xref: /kernel/linux/linux-5.10/drivers/net/vrf.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/netdevice.h>
15#include <linux/etherdevice.h>
16#include <linux/ip.h>
17#include <linux/init.h>
18#include <linux/moduleparam.h>
19#include <linux/netfilter.h>
20#include <linux/rtnetlink.h>
21#include <net/rtnetlink.h>
22#include <linux/u64_stats_sync.h>
23#include <linux/hashtable.h>
24#include <linux/spinlock_types.h>
25
26#include <linux/inetdevice.h>
27#include <net/arp.h>
28#include <net/ip.h>
29#include <net/ip_fib.h>
30#include <net/ip6_fib.h>
31#include <net/ip6_route.h>
32#include <net/route.h>
33#include <net/addrconf.h>
34#include <net/l3mdev.h>
35#include <net/fib_rules.h>
36#include <net/netns/generic.h>
37#include <net/netfilter/nf_conntrack.h>
38
39#define DRV_NAME	"vrf"
40#define DRV_VERSION	"1.1"
41
42#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
43
44#define HT_MAP_BITS	4
45#define HASH_INITVAL	((u32)0xcafef00d)
46
47struct  vrf_map {
48	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
49	spinlock_t vmap_lock;
50
51	/* shared_tables:
52	 * count how many distinct tables do not comply with the strict mode
53	 * requirement.
54	 * shared_tables value must be 0 in order to enable the strict mode.
55	 *
56	 * example of the evolution of shared_tables:
57	 *                                                        | time
58	 * add  vrf0 --> table 100        shared_tables = 0       | t0
59	 * add  vrf1 --> table 101        shared_tables = 0       | t1
60	 * add  vrf2 --> table 100        shared_tables = 1       | t2
61	 * add  vrf3 --> table 100        shared_tables = 1       | t3
62	 * add  vrf4 --> table 101        shared_tables = 2       v t4
63	 *
64	 * shared_tables is a "step function" (or "staircase function")
65	 * and it is increased by one when the second vrf is associated to a
66	 * table.
67	 *
68	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69	 *
70	 * at t3, another dev (vrf3) is bound to the same table 100 but the
71	 * value of shared_tables is still 1.
72	 * This means that no matter how many new vrfs will register on the
73	 * table 100, the shared_tables will not increase (considering only
74	 * table 100).
75	 *
76	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77	 *
78	 * Looking at the value of shared_tables we can immediately know if
79	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80	 * can be enforced iff shared_tables = 0.
81	 *
82	 * Conversely, shared_tables is decreased when a vrf is de-associated
83	 * from a table with exactly two associated vrfs.
84	 */
85	u32 shared_tables;
86
87	bool strict_mode;
88};
89
90struct vrf_map_elem {
91	struct hlist_node hnode;
92	struct list_head vrf_list;  /* VRFs registered to this table */
93
94	u32 table_id;
95	int users;
96	int ifindex;
97};
98
99static unsigned int vrf_net_id;
100
101/* per netns vrf data */
102struct netns_vrf {
103	/* protected by rtnl lock */
104	bool add_fib_rules;
105
106	struct vrf_map vmap;
107	struct ctl_table_header	*ctl_hdr;
108};
109
110struct net_vrf {
111	struct rtable __rcu	*rth;
112	struct rt6_info	__rcu	*rt6;
113#if IS_ENABLED(CONFIG_IPV6)
114	struct fib6_table	*fib6_table;
115#endif
116	u32                     tb_id;
117
118	struct list_head	me_list;   /* entry in vrf_map_elem */
119	int			ifindex;
120};
121
122struct pcpu_dstats {
123	u64			tx_pkts;
124	u64			tx_bytes;
125	u64			tx_drps;
126	u64			rx_pkts;
127	u64			rx_bytes;
128	u64			rx_drps;
129	struct u64_stats_sync	syncp;
130};
131
132static void vrf_rx_stats(struct net_device *dev, int len)
133{
134	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135
136	u64_stats_update_begin(&dstats->syncp);
137	dstats->rx_pkts++;
138	dstats->rx_bytes += len;
139	u64_stats_update_end(&dstats->syncp);
140}
141
142static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143{
144	vrf_dev->stats.tx_errors++;
145	kfree_skb(skb);
146}
147
148static void vrf_get_stats64(struct net_device *dev,
149			    struct rtnl_link_stats64 *stats)
150{
151	int i;
152
153	for_each_possible_cpu(i) {
154		const struct pcpu_dstats *dstats;
155		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
156		unsigned int start;
157
158		dstats = per_cpu_ptr(dev->dstats, i);
159		do {
160			start = u64_stats_fetch_begin_irq(&dstats->syncp);
161			tbytes = dstats->tx_bytes;
162			tpkts = dstats->tx_pkts;
163			tdrops = dstats->tx_drps;
164			rbytes = dstats->rx_bytes;
165			rpkts = dstats->rx_pkts;
166		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167		stats->tx_bytes += tbytes;
168		stats->tx_packets += tpkts;
169		stats->tx_dropped += tdrops;
170		stats->rx_bytes += rbytes;
171		stats->rx_packets += rpkts;
172	}
173}
174
175static struct vrf_map *netns_vrf_map(struct net *net)
176{
177	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178
179	return &nn_vrf->vmap;
180}
181
182static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183{
184	return netns_vrf_map(dev_net(dev));
185}
186
187static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188{
189	struct list_head *me_head = &me->vrf_list;
190	struct net_vrf *vrf;
191
192	if (list_empty(me_head))
193		return -ENODEV;
194
195	vrf = list_first_entry(me_head, struct net_vrf, me_list);
196
197	return vrf->ifindex;
198}
199
200static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201{
202	struct vrf_map_elem *me;
203
204	me = kmalloc(sizeof(*me), flags);
205	if (!me)
206		return NULL;
207
208	return me;
209}
210
211static void vrf_map_elem_free(struct vrf_map_elem *me)
212{
213	kfree(me);
214}
215
216static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217			      int ifindex, int users)
218{
219	me->table_id = table_id;
220	me->ifindex = ifindex;
221	me->users = users;
222	INIT_LIST_HEAD(&me->vrf_list);
223}
224
225static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
226						u32 table_id)
227{
228	struct vrf_map_elem *me;
229	u32 key;
230
231	key = jhash_1word(table_id, HASH_INITVAL);
232	hash_for_each_possible(vmap->ht, me, hnode, key) {
233		if (me->table_id == table_id)
234			return me;
235	}
236
237	return NULL;
238}
239
240static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241{
242	u32 table_id = me->table_id;
243	u32 key;
244
245	key = jhash_1word(table_id, HASH_INITVAL);
246	hash_add(vmap->ht, &me->hnode, key);
247}
248
249static void vrf_map_del_elem(struct vrf_map_elem *me)
250{
251	hash_del(&me->hnode);
252}
253
254static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255{
256	spin_lock(&vmap->vmap_lock);
257}
258
259static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260{
261	spin_unlock(&vmap->vmap_lock);
262}
263
264/* called with rtnl lock held */
265static int
266vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267{
268	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269	struct net_vrf *vrf = netdev_priv(dev);
270	struct vrf_map_elem *new_me, *me;
271	u32 table_id = vrf->tb_id;
272	bool free_new_me = false;
273	int users;
274	int res;
275
276	/* we pre-allocate elements used in the spin-locked section (so that we
277	 * keep the spinlock as short as possibile).
