1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *      FarSync WAN driver for Linux (2.6.x kernel version)
4 *
5 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6 *
7 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
8 *      www.farsite.co.uk
9 *
10 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
11 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/kernel.h>
18#include <linux/version.h>
19#include <linux/pci.h>
20#include <linux/sched.h>
21#include <linux/slab.h>
22#include <linux/ioport.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/if.h>
27#include <linux/hdlc.h>
28#include <asm/io.h>
29#include <linux/uaccess.h>
30
31#include "farsync.h"
32
33/*
34 *      Module info
35 */
36MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
37MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
38MODULE_LICENSE("GPL");
39
40/*      Driver configuration and global parameters
41 *      ==========================================
42 */
43
44/*      Number of ports (per card) and cards supported
45 */
46#define FST_MAX_PORTS           4
47#define FST_MAX_CARDS           32
48
49/*      Default parameters for the link
50 */
51#define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
52					 * useful */
53#define FST_TXQ_DEPTH           16	/* This one is for the buffering
54					 * of frames on the way down to the card
55					 * so that we can keep the card busy
56					 * and maximise throughput
57					 */
58#define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
59					 * network layer */
60#define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
61					 * control from network layer */
62#define FST_MAX_MTU             8000	/* Huge but possible */
63#define FST_DEF_MTU             1500	/* Common sane value */
64
65#define FST_TX_TIMEOUT          (2*HZ)
66
67#ifdef ARPHRD_RAWHDLC
68#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
69#else
70#define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
71#endif
72
73/*
74 * Modules parameters and associated variables
75 */
76static int fst_txq_low = FST_LOW_WATER_MARK;
77static int fst_txq_high = FST_HIGH_WATER_MARK;
78static int fst_max_reads = 7;
79static int fst_excluded_cards = 0;
80static int fst_excluded_list[FST_MAX_CARDS];
81
82module_param(fst_txq_low, int, 0);
83module_param(fst_txq_high, int, 0);
84module_param(fst_max_reads, int, 0);
85module_param(fst_excluded_cards, int, 0);
86module_param_array(fst_excluded_list, int, NULL, 0);
87
88/*      Card shared memory layout
89 *      =========================
90 */
91#pragma pack(1)
92
93/*      This information is derived in part from the FarSite FarSync Smc.h
94 *      file. Unfortunately various name clashes and the non-portability of the
95 *      bit field declarations in that file have meant that I have chosen to
96 *      recreate the information here.
97 *
98 *      The SMC (Shared Memory Configuration) has a version number that is
99 *      incremented every time there is a significant change. This number can
100 *      be used to check that we have not got out of step with the firmware
101 *      contained in the .CDE files.
102 */
103#define SMC_VERSION 24
104
105#define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
106
107#define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
108				 * configuration structure */
109#define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
110				 * buffers */
111
112#define LEN_TX_BUFFER 8192	/* Size of packet buffers */
113#define LEN_RX_BUFFER 8192
114
115#define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
116#define LEN_SMALL_RX_BUFFER 256
117
118#define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
119#define NUM_RX_BUFFER 8
120
121/* Interrupt retry time in milliseconds */
122#define INT_RETRY_TIME 2
123
124/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
125 *      of buffer descriptors. The structure is almost identical to that used
126 *      in the LANCE Ethernet controllers. Details available as PDF from the
127 *      AMD web site: https://www.amd.com/products/epd/processors/\
128 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
129 */
130struct txdesc {			/* Transmit descriptor */
131	volatile u16 ladr;	/* Low order address of packet. This is a
132				 * linear address in the Am186 memory space
133				 */
134	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
135				 * bits must be zero
136				 */
137	volatile u8 bits;	/* Status and config */
138	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
139				 * Transmit terminal count interrupt enable in
140				 * top bit.
141				 */
142	u16 unused;		/* Not used in Tx */
143};
144
145struct rxdesc {			/* Receive descriptor */
146	volatile u16 ladr;	/* Low order address of packet */
147	volatile u8 hadr;	/* High order address */
148	volatile u8 bits;	/* Status and config */
149	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
150				 * Receive terminal count interrupt enable in
151				 * top bit.
152				 */
153	volatile u16 mcnt;	/* Message byte count (15 bits) */
154};
155
156/* Convert a length into the 15 bit 2's complement */
157/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
158/* Since we need to set the high bit to enable the completion interrupt this
159 * can be made a lot simpler
160 */
161#define cnv_bcnt(len)   (-(len))
162
163/* Status and config bits for the above */
164#define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
165#define TX_STP          0x02	/* Tx: start of packet */
166#define TX_ENP          0x01	/* Tx: end of packet */
167#define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
168#define RX_FRAM         0x20	/* Rx: framing error */
169#define RX_OFLO         0x10	/* Rx: overflow error */
170#define RX_CRC          0x08	/* Rx: CRC error */
171#define RX_HBUF         0x04	/* Rx: buffer error */
172#define RX_STP          0x02	/* Rx: start of packet */
173#define RX_ENP          0x01	/* Rx: end of packet */
174
175/* Interrupts from the card are caused by various events which are presented
176 * in a circular buffer as several events may be processed on one physical int
177 */
178#define MAX_CIRBUFF     32
179
180struct cirbuff {
181	u8 rdindex;		/* read, then increment and wrap */
182	u8 wrindex;		/* write, then increment and wrap */
183	u8 evntbuff[MAX_CIRBUFF];
184};
185
186/* Interrupt event codes.
187 * Where appropriate the two low order bits indicate the port number
188 */
189#define CTLA_CHG        0x18	/* Control signal changed */
190#define CTLB_CHG        0x19
191#define CTLC_CHG        0x1A
192#define CTLD_CHG        0x1B
193
194#define INIT_CPLT       0x20	/* Initialisation complete */
195#define INIT_FAIL       0x21	/* Initialisation failed */
196
197#define ABTA_SENT       0x24	/* Abort sent */
198#define ABTB_SENT       0x25
199#define ABTC_SENT       0x26
200#define ABTD_SENT       0x27
201
202#define TXA_UNDF        0x28	/* Transmission underflow */
203#define TXB_UNDF        0x29
204#define TXC_UNDF        0x2A
205#define TXD_UNDF        0x2B
206
207#define F56_INT         0x2C
208#define M32_INT         0x2D
209
210#define TE1_ALMA        0x30
211
212/* Port physical configuration. See farsync.h for field values */
213struct port_cfg {
214	u16 lineInterface;	/* Physical interface type */
215	u8 x25op;		/* Unused at present */
216	u8 internalClock;	/* 1 => internal clock, 0 => external */
217	u8 transparentMode;	/* 1 => on, 0 => off */
218	u8 invertClock;		/* 0 => normal, 1 => inverted */
219	u8 padBytes[6];		/* Padding */
220	u32 lineSpeed;		/* Speed in bps */
221};
222
223/* TE1 port physical configuration */
224struct su_config {
225	u32 dataRate;
226	u8 clocking;
227	u8 framing;
228	u8 structure;
229	u8 interface;
230	u8 coding;
231	u8 lineBuildOut;
232	u8 equalizer;
233	u8 transparentMode;
234	u8 loopMode;
235	u8 range;
236	u8 txBufferMode;
237	u8 rxBufferMode;
238	u8 startingSlot;
239	u8 losThreshold;
240	u8 enableIdleCode;
241	u8 idleCode;
242	u8 spare[44];
243};
244
245/* TE1 Status */
246struct su_status {
247	u32 receiveBufferDelay;
248	u32 framingErrorCount;
249	u32 codeViolationCount;
250	u32 crcErrorCount;
251	u32 lineAttenuation;
252	u8 portStarted;
253	u8 lossOfSignal;
254	u8 receiveRemoteAlarm;
255	u8 alarmIndicationSignal;
256	u8 spare[40];
257};
258
259/* Finally sling all the above together into the shared memory structure.
260 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
261 * evolving under NT for some time so I guess we're stuck with it.
262 * The structure starts at offset SMC_BASE.
263 * See farsync.h for some field values.
264 */
265struct fst_shared {
266	/* DMA descriptor rings */
267	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
268	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
269
270	/* Obsolete small buffers */
271	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
272	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
273
274	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
275				 * 0xFF => halted
276				 */
277
278	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
279				 * set to 0xEE by host to acknowledge interrupt
280				 */
281
282	u16 smcVersion;		/* Must match SMC_VERSION */
283
284	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
285				 * version, RR = revision and BB = build
286				 */
287
288	u16 txa_done;		/* Obsolete completion flags */
289	u16 rxa_done;
290	u16 txb_done;
291	u16 rxb_done;
292	u16 txc_done;
293	u16 rxc_done;
294	u16 txd_done;
295	u16 rxd_done;
296
297	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
298
299	struct cirbuff interruptEvent;	/* interrupt causes */
300
301	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
302	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
303
304	struct port_cfg portConfig[FST_MAX_PORTS];
305
306	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
307
308	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
309
310	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
311	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
312
313	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
314	u16 cardMailbox[4];	/* Not used */
315
316	/* Number of times the card thinks the host has
317	 * missed an interrupt by not acknowledging
318	 * within 2mS (I guess NT has problems)
319	 */
320	u32 interruptRetryCount;
321
322	/* Driver private data used as an ID. We'll not
323	 * use this as I'd rather keep such things
324	 * in main memory rather than on the PCI bus
325	 */
326	u32 portHandle[FST_MAX_PORTS];
327
328	/* Count of Tx underflows for stats */
329	u32 transmitBufferUnderflow[FST_MAX_PORTS];
330
331	/* Debounced V.24 control input status */
332	u32 v24DebouncedSts[FST_MAX_PORTS];
333
334	/* Adapter debounce timers. Don't touch */
335	u32 ctsTimer[FST_MAX_PORTS];
336	u32 ctsTimerRun[FST_MAX_PORTS];
337	u32 dcdTimer[FST_MAX_PORTS];
338	u32 dcdTimerRun[FST_MAX_PORTS];
339
340	u32 numberOfPorts;	/* Number of ports detected at startup */
341
342	u16 _reserved[64];
343
344	u16 cardMode;		/* Bit-mask to enable features:
345				 * Bit 0: 1 enables LED identify mode
346				 */
347
348	u16 portScheduleOffset;
349
350	struct su_config suConfig;	/* TE1 Bits */
351	struct su_status suStatus;
352
353	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
354				 * the structure and marks the end of shared
355				 * memory. Adapter code initializes it as
356				 * END_SIG.
