1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * 6pack.c This module implements the 6pack protocol for kernel-based 4 * devices like TTY. It interfaces between a raw TTY and the 5 * kernel's AX.25 protocol layers. 6 * 7 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de> 8 * Ralf Baechle DL5RB <ralf@linux-mips.org> 9 * 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by 11 * 12 * Laurence Culhane, <loz@holmes.demon.co.uk> 13 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> 14 */ 15 16#include <linux/module.h> 17#include <linux/uaccess.h> 18#include <linux/bitops.h> 19#include <linux/string.h> 20#include <linux/mm.h> 21#include <linux/interrupt.h> 22#include <linux/in.h> 23#include <linux/tty.h> 24#include <linux/errno.h> 25#include <linux/netdevice.h> 26#include <linux/timer.h> 27#include <linux/slab.h> 28#include <net/ax25.h> 29#include <linux/etherdevice.h> 30#include <linux/skbuff.h> 31#include <linux/rtnetlink.h> 32#include <linux/spinlock.h> 33#include <linux/if_arp.h> 34#include <linux/init.h> 35#include <linux/ip.h> 36#include <linux/tcp.h> 37#include <linux/semaphore.h> 38#include <linux/refcount.h> 39 40#define SIXPACK_VERSION "Revision: 0.3.0" 41 42/* sixpack priority commands */ 43#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */ 44#define SIXP_TX_URUN 0x48 /* transmit overrun */ 45#define SIXP_RX_ORUN 0x50 /* receive overrun */ 46#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */ 47 48#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */ 49 50/* masks to get certain bits out of the status bytes sent by the TNC */ 51 52#define SIXP_CMD_MASK 0xC0 53#define SIXP_CHN_MASK 0x07 54#define SIXP_PRIO_CMD_MASK 0x80 55#define SIXP_STD_CMD_MASK 0x40 56#define SIXP_PRIO_DATA_MASK 0x38 57#define SIXP_TX_MASK 0x20 58#define SIXP_RX_MASK 0x10 59#define SIXP_RX_DCD_MASK 0x18 60#define SIXP_LEDS_ON 0x78 61#define SIXP_LEDS_OFF 0x60 62#define SIXP_CON 0x08 63#define SIXP_STA 0x10 64 65#define SIXP_FOUND_TNC 0xe9 66#define SIXP_CON_ON 0x68 67#define SIXP_DCD_MASK 0x08 68#define SIXP_DAMA_OFF 0 69 70/* default level 2 parameters */ 71#define SIXP_TXDELAY 25 /* 250 ms */ 72#define SIXP_PERSIST 50 /* in 256ths */ 73#define SIXP_SLOTTIME 10 /* 100 ms */ 74#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */ 75#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */ 76 77/* 6pack configuration. */ 78#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */ 79#define SIXP_MTU 256 /* Default MTU */ 80 81enum sixpack_flags { 82 SIXPF_ERROR, /* Parity, etc. error */ 83}; 84 85struct sixpack { 86 /* Various fields. */ 87 struct tty_struct *tty; /* ptr to TTY structure */ 88 struct net_device *dev; /* easy for intr handling */ 89 90 /* These are pointers to the malloc()ed frame buffers. */ 91 unsigned char *rbuff; /* receiver buffer */ 92 int rcount; /* received chars counter */ 93 unsigned char *xbuff; /* transmitter buffer */ 94 unsigned char *xhead; /* next byte to XMIT */ 95 int xleft; /* bytes left in XMIT queue */ 96 97 unsigned char raw_buf[4]; 98 unsigned char cooked_buf[400]; 99 100 unsigned int rx_count; 101 unsigned int rx_count_cooked; 102 103 int mtu; /* Our mtu (to spot changes!) */ 104 int buffsize; /* Max buffers sizes */ 105 106 unsigned long flags; /* Flag values/ mode etc */ 107 unsigned char mode; /* 6pack mode */ 108 109 /* 6pack stuff */ 110 unsigned char tx_delay; 111 unsigned char persistence; 112 unsigned char slottime; 113 unsigned char duplex; 114 unsigned char led_state; 115 unsigned char status; 116 unsigned char status1; 117 unsigned char status2; 118 unsigned char tx_enable; 119 unsigned char tnc_state; 120 121 struct timer_list tx_t; 122 struct timer_list resync_t; 123 refcount_t refcnt; 124 struct completion dead; 125 spinlock_t lock; 126}; 127 128#define AX25_6PACK_HEADER_LEN 0 129 130static void sixpack_decode(struct sixpack *, const unsigned char[], int); 131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char); 132 133/* 134 * Perform the persistence/slottime algorithm for CSMA access. If the 135 * persistence check was successful, write the data to the serial driver. 