278	 */
279	new_me = vrf_map_elem_alloc(GFP_KERNEL);
280	if (!new_me)
281		return -ENOMEM;
282
283	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
284
285	vrf_map_lock(vmap);
286
287	me = vrf_map_lookup_elem(vmap, table_id);
288	if (!me) {
289		me = new_me;
290		vrf_map_add_elem(vmap, me);
291		goto link_vrf;
292	}
293
294	/* we already have an entry in the vrf_map, so it means there is (at
295	 * least) a vrf registered on the specific table.
296	 */
297	free_new_me = true;
298	if (vmap->strict_mode) {
299		/* vrfs cannot share the same table */
300		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
301		res = -EBUSY;
302		goto unlock;
303	}
304
305link_vrf:
306	users = ++me->users;
307	if (users == 2)
308		++vmap->shared_tables;
309
310	list_add(&vrf->me_list, &me->vrf_list);
311
312	res = 0;
313
314unlock:
315	vrf_map_unlock(vmap);
316
317	/* clean-up, if needed */
318	if (free_new_me)
319		vrf_map_elem_free(new_me);
320
321	return res;
322}
323
324/* called with rtnl lock held */
325static void vrf_map_unregister_dev(struct net_device *dev)
326{
327	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328	struct net_vrf *vrf = netdev_priv(dev);
329	u32 table_id = vrf->tb_id;
330	struct vrf_map_elem *me;
331	int users;
332
333	vrf_map_lock(vmap);
334
335	me = vrf_map_lookup_elem(vmap, table_id);
336	if (!me)
337		goto unlock;
338
339	list_del(&vrf->me_list);
340
341	users = --me->users;
342	if (users == 1) {
343		--vmap->shared_tables;
344	} else if (users == 0) {
345		vrf_map_del_elem(me);
346
347		/* no one will refer to this element anymore */
348		vrf_map_elem_free(me);
349	}
350
351unlock:
352	vrf_map_unlock(vmap);
353}
354
355/* return the vrf device index associated with the table_id */
356static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357{
358	struct vrf_map *vmap = netns_vrf_map(net);
359	struct vrf_map_elem *me;
360	int ifindex;
361
362	vrf_map_lock(vmap);
363
364	if (!vmap->strict_mode) {
365		ifindex = -EPERM;
366		goto unlock;
367	}
368
369	me = vrf_map_lookup_elem(vmap, table_id);
370	if (!me) {
371		ifindex = -ENODEV;
372		goto unlock;
373	}
374
375	ifindex = vrf_map_elem_get_vrf_ifindex(me);
376
377unlock:
378	vrf_map_unlock(vmap);
379
380	return ifindex;
381}
382
383/* by default VRF devices do not have a qdisc and are expected
384 * to be created with only a single queue.
385 */
386static bool qdisc_tx_is_default(const struct net_device *dev)
387{
388	struct netdev_queue *txq;
389	struct Qdisc *qdisc;
390
391	if (dev->num_tx_queues > 1)
392		return false;
393
394	txq = netdev_get_tx_queue(dev, 0);
395	qdisc = rcu_access_pointer(txq->qdisc);
396
397	return !qdisc->enqueue;
398}
399
400/* Local traffic destined to local address. Reinsert the packet to rx
401 * path, similar to loopback handling.
402 */
403static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404			  struct dst_entry *dst)
405{
406	int len = skb->len;
407
408	skb_orphan(skb);
409
410	skb_dst_set(skb, dst);
411
412	/* set pkt_type to avoid skb hitting packet taps twice -
413	 * once on Tx and again in Rx processing
414	 */
415	skb->pkt_type = PACKET_LOOPBACK;
416
417	skb->protocol = eth_type_trans(skb, dev);
418
419	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420		vrf_rx_stats(dev, len);
421	else
422		this_cpu_inc(dev->dstats->rx_drps);
423
424	return NETDEV_TX_OK;
425}
426
427static void vrf_nf_set_untracked(struct sk_buff *skb)
428{
429	if (skb_get_nfct(skb) == 0)
430		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
431}
432
433static void vrf_nf_reset_ct(struct sk_buff *skb)
434{
435	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
436		nf_reset_ct(skb);
437}
438
439#if IS_ENABLED(CONFIG_IPV6)
440static int vrf_ip6_local_out(struct net *net, struct sock *sk,
441			     struct sk_buff *skb)
442{
443	int err;
444
445	vrf_nf_reset_ct(skb);
446
447	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
448		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
449
450	if (likely(err == 1))
451		err = dst_output(net, sk, skb);
452
453	return err;
454}
455
456static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
457					   struct net_device *dev)
458{
459	const struct ipv6hdr *iph;
460	struct net *net = dev_net(skb->dev);
461	struct flowi6 fl6;
462	int ret = NET_XMIT_DROP;
463	struct dst_entry *dst;
464	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
465
466	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
467		goto err;
468
469	iph = ipv6_hdr(skb);
470
471	memset(&fl6, 0, sizeof(fl6));
472	/* needed to match OIF rule */
473	fl6.flowi6_oif = dev->ifindex;
474	fl6.flowi6_iif = LOOPBACK_IFINDEX;
475	fl6.daddr = iph->daddr;
476	fl6.saddr = iph->saddr;
477	fl6.flowlabel = ip6_flowinfo(iph);
478	fl6.flowi6_mark = skb->mark;
479	fl6.flowi6_proto = iph->nexthdr;
480	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
481
482	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
483	if (IS_ERR(dst) || dst == dst_null)
484		goto err;
485
486	skb_dst_drop(skb);
487
488	/* if dst.dev is loopback or the VRF device again this is locally
489	 * originated traffic destined to a local address. Short circuit
490	 * to Rx path
491	 */
492	if (dst->dev == dev)
493		return vrf_local_xmit(skb, dev, dst);
494
495	skb_dst_set(skb, dst);
496
497	/* strip the ethernet header added for pass through VRF device */
498	__skb_pull(skb, skb_network_offset(skb));
499
500	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