357				 */
358};
359
360/* endOfSmcSignature value */
361#define END_SIG                 0x12345678
362
363/* Mailbox values. (portMailbox) */
364#define NOP             0	/* No operation */
365#define ACK             1	/* Positive acknowledgement to PC driver */
366#define NAK             2	/* Negative acknowledgement to PC driver */
367#define STARTPORT       3	/* Start an HDLC port */
368#define STOPPORT        4	/* Stop an HDLC port */
369#define ABORTTX         5	/* Abort the transmitter for a port */
370#define SETV24O         6	/* Set V24 outputs */
371
372/* PLX Chip Register Offsets */
373#define CNTRL_9052      0x50	/* Control Register */
374#define CNTRL_9054      0x6c	/* Control Register */
375
376#define INTCSR_9052     0x4c	/* Interrupt control/status register */
377#define INTCSR_9054     0x68	/* Interrupt control/status register */
378
379/* 9054 DMA Registers */
380/*
381 * Note that we will be using DMA Channel 0 for copying rx data
382 * and Channel 1 for copying tx data
383 */
384#define DMAMODE0        0x80
385#define DMAPADR0        0x84
386#define DMALADR0        0x88
387#define DMASIZ0         0x8c
388#define DMADPR0         0x90
389#define DMAMODE1        0x94
390#define DMAPADR1        0x98
391#define DMALADR1        0x9c
392#define DMASIZ1         0xa0
393#define DMADPR1         0xa4
394#define DMACSR0         0xa8
395#define DMACSR1         0xa9
396#define DMAARB          0xac
397#define DMATHR          0xb0
398#define DMADAC0         0xb4
399#define DMADAC1         0xb8
400#define DMAMARBR        0xac
401
402#define FST_MIN_DMA_LEN 64
403#define FST_RX_DMA_INT  0x01
404#define FST_TX_DMA_INT  0x02
405#define FST_CARD_INT    0x04
406
407/* Larger buffers are positioned in memory at offset BFM_BASE */
408struct buf_window {
409	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
410	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
411};
412
413/* Calculate offset of a buffer object within the shared memory window */
414#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
415
416#pragma pack()
417
418/*      Device driver private information
419 *      =================================
420 */
421/*      Per port (line or channel) information
422 */
423struct fst_port_info {
424        struct net_device *dev; /* Device struct - must be first */
425	struct fst_card_info *card;	/* Card we're associated with */
426	int index;		/* Port index on the card */
427	int hwif;		/* Line hardware (lineInterface copy) */
428	int run;		/* Port is running */
429	int mode;		/* Normal or FarSync raw */
430	int rxpos;		/* Next Rx buffer to use */
431	int txpos;		/* Next Tx buffer to use */
432	int txipos;		/* Next Tx buffer to check for free */
433	int start;		/* Indication of start/stop to network */
434	/*
435	 * A sixteen entry transmit queue
436	 */
437	int txqs;		/* index to get next buffer to tx */
438	int txqe;		/* index to queue next packet */
439	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
440	int rxqdepth;
441};
442
443/*      Per card information
444 */
445struct fst_card_info {
446	char __iomem *mem;	/* Card memory mapped to kernel space */
447	char __iomem *ctlmem;	/* Control memory for PCI cards */
448	unsigned int phys_mem;	/* Physical memory window address */
449	unsigned int phys_ctlmem;	/* Physical control memory address */
450	unsigned int irq;	/* Interrupt request line number */
451	unsigned int nports;	/* Number of serial ports */
452	unsigned int type;	/* Type index of card */
453	unsigned int state;	/* State of card */
454	spinlock_t card_lock;	/* Lock for SMP access */
455	unsigned short pci_conf;	/* PCI card config in I/O space */
456	/* Per port info */
457	struct fst_port_info ports[FST_MAX_PORTS];
458	struct pci_dev *device;	/* Information about the pci device */
459	int card_no;		/* Inst of the card on the system */
460	int family;		/* TxP or TxU */
461	int dmarx_in_progress;
462	int dmatx_in_progress;
463	unsigned long int_count;
464	unsigned long int_time_ave;
465	void *rx_dma_handle_host;
466	dma_addr_t rx_dma_handle_card;
467	void *tx_dma_handle_host;
468	dma_addr_t tx_dma_handle_card;
469	struct sk_buff *dma_skb_rx;
470	struct fst_port_info *dma_port_rx;
471	struct fst_port_info *dma_port_tx;
472	int dma_len_rx;
473	int dma_len_tx;
474	int dma_txpos;
475	int dma_rxpos;
476};
477
478/* Convert an HDLC device pointer into a port info pointer and similar */
479#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
480#define port_to_dev(P)  ((P)->dev)
481
482
483/*
484 *      Shared memory window access macros
485 *
486 *      We have a nice memory based structure above, which could be directly
487 *      mapped on i386 but might not work on other architectures unless we use
488 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
489 *      physical offsets so we have to convert. The only saving grace is that
490 *      this should all collapse back to a simple indirection eventually.
491 */
492#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
493
494#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
495#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
496#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
497
498#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
499#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
500#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
501
502/*
503 *      Debug support
504 */
505#if FST_DEBUG
506
507static int fst_debug_mask = { FST_DEBUG };
508
509/* Most common debug activity is to print something if the corresponding bit
510 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
511 * support variable numbers of macro parameters. The inverted if prevents us
512 * eating someone else's else clause.
513 */
514#define dbg(F, fmt, args...)					\
515do {								\
516	if (fst_debug_mask & (F))				\
517		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
518} while (0)
519#else
520#define dbg(F, fmt, args...)					\
521do {								\
522	if (0)							\
523		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
524} while (0)
525#endif
526
527/*
528 *      PCI ID lookup table
529 */
530static const struct pci_device_id fst_pci_dev_id[] = {
531	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
532	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
533
534	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
535	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
536
537	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
538	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
539
540	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
541	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
542
543	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
544	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
545
546	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
547	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
548
549	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
550	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551	{0,}			/* End */
552};
553
554MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
555
556/*
557 *      Device Driver Work Queues
558 *
559 *      So that we don't spend too much time processing events in the
560 *      Interrupt Service routine, we will declare a work queue per Card
561 *      and make the ISR schedule a task in the queue for later execution.
562 *      In the 2.4 Kernel we used to use the immediate queue for BH's
563 *      Now that they are gone, tasklets seem to be much better than work
564 *      queues.
565 */
566
567static void do_bottom_half_tx(struct fst_card_info *card);
568static void do_bottom_half_rx(struct fst_card_info *card);
569static void fst_process_tx_work_q(unsigned long work_q);
570static void fst_process_int_work_q(unsigned long work_q);
571
572static DECLARE_TASKLET_OLD(fst_tx_task, fst_process_tx_work_q);
573static DECLARE_TASKLET_OLD(fst_int_task, fst_process_int_work_q);
574
575static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
576static spinlock_t fst_work_q_lock;
577static u64 fst_work_txq;
578static u64 fst_work_intq;
579
580static void
581fst_q_work_item(u64 * queue, int card_index)
582{
583	unsigned long flags;
584	u64 mask;
585
586	/*
587	 * Grab the queue exclusively
588	 */
589	spin_lock_irqsave(&fst_work_q_lock, flags);
590
591	/*
592	 * Making an entry in the queue is simply a matter of setting
593	 * a bit for the card indicating that there is work to do in the
594	 * bottom half for the card.  Note the limitation of 64 cards.
595	 * That ought to be enough
596	 */
597	mask = (u64)1 << card_index;
598	*queue |= mask;
599	spin_unlock_irqrestore(&fst_work_q_lock, flags);
600}
601
602static void
603fst_process_tx_work_q(unsigned long /*void **/work_q)
604{
605	unsigned long flags;
606	u64 work_txq;
607	int i;
608
609	/*
610	 * Grab the queue exclusively
611	 */
612	dbg(DBG_TX, "fst_process_tx_work_q\n");
613	spin_lock_irqsave(&fst_work_q_lock, flags);
614	work_txq = fst_work_txq;
615	fst_work_txq = 0;
616	spin_unlock_irqrestore(&fst_work_q_lock, flags);
617
618	/*
619	 * Call the bottom half for each card with work waiting
620	 */
621	for (i = 0; i < FST_MAX_CARDS; i++) {
622		if (work_txq & 0x01) {
623			if (fst_card_array[i] != NULL) {
624				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
625				do_bottom_half_tx(fst_card_array[i]);
626			}
627		}
628		work_txq = work_txq >> 1;
629	}
630}
631
632static void
633fst_process_int_work_q(unsigned long /*void **/work_q)
634{
635	unsigned long flags;
636	u64 work_intq;
637	int i;
638
639	/*
640	 * Grab the queue exclusively
641	 */
642	dbg(DBG_INTR, "fst_process_int_work_q\n");
643	spin_lock_irqsave(&fst_work_q_lock, flags);
644	work_intq = fst_work_intq;
645	fst_work_intq = 0;
646	spin_unlock_irqrestore(&fst_work_q_lock, flags);
647
648	/*
649	 * Call the bottom half for each card with work waiting
650	 */
651	for (i = 0; i < FST_MAX_CARDS; i++) {
652		if (work_intq & 0x01) {
653			if (fst_card_array[i] != NULL) {
654				dbg(DBG_INTR,
655				    "Calling rx & tx bh for card %d\n", i);
656				do_bottom_half_rx(fst_card_array[i]);
657				do_bottom_half_tx(fst_card_array[i]);
658			}
659		}
660		work_intq = work_intq >> 1;
661	}
662}
663
664/*      Card control functions
665 *      ======================
666 */
667/*      Place the processor in reset state
668 *
669 * Used to be a simple write to card control space but a glitch in the latest
670 * AMD Am186CH processor means that we now have to do it by asserting and de-
671 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
672 * at offset 9052_CNTRL.  Note the updates for the TXU.
