1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * PPP async serial channel driver for Linux. 4 * 5 * Copyright 1999 Paul Mackerras. 6 * 7 * This driver provides the encapsulation and framing for sending 8 * and receiving PPP frames over async serial lines. It relies on 9 * the generic PPP layer to give it frames to send and to process 10 * received frames. It implements the PPP line discipline. 11 * 12 * Part of the code in this driver was inspired by the old async-only 13 * PPP driver, written by Michael Callahan and Al Longyear, and 14 * subsequently hacked by Paul Mackerras. 15 */ 16 17#include <linux/module.h> 18#include <linux/kernel.h> 19#include <linux/skbuff.h> 20#include <linux/tty.h> 21#include <linux/netdevice.h> 22#include <linux/poll.h> 23#include <linux/crc-ccitt.h> 24#include <linux/ppp_defs.h> 25#include <linux/ppp-ioctl.h> 26#include <linux/ppp_channel.h> 27#include <linux/spinlock.h> 28#include <linux/init.h> 29#include <linux/interrupt.h> 30#include <linux/jiffies.h> 31#include <linux/slab.h> 32#include <asm/unaligned.h> 33#include <linux/uaccess.h> 34#include <asm/string.h> 35 36#define PPP_VERSION "2.4.2" 37 38#define OBUFSIZE 4096 39 40/* Structure for storing local state. */ 41struct asyncppp { 42 struct tty_struct *tty; 43 unsigned int flags; 44 unsigned int state; 45 unsigned int rbits; 46 int mru; 47 spinlock_t xmit_lock; 48 spinlock_t recv_lock; 49 unsigned long xmit_flags; 50 u32 xaccm[8]; 51 u32 raccm; 52 unsigned int bytes_sent; 53 unsigned int bytes_rcvd; 54 55 struct sk_buff *tpkt; 56 int tpkt_pos; 57 u16 tfcs; 58 unsigned char *optr; 59 unsigned char *olim; 60 unsigned long last_xmit; 61 62 struct sk_buff *rpkt; 63 int lcp_fcs; 64 struct sk_buff_head rqueue; 65 66 struct tasklet_struct tsk; 67 68 refcount_t refcnt; 69 struct completion dead; 70 struct ppp_channel chan; /* interface to generic ppp layer */ 71 unsigned char obuf[OBUFSIZE]; 72}; 73 74/* Bit numbers in xmit_flags */ 75#define XMIT_WAKEUP 0 76#define XMIT_FULL 1 77#define XMIT_BUSY 2 78 79/* State bits */ 80#define SC_TOSS 1 81#define SC_ESCAPE 2 82#define SC_PREV_ERROR 4 83 84/* Bits in rbits */ 85#define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 86 87static int flag_time = HZ; 88module_param(flag_time, int, 0); 89MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 90MODULE_LICENSE("GPL"); 91MODULE_ALIAS_LDISC(N_PPP); 92 93/* 94 * Prototypes. 95 */ 96static int ppp_async_encode(struct asyncppp *ap); 97static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 98static int ppp_async_push(struct asyncppp *ap); 99static void ppp_async_flush_output(struct asyncppp *ap); 100static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 101 char *flags, int count); 102static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 103 unsigned long arg); 104static void ppp_async_process(unsigned long arg); 105 106static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 107 int len, int inbound); 108 109static const struct ppp_channel_ops async_ops = { 110 .start_xmit = ppp_async_send, 111 .ioctl = ppp_async_ioctl, 112}; 113 114/* 115 * Routines implementing the PPP line discipline. 