xref: /kernel/linux/linux-5.10/drivers/net/wan/z85230.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
5 *	(c) Copyright 2000, 2001 Red Hat Inc
6 *
7 *	Development of this driver was funded by Equiinet Ltd
8 *			http://www.equiinet.com
9 *
10 *	ChangeLog:
11 *
12 *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
13 *	unification of all the Z85x30 asynchronous drivers for real.
14 *
15 *	DMA now uses get_free_page as kmalloc buffers may span a 64K
16 *	boundary.
17 *
18 *	Modified for SMP safety and SMP locking by Alan Cox
19 *					<alan@lxorguk.ukuu.org.uk>
20 *
21 *	Performance
22 *
23 *	Z85230:
24 *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
25 *	X.25 is not unrealistic on all machines. DMA mode can in theory
26 *	handle T1/E1 quite nicely. In practice the limit seems to be about
27 *	512Kbit->1Mbit depending on motherboard.
28 *
29 *	Z85C30:
30 *	64K will take DMA, 9600 baud X.25 should be ok.
31 *
32 *	Z8530:
33 *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
34 */
35
36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38#include <linux/module.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/net.h>
42#include <linux/skbuff.h>
43#include <linux/netdevice.h>
44#include <linux/if_arp.h>
45#include <linux/delay.h>
46#include <linux/hdlc.h>
47#include <linux/ioport.h>
48#include <linux/init.h>
49#include <linux/gfp.h>
50#include <asm/dma.h>
51#include <asm/io.h>
52#define RT_LOCK
53#define RT_UNLOCK
54#include <linux/spinlock.h>
55
56#include "z85230.h"
57
58
59/**
60 *	z8530_read_port - Architecture specific interface function
61 *	@p: port to read
62 *
63 *	Provided port access methods. The Comtrol SV11 requires no delays
64 *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
65 *
66 *	In the longer term this should become an architecture specific
67 *	section so that this can become a generic driver interface for all
68 *	platforms. For now we only handle PC I/O ports with or without the
69 *	dread 5uS sanity delay.
70 *
71 *	The caller must hold sufficient locks to avoid violating the horrible
72 *	5uS delay rule.
73 */
74
75static inline int z8530_read_port(unsigned long p)
76{
77	u8 r=inb(Z8530_PORT_OF(p));
78	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */
79		udelay(5);
80	return r;
81}
82
83/**
84 *	z8530_write_port - Architecture specific interface function
85 *	@p: port to write
86 *	@d: value to write
87 *
88 *	Write a value to a port with delays if need be. Note that the
89 *	caller must hold locks to avoid read/writes from other contexts
90 *	violating the 5uS rule
91 *
92 *	In the longer term this should become an architecture specific
93 *	section so that this can become a generic driver interface for all
94 *	platforms. For now we only handle PC I/O ports with or without the
95 *	dread 5uS sanity delay.
96 */
97
98
99static inline void z8530_write_port(unsigned long p, u8 d)
100{
101	outb(d,Z8530_PORT_OF(p));
102	if(p&Z8530_PORT_SLEEP)
103		udelay(5);
104}
105
106
107
108static void z8530_rx_done(struct z8530_channel *c);
109static void z8530_tx_done(struct z8530_channel *c);
110
111
112/**
113 *	read_zsreg - Read a register from a Z85230
114 *	@c: Z8530 channel to read from (2 per chip)
115 *	@reg: Register to read
116 *	FIXME: Use a spinlock.
117 *
118 *	Most of the Z8530 registers are indexed off the control registers.
119 *	A read is done by writing to the control register and reading the
120 *	register back.  The caller must hold the lock
121 */
122
123static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
124{
125	if(reg)
126		z8530_write_port(c->ctrlio, reg);
127	return z8530_read_port(c->ctrlio);
128}
129
130/**
131 *	read_zsdata - Read the data port of a Z8530 channel
132 *	@c: The Z8530 channel to read the data port from
133 *
134 *	The data port provides fast access to some things. We still
135 *	have all the 5uS delays to worry about.
136 */
137
138static inline u8 read_zsdata(struct z8530_channel *c)
139{
140	u8 r;
141	r=z8530_read_port(c->dataio);
142	return r;
143}
144
145/**
146 *	write_zsreg - Write to a Z8530 channel register
147 *	@c: The Z8530 channel
148 *	@reg: Register number
149 *	@val: Value to write
150 *
151 *	Write a value to an indexed register. The caller must hold the lock
152 *	to honour the irritating delay rules. We know about register 0
153 *	being fast to access.
154 *
155 *      Assumes c->lock is held.
156 */
157static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
158{
159	if(reg)
160		z8530_write_port(c->ctrlio, reg);
161	z8530_write_port(c->ctrlio, val);
162
163}
164
165/**
166 *	write_zsctrl - Write to a Z8530 control register
167 *	@c: The Z8530 channel
168 *	@val: Value to write
169 *
170 *	Write directly to the control register on the Z8530
171 */
172
173static inline void write_zsctrl(struct z8530_channel *c, u8 val)
174{
175	z8530_write_port(c->ctrlio, val);
176}
177
178/**
179 *	write_zsdata - Write to a Z8530 control register
180 *	@c: The Z8530 channel
181 *	@val: Value to write
182 *
183 *	Write directly to the data register on the Z8530
184 */
185
186
187static inline void write_zsdata(struct z8530_channel *c, u8 val)
188{
189	z8530_write_port(c->dataio, val);
190}
191
192/*
193 *	Register loading parameters for a dead port
194 */
195
196u8 z8530_dead_port[]=
197{
198	255
199};
200
201EXPORT_SYMBOL(z8530_dead_port);
202
203/*
204 *	Register loading parameters for currently supported circuit types
205 */
206
207
208/*
209 *	Data clocked by telco end. This is the correct data for the UK
210 *	"kilostream" service, and most other similar services.
211 */
212
213u8 z8530_hdlc_kilostream[]=
214{
215	4,	SYNC_ENAB|SDLC|X1CLK,
216	2,	0,	/* No vector */
217	1,	0,
218	3,	ENT_HM|RxCRC_ENAB|Rx8,
219	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
220	9,	0,		/* Disable interrupts */
221	6,	0xFF,
222	7,	FLAG,
223	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
224	11,	TCTRxCP,
225	14,	DISDPLL,
226	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
227	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
228	9,	NV|MIE|NORESET,
229	255
230};
231
232EXPORT_SYMBOL(z8530_hdlc_kilostream);
233
234/*
235 *	As above but for enhanced chips.
