
3129		ath10k_pci_fw_crashed_clear(ar);
3130		ath10k_pci_fw_crashed_dump(ar);
3131		napi_complete(ctx);
3132		return done;
3133	}
3134
3135	ath10k_ce_per_engine_service_any(ar);
3136
3137	done = ath10k_htt_txrx_compl_task(ar, budget);
3138
3139	if (done < budget) {
3140		napi_complete_done(ctx, done);
3141		/* In case of MSI, it is possible that interrupts are received
3142		 * while NAPI poll is inprogress. So pending interrupts that are
3143		 * received after processing all copy engine pipes by NAPI poll
3144		 * will not be handled again. This is causing failure to
3145		 * complete boot sequence in x86 platform. So before enabling
3146		 * interrupts safer to check for pending interrupts for
3147		 * immediate servicing.
3148		 */
3149		if (ath10k_ce_interrupt_summary(ar)) {
3150			napi_reschedule(ctx);
3151			goto out;
3152		}
3153		ath10k_pci_enable_legacy_irq(ar);
3154		ath10k_pci_irq_msi_fw_unmask(ar);
3155	}
3156
3157out:
3158	return done;
3159}
3160
3161static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3162{
3163	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3164	int ret;
3165
3166	ret = request_irq(ar_pci->pdev->irq,
3167			  ath10k_pci_interrupt_handler,
3168			  IRQF_SHARED, "ath10k_pci", ar);
3169	if (ret) {
3170		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3171			    ar_pci->pdev->irq, ret);
3172		return ret;
3173	}
3174
3175	return 0;
3176}
3177
3178static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3179{
3180	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3181	int ret;
3182
3183	ret = request_irq(ar_pci->pdev->irq,
3184			  ath10k_pci_interrupt_handler,
3185			  IRQF_SHARED, "ath10k_pci", ar);
3186	if (ret) {
3187		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3188			    ar_pci->pdev->irq, ret);
3189		return ret;
3190	}
3191
3192	return 0;
3193}
3194
3195static int ath10k_pci_request_irq(struct ath10k *ar)
3196{
3197	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3198
3199	switch (ar_pci->oper_irq_mode) {
3200	case ATH10K_PCI_IRQ_LEGACY:
3201		return ath10k_pci_request_irq_legacy(ar);
3202	case ATH10K_PCI_IRQ_MSI:
3203		return ath10k_pci_request_irq_msi(ar);
3204	default:
3205		return -EINVAL;
3206	}
3207}
3208
3209static void ath10k_pci_free_irq(struct ath10k *ar)
3210{
3211	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3212
3213	free_irq(ar_pci->pdev->irq, ar);
3214}
3215
3216void ath10k_pci_init_napi(struct ath10k *ar)
3217{
3218	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3219		       ATH10K_NAPI_BUDGET);
3220}
3221
3222static int ath10k_pci_init_irq(struct ath10k *ar)
3223{
3224	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3225	int ret;
3226
3227	ath10k_pci_init_napi(ar);
3228
3229	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3230		ath10k_info(ar, "limiting irq mode to: %d\n",
3231			    ath10k_pci_irq_mode);
3232
3233	/* Try MSI */
3234	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3235		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3236		ret = pci_enable_msi(ar_pci->pdev);
3237		if (ret == 0)
3238			return 0;
3239
3240		/* fall-through */
3241	}
3242
3243	/* Try legacy irq
3244	 *
3245	 * A potential race occurs here: The CORE_BASE write
3246	 * depends on target correctly decoding AXI address but
3247	 * host won't know when target writes BAR to CORE_CTRL.
3248	 * This write might get lost if target has NOT written BAR.
3249	 * For now, fix the race by repeating the write in below
3250	 * synchronization checking.