136 * Note that in case of DAMA operation, the data is not sent here. 137 */ 138 139static void sp_xmit_on_air(struct timer_list *t) 140{ 141 struct sixpack *sp = from_timer(sp, t, tx_t); 142 int actual, when = sp->slottime; 143 static unsigned char random; 144 145 random = random * 17 + 41; 146 147 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { 148 sp->led_state = 0x70; 149 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 150 sp->tx_enable = 1; 151 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 152 sp->xleft -= actual; 153 sp->xhead += actual; 154 sp->led_state = 0x60; 155 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 156 sp->status2 = 0; 157 } else 158 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100); 159} 160 161/* ----> 6pack timer interrupt handler and friends. <---- */ 162 163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */ 164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len) 165{ 166 unsigned char *msg, *p = icp; 167 int actual, count; 168 169 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 170 msg = "oversized transmit packet!"; 171 goto out_drop; 172 } 173 174 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 175 msg = "oversized transmit packet!"; 176 goto out_drop; 177 } 178 179 if (p[0] > 5) { 180 msg = "invalid KISS command"; 181 goto out_drop; 182 } 183 184 if ((p[0] != 0) && (len > 2)) { 185 msg = "KISS control packet too long"; 186 goto out_drop; 187 } 188 189 if ((p[0] == 0) && (len < 15)) { 190 msg = "bad AX.25 packet to transmit"; 191 goto out_drop; 192 } 193 194 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); 195 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 196 197 switch (p[0]) { 198 case 1: sp->tx_delay = p[1]; 199 return; 200 case 2: sp->persistence = p[1]; 201 return; 202 case 3: sp->slottime = p[1]; 203 return; 204 case 4: /* ignored */ 205 return; 206 case 5: sp->duplex = p[1]; 207 return; 208 } 209 210 if (p[0] != 0) 211 return; 212 213 /* 214 * In case of fullduplex or DAMA operation, we don't take care about the 215 * state of the DCD or of any timers, as the determination of the 216 * correct time to send is the job of the AX.25 layer. We send 217 * immediately after data has arrived. 218 */ 219 if (sp->duplex == 1) { 220 sp->led_state = 0x70; 221 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 222 sp->tx_enable = 1; 223 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count); 224 sp->xleft = count - actual; 225 sp->xhead = sp->xbuff + actual; 226 sp->led_state = 0x60; 227 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 228 } else { 229 sp->xleft = count; 230 sp->xhead = sp->xbuff; 231 sp->status2 = count; 232 sp_xmit_on_air(&sp->tx_t); 233 } 234 235 return; 236 237out_drop: 238 sp->dev->stats.tx_dropped++; 239 netif_start_queue(sp->dev); 240 if (net_ratelimit()) 241 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg); 242} 243 244/* Encapsulate an IP datagram and kick it into a TTY queue. */ 245 246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev) 247{ 248 struct sixpack *sp = netdev_priv(dev); 249 250 if (skb->protocol == htons(ETH_P_IP)) 251 return ax25_ip_xmit(skb); 252 253 spin_lock_bh(&sp->lock); 254 /* We were not busy, so we are now... :-) */ 255 netif_stop_queue(dev); 256 dev->stats.tx_bytes += skb->len; 257 sp_encaps(sp, skb->data, skb->len); 258 spin_unlock_bh(&sp->lock); 