xref: /kernel/linux/linux-5.10/drivers/net/fddi/defxx.c (revision 8c2ecf20)
1/*
2 * File Name:
3 *   defxx.c
4 *
5 * Copyright Information:
6 *   Copyright Digital Equipment Corporation 1996.
7 *
8 *   This software may be used and distributed according to the terms of
9 *   the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 *   A Linux device driver supporting the Digital Equipment Corporation
13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14 *   adapters include:
15 *
16 *		DEC FDDIcontroller/TURBOchannel (DEFTA)
17 *		DEC FDDIcontroller/EISA         (DEFEA)
18 *		DEC FDDIcontroller/PCI          (DEFPA)
19 *
20 * The original author:
21 *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 *   macro	Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 *   I'd like to thank Patricia Cross for helping me get started with
28 *   Linux, David Davies for a lot of help upgrading and configuring
29 *   my development system and for answering many OS and driver
30 *   development questions, and Alan Cox for recommendations and
31 *   integration help on getting FDDI support into Linux.  LVS
32 *
33 * Driver Architecture:
34 *   The driver architecture is largely based on previous driver work
35 *   for other operating systems.  The upper edge interface and
36 *   functions were largely taken from existing Linux device drivers
37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 *   driver.
39 *
40 *   Adapter Probe -
41 *		The driver scans for supported EISA adapters by reading the
42 *		SLOT ID register for each EISA slot and making a match
43 *		against the expected value.
44 *
45 *   Bus-Specific Initialization -
46 *		This driver currently supports both EISA and PCI controller
47 *		families.  While the custom DMA chip and FDDI logic is similar
48 *		or identical, the bus logic is very different.  After
49 *		initialization, the	only bus-specific differences is in how the
50 *		driver enables and disables interrupts.  Other than that, the
51 *		run-time critical code behaves the same on both families.
52 *		It's important to note that both adapter families are configured
53 *		to I/O map, rather than memory map, the adapter registers.
54 *
55 *   Driver Open/Close -
56 *		In the driver open routine, the driver ISR (interrupt service
57 *		routine) is registered and the adapter is brought to an
58 *		operational state.  In the driver close routine, the opposite
59 *		occurs; the driver ISR is deregistered and the adapter is
60 *		brought to a safe, but closed state.  Users may use consecutive
61 *		commands to bring the adapter up and down as in the following
62 *		example:
63 *					ifconfig fddi0 up
64 *					ifconfig fddi0 down
65 *					ifconfig fddi0 up
66 *
67 *   Driver Shutdown -
68 *		Apparently, there is no shutdown or halt routine support under
69 *		Linux.  This routine would be called during "reboot" or
70 *		"shutdown" to allow the driver to place the adapter in a safe
71 *		state before a warm reboot occurs.  To be really safe, the user
72 *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 *		to ensure that the adapter DMA engine is taken off-line.  However,
74 *		the current driver code anticipates this problem and always issues
75 *		a soft reset of the adapter	at the beginning of driver initialization.
76 *		A future driver enhancement in this area may occur in 2.1.X where
77 *		Alan indicated that a shutdown handler may be implemented.
78 *
79 *   Interrupt Service Routine -
80 *		The driver supports shared interrupts, so the ISR is registered for
81 *		each board with the appropriate flag and the pointer to that board's
82 *		device structure.  This provides the context during interrupt
83 *		processing to support shared interrupts and multiple boards.
84 *
85 *		Interrupt enabling/disabling can occur at many levels.  At the host
86 *		end, you can disable system interrupts, or disable interrupts at the
87 *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88 *		have a bus-logic chip interrupt enable/disable as well as a DMA
89 *		controller interrupt enable/disable.
90 *
91 *		The driver currently enables and disables adapter interrupts at the
92 *		bus-logic chip and assumes that Linux will take care of clearing or
93 *		acknowledging any host-based interrupt chips.
94 *
95 *   Control Functions -
96 *		Control functions are those used to support functions such as adding
97 *		or deleting multicast addresses, enabling or disabling packet
98 *		reception filters, or other custom/proprietary commands.  Presently,
99 *		the driver supports the "get statistics", "set multicast list", and
100 *		"set mac address" functions defined by Linux.  A list of possible
101 *		enhancements include:
102 *
103 *				- Custom ioctl interface for executing port interface commands
104 *				- Custom ioctl interface for adding unicast addresses to
105 *				  adapter CAM (to support bridge functions).
106 *				- Custom ioctl interface for supporting firmware upgrades.
107 *
108 *   Hardware (port interface) Support Routines -
109 *		The driver function names that start with "dfx_hw_" represent
110 *		low-level port interface routines that are called frequently.  They
111 *		include issuing a DMA or port control command to the adapter,
112 *		resetting the adapter, or reading the adapter state.  Since the
113 *		driver initialization and run-time code must make calls into the
114 *		port interface, these routines were written to be as generic and
115 *		usable as possible.
116 *
117 *   Receive Path -
118 *		The adapter DMA engine supports a 256 entry receive descriptor block
119 *		of which up to 255 entries can be used at any given time.  The
120 *		architecture is a standard producer, consumer, completion model in
121 *		which the driver "produces" receive buffers to the adapter, the
122 *		adapter "consumes" the receive buffers by DMAing incoming packet data,
123 *		and the driver "completes" the receive buffers by servicing the
124 *		incoming packet, then "produces" a new buffer and starts the cycle
125 *		again.  Receive buffers can be fragmented in up to 16 fragments
126 *		(descriptor	entries).  For simplicity, this driver posts
127 *		single-fragment receive buffers of 4608 bytes, then allocates a
128 *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129 *		utilization, a better approach would be to pass up the receive
130 *		buffer (no extra copy) then allocate and post a replacement buffer.
131 *		This is a performance enhancement that should be looked into at
132 *		some point.
133 *
134 *   Transmit Path -
135 *		Like the receive path, the adapter DMA engine supports a 256 entry
136 *		transmit descriptor block of which up to 255 entries can be used at
137 *		any	given time.  Transmit buffers can be fragmented	in up to 255
138 *		fragments (descriptor entries).  This driver always posts one
139 *		fragment per transmit packet request.
140 *
141 *		The fragment contains the entire packet from FC to end of data.
142 *		Before posting the buffer to the adapter, the driver sets a three-byte
143 *		packet request header (PRH) which is required by the Motorola MAC chip
144 *		used on the adapters.  The PRH tells the MAC the type of token to
145 *		receive/send, whether or not to generate and append the CRC, whether
146 *		synchronous or asynchronous framing is used, etc.  Since the PRH
147 *		definition is not necessarily consistent across all FDDI chipsets,
148 *		the driver, rather than the common FDDI packet handler routines,
149 *		sets these bytes.
150 *
151 *		To reduce the amount of descriptor fetches needed per transmit request,
152 *		the driver takes advantage of the fact that there are at least three
153 *		bytes available before the skb->data field on the outgoing transmit
154 *		request.  This is guaranteed by having fddi_setup() in net_init.c set
155 *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156 *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157 *		bytes which we'll use to store the PRH.
158 *
159 *		There's a subtle advantage to adding these pad bytes to the
160 *		hard_header_len, it ensures that the data portion of the packet for
161 *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162 *		implementations may not need the extra padding and can start copying
163 *		or DMAing directly from the FC byte which starts at skb->data.  Should
164 *		another driver implementation need ADDITIONAL padding, the net_init.c
165 *		module should be updated and dev->hard_header_len should be increased.
166 *		NOTE: To maintain the alignment on the data portion of the packet,
167 *		dev->hard_header_len should always be evenly divisible by 4 and at
168 *		least 24 bytes in size.
169 *
170 * Modification History:
171 *		Date		Name	Description
172 *		16-Aug-96	LVS		Created.
173 *		20-Aug-96	LVS		Updated dfx_probe so that version information
174 *							string is only displayed if 1 or more cards are
175 *							found.  Changed dfx_rcv_queue_process to copy
176 *							3 NULL bytes before FC to ensure that data is
177 *							longword aligned in receive buffer.
178 *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
179 *							LLC group promiscuous mode if multicast list
180 *							is too large.  LLC individual/group promiscuous
181 *							mode is now disabled if IFF_PROMISC flag not set.
182 *							dfx_xmt_queue_pkt no longer checks for NULL skb
183 *							on Alan Cox recommendation.  Added node address
184 *							override support.
185 *		12-Sep-96	LVS		Reset current address to factory address during
186 *							device open.  Updated transmit path to post a
187 *							single fragment which includes PRH->end of data.
188 *		Mar 2000	AC		Did various cleanups for 2.3.x
189 *		Jun 2000	jgarzik		PCI and resource alloc cleanups
190 *		Jul 2000	tjeerd		Much cleanup and some bug fixes
191 *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
192 *		Feb 2001			Skb allocation fixes
193 *		Feb 2001	davej		PCI enable cleanups.
194 *		04 Aug 2003	macro		Converted to the DMA API.
195 *		14 Aug 2004	macro		Fix device names reported.
196 *		14 Jun 2005	macro		Use irqreturn_t.
197 *		23 Oct 2006	macro		Big-endian host support.
198 *		14 Dec 2006	macro		TURBOchannel support.
199 *		01 Jul 2014	macro		Fixes for DMA on 64-bit hosts.
200 */
201
202/* Include files */
203#include <linux/bitops.h>
204#include <linux/compiler.h>
205#include <linux/delay.h>
206#include <linux/dma-mapping.h>
207#include <linux/eisa.h>
208#include <linux/errno.h>
209#include <linux/fddidevice.h>
210#include <linux/interrupt.h>
211#include <linux/ioport.h>
212#include <linux/kernel.h>
213#include <linux/module.h>
214#include <linux/netdevice.h>
215#include <linux/pci.h>
216#include <linux/skbuff.h>
217#include <linux/slab.h>
218#include <linux/string.h>
219#include <linux/tc.h>
220
221#include <asm/byteorder.h>
222#include <asm/io.h>
223
224#include "defxx.h"
225
226/* Version information string should be updated prior to each new release!  */
227#define DRV_NAME "defxx"
228#define DRV_VERSION "v1.11"
229#define DRV_RELDATE "2014/07/01"
230
231static const char version[] =
232	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233	"  Lawrence V. Stefani and others\n";
234
235#define DYNAMIC_BUFFERS 1
236
237#define SKBUFF_RX_COPYBREAK 200
238/*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244#ifdef CONFIG_EISA
245#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246#else
247#define DFX_BUS_EISA(dev) 0
248#endif
249
250#ifdef CONFIG_TC
251#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252#else
253#define DFX_BUS_TC(dev) 0
254#endif
255
256#ifdef CONFIG_DEFXX_MMIO
257#define DFX_MMIO 1
258#else
259#define DFX_MMIO 0
260#endif
261
262/* Define module-wide (static) routines */
263
264static void		dfx_bus_init(struct net_device *dev);
265static void		dfx_bus_uninit(struct net_device *dev);
266static void		dfx_bus_config_check(DFX_board_t *bp);
267
268static int		dfx_driver_init(struct net_device *dev,
269					const char *print_name,
270					resource_size_t bar_start);
271static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
272
273static int		dfx_open(struct net_device *dev);
274static int		dfx_close(struct net_device *dev);
275
276static void		dfx_int_pr_halt_id(DFX_board_t *bp);
277static void		dfx_int_type_0_process(DFX_board_t *bp);
278static void		dfx_int_common(struct net_device *dev);
279static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
280
281static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282static void		dfx_ctl_set_multicast_list(struct net_device *dev);
283static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284static int		dfx_ctl_update_cam(DFX_board_t *bp);
285static int		dfx_ctl_update_filters(DFX_board_t *bp);
286
287static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
288static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
291static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292
293static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294static void		dfx_rcv_queue_process(DFX_board_t *bp);
295#ifdef DYNAMIC_BUFFERS
296static void		dfx_rcv_flush(DFX_board_t *bp);
297#else
298static inline void	dfx_rcv_flush(DFX_board_t *bp) {}
299#endif
300
301static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302				     struct net_device *dev);
303static int		dfx_xmt_done(DFX_board_t *bp);
304static void		dfx_xmt_flush(DFX_board_t *bp);
305
306/* Define module-wide (static) variables */
307
308static struct pci_driver dfx_pci_driver;
309static struct eisa_driver dfx_eisa_driver;
310static struct tc_driver dfx_tc_driver;
311
312
313/*
314 * =======================
315 * = dfx_port_write_long =
316 * = dfx_port_read_long  =
317 * =======================
318 *
319 * Overview:
320 *   Routines for reading and writing values from/to adapter
321 *
322 * Returns:
323 *   None
324 *
325 * Arguments:
326 *   bp		- pointer to board information
327 *   offset	- register offset from base I/O address
328 *   data	- for dfx_port_write_long, this is a value to write;
329 *		  for dfx_port_read_long, this is a pointer to store
330 *		  the read value
331 *
332 * Functional Description:
333 *   These routines perform the correct operation to read or write
334 *   the adapter register.
335 *
336 *   EISA port block base addresses are based on the slot number in which the
337 *   controller is installed.  For example, if the EISA controller is installed
338 *   in slot 4, the port block base address is 0x4000.  If the controller is
339 *   installed in slot 2, the port block base address is 0x2000, and so on.
340 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
341 *   registers using the register offsets defined in DEFXX.H.
342 *
343 *   PCI port block base addresses are assigned by the PCI BIOS or system
344 *   firmware.  There is one 128 byte port block which can be accessed.  It
345 *   allows for I/O mapping of both PDQ and PFI registers using the register
346 *   offsets defined in DEFXX.H.
347 *
348 * Return Codes:
349 *   None
350 *
351 * Assumptions:
352 *   bp->base is a valid base I/O address for this adapter.
353 *   offset is a valid register offset for this adapter.
354 *
355 * Side Effects:
356 *   Rather than produce macros for these functions, these routines
357 *   are defined using "inline" to ensure that the compiler will
358 *   generate inline code and not waste a procedure call and return.
359 *   This provides all the benefits of macros, but with the
360 *   advantage of strict data type checking.