3251	 */
3252	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3253
3254	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3255			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3256
3257	return 0;
3258}
3259
3260static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3261{
3262	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3263			   0);
3264}
3265
3266static int ath10k_pci_deinit_irq(struct ath10k *ar)
3267{
3268	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3269
3270	switch (ar_pci->oper_irq_mode) {
3271	case ATH10K_PCI_IRQ_LEGACY:
3272		ath10k_pci_deinit_irq_legacy(ar);
3273		break;
3274	default:
3275		pci_disable_msi(ar_pci->pdev);
3276		break;
3277	}
3278
3279	return 0;
3280}
3281
3282int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3283{
3284	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3285	unsigned long timeout;
3286	u32 val;
3287
3288	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3289
3290	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3291
3292	do {
3293		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3294
3295		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3296			   val);
3297
3298		/* target should never return this */
3299		if (val == 0xffffffff)
3300			continue;
3301
3302		/* the device has crashed so don't bother trying anymore */
3303		if (val & FW_IND_EVENT_PENDING)
3304			break;
3305
3306		if (val & FW_IND_INITIALIZED)
3307			break;
3308
3309		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3310			/* Fix potential race by repeating CORE_BASE writes */
3311			ath10k_pci_enable_legacy_irq(ar);
3312
3313		mdelay(10);
3314	} while (time_before(jiffies, timeout));
3315
3316	ath10k_pci_disable_and_clear_legacy_irq(ar);
3317	ath10k_pci_irq_msi_fw_mask(ar);
3318
3319	if (val == 0xffffffff) {
3320		ath10k_err(ar, "failed to read device register, device is gone\n");
3321		return -EIO;
3322	}
3323
3324	if (val & FW_IND_EVENT_PENDING) {
3325		ath10k_warn(ar, "device has crashed during init\n");
3326		return -ECOMM;
3327	}
3328
3329	if (!(val & FW_IND_INITIALIZED)) {
3330		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3331			   val);
3332		return -ETIMEDOUT;
3333	}
3334
3335	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3336	return 0;
3337}
3338
3339static int ath10k_pci_cold_reset(struct ath10k *ar)
3340{
3341	u32 val;
3342
3343	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3344
3345	spin_lock_bh(&ar->data_lock);
3346
3347	ar->stats.fw_cold_reset_counter++;
3348
3349	spin_unlock_bh(&ar->data_lock);
3350
3351	/* Put Target, including PCIe, into RESET. */
3352	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3353	val |= 1;
3354	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3355
3356	/* After writing into SOC_GLOBAL_RESET to put device into
3357	 * reset and pulling out of reset pcie may not be stable
3358	 * for any immediate pcie register access and cause bus error,
3359	 * add delay before any pcie access request to fix this issue.
3360	 */
3361	msleep(20);
3362
3363	/* Pull Target, including PCIe, out of RESET. */
3364	val &= ~1;
3365	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3366
3367	msleep(20);
3368
3369	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3370
3371	return 0;
3372}
3373
3374static int ath10k_pci_claim(struct ath10k *ar)
3375{
3376	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3377	struct pci_dev *pdev = ar_pci->pdev;
3378	int ret;
3379
3380	pci_set_drvdata(pdev, ar);
3381
3382	ret = pci_enable_device(pdev);
3383	if (ret) {
3384		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3385		return ret;
3386	}
3387
3388	ret = pci_request_region(pdev, BAR_NUM, "ath");
3389	if (ret) {
3390		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3391			   ret);
3392		goto err_device;
3393	}
3394
3395	/* Target expects 32 bit DMA. Enforce it. */
3396	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3397	if (ret) {
3398		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3399		goto err_region;
3400	}
3401
3402	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3403	if (ret) {
3404		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3405			   ret);
3406		goto err_region;
3407	}
3408
3409	pci_set_master(pdev);
3410
3411	/* Arrange for access to Target SoC registers. */
3412	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3413	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3414	if (!ar_pci->mem) {
