1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 *   Haiyang Zhang <haiyangz@microsoft.com>
7 *   Hank Janssen  <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/delay.h>
18#include <linux/netdevice.h>
19#include <linux/inetdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/pci.h>
22#include <linux/skbuff.h>
23#include <linux/if_vlan.h>
24#include <linux/in.h>
25#include <linux/slab.h>
26#include <linux/rtnetlink.h>
27#include <linux/netpoll.h>
28#include <linux/bpf.h>
29
30#include <net/arp.h>
31#include <net/route.h>
32#include <net/sock.h>
33#include <net/pkt_sched.h>
34#include <net/checksum.h>
35#include <net/ip6_checksum.h>
36
37#include "hyperv_net.h"
38
39#define RING_SIZE_MIN	64
40#define RETRY_US_LO	5000
41#define RETRY_US_HI	10000
42#define RETRY_MAX	2000	/* >10 sec */
43
44#define LINKCHANGE_INT (2 * HZ)
45#define VF_TAKEOVER_INT (HZ / 10)
46
47static unsigned int ring_size __ro_after_init = 128;
48module_param(ring_size, uint, 0444);
49MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
50unsigned int netvsc_ring_bytes __ro_after_init;
51
52static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53				NETIF_MSG_LINK | NETIF_MSG_IFUP |
54				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55				NETIF_MSG_TX_ERR;
56
57static int debug = -1;
58module_param(debug, int, 0444);
59MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61static LIST_HEAD(netvsc_dev_list);
62
63static void netvsc_change_rx_flags(struct net_device *net, int change)
64{
65	struct net_device_context *ndev_ctx = netdev_priv(net);
66	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
67	int inc;
68
69	if (!vf_netdev)
70		return;
71
72	if (change & IFF_PROMISC) {
73		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
74		dev_set_promiscuity(vf_netdev, inc);
75	}
76
77	if (change & IFF_ALLMULTI) {
78		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
79		dev_set_allmulti(vf_netdev, inc);
80	}
81}
82
83static void netvsc_set_rx_mode(struct net_device *net)
84{
85	struct net_device_context *ndev_ctx = netdev_priv(net);
86	struct net_device *vf_netdev;
87	struct netvsc_device *nvdev;
88
89	rcu_read_lock();
90	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
91	if (vf_netdev) {
92		dev_uc_sync(vf_netdev, net);
93		dev_mc_sync(vf_netdev, net);
94	}
95
96	nvdev = rcu_dereference(ndev_ctx->nvdev);
97	if (nvdev)
98		rndis_filter_update(nvdev);
99	rcu_read_unlock();
100}
101
102static void netvsc_tx_enable(struct netvsc_device *nvscdev,
103			     struct net_device *ndev)
104{
105	nvscdev->tx_disable = false;
106	virt_wmb(); /* ensure queue wake up mechanism is on */
107
108	netif_tx_wake_all_queues(ndev);
109}
110
111static int netvsc_open(struct net_device *net)
112{
113	struct net_device_context *ndev_ctx = netdev_priv(net);
114	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116	struct rndis_device *rdev;
117	int ret = 0;
118
119	netif_carrier_off(net);
120
121	/* Open up the device */
122	ret = rndis_filter_open(nvdev);
123	if (ret != 0) {
124		netdev_err(net, "unable to open device (ret %d).\n", ret);
125		return ret;
126	}
127
128	rdev = nvdev->extension;
129	if (!rdev->link_state) {
130		netif_carrier_on(net);
131		netvsc_tx_enable(nvdev, net);
132	}
133
134	if (vf_netdev) {
135		/* Setting synthetic device up transparently sets
136		 * slave as up. If open fails, then slave will be
137		 * still be offline (and not used).
138		 */
139		ret = dev_open(vf_netdev, NULL);
140		if (ret)
141			netdev_warn(net,
142				    "unable to open slave: %s: %d\n",
143				    vf_netdev->name, ret);
144	}
145	return 0;
146}
147
148static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149{
150	unsigned int retry = 0;
151	int i;
152
153	/* Ensure pending bytes in ring are read */
154	for (;;) {
155		u32 aread = 0;
156
157		for (i = 0; i < nvdev->num_chn; i++) {
158			struct vmbus_channel *chn
159				= nvdev->chan_table[i].channel;
160
161			if (!chn)
162				continue;
163
164			/* make sure receive not running now */
165			napi_synchronize(&nvdev->chan_table[i].napi);
166
167			aread = hv_get_bytes_to_read(&chn->inbound);
168			if (aread)
169				break;
170
171			aread = hv_get_bytes_to_read(&chn->outbound);
172			if (aread)
173				break;
174		}
175
176		if (aread == 0)
177			return 0;
178
179		if (++retry > RETRY_MAX)
180			return -ETIMEDOUT;
181
182		usleep_range(RETRY_US_LO, RETRY_US_HI);
183	}
184}
185
186static void netvsc_tx_disable(struct netvsc_device *nvscdev,
187			      struct net_device *ndev)
188{
189	if (nvscdev) {
190		nvscdev->tx_disable = true;
191		virt_wmb(); /* ensure txq will not wake up after stop */
192	}
193
194	netif_tx_disable(ndev);
195}
196
197static int netvsc_close(struct net_device *net)
198{
199	struct net_device_context *net_device_ctx = netdev_priv(net);
200	struct net_device *vf_netdev
201		= rtnl_dereference(net_device_ctx->vf_netdev);
202	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
203	int ret;
204
205	netvsc_tx_disable(nvdev, net);
206
207	/* No need to close rndis filter if it is removed already */
208	if (!nvdev)
209		return 0;
210
211	ret = rndis_filter_close(nvdev);
212	if (ret != 0) {
213		netdev_err(net, "unable to close device (ret %d).\n", ret);
214		return ret;
215	}
216
217	ret = netvsc_wait_until_empty(nvdev);
218	if (ret)
219		netdev_err(net, "Ring buffer not empty after closing rndis\n");
220
221	if (vf_netdev)
222		dev_close(vf_netdev);
223
224	return ret;
225}
226
227static inline void *init_ppi_data(struct rndis_message *msg,
228				  u32 ppi_size, u32 pkt_type)
229{
230	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
231	struct rndis_per_packet_info *ppi;
232
233	rndis_pkt->data_offset += ppi_size;
234	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
235		+ rndis_pkt->per_pkt_info_len;
236
237	ppi->size = ppi_size;
238	ppi->type = pkt_type;
239	ppi->internal = 0;
240	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
241
242	rndis_pkt->per_pkt_info_len += ppi_size;
243
244	return ppi + 1;
245}
246
247/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
248 * packets. We can use ethtool to change UDP hash level when necessary.
249 */
250static inline u32 netvsc_get_hash(
251	struct sk_buff *skb,
252	const struct net_device_context *ndc)
253{
254	struct flow_keys flow;
255	u32 hash, pkt_proto = 0;
256	static u32 hashrnd __read_mostly;
257
258	net_get_random_once(&hashrnd, sizeof(hashrnd));
259
260	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
261		return 0;
262
263	switch (flow.basic.ip_proto) {
264	case IPPROTO_TCP:
265		if (flow.basic.n_proto == htons(ETH_P_IP))
266			pkt_proto = HV_TCP4_L4HASH;
267		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
268			pkt_proto = HV_TCP6_L4HASH;
269
270		break;
271
272	case IPPROTO_UDP:
273		if (flow.basic.n_proto == htons(ETH_P_IP))
274			pkt_proto = HV_UDP4_L4HASH;
275		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276			pkt_proto = HV_UDP6_L4HASH;
277
278		break;
279	}
280
281	if (pkt_proto & ndc->l4_hash) {
282		return skb_get_hash(skb);
283	} else {
284		if (flow.basic.n_proto == htons(ETH_P_IP))
285			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
286		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
287			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
288		else
289			return 0;
290
291		__skb_set_sw_hash(skb, hash, false);
292	}
293
294	return hash;
295}
296
297static inline int netvsc_get_tx_queue(struct net_device *ndev,
298				      struct sk_buff *skb, int old_idx)
299{
300	const struct net_device_context *ndc = netdev_priv(ndev);
301	struct sock *sk = skb->sk;
302	int q_idx;
303
304	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
305			      (VRSS_SEND_TAB_SIZE - 1)];
306
307	/* If queue index changed record the new value */
308	if (q_idx != old_idx &&
309	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
310		sk_tx_queue_set(sk, q_idx);
311
312	return q_idx;
313}
314
315/*
316 * Select queue for transmit.
317 *
318 * If a valid queue has already been assigned, then use that.
319 * Otherwise compute tx queue based on hash and the send table.
320 *
321 * This is basically similar to default (netdev_pick_tx) with the added step
322 * of using the host send_table when no other queue has been assigned.
323 *
324 * TODO support XPS - but get_xps_queue not exported
325 */
326static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
327{
328	int q_idx = sk_tx_queue_get(skb->sk);
329
330	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
331		/* If forwarding a packet, we use the recorded queue when
332		 * available for better cache locality.
333		 */
334		if (skb_rx_queue_recorded(skb))
335			q_idx = skb_get_rx_queue(skb);
336		else
337			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
338	}
339
340	return q_idx;
341}
342
343static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
344			       struct net_device *sb_dev)
345{
346	struct net_device_context *ndc = netdev_priv(ndev);
347	struct net_device *vf_netdev;
348	u16 txq;
349
350	rcu_read_lock();
351	vf_netdev = rcu_dereference(ndc->vf_netdev);
352	if (vf_netdev) {
353		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
354
355		if (vf_ops->ndo_select_queue)
356			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
357		else
358			txq = netdev_pick_tx(vf_netdev, skb, NULL);
359
360		/* Record the queue selected by VF so that it can be
361		 * used for common case where VF has more queues than
362		 * the synthetic device.