116 */ 117 118/* 119 * We have a potential race on dereferencing tty->disc_data, 120 * because the tty layer provides no locking at all - thus one 121 * cpu could be running ppp_asynctty_receive while another 122 * calls ppp_asynctty_close, which zeroes tty->disc_data and 123 * frees the memory that ppp_asynctty_receive is using. The best 124 * way to fix this is to use a rwlock in the tty struct, but for now 125 * we use a single global rwlock for all ttys in ppp line discipline. 126 * 127 * FIXME: this is no longer true. The _close path for the ldisc is 128 * now guaranteed to be sane. 129 */ 130static DEFINE_RWLOCK(disc_data_lock); 131 132static struct asyncppp *ap_get(struct tty_struct *tty) 133{ 134 struct asyncppp *ap; 135 136 read_lock(&disc_data_lock); 137 ap = tty->disc_data; 138 if (ap != NULL) 139 refcount_inc(&ap->refcnt); 140 read_unlock(&disc_data_lock); 141 return ap; 142} 143 144static void ap_put(struct asyncppp *ap) 145{ 146 if (refcount_dec_and_test(&ap->refcnt)) 147 complete(&ap->dead); 148} 149 150/* 151 * Called when a tty is put into PPP line discipline. Called in process 152 * context. 153 */ 154static int 155ppp_asynctty_open(struct tty_struct *tty) 156{ 157 struct asyncppp *ap; 158 int err; 159 int speed; 160 161 if (tty->ops->write == NULL) 162 return -EOPNOTSUPP; 163 164 err = -ENOMEM; 165 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 166 if (!ap) 167 goto out; 168 169 /* initialize the asyncppp structure */ 170 ap->tty = tty; 171 ap->mru = PPP_MRU; 172 spin_lock_init(&ap->xmit_lock); 173 spin_lock_init(&ap->recv_lock); 174 ap->xaccm[0] = ~0U; 175 ap->xaccm[3] = 0x60000000U; 176 ap->raccm = ~0U; 177 ap->optr = ap->obuf; 178 ap->olim = ap->obuf; 179 ap->lcp_fcs = -1; 180 181 skb_queue_head_init(&ap->rqueue); 182 tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap); 183 184 refcount_set(&ap->refcnt, 1); 185 init_completion(&ap->dead); 186 187 ap->chan.private = ap; 188 ap->chan.ops = &async_ops; 189 ap->chan.mtu = PPP_MRU; 190 speed = tty_get_baud_rate(tty); 191 ap->chan.speed = speed; 192 err = ppp_register_channel(&ap->chan); 193 if (err) 194 goto out_free; 195 196 tty->disc_data = ap; 197 tty->receive_room = 65536; 198 return 0; 199 200 out_free: 201 kfree(ap); 202 out: 203 return err; 204} 205 206/* 207 * Called when the tty is put into another line discipline 208 * or it hangs up. We have to wait for any cpu currently 209 * executing in any of the other ppp_asynctty_* routines to 210 * finish before we can call ppp_unregister_channel and free 211 * the asyncppp struct. This routine must be called from 212 * process context, not interrupt or softirq context. 213 */ 214static void 215ppp_asynctty_close(struct tty_struct *tty) 216{ 217 struct asyncppp *ap; 218 219 write_lock_irq(&disc_data_lock); 220 ap = tty->disc_data; 221 tty->disc_data = NULL; 222 write_unlock_irq(&disc_data_lock); 223 if (!ap) 224 return; 225 226 /* 227 * We have now ensured that nobody can start using ap from now 228 * on, but we have to wait for all existing users to finish. 229 * Note that ppp_unregister_channel ensures that no calls to 230 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 231 * by the time it returns. 232 */ 233 if (!refcount_dec_and_test(&ap->refcnt)) 234 wait_for_completion(&ap->dead); 235 tasklet_kill(&ap->tsk); 236 237 ppp_unregister_channel(&ap->chan); 238 kfree_skb(ap->rpkt); 239 skb_queue_purge(&ap->rqueue); 240 kfree_skb(ap->tpkt); 241 kfree(ap); 242} 243 244/* 245 * Called on tty hangup in process context. 