3415		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3416		ret = -EIO;
3417		goto err_master;
3418	}
3419
3420	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3421	return 0;
3422
3423err_master:
3424	pci_clear_master(pdev);
3425
3426err_region:
3427	pci_release_region(pdev, BAR_NUM);
3428
3429err_device:
3430	pci_disable_device(pdev);
3431
3432	return ret;
3433}
3434
3435static void ath10k_pci_release(struct ath10k *ar)
3436{
3437	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3438	struct pci_dev *pdev = ar_pci->pdev;
3439
3440	pci_iounmap(pdev, ar_pci->mem);
3441	pci_release_region(pdev, BAR_NUM);
3442	pci_clear_master(pdev);
3443	pci_disable_device(pdev);
3444}
3445
3446static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3447{
3448	const struct ath10k_pci_supp_chip *supp_chip;
3449	int i;
3450	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3451
3452	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3453		supp_chip = &ath10k_pci_supp_chips[i];
3454
3455		if (supp_chip->dev_id == dev_id &&
3456		    supp_chip->rev_id == rev_id)
3457			return true;
3458	}
3459
3460	return false;
3461}
3462
3463int ath10k_pci_setup_resource(struct ath10k *ar)
3464{
3465	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3466	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3467	int ret;
3468
3469	spin_lock_init(&ce->ce_lock);
3470	spin_lock_init(&ar_pci->ps_lock);
3471	mutex_init(&ar_pci->ce_diag_mutex);
3472
3473	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3474
3475	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3476
3477	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3478			       sizeof(pci_host_ce_config_wlan),
3479			       GFP_KERNEL);
3480	if (!ar_pci->attr)
3481		return -ENOMEM;
3482
3483	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3484				      sizeof(pci_target_ce_config_wlan),
3485				      GFP_KERNEL);
3486	if (!ar_pci->pipe_config) {
3487		ret = -ENOMEM;
3488		goto err_free_attr;
3489	}
3490
3491	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3492				       sizeof(pci_target_service_to_ce_map_wlan),
3493				       GFP_KERNEL);
3494	if (!ar_pci->serv_to_pipe) {
3495		ret = -ENOMEM;
3496		goto err_free_pipe_config;
3497	}
3498
3499	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3500		ath10k_pci_override_ce_config(ar);
3501
3502	ret = ath10k_pci_alloc_pipes(ar);
3503	if (ret) {
3504		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3505			   ret);
3506		goto err_free_serv_to_pipe;
3507	}
3508
3509	return 0;
3510
3511err_free_serv_to_pipe:
3512	kfree(ar_pci->serv_to_pipe);
3513err_free_pipe_config:
3514	kfree(ar_pci->pipe_config);
3515err_free_attr:
3516	kfree(ar_pci->attr);
3517	return ret;
3518}
3519
3520void ath10k_pci_release_resource(struct ath10k *ar)
3521{
3522	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3523
3524	ath10k_pci_rx_retry_sync(ar);
3525	netif_napi_del(&ar->napi);
3526	ath10k_pci_ce_deinit(ar);
3527	ath10k_pci_free_pipes(ar);
3528	kfree(ar_pci->attr);
3529	kfree(ar_pci->pipe_config);
3530	kfree(ar_pci->serv_to_pipe);
3531}
3532
3533static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3534	.read32		= ath10k_bus_pci_read32,
3535	.write32	= ath10k_bus_pci_write32,
3536	.get_num_banks	= ath10k_pci_get_num_banks,
3537};
3538
3539static int ath10k_pci_probe(struct pci_dev *pdev,
3540			    const struct pci_device_id *pci_dev)
3541{
3542	int ret = 0;
3543	struct ath10k *ar;
3544	struct ath10k_pci *ar_pci;
3545	enum ath10k_hw_rev hw_rev;
3546	struct ath10k_bus_params bus_params = {};
3547	bool pci_ps, is_qca988x = false;
3548	int (*pci_soft_reset)(struct ath10k *ar);
3549	int (*pci_hard_reset)(struct ath10k *ar);
3550	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3551
3552	switch (pci_dev->device) {
3553	case QCA988X_2_0_DEVICE_ID_UBNT:
3554	case QCA988X_2_0_DEVICE_ID:
3555		hw_rev = ATH10K_HW_QCA988X;
3556		pci_ps = false;
3557		is_qca988x = true;
3558		pci_soft_reset = ath10k_pci_warm_reset;
3559		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3560		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3561		break;
3562	case QCA9887_1_0_DEVICE_ID:
3563		hw_rev = ATH10K_HW_QCA9887;
3564		pci_ps = false;
3565		pci_soft_reset = ath10k_pci_warm_reset;
3566		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3567		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3568		break;
3569	case QCA6164_2_1_DEVICE_ID:
