1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 *
5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 *
7 * Thanks to Essential Communication for providing us with hardware
8 * and very comprehensive documentation without which I would not have
9 * been able to write this driver. A special thank you to John Gibbon
10 * for sorting out the legal issues, with the NDA, allowing the code to
11 * be released under the GPL.
12 *
13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14 * stupid bugs in my code.
15 *
16 * Softnet support and various other patches from Val Henson of
17 * ODS/Essential.
18 *
19 * PCI DMA mapping code partly based on work by Francois Romieu.
20 */
21
22
23#define DEBUG 1
24#define RX_DMA_SKBUFF 1
25#define PKT_COPY_THRESHOLD 512
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/errno.h>
30#include <linux/ioport.h>
31#include <linux/pci.h>
32#include <linux/kernel.h>
33#include <linux/netdevice.h>
34#include <linux/hippidevice.h>
35#include <linux/skbuff.h>
36#include <linux/delay.h>
37#include <linux/mm.h>
38#include <linux/slab.h>
39#include <net/sock.h>
40
41#include <asm/cache.h>
42#include <asm/byteorder.h>
43#include <asm/io.h>
44#include <asm/irq.h>
45#include <linux/uaccess.h>
46
47#define rr_if_busy(dev)     netif_queue_stopped(dev)
48#define rr_if_running(dev)  netif_running(dev)
49
50#include "rrunner.h"
51
52#define RUN_AT(x) (jiffies + (x))
53
54
55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57MODULE_LICENSE("GPL");
58
59static const char version[] =
60"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
61
62
63static const struct net_device_ops rr_netdev_ops = {
64	.ndo_open 		= rr_open,
65	.ndo_stop		= rr_close,
66	.ndo_do_ioctl		= rr_ioctl,
67	.ndo_start_xmit		= rr_start_xmit,
68	.ndo_set_mac_address	= hippi_mac_addr,
69};
70
71/*
72 * Implementation notes:
73 *
74 * The DMA engine only allows for DMA within physical 64KB chunks of
75 * memory. The current approach of the driver (and stack) is to use
76 * linear blocks of memory for the skbuffs. However, as the data block
77 * is always the first part of the skb and skbs are 2^n aligned so we
78 * are guarantted to get the whole block within one 64KB align 64KB
79 * chunk.
80 *
81 * On the long term, relying on being able to allocate 64KB linear
82 * chunks of memory is not feasible and the skb handling code and the
83 * stack will need to know about I/O vectors or something similar.
84 */
85
86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87{
88	struct net_device *dev;
89	static int version_disp;
90	u8 pci_latency;
91	struct rr_private *rrpriv;
92	void *tmpptr;
93	dma_addr_t ring_dma;
94	int ret = -ENOMEM;
95
96	dev = alloc_hippi_dev(sizeof(struct rr_private));
97	if (!dev)
98		goto out3;
99
100	ret = pci_enable_device(pdev);
101	if (ret) {
102		ret = -ENODEV;
103		goto out2;
104	}
105
106	rrpriv = netdev_priv(dev);
107
108	SET_NETDEV_DEV(dev, &pdev->dev);
109
110	ret = pci_request_regions(pdev, "rrunner");
111	if (ret < 0)
112		goto out;
113
114	pci_set_drvdata(pdev, dev);
115
116	rrpriv->pci_dev = pdev;
117
118	spin_lock_init(&rrpriv->lock);
119
120	dev->netdev_ops = &rr_netdev_ops;
121
122	/* display version info if adapter is found */
123	if (!version_disp) {
124		/* set display flag to TRUE so that */
125		/* we only display this string ONCE */
126		version_disp = 1;
127		printk(version);
128	}
129
130	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131	if (pci_latency <= 0x58){
132		pci_latency = 0x58;
133		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
134	}
135
136	pci_set_master(pdev);
137
138	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140	       (unsigned long long)pci_resource_start(pdev, 0),
141	       pdev->irq, pci_latency);
142
143	/*
144	 * Remap the MMIO regs into kernel space.
145	 */
146	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147	if (!rrpriv->regs) {
148		printk(KERN_ERR "%s:  Unable to map I/O register, "
149			"RoadRunner will be disabled.\n", dev->name);
150		ret = -EIO;
151		goto out;
152	}
153
154	tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155				    GFP_KERNEL);
156	rrpriv->tx_ring = tmpptr;
157	rrpriv->tx_ring_dma = ring_dma;
158
159	if (!tmpptr) {
160		ret = -ENOMEM;
161		goto out;
162	}
163
164	tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165				    GFP_KERNEL);
166	rrpriv->rx_ring = tmpptr;
167	rrpriv->rx_ring_dma = ring_dma;
168
169	if (!tmpptr) {
170		ret = -ENOMEM;
171		goto out;
172	}
173
174	tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175				    GFP_KERNEL);
176	rrpriv->evt_ring = tmpptr;
177	rrpriv->evt_ring_dma = ring_dma;
178
179	if (!tmpptr) {
180		ret = -ENOMEM;
181		goto out;
182	}
183
184	/*
185	 * Don't access any register before this point!
186	 */
187#ifdef __BIG_ENDIAN
188	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189		&rrpriv->regs->HostCtrl);
190#endif
191	/*
192	 * Need to add a case for little-endian 64-bit hosts here.
193	 */
194
195	rr_init(dev);
196
197	ret = register_netdev(dev);
198	if (ret)
199		goto out;
200	return 0;
201
202 out:
203	if (rrpriv->evt_ring)
204		dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205				  rrpriv->evt_ring_dma);
206	if (rrpriv->rx_ring)
207		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208				  rrpriv->rx_ring_dma);
209	if (rrpriv->tx_ring)
210		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211				  rrpriv->tx_ring_dma);
212	if (rrpriv->regs)
213		pci_iounmap(pdev, rrpriv->regs);
214	if (pdev)
215		pci_release_regions(pdev);
216 out2:
217	free_netdev(dev);
218 out3:
219	return ret;
220}
221
222static void rr_remove_one(struct pci_dev *pdev)
223{
224	struct net_device *dev = pci_get_drvdata(pdev);
225	struct rr_private *rr = netdev_priv(dev);
226
227	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228		printk(KERN_ERR "%s: trying to unload running NIC\n",
229		       dev->name);
230		writel(HALT_NIC, &rr->regs->HostCtrl);
231	}
232
233	unregister_netdev(dev);
234	dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
235			  rr->evt_ring_dma);
236	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
237			  rr->rx_ring_dma);
238	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
239			  rr->tx_ring_dma);
240	pci_iounmap(pdev, rr->regs);
241	pci_release_regions(pdev);
242	pci_disable_device(pdev);
243	free_netdev(dev);
244}
245
246
247/*
248 * Commands are considered to be slow, thus there is no reason to
249 * inline this.