363		 */
364		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
365	} else {
366		txq = netvsc_pick_tx(ndev, skb);
367	}
368	rcu_read_unlock();
369
370	while (txq >= ndev->real_num_tx_queues)
371		txq -= ndev->real_num_tx_queues;
372
373	return txq;
374}
375
376static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
377		       struct hv_page_buffer *pb)
378{
379	int j = 0;
380
381	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
382	offset = offset & ~HV_HYP_PAGE_MASK;
383
384	while (len > 0) {
385		unsigned long bytes;
386
387		bytes = HV_HYP_PAGE_SIZE - offset;
388		if (bytes > len)
389			bytes = len;
390		pb[j].pfn = hvpfn;
391		pb[j].offset = offset;
392		pb[j].len = bytes;
393
394		offset += bytes;
395		len -= bytes;
396
397		if (offset == HV_HYP_PAGE_SIZE && len) {
398			hvpfn++;
399			offset = 0;
400			j++;
401		}
402	}
403
404	return j + 1;
405}
406
407static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
408			   struct hv_netvsc_packet *packet,
409			   struct hv_page_buffer *pb)
410{
411	u32 slots_used = 0;
412	char *data = skb->data;
413	int frags = skb_shinfo(skb)->nr_frags;
414	int i;
415
416	/* The packet is laid out thus:
417	 * 1. hdr: RNDIS header and PPI
418	 * 2. skb linear data
419	 * 3. skb fragment data
420	 */
421	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
422				  offset_in_hvpage(hdr),
423				  len,
424				  &pb[slots_used]);
425
426	packet->rmsg_size = len;
427	packet->rmsg_pgcnt = slots_used;
428
429	slots_used += fill_pg_buf(virt_to_hvpfn(data),
430				  offset_in_hvpage(data),
431				  skb_headlen(skb),
432				  &pb[slots_used]);
433
434	for (i = 0; i < frags; i++) {
435		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
438					  skb_frag_off(frag),
439					  skb_frag_size(frag),
440					  &pb[slots_used]);
441	}
442	return slots_used;
443}
444
445static int count_skb_frag_slots(struct sk_buff *skb)
446{
447	int i, frags = skb_shinfo(skb)->nr_frags;
448	int pages = 0;
449
450	for (i = 0; i < frags; i++) {
451		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
452		unsigned long size = skb_frag_size(frag);
453		unsigned long offset = skb_frag_off(frag);
454
455		/* Skip unused frames from start of page */
456		offset &= ~HV_HYP_PAGE_MASK;
457		pages += HVPFN_UP(offset + size);
458	}
459	return pages;
460}
461
462static int netvsc_get_slots(struct sk_buff *skb)
463{
464	char *data = skb->data;
465	unsigned int offset = offset_in_hvpage(data);
466	unsigned int len = skb_headlen(skb);
467	int slots;
468	int frag_slots;
469
470	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
471	frag_slots = count_skb_frag_slots(skb);
472	return slots + frag_slots;
473}
474
475static u32 net_checksum_info(struct sk_buff *skb)
476{
477	if (skb->protocol == htons(ETH_P_IP)) {
478		struct iphdr *ip = ip_hdr(skb);
479
480		if (ip->protocol == IPPROTO_TCP)
481			return TRANSPORT_INFO_IPV4_TCP;
482		else if (ip->protocol == IPPROTO_UDP)
483			return TRANSPORT_INFO_IPV4_UDP;
484	} else {
485		struct ipv6hdr *ip6 = ipv6_hdr(skb);
486
487		if (ip6->nexthdr == IPPROTO_TCP)
488			return TRANSPORT_INFO_IPV6_TCP;
489		else if (ip6->nexthdr == IPPROTO_UDP)
490			return TRANSPORT_INFO_IPV6_UDP;
491	}
492
493	return TRANSPORT_INFO_NOT_IP;
494}
495
496/* Send skb on the slave VF device. */
497static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
498			  struct sk_buff *skb)
499{
500	struct net_device_context *ndev_ctx = netdev_priv(net);
501	unsigned int len = skb->len;
502	int rc;
503
504	skb->dev = vf_netdev;
505	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
506
507	rc = dev_queue_xmit(skb);
508	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
509		struct netvsc_vf_pcpu_stats *pcpu_stats
510			= this_cpu_ptr(ndev_ctx->vf_stats);
511
512		u64_stats_update_begin(&pcpu_stats->syncp);
513		pcpu_stats->tx_packets++;
514		pcpu_stats->tx_bytes += len;
515		u64_stats_update_end(&pcpu_stats->syncp);
516	} else {
517		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
518	}
519
520	return rc;
521}
522
523static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
524{
525	struct net_device_context *net_device_ctx = netdev_priv(net);
526	struct hv_netvsc_packet *packet = NULL;
527	int ret;
528	unsigned int num_data_pgs;
529	struct rndis_message *rndis_msg;
530	struct net_device *vf_netdev;
531	u32 rndis_msg_size;
532	u32 hash;
533	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534
535	/* If VF is present and up then redirect packets to it.
536	 * Skip the VF if it is marked down or has no carrier.
537	 * If netpoll is in uses, then VF can not be used either.
538	 */
539	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
540	if (vf_netdev && netif_running(vf_netdev) &&
541	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net))
542		return netvsc_vf_xmit(net, vf_netdev, skb);
543
544	/* We will atmost need two pages to describe the rndis
545	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
546	 * of pages in a single packet. If skb is scattered around
547	 * more pages we try linearizing it.
548	 */
549
550	num_data_pgs = netvsc_get_slots(skb) + 2;
551
552	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
553		++net_device_ctx->eth_stats.tx_scattered;
554
555		if (skb_linearize(skb))
556			goto no_memory;
557
558		num_data_pgs = netvsc_get_slots(skb) + 2;
559		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
560			++net_device_ctx->eth_stats.tx_too_big;
561			goto drop;
562		}
563	}
564
565	/*
566	 * Place the rndis header in the skb head room and
567	 * the skb->cb will be used for hv_netvsc_packet
568	 * structure.
569	 */
570	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
571	if (ret)
572		goto no_memory;
573
574	/* Use the skb control buffer for building up the packet */
575	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
576			sizeof_field(struct sk_buff, cb));
577	packet = (struct hv_netvsc_packet *)skb->cb;
578
579	packet->q_idx = skb_get_queue_mapping(skb);
580
581	packet->total_data_buflen = skb->len;
582	packet->total_bytes = skb->len;
583	packet->total_packets = 1;
584
585	rndis_msg = (struct rndis_message *)skb->head;
586
587	/* Add the rndis header */
588	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
589	rndis_msg->msg_len = packet->total_data_buflen;
590
591	rndis_msg->msg.pkt = (struct rndis_packet) {
592		.data_offset = sizeof(struct rndis_packet),
593		.data_len = packet->total_data_buflen,
594		.per_pkt_info_offset = sizeof(struct rndis_packet),
595	};
596
597	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
598
599	hash = skb_get_hash_raw(skb);
600	if (hash != 0 && net->real_num_tx_queues > 1) {
601		u32 *hash_info;
602
603		rndis_msg_size += NDIS_HASH_PPI_SIZE;
604		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
605					  NBL_HASH_VALUE);
606		*hash_info = hash;
607	}
608
609	/* When using AF_PACKET we need to drop VLAN header from
610	 * the frame and update the SKB to allow the HOST OS
611	 * to transmit the 802.1Q packet
612	 */
613	if (skb->protocol == htons(ETH_P_8021Q)) {
614		u16 vlan_tci;
615
616		skb_reset_mac_header(skb);
617		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
618			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
619				++net_device_ctx->eth_stats.vlan_error;
620				goto drop;
621			}
622
623			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
624			/* Update the NDIS header pkt lengths */
625			packet->total_data_buflen -= VLAN_HLEN;
626			packet->total_bytes -= VLAN_HLEN;
627			rndis_msg->msg_len = packet->total_data_buflen;
628			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
629		}
630	}
631
632	if (skb_vlan_tag_present(skb)) {
633		struct ndis_pkt_8021q_info *vlan;
634
635		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
636		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
637				     IEEE_8021Q_INFO);
638
639		vlan->value = 0;
640		vlan->vlanid = skb_vlan_tag_get_id(skb);
641		vlan->cfi = skb_vlan_tag_get_cfi(skb);
642		vlan->pri = skb_vlan_tag_get_prio(skb);
643	}
644
645	if (skb_is_gso(skb)) {
646		struct ndis_tcp_lso_info *lso_info;
647
648		rndis_msg_size += NDIS_LSO_PPI_SIZE;
649		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
650					 TCP_LARGESEND_PKTINFO);
651
652		lso_info->value = 0;
653		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
654		if (skb->protocol == htons(ETH_P_IP)) {
655			lso_info->lso_v2_transmit.ip_version =
656				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
657			ip_hdr(skb)->tot_len = 0;
658			ip_hdr(skb)->check = 0;
659			tcp_hdr(skb)->check =
660				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
661						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
662		} else {
663			lso_info->lso_v2_transmit.ip_version =
664				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
665			tcp_v6_gso_csum_prep(skb);
666		}
667		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
668		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
669	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
670		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
671			struct ndis_tcp_ip_checksum_info *csum_info;
672
673			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
674			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
675						  TCPIP_CHKSUM_PKTINFO);
676
677			csum_info->value = 0;
678			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
679
680			if (skb->protocol == htons(ETH_P_IP)) {
681				csum_info->transmit.is_ipv4 = 1;
682
683				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
684					csum_info->transmit.tcp_checksum = 1;
685				else
686					csum_info->transmit.udp_checksum = 1;
687			} else {
688				csum_info->transmit.is_ipv6 = 1;
689
690				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
691					csum_info->transmit.tcp_checksum = 1;
692				else
693					csum_info->transmit.udp_checksum = 1;
694			}
695		} else {
696			/* Can't do offload of this type of checksum */
697			if (skb_checksum_help(skb))
698				goto drop;
699		}
700	}
701
702	/* Start filling in the page buffers with the rndis hdr */
703	rndis_msg->msg_len += rndis_msg_size;
704	packet->total_data_buflen = rndis_msg->msg_len;
705	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
706					       skb, packet, pb);
707
708	/* timestamp packet in software */
709	skb_tx_timestamp(skb);
710
711	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
712	if (likely(ret == 0))
713		return NETDEV_TX_OK;
714
715	if (ret == -EAGAIN) {
716		++net_device_ctx->eth_stats.tx_busy;
717		return NETDEV_TX_BUSY;
718	}
719
720	if (ret == -ENOSPC)
721		++net_device_ctx->eth_stats.tx_no_space;
722
723drop:
724	dev_kfree_skb_any(skb);
725	net->stats.tx_dropped++;
726
727	return NETDEV_TX_OK;
728
729no_memory:
730	++net_device_ctx->eth_stats.tx_no_memory;
731	goto drop;
732}
733
734static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
735				     struct net_device *ndev)
736{
737	return netvsc_xmit(skb, ndev, false);
738}
739
740/*
741 * netvsc_linkstatus_callback - Link up/down notification
742 */
743void netvsc_linkstatus_callback(struct net_device *net,
744				struct rndis_message *resp)
745{
746	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747	struct net_device_context *ndev_ctx = netdev_priv(net);
748	struct netvsc_reconfig *event;
749	unsigned long flags;
750
751	/* Ensure the packet is big enough to access its fields */
752	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
754			   resp->msg_len);
755		return;
756	}
757
758	/* Update the physical link speed when changing to another vSwitch */
759	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
760		u32 speed;
761
762		speed = *(u32 *)((void *)indicate
763				 + indicate->status_buf_offset) / 10000;
764		ndev_ctx->speed = speed;
765		return;
766	}
767
768	/* Handle these link change statuses below */
769	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
770	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
771	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
772		return;
773
774	if (net->reg_state != NETREG_REGISTERED)
775		return;
776
777	event = kzalloc(sizeof(*event), GFP_ATOMIC);
778	if (!event)
779		return;
780	event->event = indicate->status;
781
782	spin_lock_irqsave(&ndev_ctx->lock, flags);
783	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
784	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
785
786	schedule_delayed_work(&ndev_ctx->dwork, 0);
787}
788
789static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
790{
791	int rc;
792
793	skb->queue_mapping = skb_get_rx_queue(skb);
794	__skb_push(skb, ETH_HLEN);
795
796	rc = netvsc_xmit(skb, ndev, true);
797
798	if (dev_xmit_complete(rc))
799		return;
800
801	dev_kfree_skb_any(skb);
802	ndev->stats.tx_dropped++;
803}
804
805static void netvsc_comp_ipcsum(struct sk_buff *skb)
806{
807	struct iphdr *iph = (struct iphdr *)skb->data;
808
809	iph->check = 0;
810	iph->check = ip_fast_csum(iph, iph->ihl);
811}
812
813static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
814					     struct netvsc_channel *nvchan,
815					     struct xdp_buff *xdp)
816{
817	struct napi_struct *napi = &nvchan->napi;
818	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
819	const struct ndis_tcp_ip_checksum_info *csum_info =
820						nvchan->rsc.csum_info;
821	const u32 *hash_info = nvchan->rsc.hash_info;
822	struct sk_buff *skb;
823	void *xbuf = xdp->data_hard_start;
824	int i;
825
826	if (xbuf) {
827		unsigned int hdroom = xdp->data - xdp->data_hard_start;
828		unsigned int xlen = xdp->data_end - xdp->data;
829		unsigned int frag_size = xdp->frame_sz;
830
831		skb = build_skb(xbuf, frag_size);
832
833		if (!skb) {
834			__free_page(virt_to_page(xbuf));
835			return NULL;
836		}
837
838		skb_reserve(skb, hdroom);
839		skb_put(skb, xlen);
840		skb->dev = napi->dev;
841	} else {
842		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
843
844		if (!skb)
845			return NULL;
846
847		/* Copy to skb. This copy is needed here since the memory
848		 * pointed by hv_netvsc_packet cannot be deallocated.
