1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * 4 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * (c) Copyright 2000, 2001 Red Hat Inc 6 * 7 * Development of this driver was funded by Equiinet Ltd 8 * http://www.equiinet.com 9 * 10 * ChangeLog: 11 * 12 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the 13 * unification of all the Z85x30 asynchronous drivers for real. 14 * 15 * DMA now uses get_free_page as kmalloc buffers may span a 64K 16 * boundary. 17 * 18 * Modified for SMP safety and SMP locking by Alan Cox 19 * <alan@lxorguk.ukuu.org.uk> 20 * 21 * Performance 22 * 23 * Z85230: 24 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud 25 * X.25 is not unrealistic on all machines. DMA mode can in theory 26 * handle T1/E1 quite nicely. In practice the limit seems to be about 27 * 512Kbit->1Mbit depending on motherboard. 28 * 29 * Z85C30: 30 * 64K will take DMA, 9600 baud X.25 should be ok. 31 * 32 * Z8530: 33 * Synchronous mode without DMA is unlikely to pass about 2400 baud. 34 */ 35 36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38#include <linux/module.h> 39#include <linux/kernel.h> 40#include <linux/mm.h> 41#include <linux/net.h> 42#include <linux/skbuff.h> 43#include <linux/netdevice.h> 44#include <linux/if_arp.h> 45#include <linux/delay.h> 46#include <linux/hdlc.h> 47#include <linux/ioport.h> 48#include <linux/init.h> 49#include <linux/gfp.h> 50#include <asm/dma.h> 51#include <asm/io.h> 52#define RT_LOCK 53#define RT_UNLOCK 54#include <linux/spinlock.h> 55 56#include "z85230.h" 57 58 59/** 60 * z8530_read_port - Architecture specific interface function 61 * @p: port to read 62 * 63 * Provided port access methods. The Comtrol SV11 requires no delays 64 * between accesses and uses PC I/O. Some drivers may need a 5uS delay 65 * 66 * In the longer term this should become an architecture specific 67 * section so that this can become a generic driver interface for all 68 * platforms. For now we only handle PC I/O ports with or without the 69 * dread 5uS sanity delay. 70 * 71 * The caller must hold sufficient locks to avoid violating the horrible 72 * 5uS delay rule. 73 */ 74 75static inline int z8530_read_port(unsigned long p) 76{ 77 u8 r=inb(Z8530_PORT_OF(p)); 78 if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */ 79 udelay(5); 80 return r; 81} 82 83/** 84 * z8530_write_port - Architecture specific interface function 85 * @p: port to write 86 * @d: value to write 87 * 88 * Write a value to a port with delays if need be. Note that the 89 * caller must hold locks to avoid read/writes from other contexts 90 * violating the 5uS rule 91 * 92 * In the longer term this should become an architecture specific 93 * section so that this can become a generic driver interface for all 94 * platforms. For now we only handle PC I/O ports with or without the 95 * dread 5uS sanity delay. 96 */ 97 98 99static inline void z8530_write_port(unsigned long p, u8 d) 100{ 101 outb(d,Z8530_PORT_OF(p)); 102 if(p&Z8530_PORT_SLEEP) 103 udelay(5); 104} 105 106 107 108static void z8530_rx_done(struct z8530_channel *c); 109static void z8530_tx_done(struct z8530_channel *c); 110 111 112/** 113 * read_zsreg - Read a register from a Z85230 114 * @c: Z8530 channel to read from (2 per chip) 115 * @reg: Register to read 116 * FIXME: Use a spinlock. 117 * 118 * Most of the Z8530 registers are indexed off the control registers. 119 * A read is done by writing to the control register and reading the 120 * register back. The caller must hold the lock 121 */ 122 123static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) 124{ 125 if(reg) 126 z8530_write_port(c->ctrlio, reg); 127 return z8530_read_port(c->ctrlio); 128} 129 130/** 131 * read_zsdata - Read the data port of a Z8530 channel 132 * @c: The Z8530 channel to read the data port from 133 * 134 * The data port provides fast access to some things. We still 135 * have all the 5uS delays to worry about. 136 */ 137 138static inline u8 read_zsdata(struct z8530_channel *c) 139{ 140 u8 r; 141 r=z8530_read_port(c->dataio); 142 return r; 143} 144 145/** 146 * write_zsreg - Write to a Z8530 channel register 147 * @c: The Z8530 channel 148 * @reg: Register number 149 * @val: Value to write 150 * 151 * Write a value to an indexed register. The caller must hold the lock 152 * to honour the irritating delay rules. We know about register 0 153 * being fast to access. 154 * 155 * Assumes c->lock is held. 156 */ 157static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) 158{ 159 if(reg) 160 z8530_write_port(c->ctrlio, reg); 161 z8530_write_port(c->ctrlio, val); 162 163} 164 165/** 166 * write_zsctrl - Write to a Z8530 control register 167 * @c: The Z8530 channel 168 * @val: Value to write 169 * 170 * Write directly to the control register on the Z8530 171 */ 172 173static inline void write_zsctrl(struct z8530_channel *c, u8 val) 174{ 175 z8530_write_port(c->ctrlio, val); 176} 177 178/** 179 * write_zsdata - Write to a Z8530 control register 180 * @c: The Z8530 channel 181 * @val: Value to write 182 * 183 * Write directly to the data register on the Z8530 184 */ 185 186 187static inline void write_zsdata(struct z8530_channel *c, u8 val) 188{ 189 z8530_write_port(c->dataio, val); 190} 191 192/* 193 * Register loading parameters for a dead port 194 */ 195 196u8 z8530_dead_port[]= 197{ 198 255 199}; 200 201EXPORT_SYMBOL(z8530_dead_port); 202 203/* 204 * Register loading parameters for currently supported circuit types 205 */ 206 207 208/* 209 * Data clocked by telco end. This is the correct data for the UK 210 * "kilostream" service, and most other similar services. 