673 */
674static inline void
675fst_cpureset(struct fst_card_info *card)
676{
677	unsigned char interrupt_line_register;
678	unsigned int regval;
679
680	if (card->family == FST_FAMILY_TXU) {
681		if (pci_read_config_byte
682		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
683			dbg(DBG_ASS,
684			    "Error in reading interrupt line register\n");
685		}
686		/*
687		 * Assert PLX software reset and Am186 hardware reset
688		 * and then deassert the PLX software reset but 186 still in reset
689		 */
690		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
691		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
692		/*
693		 * We are delaying here to allow the 9054 to reset itself
694		 */
695		usleep_range(10, 20);
696		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
697		/*
698		 * We are delaying here to allow the 9054 to reload its eeprom
699		 */
700		usleep_range(10, 20);
701		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
702
703		if (pci_write_config_byte
704		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
705			dbg(DBG_ASS,
706			    "Error in writing interrupt line register\n");
707		}
708
709	} else {
710		regval = inl(card->pci_conf + CNTRL_9052);
711
712		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
713		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
714	}
715}
716
717/*      Release the processor from reset
718 */
719static inline void
720fst_cpurelease(struct fst_card_info *card)
721{
722	if (card->family == FST_FAMILY_TXU) {
723		/*
724		 * Force posted writes to complete
725		 */
726		(void) readb(card->mem);
727
728		/*
729		 * Release LRESET DO = 1
730		 * Then release Local Hold, DO = 1
731		 */
732		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
733		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
734	} else {
735		(void) readb(card->ctlmem);
736	}
737}
738
739/*      Clear the cards interrupt flag
740 */
741static inline void
742fst_clear_intr(struct fst_card_info *card)
743{
744	if (card->family == FST_FAMILY_TXU) {
745		(void) readb(card->ctlmem);
746	} else {
747		/* Poke the appropriate PLX chip register (same as enabling interrupts)
748		 */
749		outw(0x0543, card->pci_conf + INTCSR_9052);
750	}
751}
752
753/*      Enable card interrupts
754 */
755static inline void
756fst_enable_intr(struct fst_card_info *card)
757{
758	if (card->family == FST_FAMILY_TXU) {
759		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
760	} else {
761		outw(0x0543, card->pci_conf + INTCSR_9052);
762	}
763}
764
765/*      Disable card interrupts
766 */
767static inline void
768fst_disable_intr(struct fst_card_info *card)
769{
770	if (card->family == FST_FAMILY_TXU) {
771		outl(0x00000000, card->pci_conf + INTCSR_9054);
772	} else {
773		outw(0x0000, card->pci_conf + INTCSR_9052);
774	}
775}
776
777/*      Process the result of trying to pass a received frame up the stack
778 */
779static void
780fst_process_rx_status(int rx_status, char *name)
781{
782	switch (rx_status) {
783	case NET_RX_SUCCESS:
784		{
785			/*
786			 * Nothing to do here
787			 */
788			break;
789		}
790	case NET_RX_DROP:
791		{
792			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
793			break;
794		}
795	}
796}
797
798/*      Initilaise DMA for PLX 9054
799 */
800static inline void
801fst_init_dma(struct fst_card_info *card)
802{
803	/*
804	 * This is only required for the PLX 9054
805	 */
806	if (card->family == FST_FAMILY_TXU) {
807	        pci_set_master(card->device);
808		outl(0x00020441, card->pci_conf + DMAMODE0);
809		outl(0x00020441, card->pci_conf + DMAMODE1);
810		outl(0x0, card->pci_conf + DMATHR);
811	}
812}
813
814/*      Tx dma complete interrupt
815 */
816static void
817fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
818		    int len, int txpos)
819{
820	struct net_device *dev = port_to_dev(port);
821
822	/*
823	 * Everything is now set, just tell the card to go
824	 */
825	dbg(DBG_TX, "fst_tx_dma_complete\n");
826	FST_WRB(card, txDescrRing[port->index][txpos].bits,
827		DMA_OWN | TX_STP | TX_ENP);
828	dev->stats.tx_packets++;
829	dev->stats.tx_bytes += len;
830	netif_trans_update(dev);
831}
832
833/*
834 * Mark it for our own raw sockets interface
835 */
836static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
837{
838	skb->dev = dev;
839	skb_reset_mac_header(skb);
840	skb->pkt_type = PACKET_HOST;
841	return htons(ETH_P_CUST);
842}
843
844/*      Rx dma complete interrupt
845 */
846static void
847fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
848		    int len, struct sk_buff *skb, int rxp)
849{
850	struct net_device *dev = port_to_dev(port);
851	int pi;
852	int rx_status;
853
854	dbg(DBG_TX, "fst_rx_dma_complete\n");
855	pi = port->index;
856	skb_put_data(skb, card->rx_dma_handle_host, len);
857
858	/* Reset buffer descriptor */
859	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
860
861	/* Update stats */
862	dev->stats.rx_packets++;
863	dev->stats.rx_bytes += len;
864
865	/* Push upstream */
866	dbg(DBG_RX, "Pushing the frame up the stack\n");
867	if (port->mode == FST_RAW)
868		skb->protocol = farsync_type_trans(skb, dev);
869	else
870		skb->protocol = hdlc_type_trans(skb, dev);
871	rx_status = netif_rx(skb);
872	fst_process_rx_status(rx_status, port_to_dev(port)->name);
873	if (rx_status == NET_RX_DROP)
874		dev->stats.rx_dropped++;
875}
876
877/*
878 *      Receive a frame through the DMA
879 */
880static inline void
881fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
882{
883	/*
884	 * This routine will setup the DMA and start it
885	 */
886
887	dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
888	if (card->dmarx_in_progress) {
889		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
890	}
891
892	outl(dma, card->pci_conf + DMAPADR0);	/* Copy to here */
893	outl(mem, card->pci_conf + DMALADR0);	/* from here */
894	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
895	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
896
897	/*
898	 * We use the dmarx_in_progress flag to flag the channel as busy
899	 */
900	card->dmarx_in_progress = 1;
901	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
902}
903
904/*
905 *      Send a frame through the DMA
906 */
907static inline void
908fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
909{
910	/*
911	 * This routine will setup the DMA and start it.
912	 */
913
914	dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
915	if (card->dmatx_in_progress) {
916		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
917	}
918
919	outl(dma, card->pci_conf + DMAPADR1);	/* Copy from here */
920	outl(mem, card->pci_conf + DMALADR1);	/* to here */
921	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
922	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
923
924	/*
925	 * We use the dmatx_in_progress to flag the channel as busy
926	 */
927	card->dmatx_in_progress = 1;
928	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
929}
930
931/*      Issue a Mailbox command for a port.
932 *      Note we issue them on a fire and forget basis, not expecting to see an
933 *      error and not waiting for completion.