501	ret = vrf_ip6_local_out(net, skb->sk, skb);
502	if (unlikely(net_xmit_eval(ret)))
503		dev->stats.tx_errors++;
504	else
505		ret = NET_XMIT_SUCCESS;
506
507	return ret;
508err:
509	vrf_tx_error(dev, skb);
510	return NET_XMIT_DROP;
511}
512#else
513static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
514					   struct net_device *dev)
515{
516	vrf_tx_error(dev, skb);
517	return NET_XMIT_DROP;
518}
519#endif
520
521/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
522static int vrf_ip_local_out(struct net *net, struct sock *sk,
523			    struct sk_buff *skb)
524{
525	int err;
526
527	vrf_nf_reset_ct(skb);
528
529	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
530		      skb, NULL, skb_dst(skb)->dev, dst_output);
531	if (likely(err == 1))
532		err = dst_output(net, sk, skb);
533
534	return err;
535}
536
537static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
538					   struct net_device *vrf_dev)
539{
540	struct iphdr *ip4h;
541	int ret = NET_XMIT_DROP;
542	struct flowi4 fl4;
543	struct net *net = dev_net(vrf_dev);
544	struct rtable *rt;
545
546	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
547		goto err;
548
549	ip4h = ip_hdr(skb);
550
551	memset(&fl4, 0, sizeof(fl4));
552	/* needed to match OIF rule */
553	fl4.flowi4_oif = vrf_dev->ifindex;
554	fl4.flowi4_iif = LOOPBACK_IFINDEX;
555	fl4.flowi4_tos = RT_TOS(ip4h->tos);
556	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
557	fl4.flowi4_proto = ip4h->protocol;
558	fl4.daddr = ip4h->daddr;
559	fl4.saddr = ip4h->saddr;
560
561	rt = ip_route_output_flow(net, &fl4, NULL);
562	if (IS_ERR(rt))
563		goto err;
564
565	skb_dst_drop(skb);
566
567	/* if dst.dev is loopback or the VRF device again this is locally
568	 * originated traffic destined to a local address. Short circuit
569	 * to Rx path
570	 */
571	if (rt->dst.dev == vrf_dev)
572		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
573
574	skb_dst_set(skb, &rt->dst);
575
576	/* strip the ethernet header added for pass through VRF device */
577	__skb_pull(skb, skb_network_offset(skb));
578
579	if (!ip4h->saddr) {
580		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
581					       RT_SCOPE_LINK);
582	}
583
584	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
585	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
586	if (unlikely(net_xmit_eval(ret)))
587		vrf_dev->stats.tx_errors++;
588	else
589		ret = NET_XMIT_SUCCESS;
590
591out:
592	return ret;
593err:
594	vrf_tx_error(vrf_dev, skb);
595	goto out;
596}
597
598static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
599{
600	switch (skb->protocol) {
601	case htons(ETH_P_IP):
602		return vrf_process_v4_outbound(skb, dev);
603	case htons(ETH_P_IPV6):
604		return vrf_process_v6_outbound(skb, dev);
605	default:
606		vrf_tx_error(dev, skb);
607		return NET_XMIT_DROP;
608	}
609}
610
611static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
612{
613	int len = skb->len;
614	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
615
616	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
617		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
618
619		u64_stats_update_begin(&dstats->syncp);
620		dstats->tx_pkts++;
621		dstats->tx_bytes += len;
622		u64_stats_update_end(&dstats->syncp);
623	} else {
624		this_cpu_inc(dev->dstats->tx_drps);
625	}
626
627	return ret;
628}
629
630static void vrf_finish_direct(struct sk_buff *skb)
631{
632	struct net_device *vrf_dev = skb->dev;
633
634	if (!list_empty(&vrf_dev->ptype_all) &&
635	    likely(skb_headroom(skb) >= ETH_HLEN)) {
636		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
637
638		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
639		eth_zero_addr(eth->h_dest);
640		eth->h_proto = skb->protocol;
641
642		rcu_read_lock_bh();
643		dev_queue_xmit_nit(skb, vrf_dev);
644		rcu_read_unlock_bh();
645
646		skb_pull(skb, ETH_HLEN);
647	}
648
649	vrf_nf_reset_ct(skb);
650}
651
652#if IS_ENABLED(CONFIG_IPV6)
653/* modelled after ip6_finish_output2 */
654static int vrf_finish_output6(struct net *net, struct sock *sk,
655			      struct sk_buff *skb)
656{
657	struct dst_entry *dst = skb_dst(skb);
658	struct net_device *dev = dst->dev;
659	const struct in6_addr *nexthop;
660	struct neighbour *neigh;
661	int ret;
662
663	vrf_nf_reset_ct(skb);
664
665	skb->protocol = htons(ETH_P_IPV6);
666	skb->dev = dev;
667
668	rcu_read_lock_bh();
669	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
670	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
671	if (unlikely(!neigh))
672		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
673	if (!IS_ERR(neigh)) {
674		sock_confirm_neigh(skb, neigh);
675		ret = neigh_output(neigh, skb, false);
676		rcu_read_unlock_bh();
677		return ret;
678	}
679	rcu_read_unlock_bh();
680
681	IP6_INC_STATS(dev_net(dst->dev),
682		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
683	kfree_skb(skb);
684	return -EINVAL;
685}
686
687/* modelled after ip6_output */
688static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
689{
690	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
691			    net, sk, skb, NULL, skb_dst(skb)->dev,
692			    vrf_finish_output6,
693			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
694}
695
696/* set dst on skb to send packet to us via dev_xmit path. Allows
697 * packet to go through device based features such as qdisc, netfilter
698 * hooks and packet sockets with skb->dev set to vrf device.