211 */ 212 213u8 z8530_hdlc_kilostream[]= 214{ 215 4, SYNC_ENAB|SDLC|X1CLK, 216 2, 0, /* No vector */ 217 1, 0, 218 3, ENT_HM|RxCRC_ENAB|Rx8, 219 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, 220 9, 0, /* Disable interrupts */ 221 6, 0xFF, 222 7, FLAG, 223 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/ 224 11, TCTRxCP, 225 14, DISDPLL, 226 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, 227 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, 228 9, NV|MIE|NORESET, 229 255 230}; 231 232EXPORT_SYMBOL(z8530_hdlc_kilostream); 233 234/* 235 * As above but for enhanced chips. 236 */ 237 238u8 z8530_hdlc_kilostream_85230[]= 239{ 240 4, SYNC_ENAB|SDLC|X1CLK, 241 2, 0, /* No vector */ 242 1, 0, 243 3, ENT_HM|RxCRC_ENAB|Rx8, 244 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, 245 9, 0, /* Disable interrupts */ 246 6, 0xFF, 247 7, FLAG, 248 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */ 249 11, TCTRxCP, 250 14, DISDPLL, 251 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, 252 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, 253 9, NV|MIE|NORESET, 254 23, 3, /* Extended mode AUTO TX and EOM*/ 255 256 255 257}; 258 259EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); 260 261/** 262 * z8530_flush_fifo - Flush on chip RX FIFO 263 * @c: Channel to flush 264 * 265 * Flush the receive FIFO. There is no specific option for this, we 266 * blindly read bytes and discard them. Reading when there is no data 267 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes. 268 * 269 * All locking is handled for the caller. On return data may still be 270 * present if it arrived during the flush. 271 */ 272 273static void z8530_flush_fifo(struct z8530_channel *c) 274{ 275 read_zsreg(c, R1); 276 read_zsreg(c, R1); 277 read_zsreg(c, R1); 278 read_zsreg(c, R1); 279 if(c->dev->type==Z85230) 280 { 281 read_zsreg(c, R1); 282 read_zsreg(c, R1); 283 read_zsreg(c, R1); 284 read_zsreg(c, R1); 285 } 286} 287 288/** 289 * z8530_rtsdtr - Control the outgoing DTS/RTS line 290 * @c: The Z8530 channel to control; 291 * @set: 1 to set, 0 to clear 292 * 293 * Sets or clears DTR/RTS on the requested line. All locking is handled 294 * by the caller. For now we assume all boards use the actual RTS/DTR 295 * on the chip. Apparently one or two don't. We'll scream about them 296 * later. 297 */ 298 299static void z8530_rtsdtr(struct z8530_channel *c, int set) 300{ 301 if (set) 302 c->regs[5] |= (RTS | DTR); 303 else 304 c->regs[5] &= ~(RTS | DTR); 305 write_zsreg(c, R5, c->regs[5]); 306} 307 308/** 309 * z8530_rx - Handle a PIO receive event 310 * @c: Z8530 channel to process 311 * 312 * Receive handler for receiving in PIO mode. This is much like the 313 * async one but not quite the same or as complex 314 * 315 * Note: Its intended that this handler can easily be separated from 316 * the main code to run realtime. That'll be needed for some machines 317 * (eg to ever clock 64kbits on a sparc ;)). 318 * 319 * The RT_LOCK macros don't do anything now. Keep the code covered 320 * by them as short as possible in all circumstances - clocks cost 321 * baud. The interrupt handler is assumed to be atomic w.r.t. to 322 * other code - this is true in the RT case too. 323 * 324 * We only cover the sync cases for this. If you want 2Mbit async 325 * do it yourself but consider medical assistance first. This non DMA 326 * synchronous mode is portable code. The DMA mode assumes PCI like 327 * ISA DMA 328 * 329 * Called with the device lock held 330 */ 331 332static void z8530_rx(struct z8530_channel *c) 333{ 334 u8 ch,stat; 335 336 while(1) 337 { 338 /* FIFO empty ? */ 339 if(!(read_zsreg(c, R0)&1)) 340 break; 341 ch=read_zsdata(c); 342 stat=read_zsreg(c, R1); 343 344 /* 345 * Overrun ? 346 */ 347 if(c->count < c->max) 348 { 349 *c->dptr++=ch; 350 c->count++; 351 } 352 353 if(stat&END_FR) 354 { 355 356 /* 357 * Error ? 358 */ 359 if(stat&(Rx_OVR|CRC_ERR)) 360 { 361 /* Rewind the buffer and return */ 362 if(c->skb) 363 c->dptr=c->skb->data; 364 c->count=0; 365 if(stat&Rx_OVR) 366 { 367 pr_warn("%s: overrun\n", c->dev->name); 368 c->rx_overrun++; 369 } 370 if(stat&CRC_ERR) 371 { 372 c->rx_crc_err++; 373 /* printk("crc error\n"); */ 374 } 375 /* Shove the frame upstream */ 376 } 377 else 378 { 379 /* 380 * Drop the lock for RX processing, or 381 * there are deadlocks 382 */ 383 z8530_rx_done(c); 384 write_zsctrl(c, RES_Rx_CRC); 385 } 386 } 387 } 388 /* 389 * Clear irq 390 */ 391 write_zsctrl(c, ERR_RES); 392 write_zsctrl(c, RES_H_IUS); 393} 394 395 396/** 397 * z8530_tx - Handle a PIO transmit event 398 * @c: Z8530 channel to process 399 * 400 * Z8530 transmit interrupt handler for the PIO mode. The basic 401 * idea is to attempt to keep the FIFO fed. We fill as many bytes 402 * in as possible, its quite possible that we won't keep up with the 403 * data rate otherwise. 404 */ 405 406static void z8530_tx(struct z8530_channel *c) 407{ 408 while(c->txcount) { 409 /* FIFO full ? */ 410 if(!(read_zsreg(c, R0)&4)) 411 return; 412 c->txcount--; 413 /* 414 * Shovel out the byte 415 */ 416 write_zsreg(c, R8, *c->tx_ptr++); 417 write_zsctrl(c, RES_H_IUS); 418 /* We are about to underflow */ 419 if(c->txcount==0) 420 { 421 write_zsctrl(c, RES_EOM_L); 422 write_zsreg(c, R10, c->regs[10]&~ABUNDER); 423 } 424 } 425 426 427 /* 428 * End of frame TX - fire another one 429 */ 430 431 write_zsctrl(c, RES_Tx_P); 432 433 z8530_tx_done(c); 434 write_zsctrl(c, RES_H_IUS); 435} 436 437/** 438 * z8530_status - Handle a PIO status exception 439 * @chan: Z8530 channel to process 440 * 441 * A status event occurred in PIO synchronous mode. There are several 442 * reasons the chip will bother us here. A transmit underrun means we 443 * failed to feed the chip fast enough and just broke a packet. A DCD 444 * change is a line up or down. 445 */ 446 447static void z8530_status(struct z8530_channel *chan) 448{ 449 u8 status, altered; 450 451 status = read_zsreg(chan, R0); 452 altered = chan->status ^ status; 453 454 chan->status = status; 455 456 if (status & TxEOM) { 457/* printk("%s: Tx underrun.