1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 *   * Redistributions of source code must retain the above copyright
13 *     notice, this list of conditions and the following disclaimer.
14 *   * Redistributions in binary form must reproduce the above copyright
15 *     notice, this list of conditions and the following disclaimer in
16 *     the documentation and/or other materials provided with the
17 *     distribution.
18 *   * Neither the name of Intel Corporation nor the names of its
19 *     contributors may be used to endorse or promote products derived
20 *     from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 *  - Initial implementation
39 *
40 *
41 * THE PROCEDURE
42 *
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
46 *
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
52 *
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint.
55 *
56 * Upon entrance to boot mode, the device sends (preceded with a few
57 * zero length packets (ZLPs) on the notification endpoint in USB) a
58 * reboot barker (4 le32 words with the same value). We ack it by
59 * sending the same barker to the device. The device acks with a
60 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
61 * then is fully booted. At this point we can upload the firmware.
62 *
63 * Note that different iterations of the device and EEPROM
64 * configurations will send different [re]boot barkers; these are
65 * collected in i2400m_barker_db along with the firmware
66 * characteristics they require.
67 *
68 * This process is accomplished by the i2400m_bootrom_init()
69 * function. All the device interaction happens through the
70 * i2400m_bm_cmd() [boot mode command]. Special return values will
71 * indicate if the device did reset during the process.
72 *
73 * After this, we read the MAC address and then (if needed)
74 * reinitialize the device. We need to read it ahead of time because
75 * in the future, we might not upload the firmware until userspace
76 * 'ifconfig up's the device.
77 *
78 * We can then upload the firmware file. The file is composed of a BCF
79 * header (basic data, keys and signatures) and a list of write
80 * commands and payloads. Optionally more BCF headers might follow the
81 * main payload. We first upload the header [i2400m_dnload_init()] and
82 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
83 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
84 * the new firmware [i2400m_dnload_finalize()].
85 *
86 * Once firmware is uploaded, we are good to go :)
87 *
88 * When we don't know in which mode we are, we first try by sending a
89 * warm reset request that will take us to boot-mode. If we time out
90 * waiting for a reboot barker, that means maybe we are already in
91 * boot mode, so we send a reboot barker.
92 *
93 * COMMAND EXECUTION
94 *
95 * This code (and process) is single threaded; for executing commands,
96 * we post a URB to the notification endpoint, post the command, wait
97 * for data on the notification buffer. We don't need to worry about
98 * others as we know we are the only ones in there.
99 *
100 * BACKEND IMPLEMENTATION
101 *
102 * This code is bus-generic; the bus-specific driver provides back end
103 * implementations to send a boot mode command to the device and to
104 * read an acknolwedgement from it (or an asynchronous notification)
105 * from it.
106 *
107 * FIRMWARE LOADING
108 *
109 * Note that in some cases, we can't just load a firmware file (for
110 * example, when resuming). For that, we might cache the firmware
111 * file. Thus, when doing the bootstrap, if there is a cache firmware
112 * file, it is used; if not, loading from disk is attempted.
113 *
114 * ROADMAP
115 *
116 * i2400m_barker_db_init              Called by i2400m_driver_init()
117 *   i2400m_barker_db_add
118 *
119 * i2400m_barker_db_exit              Called by i2400m_driver_exit()
120 *
121 * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
122 *   request_firmware
123 *   i2400m_fw_bootstrap
124 *     i2400m_fw_check
125 *       i2400m_fw_hdr_check
126 *     i2400m_fw_dnload
127 *   release_firmware
128 *
129 * i2400m_fw_dnload
130 *   i2400m_bootrom_init
131 *     i2400m_bm_cmd
132 *     i2400m_reset
133 *   i2400m_dnload_init
134 *     i2400m_dnload_init_signed
135 *     i2400m_dnload_init_nonsigned
136 *       i2400m_download_chunk
137 *         i2400m_bm_cmd
138 *   i2400m_dnload_bcf
139 *     i2400m_bm_cmd
140 *   i2400m_dnload_finalize
141 *     i2400m_bm_cmd
142 *
143 * i2400m_bm_cmd
144 *   i2400m->bus_bm_cmd_send()
145 *   i2400m->bus_bm_wait_for_ack
146 *   __i2400m_bm_ack_verify
147 *     i2400m_is_boot_barker
148 *
149 * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
150 *                                    commands before sending
151 *
152 * i2400m_pm_notifier                 Called on Power Management events
153 *   i2400m_fw_cache
154 *   i2400m_fw_uncache
155 */
156#include <linux/firmware.h>
157#include <linux/sched.h>
158#include <linux/slab.h>
159#include <linux/usb.h>
160#include <linux/export.h>
161#include "i2400m.h"
162
163
164#define D_SUBMODULE fw
165#include "debug-levels.h"
166
167
168static const __le32 i2400m_ACK_BARKER[4] = {
169	cpu_to_le32(I2400M_ACK_BARKER),
170	cpu_to_le32(I2400M_ACK_BARKER),
171	cpu_to_le32(I2400M_ACK_BARKER),
172	cpu_to_le32(I2400M_ACK_BARKER)
173};
174
175
176/**
177 * Prepare a boot-mode command for delivery
178 *
179 * @cmd: pointer to bootrom header to prepare
180 *
181 * Computes checksum if so needed. After calling this function, DO NOT
182 * modify the command or header as the checksum won't work anymore.
183 *
184 * We do it from here because some times we cannot do it in the
185 * original context the command was sent (it is a const), so when we
186 * copy it to our staging buffer, we add the checksum there.
187 */
188void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
189{
190	if (i2400m_brh_get_use_checksum(cmd)) {
191		int i;
192		u32 checksum = 0;
193		const u32 *checksum_ptr = (void *) cmd->payload;
194		for (i = 0; i < cmd->data_size / 4; i++)
195			checksum += cpu_to_le32(*checksum_ptr++);
196		checksum += cmd->command + cmd->target_addr + cmd->data_size;
197		cmd->block_checksum = cpu_to_le32(checksum);
198	}
199}
200EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
201
202
203/*
204 * Database of known barkers.
205 *
206 * A barker is what the device sends indicating he is ready to be
207 * bootloaded. Different versions of the device will send different
208 * barkers. Depending on the barker, it might mean the device wants
209 * some kind of firmware or the other.