236 */
237
238u8 z8530_hdlc_kilostream_85230[]=
239{
240	4,	SYNC_ENAB|SDLC|X1CLK,
241	2,	0,	/* No vector */
242	1,	0,
243	3,	ENT_HM|RxCRC_ENAB|Rx8,
244	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
245	9,	0,		/* Disable interrupts */
246	6,	0xFF,
247	7,	FLAG,
248	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */
249	11,	TCTRxCP,
250	14,	DISDPLL,
251	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
252	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
253	9,	NV|MIE|NORESET,
254	23,	3,		/* Extended mode AUTO TX and EOM*/
255
256	255
257};
258
259EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
260
261/**
262 *	z8530_flush_fifo - Flush on chip RX FIFO
263 *	@c: Channel to flush
264 *
265 *	Flush the receive FIFO. There is no specific option for this, we
266 *	blindly read bytes and discard them. Reading when there is no data
267 *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
268 *
269 *	All locking is handled for the caller. On return data may still be
270 *	present if it arrived during the flush.
271 */
272
273static void z8530_flush_fifo(struct z8530_channel *c)
274{
275	read_zsreg(c, R1);
276	read_zsreg(c, R1);
277	read_zsreg(c, R1);
278	read_zsreg(c, R1);
279	if(c->dev->type==Z85230)
280	{
281		read_zsreg(c, R1);
282		read_zsreg(c, R1);
283		read_zsreg(c, R1);
284		read_zsreg(c, R1);
285	}
286}
287
288/**
289 *	z8530_rtsdtr - Control the outgoing DTS/RTS line
290 *	@c: The Z8530 channel to control;
291 *	@set: 1 to set, 0 to clear
292 *
293 *	Sets or clears DTR/RTS on the requested line. All locking is handled
294 *	by the caller. For now we assume all boards use the actual RTS/DTR
295 *	on the chip. Apparently one or two don't. We'll scream about them
296 *	later.
297 */
298
299static void z8530_rtsdtr(struct z8530_channel *c, int set)
300{
301	if (set)
302		c->regs[5] |= (RTS | DTR);
303	else
304		c->regs[5] &= ~(RTS | DTR);
305	write_zsreg(c, R5, c->regs[5]);
306}
307
308/**
309 *	z8530_rx - Handle a PIO receive event
310 *	@c: Z8530 channel to process
311 *
312 *	Receive handler for receiving in PIO mode. This is much like the
313 *	async one but not quite the same or as complex
314 *
315 *	Note: Its intended that this handler can easily be separated from
316 *	the main code to run realtime. That'll be needed for some machines
317 *	(eg to ever clock 64kbits on a sparc ;)).
318 *
319 *	The RT_LOCK macros don't do anything now. Keep the code covered
320 *	by them as short as possible in all circumstances - clocks cost
321 *	baud. The interrupt handler is assumed to be atomic w.r.t. to
322 *	other code - this is true in the RT case too.
323 *
324 *	We only cover the sync cases for this. If you want 2Mbit async
325 *	do it yourself but consider medical assistance first. This non DMA
326 *	synchronous mode is portable code. The DMA mode assumes PCI like
327 *	ISA DMA
328 *
329 *	Called with the device lock held
330 */
331
332static void z8530_rx(struct z8530_channel *c)
333{
334	u8 ch,stat;
335
336	while(1)
337	{
338		/* FIFO empty ? */
339		if(!(read_zsreg(c, R0)&1))
340			break;
341		ch=read_zsdata(c);
342		stat=read_zsreg(c, R1);
343
344		/*
345		 *	Overrun ?
346		 */
347		if(c->count < c->max)
348		{
349			*c->dptr++=ch;
350			c->count++;
351		}
352
353		if(stat&END_FR)
354		{
355
356			/*
357			 *	Error ?
358			 */
359			if(stat&(Rx_OVR|CRC_ERR))
360			{
361				/* Rewind the buffer and return */
362				if(c->skb)
363					c->dptr=c->skb->data;
364				c->count=0;
365				if(stat&Rx_OVR)
366				{
367					pr_warn("%s: overrun\n", c->dev->name);
368					c->rx_overrun++;
369				}
370				if(stat&CRC_ERR)
371				{
372					c->rx_crc_err++;
373					/* printk("crc error\n"); */
374				}
375				/* Shove the frame upstream */
376			}
377			else
378			{
379				/*
380				 *	Drop the lock for RX processing, or
381		 		 *	there are deadlocks
382		 		 */
383				z8530_rx_done(c);
384				write_zsctrl(c, RES_Rx_CRC);
385			}
386		}
387	}
388	/*
389	 *	Clear irq
390	 */
391	write_zsctrl(c, ERR_RES);
392	write_zsctrl(c, RES_H_IUS);
393}
394
395
396/**
397 *	z8530_tx - Handle a PIO transmit event
398 *	@c: Z8530 channel to process
399 *
400 *	Z8530 transmit interrupt handler for the PIO mode. The basic
401 *	idea is to attempt to keep the FIFO fed. We fill as many bytes
402 *	in as possible, its quite possible that we won't keep up with the
403 *	data rate otherwise.
404 */
405
406static void z8530_tx(struct z8530_channel *c)
407{
408	while(c->txcount) {
409		/* FIFO full ? */
410		if(!(read_zsreg(c, R0)&4))
411			return;
412		c->txcount--;
413		/*
414		 *	Shovel out the byte
415		 */
416		write_zsreg(c, R8, *c->tx_ptr++);
417		write_zsctrl(c, RES_H_IUS);
418		/* We are about to underflow */
419		if(c->txcount==0)
420		{
421			write_zsctrl(c, RES_EOM_L);
422			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
423		}
424	}
425
426
427	/*
428	 *	End of frame TX - fire another one
429	 */
430
431	write_zsctrl(c, RES_Tx_P);
432
433	z8530_tx_done(c);
434	write_zsctrl(c, RES_H_IUS);
435}
436
437/**
438 *	z8530_status - Handle a PIO status exception
439 *	@chan: Z8530 channel to process
440 *
441 *	A status event occurred in PIO synchronous mode. There are several
442 *	reasons the chip will bother us here. A transmit underrun means we
443 *	failed to feed the chip fast enough and just broke a packet. A DCD
444 *	change is a line up or down.