\n", chan->dev->name); */ 458 chan->netdevice->stats.tx_fifo_errors++; 459 write_zsctrl(chan, ERR_RES); 460 z8530_tx_done(chan); 461 } 462 463 if (altered & chan->dcdcheck) 464 { 465 if (status & chan->dcdcheck) { 466 pr_info("%s: DCD raised\n", chan->dev->name); 467 write_zsreg(chan, R3, chan->regs[3] | RxENABLE); 468 if (chan->netdevice) 469 netif_carrier_on(chan->netdevice); 470 } else { 471 pr_info("%s: DCD lost\n", chan->dev->name); 472 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); 473 z8530_flush_fifo(chan); 474 if (chan->netdevice) 475 netif_carrier_off(chan->netdevice); 476 } 477 478 } 479 write_zsctrl(chan, RES_EXT_INT); 480 write_zsctrl(chan, RES_H_IUS); 481} 482 483struct z8530_irqhandler z8530_sync = { 484 .rx = z8530_rx, 485 .tx = z8530_tx, 486 .status = z8530_status, 487}; 488 489EXPORT_SYMBOL(z8530_sync); 490 491/** 492 * z8530_dma_rx - Handle a DMA RX event 493 * @chan: Channel to handle 494 * 495 * Non bus mastering DMA interfaces for the Z8x30 devices. This 496 * is really pretty PC specific. The DMA mode means that most receive 497 * events are handled by the DMA hardware. We get a kick here only if 498 * a frame ended. 499 */ 500 501static void z8530_dma_rx(struct z8530_channel *chan) 502{ 503 if(chan->rxdma_on) 504 { 505 /* Special condition check only */ 506 u8 status; 507 508 read_zsreg(chan, R7); 509 read_zsreg(chan, R6); 510 511 status=read_zsreg(chan, R1); 512 513 if(status&END_FR) 514 { 515 z8530_rx_done(chan); /* Fire up the next one */ 516 } 517 write_zsctrl(chan, ERR_RES); 518 write_zsctrl(chan, RES_H_IUS); 519 } 520 else 521 { 522 /* DMA is off right now, drain the slow way */ 523 z8530_rx(chan); 524 } 525} 526 527/** 528 * z8530_dma_tx - Handle a DMA TX event 529 * @chan: The Z8530 channel to handle 530 * 531 * We have received an interrupt while doing DMA transmissions. It 532 * shouldn't happen. Scream loudly if it does. 533 */ 534 535static void z8530_dma_tx(struct z8530_channel *chan) 536{ 537 if(!chan->dma_tx) 538 { 539 pr_warn("Hey who turned the DMA off?\n"); 540 z8530_tx(chan); 541 return; 542 } 543 /* This shouldn't occur in DMA mode */ 544 pr_err("DMA tx - bogus event!\n"); 545 z8530_tx(chan); 546} 547 548/** 549 * z8530_dma_status - Handle a DMA status exception 550 * @chan: Z8530 channel to process 551 * 552 * A status event occurred on the Z8530. We receive these for two reasons 553 * when in DMA mode. Firstly if we finished a packet transfer we get one 554 * and kick the next packet out. Secondly we may see a DCD change. 555 * 556 */ 557 558static void z8530_dma_status(struct z8530_channel *chan) 559{ 560 u8 status, altered; 561 562 status=read_zsreg(chan, R0); 563 altered=chan->status^status; 564 565 chan->status=status; 566 567 568 if(chan->dma_tx) 569 { 570 if(status&TxEOM) 571 { 572 unsigned long flags; 573 574 flags=claim_dma_lock(); 575 disable_dma(chan->txdma); 576 clear_dma_ff(chan->txdma); 577 chan->txdma_on=0; 578 release_dma_lock(flags); 579 z8530_tx_done(chan); 580 } 581 } 582 583 if (altered & chan->dcdcheck) 584 { 585 if (status & chan->dcdcheck) { 586 pr_info("%s: DCD raised\n", chan->dev->name); 587 write_zsreg(chan, R3, chan->regs[3] | RxENABLE); 588 if (chan->netdevice) 589 netif_carrier_on(chan->netdevice); 590 } else { 591 pr_info("%s: DCD lost\n", chan->dev->name); 592 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); 593 z8530_flush_fifo(chan); 594 if (chan->netdevice) 595 netif_carrier_off(chan->netdevice); 596 } 597 } 598 599 write_zsctrl(chan, RES_EXT_INT); 600 write_zsctrl(chan, RES_H_IUS); 601} 602 603static struct z8530_irqhandler z8530_dma_sync = { 604 .rx = z8530_dma_rx, 605 .tx = z8530_dma_tx, 606 .status = z8530_dma_status, 607}; 608 609static struct z8530_irqhandler z8530_txdma_sync = { 610 .rx = z8530_rx, 611 .tx = z8530_dma_tx, 612 .status = z8530_dma_status, 613}; 614 615/** 616 * z8530_rx_clear - Handle RX events from a stopped chip 617 * @c: Z8530 channel to shut up 618 * 619 * Receive interrupt vectors for a Z8530 that is in 'parked' mode. 620 * For machines with PCI Z85x30 cards, or level triggered interrupts 621 * (eg the MacII) we must clear the interrupt cause or die. 622 */ 623 624 625static void z8530_rx_clear(struct z8530_channel *c) 626{ 627 /* 628 * Data and status bytes 629 */ 630 u8 stat; 631 632 read_zsdata(c); 633 stat=read_zsreg(c, R1); 634 635 if(stat&END_FR) 636 write_zsctrl(c, RES_Rx_CRC); 637 /* 638 * Clear irq 639 */ 640 write_zsctrl(c, ERR_RES); 641 write_zsctrl(c, RES_H_IUS); 642} 643 644/** 645 * z8530_tx_clear - Handle TX events from a stopped chip 646 * @c: Z8530 channel to shut up 647 * 648 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode. 649 * For machines with PCI Z85x30 cards, or level triggered interrupts 650 * (eg the MacII) we must clear the interrupt cause or die. 651 */ 652 653static void z8530_tx_clear(struct z8530_channel *c) 654{ 655 write_zsctrl(c, RES_Tx_P); 656 write_zsctrl(c, RES_H_IUS); 657} 658 659/** 660 * z8530_status_clear - Handle status events from a stopped chip 661 * @chan: Z8530 channel to shut up 662 * 663 * Status interrupt vectors for a Z8530 that is in 'parked' mode. 664 * For machines with PCI Z85x30 cards, or level triggered interrupts 665 * (eg the MacII) we must clear the interrupt cause or die. 666 */ 667 668static void z8530_status_clear(struct z8530_channel *chan) 669{ 670 u8 status=read_zsreg(chan, R0); 671 if(status&TxEOM) 672 write_zsctrl(chan, ERR_RES); 673 write_zsctrl(chan, RES_EXT_INT); 674 write_zsctrl(chan, RES_H_IUS); 675} 676 677struct z8530_irqhandler z8530_nop = { 678 .rx = z8530_rx_clear, 679 .tx = z8530_tx_clear, 680 .status = z8530_status_clear, 681}; 682 683 684EXPORT_SYMBOL(z8530_nop); 685 686/** 687 * z8530_interrupt - Handle an interrupt from a Z8530 688 * @irq: Interrupt number 689 * @dev_id: The Z8530 device that is interrupting. 