699 */
700static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
701					    struct sk_buff *skb)
702{
703	struct net_vrf *vrf = netdev_priv(vrf_dev);
704	struct dst_entry *dst = NULL;
705	struct rt6_info *rt6;
706
707	rcu_read_lock();
708
709	rt6 = rcu_dereference(vrf->rt6);
710	if (likely(rt6)) {
711		dst = &rt6->dst;
712		dst_hold(dst);
713	}
714
715	rcu_read_unlock();
716
717	if (unlikely(!dst)) {
718		vrf_tx_error(vrf_dev, skb);
719		return NULL;
720	}
721
722	skb_dst_drop(skb);
723	skb_dst_set(skb, dst);
724
725	return skb;
726}
727
728static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
729				     struct sk_buff *skb)
730{
731	vrf_finish_direct(skb);
732
733	return vrf_ip6_local_out(net, sk, skb);
734}
735
736static int vrf_output6_direct(struct net *net, struct sock *sk,
737			      struct sk_buff *skb)
738{
739	int err = 1;
740
741	skb->protocol = htons(ETH_P_IPV6);
742
743	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
744		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
745			      NULL, skb->dev, vrf_output6_direct_finish);
746
747	if (likely(err == 1))
748		vrf_finish_direct(skb);
749
750	return err;
751}
752
753static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
754				     struct sk_buff *skb)
755{
756	int err;
757
758	err = vrf_output6_direct(net, sk, skb);
759	if (likely(err == 1))
760		err = vrf_ip6_local_out(net, sk, skb);
761
762	return err;
763}
764
765static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
766					  struct sock *sk,
767					  struct sk_buff *skb)
768{
769	struct net *net = dev_net(vrf_dev);
770	int err;
771
772	skb->dev = vrf_dev;
773
774	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
775		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
776
777	if (likely(err == 1))
778		err = vrf_output6_direct(net, sk, skb);
779
780	if (likely(err == 1))
781		return skb;
782
783	return NULL;
784}
785
786static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
787				   struct sock *sk,
788				   struct sk_buff *skb)
789{
790	/* don't divert link scope packets */
791	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
792		return skb;
793
794	vrf_nf_set_untracked(skb);
795
796	if (qdisc_tx_is_default(vrf_dev) ||
797	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
798		return vrf_ip6_out_direct(vrf_dev, sk, skb);
799
800	return vrf_ip6_out_redirect(vrf_dev, skb);
801}
802
803/* holding rtnl */
804static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
805{
806	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
807	struct net *net = dev_net(dev);
808	struct dst_entry *dst;
809
810	RCU_INIT_POINTER(vrf->rt6, NULL);
811	synchronize_rcu();
812
813	/* move dev in dst's to loopback so this VRF device can be deleted
814	 * - based on dst_ifdown
815	 */
816	if (rt6) {
817		dst = &rt6->dst;
818		dev_put(dst->dev);
819		dst->dev = net->loopback_dev;
820		dev_hold(dst->dev);
821		dst_release(dst);
822	}
823}
824
825static int vrf_rt6_create(struct net_device *dev)
826{
827	int flags = DST_NOPOLICY | DST_NOXFRM;
828	struct net_vrf *vrf = netdev_priv(dev);
829	struct net *net = dev_net(dev);
830	struct rt6_info *rt6;
831	int rc = -ENOMEM;
832
833	/* IPv6 can be CONFIG enabled and then disabled runtime */
834	if (!ipv6_mod_enabled())
835		return 0;
836
837	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
838	if (!vrf->fib6_table)
839		goto out;
840
841	/* create a dst for routing packets out a VRF device */
842	rt6 = ip6_dst_alloc(net, dev, flags);
843	if (!rt6)
844		goto out;
845
846	rt6->dst.output	= vrf_output6;
847
848	rcu_assign_pointer(vrf->rt6, rt6);
849
850	rc = 0;
851out:
852	return rc;
853}
854#else
855static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
856				   struct sock *sk,
857				   struct sk_buff *skb)
858{
859	return skb;
860}
861
862static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
863{
864}
865
866static int vrf_rt6_create(struct net_device *dev)
867{
868	return 0;
869}
870#endif
871
872/* modelled after ip_finish_output2 */
873static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
874{
875	struct dst_entry *dst = skb_dst(skb);
876	struct rtable *rt = (struct rtable *)dst;
877	struct net_device *dev = dst->dev;
878	unsigned int hh_len = LL_RESERVED_SPACE(dev);
879	struct neighbour *neigh;
880	bool is_v6gw = false;
881	int ret = -EINVAL;
882
883	vrf_nf_reset_ct(skb);
884
885	/* Be paranoid, rather than too clever. */
886	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
887		struct sk_buff *skb2;
888
889		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
890		if (!skb2) {
891			ret = -ENOMEM;
892			goto err;
893		}
894		if (skb->sk)
895			skb_set_owner_w(skb2, skb->sk);
896
897		consume_skb(skb);
898		skb = skb2;
899	}
900
901	rcu_read_lock_bh();
902
903	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
904	if (!IS_ERR(neigh)) {
905		sock_confirm_neigh(skb, neigh);
906		/* if crossing protocols, can not use the cached header */
907		ret = neigh_output(neigh, skb, is_v6gw);
908		rcu_read_unlock_bh();
909		return ret;
910	}
911
912	rcu_read_unlock_bh();
913err:
914	vrf_tx_error(skb->dev, skb);
915	return ret;
916}
917
918static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
919{
920	struct net_device *dev = skb_dst(skb)->dev;
921
922	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
923
924	skb->dev = dev;
925	skb->protocol = htons(ETH_P_IP);
926
927	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
928			    net, sk, skb, NULL, dev,
929			    vrf_finish_output,
930			    !(IPCB(skb)->flags & IPSKB_REROUTED));
931}
932
933/* set dst on skb to send packet to us via dev_xmit path. Allows
934 * packet to go through device based features such as qdisc, netfilter
935 * hooks and packet sockets with skb->dev set to vrf device.
936 */
937static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
938					   struct sk_buff *skb)
939{
940	struct net_vrf *vrf = netdev_priv(vrf_dev);
941	struct dst_entry *dst = NULL;
942	struct rtable *rth;
943
944	rcu_read_lock();
945
946	rth = rcu_dereference(vrf->rth);
947	if (likely(rth)) {
948		dst = &rth->dst;
949		dst_hold(dst);
950	}
951
952	rcu_read_unlock();
953
954	if (unlikely(!dst)) {
955		vrf_tx_error(vrf_dev, skb);
956		return NULL;
957	}
958
959	skb_dst_drop(skb);
960	skb_dst_set(skb, dst);
961
962	return skb;
963}
964
965static int vrf_output_direct_finish(struct net *net, struct sock *sk,
966				    struct sk_buff *skb)
967{
968	vrf_finish_direct(skb);
969
970	return vrf_ip_local_out(net, sk, skb);
971}
972
973static int vrf_output_direct(struct net *net, struct sock *sk,
974			     struct sk_buff *skb)
975{
976	int err = 1;
977
978	skb->protocol = htons(ETH_P_IP);
979
980	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
981		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
982			      NULL, skb->dev, vrf_output_direct_finish);
983
984	if (likely(err == 1))
985		vrf_finish_direct(skb);
986
987	return err;
988}
989
990static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
991				    struct sk_buff *skb)
992{