250 */
251static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
252{
253	struct rr_regs __iomem *regs;
254	u32 idx;
255
256	regs = rrpriv->regs;
257	/*
258	 * This is temporary - it will go away in the final version.
259	 * We probably also want to make this function inline.
260	 */
261	if (readl(&regs->HostCtrl) & NIC_HALTED){
262		printk("issuing command for halted NIC, code 0x%x, "
263		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
264		if (readl(&regs->Mode) & FATAL_ERR)
265			printk("error codes Fail1 %02x, Fail2 %02x\n",
266			       readl(&regs->Fail1), readl(&regs->Fail2));
267	}
268
269	idx = rrpriv->info->cmd_ctrl.pi;
270
271	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
272	wmb();
273
274	idx = (idx - 1) % CMD_RING_ENTRIES;
275	rrpriv->info->cmd_ctrl.pi = idx;
276	wmb();
277
278	if (readl(&regs->Mode) & FATAL_ERR)
279		printk("error code %02x\n", readl(&regs->Fail1));
280}
281
282
283/*
284 * Reset the board in a sensible manner. The NIC is already halted
285 * when we get here and a spin-lock is held.
286 */
287static int rr_reset(struct net_device *dev)
288{
289	struct rr_private *rrpriv;
290	struct rr_regs __iomem *regs;
291	u32 start_pc;
292	int i;
293
294	rrpriv = netdev_priv(dev);
295	regs = rrpriv->regs;
296
297	rr_load_firmware(dev);
298
299	writel(0x01000000, &regs->TX_state);
300	writel(0xff800000, &regs->RX_state);
301	writel(0, &regs->AssistState);
302	writel(CLEAR_INTA, &regs->LocalCtrl);
303	writel(0x01, &regs->BrkPt);
304	writel(0, &regs->Timer);
305	writel(0, &regs->TimerRef);
306	writel(RESET_DMA, &regs->DmaReadState);
307	writel(RESET_DMA, &regs->DmaWriteState);
308	writel(0, &regs->DmaWriteHostHi);
309	writel(0, &regs->DmaWriteHostLo);
310	writel(0, &regs->DmaReadHostHi);
311	writel(0, &regs->DmaReadHostLo);
312	writel(0, &regs->DmaReadLen);
313	writel(0, &regs->DmaWriteLen);
314	writel(0, &regs->DmaWriteLcl);
315	writel(0, &regs->DmaWriteIPchecksum);
316	writel(0, &regs->DmaReadLcl);
317	writel(0, &regs->DmaReadIPchecksum);
318	writel(0, &regs->PciState);
319#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
321#elif (BITS_PER_LONG == 64)
322	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
323#else
324	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
325#endif
326
327#if 0
328	/*
329	 * Don't worry, this is just black magic.
330	 */
331	writel(0xdf000, &regs->RxBase);
332	writel(0xdf000, &regs->RxPrd);
333	writel(0xdf000, &regs->RxCon);
334	writel(0xce000, &regs->TxBase);
335	writel(0xce000, &regs->TxPrd);
336	writel(0xce000, &regs->TxCon);
337	writel(0, &regs->RxIndPro);
338	writel(0, &regs->RxIndCon);
339	writel(0, &regs->RxIndRef);
340	writel(0, &regs->TxIndPro);
341	writel(0, &regs->TxIndCon);
342	writel(0, &regs->TxIndRef);
343	writel(0xcc000, &regs->pad10[0]);
344	writel(0, &regs->DrCmndPro);
345	writel(0, &regs->DrCmndCon);
346	writel(0, &regs->DwCmndPro);
347	writel(0, &regs->DwCmndCon);
348	writel(0, &regs->DwCmndRef);
349	writel(0, &regs->DrDataPro);
350	writel(0, &regs->DrDataCon);
351	writel(0, &regs->DrDataRef);
352	writel(0, &regs->DwDataPro);
353	writel(0, &regs->DwDataCon);
354	writel(0, &regs->DwDataRef);
355#endif
356
357	writel(0xffffffff, &regs->MbEvent);
358	writel(0, &regs->Event);
359
360	writel(0, &regs->TxPi);
361	writel(0, &regs->IpRxPi);
362
363	writel(0, &regs->EvtCon);
364	writel(0, &regs->EvtPrd);
365
366	rrpriv->info->evt_ctrl.pi = 0;
367
368	for (i = 0; i < CMD_RING_ENTRIES; i++)
369		writel(0, &regs->CmdRing[i]);
370
371/*
372 * Why 32 ? is this not cache line size dependent?
373 */
374	writel(RBURST_64|WBURST_64, &regs->PciState);
375	wmb();
376
377	start_pc = rr_read_eeprom_word(rrpriv,
378			offsetof(struct eeprom, rncd_info.FwStart));
379
380#if (DEBUG > 1)
381	printk("%s: Executing firmware at address 0x%06x\n",
382	       dev->name, start_pc);
383#endif
384
385	writel(start_pc + 0x800, &regs->Pc);
386	wmb();
387	udelay(5);
388
389	writel(start_pc, &regs->Pc);
390	wmb();
391
392	return 0;
393}
394
395
396/*
397 * Read a string from the EEPROM.
398 */
399static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400				unsigned long offset,
401				unsigned char *buf,
402				unsigned long length)
403{
404	struct rr_regs __iomem *regs = rrpriv->regs;
405	u32 misc, io, host, i;
406
407	io = readl(&regs->ExtIo);
408	writel(0, &regs->ExtIo);
409	misc = readl(&regs->LocalCtrl);
410	writel(0, &regs->LocalCtrl);
411	host = readl(&regs->HostCtrl);
412	writel(host | HALT_NIC, &regs->HostCtrl);
413	mb();
414
415	for (i = 0; i < length; i++){
416		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
417		mb();
418		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
419		mb();
420	}
421
422	writel(host, &regs->HostCtrl);
423	writel(misc, &regs->LocalCtrl);
424	writel(io, &regs->ExtIo);
425	mb();
426	return i;
427}
428
429
430/*
431 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432 * it to our CPU byte-order.