259 260 dev_kfree_skb(skb); 261 262 return NETDEV_TX_OK; 263} 264 265static int sp_open_dev(struct net_device *dev) 266{ 267 struct sixpack *sp = netdev_priv(dev); 268 269 if (sp->tty == NULL) 270 return -ENODEV; 271 return 0; 272} 273 274/* Close the low-level part of the 6pack channel. */ 275static int sp_close(struct net_device *dev) 276{ 277 struct sixpack *sp = netdev_priv(dev); 278 279 spin_lock_bh(&sp->lock); 280 if (sp->tty) { 281 /* TTY discipline is running. */ 282 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 283 } 284 netif_stop_queue(dev); 285 spin_unlock_bh(&sp->lock); 286 287 return 0; 288} 289 290static int sp_set_mac_address(struct net_device *dev, void *addr) 291{ 292 struct sockaddr_ax25 *sa = addr; 293 294 netif_tx_lock_bh(dev); 295 netif_addr_lock(dev); 296 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); 297 netif_addr_unlock(dev); 298 netif_tx_unlock_bh(dev); 299 300 return 0; 301} 302 303static const struct net_device_ops sp_netdev_ops = { 304 .ndo_open = sp_open_dev, 305 .ndo_stop = sp_close, 306 .ndo_start_xmit = sp_xmit, 307 .ndo_set_mac_address = sp_set_mac_address, 308}; 309 310static void sp_setup(struct net_device *dev) 311{ 312 /* Finish setting up the DEVICE info. */ 313 dev->netdev_ops = &sp_netdev_ops; 314 dev->mtu = SIXP_MTU; 315 dev->hard_header_len = AX25_MAX_HEADER_LEN; 316 dev->header_ops = &ax25_header_ops; 317 318 dev->addr_len = AX25_ADDR_LEN; 319 dev->type = ARPHRD_AX25; 320 dev->tx_queue_len = 10; 321 322 /* Only activated in AX.25 mode */ 323 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); 324 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); 325 326 dev->flags = 0; 327} 328 329/* Send one completely decapsulated IP datagram to the IP layer. */ 330 331/* 332 * This is the routine that sends the received data to the kernel AX.25. 333 * 'cmd' is the KISS command. For AX.25 data, it is zero. 334 */ 335 336static void sp_bump(struct sixpack *sp, char cmd) 337{ 338 struct sk_buff *skb; 339 int count; 340 unsigned char *ptr; 341 342 count = sp->rcount + 1; 343 344 sp->dev->stats.rx_bytes += count; 345 346 if ((skb = dev_alloc_skb(count + 1)) == NULL) 347 goto out_mem; 348 349 ptr = skb_put(skb, count + 1); 350 *ptr++ = cmd; /* KISS command */ 351 352 memcpy(ptr, sp->cooked_buf + 1, count); 353 skb->protocol = ax25_type_trans(skb, sp->dev); 354 netif_rx(skb); 355 sp->dev->stats.rx_packets++; 356 357 return; 358 359out_mem: 360 sp->dev->stats.rx_dropped++; 361} 362 363 364/* ----------------------------------------------------------------------- */ 365 366/* 367 * We have a potential race on dereferencing tty->disc_data, because the tty 368 * layer provides no locking at all - thus one cpu could be running 369 * sixpack_receive_buf while another calls sixpack_close, which zeroes 370 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The 371 * best way to fix this is to use a rwlock in the tty struct, but for now we 372 * use a single global rwlock for all ttys in ppp line discipline. 373 */ 374static DEFINE_RWLOCK(disc_data_lock); 375 376static struct sixpack *sp_get(struct tty_struct *tty) 377{ 378 struct sixpack *sp; 379 380 read_lock(&disc_data_lock); 381 sp = tty->disc_data; 382 if (sp) 383 refcount_inc(&sp->refcnt); 384 read_unlock(&disc_data_lock); 385 386 return sp; 387} 388 389static void sp_put(struct sixpack *sp) 390{ 391 if (refcount_dec_and_test(&sp->refcnt)) 392 complete(&sp->dead); 393} 394 395/* 396 * Called by the TTY driver when there's room for more data. If we have 397 * more packets to send, we send them here. 398 */ 399static void sixpack_write_wakeup(struct tty_struct *tty) 400{ 401 struct sixpack *sp = sp_get(tty); 402 int actual; 403 404 if (!sp) 405 return; 406 if (sp->xleft <= 0) { 407 /* Now serial buffer is almost free & we can start 408 * transmission of another packet */ 409 sp->dev->stats.tx_packets++; 410 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 411 sp->tx_enable = 0; 412 netif_wake_queue(sp->dev); 413 goto out; 414 } 415 416 if (sp->tx_enable) { 417 actual = tty->ops->write(tty, sp->xhead, sp->xleft); 418 sp->xleft -= actual; 419 sp->xhead += actual; 420 } 421 422out: 423 sp_put(sp); 424} 425 426/* ----------------------------------------------------------------------- */ 427 428/* 429 * Handle the 'receiver data ready' interrupt. 430 * This function is called by the tty module in the kernel when 431 * a block of 6pack data has been received, which can now be decapsulated 432 * and sent on to some IP layer for further processing. 433 */ 434static void sixpack_receive_buf(struct tty_struct *tty, 435 const unsigned char *cp, char *fp, int count) 436{ 437 struct sixpack *sp; 438 int count1; 439 440 if (!count) 441 return; 442 443 sp = sp_get(tty); 444 if (!sp) 445 return; 446 447 /* Read the characters out of the buffer */ 448 count1 = count; 449 while (count) { 450 count--; 451 if (fp && *fp++) { 452 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) 453 sp->dev->stats.rx_errors++; 454 continue; 455 } 456 } 457 sixpack_decode(sp, cp, count1); 458 459 sp_put(sp); 460 tty_unthrottle(tty); 461} 462 463/* 464 * Try to resync the TNC. Called by the resync timer defined in 465 * decode_prio_command 466 */ 467 468#define TNC_UNINITIALIZED 0 469#define TNC_UNSYNC_STARTUP 1 470#define TNC_UNSYNCED 2 471#define TNC_IN_SYNC 3 472 473static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 474{ 475 char *msg; 476 477 switch (new_tnc_state) { 478 default: /* gcc oh piece-o-crap ... */ 479 case TNC_UNSYNC_STARTUP: 480 msg = "Synchronizing with TNC"; 481 break; 482 case TNC_UNSYNCED: 483 msg = "Lost synchronization with TNC\n"; 484 break; 485 case TNC_IN_SYNC: 486 msg = "Found TNC"; 487 break; 488 } 489 490 sp->tnc_state = new_tnc_state; 491 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg); 492} 493 494static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 495{ 496 int old_tnc_state = sp->tnc_state; 497 498 if (old_tnc_state != new_tnc_state) 499 __tnc_set_sync_state(sp, new_tnc_state); 500} 501 502static void resync_tnc(struct timer_list *t) 503{ 504 struct sixpack *sp = from_timer(sp, t, resync_t); 505 static char resync_cmd = 0xe8; 506 507 /* clear any data that might have been received */ 508 509 sp->rx_count = 0; 510 sp->rx_count_cooked = 0; 511 512 /* reset state machine */ 513 514 sp->status = 1; 515 sp->status1 = 1; 516 sp->status2 = 0; 517 518 /* resync the TNC */ 519 520 sp->led_state = 0x60; 521 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 522 sp->tty->ops->write(sp->tty, &resync_cmd, 1); 523 524 525 /* Start resync timer again -- the TNC might be still absent */ 526 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT); 527} 528 529static inline int tnc_init(struct sixpack *sp) 530{ 531 unsigned char inbyte = 0xe8; 532 533 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP); 534 535 sp->tty->ops->write(sp->tty, &inbyte, 1); 536 537 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT); 538 539 return 0; 540} 541 542/* 543 * Open the high-level part of the 6pack channel. 544 * This function is called by the TTY module when the 545 * 6pack line discipline is called for. Because we are 546 * sure the tty line exists, we only have to link it to 547 * a free 6pcack channel... 