993	int err;
994
995	err = vrf_output_direct(net, sk, skb);
996	if (likely(err == 1))
997		err = vrf_ip_local_out(net, sk, skb);
998
999	return err;
1000}
1001
1002static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
1003					 struct sock *sk,
1004					 struct sk_buff *skb)
1005{
1006	struct net *net = dev_net(vrf_dev);
1007	int err;
1008
1009	skb->dev = vrf_dev;
1010
1011	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1012		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1013
1014	if (likely(err == 1))
1015		err = vrf_output_direct(net, sk, skb);
1016
1017	if (likely(err == 1))
1018		return skb;
1019
1020	return NULL;
1021}
1022
1023static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1024				  struct sock *sk,
1025				  struct sk_buff *skb)
1026{
1027	/* don't divert multicast or local broadcast */
1028	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1029	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1030		return skb;
1031
1032	vrf_nf_set_untracked(skb);
1033
1034	if (qdisc_tx_is_default(vrf_dev) ||
1035	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1036		return vrf_ip_out_direct(vrf_dev, sk, skb);
1037
1038	return vrf_ip_out_redirect(vrf_dev, skb);
1039}
1040
1041/* called with rcu lock held */
1042static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1043				  struct sock *sk,
1044				  struct sk_buff *skb,
1045				  u16 proto)
1046{
1047	switch (proto) {
1048	case AF_INET:
1049		return vrf_ip_out(vrf_dev, sk, skb);
1050	case AF_INET6:
1051		return vrf_ip6_out(vrf_dev, sk, skb);
1052	}
1053
1054	return skb;
1055}
1056
1057/* holding rtnl */
1058static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1059{
1060	struct rtable *rth = rtnl_dereference(vrf->rth);
1061	struct net *net = dev_net(dev);
1062	struct dst_entry *dst;
1063
1064	RCU_INIT_POINTER(vrf->rth, NULL);
1065	synchronize_rcu();
1066
1067	/* move dev in dst's to loopback so this VRF device can be deleted
1068	 * - based on dst_ifdown
1069	 */
1070	if (rth) {
1071		dst = &rth->dst;
1072		dev_put(dst->dev);
1073		dst->dev = net->loopback_dev;
1074		dev_hold(dst->dev);
1075		dst_release(dst);
1076	}
1077}
1078
1079static int vrf_rtable_create(struct net_device *dev)
1080{
1081	struct net_vrf *vrf = netdev_priv(dev);
1082	struct rtable *rth;
1083
1084	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1085		return -ENOMEM;
1086
1087	/* create a dst for routing packets out through a VRF device */
1088	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1089	if (!rth)
1090		return -ENOMEM;
1091
1092	rth->dst.output	= vrf_output;
1093
1094	rcu_assign_pointer(vrf->rth, rth);
1095
1096	return 0;
1097}
1098
1099/**************************** device handling ********************/
1100
1101/* cycle interface to flush neighbor cache and move routes across tables */
1102static void cycle_netdev(struct net_device *dev,
1103			 struct netlink_ext_ack *extack)
1104{
1105	unsigned int flags = dev->flags;
1106	int ret;
1107
1108	if (!netif_running(dev))
1109		return;
1110
1111	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1112	if (ret >= 0)
1113		ret = dev_change_flags(dev, flags, extack);
1114
1115	if (ret < 0) {
1116		netdev_err(dev,
1117			   "Failed to cycle device %s; route tables might be wrong!\n",
1118			   dev->name);
1119	}
1120}
1121
1122static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1123			    struct netlink_ext_ack *extack)
1124{
1125	int ret;
1126
1127	/* do not allow loopback device to be enslaved to a VRF.
1128	 * The vrf device acts as the loopback for the vrf.
1129	 */
1130	if (port_dev == dev_net(dev)->loopback_dev) {
1131		NL_SET_ERR_MSG(extack,
1132			       "Can not enslave loopback device to a VRF");
1133		return -EOPNOTSUPP;
1134	}
1135
1136	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1137	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1138	if (ret < 0)
1139		goto err;
1140
1141	cycle_netdev(port_dev, extack);
1142
1143	return 0;
1144
1145err:
1146	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1147	return ret;
1148}
1149
1150static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1151			 struct netlink_ext_ack *extack)
1152{
1153	if (netif_is_l3_master(port_dev)) {
1154		NL_SET_ERR_MSG(extack,
1155			       "Can not enslave an L3 master device to a VRF");
1156		return -EINVAL;
1157	}
1158
1159	if (netif_is_l3_slave(port_dev))
1160		return -EINVAL;
1161
1162	return do_vrf_add_slave(dev, port_dev, extack);
1163}
1164
1165/* inverse of do_vrf_add_slave */
1166static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1167{
1168	netdev_upper_dev_unlink(port_dev, dev);
1169	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1170
1171	cycle_netdev(port_dev, NULL);
1172
1173	return 0;
1174}
1175
1176static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1177{
1178	return do_vrf_del_slave(dev, port_dev);
1179}
1180
1181static void vrf_dev_uninit(struct net_device *dev)
1182{
1183	struct net_vrf *vrf = netdev_priv(dev);
1184
1185	vrf_rtable_release(dev, vrf);
1186	vrf_rt6_release(dev, vrf);
1187
1188	free_percpu(dev->dstats);
1189	dev->dstats = NULL;
1190}
1191
1192static int vrf_dev_init(struct net_device *dev)
1193{
1194	struct net_vrf *vrf = netdev_priv(dev);
1195
1196	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1197	if (!dev->dstats)
1198		goto out_nomem;
1199
1200	/* create the default dst which points back to us */
1201	if (vrf_rtable_create(dev) != 0)
1202		goto out_stats;
1203
1204	if (vrf_rt6_create(dev) != 0)
1205		goto out_rth;
1206
1207	dev->flags = IFF_MASTER | IFF_NOARP;
1208
1209	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1210	dev->operstate = IF_OPER_UP;
1211	netdev_lockdep_set_classes(dev);
1212	return 0;
1213
1214out_rth:
1215	vrf_rtable_release(dev, vrf);
1216out_stats:
1217	free_percpu(dev->dstats);
1218	dev->dstats = NULL;
1219out_nomem:
1220	return -ENOMEM;
1221}
1222
1223static const struct net_device_ops vrf_netdev_ops = {
1224	.ndo_init		= vrf_dev_init,
1225	.ndo_uninit		= vrf_dev_uninit,
1226	.ndo_start_xmit		= vrf_xmit,
1227	.ndo_set_mac_address	= eth_mac_addr,
1228	.ndo_get_stats64	= vrf_get_stats64,
1229	.ndo_add_slave		= vrf_add_slave,
1230	.ndo_del_slave		= vrf_del_slave,
1231};
1232
1233static u32 vrf_fib_table(const struct net_device *dev)
1234{
1235	struct net_vrf *vrf = netdev_priv(dev);
1236
1237	return vrf->tb_id;
1238}
1239
1240static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1241{
1242	kfree_skb(skb);
1243	return 0;
1244}
1245
1246static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1247				      struct sk_buff *skb,
1248				      struct net_device *dev)
1249{
1250	struct net *net = dev_net(dev);
1251
1252	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1253		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1254
1255	return skb;
1256}
1257
1258#if IS_ENABLED(CONFIG_IPV6)
1259/* neighbor handling is done with actual device; do not want
1260 * to flip skb->dev for those ndisc packets. This really fails
1261 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1262 * a start.