361 */
362
363static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364{
365	writel(data, bp->base.mem + offset);
366	mb();
367}
368
369static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370{
371	outl(data, bp->base.port + offset);
372}
373
374static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375{
376	struct device __maybe_unused *bdev = bp->bus_dev;
377	int dfx_bus_tc = DFX_BUS_TC(bdev);
378	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379
380	if (dfx_use_mmio)
381		dfx_writel(bp, offset, data);
382	else
383		dfx_outl(bp, offset, data);
384}
385
386
387static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388{
389	mb();
390	*data = readl(bp->base.mem + offset);
391}
392
393static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394{
395	*data = inl(bp->base.port + offset);
396}
397
398static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399{
400	struct device __maybe_unused *bdev = bp->bus_dev;
401	int dfx_bus_tc = DFX_BUS_TC(bdev);
402	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403
404	if (dfx_use_mmio)
405		dfx_readl(bp, offset, data);
406	else
407		dfx_inl(bp, offset, data);
408}
409
410
411/*
412 * ================
413 * = dfx_get_bars =
414 * ================
415 *
416 * Overview:
417 *   Retrieves the address ranges used to access control and status
418 *   registers.
419 *
420 * Returns:
421 *   None
422 *
423 * Arguments:
424 *   bdev	- pointer to device information
425 *   bar_start	- pointer to store the start addresses
426 *   bar_len	- pointer to store the lengths of the areas
427 *
428 * Assumptions:
429 *   I am sure there are some.
430 *
431 * Side Effects:
432 *   None
433 */
434static void dfx_get_bars(struct device *bdev,
435			 resource_size_t *bar_start, resource_size_t *bar_len)
436{
437	int dfx_bus_pci = dev_is_pci(bdev);
438	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439	int dfx_bus_tc = DFX_BUS_TC(bdev);
440	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441
442	if (dfx_bus_pci) {
443		int num = dfx_use_mmio ? 0 : 1;
444
445		bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
446		bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
447		bar_start[2] = bar_start[1] = 0;
448		bar_len[2] = bar_len[1] = 0;
449	}
450	if (dfx_bus_eisa) {
451		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452		resource_size_t bar_lo;
453		resource_size_t bar_hi;
454
455		if (dfx_use_mmio) {
456			bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
457			bar_lo <<= 8;
458			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
459			bar_lo <<= 8;
460			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
461			bar_lo <<= 8;
462			bar_start[0] = bar_lo;
463			bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
464			bar_hi <<= 8;
465			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
466			bar_hi <<= 8;
467			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
468			bar_hi <<= 8;
469			bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
470				     1;
471		} else {
472			bar_start[0] = base_addr;
473			bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
474		}
475		bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
476		bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
477		bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
478		bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
479	}
480	if (dfx_bus_tc) {
481		bar_start[0] = to_tc_dev(bdev)->resource.start +
482			       PI_TC_K_CSR_OFFSET;
483		bar_len[0] = PI_TC_K_CSR_LEN;
484		bar_start[2] = bar_start[1] = 0;
485		bar_len[2] = bar_len[1] = 0;
486	}
487}
488
489static const struct net_device_ops dfx_netdev_ops = {
490	.ndo_open		= dfx_open,
491	.ndo_stop		= dfx_close,
492	.ndo_start_xmit		= dfx_xmt_queue_pkt,
493	.ndo_get_stats		= dfx_ctl_get_stats,
494	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
495	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
496};
497
498static void dfx_register_res_alloc_err(const char *print_name, bool mmio,
499				       bool eisa)
500{
501	pr_err("%s: Cannot use %s, no address set, aborting\n",
502	       print_name, mmio ? "MMIO" : "I/O");
503	pr_err("%s: Recompile driver with \"CONFIG_DEFXX_MMIO=%c\"\n",
504	       print_name, mmio ? 'n' : 'y');
505	if (eisa && mmio)
506		pr_err("%s: Or run ECU and set adapter's MMIO location\n",
507		       print_name);
508}
509
510static void dfx_register_res_err(const char *print_name, bool mmio,
511				 unsigned long start, unsigned long len)
512{
513	pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
514	       print_name, mmio ? "MMIO" : "I/O", len, start);
515}
516
517/*
518 * ================
519 * = dfx_register =
520 * ================
521 *
522 * Overview:
523 *   Initializes a supported FDDI controller
524 *
525 * Returns:
526 *   Condition code
527 *
528 * Arguments:
529 *   bdev - pointer to device information
530 *
531 * Functional Description:
532 *
533 * Return Codes:
534 *   0		 - This device (fddi0, fddi1, etc) configured successfully
535 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
536 *
537 * Assumptions:
538 *   It compiles so it should work :-( (PCI cards do :-)
539 *
540 * Side Effects:
541 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
542 *   initialized and the board resources are read and stored in
543 *   the device structure.
544 */
545static int dfx_register(struct device *bdev)
546{
547	static int version_disp;
548	int dfx_bus_pci = dev_is_pci(bdev);
549	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
550	int dfx_bus_tc = DFX_BUS_TC(bdev);
551	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
552	const char *print_name = dev_name(bdev);
553	struct net_device *dev;
554	DFX_board_t	  *bp;			/* board pointer */
555	resource_size_t bar_start[3] = {0};	/* pointers to ports */
556	resource_size_t bar_len[3] = {0};	/* resource length */
557	int alloc_size;				/* total buffer size used */
558	struct resource *region;
559	int err = 0;
560
561	if (!version_disp) {	/* display version info if adapter is found */
562		version_disp = 1;	/* set display flag to TRUE so that */
563		printk(version);	/* we only display this string ONCE */
564	}
565
566	dev = alloc_fddidev(sizeof(*bp));
567	if (!dev) {
568		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
569		       print_name);
570		return -ENOMEM;
571	}
572
573	/* Enable PCI device. */
574	if (dfx_bus_pci) {
575		err = pci_enable_device(to_pci_dev(bdev));
576		if (err) {
577			pr_err("%s: Cannot enable PCI device, aborting\n",
578			       print_name);
579			goto err_out;
580		}
581	}
582
583	SET_NETDEV_DEV(dev, bdev);
584
585	bp = netdev_priv(dev);
586	bp->bus_dev = bdev;
587	dev_set_drvdata(bdev, dev);
588
589	dfx_get_bars(bdev, bar_start, bar_len);
590	if (bar_len[0] == 0 ||
591	    (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) {
592		dfx_register_res_alloc_err(print_name, dfx_use_mmio,
593					   dfx_bus_eisa);
594		err = -ENXIO;
595		goto err_out_disable;
596	}
597
598	if (dfx_use_mmio)
599		region = request_mem_region(bar_start[0], bar_len[0],
600					    print_name);
601	else
602		region = request_region(bar_start[0], bar_len[0], print_name);
603	if (!region) {
604		dfx_register_res_err(print_name, dfx_use_mmio,
605				     bar_start[0], bar_len[0]);
606		err = -EBUSY;
607		goto err_out_disable;
608	}
609	if (bar_start[1] != 0) {
610		region = request_region(bar_start[1], bar_len[1], print_name);
611		if (!region) {
612			dfx_register_res_err(print_name, 0,
613					     bar_start[1], bar_len[1]);
614			err = -EBUSY;
615			goto err_out_csr_region;
616		}
617	}
618	if (bar_start[2] != 0) {
619		region = request_region(bar_start[2], bar_len[2], print_name);
620		if (!region) {
621			dfx_register_res_err(print_name, 0,
622					     bar_start[2], bar_len[2]);
623			err = -EBUSY;
624			goto err_out_bh_region;
625		}
626	}
627
628	/* Set up I/O base address. */
629	if (dfx_use_mmio) {
630		bp->base.mem = ioremap(bar_start[0], bar_len[0]);
631		if (!bp->base.mem) {
632			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
633			err = -ENOMEM;
634			goto err_out_esic_region;
635		}
636	} else {
637		bp->base.port = bar_start[0];
638		dev->base_addr = bar_start[0];
639	}
640
641	/* Initialize new device structure */
642	dev->netdev_ops			= &dfx_netdev_ops;
643
644	if (dfx_bus_pci)
645		pci_set_master(to_pci_dev(bdev));
646
647	if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
648		err = -ENODEV;
649		goto err_out_unmap;
650	}
651
652	err = register_netdev(dev);
653	if (err)
654		goto err_out_kfree;
655
656	printk("%s: registered as %s\n", print_name, dev->name);
657	return 0;
658
659err_out_kfree:
660	alloc_size = sizeof(PI_DESCR_BLOCK) +
661		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
662#ifndef DYNAMIC_BUFFERS
663		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
664#endif
665		     sizeof(PI_CONSUMER_BLOCK) +
666		     (PI_ALIGN_K_DESC_BLK - 1);
667	if (bp->kmalloced)
668		dma_free_coherent(bdev, alloc_size,
669				  bp->kmalloced, bp->kmalloced_dma);
670
671err_out_unmap:
672	if (dfx_use_mmio)
673		iounmap(bp->base.mem);
674
675err_out_esic_region:
676	if (bar_start[2] != 0)
677		release_region(bar_start[2], bar_len[2]);
678
679err_out_bh_region:
680	if (bar_start[1] != 0)
681		release_region(bar_start[1], bar_len[1]);
682
683err_out_csr_region:
684	if (dfx_use_mmio)
685		release_mem_region(bar_start[0], bar_len[0]);
686	else
687		release_region(bar_start[0], bar_len[0]);
688
689err_out_disable:
690	if (dfx_bus_pci)
691		pci_disable_device(to_pci_dev(bdev));
692
693err_out:
694	free_netdev(dev);
695	return err;
696}
697
698
699/*
700 * ================
701 * = dfx_bus_init =
702 * ================
703 *
704 * Overview:
705 *   Initializes the bus-specific controller logic.
706 *
707 * Returns:
708 *   None
709 *
710 * Arguments:
711 *   dev - pointer to device information
712 *
713 * Functional Description:
714 *   Determine and save adapter IRQ in device table,
715 *   then perform bus-specific logic initialization.
716 *
717 * Return Codes:
718 *   None
719 *
720 * Assumptions:
721 *   bp->base has already been set with the proper
722 *	 base I/O address for this device.
723 *
724 * Side Effects:
725 *   Interrupts are enabled at the adapter bus-specific logic.
726 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
727 *   enabled yet.
728 */
729
730static void dfx_bus_init(struct net_device *dev)
731{
732	DFX_board_t *bp = netdev_priv(dev);
733	struct device *bdev = bp->bus_dev;
734	int dfx_bus_pci = dev_is_pci(bdev);
735	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
736	int dfx_bus_tc = DFX_BUS_TC(bdev);
737	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
738	u8 val;
739
740	DBG_printk("In dfx_bus_init...\n");
741
742	/* Initialize a pointer back to the net_device struct */
743	bp->dev = dev;
744
745	/* Initialize adapter based on bus type */
746
747	if (dfx_bus_tc)
748		dev->irq = to_tc_dev(bdev)->interrupt;
749	if (dfx_bus_eisa) {
750		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
751
752		/* Disable the board before fiddling with the decoders.  */
753		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
754
755		/* Get the interrupt level from the ESIC chip.  */
756		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
757		val &= PI_CONFIG_STAT_0_M_IRQ;
758		val >>= PI_CONFIG_STAT_0_V_IRQ;
759
760		switch (val) {
761		case PI_CONFIG_STAT_0_IRQ_K_9:
762			dev->irq = 9;
763			break;
764
765		case PI_CONFIG_STAT_0_IRQ_K_10:
766			dev->irq = 10;
767			break;
768
769		case PI_CONFIG_STAT_0_IRQ_K_11:
770			dev->irq = 11;
771			break;
772
773		case PI_CONFIG_STAT_0_IRQ_K_15:
774			dev->irq = 15;
775			break;
776		}
777
778		/*
779		 * Enable memory decoding (MEMCS1) and/or port decoding
780		 * (IOCS1/IOCS0) as appropriate in Function Control
781		 * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
782		 * taking 16 32-bit words, while IOCS1 is used for the
783		 * Burst Holdoff register, taking a single 32-bit word
784		 * only.  We use the slot-specific I/O range as per the
785		 * ESIC spec, that is set bits 15:12 in the mask registers
786		 * to mask them out.
787		 */
788
789		/* Set the decode range of the board.  */
790		val = 0;
791		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
792		val = PI_DEFEA_K_CSR_IO;
793		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
794
795		val = PI_IO_CMP_M_SLOT;
796		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
797		val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
798		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
799
800		val = 0;
801		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
802		val = PI_DEFEA_K_BURST_HOLDOFF;
803		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
804
805		val = PI_IO_CMP_M_SLOT;
806		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
807		val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
808		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
809
810		/* Enable the decoders.  */
811		val = PI_FUNCTION_CNTRL_M_IOCS1;
812		if (dfx_use_mmio)
813			val |= PI_FUNCTION_CNTRL_M_MEMCS1;
814		else
815			val |= PI_FUNCTION_CNTRL_M_IOCS0;
816		outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
817
818		/*
819		 * Enable access to the rest of the module
820		 * (including PDQ and packet memory).
821		 */
822		val = PI_SLOT_CNTRL_M_ENB;
823		outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
824
825		/*
826		 * Map PDQ registers into memory or port space.  This is
827		 * done with a bit in the Burst Holdoff register.
828		 */
829		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
830		if (dfx_use_mmio)
831			val |= PI_BURST_HOLDOFF_M_MEM_MAP;
832		else
833			val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
834		outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
835
836		/* Enable interrupts at EISA bus interface chip (ESIC) */
837		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
838		val |= PI_CONFIG_STAT_0_M_INT_ENB;
839		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
840	}
841	if (dfx_bus_pci) {
842		struct pci_dev *pdev = to_pci_dev(bdev);
843
844		/* Get the interrupt level from the PCI Configuration Table */
845
846		dev->irq = pdev->irq;
847
848		/* Check Latency Timer and set if less than minimal */
849
850		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
851		if (val < PFI_K_LAT_TIMER_MIN) {
852			val = PFI_K_LAT_TIMER_DEF;
853			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
854		}
855
856		/* Enable interrupts at PCI bus interface chip (PFI) */
857		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
858		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
859	}
860}
861
862/*
863 * ==================
864 * = dfx_bus_uninit =
865 * ==================
866 *
867 * Overview:
868 *   Uninitializes the bus-specific controller logic.