433 */
434static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
435			    size_t offset)
436{
437	__be32 word;
438
439	if ((rr_read_eeprom(rrpriv, offset,
440			    (unsigned char *)&word, 4) == 4))
441		return be32_to_cpu(word);
442	return 0;
443}
444
445
446/*
447 * Write a string to the EEPROM.
448 *
449 * This is only called when the firmware is not running.
450 */
451static unsigned int write_eeprom(struct rr_private *rrpriv,
452				 unsigned long offset,
453				 unsigned char *buf,
454				 unsigned long length)
455{
456	struct rr_regs __iomem *regs = rrpriv->regs;
457	u32 misc, io, data, i, j, ready, error = 0;
458
459	io = readl(&regs->ExtIo);
460	writel(0, &regs->ExtIo);
461	misc = readl(&regs->LocalCtrl);
462	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
463	mb();
464
465	for (i = 0; i < length; i++){
466		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
467		mb();
468		data = buf[i] << 24;
469		/*
470		 * Only try to write the data if it is not the same
471		 * value already.
472		 */
473		if ((readl(&regs->WinData) & 0xff000000) != data){
474			writel(data, &regs->WinData);
475			ready = 0;
476			j = 0;
477			mb();
478			while(!ready){
479				udelay(20);
480				if ((readl(&regs->WinData) & 0xff000000) ==
481				    data)
482					ready = 1;
483				mb();
484				if (j++ > 5000){
485					printk("data mismatch: %08x, "
486					       "WinData %08x\n", data,
487					       readl(&regs->WinData));
488					ready = 1;
489					error = 1;
490				}
491			}
492		}
493	}
494
495	writel(misc, &regs->LocalCtrl);
496	writel(io, &regs->ExtIo);
497	mb();
498
499	return error;
500}
501
502
503static int rr_init(struct net_device *dev)
504{
505	struct rr_private *rrpriv;
506	struct rr_regs __iomem *regs;
507	u32 sram_size, rev;
508
509	rrpriv = netdev_priv(dev);
510	regs = rrpriv->regs;
511
512	rev = readl(&regs->FwRev);
513	rrpriv->fw_rev = rev;
514	if (rev > 0x00020024)
515		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
516		       ((rev >> 8) & 0xff), (rev & 0xff));
517	else if (rev >= 0x00020000) {
518		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
519		       "later is recommended)\n", (rev >> 16),
520		       ((rev >> 8) & 0xff), (rev & 0xff));
521	}else{
522		printk("  Firmware revision too old: %i.%i.%i, please "
523		       "upgrade to 2.0.37 or later.\n",
524		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
525	}
526
527#if (DEBUG > 2)
528	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
529#endif
530
531	/*
532	 * Read the hardware address from the eeprom.  The HW address
533	 * is not really necessary for HIPPI but awfully convenient.
534	 * The pointer arithmetic to put it in dev_addr is ugly, but
535	 * Donald Becker does it this way for the GigE version of this
536	 * card and it's shorter and more portable than any
537	 * other method I've seen.  -VAL
538	 */
539
540	*(__be16 *)(dev->dev_addr) =
541	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
542	*(__be32 *)(dev->dev_addr+2) =
543	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
544
545	printk("  MAC: %pM\n", dev->dev_addr);
546
547	sram_size = rr_read_eeprom_word(rrpriv, 8);
548	printk("  SRAM size 0x%06x\n", sram_size);
549
550	return 0;
551}
552
553
554static int rr_init1(struct net_device *dev)
555{
556	struct rr_private *rrpriv;
557	struct rr_regs __iomem *regs;
558	unsigned long myjif, flags;
559	struct cmd cmd;
560	u32 hostctrl;
561	int ecode = 0;
562	short i;
563
564	rrpriv = netdev_priv(dev);
565	regs = rrpriv->regs;
566
567	spin_lock_irqsave(&rrpriv->lock, flags);
568
569	hostctrl = readl(&regs->HostCtrl);
570	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
571	wmb();
572
573	if (hostctrl & PARITY_ERR){
574		printk("%s: Parity error halting NIC - this is serious!\n",
575		       dev->name);
576		spin_unlock_irqrestore(&rrpriv->lock, flags);
577		ecode = -EFAULT;
578		goto error;
579	}
580
581	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
582	set_infoaddr(regs, rrpriv->info_dma);
583
584	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
585	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
586	rrpriv->info->evt_ctrl.mode = 0;
587	rrpriv->info->evt_ctrl.pi = 0;
588	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
589
590	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
591	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
592	rrpriv->info->cmd_ctrl.mode = 0;
593	rrpriv->info->cmd_ctrl.pi = 15;
594
595	for (i = 0; i < CMD_RING_ENTRIES; i++) {
596		writel(0, &regs->CmdRing[i]);
597	}
598
599	for (i = 0; i < TX_RING_ENTRIES; i++) {
600		rrpriv->tx_ring[i].size = 0;
601		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
602		rrpriv->tx_skbuff[i] = NULL;
603	}
604	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
605	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
606	rrpriv->info->tx_ctrl.mode = 0;
607	rrpriv->info->tx_ctrl.pi = 0;
608	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
609
610	/*
611	 * Set dirty_tx before we start receiving interrupts, otherwise
612	 * the interrupt handler might think it is supposed to process
613	 * tx ints before we are up and running, which may cause a null
614	 * pointer access in the int handler.
615	 */
616	rrpriv->tx_full = 0;
617	rrpriv->cur_rx = 0;
618	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
619
620	rr_reset(dev);
621
622	/* Tuning values */
623	writel(0x5000, &regs->ConRetry);
624	writel(0x100, &regs->ConRetryTmr);
625	writel(0x500000, &regs->ConTmout);
626 	writel(0x60, &regs->IntrTmr);
627	writel(0x500000, &regs->TxDataMvTimeout);
628	writel(0x200000, &regs->RxDataMvTimeout);
629 	writel(0x80, &regs->WriteDmaThresh);
630 	writel(0x80, &regs->ReadDmaThresh);
631
632	rrpriv->fw_running = 0;
633	wmb();
634
635	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
636	writel(hostctrl, &regs->HostCtrl);
637	wmb();
638
639	spin_unlock_irqrestore(&rrpriv->lock, flags);
640
641	for (i = 0; i < RX_RING_ENTRIES; i++) {
642		struct sk_buff *skb;
643		dma_addr_t addr;
644
645		rrpriv->rx_ring[i].mode = 0;
646		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
647		if (!skb) {
648			printk(KERN_WARNING "%s: Unable to allocate memory "
649			       "for receive ring - halting NIC\n", dev->name);
650			ecode = -ENOMEM;
651			goto error;
652		}
653		rrpriv->rx_skbuff[i] = skb;
654		addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
655				      dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
656		/*
657		 * Sanity test to see if we conflict with the DMA
658		 * limitations of the Roadrunner.