445 */
446
447static void z8530_status(struct z8530_channel *chan)
448{
449	u8 status, altered;
450
451	status = read_zsreg(chan, R0);
452	altered = chan->status ^ status;
453
454	chan->status = status;
455
456	if (status & TxEOM) {
457/*		printk("%s: Tx underrun.\n", chan->dev->name); */
458		chan->netdevice->stats.tx_fifo_errors++;
459		write_zsctrl(chan, ERR_RES);
460		z8530_tx_done(chan);
461	}
462
463	if (altered & chan->dcdcheck)
464	{
465		if (status & chan->dcdcheck) {
466			pr_info("%s: DCD raised\n", chan->dev->name);
467			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
468			if (chan->netdevice)
469				netif_carrier_on(chan->netdevice);
470		} else {
471			pr_info("%s: DCD lost\n", chan->dev->name);
472			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
473			z8530_flush_fifo(chan);
474			if (chan->netdevice)
475				netif_carrier_off(chan->netdevice);
476		}
477
478	}
479	write_zsctrl(chan, RES_EXT_INT);
480	write_zsctrl(chan, RES_H_IUS);
481}
482
483struct z8530_irqhandler z8530_sync = {
484	.rx = z8530_rx,
485	.tx = z8530_tx,
486	.status = z8530_status,
487};
488
489EXPORT_SYMBOL(z8530_sync);
490
491/**
492 *	z8530_dma_rx - Handle a DMA RX event
493 *	@chan: Channel to handle
494 *
495 *	Non bus mastering DMA interfaces for the Z8x30 devices. This
496 *	is really pretty PC specific. The DMA mode means that most receive
497 *	events are handled by the DMA hardware. We get a kick here only if
498 *	a frame ended.
499 */
500
501static void z8530_dma_rx(struct z8530_channel *chan)
502{
503	if(chan->rxdma_on)
504	{
505		/* Special condition check only */
506		u8 status;
507
508		read_zsreg(chan, R7);
509		read_zsreg(chan, R6);
510
511		status=read_zsreg(chan, R1);
512
513		if(status&END_FR)
514		{
515			z8530_rx_done(chan);	/* Fire up the next one */
516		}
517		write_zsctrl(chan, ERR_RES);
518		write_zsctrl(chan, RES_H_IUS);
519	}
520	else
521	{
522		/* DMA is off right now, drain the slow way */
523		z8530_rx(chan);
524	}
525}
526
527/**
528 *	z8530_dma_tx - Handle a DMA TX event
529 *	@chan:	The Z8530 channel to handle
530 *
531 *	We have received an interrupt while doing DMA transmissions. It
532 *	shouldn't happen. Scream loudly if it does.
533 */
534
535static void z8530_dma_tx(struct z8530_channel *chan)
536{
537	if(!chan->dma_tx)
538	{
539		pr_warn("Hey who turned the DMA off?\n");
540		z8530_tx(chan);
541		return;
542	}
543	/* This shouldn't occur in DMA mode */
544	pr_err("DMA tx - bogus event!\n");
545	z8530_tx(chan);
546}
547
548/**
549 *	z8530_dma_status - Handle a DMA status exception
550 *	@chan: Z8530 channel to process
551 *
552 *	A status event occurred on the Z8530. We receive these for two reasons
553 *	when in DMA mode. Firstly if we finished a packet transfer we get one
554 *	and kick the next packet out. Secondly we may see a DCD change.
555 *
556 */
557
558static void z8530_dma_status(struct z8530_channel *chan)
559{
560	u8 status, altered;
561
562	status=read_zsreg(chan, R0);
563	altered=chan->status^status;
564
565	chan->status=status;
566
567
568	if(chan->dma_tx)
569	{
570		if(status&TxEOM)
571		{
572			unsigned long flags;
573
574			flags=claim_dma_lock();
575			disable_dma(chan->txdma);
576			clear_dma_ff(chan->txdma);
577			chan->txdma_on=0;
578			release_dma_lock(flags);
579			z8530_tx_done(chan);
580		}
581	}
582
583	if (altered & chan->dcdcheck)
584	{
585		if (status & chan->dcdcheck) {
586			pr_info("%s: DCD raised\n", chan->dev->name);
587			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
588			if (chan->netdevice)
589				netif_carrier_on(chan->netdevice);
590		} else {
591			pr_info("%s: DCD lost\n", chan->dev->name);
592			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
593			z8530_flush_fifo(chan);
594			if (chan->netdevice)
595				netif_carrier_off(chan->netdevice);
596		}
597	}
598
599	write_zsctrl(chan, RES_EXT_INT);
600	write_zsctrl(chan, RES_H_IUS);
601}
602
603static struct z8530_irqhandler z8530_dma_sync = {
604	.rx = z8530_dma_rx,
605	.tx = z8530_dma_tx,
606	.status = z8530_dma_status,
607};
608
609static struct z8530_irqhandler z8530_txdma_sync = {
610	.rx = z8530_rx,
611	.tx = z8530_dma_tx,
612	.status = z8530_dma_status,
613};
614
615/**
616 *	z8530_rx_clear - Handle RX events from a stopped chip
617 *	@c: Z8530 channel to shut up
618 *
619 *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
620 *	For machines with PCI Z85x30 cards, or level triggered interrupts
621 *	(eg the MacII) we must clear the interrupt cause or die.
622 */
623
624
625static void z8530_rx_clear(struct z8530_channel *c)
626{
627	/*
628	 *	Data and status bytes
629	 */
630	u8 stat;
631
632	read_zsdata(c);
633	stat=read_zsreg(c, R1);
634
635	if(stat&END_FR)
636		write_zsctrl(c, RES_Rx_CRC);
637	/*
638	 *	Clear irq
639	 */
640	write_zsctrl(c, ERR_RES);
641	write_zsctrl(c, RES_H_IUS);
642}
643
644/**
645 *	z8530_tx_clear - Handle TX events from a stopped chip
646 *	@c: Z8530 channel to shut up
647 *
648 *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
649 *	For machines with PCI Z85x30 cards, or level triggered interrupts
650 *	(eg the MacII) we must clear the interrupt cause or die.
651 */
652
653static void z8530_tx_clear(struct z8530_channel *c)
654{
655	write_zsctrl(c, RES_Tx_P);
656	write_zsctrl(c, RES_H_IUS);
657}
658
659/**
660 *	z8530_status_clear - Handle status events from a stopped chip
661 *	@chan: Z8530 channel to shut up
662 *
663 *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
664 *	For machines with PCI Z85x30 cards, or level triggered interrupts
665 *	(eg the MacII) we must clear the interrupt cause or die.
666 */
667
668static void z8530_status_clear(struct z8530_channel *chan)
669{
670	u8 status=read_zsreg(chan, R0);
671	if(status&TxEOM)
672		write_zsctrl(chan, ERR_RES);
673	write_zsctrl(chan, RES_EXT_INT);
674	write_zsctrl(chan, RES_H_IUS);
675}
676
677struct z8530_irqhandler z8530_nop = {
678	.rx = z8530_rx_clear,
679	.tx = z8530_tx_clear,
680	.status = z8530_status_clear,
681};
682
683
684EXPORT_SYMBOL(z8530_nop);
685
686/**
687 *	z8530_interrupt - Handle an interrupt from a Z8530
688 *	@irq: 	Interrupt number
689 *	@dev_id: The Z8530 device that is interrupting.
690 *
691 *	A Z85[2]30 device has stuck its hand in the air for attention.
692 *	We scan both the channels on the chip for events and then call
693 *	the channel specific call backs for each channel that has events.