934 */
935static void
936fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
937{
938	struct fst_card_info *card;
939	unsigned short mbval;
940	unsigned long flags;
941	int safety;
942
943	card = port->card;
944	spin_lock_irqsave(&card->card_lock, flags);
945	mbval = FST_RDW(card, portMailbox[port->index][0]);
946
947	safety = 0;
948	/* Wait for any previous command to complete */
949	while (mbval > NAK) {
950		spin_unlock_irqrestore(&card->card_lock, flags);
951		schedule_timeout_uninterruptible(1);
952		spin_lock_irqsave(&card->card_lock, flags);
953
954		if (++safety > 2000) {
955			pr_err("Mailbox safety timeout\n");
956			break;
957		}
958
959		mbval = FST_RDW(card, portMailbox[port->index][0]);
960	}
961	if (safety > 0) {
962		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
963	}
964	if (mbval == NAK) {
965		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
966	}
967
968	FST_WRW(card, portMailbox[port->index][0], cmd);
969
970	if (cmd == ABORTTX || cmd == STARTPORT) {
971		port->txpos = 0;
972		port->txipos = 0;
973		port->start = 0;
974	}
975
976	spin_unlock_irqrestore(&card->card_lock, flags);
977}
978
979/*      Port output signals control
980 */
981static inline void
982fst_op_raise(struct fst_port_info *port, unsigned int outputs)
983{
984	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
985	FST_WRL(port->card, v24OpSts[port->index], outputs);
986
987	if (port->run)
988		fst_issue_cmd(port, SETV24O);
989}
990
991static inline void
992fst_op_lower(struct fst_port_info *port, unsigned int outputs)
993{
994	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
995	FST_WRL(port->card, v24OpSts[port->index], outputs);
996
997	if (port->run)
998		fst_issue_cmd(port, SETV24O);
999}
1000
1001/*
1002 *      Setup port Rx buffers
1003 */
1004static void
1005fst_rx_config(struct fst_port_info *port)
1006{
1007	int i;
1008	int pi;
1009	unsigned int offset;
1010	unsigned long flags;
1011	struct fst_card_info *card;
1012
1013	pi = port->index;
1014	card = port->card;
1015	spin_lock_irqsave(&card->card_lock, flags);
1016	for (i = 0; i < NUM_RX_BUFFER; i++) {
1017		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1018
1019		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1020		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1021		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1022		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1023		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1024	}
1025	port->rxpos = 0;
1026	spin_unlock_irqrestore(&card->card_lock, flags);
1027}
1028
1029/*
1030 *      Setup port Tx buffers
1031 */
1032static void
1033fst_tx_config(struct fst_port_info *port)
1034{
1035	int i;
1036	int pi;
1037	unsigned int offset;
1038	unsigned long flags;
1039	struct fst_card_info *card;
1040
1041	pi = port->index;
1042	card = port->card;
1043	spin_lock_irqsave(&card->card_lock, flags);
1044	for (i = 0; i < NUM_TX_BUFFER; i++) {
1045		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1046
1047		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1048		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1049		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1050		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1051	}
1052	port->txpos = 0;
1053	port->txipos = 0;
1054	port->start = 0;
1055	spin_unlock_irqrestore(&card->card_lock, flags);
1056}
1057
1058/*      TE1 Alarm change interrupt event
1059 */
1060static void
1061fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1062{
1063	u8 los;
1064	u8 rra;
1065	u8 ais;
1066
1067	los = FST_RDB(card, suStatus.lossOfSignal);
1068	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1069	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1070
1071	if (los) {
1072		/*
1073		 * Lost the link
1074		 */
1075		if (netif_carrier_ok(port_to_dev(port))) {
1076			dbg(DBG_INTR, "Net carrier off\n");
1077			netif_carrier_off(port_to_dev(port));
1078		}
1079	} else {
1080		/*
1081		 * Link available
1082		 */
1083		if (!netif_carrier_ok(port_to_dev(port))) {
1084			dbg(DBG_INTR, "Net carrier on\n");
1085			netif_carrier_on(port_to_dev(port));
1086		}
1087	}
1088
1089	if (los)
1090		dbg(DBG_INTR, "Assert LOS Alarm\n");
1091	else
1092		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1093	if (rra)
1094		dbg(DBG_INTR, "Assert RRA Alarm\n");
1095	else
1096		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1097
1098	if (ais)
1099		dbg(DBG_INTR, "Assert AIS Alarm\n");
1100	else
1101		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1102}
1103
1104/*      Control signal change interrupt event
1105 */
1106static void
1107fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1108{
1109	int signals;
1110
1111	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1112
1113	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1114		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1115		if (!netif_carrier_ok(port_to_dev(port))) {
1116			dbg(DBG_INTR, "DCD active\n");
1117			netif_carrier_on(port_to_dev(port));
1118		}
1119	} else {
1120		if (netif_carrier_ok(port_to_dev(port))) {
1121			dbg(DBG_INTR, "DCD lost\n");
1122			netif_carrier_off(port_to_dev(port));
1123		}
1124	}
1125}
1126
1127/*      Log Rx Errors
1128 */
1129static void
1130fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1131		 unsigned char dmabits, int rxp, unsigned short len)
1132{
1133	struct net_device *dev = port_to_dev(port);
1134
1135	/*
1136	 * Increment the appropriate error counter
1137	 */
1138	dev->stats.rx_errors++;
1139	if (dmabits & RX_OFLO) {
1140		dev->stats.rx_fifo_errors++;
1141		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1142		    card->card_no, port->index, rxp);
1143	}
1144	if (dmabits & RX_CRC) {
1145		dev->stats.rx_crc_errors++;
1146		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1147		    card->card_no, port->index);
1148	}
1149	if (dmabits & RX_FRAM) {
1150		dev->stats.rx_frame_errors++;
1151		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1152		    card->card_no, port->index);
1153	}
1154	if (dmabits == (RX_STP | RX_ENP)) {
1155		dev->stats.rx_length_errors++;
1156		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1157		    len, card->card_no, port->index);
1158	}
1159}
1160
1161/*      Rx Error Recovery
1162 */
1163static void
1164fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1165		     unsigned char dmabits, int rxp, unsigned short len)
1166{
1167	int i;
1168	int pi;
1169
1170	pi = port->index;
1171	/*
1172	 * Discard buffer descriptors until we see the start of the
1173	 * next frame.  Note that for long frames this could be in
1174	 * a subsequent interrupt.
1175	 */
1176	i = 0;
1177	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1178		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1179		rxp = (rxp+1) % NUM_RX_BUFFER;
1180		if (++i > NUM_RX_BUFFER) {
1181			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1182			    " than we have\n");
1183			break;
1184		}
1185		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1186		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1187	}
1188	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1189
1190	/* Discard the terminal buffer */
1191	if (!(dmabits & DMA_OWN)) {
1192		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1193		rxp = (rxp+1) % NUM_RX_BUFFER;
1194	}
1195	port->rxpos = rxp;
1196	return;
1197
1198}
1199
1200/*      Rx complete interrupt
1201 */
1202static void
1203fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1204{
1205	unsigned char dmabits;
1206	int pi;
1207	int rxp;
1208	int rx_status;
1209	unsigned short len;
1210	struct sk_buff *skb;
1211	struct net_device *dev = port_to_dev(port);
1212
1213	/* Check we have a buffer to process */
1214	pi = port->index;
1215	rxp = port->rxpos;
1216	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1217	if (dmabits & DMA_OWN) {
1218		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1219		    pi, rxp);
1220		return;
1221	}
1222	if (card->dmarx_in_progress) {
1223		return;
1224	}
1225
1226	/* Get buffer length */
1227	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1228	/* Discard the CRC */
1229	len -= 2;
1230	if (len == 0) {
1231		/*
1232		 * This seems to happen on the TE1 interface sometimes
1233		 * so throw the frame away and log the event.
1234		 */
1235		pr_err("Frame received with 0 length. Card %d Port %d\n",
1236		       card->card_no, port->index);
1237		/* Return descriptor to card */
1238		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1239
1240		rxp = (rxp+1) % NUM_RX_BUFFER;
1241		port->rxpos = rxp;
1242		return;
1243	}
1244
1245	/* Check buffer length and for other errors. We insist on one packet
1246	 * in one buffer. This simplifies things greatly and since we've
1247	 * allocated 8K it shouldn't be a real world limitation
1248	 */
1249	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1250	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1251		fst_log_rx_error(card, port, dmabits, rxp, len);
1252		fst_recover_rx_error(card, port, dmabits, rxp, len);
1253		return;
1254	}
1255
1256	/* Allocate SKB */
1257	if ((skb = dev_alloc_skb(len)) == NULL) {
1258		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1259
1260		dev->stats.rx_dropped++;
1261
1262		/* Return descriptor to card */
1263		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1264
1265		rxp = (rxp+1) % NUM_RX_BUFFER;
1266		port->rxpos = rxp;
1267		return;
1268	}
1269
1270	/*
1271	 * We know the length we need to receive, len.
1272	 * It's not worth using the DMA for reads of less than
1273	 * FST_MIN_DMA_LEN
1274	 */
1275
1276	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1277		memcpy_fromio(skb_put(skb, len),
1278			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1279			      len);
1280
1281		/* Reset buffer descriptor */
1282		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1283
1284		/* Update stats */
1285		dev->stats.rx_packets++;
1286		dev->stats.rx_bytes += len;
1287
1288		/* Push upstream */
1289		dbg(DBG_RX, "Pushing frame up the stack\n");
1290		if (port->mode == FST_RAW)
1291			skb->protocol = farsync_type_trans(skb, dev);
1292		else
1293			skb->protocol = hdlc_type_trans(skb, dev);
1294		rx_status = netif_rx(skb);
1295		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1296		if (rx_status == NET_RX_DROP)
1297			dev->stats.rx_dropped++;
1298	} else {
1299		card->dma_skb_rx = skb;
1300		card->dma_port_rx = port;
1301		card->dma_len_rx = len;
1302		card->dma_rxpos = rxp;
1303		fst_rx_dma(card, card->rx_dma_handle_card,
1304			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1305	}
1306	if (rxp != port->rxpos) {
1307		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1308		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1309	}
1310	rxp = (rxp+1) % NUM_RX_BUFFER;
1311	port->rxpos = rxp;
1312}
1313
1314/*
1315 *      The bottom halfs to the ISR
1316 *
1317 */
1318
1319static void
1320do_bottom_half_tx(struct fst_card_info *card)
1321{
1322	struct fst_port_info *port;
1323	int pi;
1324	int txq_length;
1325	struct sk_buff *skb;
1326	unsigned long flags;
1327	struct net_device *dev;
1328
1329	/*
1330	 *  Find a free buffer for the transmit
1331	 *  Step through each port on this card
1332	 */
1333
1334	dbg(DBG_TX, "do_bottom_half_tx\n");
1335	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1336		if (!port->run)
1337			continue;
1338
1339		dev = port_to_dev(port);
1340		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1341			 DMA_OWN) &&
1342		       !(card->dmatx_in_progress)) {
1343			/*
1344			 * There doesn't seem to be a txdone event per-se
1345			 * We seem to have to deduce it, by checking the DMA_OWN
1346			 * bit on the next buffer we think we can use
1347			 */
1348			spin_lock_irqsave(&card->card_lock, flags);
1349			if ((txq_length = port->txqe - port->txqs) < 0) {
1350				/*
1351				 * This is the case where one has wrapped and the
1352				 * maths gives us a negative number
1353				 */
1354				txq_length = txq_length + FST_TXQ_DEPTH;
1355			}
1356			spin_unlock_irqrestore(&card->card_lock, flags);
1357			if (txq_length > 0) {
1358				/*
1359				 * There is something to send
1360				 */
1361				spin_lock_irqsave(&card->card_lock, flags);
1362				skb = port->txq[port->txqs];
1363				port->txqs++;
1364				if (port->txqs == FST_TXQ_DEPTH) {
1365					port->txqs = 0;
1366				}
1367				spin_unlock_irqrestore(&card->card_lock, flags);
1368				/*
1369				 * copy the data and set the required indicators on the
1370				 * card.
1371				 */
1372				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1373					cnv_bcnt(skb->len));
1374				if ((skb->len < FST_MIN_DMA_LEN) ||
1375				    (card->family == FST_FAMILY_TXP)) {
1376					/* Enqueue the packet with normal io */
1377					memcpy_toio(card->mem +
1378						    BUF_OFFSET(txBuffer[pi]
1379							       [port->
1380								txpos][0]),
1381						    skb->data, skb->len);
1382					FST_WRB(card,
1383						txDescrRing[pi][port->txpos].