690 * 691 * A Z85[2]30 device has stuck its hand in the air for attention. 692 * We scan both the channels on the chip for events and then call 693 * the channel specific call backs for each channel that has events. 694 * We have to use callback functions because the two channels can be 695 * in different modes. 696 * 697 * Locking is done for the handlers. Note that locking is done 698 * at the chip level (the 5uS delay issue is per chip not per 699 * channel). c->lock for both channels points to dev->lock 700 */ 701 702irqreturn_t z8530_interrupt(int irq, void *dev_id) 703{ 704 struct z8530_dev *dev=dev_id; 705 u8 intr; 706 static volatile int locker=0; 707 int work=0; 708 struct z8530_irqhandler *irqs; 709 710 if(locker) 711 { 712 pr_err("IRQ re-enter\n"); 713 return IRQ_NONE; 714 } 715 locker=1; 716 717 spin_lock(&dev->lock); 718 719 while(++work<5000) 720 { 721 722 intr = read_zsreg(&dev->chanA, R3); 723 if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT))) 724 break; 725 726 /* This holds the IRQ status. On the 8530 you must read it from chan 727 A even though it applies to the whole chip */ 728 729 /* Now walk the chip and see what it is wanting - it may be 730 an IRQ for someone else remember */ 731 732 irqs=dev->chanA.irqs; 733 734 if(intr & (CHARxIP|CHATxIP|CHAEXT)) 735 { 736 if(intr&CHARxIP) 737 irqs->rx(&dev->chanA); 738 if(intr&CHATxIP) 739 irqs->tx(&dev->chanA); 740 if(intr&CHAEXT) 741 irqs->status(&dev->chanA); 742 } 743 744 irqs=dev->chanB.irqs; 745 746 if(intr & (CHBRxIP|CHBTxIP|CHBEXT)) 747 { 748 if(intr&CHBRxIP) 749 irqs->rx(&dev->chanB); 750 if(intr&CHBTxIP) 751 irqs->tx(&dev->chanB); 752 if(intr&CHBEXT) 753 irqs->status(&dev->chanB); 754 } 755 } 756 spin_unlock(&dev->lock); 757 if(work==5000) 758 pr_err("%s: interrupt jammed - abort(0x%X)!\n", 759 dev->name, intr); 760 /* Ok all done */ 761 locker=0; 762 return IRQ_HANDLED; 763} 764 765EXPORT_SYMBOL(z8530_interrupt); 766 767static const u8 reg_init[16]= 768{ 769 0,0,0,0, 770 0,0,0,0, 771 0,0,0,0, 772 0x55,0,0,0 773}; 774 775 776/** 777 * z8530_sync_open - Open a Z8530 channel for PIO 778 * @dev: The network interface we are using 779 * @c: The Z8530 channel to open in synchronous PIO mode 780 * 781 * Switch a Z8530 into synchronous mode without DMA assist. We 782 * raise the RTS/DTR and commence network operation. 783 */ 784 785int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) 786{ 787 unsigned long flags; 788 789 spin_lock_irqsave(c->lock, flags); 790 791 c->sync = 1; 792 c->mtu = dev->mtu+64; 793 c->count = 0; 794 c->skb = NULL; 795 c->skb2 = NULL; 796 c->irqs = &z8530_sync; 797 798 /* This loads the double buffer up */ 799 z8530_rx_done(c); /* Load the frame ring */ 800 z8530_rx_done(c); /* Load the backup frame */ 801 z8530_rtsdtr(c,1); 802 c->dma_tx = 0; 803 c->regs[R1]|=TxINT_ENAB; 804 write_zsreg(c, R1, c->regs[R1]); 805 write_zsreg(c, R3, c->regs[R3]|RxENABLE); 806 807 spin_unlock_irqrestore(c->lock, flags); 808 return 0; 809} 810 811 812EXPORT_SYMBOL(z8530_sync_open); 813 814/** 815 * z8530_sync_close - Close a PIO Z8530 channel 816 * @dev: Network device to close 817 * @c: Z8530 channel to disassociate and move to idle 818 * 819 * Close down a Z8530 interface and switch its interrupt handlers 820 * to discard future events. 821 */ 822 823int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) 824{ 825 u8 chk; 826 unsigned long flags; 827 828 spin_lock_irqsave(c->lock, flags); 829 c->irqs = &z8530_nop; 830 c->max = 0; 831 c->sync = 0; 832 833 chk=read_zsreg(c,R0); 834 write_zsreg(c, R3, c->regs[R3]); 835 z8530_rtsdtr(c,0); 836 837 spin_unlock_irqrestore(c->lock, flags); 838 return 0; 839} 840 841EXPORT_SYMBOL(z8530_sync_close); 842 843/** 844 * z8530_sync_dma_open - Open a Z8530 for DMA I/O 845 * @dev: The network device to attach 846 * @c: The Z8530 channel to configure in sync DMA mode. 847 * 848 * Set up a Z85x30 device for synchronous DMA in both directions. Two 849 * ISA DMA channels must be available for this to work. We assume ISA 850 * DMA driven I/O and PC limits on access. 851 */ 852 853int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) 854{ 855 unsigned long cflags, dflags; 856 857 c->sync = 1; 858 c->mtu = dev->mtu+64; 859 c->count = 0; 860 c->skb = NULL; 861 c->skb2 = NULL; 862 /* 863 * Load the DMA interfaces up 864 */ 865 c->rxdma_on = 0; 866 c->txdma_on = 0; 867 868 /* 869 * Allocate the DMA flip buffers. Limit by page size. 870 * Everyone runs 1500 mtu or less on wan links so this 871 * should be fine. 872 */ 873 874 if(c->mtu > PAGE_SIZE/2) 875 return -EMSGSIZE; 876 877 c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); 878 if(c->rx_buf[0]==NULL) 879 return -ENOBUFS; 880 c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2; 881 882 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); 883 if(c->tx_dma_buf[0]==NULL) 884 { 885 free_page((unsigned long)c->rx_buf[0]); 886 c->rx_buf[0]=NULL; 887 return -ENOBUFS; 888 } 889 c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2; 890 891 c->tx_dma_used=0; 892 c->dma_tx = 1; 893 c->dma_num=0; 894 c->dma_ready=1; 895 896 /* 897 * Enable DMA control mode 898 */ 899 900 spin_lock_irqsave(c->lock, cflags); 901 902 /* 903 * TX DMA via DIR/REQ 904 */ 905 906 c->regs[R14]|= DTRREQ; 907 write_zsreg(c, R14, c->regs[R14]); 908 909 c->regs[R1]&= ~TxINT_ENAB; 910 write_zsreg(c, R1, c->regs[R1]); 911 912 /* 913 * RX DMA via W/Req 914 */ 915 916 c->regs[R1]|= WT_FN_RDYFN; 917 c->regs[R1]|= WT_RDY_RT; 918 c->regs[R1]|= INT_ERR_Rx; 919 c->regs[R1]&= ~TxINT_ENAB; 920 write_zsreg(c, R1, c->regs[R1]); 921 c->regs[R1]|= WT_RDY_ENAB; 922 write_zsreg(c, R1, c->regs[R1]); 923 924 /* 925 * DMA interrupts 926 */ 927 928 /* 929 * Set up the DMA configuration 930 */ 931 932 dflags=claim_dma_lock(); 933 934 disable_dma(c->rxdma); 935 clear_dma_ff(c->rxdma); 936 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); 937 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); 938 set_dma_count(c->rxdma, c->mtu); 939 enable_dma(c->rxdma); 940 941 disable_dma(c->txdma); 942 clear_dma_ff(c->txdma); 943 set_dma_mode(c->txdma, DMA_MODE_WRITE); 944 disable_dma(c->txdma); 945 946 release_dma_lock(dflags); 947 948 /* 949 * Select the DMA interrupt handlers 950 */ 951 952 c->rxdma_on = 1; 953 c->txdma_on = 1; 954 c->tx_dma_used = 1; 955 956 c->irqs = &z8530_dma_sync; 957 z8530_rtsdtr(c,1); 958 write_zsreg(c, R3, c->regs[R3]|RxENABLE); 959 960 spin_unlock_irqrestore(c->lock, cflags); 961 962 return 0; 963} 964 965EXPORT_SYMBOL(z8530_sync_dma_open); 966 967/** 968 * z8530_sync_dma_close - Close down DMA I/O 969 * @dev: Network device to detach 970 * @c: Z8530 channel to move into discard mode 971 * 972 * Shut down a DMA mode synchronous interface. Halt the DMA, and 973 * free the buffers. 974 */ 975 976int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) 977{ 978 u8 chk; 979 unsigned long flags; 980 981 c->irqs = &z8530_nop; 982 c->max = 0; 983 c->sync = 0; 984 985 /* 986 * Disable the PC DMA channels 987 */ 988 989 flags=claim_dma_lock(); 990 disable_dma(c->rxdma); 991 clear_dma_ff(c->rxdma); 992 993 c->rxdma_on = 0; 994 995 disable_dma(c->txdma); 996 clear_dma_ff(c->txdma); 997 release_dma_lock(flags); 998 999 c->txdma_on = 0; 1000 c->tx_dma_used = 0; 1001 1002 spin_lock_irqsave(c->lock, flags); 1003 1004 /* 1005 * Disable DMA control mode 1006 */ 1007 1008 c->regs[R1]&= ~WT_RDY_ENAB; 1009 write_zsreg(c, R1, c->regs[R1]); 1010 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); 1011 c->regs[R1]|= INT_ALL_Rx; 1012 write_zsreg(c, R1, c->regs[R1]); 1013 c->regs[R14]&= ~DTRREQ; 1014 write_zsreg(c, R14, c->regs[R14]); 1015 1016 if(c->rx_buf[0]) 1017 { 1018 free_page((unsigned long)c->rx_buf[0]); 1019 c->rx_buf[0]=NULL; 1020 } 1021 if(c->tx_dma_buf[0]) 1022 { 1023 free_page((unsigned long)c->tx_dma_buf[0]); 1024 c->tx_dma_buf[0]=NULL; 1025 } 1026 chk=read_zsreg(c,R0); 1027 write_zsreg(c, R3, c->regs[R3]); 1028 z8530_rtsdtr(c,0); 1029 1030 spin_unlock_irqrestore(c->lock, flags); 1031 1032 return 0; 1033} 1034 1035EXPORT_SYMBOL(z8530_sync_dma_close); 1036 1037/** 1038 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA 1039 * @dev: The network device to attach 1040 * @c: The Z8530 channel to configure in sync DMA mode. 1041 * 1042 * Set up a Z85x30 device for synchronous DMA transmission. One 1043 * ISA DMA channel must be available for this to work. The receive 1044 * side is run in PIO mode, but then it has the bigger FIFO. 1045 */ 1046 1047int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) 1048{ 1049 unsigned long cflags, dflags; 1050 1051 printk("Opening sync interface for TX-DMA\n"); 1052 c->sync = 1; 1053 c->mtu = dev->mtu+64; 1054 c->count = 0; 1055 c->skb = NULL; 1056 c->skb2 = NULL; 1057 1058 /* 1059 * Allocate the DMA flip buffers. Limit by page size. 1060 * Everyone runs 1500 mtu or less on wan links so this 1061 * should be fine. 1062 */ 1063 1064 if(c->mtu > PAGE_SIZE/2) 1065 return -EMSGSIZE; 1066 1067 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); 1068 if(c->tx_dma_buf[0]==NULL) 1069 return -ENOBUFS; 1070 1071 c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2; 1072 1073 1074 spin_lock_irqsave(c->lock, cflags); 1075 1076 /* 1077 * Load the PIO receive ring 1078 */ 1079 1080 z8530_rx_done(c); 1081 z8530_rx_done(c); 1082 1083 /* 1084 * Load the DMA interfaces up 1085 */ 1086 1087 c->rxdma_on = 0; 1088 c->txdma_on = 0; 1089 1090 c->tx_dma_used=0; 1091 c->dma_num=0; 1092 c->dma_ready=1; 1093 c->dma_tx = 1; 1094 1095 /* 1096 * Enable DMA control mode 1097 */ 1098 1099 /* 1100 * TX DMA via DIR/REQ 1101 */ 1102 c->regs[R14]|= DTRREQ; 1103 write_zsreg(c, R14, c->regs[R14]); 1104 1105 c->regs[R1]&= ~TxINT_ENAB; 1106 write_zsreg(c, R1, c->regs[R1]); 1107 1108 /* 1109 * Set up the DMA configuration 1110 */ 1111 1112 dflags = claim_dma_lock(); 1113 1114 disable_dma(c->txdma); 1115 clear_dma_ff(c->txdma); 1116 set_dma_mode(c->txdma, DMA_MODE_WRITE); 1117 disable_dma(c->txdma); 1118 1119 release_dma_lock(dflags); 1120 1121 /* 1122 * Select the DMA interrupt handlers 1123 */ 1124 1125 c->rxdma_on = 0; 1126 c->txdma_on = 1; 1127 c->tx_dma_used = 1; 1128 1129 c->irqs = &z8530_txdma_sync; 1130 z8530_rtsdtr(c,1); 1131 write_zsreg(c, R3, c->regs[R3]|RxENABLE); 1132 spin_unlock_irqrestore(c->lock, cflags); 1133 1134 return 0; 1135} 1136 1137EXPORT_SYMBOL(z8530_sync_txdma_open); 1138 1139/** 1140 * z8530_sync_txdma_close - Close down a TX driven DMA channel 1141 * @dev: Network device to detach 1142 * @c: Z8530 channel to move into discard mode 1143 * 1144 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 1145 * and free the buffers. 