210 */
211static struct i2400m_barker_db {
212	__le32 data[4];
213} *i2400m_barker_db;
214static size_t i2400m_barker_db_used, i2400m_barker_db_size;
215
216
217static
218int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219		       gfp_t gfp_flags)
220{
221	size_t old_count = *_count,
222		new_count = old_count ? 2 * old_count : 2,
223		old_size = el_size * old_count,
224		new_size = el_size * new_count;
225	void *nptr = krealloc(*ptr, new_size, gfp_flags);
226	if (nptr) {
227		/* zero the other half or the whole thing if old_count
228		 * was zero */
229		if (old_size == 0)
230			memset(nptr, 0, new_size);
231		else
232			memset(nptr + old_size, 0, old_size);
233		*_count = new_count;
234		*ptr = nptr;
235		return 0;
236	} else
237		return -ENOMEM;
238}
239
240
241/*
242 * Add a barker to the database
243 *
244 * This cannot used outside of this module and only at at module_init
245 * time. This is to avoid the need to do locking.
246 */
247static
248int i2400m_barker_db_add(u32 barker_id)
249{
250	int result;
251
252	struct i2400m_barker_db *barker;
253	if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254		result = i2400m_zrealloc_2x(
255			(void **) &i2400m_barker_db, &i2400m_barker_db_size,
256			sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257		if (result < 0)
258			return result;
259	}
260	barker = i2400m_barker_db + i2400m_barker_db_used++;
261	barker->data[0] = le32_to_cpu(barker_id);
262	barker->data[1] = le32_to_cpu(barker_id);
263	barker->data[2] = le32_to_cpu(barker_id);
264	barker->data[3] = le32_to_cpu(barker_id);
265	return 0;
266}
267
268
269void i2400m_barker_db_exit(void)
270{
271	kfree(i2400m_barker_db);
272	i2400m_barker_db = NULL;
273	i2400m_barker_db_size = 0;
274	i2400m_barker_db_used = 0;
275}
276
277
278/*
279 * Helper function to add all the known stable barkers to the barker
280 * database.
281 */
282static
283int i2400m_barker_db_known_barkers(void)
284{
285	int result;
286
287	result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288	if (result < 0)
289		goto error_add;
290	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291	if (result < 0)
292		goto error_add;
293	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294	if (result < 0)
295		goto error_add;
296error_add:
297       return result;
298}
299
300
301/*
302 * Initialize the barker database
303 *
304 * This can only be used from the module_init function for this
305 * module; this is to avoid the need to do locking.
306 *
307 * @options: command line argument with extra barkers to
308 *     recognize. This is a comma-separated list of 32-bit hex
309 *     numbers. They are appended to the existing list. Setting 0
310 *     cleans the existing list and starts a new one.
311 */
312int i2400m_barker_db_init(const char *_options)
313{
314	int result;
315	char *options = NULL, *options_orig, *token;
316
317	i2400m_barker_db = NULL;
318	i2400m_barker_db_size = 0;
319	i2400m_barker_db_used = 0;
320
321	result = i2400m_barker_db_known_barkers();
322	if (result < 0)
323		goto error_add;
324	/* parse command line options from i2400m.barkers */
325	if (_options != NULL) {
326		unsigned barker;
327
328		options_orig = kstrdup(_options, GFP_KERNEL);
329		if (options_orig == NULL) {
330			result = -ENOMEM;
331			goto error_parse;
332		}
333		options = options_orig;
334
335		while ((token = strsep(&options, ",")) != NULL) {
336			if (*token == '\0')	/* eat joint commas */
337				continue;
338			if (sscanf(token, "%x", &barker) != 1
339			    || barker > 0xffffffff) {
340				printk(KERN_ERR "%s: can't recognize "
341				       "i2400m.barkers value '%s' as "
342				       "a 32-bit number\n",
343				       __func__, token);
344				result = -EINVAL;
345				goto error_parse;
346			}
347			if (barker == 0) {
348				/* clean list and start new */
349				i2400m_barker_db_exit();
350				continue;
351			}
352			result = i2400m_barker_db_add(barker);
353			if (result < 0)
354				goto error_parse_add;
355		}
356		kfree(options_orig);
357	}
358	return 0;
359
360error_parse_add:
361error_parse:
362	kfree(options_orig);
363error_add:
364	kfree(i2400m_barker_db);
365	return result;
366}
367
368
369/*
370 * Recognize a boot barker
371 *
372 * @buf: buffer where the boot barker.
373 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
374 *     here so the function can check it for the caller.
375 *
376 * Note that as a side effect, upon identifying the obtained boot
377 * barker, this function will set i2400m->barker to point to the right
378 * barker database entry. Subsequent calls to the function will result
379 * in verifying that the same type of boot barker is returned when the
380 * device [re]boots (as long as the same device instance is used).
381 *
382 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
383 *     buffer in @buf doesn't match any boot barker in the database or
384 *     -EILSEQ if the buffer doesn't have the right size.
385 */
386int i2400m_is_boot_barker(struct i2400m *i2400m,
387			  const void *buf, size_t buf_size)
388{
389	int result;
390	struct device *dev = i2400m_dev(i2400m);
391	struct i2400m_barker_db *barker;
392	int i;
393
394	result = -ENOENT;
395	if (buf_size != sizeof(i2400m_barker_db[i].data))
396		return result;
397
398	/* Short circuit if we have already discovered the barker
399	 * associated with the device. */
400	if (i2400m->barker &&
401	    !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data)))
402		return 0;
403
404	for (i = 0; i < i2400m_barker_db_used; i++) {
405		barker = &i2400m_barker_db[i];
406		BUILD_BUG_ON(sizeof(barker->data) != 16);
407		if (memcmp(buf, barker->data, sizeof(barker->data)))
408			continue;
409
410		if (i2400m->barker == NULL) {
411			i2400m->barker = barker;
412			d_printf(1, dev, "boot barker set to #%u/%08x\n",
413				 i, le32_to_cpu(barker->data[0]));
414			if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
415				i2400m->sboot = 0;
416			else
417				i2400m->sboot = 1;
418		} else if (i2400m->barker != barker) {
419			dev_err(dev, "HW inconsistency: device "
420				"reports a different boot barker "
421				"than set (from %08x to %08x)\n",
422				le32_to_cpu(i2400m->barker->data[0]),
423				le32_to_cpu(barker->data[0]));
424			result = -EIO;
425		} else
426			d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
427				 i, le32_to_cpu(barker->data[0]));
428		result = 0;
429		break;
430	}
431	return result;
432}
433EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
434
435
436/*
437 * Verify the ack data received
438 *
439 * Given a reply to a boot mode command, chew it and verify everything
440 * is ok.
441 *
442 * @opcode: opcode which generated this ack. For error messages.
443 * @ack: pointer to ack data we received
444 * @ack_size: size of that data buffer
445 * @flags: I2400M_BM_CMD_* flags we called the command with.