548 */ 549static int sixpack_open(struct tty_struct *tty) 550{ 551 char *rbuff = NULL, *xbuff = NULL; 552 struct net_device *dev; 553 struct sixpack *sp; 554 unsigned long len; 555 int err = 0; 556 557 if (!capable(CAP_NET_ADMIN)) 558 return -EPERM; 559 if (tty->ops->write == NULL) 560 return -EOPNOTSUPP; 561 562 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN, 563 sp_setup); 564 if (!dev) { 565 err = -ENOMEM; 566 goto out; 567 } 568 569 sp = netdev_priv(dev); 570 sp->dev = dev; 571 572 spin_lock_init(&sp->lock); 573 refcount_set(&sp->refcnt, 1); 574 init_completion(&sp->dead); 575 576 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */ 577 578 len = dev->mtu * 2; 579 580 rbuff = kmalloc(len + 4, GFP_KERNEL); 581 xbuff = kmalloc(len + 4, GFP_KERNEL); 582 583 if (rbuff == NULL || xbuff == NULL) { 584 err = -ENOBUFS; 585 goto out_free; 586 } 587 588 spin_lock_bh(&sp->lock); 589 590 sp->tty = tty; 591 592 sp->rbuff = rbuff; 593 sp->xbuff = xbuff; 594 595 sp->mtu = AX25_MTU + 73; 596 sp->buffsize = len; 597 sp->rcount = 0; 598 sp->rx_count = 0; 599 sp->rx_count_cooked = 0; 600 sp->xleft = 0; 601 602 sp->flags = 0; /* Clear ESCAPE & ERROR flags */ 603 604 sp->duplex = 0; 605 sp->tx_delay = SIXP_TXDELAY; 606 sp->persistence = SIXP_PERSIST; 607 sp->slottime = SIXP_SLOTTIME; 608 sp->led_state = 0x60; 609 sp->status = 1; 610 sp->status1 = 1; 611 sp->status2 = 0; 612 sp->tx_enable = 0; 613 614 netif_start_queue(dev); 615 616 timer_setup(&sp->tx_t, sp_xmit_on_air, 0); 617 618 timer_setup(&sp->resync_t, resync_tnc, 0); 619 620 spin_unlock_bh(&sp->lock); 621 622 /* Done. We have linked the TTY line to a channel. */ 623 tty->disc_data = sp; 624 tty->receive_room = 65536; 625 626 /* Now we're ready to register. */ 627 err = register_netdev(dev); 628 if (err) 629 goto out_free; 630 631 tnc_init(sp); 632 633 return 0; 634 635out_free: 636 kfree(xbuff); 637 kfree(rbuff); 638 639 free_netdev(dev); 640 641out: 642 return err; 643} 644 645 646/* 647 * Close down a 6pack channel. 648 * This means flushing out any pending queues, and then restoring the 649 * TTY line discipline to what it was before it got hooked to 6pack 650 * (which usually is TTY again). 651 */ 652static void sixpack_close(struct tty_struct *tty) 653{ 654 struct sixpack *sp; 655 656 write_lock_irq(&disc_data_lock); 657 sp = tty->disc_data; 658 tty->disc_data = NULL; 659 write_unlock_irq(&disc_data_lock); 660 if (!sp) 661 return; 662 663 /* 664 * We have now ensured that nobody can start using ap from now on, but 665 * we have to wait for all existing users to finish. 666 */ 667 if (!refcount_dec_and_test(&sp->refcnt)) 668 wait_for_completion(&sp->dead); 669 670 /* We must stop the queue to avoid potentially scribbling 671 * on the free buffers. The sp->dead completion is not sufficient 672 * to protect us from sp->xbuff access. 673 */ 674 netif_stop_queue(sp->dev); 675 676 unregister_netdev(sp->dev); 677 678 del_timer_sync(&sp->tx_t); 679 del_timer_sync(&sp->resync_t); 680 681 /* Free all 6pack frame buffers after unreg. */ 682 kfree(sp->rbuff); 683 kfree(sp->xbuff); 684 685 free_netdev(sp->dev); 686} 687 688/* Perform I/O control on an active 6pack channel. */ 689static int sixpack_ioctl(struct tty_struct *tty, struct file *file, 690 unsigned int cmd, unsigned long arg) 691{ 692 struct sixpack *sp = sp_get(tty); 693 struct net_device *dev; 694 unsigned int tmp, err; 695 696 if (!sp) 697 return -ENXIO; 698 dev = sp->dev; 699 700 switch(cmd) { 701 case SIOCGIFNAME: 702 err = copy_to_user((void __user *) arg, dev->name, 703 strlen(dev->name) + 1) ? -EFAULT : 0; 704 break; 705 706 case SIOCGIFENCAP: 707 err = put_user(0, (int __user *) arg); 708 break; 709 710 case SIOCSIFENCAP: 711 if (get_user(tmp, (int __user *) arg)) { 712 err = -EFAULT; 713 break; 714 } 715 716 sp->mode = tmp; 717 dev->addr_len = AX25_ADDR_LEN; 718 dev->hard_header_len = AX25_KISS_HEADER_LEN + 719 AX25_MAX_HEADER_LEN + 3; 720 dev->type = ARPHRD_AX25; 721 