3570	case QCA6174_2_1_DEVICE_ID:
3571		hw_rev = ATH10K_HW_QCA6174;
3572		pci_ps = true;
3573		pci_soft_reset = ath10k_pci_warm_reset;
3574		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3575		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3576		break;
3577	case QCA99X0_2_0_DEVICE_ID:
3578		hw_rev = ATH10K_HW_QCA99X0;
3579		pci_ps = false;
3580		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3581		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3582		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3583		break;
3584	case QCA9984_1_0_DEVICE_ID:
3585		hw_rev = ATH10K_HW_QCA9984;
3586		pci_ps = false;
3587		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3588		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3589		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3590		break;
3591	case QCA9888_2_0_DEVICE_ID:
3592		hw_rev = ATH10K_HW_QCA9888;
3593		pci_ps = false;
3594		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3595		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3596		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3597		break;
3598	case QCA9377_1_0_DEVICE_ID:
3599		hw_rev = ATH10K_HW_QCA9377;
3600		pci_ps = true;
3601		pci_soft_reset = ath10k_pci_warm_reset;
3602		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3603		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3604		break;
3605	default:
3606		WARN_ON(1);
3607		return -ENOTSUPP;
3608	}
3609
3610	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3611				hw_rev, &ath10k_pci_hif_ops);
3612	if (!ar) {
3613		dev_err(&pdev->dev, "failed to allocate core\n");
3614		return -ENOMEM;
3615	}
3616
3617	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3618		   pdev->vendor, pdev->device,
3619		   pdev->subsystem_vendor, pdev->subsystem_device);
3620
3621	ar_pci = ath10k_pci_priv(ar);
3622	ar_pci->pdev = pdev;
3623	ar_pci->dev = &pdev->dev;
3624	ar_pci->ar = ar;
3625	ar->dev_id = pci_dev->device;
3626	ar_pci->pci_ps = pci_ps;
3627	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3628	ar_pci->pci_soft_reset = pci_soft_reset;
3629	ar_pci->pci_hard_reset = pci_hard_reset;
3630	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3631	ar->ce_priv = &ar_pci->ce;
3632
3633	ar->id.vendor = pdev->vendor;
3634	ar->id.device = pdev->device;
3635	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3636	ar->id.subsystem_device = pdev->subsystem_device;
3637
3638	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3639
3640	ret = ath10k_pci_setup_resource(ar);
3641	if (ret) {
3642		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3643		goto err_core_destroy;
3644	}
3645
3646	ret = ath10k_pci_claim(ar);
3647	if (ret) {
3648		ath10k_err(ar, "failed to claim device: %d\n", ret);
3649		goto err_free_pipes;
3650	}
3651
3652	ret = ath10k_pci_force_wake(ar);
3653	if (ret) {
3654		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3655		goto err_sleep;
3656	}
3657
3658	ath10k_pci_ce_deinit(ar);
3659	ath10k_pci_irq_disable(ar);
3660
3661	ret = ath10k_pci_init_irq(ar);
3662	if (ret) {
3663		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3664		goto err_sleep;
3665	}
3666
3667	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3668		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3669		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3670
3671	ret = ath10k_pci_request_irq(ar);
3672	if (ret) {
3673		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3674		goto err_deinit_irq;
3675	}
3676
3677	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3678	bus_params.link_can_suspend = true;
3679	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3680	 * fall off the bus during chip_reset. These chips have the same pci
3681	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3682	 */
3683	if (is_qca988x) {
3684		bus_params.chip_id =
3685			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3686		if (bus_params.chip_id != 0xffffffff) {
3687			if (!ath10k_pci_chip_is_supported(pdev->device,
3688							  bus_params.chip_id)) {
3689				ret = -ENODEV;
3690				goto err_unsupported;
3691			}
3692		}
3693	}
3694
3695	ret = ath10k_pci_chip_reset(ar);
3696	if (ret) {
3697		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3698		goto err_free_irq;
3699	}
3700
3701	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3702	if (bus_params.chip_id == 0xffffffff) {
3703		ret = -ENODEV;
3704		goto err_unsupported;
3705	}
3706