446 *
447 * Way too long function -- maybe it should be further split
448 */
449static
450ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
451			       struct i2400m_bootrom_header *ack,
452			       size_t ack_size, int flags)
453{
454	ssize_t result = -ENOMEM;
455	struct device *dev = i2400m_dev(i2400m);
456
457	d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
458		  i2400m, opcode, ack, ack_size);
459	if (ack_size < sizeof(*ack)) {
460		result = -EIO;
461		dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
462			"return enough data (%zu bytes vs %zu expected)\n",
463			opcode, ack_size, sizeof(*ack));
464		goto error_ack_short;
465	}
466	result = i2400m_is_boot_barker(i2400m, ack, ack_size);
467	if (result >= 0) {
468		result = -ERESTARTSYS;
469		d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
470		goto error_reboot;
471	}
472	if (ack_size == sizeof(i2400m_ACK_BARKER)
473		 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
474		result = -EISCONN;
475		d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
476			 opcode);
477		goto error_reboot_ack;
478	}
479	result = 0;
480	if (flags & I2400M_BM_CMD_RAW)
481		goto out_raw;
482	ack->data_size = le32_to_cpu(ack->data_size);
483	ack->target_addr = le32_to_cpu(ack->target_addr);
484	ack->block_checksum = le32_to_cpu(ack->block_checksum);
485	d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
486		 "response %u csum %u rr %u da %u\n",
487		 opcode, i2400m_brh_get_opcode(ack),
488		 i2400m_brh_get_response(ack),
489		 i2400m_brh_get_use_checksum(ack),
490		 i2400m_brh_get_response_required(ack),
491		 i2400m_brh_get_direct_access(ack));
492	result = -EIO;
493	if (i2400m_brh_get_signature(ack) != 0xcbbc) {
494		dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
495			"0x%04x\n", opcode, i2400m_brh_get_signature(ack));
496		goto error_ack_signature;
497	}
498	if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
499		dev_err(dev, "boot-mode cmd %d: HW BUG? "
500			"received response for opcode %u, expected %u\n",
501			opcode, i2400m_brh_get_opcode(ack), opcode);
502		goto error_ack_opcode;
503	}
504	if (i2400m_brh_get_response(ack) != 0) {	/* failed? */
505		dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
506			opcode, i2400m_brh_get_response(ack));
507		goto error_ack_failed;
508	}
509	if (ack_size < ack->data_size + sizeof(*ack)) {
510		dev_err(dev, "boot-mode cmd %d: SW BUG "
511			"driver provided only %zu bytes for %zu bytes "
512			"of data\n", opcode, ack_size,
513			(size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
514		goto error_ack_short_buffer;
515	}
516	result = ack_size;
517	/* Don't you love this stack of empty targets? Well, I don't
518	 * either, but it helps track exactly who comes in here and
519	 * why :) */
520error_ack_short_buffer:
521error_ack_failed:
522error_ack_opcode:
523error_ack_signature:
524out_raw:
525error_reboot_ack:
526error_reboot:
527error_ack_short:
528	d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
529		i2400m, opcode, ack, ack_size, (int) result);
530	return result;
531}
532
533
534/**
535 * i2400m_bm_cmd - Execute a boot mode command
536 *
537 * @cmd: buffer containing the command data (pointing at the header).
538 *     This data can be ANYWHERE (for USB, we will copy it to an
539 *     specific buffer). Make sure everything is in proper little
540 *     endian.
541 *
542 *     A raw buffer can be also sent, just cast it and set flags to
543 *     I2400M_BM_CMD_RAW.
544 *
545 *     This function will generate a checksum for you if the
546 *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
547 *     is set).
548 *
549 *     You can use the i2400m->bm_cmd_buf to stage your commands and
550 *     send them.
551 *
552 *     If NULL, no command is sent (we just wait for an ack).
553 *
554 * @cmd_size: size of the command. Will be auto padded to the
555 *     bus-specific drivers padding requirements.
556 *
557 * @ack: buffer where to place the acknowledgement. If it is a regular
558 *     command response, all fields will be returned with the right,
559 *     native endianess.
560 *
561 *     You *cannot* use i2400m->bm_ack_buf for this buffer.
562 *
563 * @ack_size: size of @ack, 16 aligned; you need to provide at least
564 *     sizeof(*ack) bytes and then enough to contain the return data
565 *     from the command
566 *
567 * @flags: see I2400M_BM_CMD_* above.
568 *
569 * @returns: bytes received by the notification; if < 0, an errno code
570 *     denoting an error or:
571 *
572 *     -ERESTARTSYS  The device has rebooted
573 *
574 * Executes a boot-mode command and waits for a response, doing basic
575 * validation on it; if a zero length response is received, it retries
576 * waiting for a response until a non-zero one is received (timing out
577 * after %I2400M_BOOT_RETRIES retries).
578 */
579static
580ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
581		      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
582		      struct i2400m_bootrom_header *ack, size_t ack_size,
583		      int flags)
584{
585	ssize_t result = -ENOMEM, rx_bytes;
586	struct device *dev = i2400m_dev(i2400m);
587	int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
588
589	d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
590		  i2400m, cmd, cmd_size, ack, ack_size);
591	BUG_ON(ack_size < sizeof(*ack));
592	BUG_ON(i2400m->boot_mode == 0);
593
594	if (cmd != NULL) {		/* send the command */
595		result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
596		if (result < 0)
597			goto error_cmd_send;
598		if ((flags & I2400M_BM_CMD_RAW) == 0)
599			d_printf(5, dev,
600				 "boot-mode cmd %d csum %u rr %u da %u: "
601				 "addr 0x%04x size %u block csum 0x%04x\n",
602				 opcode, i2400m_brh_get_use_checksum(cmd),
603				 i2400m_brh_get_response_required(cmd),
604				 i2400m_brh_get_direct_access(cmd),
605				 cmd->target_addr, cmd->data_size,
606				 cmd->block_checksum);
607	}
608	result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
609	if (result < 0) {
610		dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
611			opcode, (int) result);	/* bah, %zd doesn't work */
612		goto error_wait_for_ack;
613	}
614	rx_bytes = result;
615	/* verify the ack and read more if necessary [result is the
616	 * final amount of bytes we get in the ack]  */
617	result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
618	if (result < 0)
619		goto error_bad_ack;
620	/* Don't you love this stack of empty targets? Well, I don't
621	 * either, but it helps track exactly who comes in here and
622	 * why :) */
623	result = rx_bytes;
624error_bad_ack:
625error_wait_for_ack:
626error_cmd_send:
627	d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
628		i2400m, cmd, cmd_size, ack, ack_size, (int) result);
629	return result;
630}
631
632
633/**
634 * i2400m_download_chunk - write a single chunk of data to the device's memory
635 *
636 * @i2400m: device descriptor
637 * @buf: the buffer to write
638 * @buf_len: length of the buffer to write
639 * @addr: address in the device memory space
640 * @direct: bootrom write mode
641 * @do_csum: should a checksum validation be performed
642 */
643static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
644				 size_t __chunk_len, unsigned long addr,
645				 unsigned int direct, unsigned int do_csum)
646{
647	int ret;
648	size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
649	struct device *dev = i2400m_dev(i2400m);
650	struct {
651		struct i2400m_bootrom_header cmd;
652		u8 cmd_payload[];
653	} __packed *buf;
654	struct i2400m_bootrom_header ack;
655
656	d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
657		  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
658		  addr, direct, do_csum);
659	buf = i2400m->bm_cmd_buf;
660	memcpy(buf->cmd_payload, chunk, __chunk_len);
661	memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
662
663	buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
664					      __chunk_len & 0x3 ? 0 : do_csum,
665					      __chunk_len & 0xf ? 0 : direct);
666	buf->cmd.target_addr = cpu_to_le32(addr);
667	buf->cmd.data_size = cpu_to_le32(__chunk_len);
668	ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
669			    &ack, sizeof(ack), 0);
670	if (ret >= 0)
671		ret = 0;
672	d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
673		"direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
674		addr, direct, do_csum, ret);
675	return ret;
676}
677
678
679/*
680 * Download a BCF file's sections to the device
681 *
682 * @i2400m: device descriptor
683 * @bcf: pointer to firmware data (first header followed by the
684 *     payloads). Assumed verified and consistent.