1263 */
1264static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1265{
1266	const struct ipv6hdr *iph = ipv6_hdr(skb);
1267	bool rc = false;
1268
1269	if (iph->nexthdr == NEXTHDR_ICMP) {
1270		const struct icmp6hdr *icmph;
1271		struct icmp6hdr _icmph;
1272
1273		icmph = skb_header_pointer(skb, sizeof(*iph),
1274					   sizeof(_icmph), &_icmph);
1275		if (!icmph)
1276			goto out;
1277
1278		switch (icmph->icmp6_type) {
1279		case NDISC_ROUTER_SOLICITATION:
1280		case NDISC_ROUTER_ADVERTISEMENT:
1281		case NDISC_NEIGHBOUR_SOLICITATION:
1282		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1283		case NDISC_REDIRECT:
1284			rc = true;
1285			break;
1286		}
1287	}
1288
1289out:
1290	return rc;
1291}
1292
1293static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1294					     const struct net_device *dev,
1295					     struct flowi6 *fl6,
1296					     int ifindex,
1297					     const struct sk_buff *skb,
1298					     int flags)
1299{
1300	struct net_vrf *vrf = netdev_priv(dev);
1301
1302	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1303}
1304
1305static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1306			      int ifindex)
1307{
1308	const struct ipv6hdr *iph = ipv6_hdr(skb);
1309	struct flowi6 fl6 = {
1310		.flowi6_iif     = ifindex,
1311		.flowi6_mark    = skb->mark,
1312		.flowi6_proto   = iph->nexthdr,
1313		.daddr          = iph->daddr,
1314		.saddr          = iph->saddr,
1315		.flowlabel      = ip6_flowinfo(iph),
1316	};
1317	struct net *net = dev_net(vrf_dev);
1318	struct rt6_info *rt6;
1319
1320	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1321				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1322	if (unlikely(!rt6))
1323		return;
1324
1325	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1326		return;
1327
1328	skb_dst_set(skb, &rt6->dst);
1329}
1330
1331static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1332				   struct sk_buff *skb)
1333{
1334	int orig_iif = skb->skb_iif;
1335	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1336	bool is_ndisc = ipv6_ndisc_frame(skb);
1337
1338	/* loopback, multicast & non-ND link-local traffic; do not push through
1339	 * packet taps again. Reset pkt_type for upper layers to process skb.
1340	 * For strict packets with a source LLA, determine the dst using the
1341	 * original ifindex.
1342	 */
1343	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1344		skb->dev = vrf_dev;
1345		skb->skb_iif = vrf_dev->ifindex;
1346		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1347
1348		if (skb->pkt_type == PACKET_LOOPBACK)
1349			skb->pkt_type = PACKET_HOST;
1350		else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1351			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1352
1353		goto out;
1354	}
1355
1356	/* if packet is NDISC then keep the ingress interface */
1357	if (!is_ndisc) {
1358		vrf_rx_stats(vrf_dev, skb->len);
1359		skb->dev = vrf_dev;
1360		skb->skb_iif = vrf_dev->ifindex;
1361
1362		if (!list_empty(&vrf_dev->ptype_all)) {
1363			skb_push(skb, skb->mac_len);
1364			dev_queue_xmit_nit(skb, vrf_dev);
1365			skb_pull(skb, skb->mac_len);
1366		}
1367
1368		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1369	}
1370
1371	if (need_strict)
1372		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1373
1374	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1375out:
1376	return skb;
1377}
1378
1379#else
1380static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1381				   struct sk_buff *skb)
1382{
1383	return skb;
1384}
1385#endif
1386
1387static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1388				  struct sk_buff *skb)
1389{
1390	skb->dev = vrf_dev;
1391	skb->skb_iif = vrf_dev->ifindex;
1392	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1393
1394	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1395		goto out;
1396
1397	/* loopback traffic; do not push through packet taps again.
1398	 * Reset pkt_type for upper layers to process skb
1399	 */
1400	if (skb->pkt_type == PACKET_LOOPBACK) {
1401		skb->pkt_type = PACKET_HOST;
1402		goto out;
1403	}
1404
1405	vrf_rx_stats(vrf_dev, skb->len);
1406
1407	if (!list_empty(&vrf_dev->ptype_all)) {
1408		skb_push(skb, skb->mac_len);
1409		dev_queue_xmit_nit(skb, vrf_dev);
1410		skb_pull(skb, skb->mac_len);
1411	}
1412
1413	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1414out:
1415	return skb;
1416}
1417
1418/* called with rcu lock held */
1419static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1420				  struct sk_buff *skb,
1421				  u16 proto)
1422{
1423	switch (proto) {
1424	case AF_INET:
1425		return vrf_ip_rcv(vrf_dev, skb);
1426	case AF_INET6:
1427		return vrf_ip6_rcv(vrf_dev, skb);
1428	}
1429
1430	return skb;
1431}
1432
1433#if IS_ENABLED(CONFIG_IPV6)
1434/* send to link-local or multicast address via interface enslaved to
1435 * VRF device. Force lookup to VRF table without changing flow struct
1436 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1437 * is taken on the dst by this function.
1438 */
1439static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1440					      struct flowi6 *fl6)
1441{
1442	struct net *net = dev_net(dev);
1443	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1444	struct dst_entry *dst = NULL;
1445	struct rt6_info *rt;
1446
1447	/* VRF device does not have a link-local address and
1448	 * sending packets to link-local or mcast addresses over
1449	 * a VRF device does not make sense
1450	 */
1451	if (fl6->flowi6_oif == dev->ifindex) {
1452		dst = &net->ipv6.ip6_null_entry->dst;
1453		return dst;
1454	}
1455
1456	if (!ipv6_addr_any(&fl6->saddr))
1457		flags |= RT6_LOOKUP_F_HAS_SADDR;
1458
1459	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1460	if (rt)
1461		dst = &rt->dst;
1462
1463	return dst;
1464}
1465#endif
1466
1467static const struct l3mdev_ops vrf_l3mdev_ops = {
1468	.l3mdev_fib_table	= vrf_fib_table,
1469	.l3mdev_l3_rcv		= vrf_l3_rcv,
1470	.l3mdev_l3_out		= vrf_l3_out,
1471#if IS_ENABLED(CONFIG_IPV6)
1472	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1473#endif
1474};
1475
1476static void vrf_get_drvinfo(struct net_device *dev,
1477			    struct ethtool_drvinfo *info)
1478{
1479	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1480	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1481}