246 * 247 * Wait for I/O to driver to complete and unregister PPP channel. 248 * This is already done by the close routine, so just call that. 249 */ 250static int ppp_asynctty_hangup(struct tty_struct *tty) 251{ 252 ppp_asynctty_close(tty); 253 return 0; 254} 255 256/* 257 * Read does nothing - no data is ever available this way. 258 * Pppd reads and writes packets via /dev/ppp instead. 259 */ 260static ssize_t 261ppp_asynctty_read(struct tty_struct *tty, struct file *file, 262 unsigned char *buf, size_t count, 263 void **cookie, unsigned long offset) 264{ 265 return -EAGAIN; 266} 267 268/* 269 * Write on the tty does nothing, the packets all come in 270 * from the ppp generic stuff. 271 */ 272static ssize_t 273ppp_asynctty_write(struct tty_struct *tty, struct file *file, 274 const unsigned char *buf, size_t count) 275{ 276 return -EAGAIN; 277} 278 279/* 280 * Called in process context only. May be re-entered by multiple 281 * ioctl calling threads. 282 */ 283 284static int 285ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file, 286 unsigned int cmd, unsigned long arg) 287{ 288 struct asyncppp *ap = ap_get(tty); 289 int err, val; 290 int __user *p = (int __user *)arg; 291 292 if (!ap) 293 return -ENXIO; 294 err = -EFAULT; 295 switch (cmd) { 296 case PPPIOCGCHAN: 297 err = -EFAULT; 298 if (put_user(ppp_channel_index(&ap->chan), p)) 299 break; 300 err = 0; 301 break; 302 303 case PPPIOCGUNIT: 304 err = -EFAULT; 305 if (put_user(ppp_unit_number(&ap->chan), p)) 306 break; 307 err = 0; 308 break; 309 310 case TCFLSH: 311 /* flush our buffers and the serial port's buffer */ 312 if (arg == TCIOFLUSH || arg == TCOFLUSH) 313 ppp_async_flush_output(ap); 314 err = n_tty_ioctl_helper(tty, file, cmd, arg); 315 break; 316 317 case FIONREAD: 318 val = 0; 319 if (put_user(val, p)) 320 break; 321 err = 0; 322 break; 323 324 default: 325 /* Try the various mode ioctls */ 326 err = tty_mode_ioctl(tty, file, cmd, arg); 327 } 328 329 ap_put(ap); 330 return err; 331} 332 333/* No kernel lock - fine */ 334static __poll_t 335ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) 336{ 337 return 0; 338} 339 340/* May sleep, don't call from interrupt level or with interrupts disabled */ 341static void 342ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, 343 char *cflags, int count) 344{ 345 struct asyncppp *ap = ap_get(tty); 346 unsigned long flags; 347 348 if (!ap) 349 return; 350 spin_lock_irqsave(&ap->recv_lock, flags); 351 ppp_async_input(ap, buf, cflags, count); 352 spin_unlock_irqrestore(&ap->recv_lock, flags); 353 if (!skb_queue_empty(&ap->rqueue)) 354 tasklet_schedule(&ap->tsk); 355 ap_put(ap); 356 tty_unthrottle(tty); 357} 358 359static void 360ppp_asynctty_wakeup(struct tty_struct *tty) 361{ 362 struct asyncppp *ap = ap_get(tty); 363 364 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 365 if (!ap) 366 return; 367 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 368 tasklet_schedule(&ap->tsk); 369 ap_put(ap); 370} 371 372 373static struct tty_ldisc_ops ppp_ldisc = { 374 .owner = THIS_MODULE, 375 .magic = TTY_LDISC_MAGIC, 376 .name = "ppp", 377 .open = ppp_asynctty_open, 378 .close = ppp_asynctty_close, 379 .hangup = ppp_asynctty_hangup, 380 .read = ppp_asynctty_read, 381 .write = ppp_asynctty_write, 382 .ioctl = ppp_asynctty_ioctl, 383 .poll = ppp_asynctty_poll, 384 .receive_buf = ppp_asynctty_receive, 385 .write_wakeup = ppp_asynctty_wakeup, 386}; 387 388static int __init 389ppp_async_init(void) 390{ 391 int err; 392 393 err = tty_register_ldisc(N_PPP, &ppp_ldisc); 394 if (err != 0) 395 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 396 err); 397 return err; 398} 399 400/* 401 * The following routines provide the PPP channel interface. 