685 * @bcf_len: length (in bytes) of the @bcf buffer.
686 *
687 * Returns: < 0 errno code on error or the offset to the jump instruction.
688 *
689 * Given a BCF file, downloads each section (a command and a payload)
690 * to the device's address space. Actually, it just executes each
691 * command i the BCF file.
692 *
693 * The section size has to be aligned to 4 bytes AND the padding has
694 * to be taken from the firmware file, as the signature takes it into
695 * account.
696 */
697static
698ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
699			  const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
700{
701	ssize_t ret;
702	struct device *dev = i2400m_dev(i2400m);
703	size_t offset,		/* iterator offset */
704		data_size,	/* Size of the data payload */
705		section_size,	/* Size of the whole section (cmd + payload) */
706		section = 1;
707	const struct i2400m_bootrom_header *bh;
708	struct i2400m_bootrom_header ack;
709
710	d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
711		  i2400m, bcf, bcf_len);
712	/* Iterate over the command blocks in the BCF file that start
713	 * after the header */
714	offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
715	while (1) {	/* start sending the file */
716		bh = (void *) bcf + offset;
717		data_size = le32_to_cpu(bh->data_size);
718		section_size = ALIGN(sizeof(*bh) + data_size, 4);
719		d_printf(7, dev,
720			 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
721			 section, offset, sizeof(*bh) + data_size,
722			 le32_to_cpu(bh->target_addr));
723		/*
724		 * We look for JUMP cmd from the bootmode header,
725		 * either I2400M_BRH_SIGNED_JUMP for secure boot
726		 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
727		 * should be the bootmode header with JUMP cmd.
728		 */
729		if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
730			i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
731			d_printf(5, dev,  "jump found @%zu\n", offset);
732			break;
733		}
734		if (offset + section_size > bcf_len) {
735			dev_err(dev, "fw %s: bad section #%zu, "
736				"end (@%zu) beyond EOF (@%zu)\n",
737				i2400m->fw_name, section,
738				offset + section_size,  bcf_len);
739			ret = -EINVAL;
740			goto error_section_beyond_eof;
741		}
742		__i2400m_msleep(20);
743		ret = i2400m_bm_cmd(i2400m, bh, section_size,
744				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
745		if (ret < 0) {
746			dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
747				"failed %d\n", i2400m->fw_name, section,
748				offset, sizeof(*bh) + data_size, (int) ret);
749			goto error_send;
750		}
751		offset += section_size;
752		section++;
753	}
754	ret = offset;
755error_section_beyond_eof:
756error_send:
757	d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
758		i2400m, bcf, bcf_len, (int) ret);
759	return ret;
760}
761
762
763/*
764 * Indicate if the device emitted a reboot barker that indicates
765 * "signed boot"
766 */
767static
768unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
769{
770	return likely(i2400m->sboot);
771}
772
773
774/*
775 * Do the final steps of uploading firmware
776 *
777 * @bcf_hdr: BCF header we are actually using
778 * @bcf: pointer to the firmware image (which matches the first header
779 *     that is followed by the actual payloads).
780 * @offset: [byte] offset into @bcf for the command we need to send.
781 *
782 * Depending on the boot mode (signed vs non-signed), different
783 * actions need to be taken.
784 */
785static
786int i2400m_dnload_finalize(struct i2400m *i2400m,
787			   const struct i2400m_bcf_hdr *bcf_hdr,
788			   const struct i2400m_bcf_hdr *bcf, size_t offset)
789{
790	int ret = 0;
791	struct device *dev = i2400m_dev(i2400m);
792	struct i2400m_bootrom_header *cmd, ack;
793	struct {
794		struct i2400m_bootrom_header cmd;
795		u8 cmd_pl[0];
796	} __packed *cmd_buf;
797	size_t signature_block_offset, signature_block_size;
798
799	d_fnstart(3, dev, "offset %zu\n", offset);
800	cmd = (void *) bcf + offset;
801	if (i2400m_boot_is_signed(i2400m) == 0) {
802		struct i2400m_bootrom_header jump_ack;
803		d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
804			le32_to_cpu(cmd->target_addr));
805		cmd_buf = i2400m->bm_cmd_buf;
806		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
807		cmd = &cmd_buf->cmd;
808		/* now cmd points to the actual bootrom_header in cmd_buf */
809		i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
810		cmd->data_size = 0;
811		ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
812				    &jump_ack, sizeof(jump_ack), 0);
813	} else {
814		d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
815			 le32_to_cpu(cmd->target_addr));
816		cmd_buf = i2400m->bm_cmd_buf;
817		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
818		signature_block_offset =
819			sizeof(*bcf_hdr)
820			+ le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
821			+ le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
822		signature_block_size =
823			le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
824		memcpy(cmd_buf->cmd_pl,
825		       (void *) bcf_hdr + signature_block_offset,
826		       signature_block_size);
827		ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
828				    sizeof(cmd_buf->cmd) + signature_block_size,
829				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
830	}
831	d_fnend(3, dev, "returning %d\n", ret);
832	return ret;
833}
834
835
836/**
837 * i2400m_bootrom_init - Reboots a powered device into boot mode
838 *
839 * @i2400m: device descriptor
840 * @flags:
841 *      I2400M_BRI_SOFT: a reboot barker has been seen
842 *          already, so don't wait for it.