869 *
870 * Returns:
871 *   None
872 *
873 * Arguments:
874 *   dev - pointer to device information
875 *
876 * Functional Description:
877 *   Perform bus-specific logic uninitialization.
878 *
879 * Return Codes:
880 *   None
881 *
882 * Assumptions:
883 *   bp->base has already been set with the proper
884 *	 base I/O address for this device.
885 *
886 * Side Effects:
887 *   Interrupts are disabled at the adapter bus-specific logic.
888 */
889
890static void dfx_bus_uninit(struct net_device *dev)
891{
892	DFX_board_t *bp = netdev_priv(dev);
893	struct device *bdev = bp->bus_dev;
894	int dfx_bus_pci = dev_is_pci(bdev);
895	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
896	u8 val;
897
898	DBG_printk("In dfx_bus_uninit...\n");
899
900	/* Uninitialize adapter based on bus type */
901
902	if (dfx_bus_eisa) {
903		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
904
905		/* Disable interrupts at EISA bus interface chip (ESIC) */
906		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
907		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
908		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
909
910		/* Disable the board.  */
911		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
912
913		/* Disable memory and port decoders.  */
914		outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
915	}
916	if (dfx_bus_pci) {
917		/* Disable interrupts at PCI bus interface chip (PFI) */
918		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
919	}
920}
921
922
923/*
924 * ========================
925 * = dfx_bus_config_check =
926 * ========================
927 *
928 * Overview:
929 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
930 *   are illegal, then this routine will set new defaults.
931 *
932 * Returns:
933 *   None
934 *
935 * Arguments:
936 *   bp - pointer to board information
937 *
938 * Functional Description:
939 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
940 *   PDQ, and all FDDI PCI controllers, all values are legal.
941 *
942 * Return Codes:
943 *   None
944 *
945 * Assumptions:
946 *   dfx_adap_init has NOT been called yet so burst size and other items have
947 *   not been set.
948 *
949 * Side Effects:
950 *   None
951 */
952
953static void dfx_bus_config_check(DFX_board_t *bp)
954{
955	struct device __maybe_unused *bdev = bp->bus_dev;
956	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
957	int	status;				/* return code from adapter port control call */
958	u32	host_data;			/* LW data returned from port control call */
959
960	DBG_printk("In dfx_bus_config_check...\n");
961
962	/* Configuration check only valid for EISA adapter */
963
964	if (dfx_bus_eisa) {
965		/*
966		 * First check if revision 2 EISA controller.  Rev. 1 cards used
967		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
968		 * cards used PDQ revision E, so no workaround needed in this
969		 * case, either.  Only Rev. 2 cards used either Rev. D or E
970		 * chips, so we must verify the chip revision on Rev. 2 cards.
971		 */
972		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
973			/*
974			 * Revision 2 FDDI EISA controller found,
975			 * so let's check PDQ revision of adapter.
976			 */
977			status = dfx_hw_port_ctrl_req(bp,
978											PI_PCTRL_M_SUB_CMD,
979											PI_SUB_CMD_K_PDQ_REV_GET,
980											0,
981											&host_data);
982			if ((status != DFX_K_SUCCESS) || (host_data == 2))
983				{
984				/*
985				 * Either we couldn't determine the PDQ revision, or
986				 * we determined that it is at revision D.  In either case,
987				 * we need to implement the workaround.
988				 */
989
990				/* Ensure that the burst size is set to 8 longwords or less */
991
992				switch (bp->burst_size)
993					{
994					case PI_PDATA_B_DMA_BURST_SIZE_32:
995					case PI_PDATA_B_DMA_BURST_SIZE_16:
996						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
997						break;
998
999					default:
1000						break;
1001					}
1002
1003				/* Ensure that full-duplex mode is not enabled */
1004
1005				bp->full_duplex_enb = PI_SNMP_K_FALSE;
1006				}
1007			}
1008		}
1009	}
1010
1011
1012/*
1013 * ===================
1014 * = dfx_driver_init =
1015 * ===================
1016 *
1017 * Overview:
1018 *   Initializes remaining adapter board structure information
1019 *   and makes sure adapter is in a safe state prior to dfx_open().
1020 *
1021 * Returns:
1022 *   Condition code
1023 *
1024 * Arguments:
1025 *   dev - pointer to device information
1026 *   print_name - printable device name
1027 *
1028 * Functional Description:
1029 *   This function allocates additional resources such as the host memory
1030 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1031 *	 Remaining bus initialization steps are also completed.  The adapter
1032 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1033 *   must call dfx_open() to open the adapter and bring it on-line.
1034 *
1035 * Return Codes:
1036 *   DFX_K_SUCCESS	- initialization succeeded
1037 *   DFX_K_FAILURE	- initialization failed - could not allocate memory
1038 *						or read adapter MAC address
1039 *
1040 * Assumptions:
1041 *   Memory allocated from pci_alloc_consistent() call is physically
1042 *   contiguous, locked memory.
1043 *
1044 * Side Effects:
1045 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1046 *   returning from this routine.
1047 */
1048
1049static int dfx_driver_init(struct net_device *dev, const char *print_name,
1050			   resource_size_t bar_start)
1051{
1052	DFX_board_t *bp = netdev_priv(dev);
1053	struct device *bdev = bp->bus_dev;
1054	int dfx_bus_pci = dev_is_pci(bdev);
1055	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1056	int dfx_bus_tc = DFX_BUS_TC(bdev);
1057	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1058	int alloc_size;			/* total buffer size needed */
1059	char *top_v, *curr_v;		/* virtual addrs into memory block */
1060	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
1061	u32 data;			/* host data register value */
1062	__le32 le32;
1063	char *board_name = NULL;
1064
1065	DBG_printk("In dfx_driver_init...\n");
1066
1067	/* Initialize bus-specific hardware registers */
1068
1069	dfx_bus_init(dev);
1070
1071	/*
1072	 * Initialize default values for configurable parameters
1073	 *
1074	 * Note: All of these parameters are ones that a user may
1075	 *       want to customize.  It'd be nice to break these
1076	 *		 out into Space.c or someplace else that's more
1077	 *		 accessible/understandable than this file.
1078	 */
1079
1080	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
1081	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
1082	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
1083	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
1084
1085	/*
1086	 * Ensure that HW configuration is OK
1087	 *
1088	 * Note: Depending on the hardware revision, we may need to modify
1089	 *       some of the configurable parameters to workaround hardware
1090	 *       limitations.  We'll perform this configuration check AFTER
1091	 *       setting the parameters to their default values.
1092	 */
1093
1094	dfx_bus_config_check(bp);
1095
1096	/* Disable PDQ interrupts first */
1097
1098	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1099
1100	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1101
1102	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1103
1104	/*  Read the factory MAC address from the adapter then save it */
1105
1106	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1107				 &data) != DFX_K_SUCCESS) {
1108		printk("%s: Could not read adapter factory MAC address!\n",
1109		       print_name);
1110		return DFX_K_FAILURE;
1111	}
1112	le32 = cpu_to_le32(data);
1113	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1114
1115	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1116				 &data) != DFX_K_SUCCESS) {
1117		printk("%s: Could not read adapter factory MAC address!\n",
1118		       print_name);
1119		return DFX_K_FAILURE;
1120	}
1121	le32 = cpu_to_le32(data);
1122	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1123
1124	/*
1125	 * Set current address to factory address
1126	 *
1127	 * Note: Node address override support is handled through
1128	 *       dfx_ctl_set_mac_address.
1129	 */
1130
1131	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1132	if (dfx_bus_tc)
1133		board_name = "DEFTA";
1134	if (dfx_bus_eisa)
1135		board_name = "DEFEA";
1136	if (dfx_bus_pci)
1137		board_name = "DEFPA";
1138	pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1139		print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1140		(long long)bar_start, dev->irq, dev->dev_addr);
1141
1142	/*
1143	 * Get memory for descriptor block, consumer block, and other buffers
1144	 * that need to be DMA read or written to by the adapter.
1145	 */
1146
1147	alloc_size = sizeof(PI_DESCR_BLOCK) +
1148					PI_CMD_REQ_K_SIZE_MAX +
1149					PI_CMD_RSP_K_SIZE_MAX +
1150#ifndef DYNAMIC_BUFFERS
1151					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1152#endif
1153					sizeof(PI_CONSUMER_BLOCK) +
1154					(PI_ALIGN_K_DESC_BLK - 1);
1155	bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1156						   &bp->kmalloced_dma,
1157						   GFP_ATOMIC);
1158	if (top_v == NULL)
1159		return DFX_K_FAILURE;
1160
1161	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1162
1163	/*
1164	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1165	 *  plus the amount of memory needed was allocated.  The physical address
1166	 *	is now 8K aligned.  By carving up the memory in a specific order,
1167	 *  we'll guarantee the alignment requirements for all other structures.
1168	 *
1169	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1170	 *		  physically contiguous nature of the memory block or the address
1171	 *		  alignments, then we'll need to implement a different algorithm
1172	 *		  for allocating the needed memory.
1173	 */
1174
1175	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1176	curr_v = top_v + (curr_p - top_p);
1177
1178	/* Reserve space for descriptor block */
1179
1180	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1181	bp->descr_block_phys = curr_p;
1182	curr_v += sizeof(PI_DESCR_BLOCK);
1183	curr_p += sizeof(PI_DESCR_BLOCK);
1184
1185	/* Reserve space for command request buffer */
1186
1187	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1188	bp->cmd_req_phys = curr_p;
1189	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1190	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1191
1192	/* Reserve space for command response buffer */
1193
1194	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1195	bp->cmd_rsp_phys = curr_p;
1196	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1197	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1198
1199	/* Reserve space for the LLC host receive queue buffers */
1200
1201	bp->rcv_block_virt = curr_v;
1202	bp->rcv_block_phys = curr_p;
1203
1204#ifndef DYNAMIC_BUFFERS
1205	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1206	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1207#endif
1208
1209	/* Reserve space for the consumer block */
1210
1211	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1212	bp->cons_block_phys = curr_p;
1213
1214	/* Display virtual and physical addresses if debug driver */
1215
1216	DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1217		   print_name, bp->descr_block_virt, &bp->descr_block_phys);
1218	DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1219		   print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1220	DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1221		   print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1222	DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1223		   print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1224	DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1225		   print_name, bp->cons_block_virt, &bp->cons_block_phys);
1226
1227	return DFX_K_SUCCESS;
1228}
1229
1230
1231/*
1232 * =================
1233 * = dfx_adap_init =
1234 * =================
1235 *
1236 * Overview:
1237 *   Brings the adapter to the link avail/link unavailable state.
1238 *
1239 * Returns:
1240 *   Condition code
1241 *
1242 * Arguments:
1243 *   bp - pointer to board information
1244 *   get_buffers - non-zero if buffers to be allocated
1245 *
1246 * Functional Description:
1247 *   Issues the low-level firmware/hardware calls necessary to bring
1248 *   the adapter up, or to properly reset and restore adapter during
1249 *   run-time.
1250 *
1251 * Return Codes:
1252 *   DFX_K_SUCCESS - Adapter brought up successfully
1253 *   DFX_K_FAILURE - Adapter initialization failed
1254 *
1255 * Assumptions:
1256 *   bp->reset_type should be set to a valid reset type value before
1257 *   calling this routine.
1258 *
1259 * Side Effects:
1260 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1261 *   upon a successful return of this routine.
1262 */
1263
1264static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1265	{
1266	DBG_printk("In dfx_adap_init...\n");
1267
1268	/* Disable PDQ interrupts first */
1269
1270	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1271
1272	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1273
1274	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1275		{
1276		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1277		return DFX_K_FAILURE;
1278		}
1279
1280	/*
1281	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1282	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1283	 */
1284
1285	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1286
1287	/*
1288	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1289	 *
1290	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1291	 *       takes care of the on-board register values.
1292	 */
1293
1294	bp->cmd_req_reg.lword	= 0;
1295	bp->cmd_rsp_reg.lword	= 0;
1296	bp->rcv_xmt_reg.lword	= 0;
1297
1298	/* Clear consumer block before going to DMA_AVAILABLE state */
1299
1300	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1301
1302	/* Initialize the DMA Burst Size */
1303
1304	if (dfx_hw_port_ctrl_req(bp,
1305							PI_PCTRL_M_SUB_CMD,
1306							PI_SUB_CMD_K_BURST_SIZE_SET,
1307							bp->burst_size,
1308							NULL) != DFX_K_SUCCESS)
1309		{
1310		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1311		return DFX_K_FAILURE;
1312		}
1313
1314	/*
1315	 * Set base address of Consumer Block
1316	 *
1317	 * Assumption: 32-bit physical address of consumer block is 64 byte
1318	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1319	 */
1320
1321	if (dfx_hw_port_ctrl_req(bp,
1322							PI_PCTRL_M_CONS_BLOCK,
1323							bp->cons_block_phys,
1324							0,
1325							NULL) != DFX_K_SUCCESS)
1326		{
1327		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1328		return DFX_K_FAILURE;
1329		}
1330
1331	/*
1332	 * Set the base address of Descriptor Block and bring adapter
1333	 * to DMA_AVAILABLE state.
1334	 *
1335	 * Note: We also set the literal and data swapping requirements
1336	 *       in this command.
1337	 *
1338	 * Assumption: 32-bit physical address of descriptor block
1339	 *       is 8Kbyte aligned.