1384						bits,
1385						DMA_OWN | TX_STP | TX_ENP);
1386					dev->stats.tx_packets++;
1387					dev->stats.tx_bytes += skb->len;
1388					netif_trans_update(dev);
1389				} else {
1390					/* Or do it through dma */
1391					memcpy(card->tx_dma_handle_host,
1392					       skb->data, skb->len);
1393					card->dma_port_tx = port;
1394					card->dma_len_tx = skb->len;
1395					card->dma_txpos = port->txpos;
1396					fst_tx_dma(card,
1397						   card->tx_dma_handle_card,
1398						   BUF_OFFSET(txBuffer[pi]
1399							      [port->txpos][0]),
1400						   skb->len);
1401				}
1402				if (++port->txpos >= NUM_TX_BUFFER)
1403					port->txpos = 0;
1404				/*
1405				 * If we have flow control on, can we now release it?
1406				 */
1407				if (port->start) {
1408					if (txq_length < fst_txq_low) {
1409						netif_wake_queue(port_to_dev
1410								 (port));
1411						port->start = 0;
1412					}
1413				}
1414				dev_kfree_skb(skb);
1415			} else {
1416				/*
1417				 * Nothing to send so break out of the while loop
1418				 */
1419				break;
1420			}
1421		}
1422	}
1423}
1424
1425static void
1426do_bottom_half_rx(struct fst_card_info *card)
1427{
1428	struct fst_port_info *port;
1429	int pi;
1430	int rx_count = 0;
1431
1432	/* Check for rx completions on all ports on this card */
1433	dbg(DBG_RX, "do_bottom_half_rx\n");
1434	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1435		if (!port->run)
1436			continue;
1437
1438		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1439			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1440			if (rx_count > fst_max_reads) {
1441				/*
1442				 * Don't spend forever in receive processing
1443				 * Schedule another event
1444				 */
1445				fst_q_work_item(&fst_work_intq, card->card_no);
1446				tasklet_schedule(&fst_int_task);
1447				break;	/* Leave the loop */
1448			}
1449			fst_intr_rx(card, port);
1450			rx_count++;
1451		}
1452	}
1453}
1454
1455/*
1456 *      The interrupt service routine
1457 *      Dev_id is our fst_card_info pointer
1458 */
1459static irqreturn_t
1460fst_intr(int dummy, void *dev_id)
1461{
1462	struct fst_card_info *card = dev_id;
1463	struct fst_port_info *port;
1464	int rdidx;		/* Event buffer indices */
1465	int wridx;
1466	int event;		/* Actual event for processing */
1467	unsigned int dma_intcsr = 0;
1468	unsigned int do_card_interrupt;
1469	unsigned int int_retry_count;
1470
1471	/*
1472	 * Check to see if the interrupt was for this card
1473	 * return if not
1474	 * Note that the call to clear the interrupt is important
1475	 */
1476	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1477	if (card->state != FST_RUNNING) {
1478		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1479		       card->card_no, card->state);
1480
1481		/*
1482		 * It is possible to really be running, i.e. we have re-loaded
1483		 * a running card
1484		 * Clear and reprime the interrupt source
1485		 */
1486		fst_clear_intr(card);
1487		return IRQ_HANDLED;
1488	}
1489
1490	/* Clear and reprime the interrupt source */
1491	fst_clear_intr(card);
1492
1493	/*
1494	 * Is the interrupt for this card (handshake == 1)
1495	 */
1496	do_card_interrupt = 0;
1497	if (FST_RDB(card, interruptHandshake) == 1) {
1498		do_card_interrupt += FST_CARD_INT;
1499		/* Set the software acknowledge */
1500		FST_WRB(card, interruptHandshake, 0xEE);
1501	}
1502	if (card->family == FST_FAMILY_TXU) {
1503		/*
1504		 * Is it a DMA Interrupt
1505		 */
1506		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1507		if (dma_intcsr & 0x00200000) {
1508			/*
1509			 * DMA Channel 0 (Rx transfer complete)
1510			 */
1511			dbg(DBG_RX, "DMA Rx xfer complete\n");
1512			outb(0x8, card->pci_conf + DMACSR0);
1513			fst_rx_dma_complete(card, card->dma_port_rx,
1514					    card->dma_len_rx, card->dma_skb_rx,
1515					    card->dma_rxpos);
1516			card->dmarx_in_progress = 0;
1517			do_card_interrupt += FST_RX_DMA_INT;
1518		}
1519		if (dma_intcsr & 0x00400000) {
1520			/*
1521			 * DMA Channel 1 (Tx transfer complete)
1522			 */
1523			dbg(DBG_TX, "DMA Tx xfer complete\n");
1524			outb(0x8, card->pci_conf + DMACSR1);
1525			fst_tx_dma_complete(card, card->dma_port_tx,
1526					    card->dma_len_tx, card->dma_txpos);
1527			card->dmatx_in_progress = 0;
1528			do_card_interrupt += FST_TX_DMA_INT;
1529		}
1530	}
1531
1532	/*
1533	 * Have we been missing Interrupts
1534	 */
1535	int_retry_count = FST_RDL(card, interruptRetryCount);
1536	if (int_retry_count) {
1537		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1538		    card->card_no, int_retry_count);
1539		FST_WRL(card, interruptRetryCount, 0);
1540	}
1541
1542	if (!do_card_interrupt) {
1543		return IRQ_HANDLED;
1544	}
1545
1546	/* Scehdule the bottom half of the ISR */
1547	fst_q_work_item(&fst_work_intq, card->card_no);
1548	tasklet_schedule(&fst_int_task);
1549
1550	/* Drain the event queue */
1551	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1552	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1553	while (rdidx != wridx) {
1554		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1555		port = &card->ports[event & 0x03];
1556
1557		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1558
1559		switch (event) {
1560		case TE1_ALMA:
1561			dbg(DBG_INTR, "TE1 Alarm intr\n");
1562			if (port->run)
1563				fst_intr_te1_alarm(card, port);
1564			break;
1565
1566		case CTLA_CHG:
1567		case CTLB_CHG:
1568		case CTLC_CHG:
1569		case CTLD_CHG:
1570			if (port->run)
1571				fst_intr_ctlchg(card, port);
1572			break;
1573
1574		case ABTA_SENT:
1575		case ABTB_SENT:
1576		case ABTC_SENT:
1577		case ABTD_SENT:
1578			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1579			break;
1580
1581		case TXA_UNDF:
1582		case TXB_UNDF:
1583		case TXC_UNDF:
1584		case TXD_UNDF:
1585			/* Difficult to see how we'd get this given that we
1586			 * always load up the entire packet for DMA.
1587			 */
1588			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1589			port_to_dev(port)->stats.tx_errors++;
1590			port_to_dev(port)->stats.tx_fifo_errors++;
1591			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1592			    card->card_no, port->index);
1593			break;
1594
1595		case INIT_CPLT:
1596			dbg(DBG_INIT, "Card init OK intr\n");
1597			break;
1598
1599		case INIT_FAIL:
1600			dbg(DBG_INIT, "Card init FAILED intr\n");
1601			card->state = FST_IFAILED;
1602			break;
1603
1604		default:
1605			pr_err("intr: unknown card event %d. ignored\n", event);
1606			break;
1607		}
1608
1609		/* Bump and wrap the index */
1610		if (++rdidx >= MAX_CIRBUFF)
1611			rdidx = 0;
1612	}
1613	FST_WRB(card, interruptEvent.rdindex, rdidx);
1614        return IRQ_HANDLED;
1615}
1616
1617/*      Check that the shared memory configuration is one that we can handle
1618 *      and that some basic parameters are correct
1619 */
1620static void
1621check_started_ok(struct fst_card_info *card)
1622{
1623	int i;
1624
1625	/* Check structure version and end marker */
1626	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1627		pr_err("Bad shared memory version %d expected %d\n",
1628		       FST_RDW(card, smcVersion), SMC_VERSION);
1629		card->state = FST_BADVERSION;
1630		return;
1631	}
1632	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1633		pr_err("Missing shared memory signature\n");
1634		card->state = FST_BADVERSION;
1635		return;
1636	}
1637	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1638	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1639		card->state = FST_RUNNING;
1640	} else if (i == 0xFF) {
1641		pr_err("Firmware initialisation failed. Card halted\n");
1642		card->state = FST_HALTED;
1643		return;
1644	} else if (i != 0x00) {
1645		pr_err("Unknown firmware status 0x%x\n", i);
1646		card->state = FST_HALTED;
1647		return;
1648	}
1649
1650	/* Finally check the number of ports reported by firmware against the
1651	 * number we assumed at card detection. Should never happen with
1652	 * existing firmware etc so we just report it for the moment.
1653	 */
1654	if (FST_RDL(card, numberOfPorts) != card->nports) {
1655		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1656			card->card_no,
1657			FST_RDL(card, numberOfPorts), card->nports);
1658	}
1659}
1660
1661static int
1662set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1663		   struct fstioc_info *info)
1664{
1665	int err;
1666	unsigned char my_framing;
1667
1668	/* Set things according to the user set valid flags
1669	 * Several of the old options have been invalidated/replaced by the
1670	 * generic hdlc package.