843 *
844 *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
845 *          for a reboot barker notification. This is a one shot; if
846 *          the state machine needs to send a reboot command it will.
847 *
848 * Returns:
849 *
850 *     < 0 errno code on error, 0 if ok.
851 *
852 * Description:
853 *
854 * Tries hard enough to put the device in boot-mode. There are two
855 * main phases to this:
856 *
857 * a. (1) send a reboot command and (2) get a reboot barker
858 *
859 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
860 *        getting an ack barker in return
861 *
862 * We want to skip (a) in some cases [soft]. The state machine is
863 * horrible, but it is basically: on each phase, send what has to be
864 * sent (if any), wait for the answer and act on the answer. We might
865 * have to backtrack and retry, so we keep a max tries counter for
866 * that.
867 *
868 * It sucks because we don't know ahead of time which is going to be
869 * the reboot barker (the device might send different ones depending
870 * on its EEPROM config) and once the device reboots and waits for the
871 * echo/ack reboot barker being sent back, it doesn't understand
872 * anything else. So we can be left at the point where we don't know
873 * what to send to it -- cold reset and bus reset seem to have little
874 * effect. So the function iterates (in this case) through all the
875 * known barkers and tries them all until an ACK is
876 * received. Otherwise, it gives up.
877 *
878 * If we get a timeout after sending a warm reset, we do it again.
879 */
880int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
881{
882	int result;
883	struct device *dev = i2400m_dev(i2400m);
884	struct i2400m_bootrom_header *cmd;
885	struct i2400m_bootrom_header ack;
886	int count = i2400m->bus_bm_retries;
887	int ack_timeout_cnt = 1;
888	unsigned i;
889
890	BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
891	BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
892
893	d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
894	result = -ENOMEM;
895	cmd = i2400m->bm_cmd_buf;
896	if (flags & I2400M_BRI_SOFT)
897		goto do_reboot_ack;
898do_reboot:
899	ack_timeout_cnt = 1;
900	if (--count < 0)
901		goto error_timeout;
902	d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
903		 count);
904	if ((flags & I2400M_BRI_NO_REBOOT) == 0)
905		i2400m_reset(i2400m, I2400M_RT_WARM);
906	result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
907			       I2400M_BM_CMD_RAW);
908	flags &= ~I2400M_BRI_NO_REBOOT;
909	switch (result) {
910	case -ERESTARTSYS:
911		/*
912		 * at this point, i2400m_bm_cmd(), through
913		 * __i2400m_bm_ack_process(), has updated
914		 * i2400m->barker and we are good to go.
915		 */
916		d_printf(4, dev, "device reboot: got reboot barker\n");
917		break;
918	case -EISCONN:	/* we don't know how it got here...but we follow it */
919		d_printf(4, dev, "device reboot: got ack barker - whatever\n");
920		goto do_reboot;
921	case -ETIMEDOUT:
922		/*
923		 * Device has timed out, we might be in boot mode
924		 * already and expecting an ack; if we don't know what
925		 * the barker is, we just send them all. Cold reset
926		 * and bus reset don't work. Beats me.
927		 */
928		if (i2400m->barker != NULL) {
929			dev_err(dev, "device boot: reboot barker timed out, "
930				"trying (set) %08x echo/ack\n",
931				le32_to_cpu(i2400m->barker->data[0]));
932			goto do_reboot_ack;
933		}
934		for (i = 0; i < i2400m_barker_db_used; i++) {
935			struct i2400m_barker_db *barker = &i2400m_barker_db[i];
936			memcpy(cmd, barker->data, sizeof(barker->data));
937			result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
938					       &ack, sizeof(ack),
939					       I2400M_BM_CMD_RAW);
940			if (result == -EISCONN) {
941				dev_warn(dev, "device boot: got ack barker "
942					 "after sending echo/ack barker "
943					 "#%d/%08x; rebooting j.i.c.\n",
944					 i, le32_to_cpu(barker->data[0]));
945				flags &= ~I2400M_BRI_NO_REBOOT;
946				goto do_reboot;
947			}
948		}
949		dev_err(dev, "device boot: tried all the echo/acks, could "
950			"not get device to respond; giving up");
951		result = -ESHUTDOWN;
952	case -EPROTO:
953	case -ESHUTDOWN:	/* dev is gone */
954	case -EINTR:		/* user cancelled */
955		goto error_dev_gone;
956	default:
957		dev_err(dev, "device reboot: error %d while waiting "
958			"for reboot barker - rebooting\n", result);
959		d_dump(1, dev, &ack, result);
960		goto do_reboot;
961	}
962	/* At this point we ack back with 4 REBOOT barkers and expect
963	 * 4 ACK barkers. This is ugly, as we send a raw command --
964	 * hence the cast. _bm_cmd() will catch the reboot ack
965	 * notification and report it as -EISCONN. */
966do_reboot_ack:
967	d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
968	memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
969	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
970			       &ack, sizeof(ack), I2400M_BM_CMD_RAW);
971	switch (result) {
972	case -ERESTARTSYS:
973		d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
974		if (--count < 0)
975			goto error_timeout;
976		goto do_reboot_ack;
977	case -EISCONN:
978		d_printf(4, dev, "reboot ack: got ack barker - good\n");
979		break;
980	case -ETIMEDOUT:	/* no response, maybe it is the other type? */
981		if (ack_timeout_cnt-- < 0) {
982			d_printf(4, dev, "reboot ack timedout: retrying\n");
983			goto do_reboot_ack;
984		} else {
985			dev_err(dev, "reboot ack timedout too long: "
986				"trying reboot\n");
987			goto do_reboot;
988		}
989		break;
990	case -EPROTO:
991	case -ESHUTDOWN:	/* dev is gone */
992		goto error_dev_gone;
993	default:
994		dev_err(dev, "device reboot ack: error %d while waiting for "
995			"reboot ack barker - rebooting\n", result);
996		goto do_reboot;
997	}
998	d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
999	result = 0;
1000exit_timeout:
1001error_dev_gone:
1002	d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1003		i2400m, flags, result);
1004	return result;
1005
1006error_timeout:
1007	dev_err(dev, "Timed out waiting for reboot ack\n");
1008	result = -ETIMEDOUT;
1009	goto exit_timeout;
1010}
1011
1012
1013/*
1014 * Read the MAC addr
1015 *
1016 * The position this function reads is fixed in device memory and
1017 * always available, even without firmware.
1018 *
1019 * Note we specify we want to read only six bytes, but provide space
1020 * for 16, as we always get it rounded up.