659		 */
660		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
661			printk("skb alloc error\n");
662
663		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
664		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
665	}
666
667	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
668	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
669	rrpriv->rx_ctrl[4].mode = 8;
670	rrpriv->rx_ctrl[4].pi = 0;
671	wmb();
672	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
673
674	udelay(1000);
675
676	/*
677	 * Now start the FirmWare.
678	 */
679	cmd.code = C_START_FW;
680	cmd.ring = 0;
681	cmd.index = 0;
682
683	rr_issue_cmd(rrpriv, &cmd);
684
685	/*
686	 * Give the FirmWare time to chew on the `get running' command.
687	 */
688	myjif = jiffies + 5 * HZ;
689	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
690		cpu_relax();
691
692	netif_start_queue(dev);
693
694	return ecode;
695
696 error:
697	/*
698	 * We might have gotten here because we are out of memory,
699	 * make sure we release everything we allocated before failing
700	 */
701	for (i = 0; i < RX_RING_ENTRIES; i++) {
702		struct sk_buff *skb = rrpriv->rx_skbuff[i];
703
704		if (skb) {
705			dma_unmap_single(&rrpriv->pci_dev->dev,
706					 rrpriv->rx_ring[i].addr.addrlo,
707					 dev->mtu + HIPPI_HLEN,
708					 DMA_FROM_DEVICE);
709			rrpriv->rx_ring[i].size = 0;
710			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
711			dev_kfree_skb(skb);
712			rrpriv->rx_skbuff[i] = NULL;
713		}
714	}
715	return ecode;
716}
717
718
719/*
720 * All events are considered to be slow (RX/TX ints do not generate
721 * events) and are handled here, outside the main interrupt handler,
722 * to reduce the size of the handler.
723 */
724static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
725{
726	struct rr_private *rrpriv;
727	struct rr_regs __iomem *regs;
728	u32 tmp;
729
730	rrpriv = netdev_priv(dev);
731	regs = rrpriv->regs;
732
733	while (prodidx != eidx){
734		switch (rrpriv->evt_ring[eidx].code){
735		case E_NIC_UP:
736			tmp = readl(&regs->FwRev);
737			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
738			       "up and running\n", dev->name,
739			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
740			rrpriv->fw_running = 1;
741			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
742			wmb();
743			break;
744		case E_LINK_ON:
745			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
746			break;
747		case E_LINK_OFF:
748			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
749			break;
750		case E_RX_IDLE:
751			printk(KERN_WARNING "%s: RX data not moving\n",
752			       dev->name);
753			goto drop;
754		case E_WATCHDOG:
755			printk(KERN_INFO "%s: The watchdog is here to see "
756			       "us\n", dev->name);
757			break;
758		case E_INTERN_ERR:
759			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
760			       dev->name);
761			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
762			       &regs->HostCtrl);
763			wmb();
764			break;
765		case E_HOST_ERR:
766			printk(KERN_ERR "%s: Host software error\n",
767			       dev->name);
768			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769			       &regs->HostCtrl);
770			wmb();
771			break;
772		/*
773		 * TX events.
774		 */
775		case E_CON_REJ:
776			printk(KERN_WARNING "%s: Connection rejected\n",
777			       dev->name);
778			dev->stats.tx_aborted_errors++;
779			break;
780		case E_CON_TMOUT:
781			printk(KERN_WARNING "%s: Connection timeout\n",
782			       dev->name);
783			break;
784		case E_DISC_ERR:
785			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
786			       dev->name);
787			dev->stats.tx_aborted_errors++;
788			break;
789		case E_INT_PRTY:
790			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
791			       dev->name);
792			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
793			       &regs->HostCtrl);
794			wmb();
795			break;
796		case E_TX_IDLE:
797			printk(KERN_WARNING "%s: Transmitter idle\n",
798			       dev->name);
799			break;
800		case E_TX_LINK_DROP:
801			printk(KERN_WARNING "%s: Link lost during transmit\n",
802			       dev->name);
803			dev->stats.tx_aborted_errors++;
804			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
805			       &regs->HostCtrl);
806			wmb();
807			break;
808		case E_TX_INV_RNG:
809			printk(KERN_ERR "%s: Invalid send ring block\n",
810			       dev->name);
811			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812			       &regs->HostCtrl);
813			wmb();
814			break;
815		case E_TX_INV_BUF:
816			printk(KERN_ERR "%s: Invalid send buffer address\n",
817			       dev->name);
818			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819			       &regs->HostCtrl);
820			wmb();
821			break;
822		case E_TX_INV_DSC:
823			printk(KERN_ERR "%s: Invalid descriptor address\n",
824			       dev->name);
825			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826			       &regs->HostCtrl);
827			wmb();
828			break;
829		/*
830		 * RX events.
831		 */
832		case E_RX_RNG_OUT:
833			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
834			break;
835
836		case E_RX_PAR_ERR:
837			printk(KERN_WARNING "%s: Receive parity error\n",
838			       dev->name);
839			goto drop;
840		case E_RX_LLRC_ERR:
841			printk(KERN_WARNING "%s: Receive LLRC error\n",
842			       dev->name);
843			goto drop;
844		case E_PKT_LN_ERR:
845			printk(KERN_WARNING "%s: Receive packet length "
846			       "error\n", dev->name);
847			goto drop;
848		case E_DTA_CKSM_ERR:
849			printk(KERN_WARNING "%s: Data checksum error\n",
850			       dev->name);
851			goto drop;
852		case E_SHT_BST:
853			printk(KERN_WARNING "%s: Unexpected short burst "
854			       "error\n", dev->name);
855			goto drop;
856		case E_STATE_ERR:
857			printk(KERN_WARNING "%s: Recv. state transition"
858			       " error\n", dev->name);
859			goto drop;
860		case E_UNEXP_DATA:
861			printk(KERN_WARNING "%s: Unexpected data error\n",
862			       dev->name);
863			goto drop;
864		case E_LST_LNK_ERR:
865			printk(KERN_WARNING "%s: Link lost error\n",
866			       dev->name);
867			goto drop;
868		case E_FRM_ERR:
869			printk(KERN_WARNING "%s: Framing Error\n",
870			       dev->name);
871			goto drop;
872		case E_FLG_SYN_ERR:
873			printk(KERN_WARNING "%s: Flag sync. lost during "
874			       "packet\n", dev->name);
875			goto drop;
876		case E_RX_INV_BUF:
877			printk(KERN_ERR "%s: Invalid receive buffer "
878			       "address\n", dev->name);
879			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
880			       &regs->HostCtrl);
881			wmb();
882			break;
883		case E_RX_INV_DSC:
884			printk(KERN_ERR "%s: Invalid receive descriptor "
885			       "address\n", dev->name);
886			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887			       &regs->HostCtrl);
888			wmb();
889			break;
890		case E_RNG_BLK:
891			printk(KERN_ERR "%s: Invalid ring block\n",
892			       dev->name);
893			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894			       &regs->HostCtrl);
895			wmb();
896			break;
897		drop:
898			/* Label packet to be dropped.