1146 */ 1147 1148int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) 1149{ 1150 unsigned long dflags, cflags; 1151 u8 chk; 1152 1153 1154 spin_lock_irqsave(c->lock, cflags); 1155 1156 c->irqs = &z8530_nop; 1157 c->max = 0; 1158 c->sync = 0; 1159 1160 /* 1161 * Disable the PC DMA channels 1162 */ 1163 1164 dflags = claim_dma_lock(); 1165 1166 disable_dma(c->txdma); 1167 clear_dma_ff(c->txdma); 1168 c->txdma_on = 0; 1169 c->tx_dma_used = 0; 1170 1171 release_dma_lock(dflags); 1172 1173 /* 1174 * Disable DMA control mode 1175 */ 1176 1177 c->regs[R1]&= ~WT_RDY_ENAB; 1178 write_zsreg(c, R1, c->regs[R1]); 1179 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); 1180 c->regs[R1]|= INT_ALL_Rx; 1181 write_zsreg(c, R1, c->regs[R1]); 1182 c->regs[R14]&= ~DTRREQ; 1183 write_zsreg(c, R14, c->regs[R14]); 1184 1185 if(c->tx_dma_buf[0]) 1186 { 1187 free_page((unsigned long)c->tx_dma_buf[0]); 1188 c->tx_dma_buf[0]=NULL; 1189 } 1190 chk=read_zsreg(c,R0); 1191 write_zsreg(c, R3, c->regs[R3]); 1192 z8530_rtsdtr(c,0); 1193 1194 spin_unlock_irqrestore(c->lock, cflags); 1195 return 0; 1196} 1197 1198 1199EXPORT_SYMBOL(z8530_sync_txdma_close); 1200 1201 1202/* 1203 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny 1204 * it exists... 1205 */ 1206 1207static const char *z8530_type_name[]={ 1208 "Z8530", 1209 "Z85C30", 1210 "Z85230" 1211}; 1212 1213/** 1214 * z8530_describe - Uniformly describe a Z8530 port 1215 * @dev: Z8530 device to describe 1216 * @mapping: string holding mapping type (eg "I/O" or "Mem") 1217 * @io: the port value in question 1218 * 1219 * Describe a Z8530 in a standard format. We must pass the I/O as 1220 * the port offset isn't predictable. The main reason for this function 1221 * is to try and get a common format of report. 1222 */ 1223 1224void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) 1225{ 1226 pr_info("%s: %s found at %s 0x%lX, IRQ %d\n", 1227 dev->name, 1228 z8530_type_name[dev->type], 1229 mapping, 1230 Z8530_PORT_OF(io), 1231 dev->irq); 1232} 1233 1234EXPORT_SYMBOL(z8530_describe); 1235 1236/* 1237 * Locked operation part of the z8530 init code 1238 */ 1239 1240static inline int do_z8530_init(struct z8530_dev *dev) 1241{ 1242 /* NOP the interrupt handlers first - we might get a 1243 floating IRQ transition when we reset the chip */ 1244 dev->chanA.irqs=&z8530_nop; 1245 dev->chanB.irqs=&z8530_nop; 1246 dev->chanA.dcdcheck=DCD; 1247 dev->chanB.dcdcheck=DCD; 1248 1249 /* Reset the chip */ 1250 write_zsreg(&dev->chanA, R9, 0xC0); 1251 udelay(200); 1252 /* Now check its valid */ 1253 write_zsreg(&dev->chanA, R12, 0xAA); 1254 if(read_zsreg(&dev->chanA, R12)!=0xAA) 1255 return -ENODEV; 1256 write_zsreg(&dev->chanA, R12, 0x55); 1257 if(read_zsreg(&dev->chanA, R12)!=0x55) 1258 return -ENODEV; 1259 1260 dev->type=Z8530; 1261 1262 /* 1263 * See the application note. 1264 */ 1265 1266 write_zsreg(&dev->chanA, R15, 0x01); 1267 1268 /* 1269 * If we can set the low bit of R15 then 1270 * the chip is enhanced. 1271 */ 1272 1273 if(read_zsreg(&dev->chanA, R15)==0x01) 1274 { 1275 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ 1276 /* Put a char in the fifo */ 1277 write_zsreg(&dev->chanA, R8, 0); 1278 if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP) 1279 dev->type = Z85230; /* Has a FIFO */ 1280 else 1281 dev->type = Z85C30; /* Z85C30, 1 byte FIFO */ 1282 } 1283 1284 /* 1285 * The code assumes R7' and friends are 1286 * off. Use write_zsext() for these and keep 1287 * this bit clear. 1288 */ 1289 1290 write_zsreg(&dev->chanA, R15, 0); 1291 1292 /* 1293 * At this point it looks like the chip is behaving 1294 */ 1295 1296 memcpy(dev->chanA.regs, reg_init, 16); 1297 memcpy(dev->chanB.regs, reg_init ,16); 1298 1299 return 0; 1300} 1301 1302/** 1303 * z8530_init - Initialise a Z8530 device 1304 * @dev: Z8530 device to initialise. 1305 * 1306 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device 1307 * is present, identify the type and then program it to hopefully 1308 * keep quite and behave. This matters a lot, a Z8530 in the wrong 1309 * state will sometimes get into stupid modes generating 10Khz 1310 * interrupt streams and the like. 1311 * 1312 * We set the interrupt handler up to discard any events, in case 1313 * we get them during reset or setp. 1314 * 1315 * Return 0 for success, or a negative value indicating the problem 1316 * in errno form. 1317 */ 1318 1319int z8530_init(struct z8530_dev *dev) 1320{ 1321 unsigned long flags; 1322 int ret; 1323 1324 /* Set up the chip level lock */ 1325 spin_lock_init(&dev->lock); 1326 dev->chanA.lock = &dev->lock; 1327 dev->chanB.lock = &dev->lock; 1328 1329 spin_lock_irqsave(&dev->lock, flags); 1330 ret = do_z8530_init(dev); 1331 spin_unlock_irqrestore(&dev->lock, flags); 1332 1333 return ret; 1334} 1335 1336 1337EXPORT_SYMBOL(z8530_init); 1338 1339/** 1340 * z8530_shutdown - Shutdown a Z8530 device 1341 * @dev: The Z8530 chip to shutdown 1342 * 1343 * We set the interrupt handlers to silence any interrupts. We then 1344 * reset the chip and wait 100uS to be sure the reset completed. Just 1345 * in case the caller then tries to do stuff. 1346 * 1347 * This is called without the lock held 1348 */ 1349 1350int z8530_shutdown(struct z8530_dev *dev) 1351{ 1352 unsigned long flags; 1353 /* Reset the chip */ 1354 1355 spin_lock_irqsave(&dev->lock, flags); 1356 dev->chanA.irqs=&z8530_nop; 1357 dev->chanB.irqs=&z8530_nop; 1358 write_zsreg(&dev->chanA, R9, 0xC0); 1359 /* We must lock the udelay, the chip is offlimits here */ 1360 udelay(100); 1361 spin_unlock_irqrestore(&dev->lock, flags); 1362 return 0; 1363} 1364 1365EXPORT_SYMBOL(z8530_shutdown); 1366 1367/** 1368 * z8530_channel_load - Load channel data 1369 * @c: Z8530 channel to configure 1370 * @rtable: table of register, value pairs 1371 * FIXME: ioctl to allow user uploaded tables 1372 * 1373 * Load a Z8530 channel up from the system data. We use +16 to 1374 * indicate the "prime" registers. The value 255 terminates the 1375 * table. 