1340	 */
1341	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1342				 (u32)(bp->descr_block_phys |
1343				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1344				 0, NULL) != DFX_K_SUCCESS) {
1345		printk("%s: Could not set descriptor block address!\n",
1346		       bp->dev->name);
1347		return DFX_K_FAILURE;
1348	}
1349
1350	/* Set transmit flush timeout value */
1351
1352	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1353	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1354	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1355	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1356	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1357	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1358		{
1359		printk("%s: DMA command request failed!\n", bp->dev->name);
1360		return DFX_K_FAILURE;
1361		}
1362
1363	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1364
1365	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1366	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1367	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1368	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1369	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1370	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1371	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1372	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1373	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1374		{
1375		printk("%s: DMA command request failed!\n", bp->dev->name);
1376		return DFX_K_FAILURE;
1377		}
1378
1379	/* Initialize adapter CAM */
1380
1381	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1382		{
1383		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1384		return DFX_K_FAILURE;
1385		}
1386
1387	/* Initialize adapter filters */
1388
1389	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1390		{
1391		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1392		return DFX_K_FAILURE;
1393		}
1394
1395	/*
1396	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1397	 * reinitialized)
1398	 */
1399
1400	if (get_buffers)
1401		dfx_rcv_flush(bp);
1402
1403	/* Initialize receive descriptor block and produce buffers */
1404
1405	if (dfx_rcv_init(bp, get_buffers))
1406	        {
1407		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1408		if (get_buffers)
1409			dfx_rcv_flush(bp);
1410		return DFX_K_FAILURE;
1411		}
1412
1413	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1414
1415	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1416	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1417		{
1418		printk("%s: Start command failed\n", bp->dev->name);
1419		if (get_buffers)
1420			dfx_rcv_flush(bp);
1421		return DFX_K_FAILURE;
1422		}
1423
1424	/* Initialization succeeded, reenable PDQ interrupts */
1425
1426	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1427	return DFX_K_SUCCESS;
1428	}
1429
1430
1431/*
1432 * ============
1433 * = dfx_open =
1434 * ============
1435 *
1436 * Overview:
1437 *   Opens the adapter
1438 *
1439 * Returns:
1440 *   Condition code
1441 *
1442 * Arguments:
1443 *   dev - pointer to device information
1444 *
1445 * Functional Description:
1446 *   This function brings the adapter to an operational state.
1447 *
1448 * Return Codes:
1449 *   0		 - Adapter was successfully opened
1450 *   -EAGAIN - Could not register IRQ or adapter initialization failed
1451 *
1452 * Assumptions:
1453 *   This routine should only be called for a device that was
1454 *   initialized successfully.
1455 *
1456 * Side Effects:
1457 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1458 *   if the open is successful.
1459 */
1460
1461static int dfx_open(struct net_device *dev)
1462{
1463	DFX_board_t *bp = netdev_priv(dev);
1464	int ret;
1465
1466	DBG_printk("In dfx_open...\n");
1467
1468	/* Register IRQ - support shared interrupts by passing device ptr */
1469
1470	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1471			  dev);
1472	if (ret) {
1473		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1474		return ret;
1475	}
1476
1477	/*
1478	 * Set current address to factory MAC address
1479	 *
1480	 * Note: We've already done this step in dfx_driver_init.
1481	 *       However, it's possible that a user has set a node
1482	 *		 address override, then closed and reopened the
1483	 *		 adapter.  Unless we reset the device address field
1484	 *		 now, we'll continue to use the existing modified
1485	 *		 address.
1486	 */
1487
1488	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1489
1490	/* Clear local unicast/multicast address tables and counts */
1491
1492	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1493	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1494	bp->uc_count = 0;
1495	bp->mc_count = 0;
1496
1497	/* Disable promiscuous filter settings */
1498
1499	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1500	bp->group_prom		= PI_FSTATE_K_BLOCK;
1501
1502	spin_lock_init(&bp->lock);
1503
1504	/* Reset and initialize adapter */
1505
1506	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1507	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1508	{
1509		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1510		free_irq(dev->irq, dev);
1511		return -EAGAIN;
1512	}
1513
1514	/* Set device structure info */
1515	netif_start_queue(dev);
1516	return 0;
1517}
1518
1519
1520/*
1521 * =============
1522 * = dfx_close =
1523 * =============
1524 *
1525 * Overview:
1526 *   Closes the device/module.
1527 *
1528 * Returns:
1529 *   Condition code
1530 *
1531 * Arguments:
1532 *   dev - pointer to device information
1533 *
1534 * Functional Description:
1535 *   This routine closes the adapter and brings it to a safe state.
1536 *   The interrupt service routine is deregistered with the OS.
1537 *   The adapter can be opened again with another call to dfx_open().
1538 *
1539 * Return Codes:
1540 *   Always return 0.
1541 *
1542 * Assumptions:
1543 *   No further requests for this adapter are made after this routine is
1544 *   called.  dfx_open() can be called to reset and reinitialize the
1545 *   adapter.
1546 *
1547 * Side Effects:
1548 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1549 *   routine.
1550 */
1551
1552static int dfx_close(struct net_device *dev)
1553{
1554	DFX_board_t *bp = netdev_priv(dev);
1555
1556	DBG_printk("In dfx_close...\n");
1557
1558	/* Disable PDQ interrupts first */
1559
1560	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1561
1562	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1563
1564	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1565
1566	/*
1567	 * Flush any pending transmit buffers
1568	 *
1569	 * Note: It's important that we flush the transmit buffers
1570	 *		 BEFORE we clear our copy of the Type 2 register.
1571	 *		 Otherwise, we'll have no idea how many buffers
1572	 *		 we need to free.
1573	 */
1574
1575	dfx_xmt_flush(bp);
1576
1577	/*
1578	 * Clear Type 1 and Type 2 registers after adapter reset
1579	 *
1580	 * Note: Even though we're closing the adapter, it's
1581	 *       possible that an interrupt will occur after
1582	 *		 dfx_close is called.  Without some assurance to
1583	 *		 the contrary we want to make sure that we don't
1584	 *		 process receive and transmit LLC frames and update
1585	 *		 the Type 2 register with bad information.
1586	 */
1587
1588	bp->cmd_req_reg.lword	= 0;
1589	bp->cmd_rsp_reg.lword	= 0;
1590	bp->rcv_xmt_reg.lword	= 0;
1591
1592	/* Clear consumer block for the same reason given above */
1593
1594	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1595
1596	/* Release all dynamically allocate skb in the receive ring. */
1597
1598	dfx_rcv_flush(bp);
1599
1600	/* Clear device structure flags */
1601
1602	netif_stop_queue(dev);
1603
1604	/* Deregister (free) IRQ */
1605
1606	free_irq(dev->irq, dev);
1607
1608	return 0;
1609}
1610
1611
1612/*
1613 * ======================
1614 * = dfx_int_pr_halt_id =
1615 * ======================
1616 *
1617 * Overview:
1618 *   Displays halt id's in string form.
1619 *
1620 * Returns:
1621 *   None
1622 *
1623 * Arguments:
1624 *   bp - pointer to board information
1625 *
1626 * Functional Description:
1627 *   Determine current halt id and display appropriate string.
1628 *
1629 * Return Codes:
1630 *   None
1631 *
1632 * Assumptions:
1633 *   None
1634 *
1635 * Side Effects:
1636 *   None
1637 */
1638
1639static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1640	{
1641	PI_UINT32	port_status;			/* PDQ port status register value */
1642	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1643
1644	/* Read the latest port status */
1645
1646	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1647
1648	/* Display halt state transition information */
1649
1650	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1651	switch (halt_id)
1652		{
1653		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1654			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1655			break;
1656
1657		case PI_HALT_ID_K_PARITY_ERROR:
1658			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1659			break;
1660
1661		case PI_HALT_ID_K_HOST_DIR_HALT:
1662			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1663			break;
1664
1665		case PI_HALT_ID_K_SW_FAULT:
1666			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1667			break;
1668
1669		case PI_HALT_ID_K_HW_FAULT:
1670			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1671			break;
1672
1673		case PI_HALT_ID_K_PC_TRACE:
1674			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1675			break;
1676
1677		case PI_HALT_ID_K_DMA_ERROR:
1678			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1679			break;
1680
1681		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1682			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1683			break;
1684
1685		case PI_HALT_ID_K_BUS_EXCEPTION:
1686			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1687			break;
1688
1689		default:
1690			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1691			break;
1692		}
1693	}
1694
1695
1696/*
1697 * ==========================
1698 * = dfx_int_type_0_process =
1699 * ==========================
1700 *
1701 * Overview:
1702 *   Processes Type 0 interrupts.
1703 *
1704 * Returns:
1705 *   None
1706 *
1707 * Arguments:
1708 *   bp - pointer to board information
1709 *
1710 * Functional Description:
1711 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1712 *   is a serious fault on the adapter, then an error message is displayed
1713 *   and the adapter is reset.
1714 *
1715 *   One tricky potential timing window is the rapid succession of "link avail"
1716 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1717 *   interrupt must be done before reading the state from the Port Status
1718 *   register.  This is true because a state change could occur after reading
1719 *   the data, but before acknowledging the interrupt.  If this state change
1720 *   does happen, it would be lost because the driver is using the old state,
1721 *   and it will never know about the new state because it subsequently
1722 *   acknowledges the state change interrupt.
1723 *
1724 *          INCORRECT                                      CORRECT
1725 *      read type 0 int reasons                   read type 0 int reasons
1726 *      read adapter state                        ack type 0 interrupts
1727 *      ack type 0 interrupts                     read adapter state
1728 *      ... process interrupt ...                 ... process interrupt ...
1729 *
1730 * Return Codes:
1731 *   None
1732 *
1733 * Assumptions:
1734 *   None
1735 *
1736 * Side Effects:
1737 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1738 *   or if the port status indicates that the adapter is halted.  The driver
1739 *   is responsible for reinitializing the adapter with the current CAM
1740 *   contents and adapter filter settings.
1741 */
1742
1743static void dfx_int_type_0_process(DFX_board_t	*bp)
1744
1745	{
1746	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1747	PI_UINT32	state;				/* current adap state (from port status) */
1748
1749	/*
1750	 * Read host interrupt Type 0 register to determine which Type 0
1751	 * interrupts are pending.  Immediately write it back out to clear
1752	 * those interrupts.
1753	 */
1754
1755	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1756	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1757
1758	/* Check for Type 0 error interrupts */
1759
1760	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1761							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1762							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1763		{
1764		/* Check for Non-Existent Memory error */
1765
1766		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1767			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1768
1769		/* Check for Packet Memory Parity error */
1770
1771		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1772			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1773
1774		/* Check for Host Bus Parity error */
1775
1776		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1777			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1778
1779		/* Reset adapter and bring it back on-line */
1780
1781		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1782		bp->reset_type = 0;					/* rerun on-board diagnostics */
1783		printk("%s: Resetting adapter...\n", bp->dev->name);
1784		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1785			{
1786			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1787			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1788			return;
1789			}
1790		printk("%s: Adapter reset successful!\n", bp->dev->name);
1791		return;
1792		}
1793
1794	/* Check for transmit flush interrupt */
1795
1796	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1797		{
1798		/* Flush any pending xmt's and acknowledge the flush interrupt */
1799
1800		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1801		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1802		(void) dfx_hw_port_ctrl_req(bp,
1803									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1804									0,
1805									0,
1806									NULL);
1807		}
1808
1809	/* Check for adapter state change */
1810
1811	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1812		{
1813		/* Get latest adapter state */
1814
1815		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1816		if (state == PI_STATE_K_HALTED)
1817			{
1818			/*
1819			 * Adapter has transitioned to HALTED state, try to reset
1820			 * adapter to bring it back on-line.  If reset fails,
1821			 * leave the adapter in the broken state.
1822			 */
1823
1824			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1825			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1826
1827			/* Reset adapter and bring it back on-line */
1828
1829			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1830			bp->reset_type = 0;					/* rerun on-board diagnostics */
1831			printk("%s: Resetting adapter...\n", bp->dev->name);
1832			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1833				{
1834				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1835				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1836				return;
1837				}
1838			printk("%s: Adapter reset successful!\n", bp->dev->name);
1839			}
1840		else if (state == PI_STATE_K_LINK_AVAIL)
1841			{
1842			bp->link_available = PI_K_TRUE;		/* set link available flag */
1843			}
1844		}
1845	}
1846
1847
1848/*
1849 * ==================
1850 * = dfx_int_common =
1851 * ==================
1852 *
1853 * Overview:
1854 *   Interrupt service routine (ISR)
1855 *
1856 * Returns:
1857 *   None
1858 *
1859 * Arguments:
1860 *   bp - pointer to board information
1861 *
1862 * Functional Description:
1863 *   This is the ISR which processes incoming adapter interrupts.
1864 *
1865 * Return Codes:
1866 *   None
1867 *
1868 * Assumptions:
1869 *   This routine assumes PDQ interrupts have not been disabled.
1870 *   When interrupts are disabled at the PDQ, the Port Status register
1871 *   is automatically cleared.  This routine uses the Port Status
1872 *   register value to determine whether a Type 0 interrupt occurred,
1873 *   so it's important that adapter interrupts are not normally
1874 *   enabled/disabled at the PDQ.
1875 *
1876 *   It's vital that this routine is NOT reentered for the
1877 *   same board and that the OS is not in another section of
1878 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1879 *   different thread.
1880 *
1881 * Side Effects:
1882 *   Pending interrupts are serviced.  Depending on the type of
1883 *   interrupt, acknowledging and clearing the interrupt at the
1884 *   PDQ involves writing a register to clear the interrupt bit
1885 *   or updating completion indices.
1886 */
1887
1888static void dfx_int_common(struct net_device *dev)
1889{
1890	DFX_board_t *bp = netdev_priv(dev);
1891	PI_UINT32	port_status;		/* Port Status register */
1892
1893	/* Process xmt interrupts - frequent case, so always call this routine */
1894
1895	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1896		netif_wake_queue(dev);
1897
1898	/* Process rcv interrupts - frequent case, so always call this routine */
1899
1900	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1901
1902	/*
1903	 * Transmit and receive producer and completion indices are updated on the
1904	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1905	 * case is that we'll be processing either LLC transmit or receive buffers,
1906	 * we'll optimize I/O writes by doing a single register write here.