1482
1483static const struct ethtool_ops vrf_ethtool_ops = {
1484	.get_drvinfo	= vrf_get_drvinfo,
1485};
1486
1487static inline size_t vrf_fib_rule_nl_size(void)
1488{
1489	size_t sz;
1490
1491	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1492	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1493	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1494	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1495
1496	return sz;
1497}
1498
1499static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1500{
1501	struct fib_rule_hdr *frh;
1502	struct nlmsghdr *nlh;
1503	struct sk_buff *skb;
1504	int err;
1505
1506	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1507	    !ipv6_mod_enabled())
1508		return 0;
1509
1510	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1511	if (!skb)
1512		return -ENOMEM;
1513
1514	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1515	if (!nlh)
1516		goto nla_put_failure;
1517
1518	/* rule only needs to appear once */
1519	nlh->nlmsg_flags |= NLM_F_EXCL;
1520
1521	frh = nlmsg_data(nlh);
1522	memset(frh, 0, sizeof(*frh));
1523	frh->family = family;
1524	frh->action = FR_ACT_TO_TBL;
1525
1526	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1527		goto nla_put_failure;
1528
1529	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1530		goto nla_put_failure;
1531
1532	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1533		goto nla_put_failure;
1534
1535	nlmsg_end(skb, nlh);
1536
1537	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1538	skb->sk = dev_net(dev)->rtnl;
1539	if (add_it) {
1540		err = fib_nl_newrule(skb, nlh, NULL);
1541		if (err == -EEXIST)
1542			err = 0;
1543	} else {
1544		err = fib_nl_delrule(skb, nlh, NULL);
1545		if (err == -ENOENT)
1546			err = 0;
1547	}
1548	nlmsg_free(skb);
1549
1550	return err;
1551
1552nla_put_failure:
1553	nlmsg_free(skb);
1554
1555	return -EMSGSIZE;
1556}
1557
1558static int vrf_add_fib_rules(const struct net_device *dev)
1559{
1560	int err;
1561
1562	err = vrf_fib_rule(dev, AF_INET,  true);
1563	if (err < 0)
1564		goto out_err;
1565
1566	err = vrf_fib_rule(dev, AF_INET6, true);
1567	if (err < 0)
1568		goto ipv6_err;
1569
1570#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1571	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1572	if (err < 0)
1573		goto ipmr_err;
1574#endif
1575
1576#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1577	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1578	if (err < 0)
1579		goto ip6mr_err;
1580#endif
1581
1582	return 0;
1583
1584#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1585ip6mr_err:
1586	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1587#endif
1588
1589#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1590ipmr_err:
1591	vrf_fib_rule(dev, AF_INET6,  false);
1592#endif
1593
1594ipv6_err:
1595	vrf_fib_rule(dev, AF_INET,  false);
1596
1597out_err:
1598	netdev_err(dev, "Failed to add FIB rules.\n");
1599	return err;
1600}
1601
1602static void vrf_setup(struct net_device *dev)
1603{
1604	ether_setup(dev);
1605
1606	/* Initialize the device structure. */
1607	dev->netdev_ops = &vrf_netdev_ops;
1608	dev->l3mdev_ops = &vrf_l3mdev_ops;
1609	dev->ethtool_ops = &vrf_ethtool_ops;
1610	dev->needs_free_netdev = true;
1611
1612	/* Fill in device structure with ethernet-generic values. */
1613	eth_hw_addr_random(dev);
1614
1615	/* don't acquire vrf device's netif_tx_lock when transmitting */
1616	dev->features |= NETIF_F_LLTX;
1617
1618	/* don't allow vrf devices to change network namespaces. */
1619	dev->features |= NETIF_F_NETNS_LOCAL;
1620
1621	/* does not make sense for a VLAN to be added to a vrf device */
1622	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1623
1624	/* enable offload features */
1625	dev->features   |= NETIF_F_GSO_SOFTWARE;
1626	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1627	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1628
1629	dev->hw_features = dev->features;
1630	dev->hw_enc_features = dev->features;
1631
1632	/* default to no qdisc; user can add if desired */
1633	dev->priv_flags |= IFF_NO_QUEUE;
1634	dev->priv_flags |= IFF_NO_RX_HANDLER;
1635	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1636
1637	/* VRF devices do not care about MTU, but if the MTU is set
1638	 * too low then the ipv4 and ipv6 protocols are disabled
1639	 * which breaks networking.
1640	 */
1641	dev->min_mtu = IPV6_MIN_MTU;
1642	dev->max_mtu = IP6_MAX_MTU;
1643	dev->mtu = dev->max_mtu;
1644}
1645
1646static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1647			struct netlink_ext_ack *extack)
1648{
1649	if (tb[IFLA_ADDRESS]) {
1650		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1651			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1652			return -EINVAL;
1653		}
1654		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1655			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1656			return -EADDRNOTAVAIL;
1657		}
1658	}
1659	return 0;
1660}
1661
1662static void vrf_dellink(struct net_device *dev, struct list_head *head)
1663{
1664	struct net_device *port_dev;
1665	struct list_head *iter;
1666
1667	netdev_for_each_lower_dev(dev, port_dev, iter)
1668		vrf_del_slave(dev, port_dev);
1669
1670	vrf_map_unregister_dev(dev);
1671
1672	unregister_netdevice_queue(dev, head);
1673}
1674
1675static int vrf_newlink(struct net *src_net, struct net_device *dev,
1676		       struct nlattr *tb[], struct nlattr *data[],
1677		       struct netlink_ext_ack *extack)
1678{
1679	struct net_vrf *vrf = netdev_priv(dev);
1680	struct netns_vrf *nn_vrf;
1681	bool *add_fib_rules;
1682	struct net *net;
1683	int err;
1684
1685	if (!data || !data[IFLA_VRF_TABLE]) {
1686		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1687		return -EINVAL;
1688	}
1689
1690	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1691	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1692		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1693				    "Invalid VRF table id");
1694		return -EINVAL;
1695	}
1696
1697	dev->priv_flags |= IFF_L3MDEV_MASTER;
1698
1699	err = register_netdevice(dev);
1700	if (err)
1701		goto out;
1702
1703	/* mapping between table_id and vrf;
1704	 * note: such binding could not be done in the dev init function
1705	 * because dev->ifindex id is not available yet.