899			 * Actual dropping occurs in rx
900			 * handling.
901			 *
902			 * The index of packet we get to drop is
903			 * the index of the packet following
904			 * the bad packet. -kbf
905			 */
906			{
907				u16 index = rrpriv->evt_ring[eidx].index;
908				index = (index + (RX_RING_ENTRIES - 1)) %
909					RX_RING_ENTRIES;
910				rrpriv->rx_ring[index].mode |=
911					(PACKET_BAD | PACKET_END);
912			}
913			break;
914		default:
915			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
916			       dev->name, rrpriv->evt_ring[eidx].code);
917		}
918		eidx = (eidx + 1) % EVT_RING_ENTRIES;
919	}
920
921	rrpriv->info->evt_ctrl.pi = eidx;
922	wmb();
923	return eidx;
924}
925
926
927static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
928{
929	struct rr_private *rrpriv = netdev_priv(dev);
930	struct rr_regs __iomem *regs = rrpriv->regs;
931
932	do {
933		struct rx_desc *desc;
934		u32 pkt_len;
935
936		desc = &(rrpriv->rx_ring[index]);
937		pkt_len = desc->size;
938#if (DEBUG > 2)
939		printk("index %i, rxlimit %i\n", index, rxlimit);
940		printk("len %x, mode %x\n", pkt_len, desc->mode);
941#endif
942		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
943			dev->stats.rx_dropped++;
944			goto defer;
945		}
946
947		if (pkt_len > 0){
948			struct sk_buff *skb, *rx_skb;
949
950			rx_skb = rrpriv->rx_skbuff[index];
951
952			if (pkt_len < PKT_COPY_THRESHOLD) {
953				skb = alloc_skb(pkt_len, GFP_ATOMIC);
954				if (skb == NULL){
955					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
956					dev->stats.rx_dropped++;
957					goto defer;
958				} else {
959					dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
960								desc->addr.addrlo,
961								pkt_len,
962								DMA_FROM_DEVICE);
963
964					skb_put_data(skb, rx_skb->data,
965						     pkt_len);
966
967					dma_sync_single_for_device(&rrpriv->pci_dev->dev,
968								   desc->addr.addrlo,
969								   pkt_len,
970								   DMA_FROM_DEVICE);
971				}
972			}else{
973				struct sk_buff *newskb;
974
975				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
976					GFP_ATOMIC);
977				if (newskb){
978					dma_addr_t addr;
979
980					dma_unmap_single(&rrpriv->pci_dev->dev,
981							 desc->addr.addrlo,
982							 dev->mtu + HIPPI_HLEN,
983							 DMA_FROM_DEVICE);
984					skb = rx_skb;
985					skb_put(skb, pkt_len);
986					rrpriv->rx_skbuff[index] = newskb;
987					addr = dma_map_single(&rrpriv->pci_dev->dev,
988							      newskb->data,
989							      dev->mtu + HIPPI_HLEN,
990							      DMA_FROM_DEVICE);
991					set_rraddr(&desc->addr, addr);
992				} else {
993					printk("%s: Out of memory, deferring "
994					       "packet\n", dev->name);
995					dev->stats.rx_dropped++;
996					goto defer;
997				}
998			}
999			skb->protocol = hippi_type_trans(skb, dev);
1000
1001			netif_rx(skb);		/* send it up */
1002
1003			dev->stats.rx_packets++;
1004			dev->stats.rx_bytes += pkt_len;
1005		}
1006	defer:
1007		desc->mode = 0;
1008		desc->size = dev->mtu + HIPPI_HLEN;
1009
1010		if ((index & 7) == 7)
1011			writel(index, &regs->IpRxPi);
1012
1013		index = (index + 1) % RX_RING_ENTRIES;
1014	} while(index != rxlimit);
1015
1016	rrpriv->cur_rx = index;
1017	wmb();
1018}
1019
1020
1021static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022{
1023	struct rr_private *rrpriv;
1024	struct rr_regs __iomem *regs;
1025	struct net_device *dev = (struct net_device *)dev_id;
1026	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027
1028	rrpriv = netdev_priv(dev);
1029	regs = rrpriv->regs;
1030
1031	if (!(readl(&regs->HostCtrl) & RR_INT))
1032		return IRQ_NONE;
1033
1034	spin_lock(&rrpriv->lock);
1035
1036	prodidx = readl(&regs->EvtPrd);
1037	txcsmr = (prodidx >> 8) & 0xff;
1038	rxlimit = (prodidx >> 16) & 0xff;
1039	prodidx &= 0xff;
1040
1041#if (DEBUG > 2)
1042	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043	       prodidx, rrpriv->info->evt_ctrl.pi);
1044#endif
1045	/*
1046	 * Order here is important.  We must handle events
1047	 * before doing anything else in order to catch
1048	 * such things as LLRC errors, etc -kbf
1049	 */
1050
1051	eidx = rrpriv->info->evt_ctrl.pi;
1052	if (prodidx != eidx)
1053		eidx = rr_handle_event(dev, prodidx, eidx);
1054
1055	rxindex = rrpriv->cur_rx;
1056	if (rxindex != rxlimit)
1057		rx_int(dev, rxlimit, rxindex);
1058
1059	txcon = rrpriv->dirty_tx;
1060	if (txcsmr != txcon) {
1061		do {
1062			/* Due to occational firmware TX producer/consumer out
1063			 * of sync. error need to check entry in ring -kbf
1064			 */
1065			if(rrpriv->tx_skbuff[txcon]){
1066				struct tx_desc *desc;
1067				struct sk_buff *skb;
1068
1069				desc = &(rrpriv->tx_ring[txcon]);
1070				skb = rrpriv->tx_skbuff[txcon];
1071
1072				dev->stats.tx_packets++;
1073				dev->stats.tx_bytes += skb->len;
1074
1075				dma_unmap_single(&rrpriv->pci_dev->dev,
1076						 desc->addr.addrlo, skb->len,
1077						 DMA_TO_DEVICE);
1078				dev_kfree_skb_irq(skb);
1079
1080				rrpriv->tx_skbuff[txcon] = NULL;
1081				desc->size = 0;
1082				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083				desc->mode = 0;
1084			}
1085			txcon = (txcon + 1) % TX_RING_ENTRIES;
1086		} while (txcsmr != txcon);
1087		wmb();
1088
1089		rrpriv->dirty_tx = txcon;
1090		if (rrpriv->tx_full && rr_if_busy(dev) &&
1091		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092		     != rrpriv->dirty_tx)){
1093			rrpriv->tx_full = 0;
1094			netif_wake_queue(dev);
1095		}
1096	}
1097
1098	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099	writel(eidx, &regs->EvtCon);
1100	wmb();
1101
1102	spin_unlock(&rrpriv->lock);
1103	return IRQ_HANDLED;
1104}
1105
1106static inline void rr_raz_tx(struct rr_private *rrpriv,
1107			     struct net_device *dev)
1108{
1109	int i;
1110
1111	for (i = 0; i < TX_RING_ENTRIES; i++) {
1112		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113
1114		if (skb) {
1115			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116
1117			dma_unmap_single(&rrpriv->pci_dev->dev,
1118					 desc->addr.addrlo, skb->len,
1119					 DMA_TO_DEVICE);
1120			desc->size = 0;
1121			set_rraddr(&desc->addr, 0);