849		 */
850		for (i = 0; i < nvchan->rsc.cnt; i++)
851			skb_put_data(skb, nvchan->rsc.data[i],
852				     nvchan->rsc.len[i]);
853	}
854
855	skb->protocol = eth_type_trans(skb, net);
856
857	/* skb is already created with CHECKSUM_NONE */
858	skb_checksum_none_assert(skb);
859
860	/* Incoming packets may have IP header checksum verified by the host.
861	 * They may not have IP header checksum computed after coalescing.
862	 * We compute it here if the flags are set, because on Linux, the IP
863	 * checksum is always checked.
864	 */
865	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
866	    csum_info->receive.ip_checksum_succeeded &&
867	    skb->protocol == htons(ETH_P_IP))
868		netvsc_comp_ipcsum(skb);
869
870	/* Do L4 checksum offload if enabled and present. */
871	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
872		if (csum_info->receive.tcp_checksum_succeeded ||
873		    csum_info->receive.udp_checksum_succeeded)
874			skb->ip_summed = CHECKSUM_UNNECESSARY;
875	}
876
877	if (hash_info && (net->features & NETIF_F_RXHASH))
878		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
879
880	if (vlan) {
881		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
882			(vlan->cfi ? VLAN_CFI_MASK : 0);
883
884		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
885				       vlan_tci);
886	}
887
888	return skb;
889}
890
891/*
892 * netvsc_recv_callback -  Callback when we receive a packet from the
893 * "wire" on the specified device.
894 */
895int netvsc_recv_callback(struct net_device *net,
896			 struct netvsc_device *net_device,
897			 struct netvsc_channel *nvchan)
898{
899	struct net_device_context *net_device_ctx = netdev_priv(net);
900	struct vmbus_channel *channel = nvchan->channel;
901	u16 q_idx = channel->offermsg.offer.sub_channel_index;
902	struct sk_buff *skb;
903	struct netvsc_stats *rx_stats = &nvchan->rx_stats;
904	struct xdp_buff xdp;
905	u32 act;
906
907	if (net->reg_state != NETREG_REGISTERED)
908		return NVSP_STAT_FAIL;
909
910	act = netvsc_run_xdp(net, nvchan, &xdp);
911
912	if (act != XDP_PASS && act != XDP_TX) {
913		u64_stats_update_begin(&rx_stats->syncp);
914		rx_stats->xdp_drop++;
915		u64_stats_update_end(&rx_stats->syncp);
916
917		return NVSP_STAT_SUCCESS; /* consumed by XDP */
918	}
919
920	/* Allocate a skb - TODO direct I/O to pages? */
921	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
922
923	if (unlikely(!skb)) {
924		++net_device_ctx->eth_stats.rx_no_memory;
925		return NVSP_STAT_FAIL;
926	}
927
928	skb_record_rx_queue(skb, q_idx);
929
930	/*
931	 * Even if injecting the packet, record the statistics
932	 * on the synthetic device because modifying the VF device
933	 * statistics will not work correctly.
934	 */
935	u64_stats_update_begin(&rx_stats->syncp);
936	rx_stats->packets++;
937	rx_stats->bytes += nvchan->rsc.pktlen;
938
939	if (skb->pkt_type == PACKET_BROADCAST)
940		++rx_stats->broadcast;
941	else if (skb->pkt_type == PACKET_MULTICAST)
942		++rx_stats->multicast;
943	u64_stats_update_end(&rx_stats->syncp);
944
945	if (act == XDP_TX) {
946		netvsc_xdp_xmit(skb, net);
947		return NVSP_STAT_SUCCESS;
948	}
949
950	napi_gro_receive(&nvchan->napi, skb);
951	return NVSP_STAT_SUCCESS;
952}
953
954static void netvsc_get_drvinfo(struct net_device *net,
955			       struct ethtool_drvinfo *info)
956{
957	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
958	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
959}
960
961static void netvsc_get_channels(struct net_device *net,
962				struct ethtool_channels *channel)
963{
964	struct net_device_context *net_device_ctx = netdev_priv(net);
965	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
966
967	if (nvdev) {
968		channel->max_combined	= nvdev->max_chn;
969		channel->combined_count = nvdev->num_chn;
970	}
971}
972
973/* Alloc struct netvsc_device_info, and initialize it from either existing
974 * struct netvsc_device, or from default values.