722 err = 0; 723 break; 724 725 case SIOCSIFHWADDR: { 726 char addr[AX25_ADDR_LEN]; 727 728 if (copy_from_user(&addr, 729 (void __user *) arg, AX25_ADDR_LEN)) { 730 err = -EFAULT; 731 break; 732 } 733 734 netif_tx_lock_bh(dev); 735 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN); 736 netif_tx_unlock_bh(dev); 737 738 err = 0; 739 break; 740 } 741 742 default: 743 err = tty_mode_ioctl(tty, file, cmd, arg); 744 } 745 746 sp_put(sp); 747 748 return err; 749} 750 751static struct tty_ldisc_ops sp_ldisc = { 752 .owner = THIS_MODULE, 753 .magic = TTY_LDISC_MAGIC, 754 .name = "6pack", 755 .open = sixpack_open, 756 .close = sixpack_close, 757 .ioctl = sixpack_ioctl, 758 .receive_buf = sixpack_receive_buf, 759 .write_wakeup = sixpack_write_wakeup, 760}; 761 762/* Initialize 6pack control device -- register 6pack line discipline */ 763 764static const char msg_banner[] __initconst = KERN_INFO \ 765 "AX.25: 6pack driver, " SIXPACK_VERSION "\n"; 766static const char msg_regfail[] __initconst = KERN_ERR \ 767 "6pack: can't register line discipline (err = %d)\n"; 768 769static int __init sixpack_init_driver(void) 770{ 771 int status; 772 773 printk(msg_banner); 774 775 /* Register the provided line protocol discipline */ 776 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0) 777 printk(msg_regfail, status); 778 779 return status; 780} 781 782static const char msg_unregfail[] = KERN_ERR \ 783 "6pack: can't unregister line discipline (err = %d)\n"; 784 785static void __exit sixpack_exit_driver(void) 786{ 787 int ret; 788 789 if ((ret = tty_unregister_ldisc(N_6PACK))) 790 printk(msg_unregfail, ret); 791} 792 793/* encode an AX.25 packet into 6pack */ 794 795static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw, 796 int length, unsigned char tx_delay) 797{ 798 int count = 0; 799 unsigned char checksum = 0, buf[400]; 800 int raw_count = 0; 801 802 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK; 803 tx_buf_raw[raw_count++] = SIXP_SEOF; 804 805 buf[0] = tx_delay; 806 for (count = 1; count < length; count++) 807 buf[count] = tx_buf[count]; 808 809 for (count = 0; count < length; count++) 810 checksum += buf[count]; 811 buf[length] = (unsigned char) 0xff - checksum; 812 813 for (count = 0; count <= length; count++) { 814 if ((count % 3) == 0) { 815 tx_buf_raw[raw_count++] = (buf[count] & 0x3f); 816 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30); 817 } else if ((count % 3) == 1) { 818 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f); 819 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c); 820 } else { 821 tx_buf_raw[raw_count++] |= (buf[count] & 0x03); 822 tx_buf_raw[raw_count++] = (buf[count] >> 2); 823 } 824 } 825 if ((length % 3) != 2) 826 raw_count++; 827 tx_buf_raw[raw_count++] = SIXP_SEOF; 828 return raw_count; 829} 830 831/* decode 4 sixpack-encoded bytes into 3 data bytes */ 832 833static void decode_data(struct sixpack *sp, unsigned char inbyte) 834{ 835 unsigned char *buf; 836 837 if (sp->rx_count != 3) { 838 sp->raw_buf[sp->rx_count++] = inbyte; 839 840 return; 841 } 842 843 if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) { 844 pr_err("6pack: cooked buffer overrun, data loss\n"); 845 sp->rx_count = 0; 846 return; 847 } 848 849 buf = sp->raw_buf; 850 sp->cooked_buf[sp->rx_count_cooked++] = 851 buf[0] | ((buf[1] << 2) & 0xc0); 852 sp->cooked_buf[sp->rx_count_cooked++] = 853 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0); 854 sp->cooked_buf[sp->rx_count_cooked++] = 855 (buf[2] & 0x03) | (inbyte << 2); 856 sp->rx_count = 0; 857} 858 859/* identify and execute a 6pack priority command byte */ 860 861static void decode_prio_command(struct sixpack *sp, unsigned char cmd) 862{ 863 int actual; 864 865 