1907	 */
1908
1909	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1910
1911	/* Read PDQ Port Status register to find out which interrupts need processing */
1912
1913	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1914
1915	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1916
1917	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1918		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1919	}
1920
1921
1922/*
1923 * =================
1924 * = dfx_interrupt =
1925 * =================
1926 *
1927 * Overview:
1928 *   Interrupt processing routine
1929 *
1930 * Returns:
1931 *   Whether a valid interrupt was seen.
1932 *
1933 * Arguments:
1934 *   irq	- interrupt vector
1935 *   dev_id	- pointer to device information
1936 *
1937 * Functional Description:
1938 *   This routine calls the interrupt processing routine for this adapter.  It
1939 *   disables and reenables adapter interrupts, as appropriate.  We can support
1940 *   shared interrupts since the incoming dev_id pointer provides our device
1941 *   structure context.
1942 *
1943 * Return Codes:
1944 *   IRQ_HANDLED - an IRQ was handled.
1945 *   IRQ_NONE    - no IRQ was handled.
1946 *
1947 * Assumptions:
1948 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1949 *   on Intel-based systems) is done by the operating system outside this
1950 *   routine.
1951 *
1952 *	 System interrupts are enabled through this call.
1953 *
1954 * Side Effects:
1955 *   Interrupts are disabled, then reenabled at the adapter.
1956 */
1957
1958static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1959{
1960	struct net_device *dev = dev_id;
1961	DFX_board_t *bp = netdev_priv(dev);
1962	struct device *bdev = bp->bus_dev;
1963	int dfx_bus_pci = dev_is_pci(bdev);
1964	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1965	int dfx_bus_tc = DFX_BUS_TC(bdev);
1966
1967	/* Service adapter interrupts */
1968
1969	if (dfx_bus_pci) {
1970		u32 status;
1971
1972		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1973		if (!(status & PFI_STATUS_M_PDQ_INT))
1974			return IRQ_NONE;
1975
1976		spin_lock(&bp->lock);
1977
1978		/* Disable PDQ-PFI interrupts at PFI */
1979		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1980				    PFI_MODE_M_DMA_ENB);
1981
1982		/* Call interrupt service routine for this adapter */
1983		dfx_int_common(dev);
1984
1985		/* Clear PDQ interrupt status bit and reenable interrupts */
1986		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1987				    PFI_STATUS_M_PDQ_INT);
1988		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1989				    (PFI_MODE_M_PDQ_INT_ENB |
1990				     PFI_MODE_M_DMA_ENB));
1991
1992		spin_unlock(&bp->lock);
1993	}
1994	if (dfx_bus_eisa) {
1995		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1996		u8 status;
1997
1998		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1999		if (!(status & PI_CONFIG_STAT_0_M_PEND))
2000			return IRQ_NONE;
2001
2002		spin_lock(&bp->lock);
2003
2004		/* Disable interrupts at the ESIC */
2005		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
2006		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2007
2008		/* Call interrupt service routine for this adapter */
2009		dfx_int_common(dev);
2010
2011		/* Reenable interrupts at the ESIC */
2012		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2013		status |= PI_CONFIG_STAT_0_M_INT_ENB;
2014		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2015
2016		spin_unlock(&bp->lock);
2017	}
2018	if (dfx_bus_tc) {
2019		u32 status;
2020
2021		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2022		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2023				PI_PSTATUS_M_XMT_DATA_PENDING |
2024				PI_PSTATUS_M_SMT_HOST_PENDING |
2025				PI_PSTATUS_M_UNSOL_PENDING |
2026				PI_PSTATUS_M_CMD_RSP_PENDING |
2027				PI_PSTATUS_M_CMD_REQ_PENDING |
2028				PI_PSTATUS_M_TYPE_0_PENDING)))
2029			return IRQ_NONE;
2030
2031		spin_lock(&bp->lock);
2032
2033		/* Call interrupt service routine for this adapter */
2034		dfx_int_common(dev);
2035
2036		spin_unlock(&bp->lock);
2037	}
2038
2039	return IRQ_HANDLED;
2040}
2041
2042
2043/*
2044 * =====================
2045 * = dfx_ctl_get_stats =
2046 * =====================
2047 *
2048 * Overview:
2049 *   Get statistics for FDDI adapter
2050 *
2051 * Returns:
2052 *   Pointer to FDDI statistics structure
2053 *
2054 * Arguments:
2055 *   dev - pointer to device information
2056 *
2057 * Functional Description:
2058 *   Gets current MIB objects from adapter, then
2059 *   returns FDDI statistics structure as defined
2060 *   in if_fddi.h.
2061 *
2062 *   Note: Since the FDDI statistics structure is
2063 *   still new and the device structure doesn't
2064 *   have an FDDI-specific get statistics handler,
2065 *   we'll return the FDDI statistics structure as
2066 *   a pointer to an Ethernet statistics structure.
2067 *   That way, at least the first part of the statistics
2068 *   structure can be decoded properly, and it allows
2069 *   "smart" applications to perform a second cast to
2070 *   decode the FDDI-specific statistics.
2071 *
2072 *   We'll have to pay attention to this routine as the
2073 *   device structure becomes more mature and LAN media
2074 *   independent.
2075 *
2076 * Return Codes:
2077 *   None
2078 *
2079 * Assumptions:
2080 *   None
2081 *
2082 * Side Effects:
2083 *   None
2084 */
2085
2086static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2087	{
2088	DFX_board_t *bp = netdev_priv(dev);
2089
2090	/* Fill the bp->stats structure with driver-maintained counters */
2091
2092	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2093	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2094	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2095	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2096	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2097				   bp->rcv_frame_status_errors +
2098				   bp->rcv_length_errors;
2099	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2100	bp->stats.gen.rx_dropped = bp->rcv_discards;
2101	bp->stats.gen.tx_dropped = bp->xmt_discards;
2102	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2103	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2104
2105	/* Get FDDI SMT MIB objects */
2106
2107	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2108	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2109		return (struct net_device_stats *)&bp->stats;
2110
2111	/* Fill the bp->stats structure with the SMT MIB object values */
2112
2113	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2114	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2115	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2116	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2117	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2118	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2119	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2120	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2121	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2122	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2123	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2124	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2125	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2126	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2127	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2128	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2129	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2130	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2131	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2132	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2133	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2134	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2135	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2136	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2137	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2138	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2139	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2140	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2141	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2142	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2143	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2144	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2145	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2146	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2147	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2148	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2149	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2150	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2151	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2152	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2153	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2154	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2155	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2156	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2157	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2158	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2159	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2160	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2161	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2162	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2163	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2164	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2165	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2166	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2167	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2168	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2169	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2170	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2171	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2172	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2173	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2174	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2175	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2176	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2177	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2178	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2179	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2180	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2181	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2182	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2183	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2184	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2185	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2186	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2187	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2188	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2189	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2190	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2191	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2192	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2193	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2194	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2195	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2196	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2197	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2198	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2199	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2200	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2201	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2202	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2203	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2204	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2205
2206	/* Get FDDI counters */
2207
2208	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2209	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2210		return (struct net_device_stats *)&bp->stats;
2211
2212	/* Fill the bp->stats structure with the FDDI counter values */
2213
2214	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2215	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2216	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2217	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2218	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2219	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2220	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2221	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2222	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2223	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2224	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2225
2226	return (struct net_device_stats *)&bp->stats;
2227	}
2228
2229
2230/*
2231 * ==============================
2232 * = dfx_ctl_set_multicast_list =
2233 * ==============================
2234 *
2235 * Overview:
2236 *   Enable/Disable LLC frame promiscuous mode reception
2237 *   on the adapter and/or update multicast address table.
2238 *
2239 * Returns:
2240 *   None
2241 *
2242 * Arguments:
2243 *   dev - pointer to device information
2244 *
2245 * Functional Description:
2246 *   This routine follows a fairly simple algorithm for setting the
2247 *   adapter filters and CAM:
2248 *
2249 *		if IFF_PROMISC flag is set
2250 *			enable LLC individual/group promiscuous mode
2251 *		else
2252 *			disable LLC individual/group promiscuous mode
2253 *			if number of incoming multicast addresses >
2254 *					(CAM max size - number of unicast addresses in CAM)
2255 *				enable LLC group promiscuous mode
2256 *				set driver-maintained multicast address count to zero
2257 *			else
2258 *				disable LLC group promiscuous mode
2259 *				set driver-maintained multicast address count to incoming count
2260 *			update adapter CAM
2261 *		update adapter filters
2262 *
2263 * Return Codes:
2264 *   None
2265 *
2266 * Assumptions:
2267 *   Multicast addresses are presented in canonical (LSB) format.
2268 *
2269 * Side Effects:
2270 *   On-board adapter CAM and filters are updated.
2271 */
2272
2273static void dfx_ctl_set_multicast_list(struct net_device *dev)
2274{
2275	DFX_board_t *bp = netdev_priv(dev);
2276	int					i;			/* used as index in for loop */
2277	struct netdev_hw_addr *ha;
2278
2279	/* Enable LLC frame promiscuous mode, if necessary */
2280
2281	if (dev->flags & IFF_PROMISC)
2282		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2283
2284	/* Else, update multicast address table */
2285
2286	else
2287		{
2288		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2289		/*
2290		 * Check whether incoming multicast address count exceeds table size
2291		 *
2292		 * Note: The adapters utilize an on-board 64 entry CAM for
2293		 *       supporting perfect filtering of multicast packets
2294		 *		 and bridge functions when adding unicast addresses.
2295		 *		 There is no hash function available.  To support
2296		 *		 additional multicast addresses, the all multicast
2297		 *		 filter (LLC group promiscuous mode) must be enabled.
2298		 *
2299		 *		 The firmware reserves two CAM entries for SMT-related
2300		 *		 multicast addresses, which leaves 62 entries available.
2301		 *		 The following code ensures that we're not being asked
2302		 *		 to add more than 62 addresses to the CAM.  If we are,
2303		 *		 the driver will enable the all multicast filter.
2304		 *		 Should the number of multicast addresses drop below
2305		 *		 the high water mark, the filter will be disabled and
2306		 *		 perfect filtering will be used.
2307		 */
2308
2309		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2310			{
2311			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2312			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2313			}
2314		else
2315			{
2316			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2317			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2318			}
2319
2320		/* Copy addresses to multicast address table, then update adapter CAM */
2321
2322		i = 0;
2323		netdev_for_each_mc_addr(ha, dev)
2324			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2325			       ha->addr, FDDI_K_ALEN);
2326
2327		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2328			{
2329			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2330			}
2331		else
2332			{
2333			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2334			}
2335		}
2336
2337	/* Update adapter filters */
2338
2339	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2340		{
2341		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2342		}
2343	else
2344		{
2345		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2346		}
2347	}
2348
2349
2350/*
2351 * ===========================
2352 * = dfx_ctl_set_mac_address =
2353 * ===========================
2354 *
2355 * Overview:
2356 *   Add node address override (unicast address) to adapter
2357 *   CAM and update dev_addr field in device table.
2358 *
2359 * Returns:
2360 *   None
2361 *
2362 * Arguments:
2363 *   dev  - pointer to device information
2364 *   addr - pointer to sockaddr structure containing unicast address to add
2365 *
2366 * Functional Description:
2367 *   The adapter supports node address overrides by adding one or more
2368 *   unicast addresses to the adapter CAM.  This is similar to adding
2369 *   multicast addresses.  In this routine we'll update the driver and
2370 *   device structures with the new address, then update the adapter CAM
2371 *   to ensure that the adapter will copy and strip frames destined and
2372 *   sourced by that address.
2373 *
2374 * Return Codes:
2375 *   Always returns zero.
2376 *
2377 * Assumptions:
2378 *   The address pointed to by addr->sa_data is a valid unicast
2379 *   address and is presented in canonical (LSB) format.
2380 *
2381 * Side Effects:
2382 *   On-board adapter CAM is updated.  On-board adapter filters
2383 *   may be updated.
2384 */
2385
2386static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2387	{
2388	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2389	DFX_board_t *bp = netdev_priv(dev);
2390
2391	/* Copy unicast address to driver-maintained structs and update count */
2392
2393	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */
2394	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2395	bp->uc_count = 1;
2396
2397	/*
2398	 * Verify we're not exceeding the CAM size by adding unicast address
2399	 *
2400	 * Note: It's possible that before entering this routine we've
2401	 *       already filled the CAM with 62 multicast addresses.
2402	 *		 Since we need to place the node address override into
2403	 *		 the CAM, we have to check to see that we're not
2404	 *		 exceeding the CAM size.  If we are, we have to enable
2405	 *		 the LLC group (multicast) promiscuous mode filter as
2406	 *		 in dfx_ctl_set_multicast_list.
2407	 */
2408
2409	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2410		{
2411		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2412		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2413
2414		/* Update adapter filters */
2415
2416		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2417			{
2418			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2419			}
2420		else
2421			{
2422			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2423			}
2424		}
2425
2426	/* Update adapter CAM with new unicast address */
2427
2428	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2429		{
2430		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2431		}
2432	else
2433		{
2434		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2435		}
2436	return 0;			/* always return zero */
2437	}
2438
2439
2440/*
2441 * ======================
2442 * = dfx_ctl_update_cam =
2443 * ======================
2444 *
2445 * Overview:
2446 *   Procedure to update adapter CAM (Content Addressable Memory)
2447 *   with desired unicast and multicast address entries.
2448 *
2449 * Returns:
2450 *   Condition code
2451 *
2452 * Arguments:
2453 *   bp - pointer to board information
2454 *
2455 * Functional Description:
2456 *   Updates adapter CAM with current contents of board structure
2457 *   unicast and multicast address tables.  Since there are only 62
2458 *   free entries in CAM, this routine ensures that the command
2459 *   request buffer is not overrun.
2460 *
2461 * Return Codes:
2462 *   DFX_K_SUCCESS - Request succeeded
2463 *   DFX_K_FAILURE - Request failed
2464 *
2465 * Assumptions:
2466 *   All addresses being added (unicast and multicast) are in canonical
2467 *   order.