975 */
976static
977struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
978{
979	struct netvsc_device_info *dev_info;
980	struct bpf_prog *prog;
981
982	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
983
984	if (!dev_info)
985		return NULL;
986
987	if (nvdev) {
988		ASSERT_RTNL();
989
990		dev_info->num_chn = nvdev->num_chn;
991		dev_info->send_sections = nvdev->send_section_cnt;
992		dev_info->send_section_size = nvdev->send_section_size;
993		dev_info->recv_sections = nvdev->recv_section_cnt;
994		dev_info->recv_section_size = nvdev->recv_section_size;
995
996		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
997		       NETVSC_HASH_KEYLEN);
998
999		prog = netvsc_xdp_get(nvdev);
1000		if (prog) {
1001			bpf_prog_inc(prog);
1002			dev_info->bprog = prog;
1003		}
1004	} else {
1005		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1006		dev_info->send_sections = NETVSC_DEFAULT_TX;
1007		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1008		dev_info->recv_sections = NETVSC_DEFAULT_RX;
1009		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1010	}
1011
1012	return dev_info;
1013}
1014
1015/* Free struct netvsc_device_info */
1016static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1017{
1018	if (dev_info->bprog) {
1019		ASSERT_RTNL();
1020		bpf_prog_put(dev_info->bprog);
1021	}
1022
1023	kfree(dev_info);
1024}
1025
1026static int netvsc_detach(struct net_device *ndev,
1027			 struct netvsc_device *nvdev)
1028{
1029	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1030	struct hv_device *hdev = ndev_ctx->device_ctx;
1031	int ret;
1032
1033	/* Don't try continuing to try and setup sub channels */
1034	if (cancel_work_sync(&nvdev->subchan_work))
1035		nvdev->num_chn = 1;
1036
1037	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1038
1039	/* If device was up (receiving) then shutdown */
1040	if (netif_running(ndev)) {
1041		netvsc_tx_disable(nvdev, ndev);
1042
1043		ret = rndis_filter_close(nvdev);
1044		if (ret) {
1045			netdev_err(ndev,
1046				   "unable to close device (ret %d).\n", ret);
1047			return ret;
1048		}
1049
1050		ret = netvsc_wait_until_empty(nvdev);
1051		if (ret) {
1052			netdev_err(ndev,
1053				   "Ring buffer not empty after closing rndis\n");
1054			return ret;
1055		}
1056	}
1057
1058	netif_device_detach(ndev);
1059
1060	rndis_filter_device_remove(hdev, nvdev);
1061
1062	return 0;
1063}
1064
1065static int netvsc_attach(struct net_device *ndev,
1066			 struct netvsc_device_info *dev_info)
1067{
1068	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1069	struct hv_device *hdev = ndev_ctx->device_ctx;
1070	struct netvsc_device *nvdev;
1071	struct rndis_device *rdev;
1072	struct bpf_prog *prog;
1073	int ret = 0;
1074
1075	nvdev = rndis_filter_device_add(hdev, dev_info);
1076	if (IS_ERR(nvdev))
1077		return PTR_ERR(nvdev);
1078
1079	if (nvdev->num_chn > 1) {
1080		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1081
1082		/* if unavailable, just proceed with one queue */
1083		if (ret) {
1084			nvdev->max_chn = 1;
1085			nvdev->num_chn = 1;
1086		}
1087	}
1088
1089	prog = dev_info->bprog;
1090	if (prog) {
1091		bpf_prog_inc(prog);
1092		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1093		if (ret) {
1094			bpf_prog_put(prog);
1095			goto err1;
1096		}
1097	}
1098
1099	/* In any case device is now ready */
1100	nvdev->tx_disable = false;
1101	netif_device_attach(ndev);
1102
1103	/* Note: enable and attach happen when sub-channels setup */
1104	netif_carrier_off(ndev);
1105
1106	if (netif_running(ndev)) {
1107		ret = rndis_filter_open(nvdev);
1108		if (ret)
1109			goto err2;
1110
1111		rdev = nvdev->extension;
1112		if (!rdev->link_state)
1113			netif_carrier_on(ndev);
1114	}
1115
1116	return 0;
1117
1118err2:
1119	netif_device_detach(ndev);
1120
1121err1:
1122	rndis_filter_device_remove(hdev, nvdev);
1123
1124	return ret;
1125}
1126
1127static int netvsc_set_channels(struct net_device *net,
1128			       struct ethtool_channels *channels)
1129{
1130	struct net_device_context *net_device_ctx = netdev_priv(net);
1131	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1132	unsigned int orig, count = channels->combined_count;
1133	struct netvsc_device_info *device_info;
1134	int ret;
1135
1136	/* We do not support separate count for rx, tx, or other */
1137	if (count == 0 ||
1138	    channels->rx_count || channels->tx_count || channels->other_count)
1139		return -EINVAL;
1140
1141	if (!nvdev || nvdev->destroy)
1142		return -ENODEV;
1143
1144	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1145		return -EINVAL;
1146
1147	if (count > nvdev->max_chn)
1148		return -EINVAL;
1149
1150	orig = nvdev->num_chn;
1151
1152	device_info = netvsc_devinfo_get(nvdev);
1153
1154	if (!device_info)
1155		return -ENOMEM;
1156
1157	device_info->num_chn = count;
1158
1159	ret = netvsc_detach(net, nvdev);
1160	if (ret)
1161		goto out;
1162
1163	ret = netvsc_attach(net, device_info);
1164	if (ret) {
1165		device_info->num_chn = orig;
1166		if (netvsc_attach(net, device_info))
1167			netdev_err(net, "restoring channel setting failed\n");
1168	}
1169
1170out:
1171	netvsc_devinfo_put(device_info);
1172	return ret;
1173}
1174
1175static void netvsc_init_settings(struct net_device *dev)
1176{
1177	struct net_device_context *ndc = netdev_priv(dev);
1178
1179	ndc->l4_hash = HV_DEFAULT_L4HASH;
1180
1181	ndc->speed = SPEED_UNKNOWN;
1182	ndc->duplex = DUPLEX_FULL;
1183
1184	dev->features = NETIF_F_LRO;
1185}
1186
1187static int netvsc_get_link_ksettings(struct net_device *dev,
1188				     struct ethtool_link_ksettings *cmd)
1189{
1190	struct net_device_context *ndc = netdev_priv(dev);
1191	struct net_device *vf_netdev;
1192
1193	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1194
1195	if (vf_netdev)
1196		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1197
1198	cmd->base.speed = ndc->speed;
1199	cmd->base.duplex = ndc->duplex;
1200	cmd->base.port = PORT_OTHER;
1201
1202	return 0;
1203}
1204
1205static int netvsc_set_link_ksettings(struct net_device *dev,
1206				     const struct ethtool_link_ksettings *cmd)
1207{
1208	struct net_device_context *ndc = netdev_priv(dev);
1209	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1210
1211	if (vf_netdev) {
1212		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1213			return -EOPNOTSUPP;
1214
1215		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1216								  cmd);
1217	}
1218
1219	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1220						  &ndc->speed, &ndc->duplex);
1221}
1222
1223static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1224{
1225	struct net_device_context *ndevctx = netdev_priv(ndev);
1226	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1227	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1228	int orig_mtu = ndev->mtu;
1229	struct netvsc_device_info *device_info;
1230	int ret = 0;
1231
1232	if (!nvdev || nvdev->destroy)
1233		return -ENODEV;
1234
1235	device_info = netvsc_devinfo_get(nvdev);
1236
1237	if (!device_info)
1238		return -ENOMEM;
1239
1240	/* Change MTU of underlying VF netdev first. */
1241	if (vf_netdev) {
1242		ret = dev_set_mtu(vf_netdev, mtu);
1243		if (ret)
1244			goto out;
1245	}
1246
1247	ret = netvsc_detach(ndev, nvdev);
1248	if (ret)
1249		goto rollback_vf;
1250
1251	ndev->mtu = mtu;
1252
1253	ret = netvsc_attach(ndev, device_info);
1254	if (!ret)
1255		goto out;
1256
1257	/* Attempt rollback to original MTU */
1258	ndev->mtu = orig_mtu;
1259
1260	if (netvsc_attach(ndev, device_info))
1261		netdev_err(ndev, "restoring mtu failed\n");
1262rollback_vf:
1263	if (vf_netdev)
1264		dev_set_mtu(vf_netdev, orig_mtu);
1265
1266out:
1267	netvsc_devinfo_put(device_info);
1268	return ret;
1269}
1270
1271static void netvsc_get_vf_stats(struct net_device *net,
1272				struct netvsc_vf_pcpu_stats *tot)
1273{
1274	struct net_device_context *ndev_ctx = netdev_priv(net);
1275	int i;
1276
1277	memset(tot, 0, sizeof(*tot));
1278
1279	for_each_possible_cpu(i) {
1280		const struct netvsc_vf_pcpu_stats *stats
1281			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1282		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1283		unsigned int start;
1284
1285		do {
1286			start = u64_stats_fetch_begin_irq(&stats->syncp);
1287			rx_packets = stats->rx_packets;
1288			tx_packets = stats->tx_packets;
1289			rx_bytes = stats->rx_bytes;
1290			tx_bytes = stats->tx_bytes;
1291		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1292
1293		tot->rx_packets += rx_packets;
1294		tot->tx_packets += tx_packets;
1295		tot->rx_bytes   += rx_bytes;
1296		tot->tx_bytes   += tx_bytes;
1297		tot->tx_dropped += stats->tx_dropped;
1298	}
1299}
1300
1301static void netvsc_get_pcpu_stats(struct net_device *net,
1302				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1303{
1304	struct net_device_context *ndev_ctx = netdev_priv(net);
1305	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1306	int i;
1307
1308	/* fetch percpu stats of vf */
1309	for_each_possible_cpu(i) {
1310		const struct netvsc_vf_pcpu_stats *stats =
1311			per_cpu_ptr(ndev_ctx->vf_stats, i);
1312		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1313		unsigned int start;
1314
1315		do {
1316			start = u64_stats_fetch_begin_irq(&stats->syncp);
1317			this_tot->vf_rx_packets = stats->rx_packets;
1318			this_tot->vf_tx_packets = stats->tx_packets;
1319			this_tot->vf_rx_bytes = stats->rx_bytes;
1320			this_tot->vf_tx_bytes = stats->tx_bytes;
1321		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1322		this_tot->rx_packets = this_tot->vf_rx_packets;
1323		this_tot->tx_packets = this_tot->vf_tx_packets;
1324		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1325		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1326	}
1327
1328	/* fetch percpu stats of netvsc */
1329	for (i = 0; i < nvdev->num_chn; i++) {
1330		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1331		const struct netvsc_stats *stats;
1332		struct netvsc_ethtool_pcpu_stats *this_tot =
1333			&pcpu_tot[nvchan->channel->target_cpu];
1334		u64 packets, bytes;
1335		unsigned int start;
1336
1337		stats = &nvchan->tx_stats;
1338		do {
1339			start = u64_stats_fetch_begin_irq(&stats->syncp);
1340			packets = stats->packets;
1341			bytes = stats->bytes;
1342		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1343
1344		this_tot->tx_bytes	+= bytes;
1345		this_tot->tx_packets	+= packets;
1346
1347		stats = &nvchan->rx_stats;
1348		do {
1349			start = u64_stats_fetch_begin_irq(&stats->syncp);
1350			packets = stats->packets;
1351			bytes = stats->bytes;
1352		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1353
1354		this_tot->rx_bytes	+= bytes;
1355		this_tot->rx_packets	+= packets;
1356	}
1357}
1358
1359static void netvsc_get_stats64(struct net_device *net,
1360			       struct rtnl_link_stats64 *t)
1361{
1362	struct net_device_context *ndev_ctx = netdev_priv(net);
1363	struct netvsc_device *nvdev;
1364	struct netvsc_vf_pcpu_stats vf_tot;
1365	int i;
1366
1367	rcu_read_lock();
1368
1369	nvdev = rcu_dereference(ndev_ctx->nvdev);
1370	if (!nvdev)
1371		goto out;
1372
1373	netdev_stats_to_stats64(t, &net->stats);
1374
1375	netvsc_get_vf_stats(net, &vf_tot);
1376	t->rx_packets += vf_tot.rx_packets;
1377	t->tx_packets += vf_tot.tx_packets;
1378	t->rx_bytes   += vf_tot.rx_bytes;
1379	t->tx_bytes   += vf_tot.tx_bytes;
1380	t->tx_dropped += vf_tot.tx_dropped;
1381
1382	for (i = 0; i < nvdev->num_chn; i++) {
1383		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1384		const struct netvsc_stats *stats;
1385		u64 packets, bytes, multicast;
1386		unsigned int start;
1387
1388		stats = &nvchan->tx_stats;
1389		do {
1390			start = u64_stats_fetch_begin_irq(&stats->syncp);
1391			packets = stats->packets;
1392			bytes = stats->bytes;
1393		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1394
1395		t->tx_bytes	+= bytes;
1396		t->tx_packets	+= packets;
1397
1398		stats = &nvchan->rx_stats;
1399		do {