1122			dev_kfree_skb(skb);
1123			rrpriv->tx_skbuff[i] = NULL;
1124		}
1125	}
1126}
1127
1128
1129static inline void rr_raz_rx(struct rr_private *rrpriv,
1130			     struct net_device *dev)
1131{
1132	int i;
1133
1134	for (i = 0; i < RX_RING_ENTRIES; i++) {
1135		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1136
1137		if (skb) {
1138			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1139
1140			dma_unmap_single(&rrpriv->pci_dev->dev,
1141					 desc->addr.addrlo,
1142					 dev->mtu + HIPPI_HLEN,
1143					 DMA_FROM_DEVICE);
1144			desc->size = 0;
1145			set_rraddr(&desc->addr, 0);
1146			dev_kfree_skb(skb);
1147			rrpriv->rx_skbuff[i] = NULL;
1148		}
1149	}
1150}
1151
1152static void rr_timer(struct timer_list *t)
1153{
1154	struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1155	struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1156	struct rr_regs __iomem *regs = rrpriv->regs;
1157	unsigned long flags;
1158
1159	if (readl(&regs->HostCtrl) & NIC_HALTED){
1160		printk("%s: Restarting nic\n", dev->name);
1161		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1162		memset(rrpriv->info, 0, sizeof(struct rr_info));
1163		wmb();
1164
1165		rr_raz_tx(rrpriv, dev);
1166		rr_raz_rx(rrpriv, dev);
1167
1168		if (rr_init1(dev)) {
1169			spin_lock_irqsave(&rrpriv->lock, flags);
1170			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1171			       &regs->HostCtrl);
1172			spin_unlock_irqrestore(&rrpriv->lock, flags);
1173		}
1174	}
1175	rrpriv->timer.expires = RUN_AT(5*HZ);
1176	add_timer(&rrpriv->timer);
1177}
1178
1179
1180static int rr_open(struct net_device *dev)
1181{
1182	struct rr_private *rrpriv = netdev_priv(dev);
1183	struct pci_dev *pdev = rrpriv->pci_dev;
1184	struct rr_regs __iomem *regs;
1185	int ecode = 0;
1186	unsigned long flags;
1187	dma_addr_t dma_addr;
1188
1189	regs = rrpriv->regs;
1190
1191	if (rrpriv->fw_rev < 0x00020000) {
1192		printk(KERN_WARNING "%s: trying to configure device with "
1193		       "obsolete firmware\n", dev->name);
1194		ecode = -EBUSY;
1195		goto error;
1196	}
1197
1198	rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1199					     256 * sizeof(struct ring_ctrl),
1200					     &dma_addr, GFP_KERNEL);
1201	if (!rrpriv->rx_ctrl) {
1202		ecode = -ENOMEM;
1203		goto error;
1204	}
1205	rrpriv->rx_ctrl_dma = dma_addr;
1206
1207	rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1208					  &dma_addr, GFP_KERNEL);
1209	if (!rrpriv->info) {
1210		ecode = -ENOMEM;
1211		goto error;
1212	}
1213	rrpriv->info_dma = dma_addr;
1214	wmb();
1215
1216	spin_lock_irqsave(&rrpriv->lock, flags);
1217	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1218	readl(&regs->HostCtrl);
1219	spin_unlock_irqrestore(&rrpriv->lock, flags);
1220
1221	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1222		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1223		       dev->name, pdev->irq);
1224		ecode = -EAGAIN;
1225		goto error;
1226	}
1227
1228	if ((ecode = rr_init1(dev)))
1229		goto error;
1230
1231	/* Set the timer to switch to check for link beat and perhaps switch
1232	   to an alternate media type. */
1233	timer_setup(&rrpriv->timer, rr_timer, 0);
1234	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1235	add_timer(&rrpriv->timer);
1236
1237	netif_start_queue(dev);
1238
1239	return ecode;
1240
1241 error:
1242	spin_lock_irqsave(&rrpriv->lock, flags);
1243	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1244	spin_unlock_irqrestore(&rrpriv->lock, flags);
1245
1246	if (rrpriv->info) {
1247		dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1248				  rrpriv->info, rrpriv->info_dma);
1249		rrpriv->info = NULL;
1250	}
1251	if (rrpriv->rx_ctrl) {
1252		dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1253				  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254		rrpriv->rx_ctrl = NULL;
1255	}
1256
1257	netif_stop_queue(dev);
1258
1259	return ecode;
1260}
1261
1262
1263static void rr_dump(struct net_device *dev)
1264{
1265	struct rr_private *rrpriv;
1266	struct rr_regs __iomem *regs;
1267	u32 index, cons;
1268	short i;
1269	int len;
1270
1271	rrpriv = netdev_priv(dev);
1272	regs = rrpriv->regs;
1273
1274	printk("%s: dumping NIC TX rings\n", dev->name);
1275
1276	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1278	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1279	       rrpriv->info->tx_ctrl.pi);
1280
1281	printk("Error code 0x%x\n", readl(&regs->Fail1));
1282
1283	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1284	cons = rrpriv->dirty_tx;
1285	printk("TX ring index %i, TX consumer %i\n",
1286	       index, cons);
1287
1288	if (rrpriv->tx_skbuff[index]){
1289		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291		for (i = 0; i < len; i++){
1292			if (!(i & 7))
1293				printk("\n");
1294			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295		}
1296		printk("\n");
1297	}
1298
1299	if (rrpriv->tx_skbuff[cons]){
1300		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1303		       rrpriv->tx_ring[cons].mode,
1304		       rrpriv->tx_ring[cons].size,
1305		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306		       rrpriv->tx_skbuff[cons]->data,
1307		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308		for (i = 0; i < len; i++){
1309			if (!(i & 7))
1310				printk("\n");
1311			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312		}
1313		printk("\n");
1314	}
1315
1316	printk("dumping TX ring info:\n");
1317	for (i = 0; i < TX_RING_ENTRIES; i++)
1318		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319		       rrpriv->tx_ring[i].mode,
1320		       rrpriv->tx_ring[i].size,
1321		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1322
1323}
1324
1325
1326static int rr_close(struct net_device *dev)
1327{
1328	struct rr_private *rrpriv = netdev_priv(dev);
1329	struct rr_regs __iomem *regs = rrpriv->regs;
1330	struct pci_dev *pdev = rrpriv->pci_dev;
1331	unsigned long flags;
1332	u32 tmp;
1333	short i;
1334
1335	netif_stop_queue(dev);
1336
1337
1338	/*
1339	 * Lock to make sure we are not cleaning up while another CPU
1340	 * is handling interrupts.