1706	 */
1707	vrf->ifindex = dev->ifindex;
1708
1709	err = vrf_map_register_dev(dev, extack);
1710	if (err) {
1711		unregister_netdevice(dev);
1712		goto out;
1713	}
1714
1715	net = dev_net(dev);
1716	nn_vrf = net_generic(net, vrf_net_id);
1717
1718	add_fib_rules = &nn_vrf->add_fib_rules;
1719	if (*add_fib_rules) {
1720		err = vrf_add_fib_rules(dev);
1721		if (err) {
1722			vrf_map_unregister_dev(dev);
1723			unregister_netdevice(dev);
1724			goto out;
1725		}
1726		*add_fib_rules = false;
1727	}
1728
1729out:
1730	return err;
1731}
1732
1733static size_t vrf_nl_getsize(const struct net_device *dev)
1734{
1735	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1736}
1737
1738static int vrf_fillinfo(struct sk_buff *skb,
1739			const struct net_device *dev)
1740{
1741	struct net_vrf *vrf = netdev_priv(dev);
1742
1743	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1744}
1745
1746static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1747				 const struct net_device *slave_dev)
1748{
1749	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1750}
1751
1752static int vrf_fill_slave_info(struct sk_buff *skb,
1753			       const struct net_device *vrf_dev,
1754			       const struct net_device *slave_dev)
1755{
1756	struct net_vrf *vrf = netdev_priv(vrf_dev);
1757
1758	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1759		return -EMSGSIZE;
1760
1761	return 0;
1762}
1763
1764static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1765	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1766};
1767
1768static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1769	.kind		= DRV_NAME,
1770	.priv_size	= sizeof(struct net_vrf),
1771
1772	.get_size	= vrf_nl_getsize,
1773	.policy		= vrf_nl_policy,
1774	.validate	= vrf_validate,
1775	.fill_info	= vrf_fillinfo,
1776
1777	.get_slave_size  = vrf_get_slave_size,
1778	.fill_slave_info = vrf_fill_slave_info,
1779
1780	.newlink	= vrf_newlink,
1781	.dellink	= vrf_dellink,
1782	.setup		= vrf_setup,
1783	.maxtype	= IFLA_VRF_MAX,
1784};
1785
1786static int vrf_device_event(struct notifier_block *unused,
1787			    unsigned long event, void *ptr)
1788{
1789	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1790
1791	/* only care about unregister events to drop slave references */
1792	if (event == NETDEV_UNREGISTER) {
1793		struct net_device *vrf_dev;
1794
1795		if (!netif_is_l3_slave(dev))
1796			goto out;
1797
1798		vrf_dev = netdev_master_upper_dev_get(dev);
1799		vrf_del_slave(vrf_dev, dev);
1800	}
1801out:
1802	return NOTIFY_DONE;
1803}
1804
1805static struct notifier_block vrf_notifier_block __read_mostly = {
1806	.notifier_call = vrf_device_event,
1807};
1808
1809static int vrf_map_init(struct vrf_map *vmap)
1810{
1811	spin_lock_init(&vmap->vmap_lock);
1812	hash_init(vmap->ht);
1813
1814	vmap->strict_mode = false;
1815
1816	return 0;
1817}
1818
1819#ifdef CONFIG_SYSCTL
1820static bool vrf_strict_mode(struct vrf_map *vmap)
1821{
1822	bool strict_mode;
1823
1824	vrf_map_lock(vmap);
1825	strict_mode = vmap->strict_mode;
1826	vrf_map_unlock(vmap);
1827
1828	return strict_mode;
1829}
1830
1831static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1832{
1833	bool *cur_mode;
1834	int res = 0;
1835
1836	vrf_map_lock(vmap);
1837
1838	cur_mode = &vmap->strict_mode;
1839	if (*cur_mode == new_mode)
1840		goto unlock;
1841
1842	if (*cur_mode) {
1843		/* disable strict mode */
1844		*cur_mode = false;
1845	} else {
1846		if (vmap->shared_tables) {
1847			/* we cannot allow strict_mode because there are some
1848			 * vrfs that share one or more tables.
1849			 */
1850			res = -EBUSY;
1851			goto unlock;
1852		}
1853
1854		/* no tables are shared among vrfs, so we can go back
1855		 * to 1:1 association between a vrf with its table.
1856		 */
1857		*cur_mode = true;
1858	}
1859
1860unlock:
1861	vrf_map_unlock(vmap);
1862
1863	return res;
1864}
1865
1866static int vrf_shared_table_handler(struct ctl_table *table, int write,
1867				    void *buffer, size_t *lenp, loff_t *ppos)
1868{
1869	struct net *net = (struct net *)table->extra1;
1870	struct vrf_map *vmap = netns_vrf_map(net);
1871	int proc_strict_mode = 0;
1872	struct ctl_table tmp = {
1873		.procname	= table->procname,
1874		.data		= &proc_strict_mode,
1875		.maxlen		= sizeof(int),
1876		.mode		= table->mode,
1877		.extra1		= SYSCTL_ZERO,
1878		.extra2		= SYSCTL_ONE,
1879	};
1880	int ret;
1881
1882	if (!write)
1883		proc_strict_mode = vrf_strict_mode(vmap);
1884
1885	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1886
1887	if (write && ret == 0)
1888		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1889
1890	return ret;
1891}
1892
1893static const struct ctl_table vrf_table[] = {
1894	{
1895		.procname	= "strict_mode",
1896		.data		= NULL,
1897		.maxlen		= sizeof(int),
1898		.mode		= 0644,
1899		.proc_handler	= vrf_shared_table_handler,
1900		/* set by the vrf_netns_init */
1901		.extra1		= NULL,
1902	},
1903	{ },
1904};
1905
1906static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1907{
1908	struct ctl_table *table;
1909
1910	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1911	if (!table)
1912		return -ENOMEM;
1913
1914	/* init the extra1 parameter with the reference to current netns */
1915	table[0].extra1 = net;
1916
1917	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1918	if (!nn_vrf->ctl_hdr) {
1919		kfree(table);
1920		return -ENOMEM;
1921	}
1922
1923	return 0;
1924}
1925
1926static void vrf_netns_exit_sysctl(struct net *net)
1927{
1928	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1929	struct ctl_table *table;
1930
1931	table = nn_vrf->ctl_hdr->ctl_table_arg;
1932	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1933	kfree(table);
1934}
1935#else
1936static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1937{
1938	return 0;
1939}
1940
1941static void vrf_netns_exit_sysctl(struct net *net)
1942{
1943}
1944#endif
1945
1946/* Initialize per network namespace state */
1947static int __net_init vrf_netns_init(struct net *net)
1948{
1949	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1950
1951	nn_vrf->add_fib_rules = true;
1952	vrf_map_init(&nn_vrf->vmap);
1953
1954	return vrf_netns_init_sysctl(net, nn_vrf);
1955}
1956
1957static void __net_exit vrf_netns_exit(struct net *net)
1958{
1959	vrf_netns_exit_sysctl(net);
1960}
1961
1962static struct pernet_operations vrf_net_ops __net_initdata = {
1963	.init = vrf_netns_init,
1964	.exit = vrf_netns_exit,
1965	.id   = &vrf_net_id,
1966	.size = sizeof(struct netns_vrf),
1967};
1968
1969static int __init vrf_init_module(void)
1970{
1971	int rc;
1972
1973	register_netdevice_notifier(&vrf_notifier_block);
1974
1975	rc = register_pernet_subsys(&vrf_net_ops);
1976	if (rc < 0)
1977		goto error;
1978
1979	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1980					  vrf_ifindex_lookup_by_table_id);
1981	if (rc < 0)
1982		goto unreg_pernet;
1983
1984	rc = rtnl_link_register(&vrf_link_ops);
1985	if (rc < 0)
1986		goto table_lookup_unreg;
1987
1988	return 0;
1989
1990table_lookup_unreg:
1991	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1992				       vrf_ifindex_lookup_by_table_id);
1993
1994unreg_pernet:
1995	unregister_pernet_subsys(&vrf_net_ops);
1996
1997error:
1998	unregister_netdevice_notifier(&vrf_notifier_block);
1999	return rc;
2000}
2001
2002module_init(vrf_init_module);
2003MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2004MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2005MODULE_LICENSE("GPL");
2006MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2007MODULE_VERSION(DRV_VERSION);
2008