2468 *
2469 * Side Effects:
2470 *   On-board adapter CAM is updated.
2471 */
2472
2473static int dfx_ctl_update_cam(DFX_board_t *bp)
2474	{
2475	int			i;				/* used as index */
2476	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2477
2478	/*
2479	 * Fill in command request information
2480	 *
2481	 * Note: Even though both the unicast and multicast address
2482	 *       table entries are stored as contiguous 6 byte entries,
2483	 *		 the firmware address filter set command expects each
2484	 *		 entry to be two longwords (8 bytes total).  We must be
2485	 *		 careful to only copy the six bytes of each unicast and
2486	 *		 multicast table entry into each command entry.  This
2487	 *		 is also why we must first clear the entire command
2488	 *		 request buffer.
2489	 */
2490
2491	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2492	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2493	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2494
2495	/* Now add unicast addresses to command request buffer, if any */
2496
2497	for (i=0; i < (int)bp->uc_count; i++)
2498		{
2499		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2500			{
2501			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2502			p_addr++;			/* point to next command entry */
2503			}
2504		}
2505
2506	/* Now add multicast addresses to command request buffer, if any */
2507
2508	for (i=0; i < (int)bp->mc_count; i++)
2509		{
2510		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2511			{
2512			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2513			p_addr++;			/* point to next command entry */
2514			}
2515		}
2516
2517	/* Issue command to update adapter CAM, then return */
2518
2519	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2520		return DFX_K_FAILURE;
2521	return DFX_K_SUCCESS;
2522	}
2523
2524
2525/*
2526 * ==========================
2527 * = dfx_ctl_update_filters =
2528 * ==========================
2529 *
2530 * Overview:
2531 *   Procedure to update adapter filters with desired
2532 *   filter settings.
2533 *
2534 * Returns:
2535 *   Condition code
2536 *
2537 * Arguments:
2538 *   bp - pointer to board information
2539 *
2540 * Functional Description:
2541 *   Enables or disables filter using current filter settings.
2542 *
2543 * Return Codes:
2544 *   DFX_K_SUCCESS - Request succeeded.
2545 *   DFX_K_FAILURE - Request failed.
2546 *
2547 * Assumptions:
2548 *   We must always pass up packets destined to the broadcast
2549 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2550 *   broadcast filter enabled.
2551 *
2552 * Side Effects:
2553 *   On-board adapter filters are updated.
2554 */
2555
2556static int dfx_ctl_update_filters(DFX_board_t *bp)
2557	{
2558	int	i = 0;					/* used as index */
2559
2560	/* Fill in command request information */
2561
2562	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2563
2564	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2565
2566	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2567	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2568
2569	/* Initialize LLC Individual/Group Promiscuous filter */
2570
2571	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2572	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2573
2574	/* Initialize LLC Group Promiscuous filter */
2575
2576	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2577	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2578
2579	/* Terminate the item code list */
2580
2581	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2582
2583	/* Issue command to update adapter filters, then return */
2584
2585	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2586		return DFX_K_FAILURE;
2587	return DFX_K_SUCCESS;
2588	}
2589
2590
2591/*
2592 * ======================
2593 * = dfx_hw_dma_cmd_req =
2594 * ======================
2595 *
2596 * Overview:
2597 *   Sends PDQ DMA command to adapter firmware
2598 *
2599 * Returns:
2600 *   Condition code
2601 *
2602 * Arguments:
2603 *   bp - pointer to board information
2604 *
2605 * Functional Description:
2606 *   The command request and response buffers are posted to the adapter in the manner
2607 *   described in the PDQ Port Specification:
2608 *
2609 *		1. Command Response Buffer is posted to adapter.
2610 *		2. Command Request Buffer is posted to adapter.
2611 *		3. Command Request consumer index is polled until it indicates that request
2612 *         buffer has been DMA'd to adapter.
2613 *		4. Command Response consumer index is polled until it indicates that response
2614 *         buffer has been DMA'd from adapter.
2615 *
2616 *   This ordering ensures that a response buffer is already available for the firmware
2617 *   to use once it's done processing the request buffer.
2618 *
2619 * Return Codes:
2620 *   DFX_K_SUCCESS	  - DMA command succeeded
2621 * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2622 *   DFX_K_HW_TIMEOUT - DMA command timed out
2623 *
2624 * Assumptions:
2625 *   Command request buffer has already been filled with desired DMA command.
2626 *
2627 * Side Effects:
2628 *   None
2629 */
2630
2631static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2632	{
2633	int status;			/* adapter status */
2634	int timeout_cnt;	/* used in for loops */
2635
2636	/* Make sure the adapter is in a state that we can issue the DMA command in */
2637
2638	status = dfx_hw_adap_state_rd(bp);
2639	if ((status == PI_STATE_K_RESET)		||
2640		(status == PI_STATE_K_HALTED)		||
2641		(status == PI_STATE_K_DMA_UNAVAIL)	||
2642		(status == PI_STATE_K_UPGRADE))
2643		return DFX_K_OUTSTATE;
2644
2645	/* Put response buffer on the command response queue */
2646
2647	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2648			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2649	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2650
2651	/* Bump (and wrap) the producer index and write out to register */
2652
2653	bp->cmd_rsp_reg.index.prod += 1;
2654	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2655	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2656
2657	/* Put request buffer on the command request queue */
2658
2659	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2660			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2661	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2662
2663	/* Bump (and wrap) the producer index and write out to register */
2664
2665	bp->cmd_req_reg.index.prod += 1;
2666	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2667	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2668
2669	/*
2670	 * Here we wait for the command request consumer index to be equal
2671	 * to the producer, indicating that the adapter has DMAed the request.
2672	 */
2673
2674	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2675		{
2676		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2677			break;
2678		udelay(100);			/* wait for 100 microseconds */
2679		}
2680	if (timeout_cnt == 0)
2681		return DFX_K_HW_TIMEOUT;
2682
2683	/* Bump (and wrap) the completion index and write out to register */
2684
2685	bp->cmd_req_reg.index.comp += 1;
2686	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2687	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2688
2689	/*
2690	 * Here we wait for the command response consumer index to be equal
2691	 * to the producer, indicating that the adapter has DMAed the response.
2692	 */
2693
2694	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2695		{
2696		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2697			break;
2698		udelay(100);			/* wait for 100 microseconds */
2699		}
2700	if (timeout_cnt == 0)
2701		return DFX_K_HW_TIMEOUT;
2702
2703	/* Bump (and wrap) the completion index and write out to register */
2704
2705	bp->cmd_rsp_reg.index.comp += 1;
2706	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2707	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2708	return DFX_K_SUCCESS;
2709	}
2710
2711
2712/*
2713 * ========================
2714 * = dfx_hw_port_ctrl_req =
2715 * ========================
2716 *
2717 * Overview:
2718 *   Sends PDQ port control command to adapter firmware
2719 *
2720 * Returns:
2721 *   Host data register value in host_data if ptr is not NULL
2722 *
2723 * Arguments:
2724 *   bp			- pointer to board information
2725 *	 command	- port control command
2726 *	 data_a		- port data A register value
2727 *	 data_b		- port data B register value
2728 *	 host_data	- ptr to host data register value
2729 *
2730 * Functional Description:
2731 *   Send generic port control command to adapter by writing
2732 *   to various PDQ port registers, then polling for completion.
2733 *
2734 * Return Codes:
2735 *   DFX_K_SUCCESS	  - port control command succeeded
2736 *   DFX_K_HW_TIMEOUT - port control command timed out
2737 *
2738 * Assumptions:
2739 *   None
2740 *
2741 * Side Effects:
2742 *   None
2743 */
2744
2745static int dfx_hw_port_ctrl_req(
2746	DFX_board_t	*bp,
2747	PI_UINT32	command,
2748	PI_UINT32	data_a,
2749	PI_UINT32	data_b,
2750	PI_UINT32	*host_data
2751	)
2752
2753	{
2754	PI_UINT32	port_cmd;		/* Port Control command register value */
2755	int			timeout_cnt;	/* used in for loops */
2756
2757	/* Set Command Error bit in command longword */
2758
2759	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2760
2761	/* Issue port command to the adapter */
2762
2763	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2764	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2765	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2766
2767	/* Now wait for command to complete */
2768
2769	if (command == PI_PCTRL_M_BLAST_FLASH)
2770		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2771	else
2772		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2773
2774	for (; timeout_cnt > 0; timeout_cnt--)
2775		{
2776		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2777		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2778			break;
2779		udelay(100);			/* wait for 100 microseconds */
2780		}
2781	if (timeout_cnt == 0)
2782		return DFX_K_HW_TIMEOUT;
2783
2784	/*
2785	 * If the address of host_data is non-zero, assume caller has supplied a
2786	 * non NULL pointer, and return the contents of the HOST_DATA register in
2787	 * it.
2788	 */
2789
2790	if (host_data != NULL)
2791		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2792	return DFX_K_SUCCESS;
2793	}
2794
2795
2796/*
2797 * =====================
2798 * = dfx_hw_adap_reset =
2799 * =====================
2800 *
2801 * Overview:
2802 *   Resets adapter
2803 *
2804 * Returns:
2805 *   None
2806 *
2807 * Arguments:
2808 *   bp   - pointer to board information
2809 *   type - type of reset to perform
2810 *
2811 * Functional Description:
2812 *   Issue soft reset to adapter by writing to PDQ Port Reset
2813 *   register.  Use incoming reset type to tell adapter what
2814 *   kind of reset operation to perform.
2815 *
2816 * Return Codes:
2817 *   None
2818 *
2819 * Assumptions:
2820 *   This routine merely issues a soft reset to the adapter.
2821 *   It is expected that after this routine returns, the caller
2822 *   will appropriately poll the Port Status register for the
2823 *   adapter to enter the proper state.
2824 *
2825 * Side Effects:
2826 *   Internal adapter registers are cleared.
2827 */
2828
2829static void dfx_hw_adap_reset(
2830	DFX_board_t	*bp,
2831	PI_UINT32	type
2832	)
2833
2834	{
2835	/* Set Reset type and assert reset */
2836
2837	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2838	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2839
2840	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2841
2842	udelay(20);
2843
2844	/* Deassert reset */
2845
2846	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2847	}
2848
2849
2850/*
2851 * ========================
2852 * = dfx_hw_adap_state_rd =
2853 * ========================
2854 *
2855 * Overview:
2856 *   Returns current adapter state
2857 *
2858 * Returns:
2859 *   Adapter state per PDQ Port Specification
2860 *
2861 * Arguments:
2862 *   bp - pointer to board information
2863 *
2864 * Functional Description:
2865 *   Reads PDQ Port Status register and returns adapter state.
2866 *
2867 * Return Codes:
2868 *   None
2869 *
2870 * Assumptions:
2871 *   None
2872 *
2873 * Side Effects:
2874 *   None
2875 */
2876
2877static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2878	{
2879	PI_UINT32 port_status;		/* Port Status register value */
2880
2881	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2882	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2883	}
2884
2885
2886/*
2887 * =====================
2888 * = dfx_hw_dma_uninit =
2889 * =====================
2890 *
2891 * Overview:
2892 *   Brings adapter to DMA_UNAVAILABLE state
2893 *
2894 * Returns:
2895 *   Condition code
2896 *
2897 * Arguments:
2898 *   bp   - pointer to board information
2899 *   type - type of reset to perform
2900 *
2901 * Functional Description:
2902 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2903 *		1. Set reset type bit in Port Data A Register then reset adapter.
2904 *		2. Check that adapter is in DMA_UNAVAILABLE state.
2905 *
2906 * Return Codes:
2907 *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2908 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2909 *
2910 * Assumptions:
2911 *   None
2912 *
2913 * Side Effects:
2914 *   Internal adapter registers are cleared.
2915 */
2916
2917static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2918	{
2919	int timeout_cnt;	/* used in for loops */
2920
2921	/* Set reset type bit and reset adapter */
2922
2923	dfx_hw_adap_reset(bp, type);
2924
2925	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2926
2927	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2928		{
2929		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2930			break;
2931		udelay(100);					/* wait for 100 microseconds */
2932		}
2933	if (timeout_cnt == 0)
2934		return DFX_K_HW_TIMEOUT;
2935	return DFX_K_SUCCESS;
2936	}
2937
2938/*
2939 *	Align an sk_buff to a boundary power of 2
2940 *
2941 */
2942#ifdef DYNAMIC_BUFFERS
2943static void my_skb_align(struct sk_buff *skb, int n)
2944{
2945	unsigned long x = (unsigned long)skb->data;
2946	unsigned long v;
2947
2948	v = ALIGN(x, n);	/* Where we want to be */
2949
2950	skb_reserve(skb, v - x);
2951}
2952#endif
2953
2954/*
2955 * ================
2956 * = dfx_rcv_init =
2957 * ================
2958 *
2959 * Overview:
2960 *   Produces buffers to adapter LLC Host receive descriptor block
2961 *
2962 * Returns:
2963 *   None
2964 *
2965 * Arguments:
2966 *   bp - pointer to board information
2967 *   get_buffers - non-zero if buffers to be allocated
2968 *
2969 * Functional Description:
2970 *   This routine can be called during dfx_adap_init() or during an adapter
2971 *	 reset.  It initializes the descriptor block and produces all allocated
2972 *   LLC Host queue receive buffers.
2973 *
2974 * Return Codes:
2975 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2976 *   dynamic buffer allocation). If the buffer allocation failed, the
2977 *   already allocated buffers will not be released and the caller should do
2978 *   this.
2979 *
2980 * Assumptions:
2981 *   The PDQ has been reset and the adapter and driver maintained Type 2
2982 *   register indices are cleared.
2983 *
2984 * Side Effects:
2985 *   Receive buffers are posted to the adapter LLC queue and the adapter
2986 *   is notified.
2987 */
2988
2989static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2990	{
2991	int	i, j;					/* used in for loop */
2992
2993	/*
2994	 *  Since each receive buffer is a single fragment of same length, initialize
2995	 *  first longword in each receive descriptor for entire LLC Host descriptor
2996	 *  block.  Also initialize second longword in each receive descriptor with
2997	 *  physical address of receive buffer.  We'll always allocate receive
2998	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2999	 *  block and produce new receive buffers by simply updating the receive
3000	 *  producer index.