1400			start = u64_stats_fetch_begin_irq(&stats->syncp);
1401			packets = stats->packets;
1402			bytes = stats->bytes;
1403			multicast = stats->multicast + stats->broadcast;
1404		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1405
1406		t->rx_bytes	+= bytes;
1407		t->rx_packets	+= packets;
1408		t->multicast	+= multicast;
1409	}
1410out:
1411	rcu_read_unlock();
1412}
1413
1414static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1415{
1416	struct net_device_context *ndc = netdev_priv(ndev);
1417	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1418	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1419	struct sockaddr *addr = p;
1420	int err;
1421
1422	err = eth_prepare_mac_addr_change(ndev, p);
1423	if (err)
1424		return err;
1425
1426	if (!nvdev)
1427		return -ENODEV;
1428
1429	if (vf_netdev) {
1430		err = dev_set_mac_address(vf_netdev, addr, NULL);
1431		if (err)
1432			return err;
1433	}
1434
1435	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1436	if (!err) {
1437		eth_commit_mac_addr_change(ndev, p);
1438	} else if (vf_netdev) {
1439		/* rollback change on VF */
1440		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1441		dev_set_mac_address(vf_netdev, addr, NULL);
1442	}
1443
1444	return err;
1445}
1446
1447static const struct {
1448	char name[ETH_GSTRING_LEN];
1449	u16 offset;
1450} netvsc_stats[] = {
1451	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1452	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1453	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1454	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1455	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1456	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1457	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1458	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1459	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1460	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1461	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1462}, pcpu_stats[] = {
1463	{ "cpu%u_rx_packets",
1464		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1465	{ "cpu%u_rx_bytes",
1466		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1467	{ "cpu%u_tx_packets",
1468		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1469	{ "cpu%u_tx_bytes",
1470		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1471	{ "cpu%u_vf_rx_packets",
1472		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1473	{ "cpu%u_vf_rx_bytes",
1474		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1475	{ "cpu%u_vf_tx_packets",
1476		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1477	{ "cpu%u_vf_tx_bytes",
1478		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1479}, vf_stats[] = {
1480	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1481	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1482	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1483	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1484	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1485};
1486
1487#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1488#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1489
1490/* statistics per queue (rx/tx packets/bytes) */
1491#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1492
1493/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1494#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1495
1496static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1497{
1498	struct net_device_context *ndc = netdev_priv(dev);
1499	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1500
1501	if (!nvdev)
1502		return -ENODEV;
1503
1504	switch (string_set) {
1505	case ETH_SS_STATS:
1506		return NETVSC_GLOBAL_STATS_LEN
1507			+ NETVSC_VF_STATS_LEN
1508			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1509			+ NETVSC_PCPU_STATS_LEN;
1510	default:
1511		return -EINVAL;
1512	}
1513}
1514
1515static void netvsc_get_ethtool_stats(struct net_device *dev,
1516				     struct ethtool_stats *stats, u64 *data)
1517{
1518	struct net_device_context *ndc = netdev_priv(dev);
1519	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1520	const void *nds = &ndc->eth_stats;
1521	const struct netvsc_stats *qstats;
1522	struct netvsc_vf_pcpu_stats sum;
1523	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1524	unsigned int start;
1525	u64 packets, bytes;
1526	u64 xdp_drop;
1527	int i, j, cpu;
1528
1529	if (!nvdev)
1530		return;
1531
1532	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1533		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1534
1535	netvsc_get_vf_stats(dev, &sum);
1536	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1537		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1538
1539	for (j = 0; j < nvdev->num_chn; j++) {
1540		qstats = &nvdev->chan_table[j].tx_stats;
1541
1542		do {
1543			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1544			packets = qstats->packets;
1545			bytes = qstats->bytes;
1546		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1547		data[i++] = packets;
1548		data[i++] = bytes;
1549
1550		qstats = &nvdev->chan_table[j].rx_stats;
1551		do {
1552			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1553			packets = qstats->packets;
1554			bytes = qstats->bytes;
1555			xdp_drop = qstats->xdp_drop;
1556		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1557		data[i++] = packets;
1558		data[i++] = bytes;
1559		data[i++] = xdp_drop;
1560	}
1561
1562	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1563				  sizeof(struct netvsc_ethtool_pcpu_stats),
1564				  GFP_KERNEL);
1565	if (!pcpu_sum)
1566		return;
1567
1568	netvsc_get_pcpu_stats(dev, pcpu_sum);
1569	for_each_present_cpu(cpu) {
1570		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1571
1572		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1573			data[i++] = *(u64 *)((void *)this_sum
1574					     + pcpu_stats[j].offset);
1575	}
1576	kvfree(pcpu_sum);
1577}
1578
1579static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1580{
1581	struct net_device_context *ndc = netdev_priv(dev);
1582	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1583	u8 *p = data;
1584	int i, cpu;
1585
1586	if (!nvdev)
1587		return;
1588
1589	switch (stringset) {
1590	case ETH_SS_STATS:
1591		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1592			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1593			p += ETH_GSTRING_LEN;
1594		}
1595
1596		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1597			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1598			p += ETH_GSTRING_LEN;
1599		}
1600
1601		for (i = 0; i < nvdev->num_chn; i++) {
1602			sprintf(p, "tx_queue_%u_packets", i);
1603			p += ETH_GSTRING_LEN;
1604			sprintf(p, "tx_queue_%u_bytes", i);
1605			p += ETH_GSTRING_LEN;
1606			sprintf(p, "rx_queue_%u_packets", i);
1607			p += ETH_GSTRING_LEN;
1608			sprintf(p, "rx_queue_%u_bytes", i);
1609			p += ETH_GSTRING_LEN;
1610			sprintf(p, "rx_queue_%u_xdp_drop", i);
1611			p += ETH_GSTRING_LEN;
1612		}
1613
1614		for_each_present_cpu(cpu) {
1615			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1616				sprintf(p, pcpu_stats[i].name, cpu);
1617				p += ETH_GSTRING_LEN;
1618			}
1619		}
1620
1621		break;
1622	}
1623}
1624
1625static int
1626netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1627			 struct ethtool_rxnfc *info)
1628{
1629	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1630
1631	info->data = RXH_IP_SRC | RXH_IP_DST;
1632
1633	switch (info->flow_type) {
1634	case TCP_V4_FLOW:
1635		if (ndc->l4_hash & HV_TCP4_L4HASH)
1636			info->data |= l4_flag;
1637
1638		break;
1639
1640	case TCP_V6_FLOW:
1641		if (ndc->l4_hash & HV_TCP6_L4HASH)
1642			info->data |= l4_flag;
1643
1644		break;
1645
1646	case UDP_V4_FLOW:
1647		if (ndc->l4_hash & HV_UDP4_L4HASH)
1648			info->data |= l4_flag;
1649
1650		break;
1651
1652	case UDP_V6_FLOW:
1653		if (ndc->l4_hash & HV_UDP6_L4HASH)
1654			info->data |= l4_flag;
1655
1656		break;
1657
1658	case IPV4_FLOW:
1659	case IPV6_FLOW:
1660		break;
1661	default:
1662		info->data = 0;
1663		break;
1664	}
1665
1666	return 0;
1667}
1668
1669static int
1670netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1671		 u32 *rules)
1672{
1673	struct net_device_context *ndc = netdev_priv(dev);
1674	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1675
1676	if (!nvdev)
1677		return -ENODEV;
1678
1679	switch (info->cmd) {
1680	case ETHTOOL_GRXRINGS:
1681		info->data = nvdev->num_chn;
1682		return 0;
1683
1684	case ETHTOOL_GRXFH:
1685		return netvsc_get_rss_hash_opts(ndc, info);
1686	}
1687	return -EOPNOTSUPP;
1688}
1689
1690static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1691				    struct ethtool_rxnfc *info)
1692{
1693	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1694			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1695		switch (info->flow_type) {
1696		case TCP_V4_FLOW:
1697			ndc->l4_hash |= HV_TCP4_L4HASH;
1698			break;
1699
1700		case TCP_V6_FLOW:
1701			ndc->l4_hash |= HV_TCP6_L4HASH;
1702			break;
1703
1704		case UDP_V4_FLOW:
1705			ndc->l4_hash |= HV_UDP4_L4HASH;
1706			break;
1707
1708		case UDP_V6_FLOW:
1709			ndc->l4_hash |= HV_UDP6_L4HASH;
1710			break;
1711
1712		default:
1713			return -EOPNOTSUPP;
1714		}
1715
1716		return 0;
1717	}
1718
1719	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1720		switch (info->flow_type) {
1721		case TCP_V4_FLOW:
1722			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1723			break;
1724
1725		case TCP_V6_FLOW:
1726			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1727			break;
1728
1729		case UDP_V4_FLOW:
1730			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1731			break;
1732
1733		case UDP_V6_FLOW:
1734			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1735			break;
1736
1737		default:
1738			return -EOPNOTSUPP;
1739		}
1740
1741		return 0;
1742	}
1743
1744	return -EOPNOTSUPP;
1745}
1746
1747static int
1748netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1749{
1750	struct net_device_context *ndc = netdev_priv(ndev);
1751
1752	if (info->cmd == ETHTOOL_SRXFH)
1753		return netvsc_set_rss_hash_opts(ndc, info);
1754
1755	return -EOPNOTSUPP;
1756}
1757
1758static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1759{
1760	return NETVSC_HASH_KEYLEN;
1761}
1762
1763static u32 netvsc_rss_indir_size(struct net_device *dev)
1764{
1765	return ITAB_NUM;
1766}
1767
1768static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1769			   u8 *hfunc)
1770{
1771	struct net_device_context *ndc = netdev_priv(dev);
1772	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1773	struct rndis_device *rndis_dev;
1774	int i;
1775
1776	if (!ndev)
1777		return -ENODEV;
1778
1779	if (hfunc)
1780		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1781
1782	rndis_dev = ndev->extension;
1783	if (indir) {
1784		for (i = 0; i < ITAB_NUM; i++)
1785			indir[i] = ndc->rx_table[i];
1786	}
1787
1788	if (key)
1789		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1790
1791	return 0;
1792}
1793
1794static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1795			   const u8 *key, const u8 hfunc)
1796{
1797	struct net_device_context *ndc = netdev_priv(dev);
1798	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1799	struct rndis_device *rndis_dev;
1800	int i;
1801
1802	if (!ndev)
1803		return -ENODEV;
1804
1805	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1806		return -EOPNOTSUPP;
1807
1808	rndis_dev = ndev->extension;
1809	if (indir) {
1810		for (i = 0; i < ITAB_NUM; i++)
1811			if (indir[i] >= ndev->num_chn)
1812				return -EINVAL;
1813
1814		for (i = 0; i < ITAB_NUM; i++)
1815			ndc->rx_table[i] = indir[i];
1816	}
1817
1818	if (!key) {
1819		if (!indir)
1820			return 0;
1821
1822		key = rndis_dev->rss_key;
1823	}
1824
1825	return rndis_filter_set_rss_param(rndis_dev, key);
1826}
1827
1828/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1829 * It does have pre-allocated receive area which is divided into sections.