694 *	We have to use callback functions because the two channels can be
695 *	in different modes.
696 *
697 *	Locking is done for the handlers. Note that locking is done
698 *	at the chip level (the 5uS delay issue is per chip not per
699 *	channel). c->lock for both channels points to dev->lock
700 */
701
702irqreturn_t z8530_interrupt(int irq, void *dev_id)
703{
704	struct z8530_dev *dev=dev_id;
705	u8 intr;
706	static volatile int locker=0;
707	int work=0;
708	struct z8530_irqhandler *irqs;
709
710	if(locker)
711	{
712		pr_err("IRQ re-enter\n");
713		return IRQ_NONE;
714	}
715	locker=1;
716
717	spin_lock(&dev->lock);
718
719	while(++work<5000)
720	{
721
722		intr = read_zsreg(&dev->chanA, R3);
723		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
724			break;
725
726		/* This holds the IRQ status. On the 8530 you must read it from chan
727		   A even though it applies to the whole chip */
728
729		/* Now walk the chip and see what it is wanting - it may be
730		   an IRQ for someone else remember */
731
732		irqs=dev->chanA.irqs;
733
734		if(intr & (CHARxIP|CHATxIP|CHAEXT))
735		{
736			if(intr&CHARxIP)
737				irqs->rx(&dev->chanA);
738			if(intr&CHATxIP)
739				irqs->tx(&dev->chanA);
740			if(intr&CHAEXT)
741				irqs->status(&dev->chanA);
742		}
743
744		irqs=dev->chanB.irqs;
745
746		if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
747		{
748			if(intr&CHBRxIP)
749				irqs->rx(&dev->chanB);
750			if(intr&CHBTxIP)
751				irqs->tx(&dev->chanB);
752			if(intr&CHBEXT)
753				irqs->status(&dev->chanB);
754		}
755	}
756	spin_unlock(&dev->lock);
757	if(work==5000)
758		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
759		       dev->name, intr);
760	/* Ok all done */
761	locker=0;
762	return IRQ_HANDLED;
763}
764
765EXPORT_SYMBOL(z8530_interrupt);
766
767static const u8 reg_init[16]=
768{
769	0,0,0,0,
770	0,0,0,0,
771	0,0,0,0,
772	0x55,0,0,0
773};
774
775
776/**
777 *	z8530_sync_open - Open a Z8530 channel for PIO
778 *	@dev:	The network interface we are using
779 *	@c:	The Z8530 channel to open in synchronous PIO mode
780 *
781 *	Switch a Z8530 into synchronous mode without DMA assist. We
782 *	raise the RTS/DTR and commence network operation.
783 */
784
785int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
786{
787	unsigned long flags;
788
789	spin_lock_irqsave(c->lock, flags);
790
791	c->sync = 1;
792	c->mtu = dev->mtu+64;
793	c->count = 0;
794	c->skb = NULL;
795	c->skb2 = NULL;
796	c->irqs = &z8530_sync;
797
798	/* This loads the double buffer up */
799	z8530_rx_done(c);	/* Load the frame ring */
800	z8530_rx_done(c);	/* Load the backup frame */
801	z8530_rtsdtr(c,1);
802	c->dma_tx = 0;
803	c->regs[R1]|=TxINT_ENAB;
804	write_zsreg(c, R1, c->regs[R1]);
805	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
806
807	spin_unlock_irqrestore(c->lock, flags);
808	return 0;
809}
810
811
812EXPORT_SYMBOL(z8530_sync_open);
813
814/**
815 *	z8530_sync_close - Close a PIO Z8530 channel
816 *	@dev: Network device to close
817 *	@c: Z8530 channel to disassociate and move to idle
818 *
819 *	Close down a Z8530 interface and switch its interrupt handlers
820 *	to discard future events.
821 */
822
823int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
824{
825	u8 chk;
826	unsigned long flags;
827
828	spin_lock_irqsave(c->lock, flags);
829	c->irqs = &z8530_nop;
830	c->max = 0;
831	c->sync = 0;
832
833	chk=read_zsreg(c,R0);
834	write_zsreg(c, R3, c->regs[R3]);
835	z8530_rtsdtr(c,0);
836
837	spin_unlock_irqrestore(c->lock, flags);
838	return 0;
839}
840
841EXPORT_SYMBOL(z8530_sync_close);
842
843/**
844 *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
845 *	@dev: The network device to attach
846 *	@c: The Z8530 channel to configure in sync DMA mode.
847 *
848 *	Set up a Z85x30 device for synchronous DMA in both directions. Two
849 *	ISA DMA channels must be available for this to work. We assume ISA
850 *	DMA driven I/O and PC limits on access.
851 */
852
853int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
854{
855	unsigned long cflags, dflags;
856
857	c->sync = 1;
858	c->mtu = dev->mtu+64;
859	c->count = 0;
860	c->skb = NULL;
861	c->skb2 = NULL;
862	/*
863	 *	Load the DMA interfaces up
864	 */
865	c->rxdma_on = 0;
866	c->txdma_on = 0;
867
868	/*
869	 *	Allocate the DMA flip buffers. Limit by page size.
870	 *	Everyone runs 1500 mtu or less on wan links so this
871	 *	should be fine.
872	 */
873
874	if(c->mtu  > PAGE_SIZE/2)
875		return -EMSGSIZE;
876
877	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
878	if(c->rx_buf[0]==NULL)
879		return -ENOBUFS;
880	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
881
882	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
883	if(c->tx_dma_buf[0]==NULL)
884	{
885		free_page((unsigned long)c->rx_buf[0]);
886		c->rx_buf[0]=NULL;
887		return -ENOBUFS;
888	}
889	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
890
891	c->tx_dma_used=0;
892	c->dma_tx = 1;
893	c->dma_num=0;
894	c->dma_ready=1;
895
896	/*
897	 *	Enable DMA control mode
898	 */
899
900	spin_lock_irqsave(c->lock, cflags);
901
902	/*
903	 *	TX DMA via DIR/REQ
904	 */
905
906	c->regs[R14]|= DTRREQ;
907	write_zsreg(c, R14, c->regs[R14]);
908
909	c->regs[R1]&= ~TxINT_ENAB;
910	write_zsreg(c, R1, c->regs[R1]);
911
912	/*
913	 *	RX DMA via W/Req
914	 */
915
916	c->regs[R1]|= WT_FN_RDYFN;
917	c->regs[R1]|= WT_RDY_RT;
918	c->regs[R1]|= INT_ERR_Rx;
919	c->regs[R1]&= ~TxINT_ENAB;
920	write_zsreg(c, R1, c->regs[R1]);
921	c->regs[R1]|= WT_RDY_ENAB;
922	write_zsreg(c, R1, c->regs[R1]);
923
924	/*
925	 *	DMA interrupts
926	 */
927
928	/*
929	 *	Set up the DMA configuration
930	 */
931
932	dflags=claim_dma_lock();
933
934	disable_dma(c->rxdma);
935	clear_dma_ff(c->rxdma);
936	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
937	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
938	set_dma_count(c->rxdma, c->mtu);
939	enable_dma(c->rxdma);
940
941	disable_dma(c->txdma);
942	clear_dma_ff(c->txdma);
943	set_dma_mode(c->txdma, DMA_MODE_WRITE);
944	disable_dma(c->txdma);
945
946	release_dma_lock(dflags);
947
948	/*
949	 *	Select the DMA interrupt handlers
950	 */
951
952	c->rxdma_on = 1;
953	c->txdma_on = 1;
954	c->tx_dma_used = 1;
955
956	c->irqs = &z8530_dma_sync;
957	z8530_rtsdtr(c,1);
958	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
959
960	spin_unlock_irqrestore(c->lock, cflags);
961
962	return 0;
963}
964
965EXPORT_SYMBOL(z8530_sync_dma_open);
966
967/**
968 *	z8530_sync_dma_close - Close down DMA I/O
969 *	@dev: Network device to detach
970 *	@c: Z8530 channel to move into discard mode
971 *
972 *	Shut down a DMA mode synchronous interface. Halt the DMA, and
973 *	free the buffers.