3001	 *
3002	 * 	Assumptions:
3003	 *		To support all shipping versions of PDQ, the receive buffer size
3004	 *		must be mod 128 in length and the physical address must be 128 byte
3005	 *		aligned.  In other words, bits 0-6 of the length and address must
3006	 *		be zero for the following descriptor field entries to be correct on
3007	 *		all PDQ-based boards.  We guaranteed both requirements during
3008	 *		driver initialization when we allocated memory for the receive buffers.
3009	 */
3010
3011	if (get_buffers) {
3012#ifdef DYNAMIC_BUFFERS
3013	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3014		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3015		{
3016			struct sk_buff *newskb;
3017			dma_addr_t dma_addr;
3018
3019			newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3020						    GFP_NOIO);
3021			if (!newskb)
3022				return -ENOMEM;
3023			/*
3024			 * align to 128 bytes for compatibility with
3025			 * the old EISA boards.
3026			 */
3027
3028			my_skb_align(newskb, 128);
3029			dma_addr = dma_map_single(bp->bus_dev,
3030						  newskb->data,
3031						  PI_RCV_DATA_K_SIZE_MAX,
3032						  DMA_FROM_DEVICE);
3033			if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3034				dev_kfree_skb(newskb);
3035				return -ENOMEM;
3036			}
3037			bp->descr_block_virt->rcv_data[i + j].long_0 =
3038				(u32)(PI_RCV_DESCR_M_SOP |
3039				      ((PI_RCV_DATA_K_SIZE_MAX /
3040					PI_ALIGN_K_RCV_DATA_BUFF) <<
3041				       PI_RCV_DESCR_V_SEG_LEN));
3042			bp->descr_block_virt->rcv_data[i + j].long_1 =
3043				(u32)dma_addr;
3044
3045			/*
3046			 * p_rcv_buff_va is only used inside the
3047			 * kernel so we put the skb pointer here.
3048			 */
3049			bp->p_rcv_buff_va[i+j] = (char *) newskb;
3050		}
3051#else
3052	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3053		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3054			{
3055			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3056				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3057			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3058			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3059			}
3060#endif
3061	}
3062
3063	/* Update receive producer and Type 2 register */
3064
3065	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3066	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3067	return 0;
3068	}
3069
3070
3071/*
3072 * =========================
3073 * = dfx_rcv_queue_process =
3074 * =========================
3075 *
3076 * Overview:
3077 *   Process received LLC frames.
3078 *
3079 * Returns:
3080 *   None
3081 *
3082 * Arguments:
3083 *   bp - pointer to board information
3084 *
3085 * Functional Description:
3086 *   Received LLC frames are processed until there are no more consumed frames.
3087 *   Once all frames are processed, the receive buffers are returned to the
3088 *   adapter.  Note that this algorithm fixes the length of time that can be spent
3089 *   in this routine, because there are a fixed number of receive buffers to
3090 *   process and buffers are not produced until this routine exits and returns
3091 *   to the ISR.
3092 *
3093 * Return Codes:
3094 *   None
3095 *
3096 * Assumptions:
3097 *   None
3098 *
3099 * Side Effects:
3100 *   None
3101 */
3102
3103static void dfx_rcv_queue_process(
3104	DFX_board_t *bp
3105	)
3106
3107	{
3108	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3109	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3110	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3111	struct sk_buff		*skb = NULL;			/* pointer to a sk_buff to hold incoming packet data */
3112
3113	/* Service all consumed LLC receive frames */
3114
3115	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3116	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3117		{
3118		/* Process any errors */
3119		dma_addr_t dma_addr;
3120		int entry;
3121
3122		entry = bp->rcv_xmt_reg.index.rcv_comp;
3123#ifdef DYNAMIC_BUFFERS
3124		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3125#else
3126		p_buff = bp->p_rcv_buff_va[entry];
3127#endif
3128		dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3129		dma_sync_single_for_cpu(bp->bus_dev,
3130					dma_addr + RCV_BUFF_K_DESCR,
3131					sizeof(u32),
3132					DMA_FROM_DEVICE);
3133		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3134
3135		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3136			{
3137			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3138				bp->rcv_crc_errors++;
3139			else
3140				bp->rcv_frame_status_errors++;
3141			}
3142		else
3143		{
3144			int rx_in_place = 0;
3145
3146			/* The frame was received without errors - verify packet length */
3147
3148			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3149			pkt_len -= 4;				/* subtract 4 byte CRC */
3150			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3151				bp->rcv_length_errors++;
3152			else{
3153#ifdef DYNAMIC_BUFFERS
3154				struct sk_buff *newskb = NULL;
3155
3156				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3157					dma_addr_t new_dma_addr;
3158
3159					newskb = netdev_alloc_skb(bp->dev,
3160								  NEW_SKB_SIZE);
3161					if (newskb){
3162						my_skb_align(newskb, 128);
3163						new_dma_addr = dma_map_single(
3164								bp->bus_dev,
3165								newskb->data,
3166								PI_RCV_DATA_K_SIZE_MAX,
3167								DMA_FROM_DEVICE);
3168						if (dma_mapping_error(
3169								bp->bus_dev,
3170								new_dma_addr)) {
3171							dev_kfree_skb(newskb);
3172							newskb = NULL;
3173						}
3174					}
3175					if (newskb) {
3176						rx_in_place = 1;
3177
3178						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3179						dma_unmap_single(bp->bus_dev,
3180							dma_addr,
3181							PI_RCV_DATA_K_SIZE_MAX,
3182							DMA_FROM_DEVICE);
3183						skb_reserve(skb, RCV_BUFF_K_PADDING);
3184						bp->p_rcv_buff_va[entry] = (char *)newskb;
3185						bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3186					}
3187				}
3188				if (!newskb)
3189#endif
3190					/* Alloc new buffer to pass up,
3191					 * add room for PRH. */
3192					skb = netdev_alloc_skb(bp->dev,
3193							       pkt_len + 3);
3194				if (skb == NULL)
3195					{
3196					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3197					bp->rcv_discards++;
3198					break;
3199					}
3200				else {
3201					if (!rx_in_place) {
3202						/* Receive buffer allocated, pass receive packet up */
3203						dma_sync_single_for_cpu(
3204							bp->bus_dev,
3205							dma_addr +
3206							RCV_BUFF_K_PADDING,
3207							pkt_len + 3,
3208							DMA_FROM_DEVICE);
3209
3210						skb_copy_to_linear_data(skb,
3211							       p_buff + RCV_BUFF_K_PADDING,
3212							       pkt_len + 3);
3213					}
3214
3215					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3216					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3217					skb->protocol = fddi_type_trans(skb, bp->dev);
3218					bp->rcv_total_bytes += skb->len;
3219					netif_rx(skb);
3220
3221					/* Update the rcv counters */
3222					bp->rcv_total_frames++;
3223					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3224						bp->rcv_multicast_frames++;
3225				}
3226			}
3227			}
3228
3229		/*
3230		 * Advance the producer (for recycling) and advance the completion
3231		 * (for servicing received frames).  Note that it is okay to
3232		 * advance the producer without checking that it passes the
3233		 * completion index because they are both advanced at the same
3234		 * rate.
3235		 */
3236
3237		bp->rcv_xmt_reg.index.rcv_prod += 1;
3238		bp->rcv_xmt_reg.index.rcv_comp += 1;
3239		}
3240	}
3241
3242
3243/*
3244 * =====================
3245 * = dfx_xmt_queue_pkt =
3246 * =====================
3247 *
3248 * Overview:
3249 *   Queues packets for transmission
3250 *
3251 * Returns:
3252 *   Condition code
3253 *
3254 * Arguments:
3255 *   skb - pointer to sk_buff to queue for transmission
3256 *   dev - pointer to device information
3257 *
3258 * Functional Description:
3259 *   Here we assume that an incoming skb transmit request
3260 *   is contained in a single physically contiguous buffer
3261 *   in which the virtual address of the start of packet
3262 *   (skb->data) can be converted to a physical address
3263 *   by using pci_map_single().
3264 *
3265 *   Since the adapter architecture requires a three byte
3266 *   packet request header to prepend the start of packet,
3267 *   we'll write the three byte field immediately prior to
3268 *   the FC byte.  This assumption is valid because we've
3269 *   ensured that dev->hard_header_len includes three pad
3270 *   bytes.  By posting a single fragment to the adapter,
3271 *   we'll reduce the number of descriptor fetches and
3272 *   bus traffic needed to send the request.
3273 *
3274 *   Also, we can't free the skb until after it's been DMA'd
3275 *   out by the adapter, so we'll queue it in the driver and
3276 *   return it in dfx_xmt_done.
3277 *
3278 * Return Codes:
3279 *   0 - driver queued packet, link is unavailable, or skbuff was bad
3280 *	 1 - caller should requeue the sk_buff for later transmission
3281 *
3282 * Assumptions:
3283 *	 First and foremost, we assume the incoming skb pointer
3284 *   is NOT NULL and is pointing to a valid sk_buff structure.
3285 *
3286 *   The outgoing packet is complete, starting with the
3287 *   frame control byte including the last byte of data,
3288 *   but NOT including the 4 byte CRC.  We'll let the
3289 *   adapter hardware generate and append the CRC.
3290 *
3291 *   The entire packet is stored in one physically
3292 *   contiguous buffer which is not cached and whose
3293 *   32-bit physical address can be determined.
3294 *
3295 *   It's vital that this routine is NOT reentered for the
3296 *   same board and that the OS is not in another section of
3297 *   code (eg. dfx_int_common) for the same board on a
3298 *   different thread.
3299 *
3300 * Side Effects:
3301 *   None
3302 */
3303
3304static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3305				     struct net_device *dev)
3306	{
3307	DFX_board_t		*bp = netdev_priv(dev);
3308	u8			prod;				/* local transmit producer index */
3309	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3310	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3311	dma_addr_t		dma_addr;
3312	unsigned long		flags;
3313
3314	netif_stop_queue(dev);
3315
3316	/*
3317	 * Verify that incoming transmit request is OK
3318	 *
3319	 * Note: The packet size check is consistent with other
3320	 *		 Linux device drivers, although the correct packet
3321	 *		 size should be verified before calling the
3322	 *		 transmit routine.
3323	 */
3324
3325	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3326	{
3327		printk("%s: Invalid packet length - %u bytes\n",
3328			dev->name, skb->len);
3329		bp->xmt_length_errors++;		/* bump error counter */
3330		netif_wake_queue(dev);
3331		dev_kfree_skb(skb);
3332		return NETDEV_TX_OK;			/* return "success" */
3333	}
3334	/*
3335	 * See if adapter link is available, if not, free buffer
3336	 *
3337	 * Note: If the link isn't available, free buffer and return 0
3338	 *		 rather than tell the upper layer to requeue the packet.
3339	 *		 The methodology here is that by the time the link
3340	 *		 becomes available, the packet to be sent will be
3341	 *		 fairly stale.  By simply dropping the packet, the
3342	 *		 higher layer protocols will eventually time out
3343	 *		 waiting for response packets which it won't receive.
3344	 */
3345
3346	if (bp->link_available == PI_K_FALSE)
3347		{
3348		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3349			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3350		else
3351			{
3352			bp->xmt_discards++;					/* bump error counter */
3353			dev_kfree_skb(skb);		/* free sk_buff now */
3354			netif_wake_queue(dev);
3355			return NETDEV_TX_OK;		/* return "success" */
3356			}
3357		}
3358
3359	/* Write the three PRH bytes immediately before the FC byte */
3360
3361	skb_push(skb, 3);
3362	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3363	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3364	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3365
3366	dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3367				  DMA_TO_DEVICE);
3368	if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3369		skb_pull(skb, 3);
3370		return NETDEV_TX_BUSY;
3371	}
3372
3373	spin_lock_irqsave(&bp->lock, flags);
3374
3375	/* Get the current producer and the next free xmt data descriptor */
3376
3377	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3378	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3379
3380	/*
3381	 * Get pointer to auxiliary queue entry to contain information
3382	 * for this packet.
3383	 *
3384	 * Note: The current xmt producer index will become the
3385	 *	 current xmt completion index when we complete this
3386	 *	 packet later on.  So, we'll get the pointer to the
3387	 *	 next auxiliary queue entry now before we bump the
3388	 *	 producer index.
3389	 */
3390
3391	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3392
3393	/*
3394	 * Write the descriptor with buffer info and bump producer
3395	 *
3396	 * Note: Since we need to start DMA from the packet request
3397	 *		 header, we'll add 3 bytes to the DMA buffer length,
3398	 *		 and we'll determine the physical address of the
3399	 *		 buffer from the PRH, not skb->data.
3400	 *
3401	 * Assumptions:
3402	 *		 1. Packet starts with the frame control (FC) byte
3403	 *		    at skb->data.
3404	 *		 2. The 4-byte CRC is not appended to the buffer or
3405	 *			included in the length.
3406	 *		 3. Packet length (skb->len) is from FC to end of
3407	 *			data, inclusive.
3408	 *		 4. The packet length does not exceed the maximum
3409	 *			FDDI LLC frame length of 4491 bytes.
3410	 *		 5. The entire packet is contained in a physically
3411	 *			contiguous, non-cached, locked memory space
3412	 *			comprised of a single buffer pointed to by
3413	 *			skb->data.
3414	 *		 6. The physical address of the start of packet
3415	 *			can be determined from the virtual address
3416	 *			by using pci_map_single() and is only 32-bits
3417	 *			wide.
3418	 */
3419
3420	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3421	p_xmt_descr->long_1 = (u32)dma_addr;
3422
3423	/*
3424	 * Verify that descriptor is actually available
3425	 *
3426	 * Note: If descriptor isn't available, return 1 which tells
3427	 *	 the upper layer to requeue the packet for later
3428	 *	 transmission.
3429	 *
3430	 *       We need to ensure that the producer never reaches the
3431	 *	 completion, except to indicate that the queue is empty.