402 */ 403static int 404ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 405{ 406 struct asyncppp *ap = chan->private; 407 void __user *argp = (void __user *)arg; 408 int __user *p = argp; 409 int err, val; 410 u32 accm[8]; 411 412 err = -EFAULT; 413 switch (cmd) { 414 case PPPIOCGFLAGS: 415 val = ap->flags | ap->rbits; 416 if (put_user(val, p)) 417 break; 418 err = 0; 419 break; 420 case PPPIOCSFLAGS: 421 if (get_user(val, p)) 422 break; 423 ap->flags = val & ~SC_RCV_BITS; 424 spin_lock_irq(&ap->recv_lock); 425 ap->rbits = val & SC_RCV_BITS; 426 spin_unlock_irq(&ap->recv_lock); 427 err = 0; 428 break; 429 430 case PPPIOCGASYNCMAP: 431 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 432 break; 433 err = 0; 434 break; 435 case PPPIOCSASYNCMAP: 436 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 437 break; 438 err = 0; 439 break; 440 441 case PPPIOCGRASYNCMAP: 442 if (put_user(ap->raccm, (u32 __user *)argp)) 443 break; 444 err = 0; 445 break; 446 case PPPIOCSRASYNCMAP: 447 if (get_user(ap->raccm, (u32 __user *)argp)) 448 break; 449 err = 0; 450 break; 451 452 case PPPIOCGXASYNCMAP: 453 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 454 break; 455 err = 0; 456 break; 457 case PPPIOCSXASYNCMAP: 458 if (copy_from_user(accm, argp, sizeof(accm))) 459 break; 460 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 461 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 462 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 463 err = 0; 464 break; 465 466 case PPPIOCGMRU: 467 if (put_user(ap->mru, p)) 468 break; 469 err = 0; 470 break; 471 case PPPIOCSMRU: 472 if (get_user(val, p)) 473 break; 474 if (val > U16_MAX) { 475 err = -EINVAL; 476 break; 477 } 478 if (val < PPP_MRU) 479 val = PPP_MRU; 480 ap->mru = val; 481 err = 0; 482 break; 483 484 default: 485 err = -ENOTTY; 486 } 487 488 return err; 489} 490 491/* 492 * This is called at softirq level to deliver received packets 493 * to the ppp_generic code, and to tell the ppp_generic code 494 * if we can accept more output now. 495 */ 496static void ppp_async_process(unsigned long arg) 497{ 498 struct asyncppp *ap = (struct asyncppp *) arg; 499 struct sk_buff *skb; 500 501 /* process received packets */ 502 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 503 if (skb->cb[0]) 504 ppp_input_error(&ap->chan, 0); 505 ppp_input(&ap->chan, skb); 506 } 507 508 /* try to push more stuff out */ 509 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 510 ppp_output_wakeup(&ap->chan); 511} 512 513/* 514 * Procedures for encapsulation and framing. 515 */ 516 517/* 518 * Procedure to encode the data for async serial transmission. 519 * Does octet stuffing (escaping), puts the address/control bytes 520 * on if A/C compression is disabled, and does protocol compression. 521 * Assumes ap->tpkt != 0 on entry. 