1671	 */
1672	err = 0;
1673	if (info->valid & FSTVAL_PROTO) {
1674		if (info->proto == FST_RAW)
1675			port->mode = FST_RAW;
1676		else
1677			port->mode = FST_GEN_HDLC;
1678	}
1679
1680	if (info->valid & FSTVAL_CABLE)
1681		err = -EINVAL;
1682
1683	if (info->valid & FSTVAL_SPEED)
1684		err = -EINVAL;
1685
1686	if (info->valid & FSTVAL_PHASE)
1687		FST_WRB(card, portConfig[port->index].invertClock,
1688			info->invertClock);
1689	if (info->valid & FSTVAL_MODE)
1690		FST_WRW(card, cardMode, info->cardMode);
1691	if (info->valid & FSTVAL_TE1) {
1692		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1693		FST_WRB(card, suConfig.clocking, info->clockSource);
1694		my_framing = FRAMING_E1;
1695		if (info->framing == E1)
1696			my_framing = FRAMING_E1;
1697		if (info->framing == T1)
1698			my_framing = FRAMING_T1;
1699		if (info->framing == J1)
1700			my_framing = FRAMING_J1;
1701		FST_WRB(card, suConfig.framing, my_framing);
1702		FST_WRB(card, suConfig.structure, info->structure);
1703		FST_WRB(card, suConfig.interface, info->interface);
1704		FST_WRB(card, suConfig.coding, info->coding);
1705		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1706		FST_WRB(card, suConfig.equalizer, info->equalizer);
1707		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1708		FST_WRB(card, suConfig.loopMode, info->loopMode);
1709		FST_WRB(card, suConfig.range, info->range);
1710		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1711		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1712		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1713		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1714		if (info->idleCode)
1715			FST_WRB(card, suConfig.enableIdleCode, 1);
1716		else
1717			FST_WRB(card, suConfig.enableIdleCode, 0);
1718		FST_WRB(card, suConfig.idleCode, info->idleCode);
1719#if FST_DEBUG
1720		if (info->valid & FSTVAL_TE1) {
1721			printk("Setting TE1 data\n");
1722			printk("Line Speed = %d\n", info->lineSpeed);
1723			printk("Start slot = %d\n", info->startingSlot);
1724			printk("Clock source = %d\n", info->clockSource);
1725			printk("Framing = %d\n", my_framing);
1726			printk("Structure = %d\n", info->structure);
1727			printk("interface = %d\n", info->interface);
1728			printk("Coding = %d\n", info->coding);
1729			printk("Line build out = %d\n", info->lineBuildOut);
1730			printk("Equaliser = %d\n", info->equalizer);
1731			printk("Transparent mode = %d\n",
1732			       info->transparentMode);
1733			printk("Loop mode = %d\n", info->loopMode);
1734			printk("Range = %d\n", info->range);
1735			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1736			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1737			printk("LOS Threshold = %d\n", info->losThreshold);
1738			printk("Idle Code = %d\n", info->idleCode);
1739		}
1740#endif
1741	}
1742#if FST_DEBUG
1743	if (info->valid & FSTVAL_DEBUG) {
1744		fst_debug_mask = info->debug;
1745	}
1746#endif
1747
1748	return err;
1749}
1750
1751static void
1752gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1753		 struct fstioc_info *info)
1754{
1755	int i;
1756
1757	memset(info, 0, sizeof (struct fstioc_info));
1758
1759	i = port->index;
1760	info->kernelVersion = LINUX_VERSION_CODE;
1761	info->nports = card->nports;
1762	info->type = card->type;
1763	info->state = card->state;
1764	info->proto = FST_GEN_HDLC;
1765	info->index = i;
1766#if FST_DEBUG
1767	info->debug = fst_debug_mask;
1768#endif
1769
1770	/* Only mark information as valid if card is running.
1771	 * Copy the data anyway in case it is useful for diagnostics
1772	 */
1773	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1774#if FST_DEBUG
1775	    | FSTVAL_DEBUG
1776#endif
1777	    ;
1778
1779	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1780	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1781	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1782	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1783	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1784	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1785	info->clockStatus = FST_RDW(card, clockStatus[i]);
1786	info->cableStatus = FST_RDW(card, cableStatus);
1787	info->cardMode = FST_RDW(card, cardMode);
1788	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1789
1790	/*
1791	 * The T2U can report cable presence for both A or B
1792	 * in bits 0 and 1 of cableStatus.  See which port we are and
1793	 * do the mapping.
1794	 */
1795	if (card->family == FST_FAMILY_TXU) {
1796		if (port->index == 0) {
1797			/*
1798			 * Port A
1799			 */
1800			info->cableStatus = info->cableStatus & 1;
1801		} else {
1802			/*
1803			 * Port B
1804			 */
1805			info->cableStatus = info->cableStatus >> 1;
1806			info->cableStatus = info->cableStatus & 1;
1807		}
1808	}
1809	/*
1810	 * Some additional bits if we are TE1
1811	 */
1812	if (card->type == FST_TYPE_TE1) {
1813		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1814		info->clockSource = FST_RDB(card, suConfig.clocking);
1815		info->framing = FST_RDB(card, suConfig.framing);
1816		info->structure = FST_RDB(card, suConfig.structure);
1817		info->interface = FST_RDB(card, suConfig.interface);
1818		info->coding = FST_RDB(card, suConfig.coding);
1819		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1820		info->equalizer = FST_RDB(card, suConfig.equalizer);
1821		info->loopMode = FST_RDB(card, suConfig.loopMode);
1822		info->range = FST_RDB(card, suConfig.range);
1823		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1824		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1825		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1826		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1827		if (FST_RDB(card, suConfig.enableIdleCode))
1828			info->idleCode = FST_RDB(card, suConfig.idleCode);
1829		else
1830			info->idleCode = 0;
1831		info->receiveBufferDelay =
1832		    FST_RDL(card, suStatus.receiveBufferDelay);
1833		info->framingErrorCount =
1834		    FST_RDL(card, suStatus.framingErrorCount);
1835		info->codeViolationCount =
1836		    FST_RDL(card, suStatus.codeViolationCount);
1837		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1838		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1839		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1840		info->receiveRemoteAlarm =
1841		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1842		info->alarmIndicationSignal =
1843		    FST_RDB(card, suStatus.alarmIndicationSignal);
1844	}
1845}
1846
1847static int
1848fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1849	      struct ifreq *ifr)
1850{
1851	sync_serial_settings sync;
1852	int i;
1853
1854	if (ifr->ifr_settings.size != sizeof (sync)) {
1855		return -ENOMEM;
1856	}
1857
1858	if (copy_from_user
1859	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1860		return -EFAULT;
1861	}
1862
1863	if (sync.loopback)
1864		return -EINVAL;
1865
1866	i = port->index;
1867
1868	switch (ifr->ifr_settings.type) {
1869	case IF_IFACE_V35:
1870		FST_WRW(card, portConfig[i].lineInterface, V35);
1871		port->hwif = V35;
1872		break;
1873
1874	case IF_IFACE_V24:
1875		FST_WRW(card, portConfig[i].lineInterface, V24);
1876		port->hwif = V24;
1877		break;
1878
1879	case IF_IFACE_X21:
1880		FST_WRW(card, portConfig[i].lineInterface, X21);
1881		port->hwif = X21;
1882		break;
1883
1884	case IF_IFACE_X21D:
1885		FST_WRW(card, portConfig[i].lineInterface, X21D);
1886		port->hwif = X21D;
1887		break;
1888
1889	case IF_IFACE_T1:
1890		FST_WRW(card, portConfig[i].lineInterface, T1);
1891		port->hwif = T1;
1892		break;
1893
1894	case IF_IFACE_E1:
1895		FST_WRW(card, portConfig[i].lineInterface, E1);
1896		port->hwif = E1;
1897		break;
1898
1899	case IF_IFACE_SYNC_SERIAL:
1900		break;
1901
1902	default:
1903		return -EINVAL;
1904	}
1905
1906	switch (sync.clock_type) {
1907	case CLOCK_EXT:
1908		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1909		break;
1910
1911	case CLOCK_INT:
1912		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1913		break;
1914
1915	default:
1916		return -EINVAL;
1917	}
1918	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1919	return 0;
1920}
1921
1922static int
1923fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1924	      struct ifreq *ifr)
1925{
1926	sync_serial_settings sync;
1927	int i;
1928
1929	/* First check what line type is set, we'll default to reporting X.21
1930	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1931	 * changed
1932	 */
1933	switch (port->hwif) {
1934	case E1:
1935		ifr->ifr_settings.type = IF_IFACE_E1;
1936		break;
1937	case T1:
1938		ifr->ifr_settings.type = IF_IFACE_T1;
1939		break;
1940	case V35:
1941		ifr->ifr_settings.type = IF_IFACE_V35;
1942		break;
1943	case V24:
1944		ifr->ifr_settings.type = IF_IFACE_V24;
1945		break;
1946	case X21D:
1947		ifr->ifr_settings.type = IF_IFACE_X21D;
1948		break;
1949	case X21:
1950	default:
1951		ifr->ifr_settings.type = IF_IFACE_X21;
1952		break;
1953	}
1954	if (ifr->ifr_settings.size == 0) {
1955		return 0;	/* only type requested */
1956	}
1957	if (ifr->ifr_settings.size < sizeof (sync)) {
1958		return -ENOMEM;
1959	}
1960
1961	i = port->index;
1962	memset(&sync, 0, sizeof(sync));
1963	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1964	/* Lucky card and linux use same encoding here */
1965	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1966	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1967	sync.loopback = 0;
1968
1969	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1970		return -EFAULT;
1971	}
1972
1973	ifr->ifr_settings.size = sizeof (sync);
1974	return 0;
1975}
1976
1977static int
1978fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1979{
1980	struct fst_card_info *card;
1981	struct fst_port_info *port;
1982	struct fstioc_write wrthdr;
1983	struct fstioc_info info;