3432	 */
3433
3434	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3435	{
3436		skb_pull(skb,3);
3437		spin_unlock_irqrestore(&bp->lock, flags);
3438		return NETDEV_TX_BUSY;	/* requeue packet for later */
3439	}
3440
3441	/*
3442	 * Save info for this packet for xmt done indication routine
3443	 *
3444	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3445	 * structure so that we'd have it handy when we complete this
3446	 * packet later (in dfx_xmt_done).  However, since the current
3447	 * transmit architecture guarantees a single fragment for the
3448	 * entire packet, we can simply bump the completion index by
3449	 * one (1) for each completed packet.
3450	 *
3451	 * Note: If this assumption changes and we're presented with
3452	 *	 an inconsistent number of transmit fragments for packet
3453	 *	 data, we'll need to modify this code to save the current
3454	 *	 transmit producer index.
3455	 */
3456
3457	p_xmt_drv_descr->p_skb = skb;
3458
3459	/* Update Type 2 register */
3460
3461	bp->rcv_xmt_reg.index.xmt_prod = prod;
3462	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3463	spin_unlock_irqrestore(&bp->lock, flags);
3464	netif_wake_queue(dev);
3465	return NETDEV_TX_OK;	/* packet queued to adapter */
3466	}
3467
3468
3469/*
3470 * ================
3471 * = dfx_xmt_done =
3472 * ================
3473 *
3474 * Overview:
3475 *   Processes all frames that have been transmitted.
3476 *
3477 * Returns:
3478 *   None
3479 *
3480 * Arguments:
3481 *   bp - pointer to board information
3482 *
3483 * Functional Description:
3484 *   For all consumed transmit descriptors that have not
3485 *   yet been completed, we'll free the skb we were holding
3486 *   onto using dev_kfree_skb and bump the appropriate
3487 *   counters.
3488 *
3489 * Return Codes:
3490 *   None
3491 *
3492 * Assumptions:
3493 *   The Type 2 register is not updated in this routine.  It is
3494 *   assumed that it will be updated in the ISR when dfx_xmt_done
3495 *   returns.
3496 *
3497 * Side Effects:
3498 *   None
3499 */
3500
3501static int dfx_xmt_done(DFX_board_t *bp)
3502	{
3503	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3504	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3505	u8			comp;			/* local transmit completion index */
3506	int 			freed = 0;		/* buffers freed */
3507
3508	/* Service all consumed transmit frames */
3509
3510	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3511	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3512		{
3513		/* Get pointer to the transmit driver descriptor block information */
3514
3515		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3516
3517		/* Increment transmit counters */
3518
3519		bp->xmt_total_frames++;
3520		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3521
3522		/* Return skb to operating system */
3523		comp = bp->rcv_xmt_reg.index.xmt_comp;
3524		dma_unmap_single(bp->bus_dev,
3525				 bp->descr_block_virt->xmt_data[comp].long_1,
3526				 p_xmt_drv_descr->p_skb->len,
3527				 DMA_TO_DEVICE);
3528		dev_consume_skb_irq(p_xmt_drv_descr->p_skb);
3529
3530		/*
3531		 * Move to start of next packet by updating completion index
3532		 *
3533		 * Here we assume that a transmit packet request is always
3534		 * serviced by posting one fragment.  We can therefore
3535		 * simplify the completion code by incrementing the
3536		 * completion index by one.  This code will need to be
3537		 * modified if this assumption changes.  See comments
3538		 * in dfx_xmt_queue_pkt for more details.
3539		 */
3540
3541		bp->rcv_xmt_reg.index.xmt_comp += 1;
3542		freed++;
3543		}
3544	return freed;
3545	}
3546
3547
3548/*
3549 * =================
3550 * = dfx_rcv_flush =
3551 * =================
3552 *
3553 * Overview:
3554 *   Remove all skb's in the receive ring.
3555 *
3556 * Returns:
3557 *   None
3558 *
3559 * Arguments:
3560 *   bp - pointer to board information
3561 *
3562 * Functional Description:
3563 *   Free's all the dynamically allocated skb's that are
3564 *   currently attached to the device receive ring. This
3565 *   function is typically only used when the device is
3566 *   initialized or reinitialized.
3567 *
3568 * Return Codes:
3569 *   None
3570 *
3571 * Side Effects:
3572 *   None
3573 */
3574#ifdef DYNAMIC_BUFFERS
3575static void dfx_rcv_flush( DFX_board_t *bp )
3576	{
3577	int i, j;
3578
3579	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3580		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3581		{
3582			struct sk_buff *skb;
3583			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3584			if (skb) {
3585				dma_unmap_single(bp->bus_dev,
3586						 bp->descr_block_virt->rcv_data[i+j].long_1,
3587						 PI_RCV_DATA_K_SIZE_MAX,
3588						 DMA_FROM_DEVICE);
3589				dev_kfree_skb(skb);
3590			}
3591			bp->p_rcv_buff_va[i+j] = NULL;
3592		}
3593
3594	}
3595#endif /* DYNAMIC_BUFFERS */
3596
3597/*
3598 * =================
3599 * = dfx_xmt_flush =
3600 * =================
3601 *
3602 * Overview:
3603 *   Processes all frames whether they've been transmitted
3604 *   or not.
3605 *
3606 * Returns:
3607 *   None
3608 *
3609 * Arguments:
3610 *   bp - pointer to board information
3611 *
3612 * Functional Description:
3613 *   For all produced transmit descriptors that have not
3614 *   yet been completed, we'll free the skb we were holding
3615 *   onto using dev_kfree_skb and bump the appropriate
3616 *   counters.  Of course, it's possible that some of
3617 *   these transmit requests actually did go out, but we
3618 *   won't make that distinction here.  Finally, we'll
3619 *   update the consumer index to match the producer.
3620 *
3621 * Return Codes:
3622 *   None
3623 *
3624 * Assumptions:
3625 *   This routine does NOT update the Type 2 register.  It
3626 *   is assumed that this routine is being called during a
3627 *   transmit flush interrupt, or a shutdown or close routine.
3628 *
3629 * Side Effects:
3630 *   None
3631 */
3632
3633static void dfx_xmt_flush( DFX_board_t *bp )
3634	{
3635	u32			prod_cons;		/* rcv/xmt consumer block longword */
3636	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3637	u8			comp;			/* local transmit completion index */
3638
3639	/* Flush all outstanding transmit frames */
3640
3641	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3642		{
3643		/* Get pointer to the transmit driver descriptor block information */
3644
3645		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3646
3647		/* Return skb to operating system */
3648		comp = bp->rcv_xmt_reg.index.xmt_comp;
3649		dma_unmap_single(bp->bus_dev,
3650				 bp->descr_block_virt->xmt_data[comp].long_1,
3651				 p_xmt_drv_descr->p_skb->len,
3652				 DMA_TO_DEVICE);
3653		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3654
3655		/* Increment transmit error counter */
3656
3657		bp->xmt_discards++;
3658
3659		/*
3660		 * Move to start of next packet by updating completion index
3661		 *
3662		 * Here we assume that a transmit packet request is always
3663		 * serviced by posting one fragment.  We can therefore
3664		 * simplify the completion code by incrementing the
3665		 * completion index by one.  This code will need to be
3666		 * modified if this assumption changes.  See comments
3667		 * in dfx_xmt_queue_pkt for more details.
3668		 */
3669
3670		bp->rcv_xmt_reg.index.xmt_comp += 1;
3671		}
3672
3673	/* Update the transmit consumer index in the consumer block */
3674
3675	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3676	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3677	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3678	}
3679
3680/*
3681 * ==================
3682 * = dfx_unregister =
3683 * ==================
3684 *
3685 * Overview:
3686 *   Shuts down an FDDI controller
3687 *
3688 * Returns:
3689 *   Condition code
3690 *
3691 * Arguments:
3692 *   bdev - pointer to device information
3693 *
3694 * Functional Description:
3695 *
3696 * Return Codes:
3697 *   None
3698 *
3699 * Assumptions:
3700 *   It compiles so it should work :-( (PCI cards do :-)
3701 *
3702 * Side Effects:
3703 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3704 *   freed.
3705 */
3706static void dfx_unregister(struct device *bdev)
3707{
3708	struct net_device *dev = dev_get_drvdata(bdev);
3709	DFX_board_t *bp = netdev_priv(dev);
3710	int dfx_bus_pci = dev_is_pci(bdev);
3711	int dfx_bus_tc = DFX_BUS_TC(bdev);
3712	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3713	resource_size_t bar_start[3] = {0};	/* pointers to ports */
3714	resource_size_t bar_len[3] = {0};	/* resource lengths */
3715	int		alloc_size;		/* total buffer size used */
3716
3717	unregister_netdev(dev);
3718
3719	alloc_size = sizeof(PI_DESCR_BLOCK) +
3720		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3721#ifndef DYNAMIC_BUFFERS
3722		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3723#endif
3724		     sizeof(PI_CONSUMER_BLOCK) +
3725		     (PI_ALIGN_K_DESC_BLK - 1);
3726	if (bp->kmalloced)
3727		dma_free_coherent(bdev, alloc_size,
3728				  bp->kmalloced, bp->kmalloced_dma);
3729
3730	dfx_bus_uninit(dev);
3731
3732	dfx_get_bars(bdev, bar_start, bar_len);
3733	if (bar_start[2] != 0)
3734		release_region(bar_start[2], bar_len[2]);
3735	if (bar_start[1] != 0)
3736		release_region(bar_start[1], bar_len[1]);
3737	if (dfx_use_mmio) {
3738		iounmap(bp->base.mem);
3739		release_mem_region(bar_start[0], bar_len[0]);
3740	} else
3741		release_region(bar_start[0], bar_len[0]);
3742
3743	if (dfx_bus_pci)
3744		pci_disable_device(to_pci_dev(bdev));
3745
3746	free_netdev(dev);
3747}
3748
3749
3750static int __maybe_unused dfx_dev_register(struct device *);
3751static int __maybe_unused dfx_dev_unregister(struct device *);
3752
3753#ifdef CONFIG_PCI
3754static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3755static void dfx_pci_unregister(struct pci_dev *);
3756
3757static const struct pci_device_id dfx_pci_table[] = {
3758	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3759	{ }
3760};
3761MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3762
3763static struct pci_driver dfx_pci_driver = {
3764	.name		= "defxx",
3765	.id_table	= dfx_pci_table,
3766	.probe		= dfx_pci_register,
3767	.remove		= dfx_pci_unregister,
3768};
3769
3770static int dfx_pci_register(struct pci_dev *pdev,
3771			    const struct pci_device_id *ent)
3772{
3773	return dfx_register(&pdev->dev);
3774}
3775
3776static void dfx_pci_unregister(struct pci_dev *pdev)
3777{
3778	dfx_unregister(&pdev->dev);
3779}
3780#endif /* CONFIG_PCI */
3781
3782#ifdef CONFIG_EISA
3783static const struct eisa_device_id dfx_eisa_table[] = {
3784        { "DEC3001", DEFEA_PROD_ID_1 },
3785        { "DEC3002", DEFEA_PROD_ID_2 },
3786        { "DEC3003", DEFEA_PROD_ID_3 },
3787        { "DEC3004", DEFEA_PROD_ID_4 },
3788        { }
3789};
3790MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3791
3792static struct eisa_driver dfx_eisa_driver = {
3793	.id_table	= dfx_eisa_table,
3794	.driver		= {
3795		.name	= "defxx",
3796		.bus	= &eisa_bus_type,
3797		.probe	= dfx_dev_register,
3798		.remove	= dfx_dev_unregister,
3799	},
3800};
3801#endif /* CONFIG_EISA */
3802
3803#ifdef CONFIG_TC
3804static struct tc_device_id const dfx_tc_table[] = {
3805	{ "DEC     ", "PMAF-FA " },
3806	{ "DEC     ", "PMAF-FD " },
3807	{ "DEC     ", "PMAF-FS " },
3808	{ "DEC     ", "PMAF-FU " },
3809	{ }
3810};
3811MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3812
3813static struct tc_driver dfx_tc_driver = {
3814	.id_table	= dfx_tc_table,
3815	.driver		= {
3816		.name	= "defxx",
3817		.bus	= &tc_bus_type,
3818		.probe	= dfx_dev_register,
3819		.remove	= dfx_dev_unregister,
3820	},
3821};
3822#endif /* CONFIG_TC */
3823
3824static int __maybe_unused dfx_dev_register(struct device *dev)
3825{
3826	int status;
3827
3828	status = dfx_register(dev);
3829	if (!status)
3830		get_device(dev);
3831	return status;
3832}
3833
3834static int __maybe_unused dfx_dev_unregister(struct device *dev)
3835{
3836	put_device(dev);
3837	dfx_unregister(dev);
3838	return 0;
3839}
3840
3841
3842static int dfx_init(void)
3843{
3844	int status;
3845
3846	status = pci_register_driver(&dfx_pci_driver);
3847	if (status)
3848		goto err_pci_register;
3849
3850	status = eisa_driver_register(&dfx_eisa_driver);
3851	if (status)
3852		goto err_eisa_register;
3853
3854	status = tc_register_driver(&dfx_tc_driver);
3855	if (status)
3856		goto err_tc_register;
3857
3858	return 0;
3859
3860err_tc_register:
3861	eisa_driver_unregister(&dfx_eisa_driver);
3862err_eisa_register:
3863	pci_unregister_driver(&dfx_pci_driver);
3864err_pci_register:
3865	return status;
3866}
3867
3868static void dfx_cleanup(void)
3869{
3870	tc_unregister_driver(&dfx_tc_driver);
3871	eisa_driver_unregister(&dfx_eisa_driver);
3872	pci_unregister_driver(&dfx_pci_driver);
3873}
3874
3875module_init(dfx_init);
3876module_exit(dfx_cleanup);
3877MODULE_AUTHOR("Lawrence V. Stefani");
3878MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3879		   DRV_VERSION " " DRV_RELDATE);
3880MODULE_LICENSE("GPL");
3881