522 * Returns 1 if we finished the current frame, 0 otherwise. 523 */ 524 525#define PUT_BYTE(ap, buf, c, islcp) do { \ 526 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 527 *buf++ = PPP_ESCAPE; \ 528 *buf++ = c ^ PPP_TRANS; \ 529 } else \ 530 *buf++ = c; \ 531} while (0) 532 533static int 534ppp_async_encode(struct asyncppp *ap) 535{ 536 int fcs, i, count, c, proto; 537 unsigned char *buf, *buflim; 538 unsigned char *data; 539 int islcp; 540 541 buf = ap->obuf; 542 ap->olim = buf; 543 ap->optr = buf; 544 i = ap->tpkt_pos; 545 data = ap->tpkt->data; 546 count = ap->tpkt->len; 547 fcs = ap->tfcs; 548 proto = get_unaligned_be16(data); 549 550 /* 551 * LCP packets with code values between 1 (configure-reqest) 552 * and 7 (code-reject) must be sent as though no options 553 * had been negotiated. 554 */ 555 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; 556 557 if (i == 0) { 558 if (islcp) 559 async_lcp_peek(ap, data, count, 0); 560 561 /* 562 * Start of a new packet - insert the leading FLAG 563 * character if necessary. 564 */ 565 if (islcp || flag_time == 0 || 566 time_after_eq(jiffies, ap->last_xmit + flag_time)) 567 *buf++ = PPP_FLAG; 568 ap->last_xmit = jiffies; 569 fcs = PPP_INITFCS; 570 571 /* 572 * Put in the address/control bytes if necessary 573 */ 574 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 575 PUT_BYTE(ap, buf, 0xff, islcp); 576 fcs = PPP_FCS(fcs, 0xff); 577 PUT_BYTE(ap, buf, 0x03, islcp); 578 fcs = PPP_FCS(fcs, 0x03); 579 } 580 } 581 582 /* 583 * Once we put in the last byte, we need to put in the FCS 584 * and closing flag, so make sure there is at least 7 bytes 585 * of free space in the output buffer. 586 */ 587 buflim = ap->obuf + OBUFSIZE - 6; 588 while (i < count && buf < buflim) { 589 c = data[i++]; 590 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 591 continue; /* compress protocol field */ 592 fcs = PPP_FCS(fcs, c); 593 PUT_BYTE(ap, buf, c, islcp); 594 } 595 596 if (i < count) { 597 /* 598 * Remember where we are up to in this packet. 599 */ 600 ap->olim = buf; 601 ap->tpkt_pos = i; 602 ap->tfcs = fcs; 603 return 0; 604 } 605 606 /* 607 * We have finished the packet. Add the FCS and flag. 608 */ 609 fcs = ~fcs; 610 c = fcs & 0xff; 611 PUT_BYTE(ap, buf, c, islcp); 612 c = (fcs >> 8) & 0xff; 613 PUT_BYTE(ap, buf, c, islcp); 614 *buf++ = PPP_FLAG; 615 ap->olim = buf; 616 617 consume_skb(ap->tpkt); 618 ap->tpkt = NULL; 619 return 1; 620} 621 622/* 623 * Transmit-side routines. 624 */ 625 626/* 627 * Send a packet to the peer over an async tty line. 628 * Returns 1 iff the packet was accepted. 629 * If the packet was not accepted, we will call ppp_output_wakeup 630 * at some later time. 631 */ 632static int 633ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 634{ 635 struct asyncppp *ap = chan->private; 636 637 ppp_async_push(ap); 638 639 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 640 return 0; /* already full */ 641 ap->tpkt = skb; 642 ap->tpkt_pos = 0; 643 644 ppp_async_push(ap); 645 return 1; 646} 647 648/* 649 * Push as much data as possible out to the tty. 650 */ 651static int 652ppp_async_push(struct asyncppp *ap) 653{ 654 int avail, sent, done = 0; 655 struct tty_struct *tty = ap->tty; 656 int tty_stuffed = 0; 657 658 /* 659 * We can get called recursively here if the tty write 660 * function calls our wakeup function. This can happen 661 * for example on a pty with both the master and slave 662 * set to PPP line discipline. 