1376 */ 1377 1378int z8530_channel_load(struct z8530_channel *c, u8 *rtable) 1379{ 1380 unsigned long flags; 1381 1382 spin_lock_irqsave(c->lock, flags); 1383 1384 while(*rtable!=255) 1385 { 1386 int reg=*rtable++; 1387 if(reg>0x0F) 1388 write_zsreg(c, R15, c->regs[15]|1); 1389 write_zsreg(c, reg&0x0F, *rtable); 1390 if(reg>0x0F) 1391 write_zsreg(c, R15, c->regs[15]&~1); 1392 c->regs[reg]=*rtable++; 1393 } 1394 c->rx_function=z8530_null_rx; 1395 c->skb=NULL; 1396 c->tx_skb=NULL; 1397 c->tx_next_skb=NULL; 1398 c->mtu=1500; 1399 c->max=0; 1400 c->count=0; 1401 c->status=read_zsreg(c, R0); 1402 c->sync=1; 1403 write_zsreg(c, R3, c->regs[R3]|RxENABLE); 1404 1405 spin_unlock_irqrestore(c->lock, flags); 1406 return 0; 1407} 1408 1409EXPORT_SYMBOL(z8530_channel_load); 1410 1411 1412/** 1413 * z8530_tx_begin - Begin packet transmission 1414 * @c: The Z8530 channel to kick 1415 * 1416 * This is the speed sensitive side of transmission. If we are called 1417 * and no buffer is being transmitted we commence the next buffer. If 1418 * nothing is queued we idle the sync. 1419 * 1420 * Note: We are handling this code path in the interrupt path, keep it 1421 * fast or bad things will happen. 1422 * 1423 * Called with the lock held. 1424 */ 1425 1426static void z8530_tx_begin(struct z8530_channel *c) 1427{ 1428 unsigned long flags; 1429 if(c->tx_skb) 1430 return; 1431 1432 c->tx_skb=c->tx_next_skb; 1433 c->tx_next_skb=NULL; 1434 c->tx_ptr=c->tx_next_ptr; 1435 1436 if(c->tx_skb==NULL) 1437 { 1438 /* Idle on */ 1439 if(c->dma_tx) 1440 { 1441 flags=claim_dma_lock(); 1442 disable_dma(c->txdma); 1443 /* 1444 * Check if we crapped out. 1445 */ 1446 if (get_dma_residue(c->txdma)) 1447 { 1448 c->netdevice->stats.tx_dropped++; 1449 c->netdevice->stats.tx_fifo_errors++; 1450 } 1451 release_dma_lock(flags); 1452 } 1453 c->txcount=0; 1454 } 1455 else 1456 { 1457 c->txcount=c->tx_skb->len; 1458 1459 1460 if(c->dma_tx) 1461 { 1462 /* 1463 * FIXME. DMA is broken for the original 8530, 1464 * on the older parts we need to set a flag and 1465 * wait for a further TX interrupt to fire this 1466 * stage off 1467 */ 1468 1469 flags=claim_dma_lock(); 1470 disable_dma(c->txdma); 1471 1472 /* 1473 * These two are needed by the 8530/85C30 1474 * and must be issued when idling. 1475 */ 1476 1477 if(c->dev->type!=Z85230) 1478 { 1479 write_zsctrl(c, RES_Tx_CRC); 1480 write_zsctrl(c, RES_EOM_L); 1481 } 1482 write_zsreg(c, R10, c->regs[10]&~ABUNDER); 1483 clear_dma_ff(c->txdma); 1484 set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); 1485 set_dma_count(c->txdma, c->txcount); 1486 enable_dma(c->txdma); 1487 release_dma_lock(flags); 1488 write_zsctrl(c, RES_EOM_L); 1489 write_zsreg(c, R5, c->regs[R5]|TxENAB); 1490 } 1491 else 1492 { 1493 1494 /* ABUNDER off */ 1495 write_zsreg(c, R10, c->regs[10]); 1496 write_zsctrl(c, RES_Tx_CRC); 1497 1498 while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP)) 1499 { 1500 write_zsreg(c, R8, *c->tx_ptr++); 1501 c->txcount--; 1502 } 1503 1504 } 1505 } 1506 /* 1507 * Since we emptied tx_skb we can ask for more 1508 */ 1509 netif_wake_queue(c->netdevice); 1510} 1511 1512/** 1513 * z8530_tx_done - TX complete callback 1514 * @c: The channel that completed a transmit. 1515 * 1516 * This is called when we complete a packet send. We wake the queue, 1517 * start the next packet going and then free the buffer of the existing 1518 * packet. This code is fairly timing sensitive. 1519 * 1520 * Called with the register lock held. 1521 */ 1522 1523static void z8530_tx_done(struct z8530_channel *c) 1524{ 1525 struct sk_buff *skb; 1526 1527 /* Actually this can happen.*/ 1528 if (c->tx_skb == NULL) 1529 return; 1530 1531 skb = c->tx_skb; 1532 c->tx_skb = NULL; 1533 z8530_tx_begin(c); 1534 c->netdevice->stats.tx_packets++; 1535 c->netdevice->stats.tx_bytes += skb->len; 1536 dev_consume_skb_irq(skb); 1537} 1538 1539/** 1540 * z8530_null_rx - Discard a packet 1541 * @c: The channel the packet arrived on 1542 * @skb: The buffer 1543 * 1544 * We point the receive handler at this function when idle. Instead 1545 * of processing the frames we get to throw them away. 1546 */ 1547 1548void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) 1549{ 1550 dev_kfree_skb_any(skb); 1551} 1552 1553EXPORT_SYMBOL(z8530_null_rx); 1554 1555/** 1556 * z8530_rx_done - Receive completion callback 1557 * @c: The channel that completed a receive 1558 * 1559 * A new packet is complete. Our goal here is to get back into receive 1560 * mode as fast as possible. On the Z85230 we could change to using 1561 * ESCC mode, but on the older chips we have no choice. We flip to the 1562 * new buffer immediately in DMA mode so that the DMA of the next 1563 * frame can occur while we are copying the previous buffer to an sk_buff 1564 * 1565 * Called with the lock held 1566 */ 1567 1568static void z8530_rx_done(struct z8530_channel *c) 1569{ 1570 struct sk_buff *skb; 1571 int ct; 1572 1573 /* 1574 * Is our receive engine in DMA mode 1575 */ 1576 1577 if(c->rxdma_on) 1578 { 1579 /* 1580 * Save the ready state and the buffer currently 1581 * being used as the DMA target 1582 */ 1583 1584 int ready=c->dma_ready; 1585 unsigned char *rxb=c->rx_buf[c->dma_num]; 1586 unsigned long flags; 1587 1588 /* 1589 * Complete this DMA. Necessary to find the length 1590 */ 1591 1592 flags=claim_dma_lock(); 1593 1594 disable_dma(c->rxdma); 1595 clear_dma_ff(c->rxdma); 1596 c->rxdma_on=0; 1597 ct=c->mtu-get_dma_residue(c->rxdma); 1598 if(ct<0) 1599 ct=2; /* Shit happens.. */ 1600 c->dma_ready=0; 1601 1602 /* 1603 * Normal case: the other slot is free, start the next DMA 1604 * into it immediately. 