974 */
975
976int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
977{
978	u8 chk;
979	unsigned long flags;
980
981	c->irqs = &z8530_nop;
982	c->max = 0;
983	c->sync = 0;
984
985	/*
986	 *	Disable the PC DMA channels
987	 */
988
989	flags=claim_dma_lock();
990	disable_dma(c->rxdma);
991	clear_dma_ff(c->rxdma);
992
993	c->rxdma_on = 0;
994
995	disable_dma(c->txdma);
996	clear_dma_ff(c->txdma);
997	release_dma_lock(flags);
998
999	c->txdma_on = 0;
1000	c->tx_dma_used = 0;
1001
1002	spin_lock_irqsave(c->lock, flags);
1003
1004	/*
1005	 *	Disable DMA control mode
1006	 */
1007
1008	c->regs[R1]&= ~WT_RDY_ENAB;
1009	write_zsreg(c, R1, c->regs[R1]);
1010	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1011	c->regs[R1]|= INT_ALL_Rx;
1012	write_zsreg(c, R1, c->regs[R1]);
1013	c->regs[R14]&= ~DTRREQ;
1014	write_zsreg(c, R14, c->regs[R14]);
1015
1016	if(c->rx_buf[0])
1017	{
1018		free_page((unsigned long)c->rx_buf[0]);
1019		c->rx_buf[0]=NULL;
1020	}
1021	if(c->tx_dma_buf[0])
1022	{
1023		free_page((unsigned  long)c->tx_dma_buf[0]);
1024		c->tx_dma_buf[0]=NULL;
1025	}
1026	chk=read_zsreg(c,R0);
1027	write_zsreg(c, R3, c->regs[R3]);
1028	z8530_rtsdtr(c,0);
1029
1030	spin_unlock_irqrestore(c->lock, flags);
1031
1032	return 0;
1033}
1034
1035EXPORT_SYMBOL(z8530_sync_dma_close);
1036
1037/**
1038 *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1039 *	@dev: The network device to attach
1040 *	@c: The Z8530 channel to configure in sync DMA mode.
1041 *
1042 *	Set up a Z85x30 device for synchronous DMA transmission. One
1043 *	ISA DMA channel must be available for this to work. The receive
1044 *	side is run in PIO mode, but then it has the bigger FIFO.
1045 */
1046
1047int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1048{
1049	unsigned long cflags, dflags;
1050
1051	printk("Opening sync interface for TX-DMA\n");
1052	c->sync = 1;
1053	c->mtu = dev->mtu+64;
1054	c->count = 0;
1055	c->skb = NULL;
1056	c->skb2 = NULL;
1057
1058	/*
1059	 *	Allocate the DMA flip buffers. Limit by page size.
1060	 *	Everyone runs 1500 mtu or less on wan links so this
1061	 *	should be fine.
1062	 */
1063
1064	if(c->mtu  > PAGE_SIZE/2)
1065		return -EMSGSIZE;
1066
1067	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1068	if(c->tx_dma_buf[0]==NULL)
1069		return -ENOBUFS;
1070
1071	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1072
1073
1074	spin_lock_irqsave(c->lock, cflags);
1075
1076	/*
1077	 *	Load the PIO receive ring
1078	 */
1079
1080	z8530_rx_done(c);
1081	z8530_rx_done(c);
1082
1083 	/*
1084	 *	Load the DMA interfaces up
1085	 */
1086
1087	c->rxdma_on = 0;
1088	c->txdma_on = 0;
1089
1090	c->tx_dma_used=0;
1091	c->dma_num=0;
1092	c->dma_ready=1;
1093	c->dma_tx = 1;
1094
1095 	/*
1096	 *	Enable DMA control mode
1097	 */
1098
1099 	/*
1100	 *	TX DMA via DIR/REQ
1101 	 */
1102	c->regs[R14]|= DTRREQ;
1103	write_zsreg(c, R14, c->regs[R14]);
1104
1105	c->regs[R1]&= ~TxINT_ENAB;
1106	write_zsreg(c, R1, c->regs[R1]);
1107
1108	/*
1109	 *	Set up the DMA configuration
1110	 */
1111
1112	dflags = claim_dma_lock();
1113
1114	disable_dma(c->txdma);
1115	clear_dma_ff(c->txdma);
1116	set_dma_mode(c->txdma, DMA_MODE_WRITE);
1117	disable_dma(c->txdma);
1118
1119	release_dma_lock(dflags);
1120
1121	/*
1122	 *	Select the DMA interrupt handlers
1123	 */
1124
1125	c->rxdma_on = 0;
1126	c->txdma_on = 1;
1127	c->tx_dma_used = 1;
1128
1129	c->irqs = &z8530_txdma_sync;
1130	z8530_rtsdtr(c,1);
1131	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1132	spin_unlock_irqrestore(c->lock, cflags);
1133
1134	return 0;
1135}
1136
1137EXPORT_SYMBOL(z8530_sync_txdma_open);
1138
1139/**
1140 *	z8530_sync_txdma_close - Close down a TX driven DMA channel
1141 *	@dev: Network device to detach
1142 *	@c: Z8530 channel to move into discard mode
1143 *
1144 *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1145 *	and  free the buffers.