1830 */
1831static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1832				   struct ethtool_ringparam *ring)
1833{
1834	u32 max_buf_size;
1835
1836	ring->rx_pending = nvdev->recv_section_cnt;
1837	ring->tx_pending = nvdev->send_section_cnt;
1838
1839	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1840		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1841	else
1842		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1843
1844	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1845	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1846		/ nvdev->send_section_size;
1847}
1848
1849static void netvsc_get_ringparam(struct net_device *ndev,
1850				 struct ethtool_ringparam *ring)
1851{
1852	struct net_device_context *ndevctx = netdev_priv(ndev);
1853	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1854
1855	if (!nvdev)
1856		return;
1857
1858	__netvsc_get_ringparam(nvdev, ring);
1859}
1860
1861static int netvsc_set_ringparam(struct net_device *ndev,
1862				struct ethtool_ringparam *ring)
1863{
1864	struct net_device_context *ndevctx = netdev_priv(ndev);
1865	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1866	struct netvsc_device_info *device_info;
1867	struct ethtool_ringparam orig;
1868	u32 new_tx, new_rx;
1869	int ret = 0;
1870
1871	if (!nvdev || nvdev->destroy)
1872		return -ENODEV;
1873
1874	memset(&orig, 0, sizeof(orig));
1875	__netvsc_get_ringparam(nvdev, &orig);
1876
1877	new_tx = clamp_t(u32, ring->tx_pending,
1878			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1879	new_rx = clamp_t(u32, ring->rx_pending,
1880			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1881
1882	if (new_tx == orig.tx_pending &&
1883	    new_rx == orig.rx_pending)
1884		return 0;	 /* no change */
1885
1886	device_info = netvsc_devinfo_get(nvdev);
1887
1888	if (!device_info)
1889		return -ENOMEM;
1890
1891	device_info->send_sections = new_tx;
1892	device_info->recv_sections = new_rx;
1893
1894	ret = netvsc_detach(ndev, nvdev);
1895	if (ret)
1896		goto out;
1897
1898	ret = netvsc_attach(ndev, device_info);
1899	if (ret) {
1900		device_info->send_sections = orig.tx_pending;
1901		device_info->recv_sections = orig.rx_pending;
1902
1903		if (netvsc_attach(ndev, device_info))
1904			netdev_err(ndev, "restoring ringparam failed");
1905	}
1906
1907out:
1908	netvsc_devinfo_put(device_info);
1909	return ret;
1910}
1911
1912static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1913					     netdev_features_t features)
1914{
1915	struct net_device_context *ndevctx = netdev_priv(ndev);
1916	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1917
1918	if (!nvdev || nvdev->destroy)
1919		return features;
1920
1921	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1922		features ^= NETIF_F_LRO;
1923		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1924	}
1925
1926	return features;
1927}
1928
1929static int netvsc_set_features(struct net_device *ndev,
1930			       netdev_features_t features)
1931{
1932	netdev_features_t change = features ^ ndev->features;
1933	struct net_device_context *ndevctx = netdev_priv(ndev);
1934	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1935	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1936	struct ndis_offload_params offloads;
1937	int ret = 0;
1938
1939	if (!nvdev || nvdev->destroy)
1940		return -ENODEV;
1941
1942	if (!(change & NETIF_F_LRO))
1943		goto syncvf;
1944
1945	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1946
1947	if (features & NETIF_F_LRO) {
1948		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1949		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1950	} else {
1951		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1952		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1953	}
1954
1955	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1956
1957	if (ret) {
1958		features ^= NETIF_F_LRO;
1959		ndev->features = features;
1960	}
1961
1962syncvf:
1963	if (!vf_netdev)
1964		return ret;
1965
1966	vf_netdev->wanted_features = features;
1967	netdev_update_features(vf_netdev);
1968
1969	return ret;
1970}
1971
1972static int netvsc_get_regs_len(struct net_device *netdev)
1973{
1974	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1975}
1976
1977static void netvsc_get_regs(struct net_device *netdev,
1978			    struct ethtool_regs *regs, void *p)
1979{
1980	struct net_device_context *ndc = netdev_priv(netdev);
1981	u32 *regs_buff = p;
1982
1983	/* increase the version, if buffer format is changed. */
1984	regs->version = 1;
1985
1986	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1987}
1988
1989static u32 netvsc_get_msglevel(struct net_device *ndev)
1990{
1991	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1992
1993	return ndev_ctx->msg_enable;
1994}
1995
1996static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1997{
1998	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1999
2000	ndev_ctx->msg_enable = val;
2001}
2002
2003static const struct ethtool_ops ethtool_ops = {
2004	.get_drvinfo	= netvsc_get_drvinfo,
2005	.get_regs_len	= netvsc_get_regs_len,
2006	.get_regs	= netvsc_get_regs,
2007	.get_msglevel	= netvsc_get_msglevel,
2008	.set_msglevel	= netvsc_set_msglevel,
2009	.get_link	= ethtool_op_get_link,
2010	.get_ethtool_stats = netvsc_get_ethtool_stats,
2011	.get_sset_count = netvsc_get_sset_count,
2012	.get_strings	= netvsc_get_strings,
2013	.get_channels   = netvsc_get_channels,
2014	.set_channels   = netvsc_set_channels,
2015	.get_ts_info	= ethtool_op_get_ts_info,
2016	.get_rxnfc	= netvsc_get_rxnfc,
2017	.set_rxnfc	= netvsc_set_rxnfc,
2018	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2019	.get_rxfh_indir_size = netvsc_rss_indir_size,
2020	.get_rxfh	= netvsc_get_rxfh,
2021	.set_rxfh	= netvsc_set_rxfh,
2022	.get_link_ksettings = netvsc_get_link_ksettings,
2023	.set_link_ksettings = netvsc_set_link_ksettings,
2024	.get_ringparam	= netvsc_get_ringparam,
2025	.set_ringparam	= netvsc_set_ringparam,
2026};
2027
2028static const struct net_device_ops device_ops = {
2029	.ndo_open =			netvsc_open,
2030	.ndo_stop =			netvsc_close,
2031	.ndo_start_xmit =		netvsc_start_xmit,
2032	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2033	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2034	.ndo_fix_features =		netvsc_fix_features,
2035	.ndo_set_features =		netvsc_set_features,
2036	.ndo_change_mtu =		netvsc_change_mtu,
2037	.ndo_validate_addr =		eth_validate_addr,
2038	.ndo_set_mac_address =		netvsc_set_mac_addr,
2039	.ndo_select_queue =		netvsc_select_queue,
2040	.ndo_get_stats64 =		netvsc_get_stats64,
2041	.ndo_bpf =			netvsc_bpf,
2042};
2043
2044/*
2045 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2046 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2047 * present send GARP packet to network peers with netif_notify_peers().
2048 */
2049static void netvsc_link_change(struct work_struct *w)
2050{
2051	struct net_device_context *ndev_ctx =
2052		container_of(w, struct net_device_context, dwork.work);
2053	struct hv_device *device_obj = ndev_ctx->device_ctx;
2054	struct net_device *net = hv_get_drvdata(device_obj);
2055	struct netvsc_device *net_device;
2056	struct rndis_device *rdev;
2057	struct netvsc_reconfig *event = NULL;
2058	bool notify = false, reschedule = false;
2059	unsigned long flags, next_reconfig, delay;
2060
2061	/* if changes are happening, comeback later */
2062	if (!rtnl_trylock()) {
2063		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2064		return;
2065	}
2066
2067	net_device = rtnl_dereference(ndev_ctx->nvdev);
2068	if (!net_device)
2069		goto out_unlock;
2070
2071	rdev = net_device->extension;
2072
2073	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2074	if (time_is_after_jiffies(next_reconfig)) {
2075		/* link_watch only sends one notification with current state
2076		 * per second, avoid doing reconfig more frequently. Handle
2077		 * wrap around.
2078		 */
2079		delay = next_reconfig - jiffies;
2080		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2081		schedule_delayed_work(&ndev_ctx->dwork, delay);
2082		goto out_unlock;
2083	}
2084	ndev_ctx->last_reconfig = jiffies;
2085
2086	spin_lock_irqsave(&ndev_ctx->lock, flags);
2087	if (!list_empty(&ndev_ctx->reconfig_events)) {
2088		event = list_first_entry(&ndev_ctx->reconfig_events,
2089					 struct netvsc_reconfig, list);
2090		list_del(&event->list);
2091		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2092	}
2093	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2094
2095	if (!event)
2096		goto out_unlock;
2097
2098	switch (event->event) {
2099		/* Only the following events are possible due to the check in
2100		 * netvsc_linkstatus_callback()
2101		 */
2102	case RNDIS_STATUS_MEDIA_CONNECT:
2103		if (rdev->link_state) {
2104			rdev->link_state = false;
2105			netif_carrier_on(net);
2106			netvsc_tx_enable(net_device, net);
2107		} else {
2108			notify = true;
2109		}
2110		kfree(event);
2111		break;
2112	case RNDIS_STATUS_MEDIA_DISCONNECT:
2113		if (!rdev->link_state) {
2114			rdev->link_state = true;
2115			netif_carrier_off(net);
2116			netvsc_tx_disable(net_device, net);
2117		}
2118		kfree(event);
2119		break;
2120	case RNDIS_STATUS_NETWORK_CHANGE:
2121		/* Only makes sense if carrier is present */
2122		if (!rdev->link_state) {
2123			rdev->link_state = true;
2124			netif_carrier_off(net);
2125			netvsc_tx_disable(net_device, net);
2126			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2127			spin_lock_irqsave(&ndev_ctx->lock, flags);
2128			list_add(&event->list, &ndev_ctx->reconfig_events);
2129			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2130			reschedule = true;
2131		}
2132		break;
2133	}
2134
2135	rtnl_unlock();
2136
2137	if (notify)
2138		netdev_notify_peers(net);
2139
2140	/* link_watch only sends one notification with current state per
2141	 * second, handle next reconfig event in 2 seconds.