663 * We use the XMIT_BUSY bit to detect this and get out, 664 * leaving the XMIT_WAKEUP bit set to tell the other 665 * instance that it may now be able to write more now. 666 */ 667 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 668 return 0; 669 spin_lock_bh(&ap->xmit_lock); 670 for (;;) { 671 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 672 tty_stuffed = 0; 673 if (!tty_stuffed && ap->optr < ap->olim) { 674 avail = ap->olim - ap->optr; 675 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 676 sent = tty->ops->write(tty, ap->optr, avail); 677 if (sent < 0) 678 goto flush; /* error, e.g. loss of CD */ 679 ap->optr += sent; 680 if (sent < avail) 681 tty_stuffed = 1; 682 continue; 683 } 684 if (ap->optr >= ap->olim && ap->tpkt) { 685 if (ppp_async_encode(ap)) { 686 /* finished processing ap->tpkt */ 687 clear_bit(XMIT_FULL, &ap->xmit_flags); 688 done = 1; 689 } 690 continue; 691 } 692 /* 693 * We haven't made any progress this time around. 694 * Clear XMIT_BUSY to let other callers in, but 695 * after doing so we have to check if anyone set 696 * XMIT_WAKEUP since we last checked it. If they 697 * did, we should try again to set XMIT_BUSY and go 698 * around again in case XMIT_BUSY was still set when 699 * the other caller tried. 700 */ 701 clear_bit(XMIT_BUSY, &ap->xmit_flags); 702 /* any more work to do? if not, exit the loop */ 703 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) || 704 (!tty_stuffed && ap->tpkt))) 705 break; 706 /* more work to do, see if we can do it now */ 707 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 708 break; 709 } 710 spin_unlock_bh(&ap->xmit_lock); 711 return done; 712 713flush: 714 clear_bit(XMIT_BUSY, &ap->xmit_flags); 715 if (ap->tpkt) { 716 kfree_skb(ap->tpkt); 717 ap->tpkt = NULL; 718 clear_bit(XMIT_FULL, &ap->xmit_flags); 719 done = 1; 720 } 721 ap->optr = ap->olim; 722 spin_unlock_bh(&ap->xmit_lock); 723 return done; 724} 725 726/* 727 * Flush output from our internal buffers. 728 * Called for the TCFLSH ioctl. Can be entered in parallel 729 * but this is covered by the xmit_lock. 730 */ 731static void 732ppp_async_flush_output(struct asyncppp *ap) 733{ 734 int done = 0; 735 736 spin_lock_bh(&ap->xmit_lock); 737 ap->optr = ap->olim; 738 if (ap->tpkt != NULL) { 739 kfree_skb(ap->tpkt); 740 ap->tpkt = NULL; 741 clear_bit(XMIT_FULL, &ap->xmit_flags); 742 done = 1; 743 } 744 spin_unlock_bh(&ap->xmit_lock); 745 if (done) 746 ppp_output_wakeup(&ap->chan); 747} 748 749/* 750 * Receive-side routines. 751 */ 752 753/* see how many ordinary chars there are at the start of buf */ 754static inline int 755scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 756{ 757 int i, c; 758 759 for (i = 0; i < count; ++i) { 760 c = buf[i]; 761 if (c == PPP_ESCAPE || c == PPP_FLAG || 762 (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 763 break; 764 } 765 return i; 766} 767 768/* called when a flag is seen - do end-of-packet processing */ 769static void 770process_input_packet(struct asyncppp *ap) 771{ 772 struct sk_buff *skb; 773 unsigned char *p; 774 unsigned int len, fcs; 775 776 skb = ap->rpkt; 777 if (ap->state & (SC_TOSS | SC_ESCAPE)) 778 goto err; 779 780 if (skb == NULL) 781 return; /* 0-length packet */ 782 783 /* check the FCS */ 784 p = skb->data; 785 len = skb->len; 786 if (len < 3) 787 goto err; /* too short */ 788 fcs = PPP_INITFCS; 789 for (; len > 0; --len) 790 fcs = PPP_FCS(fcs, *p++); 791 if (fcs != PPP_GOODFCS) 792 goto err; /* bad FCS */ 793 skb_trim(skb, skb->len - 2); 794 795 /* check for address/control and protocol compression */ 796 p = skb->data; 797 if (p[0] == PPP_ALLSTATIONS) { 798 /* chop off address/control */ 799 if (p[1] != PPP_UI || skb->len < 3) 800 goto err; 801 p = skb_pull(skb, 2); 802 } 803 804 /* If protocol field is not compressed, it can be LCP packet */ 805 if (!(p[0] & 0x01)) { 806 unsigned int proto; 807 808 if (skb->len < 2) 809 goto err; 810 proto = (p[0] << 8) + p[1]; 811 if (proto == PPP_LCP) 812 async_lcp_peek(ap, p, skb->len, 1); 813 } 814 815 /* queue the frame to be processed */ 816 skb->cb[0] = ap->state; 817 skb_queue_tail(&ap->rqueue, skb); 818 ap->rpkt = NULL; 819 ap->state = 0; 820 return; 821 822 err: 823 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 824 ap->state = SC_PREV_ERROR; 825 if (skb) { 826 /* make skb appear as freshly allocated */ 827 skb_trim(skb, 0); 828 skb_reserve(skb, - skb_headroom(skb)); 829 } 830} 831 832/* Called when the tty driver has data for us. Runs parallel with the 833 other ldisc functions but will not be re-entered */ 834 835static void 836ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 837 char *flags, int count) 838{ 839 struct sk_buff *skb; 840 int c, i, j, n, s, f; 841 unsigned char *sp; 842 843 /* update bits used for 8-bit cleanness detection */ 844 if (~ap->rbits & SC_RCV_BITS) { 845 s = 0; 846 for (i = 0; i < count; ++i) { 847 c = buf[i]; 848 if (flags && flags[i] != 0) 849 continue; 850 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 851 c = ((c >> 4) ^ c) & 0xf; 852 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 853 } 854 ap->rbits |= s; 855 } 856 857 while (count > 0) { 858 /* scan through and see how many chars we can do in bulk */ 859 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 860 n = 1; 861 else 862 n = scan_ordinary(ap, buf, count); 863 864 f = 0; 865 if (flags && (ap->state & SC_TOSS) == 0) { 866 /* check the flags to see if any char had an error */ 867 for (j = 0; j < n; ++j) 868 if ((f = flags[j]) != 0) 869 break; 870 } 871 if (f != 0) { 872 /* start tossing */ 873 ap->state |= SC_TOSS; 874 875 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 876 /* stuff the chars in the skb */ 877 skb = ap->rpkt; 878 if (!skb) { 879 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 880 if (!skb) 881 goto nomem; 882 ap->rpkt = skb; 883 } 884 if (skb->len == 0) { 885 /* Try to get the payload 4-byte aligned. 886 * This should match the 887 * PPP_ALLSTATIONS/PPP_UI/compressed tests in 888 * process_input_packet, but we do not have 889 * enough chars here to test buf[1] and buf[2]. 