1984	unsigned long flags;
1985	void *buf;
1986
1987	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1988
1989	port = dev_to_port(dev);
1990	card = port->card;
1991
1992	if (!capable(CAP_NET_ADMIN))
1993		return -EPERM;
1994
1995	switch (cmd) {
1996	case FSTCPURESET:
1997		fst_cpureset(card);
1998		card->state = FST_RESET;
1999		return 0;
2000
2001	case FSTCPURELEASE:
2002		fst_cpurelease(card);
2003		card->state = FST_STARTING;
2004		return 0;
2005
2006	case FSTWRITE:		/* Code write (download) */
2007
2008		/* First copy in the header with the length and offset of data
2009		 * to write
2010		 */
2011		if (ifr->ifr_data == NULL) {
2012			return -EINVAL;
2013		}
2014		if (copy_from_user(&wrthdr, ifr->ifr_data,
2015				   sizeof (struct fstioc_write))) {
2016			return -EFAULT;
2017		}
2018
2019		/* Sanity check the parameters. We don't support partial writes
2020		 * when going over the top
2021		 */
2022		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2023		    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2024			return -ENXIO;
2025		}
2026
2027		/* Now copy the data to the card. */
2028
2029		buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2030				  wrthdr.size);
2031		if (IS_ERR(buf))
2032			return PTR_ERR(buf);
2033
2034		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2035		kfree(buf);
2036
2037		/* Writes to the memory of a card in the reset state constitute
2038		 * a download
2039		 */
2040		if (card->state == FST_RESET) {
2041			card->state = FST_DOWNLOAD;
2042		}
2043		return 0;
2044
2045	case FSTGETCONF:
2046
2047		/* If card has just been started check the shared memory config
2048		 * version and marker
2049		 */
2050		if (card->state == FST_STARTING) {
2051			check_started_ok(card);
2052
2053			/* If everything checked out enable card interrupts */
2054			if (card->state == FST_RUNNING) {
2055				spin_lock_irqsave(&card->card_lock, flags);
2056				fst_enable_intr(card);
2057				FST_WRB(card, interruptHandshake, 0xEE);
2058				spin_unlock_irqrestore(&card->card_lock, flags);
2059			}
2060		}
2061
2062		if (ifr->ifr_data == NULL) {
2063			return -EINVAL;
2064		}
2065
2066		gather_conf_info(card, port, &info);
2067
2068		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2069			return -EFAULT;
2070		}
2071		return 0;
2072
2073	case FSTSETCONF:
2074
2075		/*
2076		 * Most of the settings have been moved to the generic ioctls
2077		 * this just covers debug and board ident now
2078		 */
2079
2080		if (card->state != FST_RUNNING) {
2081			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2082			       card->card_no, card->state);
2083			return -EIO;
2084		}
2085		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2086			return -EFAULT;
2087		}
2088
2089		return set_conf_from_info(card, port, &info);
2090
2091	case SIOCWANDEV:
2092		switch (ifr->ifr_settings.type) {
2093		case IF_GET_IFACE:
2094			return fst_get_iface(card, port, ifr);
2095
2096		case IF_IFACE_SYNC_SERIAL:
2097		case IF_IFACE_V35:
2098		case IF_IFACE_V24:
2099		case IF_IFACE_X21:
2100		case IF_IFACE_X21D:
2101		case IF_IFACE_T1:
2102		case IF_IFACE_E1:
2103			return fst_set_iface(card, port, ifr);
2104
2105		case IF_PROTO_RAW:
2106			port->mode = FST_RAW;
2107			return 0;
2108
2109		case IF_GET_PROTO:
2110			if (port->mode == FST_RAW) {
2111				ifr->ifr_settings.type = IF_PROTO_RAW;
2112				return 0;
2113			}
2114			return hdlc_ioctl(dev, ifr, cmd);
2115
2116		default:
2117			port->mode = FST_GEN_HDLC;
2118			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2119			    ifr->ifr_settings.type);
2120			return hdlc_ioctl(dev, ifr, cmd);
2121		}
2122
2123	default:
2124		/* Not one of ours. Pass through to HDLC package */
2125		return hdlc_ioctl(dev, ifr, cmd);
2126	}
2127}
2128
2129static void
2130fst_openport(struct fst_port_info *port)
2131{
2132	int signals;
2133
2134	/* Only init things if card is actually running. This allows open to
2135	 * succeed for downloads etc.
2136	 */
2137	if (port->card->state == FST_RUNNING) {
2138		if (port->run) {
2139			dbg(DBG_OPEN, "open: found port already running\n");
2140
2141			fst_issue_cmd(port, STOPPORT);
2142			port->run = 0;
2143		}
2144
2145		fst_rx_config(port);
2146		fst_tx_config(port);
2147		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2148
2149		fst_issue_cmd(port, STARTPORT);
2150		port->run = 1;
2151
2152		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2153		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2154			       ? IPSTS_INDICATE : IPSTS_DCD))
2155			netif_carrier_on(port_to_dev(port));
2156		else
2157			netif_carrier_off(port_to_dev(port));
2158
2159		port->txqe = 0;
2160		port->txqs = 0;
2161	}
2162
2163}
2164
2165static void
2166fst_closeport(struct fst_port_info *port)
2167{
2168	if (port->card->state == FST_RUNNING) {
2169		if (port->run) {
2170			port->run = 0;
2171			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2172
2173			fst_issue_cmd(port, STOPPORT);
2174		} else {
2175			dbg(DBG_OPEN, "close: port not running\n");
2176		}
2177	}
2178}
2179
2180static int
2181fst_open(struct net_device *dev)
2182{
2183	int err;
2184	struct fst_port_info *port;
2185
2186	port = dev_to_port(dev);
2187	if (!try_module_get(THIS_MODULE))
2188          return -EBUSY;
2189
2190	if (port->mode != FST_RAW) {
2191		err = hdlc_open(dev);
2192		if (err) {
2193			module_put(THIS_MODULE);
2194			return err;
2195		}
2196	}
2197
2198	fst_openport(port);
2199	netif_wake_queue(dev);
2200	return 0;
2201}
2202
2203static int
2204fst_close(struct net_device *dev)
2205{
2206	struct fst_port_info *port;
2207	struct fst_card_info *card;
2208	unsigned char tx_dma_done;
2209	unsigned char rx_dma_done;
2210
2211	port = dev_to_port(dev);
2212	card = port->card;
2213
2214	tx_dma_done = inb(card->pci_conf + DMACSR1);
2215	rx_dma_done = inb(card->pci_conf + DMACSR0);
2216	dbg(DBG_OPEN,
2217	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2218	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2219	    rx_dma_done);
2220
2221	netif_stop_queue(dev);
2222	fst_closeport(dev_to_port(dev));
2223	if (port->mode != FST_RAW) {
2224		hdlc_close(dev);
2225	}
2226	module_put(THIS_MODULE);
2227	return 0;
2228}
2229
2230static int
2231fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2232{
2233	/*
2234	 * Setting currently fixed in FarSync card so we check and forget
2235	 */
2236	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2237		return -EINVAL;
2238	return 0;
2239}
2240
2241static void
2242fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2243{
2244	struct fst_port_info *port;
2245	struct fst_card_info *card;
2246
2247	port = dev_to_port(dev);
2248	card = port->card;
2249	dev->stats.tx_errors++;
2250	dev->stats.tx_aborted_errors++;
2251	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2252	    card->card_no, port->index);
2253	fst_issue_cmd(port, ABORTTX);
2254
2255	netif_trans_update(dev);
2256	netif_wake_queue(dev);
2257	port->start = 0;
2258}
2259
2260static netdev_tx_t
2261fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2262{
2263	struct fst_card_info *card;
2264	struct fst_port_info *port;
2265	unsigned long flags;
2266	int txq_length;
2267
2268	port = dev_to_port(dev);
2269	card = port->card;
2270	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2271
2272	/* Drop packet with error if we don't have carrier */
2273	if (!netif_carrier_ok(dev)) {
2274		dev_kfree_skb(skb);
2275		dev->stats.tx_errors++;
2276		dev->stats.tx_carrier_errors++;
2277		dbg(DBG_ASS,
2278		    "Tried to transmit but no carrier on card %d port %d\n",
2279		    card->card_no, port->index);
2280		return NETDEV_TX_OK;
2281	}
2282
2283	/* Drop it if it's too big! MTU failure ? */
2284	if (skb->len > LEN_TX_BUFFER) {
2285		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2286		    LEN_TX_BUFFER);
2287		dev_kfree_skb(skb);
2288		dev->stats.tx_errors++;
2289		return NETDEV_TX_OK;
2290	}
2291
2292	/*
2293	 * We are always going to queue the packet
2294	 * so that the bottom half is the only place we tx from
2295	 * Check there is room in the port txq
2296	 */
2297	spin_lock_irqsave(&card->card_lock, flags);
2298	if ((txq_length = port->txqe - port->txqs) < 0) {
2299		/*
2300		 * This is the case where the next free has wrapped but the
2301		 * last used hasn't
2302		 */
2303		txq_length = txq_length + FST_TXQ_DEPTH;
2304	}
2305	spin_unlock_irqrestore(&card->card_lock, flags);
2306	if (txq_length > fst_txq_high) {
2307		/*
2308		 * We have got enough buffers in the pipeline.  Ask the network
2309		 * layer to stop sending frames down
2310		 */
2311		netif_stop_queue(dev);
2312		port->start = 1;	/* I'm using this to signal stop sent up */
2313	}
2314
2315	if (txq_length == FST_TXQ_DEPTH - 1) {
2316		/*
2317		 * This shouldn't have happened but such is life
2318		 */
2319		dev_kfree_skb(skb);
2320		dev->stats.tx_errors++;
2321		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2322		    card->card_no, port->index);
2323		return NETDEV_TX_OK;
2324	}
2325
2326	/*
2327	 * queue the buffer
2328	 */
2329	spin_lock_irqsave(&card->card_lock, flags);
2330	port->txq[port->txqe] = skb;
2331	port->txqe++;
2332	if (port->txqe == FST_TXQ_DEPTH)
2333		port->txqe = 0;
2334	spin_unlock_irqrestore(&card->card_lock, flags);
2335
2336	/* Scehdule the bottom half which now does transmit processing */
2337	fst_q_work_item(&fst_work_txq, card->card_no);
2338	tasklet_schedule(&fst_tx_task);
2339
2340	return NETDEV_TX_OK;
2341}
2342
2343/*
2344 *      Card setup having checked hardware resources.
2345 *      Should be pretty bizarre if we get an error here (kernel memory
2346 *      exhaustion is one possibility). If we do see a problem we report it
2347 *      via a printk and leave the corresponding interface and all that follow
2348 *      disabled.