2142	 */
2143	if (reschedule)
2144		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2145
2146	return;
2147
2148out_unlock:
2149	rtnl_unlock();
2150}
2151
2152static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2153{
2154	struct net_device_context *net_device_ctx;
2155	struct net_device *dev;
2156
2157	dev = netdev_master_upper_dev_get(vf_netdev);
2158	if (!dev || dev->netdev_ops != &device_ops)
2159		return NULL;	/* not a netvsc device */
2160
2161	net_device_ctx = netdev_priv(dev);
2162	if (!rtnl_dereference(net_device_ctx->nvdev))
2163		return NULL;	/* device is removed */
2164
2165	return dev;
2166}
2167
2168/* Called when VF is injecting data into network stack.
2169 * Change the associated network device from VF to netvsc.
2170 * note: already called with rcu_read_lock
2171 */
2172static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2173{
2174	struct sk_buff *skb = *pskb;
2175	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2176	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2177	struct netvsc_vf_pcpu_stats *pcpu_stats
2178		 = this_cpu_ptr(ndev_ctx->vf_stats);
2179
2180	skb = skb_share_check(skb, GFP_ATOMIC);
2181	if (unlikely(!skb))
2182		return RX_HANDLER_CONSUMED;
2183
2184	*pskb = skb;
2185
2186	skb->dev = ndev;
2187
2188	u64_stats_update_begin(&pcpu_stats->syncp);
2189	pcpu_stats->rx_packets++;
2190	pcpu_stats->rx_bytes += skb->len;
2191	u64_stats_update_end(&pcpu_stats->syncp);
2192
2193	return RX_HANDLER_ANOTHER;
2194}
2195
2196static int netvsc_vf_join(struct net_device *vf_netdev,
2197			  struct net_device *ndev)
2198{
2199	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2200	int ret;
2201
2202	ret = netdev_rx_handler_register(vf_netdev,
2203					 netvsc_vf_handle_frame, ndev);
2204	if (ret != 0) {
2205		netdev_err(vf_netdev,
2206			   "can not register netvsc VF receive handler (err = %d)\n",
2207			   ret);
2208		goto rx_handler_failed;
2209	}
2210
2211	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2212					   NULL, NULL, NULL);
2213	if (ret != 0) {
2214		netdev_err(vf_netdev,
2215			   "can not set master device %s (err = %d)\n",
2216			   ndev->name, ret);
2217		goto upper_link_failed;
2218	}
2219
2220	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225	return 0;
2226
2227upper_link_failed:
2228	netdev_rx_handler_unregister(vf_netdev);
2229rx_handler_failed:
2230	return ret;
2231}
2232
2233static void __netvsc_vf_setup(struct net_device *ndev,
2234			      struct net_device *vf_netdev)
2235{
2236	int ret;
2237
2238	/* Align MTU of VF with master */
2239	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240	if (ret)
2241		netdev_warn(vf_netdev,
2242			    "unable to change mtu to %u\n", ndev->mtu);
2243
2244	/* set multicast etc flags on VF */
2245	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247	/* sync address list from ndev to VF */
2248	netif_addr_lock_bh(ndev);
2249	dev_uc_sync(vf_netdev, ndev);
2250	dev_mc_sync(vf_netdev, ndev);
2251	netif_addr_unlock_bh(ndev);
2252
2253	if (netif_running(ndev)) {
2254		ret = dev_open(vf_netdev, NULL);
2255		if (ret)
2256			netdev_warn(vf_netdev,
2257				    "unable to open: %d\n", ret);
2258	}
2259}
2260
2261/* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
2264static void netvsc_vf_setup(struct work_struct *w)
2265{
2266	struct net_device_context *ndev_ctx
2267		= container_of(w, struct net_device_context, vf_takeover.work);
2268	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269	struct net_device *vf_netdev;
2270
2271	if (!rtnl_trylock()) {
2272		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273		return;
2274	}
2275
2276	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277	if (vf_netdev)
2278		__netvsc_vf_setup(ndev, vf_netdev);
2279
2280	rtnl_unlock();
2281}
2282
2283/* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
2286static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287{
2288	struct device *parent = vf_netdev->dev.parent;
2289	struct net_device_context *ndev_ctx;
2290	struct net_device *ndev;
2291	struct pci_dev *pdev;
2292	u32 serial;
2293
2294	if (!parent || !dev_is_pci(parent))
2295		return NULL; /* not a PCI device */
2296
2297	pdev = to_pci_dev(parent);
2298	if (!pdev->slot) {
2299		netdev_notice(vf_netdev, "no PCI slot information\n");
2300		return NULL;
2301	}
2302
2303	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2304		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2305			      pci_slot_name(pdev->slot));
2306		return NULL;
2307	}
2308
2309	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2310		if (!ndev_ctx->vf_alloc)
2311			continue;
2312
2313		if (ndev_ctx->vf_serial == serial)
2314			return hv_get_drvdata(ndev_ctx->device_ctx);
2315	}
2316
2317	/* Fallback path to check synthetic vf with help of mac addr.
2318	 * Because this function can be called before vf_netdev is
2319	 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2320	 * from dev_addr, also try to match to its dev_addr.
2321	 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2322	 * on a VF that matches to the MAC of a unrelated NETVSC device.
2323	 */
2324	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2325		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2326		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2327		    ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2328			return ndev;
2329	}
2330
2331	netdev_notice(vf_netdev,
2332		      "no netdev found for vf serial:%u\n", serial);
2333	return NULL;
2334}
2335
2336static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2337{
2338	struct net_device *ndev;
2339
2340	ndev = get_netvsc_byslot(vf_netdev);
2341	if (!ndev)
2342		return NOTIFY_DONE;
2343
2344	/* set slave flag before open to prevent IPv6 addrconf */
2345	vf_netdev->flags |= IFF_SLAVE;
2346	return NOTIFY_DONE;
2347}
2348
2349static int netvsc_register_vf(struct net_device *vf_netdev)
2350{
2351	struct net_device_context *net_device_ctx;
2352	struct netvsc_device *netvsc_dev;
2353	struct bpf_prog *prog;
2354	struct net_device *ndev;
2355	int ret;
2356
2357	if (vf_netdev->addr_len != ETH_ALEN)
2358		return NOTIFY_DONE;
2359
2360	ndev = get_netvsc_byslot(vf_netdev);
2361	if (!ndev)
2362		return NOTIFY_DONE;
2363
2364	net_device_ctx = netdev_priv(ndev);
2365	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2366	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2367		return NOTIFY_DONE;
2368
2369	/* if synthetic interface is a different namespace,
2370	 * then move the VF to that namespace; join will be
2371	 * done again in that context.
2372	 */
2373	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2374		ret = dev_change_net_namespace(vf_netdev,
2375					       dev_net(ndev), "eth%d");
2376		if (ret)
2377			netdev_err(vf_netdev,
2378				   "could not move to same namespace as %s: %d\n",
2379				   ndev->name, ret);
2380		else
2381			netdev_info(vf_netdev,
2382				    "VF moved to namespace with: %s\n",
2383				    ndev->name);
2384		return NOTIFY_DONE;
2385	}
2386
2387	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2388
2389	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2390		return NOTIFY_DONE;
2391
2392	dev_hold(vf_netdev);
2393	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2394
2395	vf_netdev->wanted_features = ndev->features;
2396	netdev_update_features(vf_netdev);
2397
2398	prog = netvsc_xdp_get(netvsc_dev);
2399	netvsc_vf_setxdp(vf_netdev, prog);
2400
2401	return NOTIFY_OK;
2402}
2403
2404/* Change the data path when VF UP/DOWN/CHANGE are detected.
2405 *
2406 * Typically a UP or DOWN event is followed by a CHANGE event, so
2407 * net_device_ctx->data_path_is_vf is used to cache the current data path
2408 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2409 * message.
2410 *
2411 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2412 * interface, there is only the CHANGE event and no UP or DOWN event.
2413 */
2414static int netvsc_vf_changed(struct net_device *vf_netdev)
2415{
2416	struct net_device_context *net_device_ctx;
2417	struct netvsc_device *netvsc_dev;
2418	struct net_device *ndev;
2419	bool vf_is_up = netif_running(vf_netdev);
2420
2421	ndev = get_netvsc_byref(vf_netdev);
2422	if (!ndev)
2423		return NOTIFY_DONE;
2424
2425	net_device_ctx = netdev_priv(ndev);
2426	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2427	if (!netvsc_dev)
2428		return NOTIFY_DONE;
2429
2430	if (net_device_ctx->data_path_is_vf == vf_is_up)
2431		return NOTIFY_OK;
2432	net_device_ctx->data_path_is_vf = vf_is_up;
2433
2434	if (vf_is_up && !net_device_ctx->vf_alloc) {
2435		netdev_info(ndev, "Waiting for the VF association from host\n");
2436		wait_for_completion(&net_device_ctx->vf_add);
2437	}
2438
2439	netvsc_switch_datapath(ndev, vf_is_up);
2440	netdev_info(ndev, "Data path switched %s VF: %s\n",
2441		    vf_is_up ? "to" : "from", vf_netdev->name);
2442
2443	return NOTIFY_OK;
2444}
2445
2446static int netvsc_unregister_vf(struct net_device *vf_netdev)
2447{
2448	struct net_device *ndev;
2449	struct net_device_context *net_device_ctx;
2450
2451	ndev = get_netvsc_byref(vf_netdev);
2452	if (!ndev)
2453		return NOTIFY_DONE;
2454
2455	net_device_ctx = netdev_priv(ndev);
2456	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2457
2458	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2459
2460	netvsc_vf_setxdp(vf_netdev, NULL);
2461
2462	reinit_completion(&net_device_ctx->vf_add);
2463	netdev_rx_handler_unregister(vf_netdev);
2464	netdev_upper_dev_unlink(vf_netdev, ndev);
2465	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2466	dev_put(vf_netdev);
2467
2468	return NOTIFY_OK;
2469}
2470
2471static int netvsc_probe(struct hv_device *dev,
2472			const struct hv_vmbus_device_id *dev_id)
2473{
2474	struct net_device *net = NULL;
2475	struct net_device_context *net_device_ctx;
2476	struct netvsc_device_info *device_info = NULL;
2477	struct netvsc_device *nvdev;
2478	int ret = -ENOMEM;
2479
2480	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2481				VRSS_CHANNEL_MAX);
2482	if (!net)
2483		goto no_net;
2484
2485	netif_carrier_off(net);
2486
2487	netvsc_init_settings(net);
2488
2489	net_device_ctx = netdev_priv(net);
2490	net_device_ctx->device_ctx = dev;
2491	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2492	if (netif_msg_probe(net_device_ctx))
2493		netdev_dbg(net, "netvsc msg_enable: %d\n",
2494			   net_device_ctx->msg_enable);
2495
2496	hv_set_drvdata(dev, net);
2497
2498	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2499
2500	init_completion(&net_device_ctx->vf_add);
2501	spin_lock_init(&net_device_ctx->lock);
2502	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2503	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2504
2505	net_device_ctx->vf_stats
2506		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2507	if (!net_device_ctx->vf_stats)
2508		goto no_stats;
2509
2510	net->netdev_ops = &device_ops;
2511	net->ethtool_ops = &ethtool_ops;
2512	SET_NETDEV_DEV(net, &dev->device);
2513
2514	/* We always need headroom for rndis header */
2515	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2516
2517	/* Initialize the number of queues to be 1, we may change it if more
2518	 * channels are offered later.