890 */ 891 if (buf[0] != PPP_ALLSTATIONS) 892 skb_reserve(skb, 2 + (buf[0] & 1)); 893 } 894 if (n > skb_tailroom(skb)) { 895 /* packet overflowed MRU */ 896 ap->state |= SC_TOSS; 897 } else { 898 sp = skb_put_data(skb, buf, n); 899 if (ap->state & SC_ESCAPE) { 900 sp[0] ^= PPP_TRANS; 901 ap->state &= ~SC_ESCAPE; 902 } 903 } 904 } 905 906 if (n >= count) 907 break; 908 909 c = buf[n]; 910 if (flags != NULL && flags[n] != 0) { 911 ap->state |= SC_TOSS; 912 } else if (c == PPP_FLAG) { 913 process_input_packet(ap); 914 } else if (c == PPP_ESCAPE) { 915 ap->state |= SC_ESCAPE; 916 } else if (I_IXON(ap->tty)) { 917 if (c == START_CHAR(ap->tty)) 918 start_tty(ap->tty); 919 else if (c == STOP_CHAR(ap->tty)) 920 stop_tty(ap->tty); 921 } 922 /* otherwise it's a char in the recv ACCM */ 923 ++n; 924 925 buf += n; 926 if (flags) 927 flags += n; 928 count -= n; 929 } 930 return; 931 932 nomem: 933 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 934 ap->state |= SC_TOSS; 935} 936 937/* 938 * We look at LCP frames going past so that we can notice 939 * and react to the LCP configure-ack from the peer. 940 * In the situation where the peer has been sent a configure-ack 941 * already, LCP is up once it has sent its configure-ack 942 * so the immediately following packet can be sent with the 943 * configured LCP options. This allows us to process the following 944 * packet correctly without pppd needing to respond quickly. 945 * 946 * We only respond to the received configure-ack if we have just 947 * sent a configure-request, and the configure-ack contains the 948 * same data (this is checked using a 16-bit crc of the data). 949 */ 950#define CONFREQ 1 /* LCP code field values */ 951#define CONFACK 2 952#define LCP_MRU 1 /* LCP option numbers */ 953#define LCP_ASYNCMAP 2 954 955static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 956 int len, int inbound) 957{ 958 int dlen, fcs, i, code; 959 u32 val; 960 961 data += 2; /* skip protocol bytes */ 962 len -= 2; 963 if (len < 4) /* 4 = code, ID, length */ 964 return; 965 code = data[0]; 966 if (code != CONFACK && code != CONFREQ) 967 return; 968 dlen = get_unaligned_be16(data + 2); 969 if (len < dlen) 970 return; /* packet got truncated or length is bogus */ 971 972 if (code == (inbound? CONFACK: CONFREQ)) { 973 /* 974 * sent confreq or received confack: 975 * calculate the crc of the data from the ID field on. 976 */ 977 fcs = PPP_INITFCS; 978 for (i = 1; i < dlen; ++i) 979 fcs = PPP_FCS(fcs, data[i]); 980 981 if (!inbound) { 982 /* outbound confreq - remember the crc for later */ 983 ap->lcp_fcs = fcs; 984 return; 985 } 986 987 /* received confack, check the crc */ 988 fcs ^= ap->lcp_fcs; 989 ap->lcp_fcs = -1; 990 if (fcs != 0) 991 return; 992 } else if (inbound) 993 return; /* not interested in received confreq */ 994 995 /* process the options in the confack */ 996 data += 4; 997 dlen -= 4; 998 /* data[0] is code, data[1] is length */ 999 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 1000 switch (data[0]) { 1001 case LCP_MRU: 1002 val = get_unaligned_be16(data + 2); 1003 if (inbound) 1004 ap->mru = val; 1005 else 1006 ap->chan.mtu = val; 1007 break; 1008 case LCP_ASYNCMAP: 1009 val = get_unaligned_be32(data + 2); 1010 if (inbound) 1011 ap->raccm = val; 1012 else 1013 ap->xaccm[0] = val; 1014 break; 1015 } 1016 dlen -= data[1]; 1017 data += data[1]; 1018 } 1019} 1020 1021static void __exit ppp_async_cleanup(void) 1022{ 1023 if (tty_unregister_ldisc(N_PPP) != 0) 1024 printk(KERN_ERR "failed to unregister PPP line discipline\n"); 1025} 1026 1027module_init(ppp_async_init); 1028module_exit(ppp_async_cleanup); 1029