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */ 866 867 /* RX and DCD flags can only be set in the same prio command, 868 if the DCD flag has been set without the RX flag in the previous 869 prio command. If DCD has not been set before, something in the 870 transmission has gone wrong. In this case, RX and DCD are 871 cleared in order to prevent the decode_data routine from 872 reading further data that might be corrupt. */ 873 874 if (((sp->status & SIXP_DCD_MASK) == 0) && 875 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) { 876 if (sp->status != 1) 877 printk(KERN_DEBUG "6pack: protocol violation\n"); 878 else 879 sp->status = 0; 880 cmd &= ~SIXP_RX_DCD_MASK; 881 } 882 sp->status = cmd & SIXP_PRIO_DATA_MASK; 883 } else { /* output watchdog char if idle */ 884 if ((sp->status2 != 0) && (sp->duplex == 1)) { 885 sp->led_state = 0x70; 886 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 887 sp->tx_enable = 1; 888 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2); 889 sp->xleft -= actual; 890 sp->xhead += actual; 891 sp->led_state = 0x60; 892 sp->status2 = 0; 893 894 } 895 } 896 897 /* needed to trigger the TNC watchdog */ 898 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 899 900 /* if the state byte has been received, the TNC is present, 901 so the resync timer can be reset. */ 902 903 if (sp->tnc_state == TNC_IN_SYNC) 904 mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT); 905 906 sp->status1 = cmd & SIXP_PRIO_DATA_MASK; 907} 908 909/* identify and execute a standard 6pack command byte */ 910 911static void decode_std_command(struct sixpack *sp, unsigned char cmd) 912{ 913 unsigned char checksum = 0, rest = 0; 914 short i; 915 916 switch (cmd & SIXP_CMD_MASK) { /* normal command */ 917 case SIXP_SEOF: 918 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) { 919 if ((sp->status & SIXP_RX_DCD_MASK) == 920 SIXP_RX_DCD_MASK) { 921 sp->led_state = 0x68; 922 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 923 } 924 } else { 925 sp->led_state = 0x60; 926 /* fill trailing bytes with zeroes */ 927 sp->tty->ops->write(sp->tty, &sp->led_state, 1); 928 rest = sp->rx_count; 929 if (rest != 0) 930 for (i = rest; i <= 3; i++) 931 decode_data(sp, 0); 932 if (rest == 2) 933 sp->rx_count_cooked -= 2; 934 else if (rest == 3) 935 sp->rx_count_cooked -= 1; 936 for (i = 0; i < sp->rx_count_cooked; i++) 937 checksum += sp->cooked_buf[i]; 938 if (checksum != SIXP_CHKSUM) { 939 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum); 940 } else { 941 sp->rcount = sp->rx_count_cooked-2; 942 sp_bump(sp, 0); 943 } 944 sp->rx_count_cooked = 0; 945 } 946 break; 947 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n"); 948 break; 949 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n"); 950 break; 951 case SIXP_RX_BUF_OVL: 952 printk(KERN_DEBUG "6pack: RX buffer overflow\n"); 953 } 954} 955 956/* decode a 6pack packet */ 957 958static void 959sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count) 960{ 961 unsigned char inbyte; 962 int count1; 963 964 for (count1 = 0; count1 < count; count1++) { 965 inbyte = pre_rbuff[count1]; 966 if (inbyte == SIXP_FOUND_TNC) { 967 tnc_set_sync_state(sp, TNC_IN_SYNC); 968 del_timer(&sp->resync_t); 969 } 970 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0) 971 decode_prio_command(sp, inbyte); 972 else if ((inbyte & SIXP_STD_CMD_MASK) != 0) 973 decode_std_command(sp, inbyte); 974 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) 975 decode_data(sp, inbyte); 976 } 977} 978 979MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>"); 980MODULE_DESCRIPTION("6pack driver for AX.25"); 981MODULE_LICENSE("GPL"); 982MODULE_ALIAS_LDISC(N_6PACK); 983 984module_init(sixpack_init_driver); 985module_exit(sixpack_exit_driver); 986