1021 */
1022int i2400m_read_mac_addr(struct i2400m *i2400m)
1023{
1024	int result;
1025	struct device *dev = i2400m_dev(i2400m);
1026	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1027	struct i2400m_bootrom_header *cmd;
1028	struct {
1029		struct i2400m_bootrom_header ack;
1030		u8 ack_pl[16];
1031	} __packed ack_buf;
1032
1033	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1034	cmd = i2400m->bm_cmd_buf;
1035	cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1036	cmd->target_addr = cpu_to_le32(0x00203fe8);
1037	cmd->data_size = cpu_to_le32(6);
1038	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1039			       &ack_buf.ack, sizeof(ack_buf), 0);
1040	if (result < 0) {
1041		dev_err(dev, "BM: read mac addr failed: %d\n", result);
1042		goto error_read_mac;
1043	}
1044	d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1045	if (i2400m->bus_bm_mac_addr_impaired == 1) {
1046		ack_buf.ack_pl[0] = 0x00;
1047		ack_buf.ack_pl[1] = 0x16;
1048		ack_buf.ack_pl[2] = 0xd3;
1049		get_random_bytes(&ack_buf.ack_pl[3], 3);
1050		dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1051			"mac addr is %pM\n", ack_buf.ack_pl);
1052		result = 0;
1053	}
1054	net_dev->addr_len = ETH_ALEN;
1055	memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1056error_read_mac:
1057	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1058	return result;
1059}
1060
1061
1062/*
1063 * Initialize a non signed boot
1064 *
1065 * This implies sending some magic values to the device's memory. Note
1066 * we convert the values to little endian in the same array
1067 * declaration.
1068 */
1069static
1070int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1071{
1072	unsigned i = 0;
1073	int ret = 0;
1074	struct device *dev = i2400m_dev(i2400m);
1075	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1076	if (i2400m->bus_bm_pokes_table) {
1077		while (i2400m->bus_bm_pokes_table[i].address) {
1078			ret = i2400m_download_chunk(
1079				i2400m,
1080				&i2400m->bus_bm_pokes_table[i].data,
1081				sizeof(i2400m->bus_bm_pokes_table[i].data),
1082				i2400m->bus_bm_pokes_table[i].address, 1, 1);
1083			if (ret < 0)
1084				break;
1085			i++;
1086		}
1087	}
1088	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1089	return ret;
1090}
1091
1092
1093/*
1094 * Initialize the signed boot process
1095 *
1096 * @i2400m: device descriptor
1097 *
1098 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1099 *     memory (it has gone through basic validation).
1100 *
1101 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1102 *     rebooted.
1103 *
1104 * This writes the firmware BCF header to the device using the
1105 * HASH_PAYLOAD_ONLY command.
1106 */
1107static
1108int i2400m_dnload_init_signed(struct i2400m *i2400m,
1109			      const struct i2400m_bcf_hdr *bcf_hdr)
1110{
1111	int ret;
1112	struct device *dev = i2400m_dev(i2400m);
1113	struct {
1114		struct i2400m_bootrom_header cmd;
1115		struct i2400m_bcf_hdr cmd_pl;
1116	} __packed *cmd_buf;
1117	struct i2400m_bootrom_header ack;
1118
1119	d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1120	cmd_buf = i2400m->bm_cmd_buf;
1121	cmd_buf->cmd.command =
1122		i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1123	cmd_buf->cmd.target_addr = 0;
1124	cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1125	memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1126	ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1127			    &ack, sizeof(ack), 0);
1128	if (ret >= 0)
1129		ret = 0;
1130	d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1131	return ret;
1132}
1133
1134
1135/*
1136 * Initialize the firmware download at the device size
1137 *
1138 * Multiplex to the one that matters based on the device's mode
1139 * (signed or non-signed).
1140 */
1141static
1142int i2400m_dnload_init(struct i2400m *i2400m,
1143		       const struct i2400m_bcf_hdr *bcf_hdr)
1144{
1145	int result;
1146	struct device *dev = i2400m_dev(i2400m);
1147
1148	if (i2400m_boot_is_signed(i2400m)) {
1149		d_printf(1, dev, "signed boot\n");
1150		result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1151		if (result == -ERESTARTSYS)
1152			return result;
1153		if (result < 0)
1154			dev_err(dev, "firmware %s: signed boot download "
1155				"initialization failed: %d\n",
1156				i2400m->fw_name, result);
1157	} else {
1158		/* non-signed boot process without pokes */
1159		d_printf(1, dev, "non-signed boot\n");
1160		result = i2400m_dnload_init_nonsigned(i2400m);
1161		if (result == -ERESTARTSYS)
1162			return result;
1163		if (result < 0)
1164			dev_err(dev, "firmware %s: non-signed download "
1165				"initialization failed: %d\n",
1166				i2400m->fw_name, result);
1167	}
1168	return result;
1169}
1170
1171
1172/*
1173 * Run consistency tests on the firmware file and load up headers
1174 *
1175 * Check for the firmware being made for the i2400m device,
1176 * etc...These checks are mostly informative, as the device will make
1177 * them too; but the driver's response is more informative on what
1178 * went wrong.
1179 *
1180 * This will also look at all the headers present on the firmware
1181 * file, and update i2400m->fw_bcf_hdr to point to them.
1182 */
1183static
1184int i2400m_fw_hdr_check(struct i2400m *i2400m,
1185			const struct i2400m_bcf_hdr *bcf_hdr,
1186			size_t index, size_t offset)
1187{
1188	struct device *dev = i2400m_dev(i2400m);
1189
1190	unsigned module_type, header_len, major_version, minor_version,
1191		module_id, module_vendor, date, size;
1192
1193	module_type = le32_to_cpu(bcf_hdr->module_type);
1194	header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1195	major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1196		>> 16;
1197	minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1198	module_id = le32_to_cpu(bcf_hdr->module_id);
1199	module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1200	date = le32_to_cpu(bcf_hdr->date);
1201	size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1202
1203	d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1204		 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1205		 i2400m->fw_name, index, offset,
1206		 module_type, module_vendor, module_id,
1207		 major_version, minor_version, header_len, size, date);
1208
1209	/* Hard errors */
1210	if (major_version != 1) {
1211		dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1212			"v%u.%u not supported\n",
1213			i2400m->fw_name, index, offset,
1214			major_version, minor_version);
1215		return -EBADF;
1216	}
1217
1218	if (module_type != 6) {		/* built for the right hardware? */
1219		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1220			"type 0x%x; aborting\n",
1221			i2400m->fw_name, index, offset,
1222			module_type);
1223		return -EBADF;
1224	}
1225
1226	if (module_vendor != 0x8086) {
1227		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1228			"vendor 0x%x; aborting\n",
1229			i2400m->fw_name, index, offset, module_vendor);
1230		return -EBADF;
1231	}
1232
1233	if (date < 0x20080300)
1234		dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1235			 "too old; unsupported\n",
1236			 i2400m->fw_name, index, offset, date);
1237	return 0;
1238}
1239
1240
1241/*
1242 * Run consistency tests on the firmware file and load up headers
1243 *
1244 * Check for the firmware being made for the i2400m device,
1245 * etc...These checks are mostly informative, as the device will make
1246 * them too; but the driver's response is more informative on what
1247 * went wrong.