2349 */
2350static char *type_strings[] = {
2351	"no hardware",		/* Should never be seen */
2352	"FarSync T2P",
2353	"FarSync T4P",
2354	"FarSync T1U",
2355	"FarSync T2U",
2356	"FarSync T4U",
2357	"FarSync TE1"
2358};
2359
2360static int
2361fst_init_card(struct fst_card_info *card)
2362{
2363	int i;
2364	int err;
2365
2366	/* We're working on a number of ports based on the card ID. If the
2367	 * firmware detects something different later (should never happen)
2368	 * we'll have to revise it in some way then.
2369	 */
2370	for (i = 0; i < card->nports; i++) {
2371		err = register_hdlc_device(card->ports[i].dev);
2372		if (err < 0) {
2373			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2374				i, -err);
2375			while (i--)
2376				unregister_hdlc_device(card->ports[i].dev);
2377			return err;
2378		}
2379	}
2380
2381	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2382		port_to_dev(&card->ports[0])->name,
2383		port_to_dev(&card->ports[card->nports - 1])->name,
2384		type_strings[card->type], card->irq, card->nports);
2385	return 0;
2386}
2387
2388static const struct net_device_ops fst_ops = {
2389	.ndo_open       = fst_open,
2390	.ndo_stop       = fst_close,
2391	.ndo_start_xmit = hdlc_start_xmit,
2392	.ndo_do_ioctl   = fst_ioctl,
2393	.ndo_tx_timeout = fst_tx_timeout,
2394};
2395
2396/*
2397 *      Initialise card when detected.
2398 *      Returns 0 to indicate success, or errno otherwise.
2399 */
2400static int
2401fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2402{
2403	static int no_of_cards_added = 0;
2404	struct fst_card_info *card;
2405	int err = 0;
2406	int i;
2407
2408	printk_once(KERN_INFO
2409		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2410			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2411#if FST_DEBUG
2412	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2413#endif
2414	/*
2415	 * We are going to be clever and allow certain cards not to be
2416	 * configured.  An exclude list can be provided in /etc/modules.conf
2417	 */
2418	if (fst_excluded_cards != 0) {
2419		/*
2420		 * There are cards to exclude
2421		 *
2422		 */
2423		for (i = 0; i < fst_excluded_cards; i++) {
2424			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2425				pr_info("FarSync PCI device %d not assigned\n",
2426					(pdev->devfn) >> 3);
2427				return -EBUSY;
2428			}
2429		}
2430	}
2431
2432	/* Allocate driver private data */
2433	card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2434	if (card == NULL)
2435		return -ENOMEM;
2436
2437	/* Try to enable the device */
2438	if ((err = pci_enable_device(pdev)) != 0) {
2439		pr_err("Failed to enable card. Err %d\n", -err);
2440		goto enable_fail;
2441	}
2442
2443	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2444		pr_err("Failed to allocate regions. Err %d\n", -err);
2445		goto regions_fail;
2446	}
2447
2448	/* Get virtual addresses of memory regions */
2449	card->pci_conf = pci_resource_start(pdev, 1);
2450	card->phys_mem = pci_resource_start(pdev, 2);
2451	card->phys_ctlmem = pci_resource_start(pdev, 3);
2452	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2453		pr_err("Physical memory remap failed\n");
2454		err = -ENODEV;
2455		goto ioremap_physmem_fail;
2456	}
2457	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2458		pr_err("Control memory remap failed\n");
2459		err = -ENODEV;
2460		goto ioremap_ctlmem_fail;
2461	}
2462	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2463
2464	/* Register the interrupt handler */
2465	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2466		pr_err("Unable to register interrupt %d\n", card->irq);
2467		err = -ENODEV;
2468		goto irq_fail;
2469	}
2470
2471	/* Record info we need */
2472	card->irq = pdev->irq;
2473	card->type = ent->driver_data;
2474	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2475			(ent->driver_data == FST_TYPE_T4P))
2476	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2477	if ((ent->driver_data == FST_TYPE_T1U) ||
2478	    (ent->driver_data == FST_TYPE_TE1))
2479		card->nports = 1;
2480	else
2481		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2482				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2483
2484	card->state = FST_UNINIT;
2485        spin_lock_init ( &card->card_lock );
2486
2487        for ( i = 0 ; i < card->nports ; i++ ) {
2488		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2489		hdlc_device *hdlc;
2490		if (!dev) {
2491			while (i--)
2492				free_netdev(card->ports[i].dev);
2493			pr_err("FarSync: out of memory\n");
2494			err = -ENOMEM;
2495			goto hdlcdev_fail;
2496		}
2497		card->ports[i].dev    = dev;
2498                card->ports[i].card   = card;
2499                card->ports[i].index  = i;
2500                card->ports[i].run    = 0;
2501
2502		hdlc = dev_to_hdlc(dev);
2503
2504                /* Fill in the net device info */
2505		/* Since this is a PCI setup this is purely
2506		 * informational. Give them the buffer addresses
2507		 * and basic card I/O.
2508		 */
2509                dev->mem_start   = card->phys_mem
2510                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2511                dev->mem_end     = card->phys_mem
2512                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2513                dev->base_addr   = card->pci_conf;
2514                dev->irq         = card->irq;
2515
2516		dev->netdev_ops = &fst_ops;
2517		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2518		dev->watchdog_timeo = FST_TX_TIMEOUT;
2519                hdlc->attach = fst_attach;
2520                hdlc->xmit   = fst_start_xmit;
2521	}
2522
2523	card->device = pdev;
2524
2525	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2526	    card->nports, card->irq);
2527	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2528	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2529
2530	/* Reset the card's processor */
2531	fst_cpureset(card);
2532	card->state = FST_RESET;
2533
2534	/* Initialise DMA (if required) */
2535	fst_init_dma(card);
2536
2537	/* Record driver data for later use */
2538	pci_set_drvdata(pdev, card);
2539
2540	/* Remainder of card setup */
2541	if (no_of_cards_added >= FST_MAX_CARDS) {
2542		pr_err("FarSync: too many cards\n");
2543		err = -ENOMEM;
2544		goto card_array_fail;
2545	}
2546	fst_card_array[no_of_cards_added] = card;
2547	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2548	err = fst_init_card(card);
2549	if (err)
2550		goto init_card_fail;
2551	if (card->family == FST_FAMILY_TXU) {
2552		/*
2553		 * Allocate a dma buffer for transmit and receives
2554		 */
2555		card->rx_dma_handle_host =
2556		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2557				       &card->rx_dma_handle_card, GFP_KERNEL);
2558		if (card->rx_dma_handle_host == NULL) {
2559			pr_err("Could not allocate rx dma buffer\n");
2560			err = -ENOMEM;
2561			goto rx_dma_fail;
2562		}
2563		card->tx_dma_handle_host =
2564		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2565				       &card->tx_dma_handle_card, GFP_KERNEL);
2566		if (card->tx_dma_handle_host == NULL) {
2567			pr_err("Could not allocate tx dma buffer\n");
2568			err = -ENOMEM;
2569			goto tx_dma_fail;
2570		}
2571	}
2572	return 0;		/* Success */
2573
2574tx_dma_fail:
2575	dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2576			  card->rx_dma_handle_host, card->rx_dma_handle_card);
2577rx_dma_fail:
2578	fst_disable_intr(card);
2579	for (i = 0 ; i < card->nports ; i++)
2580		unregister_hdlc_device(card->ports[i].dev);
2581init_card_fail:
2582	fst_card_array[card->card_no] = NULL;
2583card_array_fail:
2584	for (i = 0 ; i < card->nports ; i++)
2585		free_netdev(card->ports[i].dev);
2586hdlcdev_fail:
2587	free_irq(card->irq, card);
2588irq_fail:
2589	iounmap(card->ctlmem);
2590ioremap_ctlmem_fail:
2591	iounmap(card->mem);
2592ioremap_physmem_fail:
2593	pci_release_regions(pdev);
2594regions_fail:
2595	pci_disable_device(pdev);
2596enable_fail:
2597	kfree(card);
2598	return err;
2599}
2600
2601/*
2602 *      Cleanup and close down a card
2603 */
2604static void
2605fst_remove_one(struct pci_dev *pdev)
2606{
2607	struct fst_card_info *card;
2608	int i;
2609
2610	card = pci_get_drvdata(pdev);
2611
2612	for (i = 0; i < card->nports; i++) {
2613		struct net_device *dev = port_to_dev(&card->ports[i]);
2614		unregister_hdlc_device(dev);
2615		free_netdev(dev);
2616	}
2617
2618	fst_disable_intr(card);
2619	free_irq(card->irq, card);
2620
2621	iounmap(card->ctlmem);
2622	iounmap(card->mem);
2623	pci_release_regions(pdev);
2624	if (card->family == FST_FAMILY_TXU) {
2625		/*
2626		 * Free dma buffers
2627		 */
2628		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2629				  card->rx_dma_handle_host,
2630				  card->rx_dma_handle_card);
2631		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2632				  card->tx_dma_handle_host,
2633				  card->tx_dma_handle_card);
2634	}
2635	fst_card_array[card->card_no] = NULL;
2636	kfree(card);
2637}
2638
2639static struct pci_driver fst_driver = {
2640	.name		= FST_NAME,
2641	.id_table	= fst_pci_dev_id,
2642	.probe		= fst_add_one,
2643	.remove		= fst_remove_one,
2644};
2645
2646static int __init
2647fst_init(void)
2648{
2649	int i;
2650
2651	for (i = 0; i < FST_MAX_CARDS; i++)
2652		fst_card_array[i] = NULL;
2653	spin_lock_init(&fst_work_q_lock);
2654	return pci_register_driver(&fst_driver);
2655}
2656
2657static void __exit
2658fst_cleanup_module(void)
2659{
2660	pr_info("FarSync WAN driver unloading\n");
2661	pci_unregister_driver(&fst_driver);
2662}
2663
2664module_init(fst_init);
2665module_exit(fst_cleanup_module);
2666