1605 */ 1606 1607 if(ready) 1608 { 1609 c->dma_num^=1; 1610 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); 1611 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); 1612 set_dma_count(c->rxdma, c->mtu); 1613 c->rxdma_on = 1; 1614 enable_dma(c->rxdma); 1615 /* Stop any frames that we missed the head of 1616 from passing */ 1617 write_zsreg(c, R0, RES_Rx_CRC); 1618 } 1619 else 1620 /* Can't occur as we dont reenable the DMA irq until 1621 after the flip is done */ 1622 netdev_warn(c->netdevice, "DMA flip overrun!\n"); 1623 1624 release_dma_lock(flags); 1625 1626 /* 1627 * Shove the old buffer into an sk_buff. We can't DMA 1628 * directly into one on a PC - it might be above the 16Mb 1629 * boundary. Optimisation - we could check to see if we 1630 * can avoid the copy. Optimisation 2 - make the memcpy 1631 * a copychecksum. 1632 */ 1633 1634 skb = dev_alloc_skb(ct); 1635 if (skb == NULL) { 1636 c->netdevice->stats.rx_dropped++; 1637 netdev_warn(c->netdevice, "Memory squeeze\n"); 1638 } else { 1639 skb_put(skb, ct); 1640 skb_copy_to_linear_data(skb, rxb, ct); 1641 c->netdevice->stats.rx_packets++; 1642 c->netdevice->stats.rx_bytes += ct; 1643 } 1644 c->dma_ready = 1; 1645 } else { 1646 RT_LOCK; 1647 skb = c->skb; 1648 1649 /* 1650 * The game we play for non DMA is similar. We want to 1651 * get the controller set up for the next packet as fast 1652 * as possible. We potentially only have one byte + the 1653 * fifo length for this. Thus we want to flip to the new 1654 * buffer and then mess around copying and allocating 1655 * things. For the current case it doesn't matter but 1656 * if you build a system where the sync irq isn't blocked 1657 * by the kernel IRQ disable then you need only block the 1658 * sync IRQ for the RT_LOCK area. 1659 * 1660 */ 1661 ct=c->count; 1662 1663 c->skb = c->skb2; 1664 c->count = 0; 1665 c->max = c->mtu; 1666 if (c->skb) { 1667 c->dptr = c->skb->data; 1668 c->max = c->mtu; 1669 } else { 1670 c->count = 0; 1671 c->max = 0; 1672 } 1673 RT_UNLOCK; 1674 1675 c->skb2 = dev_alloc_skb(c->mtu); 1676 if (c->skb2 == NULL) 1677 netdev_warn(c->netdevice, "memory squeeze\n"); 1678 else 1679 skb_put(c->skb2, c->mtu); 1680 c->netdevice->stats.rx_packets++; 1681 c->netdevice->stats.rx_bytes += ct; 1682 } 1683 /* 1684 * If we received a frame we must now process it. 1685 */ 1686 if (skb) { 1687 skb_trim(skb, ct); 1688 c->rx_function(c, skb); 1689 } else { 1690 c->netdevice->stats.rx_dropped++; 1691 netdev_err(c->netdevice, "Lost a frame\n"); 1692 } 1693} 1694 1695/** 1696 * spans_boundary - Check a packet can be ISA DMA'd 1697 * @skb: The buffer to check 1698 * 1699 * Returns true if the buffer cross a DMA boundary on a PC. The poor 1700 * thing can only DMA within a 64K block not across the edges of it. 1701 */ 1702 1703static inline int spans_boundary(struct sk_buff *skb) 1704{ 1705 unsigned long a=(unsigned long)skb->data; 1706 a^=(a+skb->len); 1707 if(a&0x00010000) /* If the 64K bit is different.. */ 1708 return 1; 1709 return 0; 1710} 1711 1712/** 1713 * z8530_queue_xmit - Queue a packet 1714 * @c: The channel to use 1715 * @skb: The packet to kick down the channel 1716 * 1717 * Queue a packet for transmission. Because we have rather 1718 * hard to hit interrupt latencies for the Z85230 per packet 1719 * even in DMA mode we do the flip to DMA buffer if needed here 1720 * not in the IRQ. 1721 * 1722 * Called from the network code. The lock is not held at this 1723 * point. 1724 */ 1725 1726netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) 1727{ 1728 unsigned long flags; 1729 1730 netif_stop_queue(c->netdevice); 1731 if(c->tx_next_skb) 1732 return NETDEV_TX_BUSY; 1733 1734 1735 /* PC SPECIFIC - DMA limits */ 1736 1737 /* 1738 * If we will DMA the transmit and its gone over the ISA bus 1739 * limit, then copy to the flip buffer 1740 */ 1741 1742 if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb))) 1743 { 1744 /* 1745 * Send the flip buffer, and flip the flippy bit. 1746 * We don't care which is used when just so long as 1747 * we never use the same buffer twice in a row. Since 1748 * only one buffer can be going out at a time the other 1749 * has to be safe. 1750 */ 1751 c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used]; 1752 c->tx_dma_used^=1; /* Flip temp buffer */ 1753 skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len); 1754 } 1755 else 1756 c->tx_next_ptr=skb->data; 1757 RT_LOCK; 1758 c->tx_next_skb=skb; 1759 RT_UNLOCK; 1760 1761 spin_lock_irqsave(c->lock, flags); 1762 z8530_tx_begin(c); 1763 spin_unlock_irqrestore(c->lock, flags); 1764 1765 return NETDEV_TX_OK; 1766} 1767 1768EXPORT_SYMBOL(z8530_queue_xmit); 1769 1770/* 1771 * Module support 1772 */ 1773static const char banner[] __initconst = 1774 KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n"; 1775 1776static int __init z85230_init_driver(void) 1777{ 1778 printk(banner); 1779 return 0; 1780} 1781module_init(z85230_init_driver); 1782 1783static void __exit z85230_cleanup_driver(void) 1784{ 1785} 1786module_exit(z85230_cleanup_driver); 1787 1788MODULE_AUTHOR("Red Hat Inc."); 1789MODULE_DESCRIPTION("Z85x30 synchronous driver core"); 1790MODULE_LICENSE("GPL"); 1791