1248 *
1249 * This will also look at all the headers present on the firmware
1250 * file, and update i2400m->fw_hdrs to point to them.
1251 */
1252static
1253int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1254{
1255	int result;
1256	struct device *dev = i2400m_dev(i2400m);
1257	size_t headers = 0;
1258	const struct i2400m_bcf_hdr *bcf_hdr;
1259	const void *itr, *next, *top;
1260	size_t slots = 0, used_slots = 0;
1261
1262	for (itr = bcf, top = itr + bcf_size;
1263	     itr < top;
1264	     headers++, itr = next) {
1265		size_t leftover, offset, header_len, size;
1266
1267		leftover = top - itr;
1268		offset = itr - bcf;
1269		if (leftover <= sizeof(*bcf_hdr)) {
1270			dev_err(dev, "firmware %s: %zu B left at @%zx, "
1271				"not enough for BCF header\n",
1272				i2400m->fw_name, leftover, offset);
1273			break;
1274		}
1275		bcf_hdr = itr;
1276		/* Only the first header is supposed to be followed by
1277		 * payload */
1278		header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1279		size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1280		if (headers == 0)
1281			next = itr + size;
1282		else
1283			next = itr + header_len;
1284
1285		result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1286		if (result < 0)
1287			continue;
1288		if (used_slots + 1 >= slots) {
1289			/* +1 -> we need to account for the one we'll
1290			 * occupy and at least an extra one for
1291			 * always being NULL */
1292			result = i2400m_zrealloc_2x(
1293				(void **) &i2400m->fw_hdrs, &slots,
1294				sizeof(i2400m->fw_hdrs[0]),
1295				GFP_KERNEL);
1296			if (result < 0)
1297				goto error_zrealloc;
1298		}
1299		i2400m->fw_hdrs[used_slots] = bcf_hdr;
1300		used_slots++;
1301	}
1302	if (headers == 0) {
1303		dev_err(dev, "firmware %s: no usable headers found\n",
1304			i2400m->fw_name);
1305		result = -EBADF;
1306	} else
1307		result = 0;
1308error_zrealloc:
1309	return result;
1310}
1311
1312
1313/*
1314 * Match a barker to a BCF header module ID
1315 *
1316 * The device sends a barker which tells the firmware loader which
1317 * header in the BCF file has to be used. This does the matching.
1318 */
1319static
1320unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1321			      const struct i2400m_bcf_hdr *bcf_hdr)
1322{
1323	u32 barker = le32_to_cpu(i2400m->barker->data[0])
1324		& 0x7fffffff;
1325	u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1326		& 0x7fffffff;	/* high bit used for something else */
1327
1328	/* special case for 5x50 */
1329	if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1330		return 1;
1331	if (module_id == barker)
1332		return 1;
1333	return 0;
1334}
1335
1336static
1337const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1338{
1339	struct device *dev = i2400m_dev(i2400m);
1340	const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1341	unsigned i = 0;
1342	u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1343
1344	d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1345	if (barker == I2400M_NBOOT_BARKER) {
1346		bcf_hdr = i2400m->fw_hdrs[0];
1347		d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1348			 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1349		return bcf_hdr;
1350	}
1351	for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1352		bcf_hdr = *bcf_itr;
1353		if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1354			d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1355				 i, le32_to_cpu(bcf_hdr->module_id));
1356			return bcf_hdr;
1357		} else
1358			d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1359				 i, le32_to_cpu(bcf_hdr->module_id));
1360	}
1361	dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1362		barker);
1363	return NULL;
1364}
1365
1366
1367/*
1368 * Download the firmware to the device
1369 *
1370 * @i2400m: device descriptor
1371 * @bcf: pointer to loaded (and minimally verified for consistency)
1372 *    firmware
1373 * @bcf_size: size of the @bcf buffer (header plus payloads)
1374 *
1375 * The process for doing this is described in this file's header.
1376 *
1377 * Note we only reinitialize boot-mode if the flags say so. Some hw
1378 * iterations need it, some don't. In any case, if we loop, we always
1379 * need to reinitialize the boot room, hence the flags modification.
1380 */
1381static
1382int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1383		     size_t fw_size, enum i2400m_bri flags)
1384{
1385	int ret = 0;
1386	struct device *dev = i2400m_dev(i2400m);
1387	int count = i2400m->bus_bm_retries;
1388	const struct i2400m_bcf_hdr *bcf_hdr;
1389	size_t bcf_size;
1390
1391	d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1392		  i2400m, bcf, fw_size);
1393	i2400m->boot_mode = 1;
1394	wmb();		/* Make sure other readers see it */
1395hw_reboot:
1396	if (count-- == 0) {
1397		ret = -ERESTARTSYS;
1398		dev_err(dev, "device rebooted too many times, aborting\n");
1399		goto error_too_many_reboots;
1400	}
1401	if (flags & I2400M_BRI_MAC_REINIT) {
1402		ret = i2400m_bootrom_init(i2400m, flags);
1403		if (ret < 0) {
1404			dev_err(dev, "bootrom init failed: %d\n", ret);
1405			goto error_bootrom_init;
1406		}
1407	}
1408	flags |= I2400M_BRI_MAC_REINIT;
1409
1410	/*
1411	 * Initialize the download, push the bytes to the device and
1412	 * then jump to the new firmware. Note @ret is passed with the
1413	 * offset of the jump instruction to _dnload_finalize()
1414	 *
1415	 * Note we need to use the BCF header in the firmware image
1416	 * that matches the barker that the device sent when it
1417	 * rebooted, so it has to be passed along.