2519	 */
2520	netif_set_real_num_tx_queues(net, 1);
2521	netif_set_real_num_rx_queues(net, 1);
2522
2523	/* Notify the netvsc driver of the new device */
2524	device_info = netvsc_devinfo_get(NULL);
2525
2526	if (!device_info) {
2527		ret = -ENOMEM;
2528		goto devinfo_failed;
2529	}
2530
2531	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2532	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2533	 * all subchannels to show up, but that may not happen because
2534	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2535	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2536	 * the device lock, so all the subchannels can't be processed --
2537	 * finally netvsc_subchan_work() hangs forever.
2538	 *
2539	 * The rtnl lock also needs to be held before rndis_filter_device_add()
2540	 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2541	 * VF NIC offering and registering. If VF NIC finished register_netdev()
2542	 * earlier it may cause name based config failure.
2543	 */
2544	rtnl_lock();
2545
2546	nvdev = rndis_filter_device_add(dev, device_info);
2547	if (IS_ERR(nvdev)) {
2548		ret = PTR_ERR(nvdev);
2549		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2550		goto rndis_failed;
2551	}
2552
2553	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2554
2555	if (nvdev->num_chn > 1)
2556		schedule_work(&nvdev->subchan_work);
2557
2558	/* hw_features computed in rndis_netdev_set_hwcaps() */
2559	net->features = net->hw_features |
2560		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2561		NETIF_F_HW_VLAN_CTAG_RX;
2562	net->vlan_features = net->features;
2563
2564	netdev_lockdep_set_classes(net);
2565
2566	/* MTU range: 68 - 1500 or 65521 */
2567	net->min_mtu = NETVSC_MTU_MIN;
2568	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2569		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2570	else
2571		net->max_mtu = ETH_DATA_LEN;
2572
2573	nvdev->tx_disable = false;
2574
2575	ret = register_netdevice(net);
2576	if (ret != 0) {
2577		pr_err("Unable to register netdev.\n");
2578		goto register_failed;
2579	}
2580
2581	list_add(&net_device_ctx->list, &netvsc_dev_list);
2582	rtnl_unlock();
2583
2584	netvsc_devinfo_put(device_info);
2585	return 0;
2586
2587register_failed:
2588	rndis_filter_device_remove(dev, nvdev);
2589rndis_failed:
2590	rtnl_unlock();
2591	netvsc_devinfo_put(device_info);
2592devinfo_failed:
2593	free_percpu(net_device_ctx->vf_stats);
2594no_stats:
2595	hv_set_drvdata(dev, NULL);
2596	free_netdev(net);
2597no_net:
2598	return ret;
2599}
2600
2601static int netvsc_remove(struct hv_device *dev)
2602{
2603	struct net_device_context *ndev_ctx;
2604	struct net_device *vf_netdev, *net;
2605	struct netvsc_device *nvdev;
2606
2607	net = hv_get_drvdata(dev);
2608	if (net == NULL) {
2609		dev_err(&dev->device, "No net device to remove\n");
2610		return 0;
2611	}
2612
2613	ndev_ctx = netdev_priv(net);
2614
2615	cancel_delayed_work_sync(&ndev_ctx->dwork);
2616
2617	rtnl_lock();
2618	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2619	if (nvdev) {
2620		cancel_work_sync(&nvdev->subchan_work);
2621		netvsc_xdp_set(net, NULL, NULL, nvdev);
2622	}
2623
2624	/*
2625	 * Call to the vsc driver to let it know that the device is being
2626	 * removed. Also blocks mtu and channel changes.
2627	 */
2628	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2629	if (vf_netdev)
2630		netvsc_unregister_vf(vf_netdev);
2631
2632	if (nvdev)
2633		rndis_filter_device_remove(dev, nvdev);
2634
2635	unregister_netdevice(net);
2636	list_del(&ndev_ctx->list);
2637
2638	rtnl_unlock();
2639
2640	hv_set_drvdata(dev, NULL);
2641
2642	free_percpu(ndev_ctx->vf_stats);
2643	free_netdev(net);
2644	return 0;
2645}
2646
2647static int netvsc_suspend(struct hv_device *dev)
2648{
2649	struct net_device_context *ndev_ctx;
2650	struct netvsc_device *nvdev;
2651	struct net_device *net;
2652	int ret;
2653
2654	net = hv_get_drvdata(dev);
2655
2656	ndev_ctx = netdev_priv(net);
2657	cancel_delayed_work_sync(&ndev_ctx->dwork);
2658
2659	rtnl_lock();
2660
2661	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2662	if (nvdev == NULL) {
2663		ret = -ENODEV;
2664		goto out;
2665	}
2666
2667	/* Save the current config info */
2668	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2669	if (!ndev_ctx->saved_netvsc_dev_info) {
2670		ret = -ENOMEM;
2671		goto out;
2672	}
2673	ret = netvsc_detach(net, nvdev);
2674out:
2675	rtnl_unlock();
2676
2677	return ret;
2678}
2679
2680static int netvsc_resume(struct hv_device *dev)
2681{
2682	struct net_device *net = hv_get_drvdata(dev);
2683	struct net_device_context *net_device_ctx;
2684	struct netvsc_device_info *device_info;
2685	int ret;
2686
2687	rtnl_lock();
2688
2689	net_device_ctx = netdev_priv(net);
2690
2691	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2692	 * channel. Later netvsc_netdev_event() will switch the data path to
2693	 * the VF upon the UP or CHANGE event.
2694	 */
2695	net_device_ctx->data_path_is_vf = false;
2696	device_info = net_device_ctx->saved_netvsc_dev_info;
2697
2698	ret = netvsc_attach(net, device_info);
2699
2700	netvsc_devinfo_put(device_info);
2701	net_device_ctx->saved_netvsc_dev_info = NULL;
2702
2703	rtnl_unlock();
2704
2705	return ret;
2706}
2707static const struct hv_vmbus_device_id id_table[] = {
2708	/* Network guid */
2709	{ HV_NIC_GUID, },
2710	{ },
2711};
2712
2713MODULE_DEVICE_TABLE(vmbus, id_table);
2714
2715/* The one and only one */
2716static struct  hv_driver netvsc_drv = {
2717	.name = KBUILD_MODNAME,
2718	.id_table = id_table,
2719	.probe = netvsc_probe,
2720	.remove = netvsc_remove,
2721	.suspend = netvsc_suspend,
2722	.resume = netvsc_resume,
2723	.driver = {
2724		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2725	},
2726};
2727
2728/*
2729 * On Hyper-V, every VF interface is matched with a corresponding
2730 * synthetic interface. The synthetic interface is presented first
2731 * to the guest. When the corresponding VF instance is registered,
2732 * we will take care of switching the data path.
2733 */
2734static int netvsc_netdev_event(struct notifier_block *this,
2735			       unsigned long event, void *ptr)
2736{
2737	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2738
2739	/* Skip our own events */
2740	if (event_dev->netdev_ops == &device_ops)
2741		return NOTIFY_DONE;
2742
2743	/* Avoid non-Ethernet type devices */
2744	if (event_dev->type != ARPHRD_ETHER)
2745		return NOTIFY_DONE;
2746
2747	/* Avoid Vlan dev with same MAC registering as VF */
2748	if (is_vlan_dev(event_dev))
2749		return NOTIFY_DONE;
2750
2751	/* Avoid Bonding master dev with same MAC registering as VF */
2752	if ((event_dev->priv_flags & IFF_BONDING) &&
2753	    (event_dev->flags & IFF_MASTER))
2754		return NOTIFY_DONE;
2755
2756	switch (event) {
2757	case NETDEV_POST_INIT:
2758		return netvsc_prepare_bonding(event_dev);
2759	case NETDEV_REGISTER:
2760		return netvsc_register_vf(event_dev);
2761	case NETDEV_UNREGISTER:
2762		return netvsc_unregister_vf(event_dev);
2763	case NETDEV_UP:
2764	case NETDEV_DOWN:
2765	case NETDEV_CHANGE:
2766		return netvsc_vf_changed(event_dev);
2767	default:
2768		return NOTIFY_DONE;
2769	}
2770}
2771
2772static struct notifier_block netvsc_netdev_notifier = {
2773	.notifier_call = netvsc_netdev_event,
2774};
2775
2776static void __exit netvsc_drv_exit(void)
2777{
2778	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2779	vmbus_driver_unregister(&netvsc_drv);
2780}
2781
2782static int __init netvsc_drv_init(void)
2783{
2784	int ret;
2785
2786	if (ring_size < RING_SIZE_MIN) {
2787		ring_size = RING_SIZE_MIN;
2788		pr_info("Increased ring_size to %u (min allowed)\n",
2789			ring_size);
2790	}
2791	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2792
2793	register_netdevice_notifier(&netvsc_netdev_notifier);
2794
2795	ret = vmbus_driver_register(&netvsc_drv);
2796	if (ret)
2797		goto err_vmbus_reg;
2798
2799	return 0;
2800
2801err_vmbus_reg:
2802	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2803	return ret;
2804}
2805
2806MODULE_LICENSE("GPL");
2807MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2808
2809module_init(netvsc_drv_init);
2810module_exit(netvsc_drv_exit);
2811