1341	 */
1342	spin_lock_irqsave(&rrpriv->lock, flags);
1343
1344	tmp = readl(&regs->HostCtrl);
1345	if (tmp & NIC_HALTED){
1346		printk("%s: NIC already halted\n", dev->name);
1347		rr_dump(dev);
1348	}else{
1349		tmp |= HALT_NIC | RR_CLEAR_INT;
1350		writel(tmp, &regs->HostCtrl);
1351		readl(&regs->HostCtrl);
1352	}
1353
1354	rrpriv->fw_running = 0;
1355
1356	spin_unlock_irqrestore(&rrpriv->lock, flags);
1357	del_timer_sync(&rrpriv->timer);
1358	spin_lock_irqsave(&rrpriv->lock, flags);
1359
1360	writel(0, &regs->TxPi);
1361	writel(0, &regs->IpRxPi);
1362
1363	writel(0, &regs->EvtCon);
1364	writel(0, &regs->EvtPrd);
1365
1366	for (i = 0; i < CMD_RING_ENTRIES; i++)
1367		writel(0, &regs->CmdRing[i]);
1368
1369	rrpriv->info->tx_ctrl.entries = 0;
1370	rrpriv->info->cmd_ctrl.pi = 0;
1371	rrpriv->info->evt_ctrl.pi = 0;
1372	rrpriv->rx_ctrl[4].entries = 0;
1373
1374	rr_raz_tx(rrpriv, dev);
1375	rr_raz_rx(rrpriv, dev);
1376
1377	dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1378			  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1379	rrpriv->rx_ctrl = NULL;
1380
1381	dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1382			  rrpriv->info_dma);
1383	rrpriv->info = NULL;
1384
1385	spin_unlock_irqrestore(&rrpriv->lock, flags);
1386	free_irq(pdev->irq, dev);
1387
1388	return 0;
1389}
1390
1391
1392static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1393				 struct net_device *dev)
1394{
1395	struct rr_private *rrpriv = netdev_priv(dev);
1396	struct rr_regs __iomem *regs = rrpriv->regs;
1397	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1398	struct ring_ctrl *txctrl;
1399	unsigned long flags;
1400	u32 index, len = skb->len;
1401	u32 *ifield;
1402	struct sk_buff *new_skb;
1403
1404	if (readl(&regs->Mode) & FATAL_ERR)
1405		printk("error codes Fail1 %02x, Fail2 %02x\n",
1406		       readl(&regs->Fail1), readl(&regs->Fail2));
1407
1408	/*
1409	 * We probably need to deal with tbusy here to prevent overruns.
1410	 */
1411
1412	if (skb_headroom(skb) < 8){
1413		printk("incoming skb too small - reallocating\n");
1414		if (!(new_skb = dev_alloc_skb(len + 8))) {
1415			dev_kfree_skb(skb);
1416			netif_wake_queue(dev);
1417			return NETDEV_TX_OK;
1418		}
1419		skb_reserve(new_skb, 8);
1420		skb_put(new_skb, len);
1421		skb_copy_from_linear_data(skb, new_skb->data, len);
1422		dev_kfree_skb(skb);
1423		skb = new_skb;
1424	}
1425
1426	ifield = skb_push(skb, 8);
1427
1428	ifield[0] = 0;
1429	ifield[1] = hcb->ifield;
1430
1431	/*
1432	 * We don't need the lock before we are actually going to start
1433	 * fiddling with the control blocks.
1434	 */
1435	spin_lock_irqsave(&rrpriv->lock, flags);
1436
1437	txctrl = &rrpriv->info->tx_ctrl;
1438
1439	index = txctrl->pi;
1440
1441	rrpriv->tx_skbuff[index] = skb;
1442	set_rraddr(&rrpriv->tx_ring[index].addr,
1443		   dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1444	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1445	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1446	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1447	wmb();
1448	writel(txctrl->pi, &regs->TxPi);
1449
1450	if (txctrl->pi == rrpriv->dirty_tx){
1451		rrpriv->tx_full = 1;
1452		netif_stop_queue(dev);
1453	}
1454
1455	spin_unlock_irqrestore(&rrpriv->lock, flags);
1456
1457	return NETDEV_TX_OK;
1458}
1459
1460
1461/*
1462 * Read the firmware out of the EEPROM and put it into the SRAM
1463 * (or from user space - later)
1464 *
1465 * This operation requires the NIC to be halted and is performed with
1466 * interrupts disabled and with the spinlock hold.