1146 */
1147
1148int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1149{
1150	unsigned long dflags, cflags;
1151	u8 chk;
1152
1153
1154	spin_lock_irqsave(c->lock, cflags);
1155
1156	c->irqs = &z8530_nop;
1157	c->max = 0;
1158	c->sync = 0;
1159
1160	/*
1161	 *	Disable the PC DMA channels
1162	 */
1163
1164	dflags = claim_dma_lock();
1165
1166	disable_dma(c->txdma);
1167	clear_dma_ff(c->txdma);
1168	c->txdma_on = 0;
1169	c->tx_dma_used = 0;
1170
1171	release_dma_lock(dflags);
1172
1173	/*
1174	 *	Disable DMA control mode
1175	 */
1176
1177	c->regs[R1]&= ~WT_RDY_ENAB;
1178	write_zsreg(c, R1, c->regs[R1]);
1179	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1180	c->regs[R1]|= INT_ALL_Rx;
1181	write_zsreg(c, R1, c->regs[R1]);
1182	c->regs[R14]&= ~DTRREQ;
1183	write_zsreg(c, R14, c->regs[R14]);
1184
1185	if(c->tx_dma_buf[0])
1186	{
1187		free_page((unsigned long)c->tx_dma_buf[0]);
1188		c->tx_dma_buf[0]=NULL;
1189	}
1190	chk=read_zsreg(c,R0);
1191	write_zsreg(c, R3, c->regs[R3]);
1192	z8530_rtsdtr(c,0);
1193
1194	spin_unlock_irqrestore(c->lock, cflags);
1195	return 0;
1196}
1197
1198
1199EXPORT_SYMBOL(z8530_sync_txdma_close);
1200
1201
1202/*
1203 *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1204 *	it exists...
1205 */
1206
1207static const char *z8530_type_name[]={
1208	"Z8530",
1209	"Z85C30",
1210	"Z85230"
1211};
1212
1213/**
1214 *	z8530_describe - Uniformly describe a Z8530 port
1215 *	@dev: Z8530 device to describe
1216 *	@mapping: string holding mapping type (eg "I/O" or "Mem")
1217 *	@io: the port value in question
1218 *
1219 *	Describe a Z8530 in a standard format. We must pass the I/O as
1220 *	the port offset isn't predictable. The main reason for this function
1221 *	is to try and get a common format of report.
1222 */
1223
1224void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1225{
1226	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1227		dev->name,
1228		z8530_type_name[dev->type],
1229		mapping,
1230		Z8530_PORT_OF(io),
1231		dev->irq);
1232}
1233
1234EXPORT_SYMBOL(z8530_describe);
1235
1236/*
1237 *	Locked operation part of the z8530 init code
1238 */
1239
1240static inline int do_z8530_init(struct z8530_dev *dev)
1241{
1242	/* NOP the interrupt handlers first - we might get a
1243	   floating IRQ transition when we reset the chip */
1244	dev->chanA.irqs=&z8530_nop;
1245	dev->chanB.irqs=&z8530_nop;
1246	dev->chanA.dcdcheck=DCD;
1247	dev->chanB.dcdcheck=DCD;
1248
1249	/* Reset the chip */
1250	write_zsreg(&dev->chanA, R9, 0xC0);
1251	udelay(200);
1252	/* Now check its valid */
1253	write_zsreg(&dev->chanA, R12, 0xAA);
1254	if(read_zsreg(&dev->chanA, R12)!=0xAA)
1255		return -ENODEV;
1256	write_zsreg(&dev->chanA, R12, 0x55);
1257	if(read_zsreg(&dev->chanA, R12)!=0x55)
1258		return -ENODEV;
1259
1260	dev->type=Z8530;
1261
1262	/*
1263	 *	See the application note.
1264	 */
1265
1266	write_zsreg(&dev->chanA, R15, 0x01);
1267
1268	/*
1269	 *	If we can set the low bit of R15 then
1270	 *	the chip is enhanced.
1271	 */
1272
1273	if(read_zsreg(&dev->chanA, R15)==0x01)
1274	{
1275		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1276		/* Put a char in the fifo */
1277		write_zsreg(&dev->chanA, R8, 0);
1278		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1279			dev->type = Z85230;	/* Has a FIFO */
1280		else
1281			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
1282	}
1283
1284	/*
1285	 *	The code assumes R7' and friends are
1286	 *	off. Use write_zsext() for these and keep
1287	 *	this bit clear.
1288	 */
1289
1290	write_zsreg(&dev->chanA, R15, 0);
1291
1292	/*
1293	 *	At this point it looks like the chip is behaving
1294	 */
1295
1296	memcpy(dev->chanA.regs, reg_init, 16);
1297	memcpy(dev->chanB.regs, reg_init ,16);
1298
1299	return 0;
1300}
1301
1302/**
1303 *	z8530_init - Initialise a Z8530 device
1304 *	@dev: Z8530 device to initialise.
1305 *
1306 *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1307 *	is present, identify the type and then program it to hopefully
1308 *	keep quite and behave. This matters a lot, a Z8530 in the wrong
1309 *	state will sometimes get into stupid modes generating 10Khz
1310 *	interrupt streams and the like.
1311 *
1312 *	We set the interrupt handler up to discard any events, in case
1313 *	we get them during reset or setp.
1314 *
1315 *	Return 0 for success, or a negative value indicating the problem
1316 *	in errno form.
1317 */
1318
1319int z8530_init(struct z8530_dev *dev)
1320{
1321	unsigned long flags;
1322	int ret;
1323
1324	/* Set up the chip level lock */
1325	spin_lock_init(&dev->lock);
1326	dev->chanA.lock = &dev->lock;
1327	dev->chanB.lock = &dev->lock;
1328
1329	spin_lock_irqsave(&dev->lock, flags);
1330	ret = do_z8530_init(dev);
1331	spin_unlock_irqrestore(&dev->lock, flags);
1332
1333	return ret;
1334}
1335
1336
1337EXPORT_SYMBOL(z8530_init);
1338
1339/**
1340 *	z8530_shutdown - Shutdown a Z8530 device
1341 *	@dev: The Z8530 chip to shutdown
1342 *
1343 *	We set the interrupt handlers to silence any interrupts. We then
1344 *	reset the chip and wait 100uS to be sure the reset completed. Just
1345 *	in case the caller then tries to do stuff.
1346 *
1347 *	This is called without the lock held
1348 */
1349
1350int z8530_shutdown(struct z8530_dev *dev)
1351{
1352	unsigned long flags;
1353	/* Reset the chip */
1354
1355	spin_lock_irqsave(&dev->lock, flags);
1356	dev->chanA.irqs=&z8530_nop;
1357	dev->chanB.irqs=&z8530_nop;
1358	write_zsreg(&dev->chanA, R9, 0xC0);
1359	/* We must lock the udelay, the chip is offlimits here */
1360	udelay(100);
1361	spin_unlock_irqrestore(&dev->lock, flags);
1362	return 0;
1363}
1364
1365EXPORT_SYMBOL(z8530_shutdown);
1366
1367/**
1368 *	z8530_channel_load - Load channel data
1369 *	@c: Z8530 channel to configure
1370 *	@rtable: table of register, value pairs
1371 *	FIXME: ioctl to allow user uploaded tables
1372 *
1373 *	Load a Z8530 channel up from the system data. We use +16 to
1374 *	indicate the "prime" registers. The value 255 terminates the
1375 *	table.