1418	 */
1419	ret = -EBADF;
1420	bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1421	if (bcf_hdr == NULL)
1422		goto error_bcf_hdr_find;
1423
1424	ret = i2400m_dnload_init(i2400m, bcf_hdr);
1425	if (ret == -ERESTARTSYS)
1426		goto error_dev_rebooted;
1427	if (ret < 0)
1428		goto error_dnload_init;
1429
1430	/*
1431	 * bcf_size refers to one header size plus the fw sections size
1432	 * indicated by the header,ie. if there are other extended headers
1433	 * at the tail, they are not counted
1434	 */
1435	bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1436	ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1437	if (ret == -ERESTARTSYS)
1438		goto error_dev_rebooted;
1439	if (ret < 0) {
1440		dev_err(dev, "fw %s: download failed: %d\n",
1441			i2400m->fw_name, ret);
1442		goto error_dnload_bcf;
1443	}
1444
1445	ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1446	if (ret == -ERESTARTSYS)
1447		goto error_dev_rebooted;
1448	if (ret < 0) {
1449		dev_err(dev, "fw %s: "
1450			"download finalization failed: %d\n",
1451			i2400m->fw_name, ret);
1452		goto error_dnload_finalize;
1453	}
1454
1455	d_printf(2, dev, "fw %s successfully uploaded\n",
1456		 i2400m->fw_name);
1457	i2400m->boot_mode = 0;
1458	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
1459error_dnload_finalize:
1460error_dnload_bcf:
1461error_dnload_init:
1462error_bcf_hdr_find:
1463error_bootrom_init:
1464error_too_many_reboots:
1465	d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1466		i2400m, bcf, fw_size, ret);
1467	return ret;
1468
1469error_dev_rebooted:
1470	dev_err(dev, "device rebooted, %d tries left\n", count);
1471	/* we got the notification already, no need to wait for it again */
1472	flags |= I2400M_BRI_SOFT;
1473	goto hw_reboot;
1474}
1475
1476static
1477int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1478			enum i2400m_bri flags)
1479{
1480	int ret;
1481	struct device *dev = i2400m_dev(i2400m);
1482	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1483
1484	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1485	bcf = (void *) fw->data;
1486	ret = i2400m_fw_check(i2400m, bcf, fw->size);
1487	if (ret >= 0)
1488		ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1489	if (ret < 0)
1490		dev_err(dev, "%s: cannot use: %d, skipping\n",
1491			i2400m->fw_name, ret);
1492	kfree(i2400m->fw_hdrs);
1493	i2400m->fw_hdrs = NULL;
1494	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1495	return ret;
1496}
1497
1498
1499/* Refcounted container for firmware data */
1500struct i2400m_fw {
1501	struct kref kref;
1502	const struct firmware *fw;
1503};
1504
1505
1506static
1507void i2400m_fw_destroy(struct kref *kref)
1508{
1509	struct i2400m_fw *i2400m_fw =
1510		container_of(kref, struct i2400m_fw, kref);
1511	release_firmware(i2400m_fw->fw);
1512	kfree(i2400m_fw);
1513}
1514
1515
1516static
1517struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1518{
1519	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1520		kref_get(&i2400m_fw->kref);
1521	return i2400m_fw;
1522}
1523
1524
1525static
1526void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1527{
1528	kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1529}
1530
1531
1532/**
1533 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1534 *
1535 * @i2400m: device descriptor
1536 *
1537 * Returns: >= 0 if ok, < 0 errno code on error.
1538 *
1539 * This sets up the firmware upload environment, loads the firmware
1540 * file from disk, verifies and then calls the firmware upload process
1541 * per se.
1542 *
1543 * Can be called either from probe, or after a warm reset.  Can not be
1544 * called from within an interrupt.  All the flow in this code is
1545 * single-threade; all I/Os are synchronous.
1546 */
1547int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1548{
1549	int ret, itr;
1550	struct device *dev = i2400m_dev(i2400m);
1551	struct i2400m_fw *i2400m_fw;
1552	const struct firmware *fw;
1553	const char *fw_name;
1554
1555	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1556
1557	ret = -ENODEV;
1558	spin_lock(&i2400m->rx_lock);
1559	i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1560	spin_unlock(&i2400m->rx_lock);
1561	if (i2400m_fw == (void *) ~0) {
1562		dev_err(dev, "can't load firmware now!");
1563		goto out;
1564	} else if (i2400m_fw != NULL) {
1565		dev_info(dev, "firmware %s: loading from cache\n",
1566			 i2400m->fw_name);
1567		ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1568		i2400m_fw_put(i2400m_fw);
1569		goto out;
1570	}
1571
1572	/* Load firmware files to memory. */
1573	for (itr = 0, ret = -ENOENT; ; itr++) {
1574		fw_name = i2400m->bus_fw_names[itr];
1575		if (fw_name == NULL) {
1576			dev_err(dev, "Could not find a usable firmware image\n");
1577			break;
1578		}
1579		d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1580		ret = request_firmware(&fw, fw_name, dev);
1581		if (ret < 0) {
1582			dev_err(dev, "fw %s: cannot load file: %d\n",
1583				fw_name, ret);
1584			continue;
1585		}
1586		i2400m->fw_name = fw_name;
1587		ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1588		release_firmware(fw);
1589		if (ret >= 0)	/* firmware loaded successfully */
1590			break;
1591		i2400m->fw_name = NULL;
1592	}
1593out:
1594	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1595	return ret;
1596}
1597EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1598
1599
1600void i2400m_fw_cache(struct i2400m *i2400m)
1601{
1602	int result;
1603	struct i2400m_fw *i2400m_fw;
1604	struct device *dev = i2400m_dev(i2400m);
1605
1606	/* if there is anything there, free it -- now, this'd be weird */
1607	spin_lock(&i2400m->rx_lock);
1608	i2400m_fw = i2400m->fw_cached;
1609	spin_unlock(&i2400m->rx_lock);
1610	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1611		i2400m_fw_put(i2400m_fw);
1612		WARN(1, "%s:%u: still cached fw still present?\n",
1613		     __func__, __LINE__);
1614	}
1615
1616	if (i2400m->fw_name == NULL) {
1617		dev_err(dev, "firmware n/a: can't cache\n");
1618		i2400m_fw = (void *) ~0;
1619		goto out;
1620	}
1621
1622	i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1623	if (i2400m_fw == NULL)
1624		goto out;
1625	kref_init(&i2400m_fw->kref);
1626	result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1627	if (result < 0) {
1628		dev_err(dev, "firmware %s: failed to cache: %d\n",
1629			i2400m->fw_name, result);
1630		kfree(i2400m_fw);
1631		i2400m_fw = (void *) ~0;
1632	} else
1633		dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1634out:
1635	spin_lock(&i2400m->rx_lock);
1636	i2400m->fw_cached = i2400m_fw;
1637	spin_unlock(&i2400m->rx_lock);
1638}
1639
1640
1641void i2400m_fw_uncache(struct i2400m *i2400m)
1642{
1643	struct i2400m_fw *i2400m_fw;
1644
1645	spin_lock(&i2400m->rx_lock);
1646	i2400m_fw = i2400m->fw_cached;
1647	i2400m->fw_cached = NULL;
1648	spin_unlock(&i2400m->rx_lock);
1649
1650	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1651		i2400m_fw_put(i2400m_fw);
1652}
1653
1654