1467 */
1468static int rr_load_firmware(struct net_device *dev)
1469{
1470	struct rr_private *rrpriv;
1471	struct rr_regs __iomem *regs;
1472	size_t eptr, segptr;
1473	int i, j;
1474	u32 localctrl, sptr, len, tmp;
1475	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1476
1477	rrpriv = netdev_priv(dev);
1478	regs = rrpriv->regs;
1479
1480	if (dev->flags & IFF_UP)
1481		return -EBUSY;
1482
1483	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1484		printk("%s: Trying to load firmware to a running NIC.\n",
1485		       dev->name);
1486		return -EBUSY;
1487	}
1488
1489	localctrl = readl(&regs->LocalCtrl);
1490	writel(0, &regs->LocalCtrl);
1491
1492	writel(0, &regs->EvtPrd);
1493	writel(0, &regs->RxPrd);
1494	writel(0, &regs->TxPrd);
1495
1496	/*
1497	 * First wipe the entire SRAM, otherwise we might run into all
1498	 * kinds of trouble ... sigh, this took almost all afternoon
1499	 * to track down ;-(
1500	 */
1501	io = readl(&regs->ExtIo);
1502	writel(0, &regs->ExtIo);
1503	sram_size = rr_read_eeprom_word(rrpriv, 8);
1504
1505	for (i = 200; i < sram_size / 4; i++){
1506		writel(i * 4, &regs->WinBase);
1507		mb();
1508		writel(0, &regs->WinData);
1509		mb();
1510	}
1511	writel(io, &regs->ExtIo);
1512	mb();
1513
1514	eptr = rr_read_eeprom_word(rrpriv,
1515		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1516	eptr = ((eptr & 0x1fffff) >> 3);
1517
1518	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1519	p2len = (p2len << 2);
1520	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1521	p2size = ((p2size & 0x1fffff) >> 3);
1522
1523	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1524		printk("%s: eptr is invalid\n", dev->name);
1525		goto out;
1526	}
1527
1528	revision = rr_read_eeprom_word(rrpriv,
1529			offsetof(struct eeprom, manf.HeaderFmt));
1530
1531	if (revision != 1){
1532		printk("%s: invalid firmware format (%i)\n",
1533		       dev->name, revision);
1534		goto out;
1535	}
1536
1537	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1538	eptr +=4;
1539#if (DEBUG > 1)
1540	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1541#endif
1542
1543	for (i = 0; i < nr_seg; i++){
1544		sptr = rr_read_eeprom_word(rrpriv, eptr);
1545		eptr += 4;
1546		len = rr_read_eeprom_word(rrpriv, eptr);
1547		eptr += 4;
1548		segptr = rr_read_eeprom_word(rrpriv, eptr);
1549		segptr = ((segptr & 0x1fffff) >> 3);
1550		eptr += 4;
1551#if (DEBUG > 1)
1552		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1553		       dev->name, i, sptr, len, segptr);
1554#endif
1555		for (j = 0; j < len; j++){
1556			tmp = rr_read_eeprom_word(rrpriv, segptr);
1557			writel(sptr, &regs->WinBase);
1558			mb();
1559			writel(tmp, &regs->WinData);
1560			mb();
1561			segptr += 4;
1562			sptr += 4;
1563		}
1564	}
1565
1566out:
1567	writel(localctrl, &regs->LocalCtrl);
1568	mb();
1569	return 0;
1570}
1571
1572
1573static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1574{
1575	struct rr_private *rrpriv;
1576	unsigned char *image, *oldimage;
1577	unsigned long flags;
1578	unsigned int i;
1579	int error = -EOPNOTSUPP;
1580
1581	rrpriv = netdev_priv(dev);
1582
1583	switch(cmd){
1584	case SIOCRRGFW:
1585		if (!capable(CAP_SYS_RAWIO)){
1586			return -EPERM;
1587		}
1588
1589		image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1590		if (!image)
1591			return -ENOMEM;
1592
1593		if (rrpriv->fw_running){
1594			printk("%s: Firmware already running\n", dev->name);
1595			error = -EPERM;
1596			goto gf_out;
1597		}
1598
1599		spin_lock_irqsave(&rrpriv->lock, flags);
1600		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1601		spin_unlock_irqrestore(&rrpriv->lock, flags);
1602		if (i != EEPROM_BYTES){
1603			printk(KERN_ERR "%s: Error reading EEPROM\n",
1604			       dev->name);
1605			error = -EFAULT;
1606			goto gf_out;
1607		}
1608		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1609		if (error)
1610			error = -EFAULT;
1611	gf_out:
1612		kfree(image);
1613		return error;
1614
1615	case SIOCRRPFW:
1616		if (!capable(CAP_SYS_RAWIO)){
1617			return -EPERM;
1618		}
1619
1620		image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1621		if (IS_ERR(image))
1622			return PTR_ERR(image);
1623
1624		oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1625		if (!oldimage) {
1626			kfree(image);
1627			return -ENOMEM;
1628		}
1629
1630		if (rrpriv->fw_running){
1631			printk("%s: Firmware already running\n", dev->name);
1632			error = -EPERM;
1633			goto wf_out;
1634		}
1635
1636		printk("%s: Updating EEPROM firmware\n", dev->name);
1637
1638		spin_lock_irqsave(&rrpriv->lock, flags);
1639		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1640		if (error)
1641			printk(KERN_ERR "%s: Error writing EEPROM\n",
1642			       dev->name);
1643
1644		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1645		spin_unlock_irqrestore(&rrpriv->lock, flags);
1646
1647		if (i != EEPROM_BYTES)
1648			printk(KERN_ERR "%s: Error reading back EEPROM "
1649			       "image\n", dev->name);
1650
1651		error = memcmp(image, oldimage, EEPROM_BYTES);
1652		if (error){
1653			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1654			       dev->name);
1655			error = -EFAULT;
1656		}
1657	wf_out:
1658		kfree(oldimage);
1659		kfree(image);
1660		return error;
1661
1662	case SIOCRRID:
1663		return put_user(0x52523032, (int __user *)rq->ifr_data);
1664	default:
1665		return error;
1666	}
1667}
1668
1669static const struct pci_device_id rr_pci_tbl[] = {
1670	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1671		PCI_ANY_ID, PCI_ANY_ID, },
1672	{ 0,}
1673};
1674MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1675
1676static struct pci_driver rr_driver = {
1677	.name		= "rrunner",
1678	.id_table	= rr_pci_tbl,
1679	.probe		= rr_init_one,
1680	.remove		= rr_remove_one,
1681};
1682
1683module_pci_driver(rr_driver);
1684