1376 */
1377
1378int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1379{
1380	unsigned long flags;
1381
1382	spin_lock_irqsave(c->lock, flags);
1383
1384	while(*rtable!=255)
1385	{
1386		int reg=*rtable++;
1387		if(reg>0x0F)
1388			write_zsreg(c, R15, c->regs[15]|1);
1389		write_zsreg(c, reg&0x0F, *rtable);
1390		if(reg>0x0F)
1391			write_zsreg(c, R15, c->regs[15]&~1);
1392		c->regs[reg]=*rtable++;
1393	}
1394	c->rx_function=z8530_null_rx;
1395	c->skb=NULL;
1396	c->tx_skb=NULL;
1397	c->tx_next_skb=NULL;
1398	c->mtu=1500;
1399	c->max=0;
1400	c->count=0;
1401	c->status=read_zsreg(c, R0);
1402	c->sync=1;
1403	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1404
1405	spin_unlock_irqrestore(c->lock, flags);
1406	return 0;
1407}
1408
1409EXPORT_SYMBOL(z8530_channel_load);
1410
1411
1412/**
1413 *	z8530_tx_begin - Begin packet transmission
1414 *	@c: The Z8530 channel to kick
1415 *
1416 *	This is the speed sensitive side of transmission. If we are called
1417 *	and no buffer is being transmitted we commence the next buffer. If
1418 *	nothing is queued we idle the sync.
1419 *
1420 *	Note: We are handling this code path in the interrupt path, keep it
1421 *	fast or bad things will happen.
1422 *
1423 *	Called with the lock held.
1424 */
1425
1426static void z8530_tx_begin(struct z8530_channel *c)
1427{
1428	unsigned long flags;
1429	if(c->tx_skb)
1430		return;
1431
1432	c->tx_skb=c->tx_next_skb;
1433	c->tx_next_skb=NULL;
1434	c->tx_ptr=c->tx_next_ptr;
1435
1436	if(c->tx_skb==NULL)
1437	{
1438		/* Idle on */
1439		if(c->dma_tx)
1440		{
1441			flags=claim_dma_lock();
1442			disable_dma(c->txdma);
1443			/*
1444			 *	Check if we crapped out.
1445			 */
1446			if (get_dma_residue(c->txdma))
1447			{
1448				c->netdevice->stats.tx_dropped++;
1449				c->netdevice->stats.tx_fifo_errors++;
1450			}
1451			release_dma_lock(flags);
1452		}
1453		c->txcount=0;
1454	}
1455	else
1456	{
1457		c->txcount=c->tx_skb->len;
1458
1459
1460		if(c->dma_tx)
1461		{
1462			/*
1463			 *	FIXME. DMA is broken for the original 8530,
1464			 *	on the older parts we need to set a flag and
1465			 *	wait for a further TX interrupt to fire this
1466			 *	stage off
1467			 */
1468
1469			flags=claim_dma_lock();
1470			disable_dma(c->txdma);
1471
1472			/*
1473			 *	These two are needed by the 8530/85C30
1474			 *	and must be issued when idling.
1475			 */
1476
1477			if(c->dev->type!=Z85230)
1478			{
1479				write_zsctrl(c, RES_Tx_CRC);
1480				write_zsctrl(c, RES_EOM_L);
1481			}
1482			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1483			clear_dma_ff(c->txdma);
1484			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1485			set_dma_count(c->txdma, c->txcount);
1486			enable_dma(c->txdma);
1487			release_dma_lock(flags);
1488			write_zsctrl(c, RES_EOM_L);
1489			write_zsreg(c, R5, c->regs[R5]|TxENAB);
1490		}
1491		else
1492		{
1493
1494			/* ABUNDER off */
1495			write_zsreg(c, R10, c->regs[10]);
1496			write_zsctrl(c, RES_Tx_CRC);
1497
1498			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1499			{
1500				write_zsreg(c, R8, *c->tx_ptr++);
1501				c->txcount--;
1502			}
1503
1504		}
1505	}
1506	/*
1507	 *	Since we emptied tx_skb we can ask for more
1508	 */
1509	netif_wake_queue(c->netdevice);
1510}
1511
1512/**
1513 *	z8530_tx_done - TX complete callback
1514 *	@c: The channel that completed a transmit.
1515 *
1516 *	This is called when we complete a packet send. We wake the queue,
1517 *	start the next packet going and then free the buffer of the existing
1518 *	packet. This code is fairly timing sensitive.
1519 *
1520 *	Called with the register lock held.
1521 */
1522
1523static void z8530_tx_done(struct z8530_channel *c)
1524{
1525	struct sk_buff *skb;
1526
1527	/* Actually this can happen.*/
1528	if (c->tx_skb == NULL)
1529		return;
1530
1531	skb = c->tx_skb;
1532	c->tx_skb = NULL;
1533	z8530_tx_begin(c);
1534	c->netdevice->stats.tx_packets++;
1535	c->netdevice->stats.tx_bytes += skb->len;
1536	dev_consume_skb_irq(skb);
1537}
1538
1539/**
1540 *	z8530_null_rx - Discard a packet
1541 *	@c: The channel the packet arrived on
1542 *	@skb: The buffer
1543 *
1544 *	We point the receive handler at this function when idle. Instead
1545 *	of processing the frames we get to throw them away.
1546 */
1547
1548void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1549{
1550	dev_kfree_skb_any(skb);
1551}
1552
1553EXPORT_SYMBOL(z8530_null_rx);
1554
1555/**
1556 *	z8530_rx_done - Receive completion callback
1557 *	@c: The channel that completed a receive
1558 *
1559 *	A new packet is complete. Our goal here is to get back into receive
1560 *	mode as fast as possible. On the Z85230 we could change to using
1561 *	ESCC mode, but on the older chips we have no choice. We flip to the
1562 *	new buffer immediately in DMA mode so that the DMA of the next
1563 *	frame can occur while we are copying the previous buffer to an sk_buff
1564 *
1565 *	Called with the lock held
1566 */
1567
1568static void z8530_rx_done(struct z8530_channel *c)
1569{
1570	struct sk_buff *skb;
1571	int ct;
1572
1573	/*
1574	 *	Is our receive engine in DMA mode
1575	 */
1576
1577	if(c->rxdma_on)
1578	{
1579		/*
1580		 *	Save the ready state and the buffer currently
1581		 *	being used as the DMA target
1582		 */
1583
1584		int ready=c->dma_ready;
1585		unsigned char *rxb=c->rx_buf[c->dma_num];
1586		unsigned long flags;
1587
1588		/*
1589		 *	Complete this DMA. Necessary to find the length
1590		 */
1591
1592		flags=claim_dma_lock();
1593
1594		disable_dma(c->rxdma);
1595		clear_dma_ff(c->rxdma);
1596		c->rxdma_on=0;
1597		ct=c->mtu-get_dma_residue(c->rxdma);
1598		if(ct<0)
1599			ct=2;	/* Shit happens.. */
1600		c->dma_ready=0;
1601
1602		/*
1603		 *	Normal case: the other slot is free, start the next DMA
1604		 *	into it immediately.