3707	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3708		ret = -ENODEV;
3709		goto err_unsupported;
3710	}
3711
3712	ret = ath10k_core_register(ar, &bus_params);
3713	if (ret) {
3714		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3715		goto err_free_irq;
3716	}
3717
3718	return 0;
3719
3720err_unsupported:
3721	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3722		   pdev->device, bus_params.chip_id);
3723
3724err_free_irq:
3725	ath10k_pci_free_irq(ar);
3726
3727err_deinit_irq:
3728	ath10k_pci_release_resource(ar);
3729
3730err_sleep:
3731	ath10k_pci_sleep_sync(ar);
3732	ath10k_pci_release(ar);
3733
3734err_free_pipes:
3735	ath10k_pci_free_pipes(ar);
3736
3737err_core_destroy:
3738	ath10k_core_destroy(ar);
3739
3740	return ret;
3741}
3742
3743static void ath10k_pci_remove(struct pci_dev *pdev)
3744{
3745	struct ath10k *ar = pci_get_drvdata(pdev);
3746
3747	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3748
3749	if (!ar)
3750		return;
3751
3752	ath10k_core_unregister(ar);
3753	ath10k_pci_free_irq(ar);
3754	ath10k_pci_deinit_irq(ar);
3755	ath10k_pci_release_resource(ar);
3756	ath10k_pci_sleep_sync(ar);
3757	ath10k_pci_release(ar);
3758	ath10k_core_destroy(ar);
3759}
3760
3761MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3762
3763static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3764{
3765	struct ath10k *ar = dev_get_drvdata(dev);
3766	int ret;
3767
3768	ret = ath10k_pci_suspend(ar);
3769	if (ret)
3770		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3771
3772	return ret;
3773}
3774
3775static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3776{
3777	struct ath10k *ar = dev_get_drvdata(dev);
3778	int ret;
3779
3780	ret = ath10k_pci_resume(ar);
3781	if (ret)
3782		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3783
3784	return ret;
3785}
3786
3787static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3788			 ath10k_pci_pm_suspend,
3789			 ath10k_pci_pm_resume);
3790
3791static struct pci_driver ath10k_pci_driver = {
3792	.name = "ath10k_pci",
3793	.id_table = ath10k_pci_id_table,
3794	.probe = ath10k_pci_probe,
3795	.remove = ath10k_pci_remove,
3796#ifdef CONFIG_PM
3797	.driver.pm = &ath10k_pci_pm_ops,
3798#endif
3799};
3800
3801static int __init ath10k_pci_init(void)
3802{
3803	int ret1, ret2;
3804
3805	ret1 = pci_register_driver(&ath10k_pci_driver);
3806	if (ret1)
3807		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3808		       ret1);
3809
3810	ret2 = ath10k_ahb_init();
3811	if (ret2)
3812		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3813
3814	if (ret1 && ret2)
3815		return ret1;
3816
3817	/* registered to at least one bus */
3818	return 0;
3819}
3820module_init(ath10k_pci_init);
3821
3822static void __exit ath10k_pci_exit(void)
3823{
3824	pci_unregister_driver(&ath10k_pci_driver);
3825	ath10k_ahb_exit();
3826}
3827
3828module_exit(ath10k_pci_exit);
3829
3830MODULE_AUTHOR("Qualcomm Atheros");
3831MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3832MODULE_LICENSE("Dual BSD/GPL");
3833
3834/* QCA988x 2.0 firmware files */
3835MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3836MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3837MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3838MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3839MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3840MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3841
3842/* QCA9887 1.0 firmware files */
3843MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3844MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3845MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3846
3847/* QCA6174 2.1 firmware files */
3848MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3849MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3850MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3851MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3852
3853/* QCA6174 3.1 firmware files */
3854MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3855MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3856MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3857MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3858MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3859
3860/* QCA9377 1.0 firmware files */
3861MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3862MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3863MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3864