1605		 */
1606
1607		if(ready)
1608		{
1609			c->dma_num^=1;
1610			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1611			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1612			set_dma_count(c->rxdma, c->mtu);
1613			c->rxdma_on = 1;
1614			enable_dma(c->rxdma);
1615			/* Stop any frames that we missed the head of
1616			   from passing */
1617			write_zsreg(c, R0, RES_Rx_CRC);
1618		}
1619		else
1620			/* Can't occur as we dont reenable the DMA irq until
1621			   after the flip is done */
1622			netdev_warn(c->netdevice, "DMA flip overrun!\n");
1623
1624		release_dma_lock(flags);
1625
1626		/*
1627		 *	Shove the old buffer into an sk_buff. We can't DMA
1628		 *	directly into one on a PC - it might be above the 16Mb
1629		 *	boundary. Optimisation - we could check to see if we
1630		 *	can avoid the copy. Optimisation 2 - make the memcpy
1631		 *	a copychecksum.
1632		 */
1633
1634		skb = dev_alloc_skb(ct);
1635		if (skb == NULL) {
1636			c->netdevice->stats.rx_dropped++;
1637			netdev_warn(c->netdevice, "Memory squeeze\n");
1638		} else {
1639			skb_put(skb, ct);
1640			skb_copy_to_linear_data(skb, rxb, ct);
1641			c->netdevice->stats.rx_packets++;
1642			c->netdevice->stats.rx_bytes += ct;
1643		}
1644		c->dma_ready = 1;
1645	} else {
1646		RT_LOCK;
1647		skb = c->skb;
1648
1649		/*
1650		 *	The game we play for non DMA is similar. We want to
1651		 *	get the controller set up for the next packet as fast
1652		 *	as possible. We potentially only have one byte + the
1653		 *	fifo length for this. Thus we want to flip to the new
1654		 *	buffer and then mess around copying and allocating
1655		 *	things. For the current case it doesn't matter but
1656		 *	if you build a system where the sync irq isn't blocked
1657		 *	by the kernel IRQ disable then you need only block the
1658		 *	sync IRQ for the RT_LOCK area.
1659		 *
1660		 */
1661		ct=c->count;
1662
1663		c->skb = c->skb2;
1664		c->count = 0;
1665		c->max = c->mtu;
1666		if (c->skb) {
1667			c->dptr = c->skb->data;
1668			c->max = c->mtu;
1669		} else {
1670			c->count = 0;
1671			c->max = 0;
1672		}
1673		RT_UNLOCK;
1674
1675		c->skb2 = dev_alloc_skb(c->mtu);
1676		if (c->skb2 == NULL)
1677			netdev_warn(c->netdevice, "memory squeeze\n");
1678		else
1679			skb_put(c->skb2, c->mtu);
1680		c->netdevice->stats.rx_packets++;
1681		c->netdevice->stats.rx_bytes += ct;
1682	}
1683	/*
1684	 *	If we received a frame we must now process it.
1685	 */
1686	if (skb) {
1687		skb_trim(skb, ct);
1688		c->rx_function(c, skb);
1689	} else {
1690		c->netdevice->stats.rx_dropped++;
1691		netdev_err(c->netdevice, "Lost a frame\n");
1692	}
1693}
1694
1695/**
1696 *	spans_boundary - Check a packet can be ISA DMA'd
1697 *	@skb: The buffer to check
1698 *
1699 *	Returns true if the buffer cross a DMA boundary on a PC. The poor
1700 *	thing can only DMA within a 64K block not across the edges of it.
1701 */
1702
1703static inline int spans_boundary(struct sk_buff *skb)
1704{
1705	unsigned long a=(unsigned long)skb->data;
1706	a^=(a+skb->len);
1707	if(a&0x00010000)	/* If the 64K bit is different.. */
1708		return 1;
1709	return 0;
1710}
1711
1712/**
1713 *	z8530_queue_xmit - Queue a packet
1714 *	@c: The channel to use
1715 *	@skb: The packet to kick down the channel
1716 *
1717 *	Queue a packet for transmission. Because we have rather
1718 *	hard to hit interrupt latencies for the Z85230 per packet
1719 *	even in DMA mode we do the flip to DMA buffer if needed here
1720 *	not in the IRQ.
1721 *
1722 *	Called from the network code. The lock is not held at this
1723 *	point.
1724 */
1725
1726netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1727{
1728	unsigned long flags;
1729
1730	netif_stop_queue(c->netdevice);
1731	if(c->tx_next_skb)
1732		return NETDEV_TX_BUSY;
1733
1734
1735	/* PC SPECIFIC - DMA limits */
1736
1737	/*
1738	 *	If we will DMA the transmit and its gone over the ISA bus
1739	 *	limit, then copy to the flip buffer
1740	 */
1741
1742	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1743	{
1744		/*
1745		 *	Send the flip buffer, and flip the flippy bit.
1746		 *	We don't care which is used when just so long as
1747		 *	we never use the same buffer twice in a row. Since
1748		 *	only one buffer can be going out at a time the other
1749		 *	has to be safe.
1750		 */
1751		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1752		c->tx_dma_used^=1;	/* Flip temp buffer */
1753		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1754	}
1755	else
1756		c->tx_next_ptr=skb->data;
1757	RT_LOCK;
1758	c->tx_next_skb=skb;
1759	RT_UNLOCK;
1760
1761	spin_lock_irqsave(c->lock, flags);
1762	z8530_tx_begin(c);
1763	spin_unlock_irqrestore(c->lock, flags);
1764
1765	return NETDEV_TX_OK;
1766}
1767
1768EXPORT_SYMBOL(z8530_queue_xmit);
1769
1770/*
1771 *	Module support
1772 */
1773static const char banner[] __initconst =
1774	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1775
1776static int __init z85230_init_driver(void)
1777{
1778	printk(banner);
1779	return 0;
1780}
1781module_init(z85230_init_driver);
1782
1783static void __exit z85230_cleanup_driver(void)
1784{
1785}
1786module_exit(z85230_cleanup_driver);
1787
1788MODULE_AUTHOR("Red Hat Inc.");
1789MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1790MODULE_LICENSE("GPL");
1791